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1. INTRODUCTION

In this Ph.D.-thesis we continue the study of the large-Z behaviour
of the ground state energy of atoms having relativistic kintetic energy
VP22 + m2c* — mc?; this work was initiated in Sgrensen [40], which
was the progress-report for the qualifying exam after the ‘del A’ of the
Ph.D.-program. This report is included in this thesis for completeness,
but has already been assessed for the Master’s degree (‘Cand. Scient.’)
at the Department of Mathematics, University of Aarhus.

The aim of this work is to try to understand relativistic corrections
to the ground state energy of large atoms. As a model for a rela-
tivistic atom with atom number Z and N electrons, we considered in
Sgrensen [40] the dimensionless operator

N

VA 1
_E: —a—2A. -4 _ 52 E
Hret = {\/ oAt ma \xi|}+ |z — 5]

i=1 1<i<j<nN 7"
(1.1)

In physical units, the operator H,, has a factor of R, the Rydberg-
energy, the fundamental energy of atomic physics, given by R, =
sa?mc?. Here and above, « is a dimensionless number, the ‘fine struc-
ture constant’, given by fundamental constants: o = ;—i Its value is
~ 1/137; m is the mass of the electron, —e its charge, f is Planck’s
constant and c the speed of light (see Sgrensen [40, app. A| for a deriva-
tion of the expression (1.1)). As noted in the introduction to [40], this

model has already been studied extensively over the years, especially
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the question of ‘Stability of Matter’ has received great attention. We
refer to [40] for references.
The corresponding problem for the non-relativistic case,

N A, 7 1
Hcl:Z{—7—m}+ > o al (1.2)

T
i=1 1<i<j<N ™t

has been much studied over the past 20 years. Define the ground state
energy of the non-relativistic atom by

E{(Z) == inf Specy,, Hy (1.3)

where the spectrum of Hy is calculated on #p = AY L?(R®,C9), the
Fermionic Hilbert space, describing N Fermions, each with ¢ possible
spin states (the ‘Pauli Principle’). We will take ¢ = 2 from now on;
we will also restrict ourselves to the neutral case, N = Z. Then the
asymptotic behaviour of E¢_,(Z), as Z — oo, is known in great detail:

Theorem 1.1. With E$(Z) as above, there exist positive constants
Crr and Cpg, such that

1
E¢_(Z) = —CrpZ™ + 522 — CpgZ°/3

+0(Z2°%¢), Z - (1.4)
for some positive €.

(We shall not have anything further to say on the third term, the
Dirac-Schwinger correction (predicted by the physicists Dirac [3] and
Schwinger [29]), proved in a long series of papers by Fefferman and
Seco [6, 7, 8, 9, 10, 11, 12]).

The leading order term in this expression stems from the ‘bulk’ part
of the electrons, and is a semi-classical term; it is given by the Thomas-
Fermi energy approximation. This was first proved (rigorously) by
Lieb and Simon [21] (see also Lieb [19, 20]) (but stated from physical
arguments by the physicists Thomas and Fermi in the early days of
quantum mechanics). Since this term comes from electrons far away
from the nucleus, with low momentum |p|, this is a non-relativistic
term. Therefore one would expect that to leading order in Z, the
ground state energy of a relativistic atom should be the same.

The second term in the expansion (1.4) is called the ‘Scott-correction’,
after the physicist Scott, who predicted it in Scott [30]. Studying the
proof (by Hughes [16] and Siedentop and Weikard [31, 32, 33, 34])
of this term, one sees that it comes from a purely one-particle effect.
Heuristically speaking it arises as follows: the ‘innermost’ electron does
not feel the other electrons, and therefore the major contribution to its
energy should not be the semi-classical Thomas-Fermi energy. Instead,
this electron should be treated quantum mechanically. Since the en-
ergy of a (Hydrogenic) atom with one electron and a nucleus of charge
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Z is of the order —Z2, both ‘morally’ and directly seen in the rigourous
proof, this term comes from a refined quantum mechanical study of the
sum of the negative eigenvalues of the corresponding one-particle op-
erator . Since the ‘innermost’ electron has a high momentum |p|, this
is where we would expect to detect relativistic effects. More precisely,
the second order term in a corresponding asymptotic expansion of the
energy of a relativistic atom should be of the same order, but (perhaps)
with a different constant (for the classical case, it is a factor 1/2).

The reason why the energy of large atoms as described by the op-
erator in (1.1) has not yet been studied at all is the following: when
looking at the one-particle operator

Z
Ruersst = V—a2A + a4 —a™? — m
Z
=a ! (\/—A +a2—a ' - ﬁ ) (1.5)

one immidiately encounters the problem, that this operator is not well-
defined beyond a certain value of Za — in fact, the operator is bounded
from below on C§°(R?) if, and only, if Za < %, as proved indepen-
dently by Herbst [14] and Weder [43]. As mentioned, the value of «
is approximately 1/137 and so this means that only physical elements
with Z < 87 are well-defined within this model.

This fact also poses problems from a purely mathematical point of
view, since what we wish is to study the large-Z limit of the bottom of
the spectrum of H,. (It should be mentioned that apart from this, the
operator suffers from other defects: it is neither local (which is normally
a required feature in quantum mechanics), nor is it Lorentz-invariant
(and hence does not qualify as a ‘proper’ relativistic operator). We
shall come back to this later.)

A way to get around the mathematical part of the problem is the
following: We can re-write the operator H,,; as follows:

N
_ — _ 0 o
Hrel=a1{ E {\/—Ai+a2—a1—|xi|}+ E m}

i=1 1<i<j<N

(1.6)

with 0 = Za. Now, as long as J stays fixed, with 0 < § < %, this
operator is well-defined and bounded from below on A" C°(R?) (see
Lieb and Yau [23]). Defining its Friedrichs-extension, we get a self-
adjoint operator (by abuse of notation also denoted by H,), and so we
can define the energy of the relativistic atom described by the operator
(1.1) by

EY (Z,6) := inf Specy,, Hrel (1.7)

where the spectrum of H,, as before is calculated on Hr = A~ L?(R?, C?);
we will restrict ourselves to the neutral case, N = Z.
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The point is the following: keeping 4 fixed, letting Z tend to infin-
ity (and, therefore, letting the fine structure constant «, whose phys-
ical value is ~ 1/137, tend to zero), we can study the asymptotics of
E™Z,6) as Z — oo. Observe that

2
o' (Vp+ta?-a )~ b (1.8)

2

for either « fixed and |p| small, or |p| fixed and « small. This means
that in some sense we are taking a non-relativistic limit, as well as the
large-Z limit. The idea is that in the limit we should still be able to
detect traces of the relativistic effects described earlier.

The study of the leading order term in the large-Z asymptotics (with
§ = Za < 2/ fixed) of E¥.,(Z, ) was carried out in Sgrensen [40].
The following (which confirms the heuristic idea from the earlier dis-
cussion) was proved:

Theorem 1.2 (Sgrensen '96). Let § be fized, 0 < § < % and let H g
and EX¥(Z,6) be as above. Then we have:

E¥ (Z,6) = —CrpZ™P +0(Z7?), Z — oo, (1.9)

where —CppZ™/3 is the Thomas-Fermi energy of the ‘classical’ (in the
sense ‘non-relativistic’) atom; that is, Crp is the constant from (1.4).

In Sgrensen [40] the following was also conjectured:
Conjecture 1.3. For all 0 < § < 2, there is a constant s() such that
EZ,6) = —CrpZ™® +5(0) 2% + 0o(Z?), Z — o0, (1.10)

where s(J) satisfies

1
fms(0) = 3-

The last assertion is expected because of the (vague) intuition that
small ¢ should correspond to a non-relativistic regime, and so we should
recover the non-relativistic Scott-correction in the limit as § tends to
Zero.

Both the proof of the first two terms in the expansion (1.4) and of
Theorem 1.2 consist of two parts:

(1) Reducing the many-body problem of N electrons to that of a
single-particle operator.

(2) A careful study of the sum of the negative eigenvalues of the
resulting one-particle operator.

Having reduced the problem to the study of a one-particle operator, one
is left with studying the sum of negative eigenvalues of such operators.
The electron-electron interaction has been de-coupled and replaced by
an ‘effective potential’ and, because of the Pauli Principle, we must
study the sum of the N lowest eigenvalues of this one-particle operator.
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Since we wish to take the limit Z — oo, we are led to the study of the
sum of all the negative eigenvalues.

Various techniques to treat (1) are fairly standard by now, and so
the latest years the hard problem has been to study (2).

The proof of Theorem 1.2 involved writing the kinetic energy of the
one-particle operator as an integral operator in configuration space.
One can then localise and utilize the heuristic ideas mentioned earlier:
far away from the nucleus, the approximation (1.8) holds, and the
contribution from the area close to the nucleus turns out to be of lower
order.

In this thesis we study the sum of the negative eigenvalues of certain
one-particle operators more carefully. We shall not as of yet have any-
thing to say on the reduction to the one-particle operator for the case
of the Scott-correction.

The present work is inspired by ideas in Sobolev [38, 39|, based
on methods developed by Ivrii [17] (see also Ivrii [18]). It should be
mentioned here that the method of the original proofs by Hughes [16]
and Siedentop and Weikard [31, 32, 33, 34| relies on the exact knowledge
of the eigenvalues of the non-relativistic (Schrédinger) Hydrogen atom.
The eigenvalues of the operator hems; (see (1.5)), on the other hand,
are not known. The advantage of the method of Ivrii is that it allows
one to prove the existence of the Scott-correction in (1.4), without
actually having to be able to compute it (see also Sobolev [39]). In this
way, the method also works for the case of the Herbst-operator. On the
other hand, this means that one will not be able to actually compute
s(6) in (1.10) by the same means as in the proof of Siedentop and
Weikard. Essentially, the problem boils down to studying a pseudo-
differential operator on the positive half-line, and one could hope that
a further study of this operator could reveal some information on the
numerical value of s(d) (see also the end of this introduction).

The main results of this thesis are the following two theorems:

Theorem 1.4. Let ¢ € C°(R®) be a function such that |¢| < 1 and
such that

Let 6 < 2/m be fized, and define ¢(x) = ¢(x/t).
Then there exists a constant G(0), such that for any e > 0:

A
Tr{(;&z_urs(:v)|\/—OFQAJc e Tl |_}

= orp [ Aot o) [ ]
LG 2 +0(ZY) , Z— .
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Remark 1.5. Note that the function ¢z-1+c is a localisation in a ball of
radius Z 1t

The next theorem exhibits a different way of characterising the con-
stant G(9):

Theorem 1.6. Let f(Z) be any strictly positive function such that
f(Z) = o(Z*) as Z — oo, and let 6 < 2/ be fived. Then, with
G(6) the constant from Theorem 1.4:

lim Z72

Z—00

Tr{|\/—a_2A$+a'_4 —a? - % + f(Z) ‘_}

~ o [[mn [5 - L vaz)] —c6)2

=0.

The aim of the future work is to extend these results to the Thomas-
Fermi potential by the techniques developed in this thesis. We expect
to have done most of the ‘foot-work’ to carry this analysis through.
Finally, this should be applied to the many-body problem, to prove
Conjecture 1.3.

Lastly, a note on the choice of relativistic operator. As mentioned
earlier, the operator (1.5) suffers from two defects: it is neither local
nor Lorentz-invariant. These two defects are not shared by the Dirac-
operator, acting in [C’é’o(]R?’)}4 (see Thaller [41, (4.15) p. 109; note the
sign error|); its dimensionless expression is (substracting the rest mass
as for hyerpsy):

th’mc = a’_la ' (_ZV) + Q_Q(ﬂ — 14) — £ 14 (111)

|

- 12 0 L 0 ag; .
/6_<0 —12)’ az_<0.i 0)7 7’_172737

where o;, 1 = 1,2, 3 are the Pauli spin-matrices:

(01 (0 —i (1 0
=1 0) 27 i o) T\o -1)"

(We apologise to the reader for the fact that in the relativistic frame-
work, having both o and a may cause some confusion; since this is
standard notation this nuissance is inevitable). This operator turns out
to allow stable one-electron atoms up to Z < 137 (that is, Za < 1).
This operator on the other hand suffers from the defect that it has es-
sential spectrum | — oo, —mc?|U[mc?, oo[, which makes it impossible to
define a many-body theory for this operator in a meaningfull way (we
refer to recent works by Evans, Perry and Siedentop [5] and Tix [42]
as attempts to remedy this problem).

with



One advantage of the Hydrogen Dirac-operator above is the fact that
its eigenvalues are computable (Thaller [41, (7.140) p. 214]):

2
Dirac __

nk 5_2

5 "2
(n+ Vk? — 62)?
n=12... , k==£1,£2,.. ..
Assume that the leading order of the sum of these negative eigenvalues
is the same as in the non-relativistic case (and therefore as in the case of

the Herbst-operator in (1.5)). The eigenvalues of the (non-relativistic)
Schrodinger operator are

Z2
ESchr — ]
mE T T+ k)2

Inspired by the result of Theorem 1.6, define

K(5,¢) = %{ > (Ef,imc‘"ﬁ) - > (Efjchr+e)}

Dirac _ Schre __
En,k <—e En,k <—e

(taking into account the degeneracy). Then K () = (lim._,o K(d,€)) +
1/2 should give the first order correction, corresponding to the constant
from Theorem 1.6 for the operator (1.5).

On the graph below is shown numerical values of K(4,¢) + 1/2 (for
some small €) as a function of §, computed by Maple(®© (the code is
included in appendix G). Note the asymptotics at § ~ 0; notice also
the apparent divergence at § = 1. (Remark that the Dirac operator is
well-defined for ¢ < 1).

| K(delta)

FIGURE 1. A numerical computation of K (9) for Dirac.



2. ORGANISATION OF THE PAPER

A large deal of technical and referential material has been deferred
to a number of appendicies, in order to make the exposition of the main
material (closer to) linear.

In section 3 we fix some notation, then we start in section 4 by
studying a one-parameter family of symbols of so-called ‘h—pseudo-
differential operators’ (see appendix A for referential material on the
general theory of these). The family we study is, for « €0, oy

ao(r,p) = Vo lp2 +a2—a '+ V(z) , VeCPrR)

with p = —igV for 3 € ]0,5o]; here, [ plays the role of a ‘small
paramter’. We show that this is a symbol uniformly in «, which allows
us to apply the results from appendix A, uniformly in «.

In section 5 we establish a ‘modelproblem’ (or a ‘reference problem’),
namely that of the asymptotic expansion (in § above) of Tr{y g(A)}.
Here, 1 € C$°(R®), with suppy C B(0, E/2) (an open ball of radius
E/2) and an ‘abstract’ operator A, ‘equal to H in B(4F)’, with H the
quantisation of the symbol a, above, in a sense expressed in Assump-
tion 5.1. The function g is supposed to belong to an abstract class of
functions (see (5.3)), which in particular contains the functions

A5, A<D
gs()‘)_{ 0’ )\ZO

The asymptotics of Tr{t g(A)}, expressed in Theorem 5.4, has as lead-
ing term the so-called ‘Weyl-term’:

1
Weilt,9) = s [ V@ slaa@p) dedh. ()
The result is subject to a ‘non-critical’ condition on the symbol a,
(which translates into one on the potential V', see (5.7)). The result re-
lies on comparing the ‘abstract’ operator A and the pseudo-differential
operator H. This is very technical, and the results on this analysis are
gathered in appendix B.

In section 6 this non-critical condition is removed by the method of
Multi-scale Analysis, invented by Ivrii [17, 18] (see also Sigal [35] for
a good account on this procedure). This method allows one to scale
away the non-critical condition mentioned above in the particular case
of the functions g; mentioned above. It also allows an explicit control
of the remainders, and extends to more general domains than open
balls. We note here that we have not been able as of yet to carry this
analysis completely through: we only prove this for the case g;. As
discussed in appendix D, we expect to be able to show the estimates
in appendix B without a loss of factors of «, which will make the use
of an a priori estimate (namely (D.47), proved in appendix D) in the
proof of Theorem 6.7 superfluous.
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The main theorems of the thesis, Theorem 1.4 and Theorem 1.6,
are then proved in section 7. To this are used the results mentioned
above, in a spherical shell, {a < |z| < b}, for @« = 3 = 1. Three other
important ingredients come into play.

The first one is the comparing of two operators with different po-
tentials: one being the asymptotic part as |z| — 0 of the other (see
appendix C). This is applied to a rather trivial case, namely that of
the Coulomb potential plus a constant. The aim of future work is
to extend this technique to compare the Coulomb potential with the
Thomas-Fermi potential (which asymptotically as |x| — 0 behaves like
the Coulomb potential, see Lieb and Simon [21]).

The second important ingredient is an energy estimate of the en-
ergy of the ‘tail’ of all the eigenfunctions corresponding to the negative
eigenvalues of a Herbst-operator, with Coulomb potential ‘pushed up’,
see appendix E.

The last important ingredient is comparing the relativistic Weyl-
term (see (2.1) above) with the ‘classical’ one (in the sense, ‘non-
relativistic’). It is important to note, that the Weyl-term entering
in the two main theorems, Theorem 1.4 and Theorem 1.6, is that of
the ‘classical’ operator (the Schrodinger operator), namely

W(¢) = (271T)3 // &’ dp ¢(z) [1752 - i]_ (2.2)

]

This comparing is needed away from the singularity of the Coulomb
potential. In this region, the potential, and hence the momentum |p|, is
small, and so the relativistic kinetic energy 1/p? + 1 — 1 is comparable
to the classical kinetic energy p?/2.

3. NOTATION

We fix some notation: for any n = (m,7,73) € N° and
T = (x1,%2,73) € R®, we denote |n| = n1 +m2 + 03, 0! = m!nplnsl,
" =z xPz? and

ol
MN=0= —————.
¢ Oz Oxy Oz
We also write O)x = g—;‘l, 1 =1,2,3, for brevity.

For z € R?* and p > 0, we will denote the (open) ball with centre z
and radius p by B(z,p) = {z € R® ||z — 2| < p}, and B(p) = B(0, p).
Sometimes we write By(z, p) for balls in R?; balls in RS x R? will be
denoted By ,(z, p).

By B>(R?) we denote C*°- functions on R®, which are bounded,
along with all their derivatives.

The most important notation will be that of the Neumann-Schatten
spaces G,, trace ideals of the compact operators. These are the spaces
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of bounded operators T on L?(R?) such that the norm

1

Ill, = (Te{(T"T)%})”

is finite; &1, G4 are the ideals of trace class operators, and Hilbert-
Schmidt class operators, respectively. We note the very important fact
that for T € 6, T; € G,, and T; a bounded operator, we have the
inequalities

1 1 1
TTT'S T T ) _:_+_7
BT < ITITl, =+

and

IToTallp < IToll Tl (3.1)

The first inequality extends, by induction, to what we will call ‘the
generalised Holder inequality’: If T; € &,,, j = 1,... ,n, then

ITI%], <TI0t + 5=+ (32
j=1 j=1 j=1 b;

For more on the ideals &,,, we refer the reader to the monographs by
Dunford and Schwartz [4], Schatten [28], and Simon [36]

For an operator T on L*(R?), D(T) will denote the domain of 7', and
for z in the resolvent set of 7' (that is, the complement of the spectrum
of T), R(z,T) = (T — z) ! will be the resolvent of T at the point z. If
T is semi-bounded from below, the associated quadratic form will be
denoted T[-, -] and its domain by D[T].

By the notation

flz,y,...) =g(z,y,...) + O(h(z,y,...))

we mean that there exists a constant C such that

|f(x,y,...)—g(x,y,...)| < Ch(z,y,...)

for z,y, ... in some specified intervals.

Finally, for any function f, we define |f|. = 1(|f|£f) = max{£f,0};
in this way, |f|+ > 0. In particular, when studying the sum of the
negative eigenvalues of an operator 7', we need to study Tr{—|T|_}.

4. THE SYMBOL /a 'p? +a 2 —a ' +V(z)

In this section we study the symbol needed for our semi-classical
analysis. This symbol will look a bit strange at first sight, but it will
later become apparent why we make this unconventional choice. The
reason we choose the somewhat strange looking symbol and quantisa-
tion is that this will make the 'Multi-scale Analysis’ (due to Ivrii [17];
see also Ivrii [18]) in Sobolev [38, ch. 5] go through with hardly any
changes.
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For some o > 0 fixed, define for a €]0, 9] and V € C{°(R?) on
RS x R} the function

ao(z,p) = Vo lp2 +a2 —a '+ V(z).

With this choice of symbol, quantising by p — —i(y/a)V = —iV we
get the operator vV—A + a2 — a~! + V(z); note also, that for small
@, the symbol is approximately p?/2 + V (z), since

2
Voaipr+a2—al=a(y/1+ap?—1) ~ a_l(%).

This symbol quantises to the operator —aA/2 + V(z). In this way,
whenever we get semi-classical estimates, all we have to remember is
that the semi-classical parameter [ is v/, and not, as usual, h.

We now prove that the symbol a, satisfies the requirements given in
appendix A, uniformly in the parameter o.

Lemma 4.1. There ezist constants b,c > 0, independent of o €10, avg],
such that

Ao +b>c>0

and such that ao is a weight, uniformly in the parameter o €0, ap);
that is, there erists a constant C, independent of a €0, ap] (but de-
pending on ag, b, ¢ and ||V||«) such that

aa(z,p) +b < C(1+ |z —y* + |p — q|*) (aa(y, @) + b)

for all (z,p) and (y,q) in RS x RS and all a €]0,aq]. Furthermore,
aq s a symbol with weight as + b, uniformly in « €10, ag] in the sense
that for all v,n € N,

|8;aga’a(xap)| S C,.’E (aa(x,p) + b)

for all (z,p) € RS x RS, with a constant C' depending on vy, 1, o, b,
c and V', but independent of o €0, ayp).

Proof. Firstly, since V € C§°(R?), we can, for any ¢ > 0, choose a
b > 0, independent of «, such that

ao(z,p) +b>c >0 for all 2,p € R?;

it suffices to take b = by + ¢, with b; > ||V||«, since the kinetic energy,

Vo p? + a2 — o1, is non-negative. Next, we prove that a, + b is a
weight, as defined in (A.1) in appendix A. Note first that

(\/m —a ) (VP +a?24+a™t)

( a lpP+a?+ orl)

ao(2,p) = +V(2)

2

_ p
B vap?+1+1

+V(z) <p¥Y2+V(2).
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Then, for |p| > 2|g| and any z,y € R® we have that

aa(,p) +b < P24Vl +b
l+lz—yP+lp—q®~  1+p¥4
Since a4 (y,q) + b > ¢, we have, with C; = Cy/c independent of «, and
still for |p| > 2]g|, that

aa(2,p) +0 < Ci1(1+ |2 — yI* + [p — q[*) (aa(y, @) + b).
Next, for [p| < 2|g|, note that
varlpr+at—at |p| Va+1/|q)2+ gl _
Vo T@ ta2—at lal Ja+1/pP+ 1/|p|

since, by the above,

Voalp+a?2—al=

< max{2, ||V|e + b} = Cp.

_r
Vap?+1+1
and so
ao(z,p) +b=+a 'pP+a2—a '+ V(z)+b

<d(ya i@ ta 2—at+V(z)+b)
=4(Va @t a7 —a T + V() +b+ V() - V()
< 4(aa(y, @) + b+ 2/|V]ls0)

(

4 1+2|| “oo)(aa(y,q)-l-b)

C
<Cy(1+ |z —yl*+ Ip — 4) (aa(y, @) + b),

with Cy = 4(1 + %) Here we used that V(z) + b > 0 and that
aq + b > c¢. This proves that there exists a constant C, independent of
a €10, ag], such that for all z,y,p,q € R* and « €]0, ay):

ao(z,p) +0 < C(1+ |z =y + |p — ¢1%) (aa(y, 9) +1),
and so a, + b is a weight as defined in (A.1) in appendix A, uniformly
in a.
Next, we wish to show that a, is a symbol of weight a,, +b, uniformly

in a €]0, ap], in the sense stated in the lemma. Obviously, a,(z,p) <
aq(z,p) + b and for y # 0,

03aa(z,p)| = |07V (z)|
is bounded by a constant only depending on V and ~, since V €
C°(R?). Since aq +b > c and 910a, = 0 for || # 0 # |y|, this
means that we are left with bounding
|8g(\/a—1p2 + oz_2)| , neEN,
by as(z,p) + b, for n # 0. Now, for |p| = 1, we have to bound by
ao(x,p) + b, whereas for the higher derivatives, |n| > 2, it turns out

IA
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that these are actually bounded uniformly in  and p. Note that, with
1=1,2,3,

P < p| ‘
Vap?+1 7 yJap? +1

‘6;01@&(3" p)‘

Now, for |p| > 2, we have that

p| < p? p?

Vap?+1 2\/ap2+1 \/ozp2+1+\/ozp2+1
=Valp+a2-al,
\/ozp +1+ 1
whereas for [p| < 2, the derivative is bounded:

L <lpl <2
vVap?+1

Since a, +b > c and /o 'p? + a2 — a7l < a.(x,p) + b, this means
that

10p,0a(7,p)| < C (aa(z,p) +b)

with C' = max{1,2/c}.
Consider now the higher derivatives; as mentioned above

NMao(z,p) = A (Va P +a72), || #0.

Now,
Vel +a2=a /14 (Vap)?,
and so
a1 (va~'p? + a=?) = o~ M2 (g1 g) (Vap) (4.1)
with g(q) = /1+ ¢2. Since o €]0, ] and |n| > 2, it will be enough

to bound 979(q), uniformly in g, as o —nl/2 < aé'"‘ 212,

To do this we will prove the following:

Lemma 4.2. For alln € N}, 97(\/1+ |q?) is a (finite) sum of terms
of the form

k
2

Pi(q) (1+ql?) (4.2)

with | — k = 1 — |n|, where P, is a polynomial (in the three variables
G1,G2,G3), of degree at most .

Proof. The proof is by induction after || = n € N. For n = 1, for
some j € {1,2,3},

a .
N(V1+ 1) = a—qj(\/1+|Q|2) = \/%W

which is of the form described in (4.2). This proves the induction basis.
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Assume now, for some n € N, that for all n € N3, || = n, the
function 97(4/1 + |g[2) has the form described in (4.2). Take v € N?,
|y] = n+ 1, then v = n + e;, with [n| = n and e; one of the vectors
(1,0,0),(0,1,0),(0,0,1), and so

9 (vV1+1af) = 8%(82(\/1 +a?).

By the induction hypothesis, this is a (finite) sum of terms of the forms

5 (P00 +109)7) = (50@) (0 +1a) )

k2
+((=k)gP) 1 +1d*) = (4.3)
with [ — k = 1 — n. Rests to note that by the induction hypothesis
a% (P,(¢)) is a polynomial of degree at most { —1 and —kg;P;(q) one of
degree at most [+ 1. Since (I—1)—k =1—(n+1) and (I4+1)—(k+2) =
l—k—1=1-(n+1) by the induction hypothesis, the two terms in
(4.3) are of the form described in (4.2), and the lemma now follows by
induction. O

Now, given a polynomial P;(¢q) of degree at most [, there exists a
constant, C' = C(P,), such that

P(q)| <C(1+]q') forallgeR’.
This means, by Lemma 4.2, since k > [, that
—k C(1+|q|*
Pla)(1+1q) o)
1+ gz
with the same constant C' as above, and so for all n € N? there exists
a constant C' = C(n) such that

N (v1+1q?)

Since a, + b > ¢, this gives us (see (4.1)) , with g(¢) = y/1 + ¢, that

for n e N°, |n| > 2,
N (Ve lp? +a—2)‘

|0laa(z,p)| =

= |a7H2(g1g) (Vap)| < C (aa(z,p) +b)  (4.4)

with a constant C' independent of o €]0, ag] (only depending on 7, ¢
and ap). The reason we cannot use this for |n| = 1 is because of the
a-scaling of things, see (4.1).

All in all, this means that for all v, € N® there exists a constant
C =C(n,v,a,b,c,V) such that

000} ao(z,p)| < C (au(z,p) +b)

for all (z,p) € RS x R?, with C independent of o € ]0, a]. This finally
proves that a, is a symbol of weight a, + b, uniformly in o €0, ap]. O

< <G,

<|P@(+1g?)

< C(n) forallqeR.
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One of the implications of this is that the following theorem holds
(see Theorem A.10 in appendix A):

Theorem 4.3. Let the operator H be the quantisation of the symbol
ao by p = —iBV and let, for some E, R > 0, © be the quantisation
of 0 € C°(B,(E) x By(R)). Then, for any g € C°(R?), we have,
uniformly in « €10, «yp), that

100 g(H)} = (270) [ 0(2.) glaale, ) ¥y + O(5 ).
Lastly, we treat the so-called ‘non-critical condition’; this will not be
needed until later, but fits best here:
Lemma 4.4. Assume that ay(z,p) = A and that
A=V(z)|+ |VV(2)]*>6 > 0.
Then
\Vag(z,p)* > min{é, ay'/2}.

Proof. Note that |A — V(z)] = /a 1p? + a2 — o™ L. Also,

p2

\Y 2= vV (z)|>.
Vaalen)? = L+ 9V ()
Now, for ap? < 1, we have that
2 2 2
p Y p _ _ -1
>—>—— " =\/a'pPP+a?-«a
ap*+1 7~ 2 = Jap? +1+1

and so
\Vao(z,p)* > A=V (z)| + |VV(x)]* > 6.
For ap? > 1 on the other hand,

2
P 1
|Vaa(ac,p)\2 > YN

1
> —.
Tap?+1 7T 20 T 20

This proves the lemma. O

5. THE MODEL PROBLEM

We are ready to treat the ‘model problem’, namely with an ‘abstract’
operator A, in a ball with fixed radius, with a non-critical condition.
By the method of Multi-scale Analysis, we will in the following section
prove the same result without the non-critical condition (see (5.7)), for
more specific functions g, and more general domains D.

The result will be build on the general semi-classical results in ap-
pendix A. The idea is to take advantage of the specific nature of the
operator in question, expressed by the results in appendix B.
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Throughout this section,
H=H(B,aV)=H+V , Hy=+—-a'BA+a2-a},

t(z,p) = Vo lpP+a2—a " +V(z) , (v,p) ER; xR,

with V' € C§°(R3), and a €]0, ag] and 3 €]0, 5] for some fixed num-
bers o and fy. Since Hy > 0, this means that H > —||V||e. We
will not here be needing the exact dependencies on this lower bound as
computed in appendix B (there denoted M), nor the exact dependence
on the radius of the ball on which we study the problem (denoted p in
appendix B; here, this will be denoted E and will be fixed throughout).
The reason for this is that the exact dependence on these (and other
parameters) for the general problem will follow from the Multi-scale
Analysis performed in the following section. One note on the depen-
dence of the appearing cut-off function v: all estimates in section B
require [¢| < 1 (in section B, 1 is called x); the estimates for general
functions follow by normalizing.

About the abstract operator A we shall assume that it agrees with
H on the open set D C R? in the following sense:

Assumption 5.1.
A is selfadjoint in L?*(R?), semi-bounded from below and for any ( €
C§°(D) the following holds:

(1) Yu € D[A] we have u¢ € D[A]. 3¢ € C°(D) (depending on
() such that ;¢ = ¢ and

Alu, ¢v] = A[Gu, (v] + (Bu,v) Vu,v € D[A],
with an operator B satisfying
IBlli < Cnpe (VapB)™  forall N € N. (5.1)
If D is a ball of radius p > p, for some py > 0 fixed, then

N
I1Bl: < Cwe, (@) for all N € N. (5.2)
p
(2) 3V € C°(R®), real valued, such that, with H = Hy + V,
v € D[A],u € D[H| we have Cu € D[A], (v € D[H]| and
AlCu, Qv] = H[Cu, Cv]
and
Ay = Hvyp for all 9 € C5°(D). (5.3)
(3) The operator A satisfies the lower bound A > —a ™.
Here, D[A] is the form domain of the operator A.

Remark 5.2. In particular, the operator A satisfies Assumption B.1 in
appendix B; this means that all of the results in that appendix are at
our disposition.
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Let us define the class of functions g that we will be dealing with in
this section (see definition A.11 in appendix A):

Definition 5.3. A function g € C*°(R\ {0}) is said to belong to the
class C**(R) for s € [0, 1] if:

(1) g € C(R), s > 0.
(2) For some r > 0 and some C"

g(A\) =0, A>C
09N S CrlAl', A< =C, Vm 2>0.
(8) For [A\| < C, A#0, and m > 0:
10X g(N)| < C| AT, 0<s<1
0 g(N)| < Cn, s=0,1.

A function g is said to belong to C;”°(R), s € [0, 1], if g is of compact
support and g € C°*(R).

The main result of this section will be the following:

Theorem 5.4. Let ¢ € C°(B(E/2)) and g € C**(R), s € [0,1].
Suppose that the operator A satisfies Assumption 5.1 with D = B(4F)
and a potential V € C°(R?), and that this potential satisfies

V(x)| + |0V (z)]? > ¢ > 0, Vz € B(2E) (5.4)

for some number c. Then

Tr{y g(A) o ﬂ /1/1 9(au(z,p)) d*x d’p
+ 0B +0?pY) , forall NeN (5.5)
The remainder estimate is uniform in'V and 1 as long as these satisfy
0™V (z)| < Cpp, 0™ (z)| < Cpy, VM € N°. (5.6)

(That is, the remainders in the estimate (5.5) depend on the constants
Cpn’s in (5.6), on g, ag and By, and on E).

Remark 5.5. For such general g, this is the best result we will prove;
for the functions (here, s € [0,1])

AP A<O

(which are all in C*°) we will in the next section remove the non-
critical condition (5.4) by the Multi-scale Analysis; the possibility of
this is due to the fact that for these functions g, everything scales
exactly as needed. We will also extend the result to more general
domains than open balls.
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Remark 5.6. In the theorem we can replace the condition (5.4) by
|V(z)| + |0V (z)]* + 8 > ¢ > 0, Vz € B(2E), (5.7)
since (5.4) implies that either
V(z)|+ 10V (2)]* > ¢/2>0,  Vze B(2E),

in which case the result follows from the theorem (with different con-
stants C and Cy), or 3 > ¢/2. In this case, since by Lemma B.16

lhg(A)l < Ca™?257

the trace Tr{t g(A)} is bounded by C’a %2, uniformly in 3. Since
g(A) =0 for A > C, we have that

9(aa(@p) =0 for |p| > 1+ (C+ [[V]le)y/as = Dy
since \/y2 +1—1> (v/2—1)|p| for [p| > 1. This means that

s [ st

_ 4m ~
< C ~*Vol (supp ¢)||¢||oo§Dg <C
and so we can write Tr{¢ g(A)} in the form (5.5).

The idea of the proof is the following: First, we establish the asymp-
totics for the ‘true’ operator, H. This is done by first choosing a C§°-
function f, equal to 1 on the support of g, and use the semi-classical
analysis from appendix A on f(H). Also, we show that to all orders in
B, we can, for f € C§°(R), remove the quantised operator © = opg0,

0 € C3°(Bs(E) X B,(R)), in the asymptotic expansion

(2735)3 / 0(z,p) flaa(z,p)) dxdp+ OB, (58)

(see Theorem 4.3) as long as we insert the multiplication operator ¢ (x)
(to have ¢ f(H)) and as long as R is chosen large enough. This is of
course due to the fact that for f € C§°(R), f(aq(z,p)) = 0 for |p| large
enough (see above). To relate the asymptotics for the ‘true’ operator,
H, to that of the ‘abstract’ one, A, we compare the propagators of
the two operators and take advantage of the important fact that the
operators agree on the set C§°(B(3E)). We then use that this set
contains the image of a Fourier integral operator Gz(t) (see (A.11))
that approximates both the propagator of H and that of A. Finally, to
end the proof, we use the Tauberian argument from Proposition A.12
to remove the introduced C§°-function f, and by splitting the function
¢ in sums of functions with different properties, we get the result for
the general class of functions, C**(R).
Throughout this section, we shall use the notation

A1 (B) ~ Az(B)

Tr{O© f(H)} =
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when, for the two families of operators, A;(3) and As(3), we have
141 (8) — A2(B)|ls < Cya™?8"Y, VN €N,

with a constant only depending on N and the fixed numbers g, Gy
and F.

First we wish to prove that the localisation in phase-space (by the
operator © = opgﬁ) can be removed, as long as we have a localisation in
configuration space (by the function ) and a function g with compact
support.

Lemma 5.7. Let ¢ € C§°(B(E/2)), g € C(R), and let the function
0 € CX(By(E) x By(R)) satisfy

6(z,p) =1 on By(5E/6) x By(R/2),

with
R>2(1+ (maxe g(2) IV )\/070). (5.9)
V2 -1
Then, with © = opgt the quantisation of the symbol 6, we have
lbg(H)(I = ©)[ly < Cya 26N VN > 0. (5.10)

The constant depends on g and 0, and on «y, By and E.

Proof. Let ¢y € C§°(B(3E/4)) be a function such that ¢ (z) = 1,
z € B(5E/8). This means that, with ¢ =1 — 1y,

dist{supp 1, supp ¢} > E/8

and so the pair of functions v, ¢ satisfies the condition (B.6) of Theorem
B.19, so

lpg(H)¢lls < Cya Y VN > 0. (5.11)

Note that since g € C§°(R), the condition (B.79) is trivially satisfied.
Choose also a function f € C§°(R) such that f = 1 on supp g; more
explicitely, such that

In this way,

dist{supp (1 — f),suppg} > 1> 0.
Since fg = g this means that (remember that ¢, + ¢ = 1)
[vg(H) — ¢g(H)f(H)|l
= llvg(H) (W1 + ) f(H) — Yg(H)pu f (H)]x
= |lgg(H)¢f (H)||1 < Cya *?BY VN >0,
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since, by the spectral theorem, f(H) is bounded, independently of «
and [, and so

by(H) ~ g(H)y f(H).
Now, since, by Lemma B.10 (remember that a € ]0, o))
lbg(H)[ < Ca™?572,
it suffices to check that for R as in (5.9),
[ f(H)(I — ©)[| < CypY VN > 0. (5.12)

(Note, that this is in operator norm, not in the trace norm; the intro-
duction of ¥; and f served to get rid of the question of trace norm and
pass the problem to one of operator norm, the price being the negative
power of a). Next we have, by Lemma 4.1, that the symbol

ao(z,p) = Va lp+ a2 —a '+ V(z)

satisfies

1) 3b,e>0:a,+b>c
2) a, + b is a weight
3) aq is a symbol of weight a, + b.

All of this, uniformly in o €]0, ). This means (see Theorem A.6)
that the operator H is (3-admissible, uniformly in «, that is, since
f € C§°(R), we have the representation

N
F(H) = Flopyas;+ B Ryn1(B), (5.13)

J=0

where the a, s ;’s are given by

Ga,f,o(x,p) = f(aa(xap))a

aa,f,1(l“,p) =0,
2j—1 (_1)k . .
a'aafvj(x7p) = Z k' d]vk a)\f(a/a(x7p)) bl .7 Z 2
k=1 )

(the coefficients d; ;, are universal polynomials of 8;”18;”2 Ao, M1 +Mg <
j) and where ||R;n+1(8)|| < Cu, independently of a and 3. This
means, since the operator I — © is bounded, also independently of «
and [, that the bound (5.12) is fulfilled for the remainder

BY Ry 1 (B)T - ©).

To prove the estimate (5.12) for the other terms, we observe that this

amounts to proving, that the product of three operators with the sym-
bols

Ui(x), OFf(ae(z,p)), 1—0(z,p), m=0,1,...
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satisfies the estimate (5.12). Now, f € C§°(R), and so

supp f(aa(-, ")) C {(z,p)||p| £ C}
with

o (1 N (mang(w)\;ri2_+1ll‘/|loo)\/a_o)' (5.14)

To see this, note that
RN ES e
with ¢ = v/2 — 1. Note, that C above is independent of . That is,
supp 11 N supp f(aa(--)) C {(z,p) [ |z| < 3E/4,|p| < C}.

Now, since

0(z,p) =1 for (z,p) € B,(5E/6) x B,(R/2)
for some R > 2C (see (5.9)), we have that

supp 1 N supp 9% f (aa(-,-)) Nsupp (1 — 6) = 0.

From Lemma A.5 in appendix A now follows, that

|31 0P5 g, pn (I — O)]| < CnBY, YN >0.
This proves the lemma. O

This result will allow us to replace the quantisation © = opg# of 6, the
cut-off in phase-space, with the multiplication operator v, a cut-off in
configuration space only, in the following sense:

Lemma 5.8. Let 1) € C°(B(E/2)).
(1) If g € C§°( ) then

Tr{¢ g(H) o B /¢ 9(aa(@,p)) dx d’p
)+ O(a*23N) for all N > 0. (5.15)

(2) Suppose that for some A, with |A| < Ao for some fized Ay, the
‘non-critical’ condition

V(z) = A +|0V(z)?>c>0 Vx € B(2F) (5.16)
15 satisfied. Then
o (DX (H = Ny
< C B3+ Cna™8" for all N > 0. (5.17)

The constants C and Cy are uniform in |A| < Xg. Here,

xs(7) = %Xl (%)
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with the function x1 being the Fourier transform of a function
X € C°(—=T,T), satisfying

X)) =x(=t) eR Vi,
Xt =1, |f<T/2

Additionally, we have that x1 > 0 and that there exists a Ty €
10,T[, such that x1(t) > ¢ > 0 for |r| < T (see (A.13) for
further details).

(3) Let g be a compactly supported function in L*(R) and let the
‘non-critical’ condition (5.16) above be fulfilled for all A € supp g.

Then
Tr{y f(H)g"
27rﬂ /w Yg(aa(z,p)) d*x d’p
)+ O(a®?8N) for all N > 0. (5.18)
Here,

g9 (r) = / o — )X (v) dv = / o) xs(r — v) dv

with x5 as above.

Remark 5.9. Note that in the last result, the trace of the operator
Y f(H)g®)(H) is related to the semi-classical integral of the function g
itself. Later, by the Tauberian argument in Proposition A.12, this will
be related to the trace of 1¥g(H).

Proof. The ingredients are the semi-classical results from appendix A
and the lemma just proven.

We start by proving (5.18). Without loss of generality, assume that
g(\) and 9 (x) are real-valued (for complex-valued, write as ) = Rey+
iIm and expand the product). Let 6 be the symbol from Lemma 5.7,
so that the same lemma (used on the function f) gives, that

Wf(H) g (H) ~ 1 f(H)© g¥) (H)

since, by (A.16) and the spectral theorem, ||¢'®(H)|| < C 87%, inde-
pendently of . The idea is now, by aid of the expansion (A.9) and
the product formula (A.5) in appendix A, to compute the first couple
of terms in the expansion in powers of [ of the symbol of the operator

¢ f(H)©. To this end, recall (see (5.13)), that
F(H) = opj f(aa) + 67 Ry2(B)

since aq,r,1 = 0. This means, that

¥ f(H)© =vopl f(as) © + %% Ryp(B8) ©
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with
18" Rs2(8) Ol < B1WIl | Rp2 (Bl 1O]: < C 5
since ||Rs2(3)|| < C, uniformly in « and 8, and ||©]; < CS® by
(A.4), uniformly in a, as 6 € C§°(R2 x R). Next, by the formula (A.5)
in appendix A
Yopy f(aa) = (op§) (op§ f(aa)) = opfq
with
q(z,p) = P(2) f(aa(z, p))

s ey o o) o faae. )

[m1[+|m2|=1
+ B%ra (@, p; B),
where the operator Ry(3) = opgry is bounded uniformly in f (a,) and
; that is, ||R2(8)|| < Cy, independently of 3 and « (the constant Cj
depends on the constants in the weight estimates (A.1) of aq 50 = f(aq)
and 1, and these are independent of o.) Using (A.5) again, we get that
¥ opj f(aa) © = (0p§q) (0p5h) = opj's
with

s(z,p) = q(z, p) 0(z,p)
Y o L @om e p) (@07 00 )

| |+ e |=1
+ ﬂQ’F?(xap; ﬂ)
= ¢(2) f(aa(z, p)) 0(x, p) + iBA(x, p) + 5°B(x, p) + i6°C(z,p).
Here,
A(z,p)
- ¥ (—i)(—l)m'i(a;ma;”2¢(x>a;nza;nlf<aa<x,p>)) 0. )

|ma|+|m2|=1

£ 30 () (0097 (4(2) flaale, 1)) (3700005, p))

[ |+|h2|=1

eR
and

B(z,p) = Fo(z, p; B) + r2(z, p; 8) 0(, p)
—1)Im2|+|m2]| o
-3 T (o (o e o) 302 faa ,1))))

[ma[+|m2|=1
|7y [+|mg =1

X (8;7‘28?10(36, p))
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and

. ol L ( yin sy i
Clap)= Y (=)(=1)™ ("0 r:(z,p; 8)) (8,0 0(x,p)).

|1 |+|me|=1

By (A.4) in Proposition A.4 (since 6 is of compact support),

lops (9505 0)[ls < € B~°

lopg0ll < C' 57

and as mentioned earlier,

lopgms|l = [|1R:(B)]| < C.
Since 6 is of compact support, the rest opgr, = Ry(B) by (A.6) satisfies

llopg7ally = [1R2(8)]s < C B2,
In this way,
¥ f(H)© = opf (¢ f(aa) 0) + ifopf (A) + 2opf (€)
where
lopg () < C B7°
and Im A = 0. That is,
14 f(H) © — opg (¢ f(aa) 8) — iBopg (Al < C B~
This means that
Tr{y f(H) gW(H)}
=Te{y f(H) © ¢P (H)} + O(a?5Y), VN >0
=Tr{0 ¢ (H)} + iB Tr{op} (A) ¢ (H)}
+ 0B H)+0326N), VYN >0 (5.19)
with
0 =1 f(aa)0, suppf C supp,

since, again, ||g!®)(H)|| < C 87!, by the spectral theorem and (A.16).
Now, note that since all symbols and g are real-valued, and the operator
H is self-adjoint, then the involved operators are self-adjoint and so all
traces in the above formula are real. This means that

I8 Te{op(4) ¢ (H)} = O(5") + O(a~28"), YN >0.
By Lemma 4.4, we have that
ao(z,p) = A and |V(z) — A + [0V (2)|* > § > 0
implies that
|Vau(z,p)|* > min{6, ap™*/2},

so that the non-critical condition (see (A.17) in Assumption A.9) on the
gradient is satisfied on the ‘energy shell’ of energy A for all A € supp g.
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Furthermore, § € C°(R® x R?) and suppf C B,(E) x By(R), so (3)
in Proposition A.10 gives us the asymptotics

Te {6 9@ (H)) = ﬁ / 0(2,p) 9(aa(z, p)) d d + O(6Y).
(5.20)

Notice, that this is uniformly in . Now, as before,

supp g(aa(-,-)) C {(z,p) | |p| < C}
with C' as in (5.14), and so, by (5.9), we get that

O(z,p) =1 for |p| < C and z € supp .
This means that
¥(2)0(z, p)g(aa(z,p)) = ¥(z)9(aa(z,p)) V(z,p),
so that, since fg = g,
0(x,p)9(aa(z,p)) = ¥ (2)0(x,p) f (ta(z,))g(aa(z, p))
=1(z)g(aa(z,p))  V(z,p).

This means, by (5.19) and (5.20), that

Tr{y f(H)g"® (H) 9(aa(z,p)) dx d’

4+ 0> ??Y)  forall N > 0.

This proves (5.18).

To prove (5.15), notice that by Lemma 5.7, v g(H) ~ 1 g(H)®©
Next, as in the proof above, we can find a sub-principal symbol A for
the operator ¥ g(H) ©, such that Im A = 0 and such that the we have
the estimate

1 9(H) © — opj (¢ g(aa) 0) — if opf (Al < C 5.
As before, by choosing the same R, we can assure that
0(x,p) 9(aa(®,p)) = (@) g(aa(z,p)) (x, p)
= 1(z) g(aa(z,p)) V(z,p),

and so this proves (5.15) by (1) in Proposition A.10 as above.
Finally, to prove (5.17), note that by the spectral theorem and
(A.14), ||xs(H — V|| < C B, and so

Of(H)xg(H — A) ~ 9 f(H) © xg(H — A)

by Lemma 5.7, since f € C§°(R). Also, || f(H)|| < C by the spectral
theorem, and so, by (3.1) and (2) in Proposition A.10, we get, that

Il £ (H)xs( — )]l
< [l F(E) | 1© xa(H = My + C a~%26" for all N' > 0

<CB 3+ Cya3?8Y  forall N > 0.
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This finishes the proof of the lemma. O

The next step will be to compare the propagators of (the time evolu-
tion of) the two operators H and A. This will be done by intermediary
of the Fourier integral operator (FIO) Gg(t), defined in (A.11), which
will be shown to approximate both propagators.

Denote the propagators of H and A by Ug(t; H) and Us(t; A), re-
spectively. The result we are aiming at is the following:

Lemma 5.10. Let the operator A satisfy Assumption 5.1 with D =
B(4F) and let f € C(R®). Then there exists a number Ty > 0 such
that for |t| < Ty we have

1 f(H) (Us(t; H) = Us(t; A)) s < Cwa™28",  for all N >( 0. |
5.21

The constant Cy is uniform in 1 and V obeying the bounds (5.6) (see
also formulation in Theorem 5.4).

Proof. As earlier mentioned, the idea is to approximate the two propa-
gators by a Fourier integral operator. The second ingredient is Lemma
5.7. Since the symbol a,(z,p) is smooth, we can use the techniques
from appendix A. Let therefore # be the symbol from Lemma 5.7 and
let Gs(t) denote the 8-FIO with the kernel

1 i (S(zpt)—y-
g(m’y,t) = (27rﬂ)3 /63(5( Dyt) yp)v(ac,p, t; ﬂ) d3p

By Proposition A.8, there exists a number (a ‘time’) Ty and smooth
functions

S,v € C®(B,(3E) x B¢(3R) x =Ty, T] )

such that, defining the operator G(t) as above with this choice of S
and v,
sup || — i80,Gs(t) + HG4(t)|| < OnpN T (5.22)

[t|<To

Note, that Ty and the Cy’s are independent of « € 0, ayp.
Now, Gg(t) acts into C§°(B(3FE)), and so, since H and A agree on
this set (see (1) in Assumption 5.1), we have, that

HGg(t) = AGg(t) for all t. (5.23)

This and the estimate (5.22) is what will allow us to show, that G(?)
approximates not only the time-evolution (the propagator) Us(t; H) of
H, but also Ug(t; A), that of A. More explicitely, we will prove the
following estimate:

sup [|©(Us(t) — Gs(1))|s < CyBY¥ P forall N € N, a €]0, o).

[t|<To

(5.24)
Here, Us(t) denotes any of the two propagators, Us(t; H) or Us(t; A).
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To prove this for Ug(t; A), let
Mg (t) = —iB0sGp(t) + AGp(t)
and remember the initial condition (A.12):
Gp(0) =@
where ® = opj¢, with a real valued function ¢ such that
6 € O (B.(2E) x B,2R))
¢(z,p) =1, (2,p) € B:(3E/2) x B,(3R/2)

(in this way, the supports of § and 1 — ¢ are disjoint). Now, the
propagator Ugs(t; A) is defined as the solution to the evolution equation

—ip0Us(t; A) + AUs(t; A) =0, Ug(0;A) =1
and so the difference
Eg(t) = Ug(t; A) — Gp(t)
will satisfy
—i30,Es(t) + AEg(t) = —Mgs(t), Eg(0)=1-2. (5.25)

Integrating this equation, we get
t

U = 5 A) My (s) ds + (I — D)

B

(check by differentiating and inserting in (5.25) above). This means,
that

Eg(t) =

Ty
sup [|© Eg(t)|l1 < — (1|1 sup [|Mp()|| + O — D)1,
#|<Tp B 1t<To

since Ug(t; A) is unitary and so of norm less than or equal to one. As
noted above, the supports of § and 1 — ¢ are disjoint, and so the term
IO — @)||; satisfy the estimate (5.24) by (A.8) in Lemma A.5. To
estimate || Mg(t)||, we use the fact that (see (5.23))

HGﬂ(t) = AGﬁ(t) for all ¢
and the estimate (5.22). This gives us, that
sup || Mg (t)]| = sup | = 835G (t) + H Gg(t)]ls < OnpY .
t|<To

[t/<To [¢]
Now, since © = opgf and 0 € Cg° (Bz(E) x B,(R)), the estimate
|©]l; < C 373 from (A.4) in Proposition A.4 gives us that
sup 110 (Us(t 4) = Gs() | = sup 10 Ep(®)]: < OnB™>.
t|<To

[t|<To

This proves the estimate (5.24) for the propagator Ug(t; A) of A; for
that of Us(t; H), the proof goes as above, except that we can use (5.22)
directly.
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To prove the lemma, we write
U F(H) [Us(t; H) — Uplt; A)) = o FH)(T — ©) [Us(t; H) — Up(t; A)]
+ 9 f(H)© [Us(t; H) — Up(t; A)]
and so
10 f(H) (Us(t; H) = Us(t; A)) |11
< || fF(H)I = O)|lh |Us(t; H) — Up(t; A
+ 19 FED1O(Us(t; H) — Us(t; A)) |la
< 2|y fF(H)I = O)|li + C|© (Us(t; H) — Us(t; A)) |11
since Ug(t; H), resp. Us(t; A), are unitary, and || f(H)|| < [[#]|ooll f1]oo
by the spectral theorem.
The estimate (5.21) for the first term now follows from Lemma 5.7,
whereas for the second, it follows from applying the bound (5.24) twice,

substracting and adding G(t) (remember that o € ]0, ap]). This proves
the lemma. O

This result allows us to prove the estimates in Lemma 5.8 for the
operator A:

Lemma 5.11. Let A be as in Theorem 5.4 and let 1p € C§°(B(E/2)).
(1) If g € C§°(R), then

Tr{y g(A )}

27rﬂ /w 9(aa(z,p) dw dp
O(a?8Y)  for all N > 0. (5.26)

(2) Suppose that for some A, with |A| < Ao for some Ay fized, the
‘non-critical’ condition

V(z) = A +|0V(z)?>c>0 Vz € B(2F) (5.27)
1s satisfied. Then
[/ (A)xs(A = N
<CB3+Cya 2N forall N > 0. (5.28)

The constants C and Cy are uniform in |A| < X\g. (See Lemma
5.8 for the function xg.)

(3) Let g € L*(R) be a compactly supported function and let
the ‘non-critical’ condition (5.27) be fulfilled for all X € suppg.
Then

Tr{y f(A )

- %ﬂ /w 9(aa(z,p)) dc dp
N O(a2pY)  for all N > 0. (5.29)
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Here, as before,
aa(T,p) = Vo lp2 + a2 —a t + V().
Proof. By Theorem B.18
1%[g(H) = g(A)]l < Cya™?B"Y  for all N > 0, (5.30)

since g € C§°(R) (and therefore trivially satisfies the condition (B.72))
and so (5.26) follows from the analogue result (5.15) for the operator
H (remember that o €]0, ayg)).

Since ||¢W(H)|| < C 37" and ||xs(A — A)|| < C B! by the spectral
theorem (see (A.16) and (A.14)), the estimate (5.30) above (applied to
f € C§°(R)) gives that

19 f(A)xs(A—A) — ¢ f(H)xs(A— Nl
< Cna2pN  for all N > 0,

and

1 f(A) §7(A) = v f(H) §P(A)]l, < Cya™?pN for all N > 0.
Next, by definition (see (A.13), (A.14) and (A.15))

xs(7) = %XI(T/ﬁ), xi(7 = 7 / et dt,

g(ﬂ)(T) = /g(T —v)xg(v)dv = /Q(V)XB(T —v)dy,
where
X €GP (-T.T), T<Tp

1
%(=t) = %(t) € R and {(t) = — for |t| < T/2.

V2m

This, and the estimate (5.21) in Lemma 5.10 (valid for all [t| < Tj)
gives us (since Uy(t; H) = e#™"), that

10 f(H) xs(A = A) =2 f(H) xp(H — Nx

Hﬂ\/_ / H) [Up(t; A) — Up(t; H)] dt
< 55— - H¢f ) [Us(t; A) — Ug(t; H)]H1dt
2T,

ONaf?)/QﬁN — éNa73/2ﬂN71.

N

The estimate (5.28) now follows from the similar estimate (5.17) for
the operator H (since « €0, ap)).
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Similarly,

o £(H) g@(A) = v F(H) @ (H) s
< [ 9@l v F(H) xa(4 = ) = ¥ () xo 0 = )1 do
< Cna~®28% 1 g|| s

by the computation above (since, by assumption, the ‘non-critical’ con-
dition (5.27) holds for all A € supp g). As before, the estimate (5.29)
now follows from the result (5.18) for the operator H, and so this fin-
ishes the proof of the lemma. O

We now move to the proof of Theorem 5.4. The idea is to derive
it from the results in the previous lemma, by aid of the Tauberian
argument in Proposition A.12.

Assume first that g is compactly supported, that is, g € C5>°. Also,
assume that the condition (5.27) is satisfied for all Ay € supp g. Note,
that with 0 < ¢/2 (with ¢ from (5.27)), the condition

V(z) = A +|0V(z)?>¢/2>0, Ve B(2E). (5.31)
is fulfilled for all A in the set
F(6) = {A|dist{supp g, A} < d}

since, for A € D(6) and \g € supp g such that dist{supp g, \} = |A—X¢|,
we have

V(@) = Al + 10V (2)[* 2 [V(z) = do| = [A = Xo| + [0V (z)|*
>c—0>c¢/2>0.

Let now ¢; € C§°(R?) be a function such that 11, =+ (that is, ¢, = 1
on supp ¥). Then, by Lemma B.16 (with x = 9% and g = f?)

Ui (AL < Ca™®?37 + Cya?BY  forall N > 0,
such that, with B* = ¢; f(A), we have
|B*B|, < Ca~??37% 4 Cya 23"  forall N > 0.
Also, by (2) in Lemma 5.11 and (3.1), we have the bound

1B*x5(A = N)Blli = 91 f(A)xs(A = N f (Al
< oo £(A)xs(A = Mlllf (A) el
<CB34+Cya™26YN forall N >0
for all A € F(9) (since, by the spectral theorem, ||f(A4)¢1| < C, inde-

pendently of a and (). This means, that the condition for applying the
Tauberian argument (Proposition A.12), the bound (A.21), is satisfied,
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with Z(8) = 73 + Oy o 23" for all N € N. Applying the Tauberian
theorem, we get that
[1 F(A)[g(A) = gD (A)]f(A) tallr
= [lven F(A)[g(A) = g (A)]F(A) ¥l
<CB*Z(B)+Cn,BM||B*B|,  for all Ny >0
< C' B4 Cya 2N for all N > 0.

Using the cyclicity of the trace, this means (since 1t? = 1) that
10 £2(A)[g(A) — ¢D(A)|lh < C B2+ Cxa 28V forall N >0,
and so (since fg = g)

Tr{y g(A)} = Tr{y > (4)gV(4)}
+0(B72) + O(a™?p") for all N > 0.

The formula (5.5) now follows from the asymptotics of Tr{t f2¢®} in
(5.29) (recall that s € [0,1] and g €]0, 5o)).
Next, assume still that g € C;™°, but that the condition (5.4) holds:

V(z)|+ |0V (z)]* >c>0, Vze B(2E). (5.32)

The idea is to split the function g in two, one that is C§° and so easy to
treat (by (5.26) in Lemma 5.11) and one that has small support around
zero, which can be treated by the above procedure; more explicitely,
write

g=g1+¢g, 9 €CPR), g€ Cy*(R), suppgs C [—¢,e].

As mentioned, the formula (5.5) for g; follows from (1) in Lemma 5.11,
since g1 € C§°(R). For £ < ¢/2 (with ¢ from the condition (5.32)) we
have, for A € supp g, C [—¢, €]

V() = A+ |0V (@)? > [V(z) + oV (@)? = A>c—e>¢/2>0

and so the condition (5.27) is fulfilled for all A € supp g; the formula
(5.5) for go then follows from the argument above; adding up the results
for g; and g, gives (5.5) for g € C7™°, with the condition (5.4) in the
theorem.

To finally prove the theorem for general g € C°* we use the fact
that the operator H is bounded from below by —||V||. To this end,
split g again, this time in

g=4g+4g", ¢ €C?RNCMR), g¢"eC(R).

The formula (5.5) for ¢g” was proved above, whereas, using the semi-
boundedness of H, we can assume, that ¢’(H) = 0 (choose ¢’ above
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such that supp ¢' N [—||V ||, 00 [= @). Then, by the estimate (B.73) in
Theorem B.18,
Tr{y g'(A)}
=Tr{v g (H)} +O(a™?8") forall N >0
= O0(a2pY) forall N >0,
and so

Tr{ g(A)} = Tr{vg'(A)} + Tr{y " (A)}
=Tr{y¢"(A)} + O(a?p"Y) forall N >0

1
- T / ()9 (aa(z, p)) d% dYp
+0(B7?) +0(?pY) forall N >0

3
27[3 /1/; )g(aq(z, p)) d dp
+ OB 2)+(9( —28N)  forall N > 0,

since ¢'(aq(z,p)) = 0 as
aa(z,p) > —[[Vllx and suppg’ C]— o0, —[|V||x]:
This finishes the proof of theorem 5.4.

6. MULTI-SCALE ANALYSIS

In this section, we wish to apply the method of Multi-scale Analy-
sis invented by Ivrii [17] (see also Ivrii [18] and Sobolev [38]) to the
Herbst-operator. The idea of this procedure is to remove the non-
critical condition (5.7) from Theorem 5.4 in the case of the specific
functions g,; also, the method alllows us (in this case) to get explicit
control of the remainder. To this end, let

H(B, o, V)= \/—a—lﬂQA +a2—a '+ V()

which is the quantisation of

ao(z,p) = Va lp+a?—ao ' +V(z)
by p — —iV.

The idea of Multi-scale Analysis is the following: when studying
the local trace Tr{y g(H)} for ¢ € C§°(D), one introduces two scales
(apart from the semi-classical scale 3): one will measure the size of
the potential V in D, the other will measure the variation of V' and
¥ in D. Both of these scales will be functions on the set D and not
merely constants. One then uses the variation-scale to construct a
covering of D by open balls and a corresponding partition of unity,
hereby reducing the problem to studying the local trace on these balls.
It will be important, that the number of balls each ball overlaps with is
bounded by a constant. The local trace on each ball is transformed into
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a scaled problem on a ball of a given size, by translation and dilation.
The problem on this ball will be the ‘model-problem’: one assume that
on this ball, one has an estimate on the difference between the local
trace and the leading term in the asymptotics (the Weyl-term) as a
function r, depending on « and [, but with a certain uniformity in v
and V. As ‘model-problem’ will be used the result of Theorem 5.4 By
the above procedure, one transforms this estimate into an estimate for
the problem on D, which involves r as a function of the, by the two
scales above, (continuously) scaled versions of the parameters o and
B, integrated over the set D (by summing over the balls). For a good
account on this procedure, see also Sigal [35].

To be more precise, for D C R® an open set, assume given two
strictly positive functions, f € C'(D) and [ € C'(D), and assume that
there exists numbers p, ¢; and ¢y, such that:

\Vi(z)|]<o<1l, z€D (6.1)
a1 f(y) < f(x) < ey fy) forallz € DN B(y,l(y)), yeD. (6.2)

That is, the function [ does not vary too much (less than |z|) and
locally, on a ball centrered at y, with radius /(y), the variation of the
function f is uniformly controlled by the two constants ¢; and cy; that
is, f does not vary too much on the scale of [.

Assume that ‘A = H on D’ in the sense, that A satisfies Assump-
tion 5.1 with the open set D and assume, that the functions V' and v
satisfy

|07V ()| < Cr f()? Ua) ™™, (6.3)
05 ()| < Cpn () ™™ (6.4)
for all x € D and |m| > 0. As mentioned above, one should think of
the function f — or rather f2 — as measuring the size of the potential
V and the function [ as measuring the way the potential V' and the

function v behave under differentiation (in the set D, that is).
Define for s € [0, 1] the functions

|Al%, A<0
s)\:
9s(A) { 0, A 0.

We will now study how the operators A and H (3, a), as well as the

trace Tr{ ¢ gs;(H (8, ®,V))} and the Weyl-term, behave under transla-
tion and dilation. To this end, define, for f,I > 0, z € R3:

Viz) = 2V (z+ 2)
and look at the dilation operator defined by
(Up) (z) = 1¥u(lz).
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Then
thu|? = (U, Uu) = /RS U (z)|? dr
= [ wpe = [ )y = ful?
R3 R3
and so U is unitary and its adjoint is given by
(Ufu)(z) = 1732u(1 ).
Define also the translation operator by
(To) (z) = ulz + 2).
Then obviously,
(T2u)(2) = u(z - 2)

and also 7, is unitary.
We now wish to study the operator

fPUT)AWUT,) .

The aim is to show, that this operator equals a Herbst-operator, with
rescaled 3, and V in a rescaled domain—the idea being, as mentioned
in the introduction of the section, to transform any problem in a ball
into a ‘model problem’ on a fixed ball by the above translation and
dilation. Firstly, we claim that with

D={zeR|lz+z2€D}

the operator (147;)" maps C°(D) into C$°(D). To see this, let 1 €
C'(‘)’O(IA)) Then

(@) )@ = (TU) @) = @)@ - 2) = 17200 (@ - 2).
Now, this is obviously Cg°, and if

(@) )@ #0
then [~*(z — z) € D, which means exactly that z € D, so that
supp (UT,) v C D.

This means, that H (8, o, V') and A agree on (Z/{ﬂ;) "t for o € C° (ﬁ)
(see (2) in Assumption 5.1) and so, with M( f) being multiplication by
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the function f and F being the Fourier transform, we have:
(UT)A@T) v) @) = 2 (TATU) ) ()
=3/ (A7;*Ll;‘¢> (lz +2) = I (H Z*Ul*w) (lz +2)
= P2 (F M P a2 —a YET U (1 +2)
432 ( M(V)E*Ul*w) (lz + 2)
_ (%1)3/2 /R A (Mo + 0o — o) FTUS) () d
+ B2V (I + 2)I73 (1 (I + 2) — 2))

1
— l3/2 (27T)3/2 / ezzezm(lp) (m _ a—l) (‘7:7;*%*1/1) (p) d3p

+ V(lz + 2)9(x).

Now, since
%9 f* 1 —iT %7 f% 3,
(.7:7; Z/{l w)(p): (27'(')3/2 /Rse p(7; Z/{l ¢)($)d$
1 .
— —ixp1—3/2 —1/,. _ 3
CEE /R3 e Pl (- 2)) dx
1
— 3/2 —iz —iy(lp) 3
e /R e )y
= ¥ (Fy) (Ip)
we get that

f*Z((um)A(ulﬁ)*w) («)
= I G [, OV e ) (P

+ 2V (lx + 2)Y(x)

= [ e”q(\/—(aﬁ)*l(%)%? +af)

%)) (F0) (a) g + V (w)eb(a)
2= (af) + V(2)¥) (@)

= ((y/-tes)- <%>2A+ (af?)-

f_2(ul7;)A(ul7;)* = H(B: d,V) on C(c))o([))’
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with the rescaled parameters

8= % and @& =af’ (6.5)

By the unitary equivalence of trace, we immediately get that

Te{4 g,(H (5,0, V))} = > Tr{4 g,(H(5,a,V))} (6.6)

Note the similarity with Sobolev [38], (see also Sigal [35] for the non-
magnetic case) where, given that an operator B agrees with the
magnetic, non-relativistic Schrédinger operator (the function
a(z) = (a1(x), az(x), az(z)) being the magnetic vector potential):

3
T(h,pu, V) =Y (= ihdy, — par)* +V
=1
on C§°(D), then
h pl - cor P
ﬁ,T,V) on CO (D)

This is, as mentioned in section 4, the reason for our unusual choice of
symbol, a,, since it will allow us to use the Multi-scale Analysis for the
non-relativistic case (invented by Ivrii [17]; see also Ivrii [18] and the
references above) without major modifications; one difference is, that
instead of the parameter u, measuring the strength of the magnetic
field, we have o, measuring the ‘degree of relativity’, so to speak.

About the leading term 20,(5,,®,V) in the asymptotics of
Tr{ ¢ gs(H(B,®,V))} we only need few facts. Firstly, it need to scale
like Tr{ ¢ gs(H(B,,V))}, secondly, it should be additive in the func-
tion 1. That the Weyl-term

,(,0,1,V)
=3 [[ v |VaTP a7 —a V) dudy
is linear in ¢ is obvious, and
2, (8, &, V)
= U [[ vtia+ o) Va0
— (af )T+ [TV (x4 2)|” drdp
=1 ) [[wwlVa TP ra? - a1 V) dydy

= [7,(8, a, 9, V) (6.7)

by the changes of variables, y = lx + z and ¢ = fp.
We now move on to the assumptions on the ‘model-problem’:

F2UT)BUT,) =T(
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Firstly, we need to generalise the ‘non-critical condition’ (5.7). Let
F=F(tz),t€R z€R> be a real-valued function such that

F(rt, T%ac) =7F(t,z), for all 7 > 0. (6.8)
The ‘generalised non-critical condition’ is then the assumption, that
F(|W(z)|+ B3,0:W(x)) > &, for all z € B(4) (6.9)

for some x > 0. Note that by the definitions of 3, 7,/3 and V and the
scaling (6.8) we get that

B

PV +A.0.0@) = UV @)+ S0 78,V
= rr(ve)l+ L jave)| (6.10)

Assumption 6.1. Assume, that the operator A satisfies Assumption
5.1 with D = B(8), a potential W, and 5 €]0,Fo], a €]0,aq] for
some fized By and og. Assume further, that the ‘generalised non-critical
condition’ (6.9) is satisfied. Then there exists a locally bounded, positive
function r(B3, ), uniform in W and ¢ satisfying

"W (@) < Cr 5 [076@)| < Cn , YmeEN , Vze B(S),
(6.11)

such that
Tr{ ¢ gs(A)} — W, (B, , 0, W)| < 1(B, ). (6.12)

Remark 6.2. The idea is that given one estimate — a ‘modelproblem’
— as the one in the assumption above, we will, by the Multi-scale
Analysis, prove one without the (generalised) non-critical condition on
the symbol: it will simply be ‘scaled away’ (see Sigal [35] for more
on the ‘philosophy’ of the method). Note, that due to Theorem 5.4,
Assumption 6.1 is valid with F(¢,z) = ¢ + |z|> and (8, ) = C 572 +
CNOJ72ﬂN.

To apply this to the general operator A, we need to impose further
restrictions on the scale-functions f and [, and on the potential V:
assume that

Bofx)l(x)>8 , af(x)?*<ay, z€D, (6.13)
and that, for some w > 0 (and the same x as in Assumption 6.1)
pf(x) Uz
F< [V (z)| + @) m&c‘/(x)) > wkf(z)?, x€D. (6.14)

The relevance of this assumption should be clear from (6.10). Lastly,
we need to assume, that if the ball at € D with radius I(z) touches
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supp ¥, then the ball that is eight times as big stays within D:

| B(z,8i(z)) c D

T€EQN
with
Q={z € D|B(xz,l(z)) Nsupp ¥ # 0}.

One could say that this means that the support of 1 is much smaller
than D, on scales measured by the function /.

As mentioned earlier, the idea is to split the general problem (with
varying scales f and [) into problems on a number of balls (with fixed,
but different scales) by constructing a covering of D — and a partition
of unity, subordinate this covering — using the scale-function /. This
done, the above ensures that for the balls we need to take into account
(namely, the ones that touches the support of the function ), the
scaled ball, with a radius eight times as big, will still stay within D.

Firstly, we now look at what happens on an arbitrary ball.

Lemma 6.3. Let the operator A satisfy Assumption 5.1 with
D = B(z,81) for some z € R® and | > 0. Assume furthermore,
that the scaling conditions (6.3), (6.4) and (6.13) are fulfilled with
Y € C§°(B(z,1)) and the scaling functions equalling constants:

flx)=f>0 and I(z)=1>0.

Finally, assume that the ‘generalised non-critical condition’ (6.14) is
satisfied for the potential V', with w = 1:

F( IV (z)| + #, %@V(m)) > kf?, weD. (6.15)
Assume that Assumption 6.1 holds. Then
| Te{00.(0)} - Wa(8,00.W)| < o (Faf?). (010

Proof. This is a simple consequence of the way we have set up things;
it all comes down to scaling. Note that due to (6.13) we have that

f=L <p a=af<ap
fl
Also, by the definition of the potential V and the assumption (6.3) on
the potential V in B(z,81), we have that

107V ()| = [ 1™ (™) (lz + 2)| < 1™ Cpl™™ = Cp,
for lz +z € B(z,81), that is, W = V satisfies (6.11) in the ball B(0, 8);
likewise, by the assumption (6.4) on 1, ¢ = 1 satisfies (6.11) in the

same ball. Lastly, by the calculation (6.10) and the assumption (6.15)
we get that

F( IV (2)] + B,@wf/(a:)) >k, € B(0,8).
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This way, all the prerequisites for using Assumption 6.1 are satisfied,
and

Tr{ 6 9, (A(B, @, V))} = 2W,(6,d,6,V)| < r(B, ).

Now the lemma follows by the scaling proporties (6.6) and (6.7) of the
trace-term, resp. the leading-order term, and by the definition of 3 and
& (see (6.5)). O

To treat the general problem, we need to construct a covering of D
and a partition of unity, subordinate to that covering. This is done
using the scale function [ in exactly the same way as in Sobolev [38]:
we observe that due to the slow variation of [, see (6.1), we can regard
I = l(x) as a function that defines a slowly varying metric in D (see
Hoémander [15, Def. 1.4.7]), which first gives us a covering of the set D
and then a very specific partition of unity, subordinate this covering;
see Sobolev [38, Lemma 5.4].

Lemma 6.4. Let the function | € C1(D) satisfy
Vi(z)| <o, z€D

for some p < 1. Then

(1) There exists a sequence {Ty}ren C D such that the open balls
B(xy, l(zx)) form a covering of D, that is,

D c | B(ax, ).

There exists a number, N = N,, depending only on the constant
o0 above, such that the intersection of more than N, balls is empty.
(2) One can choose a sequence {¢y}ren of functions,
wk EC(())O(B(xk’l(xk)))’ k= 152:"-
such that
| 0™ pi(z)] < O l(zg) ™™, for all k=1,2,... (6.17)

and

> p(x) =1, zeD. (6.18)

The constants C,, in (6.17) depend only on the constant p.

As mentioned earlier, the idea is to use the partition to cut down the
potential V' and the cut-off function 1 to potentials and functions on
each ball By = B(xy,l(xx)), by aid of (6.17) each satisfying estimates
like (6.3) and (6.4) with I(z) = I(zx) and f(x) = I(fx) (with new
constants, which only depend on the old ones and the partition), so
that we can apply Lemma 6.3.

Firstly, let

B ={k e N|suppyNBy#0}. (6.19)
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Then, by linearity and (6.18)

Te{y g5(A)} = Y Tr{twe g5(A)} (6.20)
keB
and
W, (8, 0,0, V) = Y W (B, , ¢, V) (6.21)

The idea is to prove a bound on the difference (the ‘error’)

Tr{wwk gs (A)} - ms(ﬁa «, ¢¢k, V)

and then sum these for k£ € 8. We need a couple of definitions before
stating our main result. B
For the function r of Assumption 6.1 and any set K C D, denote

p 2 -3 13
R(B,a, K :/fx%r(i,afx l(z)" dx. 6.22
(o k) = [ @ (e af @) ) (6.22)
Since | € C'(D) is positive, this integral makes sense. Note that the
arguments of the function r are the (continuously) re-scaled versions
of # and « (see also (6.5)). To go from sums to integrals, we need the

notion of a function of ‘moderare variation’:

Definition 6.5. A measurable function f : R* — C, n > 1, is said to
be of moderate variation if, for almost all z,y € R":

Ul 1 W@l
Co f|il/|
with a constant ¢, = ¢(c1) depending on ¢;.

This leads us to the main (abstract) result of this section.

Theorem 6.6. Given an open set D C R3. Let the positive functions
l € CY(D) and f € C(D) satisfy

\Vi(z)]<o<1l, z€D (6.23)

ci fy) < fl@) <2 fy) for allz € DN B(y,l(y)), y€D (6.24)
and let Assumption 6.1 be fulfilled for any functions W and ¢ satisfying
0" W (z)| < Cp, (6.25)

[0™¢(z)| < Cpy , |m| >0, z € B(8), (6.26)

with functions r and F of moderate variation on B(8).
Let the operator A satisfy Assumption 5.1 for the open set D with a
potential V' satisfying

0™V (2)| < Cruf(2)%1(2)™™ | z€D , |m|>0 (6.27)
and let 1y € C§°(D) satisfy
0™ (x)| < Crl(z)™™ | zeD , |m|>0. (6.28)
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Assume furtermore, that

Bof(x)l(z) > B and ap> f(z)’a , €D (6.29)
and that
Bf(z) l(z) 2
F(|V(:v)|—|— o ,man(x)) > wkf(z)?, z€D  (6.30)

for some w > 0 sufficiently large and the k from Assumption 6.1
(namely, such that F(|V(z)| + 8,0,V (z)) > k£, z € D). Finally,
assume that, with

&={xeD|B(z,l(x)) Nsupp ¢ #0 } (6.31)
we have
U B(z,81(z)) c D. (6.32)
TES
Then, with R as in (6.22):
Tr{v g,(4) — W,(8,0.6,V)| < CR(B,0,D).  (6.39)

The constant C' depends only on the constants Cy, in (6.27) and (6.28),
on 0, ¢1 and ¢y in (6.24), and on ap, By and w.

Proof. As mentioned earlier, the idea is to use the partition {¢y}ren
from Lemma 6.4 and the expansions (6.20) and (6.21). For the sequence
{zk}ren C D from Lemma 6.4 (constructed by aid of the function I
from the theorem) let I, = I(zx) and fx, = f(xx) for k € B (see (6.19)).
This means by (6.32) that B(zg,8ly) C D and so that, by (6.24) and
the definition of f:

T € B(zg,lx) = cife < f(z) <cofi (6.34)

with constants independent of k. Furthermore, since
\Vl(x)\§g<é , €D
and B(zg, 8lx) C D, we have that
|le = 1(z)| < oz, — 2| < 08l forall z € B(wy,8l)
and so
(1—80)lk < l(z) < (1+ 80)ly. (6.35)

Next, by Leibniz’ rule, the property (6.17), and the assumption (6.28)
on 0™, we have that

0™ (i) | < Z c(a, b)|0%) "]
|lal+b|=|m|

< Y ea,h)Cl() M < .
Jal+[bl=!m|
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The last inequality by (6.35); the constant C depends on p, the con-
stants in (6.28) and the ones in (6.17). Similarly, using (6.34), we get
that (note the importance of p < 8)

0™V ()] < Crnf (2)?1(x) ™™ < (Crdd(1 - 80)™) f2 1™
Since, by (6.34) and (6.35)
f(x)

k

1 <

<c¢, and (1 — 8@) < ‘l(l_x)‘ < (1 —I-SQ) (6.36)

we have, as the function F' by assumption is of moderate variation:

- ‘F(S,X) ~
“=1Fey)| =
with
— W@+ 5 x = Fave)
57 (x) 1) ) e
t=1|V(z)| + @ Y 0 0,V ()
and so
(vl + 5 2 ov@) 2 ar (vl + 205, S ov )
> &5 (wk f(7)?) > & whff for all z € B(xy, 8ly).

Now all the conditions in Lemma 6.3 are satisfied for [ = [, and f = f;
(for sufficiently big w) and therefore

{04} - BB V)| < g2 (a2

:/ 29 (i fk)( T (81)")

RCK (% o f(x)2) ()~ .

The last inequality using that the function r is also assumed to be of
moderate variation, and (6.36). This means that

Tefy 9,(4)} — 20,(8, 0, 6, V)|
< 37 Tr{wn 0,(4) - 2,06, 0, 6,V
keB

S ZéR(ﬂ7a7Bk) S ég R(ﬂ,&,D)

keB

(with a constant C, that depends on p) since, by construction, there
is an upper bound, N,, on the number of overlapping balls, see (1) in
Lemma 6.4. This proves the theorem. 0
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We are now ready to remove the non-critical condition (5.7) of The-
orem 5.4 in the case of g;:

Theorem 6.7. Let ¢ € C§°(B(E/2)) satisfy
0" Y(z)| < Cp,  Vm, (6.37)
and let

A, A<0
gl()‘):{ l)| A>0

Suppose that the operator A satiesfies Assumption 5.1 with D = B(4E),
a €10,a9], B €]0, 8] and a potential V € C(R?) that satisfies

0™V (z)| < Cpy Y. (6.38)
Then

Tr{y g1(A)} = ﬁ / (2) 01(aa(z, p)) d dp
+0BHY+0@?pY) , forall NeN. (6.39)

Proof. We note that taking £ = 2, Theorem 5.4 assures the validity of
Assumption 6.1 with

F(t,z) =t+ |z|%
ri(3,0) =C B +Cya 238N VN.

The functions F' and r are clearly of moderate variation (see Defini-
tion 6.5), and F satisfies (6.8).

Next we note that Proposition D.17 assures the validity of Assump-
tion 6.1 with same F' as above (in fact, with F' = 0) and

TZ(ﬁ: Ck) = Cﬁ_g'

The idea is that we can take the minimum of r; and 75 as our choice
of r.
Define now

@)= A V@ + (V@) + 2] aso

and f(z) = b-1l(z), b > 0. Since V € C(R®) we have that f,] €
C>®(R3) and f,l are positive (since 3 > 0). Also, for A big enough
(depending on the constants C,, in (6.38 )), [ and f satisfy (6.23) and
(6.24). Also for A big enough, we have (6.32), since suppy C B(E/2).
Due to the conditions (6.37) and (6.38) and the definition of I and f,
the estimates (6.27) and (6.28) are trivially satisfied. With Cy = ||V||
and C; = max|m,—1 Cy, (see (6.26)), (6.29) is satisfied for b < 271/4,
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By > A%, B2 > C2 + Cf. Finally, as f = b- [, the condition (6.30)
reads:

Bf(z) Ua) _ i 2
F(IV@I+ 507 5%V @) = V@) + 05+ 51, (X))
> unf@f = 2L V@R + @V @)+ a0

which is fulfilled choosing w < A2/€ 1p=1, due to the triangle inequality
in R? (since b < 1).

In this way, the conditions of Theorem 6.6 are all satisfied. We split
the set D in two: where f(z) > 3?/> — here we use the function r; —
and where f(z) < 3% — here we use . More precisely, let

={z € D|f(z) > p*°},
_ (s e D| () < 7).
Then, with r = min{ry, 75 }:
R(.0.0) = C [ j@r(srhmof@f i) v,
and so, since f(z) > $%° on D; and l(x) > [3'/2 by construction,

R(E.0.0)=C [ ferr(foims ol @)@ de

)l(x)

<C . I(x)%r; (L, af(x)Q)l(x)_?’ d*r

f(@)l(z)
<Ccpt / I(z) d°r + CNaQQN/D flx) 2N (2) "2 d*
<A 4 Clya 20 10,
since [ is bounded. Given N, choosing N = 10N + 20, we have that
R(B, 0, D) < C'B' + Clhya 267,
Secondly, remembering that f = b- [ and that f(z) < 3%° on Dy:

=

R(B.0,Dy) = C /D 2 iwyr : (x)ﬁl o £(@)?) i)™ s
<C o, l(:v)QrQ(f(x)ﬂl(x),af(x)Q)l(x)_?’ d*c

< Cﬂis f($)5 d333' < Cﬂ—3+5-% — Cﬂil.
Do

Since
R(/B,OJ, D) = R(/BaaaDl) + R(ﬁ;OZ,DQ);
this proves the theorem. O
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Having shown this, we are ready for the result for a more general
domain D. This follows by a ‘bootstrapping’ argument:

Theorem 6.8. Given an open set D C R3. Let the positive functions
l € CY(D) and f € C(D) satisfy

\Vi(z)|]<o<1, z€D (6.41)
a1 fly) < flx) <co f(y) for allz € DN B(y,l(y)), ye€D. (6.42)

Let the operator A satisfy Assumption 5.1 for the open set D, with
a €]0,ap] and B €10, By], and with a potential V satisfying

0™V (z)| < Cof(2)4(z)™ | zeD , |m|>0 (6.43)

and let 1) € C§°(D) satisfy
0™ (z)| < Cpl(x)™™ | zeD , |m|>0. (6.44)
Assume furtermore, that
Bof(x)l(z) > B and oap> f(z)?’a , €D
Finally, assume that, with
& ={zeD|B(xlz) Nsupp #0 }

we have

| B(z,8i(z)) c D. (6.45)

z€B
Then

Te{y g1(4) — 201 (8, 0,6,V

<O fl2)l(z)d%

The constant C depends on the constants Cy, in (6.43) and (6.44), on
0, ¢1 and ¢y in (6.42), and on ap, By and w.

Proof. According to Theorem 6.7, the operator A satisfies Assump-
tion 6.1, for a €0, ap] and 5 €0, By], with

F(t,z) =0,
r(B,0) = C B+ Cya 28" forall N > 0.
The result now follows from Theorem 6.6 and (6.22). O

We now employ the result from Theorem 6.8 for a spherical shell —
more precisely:
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Theorem 6.9. Let x € [0,1]. Let V satisfy

0™V (2)| < Cplz|7M ) Vm, (6.47)
and let ¢ € C§°(R®) with
suppy C {z | r<|z|<p} , 64°<r<p<Cr7,
and
|0™p(2)| < Cralz|™™ , V¥|m|>0 , Vz#0. (6.48)
Then

Tr{¢‘\/ﬁ—1—i—n‘ }

dpd’r|—= — % + n] ‘ <Cr Y2 (6.49)

This is umformly 'V oand 1 in the sense that it only depends on the
constants in (6.47) and (6.48).

Proof. The idea is to use Theorem 6.8 with o = ag = 3 = 3y = 1 and
s =1. Let

1 1
= |z|7Y/? l(z) = —
f@)=1al™?  Ua)=ole| 5 <e<ig

and
D:{x€R3‘£<\x|<2p}.

Then (6.23) is clearly satisfied and if x € DN B(y,(y)) for y € D, then

Leli<2p md -yl <i) < U
SO
\/% ‘y‘ 1/2 < | ‘ 1/2 \/— ‘y‘ 1/2
and therefore f satiesfies (6.42) with
4 4
== 02\/—1_5.

Also, if
B(x,l(z)) Nsupp e # 0
then either
lz| = l(x) <p or |z|+i(z)>r

This means that
16 <la| < 16
17" SIS f
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Now,
1
y € B(z,8l(z)) = |x—y|<8l(x)<§\x| =
T<8 <1H<H<3||<48 <2 = €D
—< —=r< -z —|z| <« —
151759 vy 307 = “P Y
and so
U B(z,8l(z)) C D
TreB
with

B ={z | B(z,(z)) Nsuppe # 0}.
With the choice of the functions f and [, and since r > 642, we have:

(@ f@) o=z " r

and:

1 4
af(x)2=m<;<1:a0 Vo € D.

Finally, because p € [r,C k1],

0 H‘<M:C’Of(x)2 for all z € D.

[z 17

The condition (6.43) is trivially fulfilled by the Coulomb potential
—0/|x| with our choice of f and [, and by the choice of f and [ and the
requirement (6.48), the condition (6.26) is also satisfied. In this way,

all the conditions of Theorem 6.8 are fulfilled, and so

Tr{w‘\/pQ—i-l—l—%—kc‘_}
2
~ s [ el el

2p 2p
<o [T f@Pfie) tdC / F(2)"Ni(z) N3 i

lz|=% |z|=1

3

_ 2 2p -
:0/ t—3/2dt+/ N2t < Cr1/2,

4 4

by choosing N = 3. This proves the bound (6.49). O

7. THE MAIN THEOREMS

We are ready to prove the two main main theorems of this thesis;
we start with:
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Theorem 7.1. Let ¢ € C°(R®) be a function such that |¢| < 1 and

¢(w)={1 sl

0, |z|>2

and let ¢,(x) = ¢(z/p) for p> 0. Let
Hml:\/—A-i—l—l—%
T

for some § < 2/m and let

al6) = s [[ et o) [ - 2]

Then there exists a number F(0), independent of the function ¢, such
that

Tr{¢,| Hret|-} — Walgy) = F(6) +0(1) , p—> o0 (7.1)

Remark 7.2. 1t it very important to notice that it is the Weyl-term
corresponding to the non-relativistic operator,

2
D )
Hy=—-— 7.2
cl 9 | .73| ( )
and not that of the relativistic operator from (7.1) that occurs in the
theorem. The corresponding non-relativistic Weyl-term is not finite.

Proof. The aim is to show that

{2} e = {Tr{0nlHoal -} = Warlér) }

is a Cauchy-sequence. Note that since both Tr{¢,|H,|-} and 20.(¢,)
are finite, this will prove the theorem. The idea is to pass by the rela-
tivistic Weyl-term, away from the singularity of the Coulomb potential
(where the divergence of this term occurs). Since

Q[n_Q[m :ﬂ{(¢n_qsm)‘Hrel‘f}_anl(qﬁn_Qsm) 5 anE N

for some N very large, we are away from the singularity, and so the
potential, and hence the momentum |p|, is small on the area of inte-
gration. This will allow us to relate 20(¢, — é,,) and

il -
& @) [VEFT-1- 2]

||

and also, by the analysis in section 6, we will now be able to compare
Tr{(¢n — ¢m)|Hyrer| -} and W, (dy, — &) since we are in an area where
the potential is smooth.

More precisely, we start by proving the following lemma:
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Lemma 7.3. Forn>m > 2:

90,060 — 6) ~ Wl — 6| < ——

3)

Proof. Note that (remember that \/p? +1 —1 < p?/2)

\mm On = Om) — Wa(bn — )|

e ] ([T -1 ]
-5-4)
+W//Bd3xd3p [%_(m_%

where
)
A—{(x,p)|5—|?§0 m < |z| < 2n }
and
) p> 4
B={(w,p) |[VP+1-1-— <0< % ——,
] 2 x|
m < |z] < 2n
20 20 o
=@ <p° =< + — ), m< x| < 2n ;.
={en) | gy <" < (14 ) sm s ol < 2n)

Let us start by studylng the integral over A:

d ( p+1—1—i}

:ﬁ//zqd?’xd?*p[%—m—l}-

Now, by a Taylor expansion,

vpP+1-1
2 4 |p| — 442
:Z’__Z’_+i (||—)4Mdt2
2 8 24 1+ )72

The inequality since on A:

26 2 3
p| <1/ <\/i<\/_’
m ™ 2

P
2

r'
-

(7.3)

(7.4)
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and so the integrand is postive. In this way (7.4) is bounded by

4 2n 26
p 1 \/E
d3xd3p <—) = E/ |x\2d|x\/ Ip|®d|p|

=50 (G- m) < e

As for the integral over B, dropping the kintetic energy /p?> + 1 —1,
we get that

1
B
) 2n 4Y (14Y) 2
<2 dm(w < / v )

< g—i/m |;;;|(4Y)3/2((1 +Y) v 1) d|a| (7.6)

with YV = L|. Now, by a Taylor expansion around y = 0,

(7.5)

2|z
3 3 3 y
1 3/2 _ 1 _ 2 —H2(1 —3/2
(1+y) +2y+8y 16 (y ) (1 +1)~"dt
3 3
<14 Zy+ 292
<1+gy+tgy

and so (7.6) is bounded by
44/265/2 3.6 364
P A

37 2mm+84\P

_2\/557/2(1 ) 2f59/2(1 1 )<C
T vm o \/2n 24 \my/m  2n/2n) — \/(m)
7.7
Now the estimates (7.5) and (7.7) provide the bound (7.3). O
Using the lemma we get that for n > m > 2:
|Q[n - QLm| < |Tr{(¢n - ¢m)|H1~el|—} - Qnrel(¢n - ¢m)|
+ |m]rel(¢n - ¢m) - m]cl(qsn - ¢m)|
C
S |Tr{(¢n - ¢m)‘Hrel‘—} - wrel(qbn - ¢m)| + ﬁ
(7.8)

We now use Theorem 6.9 with k = 0. To do this, note that the operator
A = H,,; satisfies Assumption 5.1 in the set D = {a: ‘ T <l|z] < 4n}.
To see this, take

V(z) = —x(=) i
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with x € C°(R3 \ B(1/8)), x = 1 on D. Then (1) in Assumption 5.1
is satisfied due to Proposition B.20 and (2) due to the choice of V
above. Finally H,; > —1, see Herbst [14]. By construction, ¢ =
¢n — Om satisfies (6.48) on D and V above obviously satisfies (6.47).
By Theorem 6.9 (with x = 0) this means that

r-[\r{(qsn - ¢m)|Hrel|—} - m]rel(QSn - (bm)‘ ¢

Sﬁ'

Together with (7.8) this showes that the sequence {an}neN is Cauchy
and hence convergent. This finishes the proof of the theorem. O

(7.9)

Proof of Theorem 1.4. Using the unitary transformation y = o 'z

(and therefore Ay, = o?A,), Theorem 7.1 gives us (choosing p = o ¢
for some € > 0 and with § = aZ) that
A
Tr{gzﬁog_e(ac)‘\/—OFQAm +at—a?- Tl L}
_ o
- Q(Tr{qﬁa—e(y)‘\/—Ay Fi-1+2> |_})
lyl
- a*2(anm(¢a_e) +F@O)+o1)) . a0

o [ b @) [ - 2]

+ F(0) 2% +0(Z2%) |, Z— .

In the last equality we used the changes of variables, z = ay and
p = a q (here, F(§) = F(§)/6% since § = aZ). This provides the
prove of Theorem 1.4. O

The other main theorem of this section gives a different way of de-
scribing the constant F'(J):

Theorem 7.4. Let, for some 6 < 2/m

Hua=vV—A+1-1- % (7.10)
and let for k €]0,1],
2
N LA
dxdsp[2 m+m]_

Then, with F(5) the constant from Theorem 7.1:

lim [Tr{|H,el trl)— Qﬁd(/{)] = F(6). (7.11)

Remark 7.5. Note that 2., is now a function of the x added to the
Coulomb potential, and of the cut-off function ¢,. We write 2.(¢ =
1, k) = Wy(k).
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Proof. We use the cut-off function from Theorem 7.1: Let ¢ € C§°(R?)
be a function such that |¢| <1 and

qﬁ(w):{l s

0, |z|>2

Let « be fixed and choose p > ax™! for some a > 1+ 6 and let ¢,(z) =
é(x/p). For r € [322, p|, split configuration space in three regions: an
inner ball of radius r, a spherical shell with » < |z| < p and an outer
region, with |z| > p. Then Tr{|H+k|_} and 2(k) split accordingly:
Te{|Hper + |-} = Tr{¢y|Hper + [} + Tr{(¢p — &1 )| Hpet + K[ }
+Tr{(1 = ¢,)[Hra + #|-},

mcl(la K') = QI](:l(<b7“7 /f) + QI]cl((¢9 - ¢r): ’{)

+ Wu((1 - ¢,), k). (7.12)
We first note that with the choice of p as above, we have that
W,i((1 - 6,), %) = 0. (7.13)
This is because % — k <0 for |z| > p and so
2
p_ 0 _
(1—¢,(2)) [E—H—i-fi =0 Y(z,p).

Secondly we have, using Lemma E.1 (again, by our choice of p), that
Te{(1 — ¢,)|Hre + 6|-} < C k. (7.14)

The restriction 6 < 2/7 comes about from this lemma. As for the
term related to the shell » < |z| < p, we use Theorem 6.9 as in the
proof of Theorem 7.1, this time with x # 0. This gives (passing by the
relativistic Weyl-term 20, as in the proof of Theorem 7.1), that

Te{(6, = 60) Hoa 6]} = Wal(, = 0wl < 2 (719

We are left with the terms for the ball B(2r). We re-write the difference
between them as

Tr{(br‘Hrel + KZ‘*} - m]cl(qsr: K’) = Tr{qu‘HTel + I{‘*} - Tr{qu‘HTel‘*}
+ Tr{¢r|Hrel|—} - Qﬁcl(ﬁbr, O)
+ QBcl(‘/ﬁra O) - mjcl(gf)rv ’i)' (7'16)

We immidiately note, that the second term tends to the constant F'(J)
from Theorem 7.1 as r — oo. Next, we have that

m |2W (P, 0) — We(dr, k)| =0 vr, (7.17)

li
k—0
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since, for r fixed,

Wa(@r,0) - ancl(gzsr,n)\ < drdix
L m B EL
with
E={(z,p) | p* < W—Qm | < 2r}
and
Fz{(m,p)‘% 2k < p? <% x| <2r}
Now,
drddp k< 3262 r3/2
and ’

] -5,
= 2 [ e (&) () (- )]

3/2
< 86/ 372
- 37
by the Taylor expansion
3

3 [" 3
(1—$)3/2=1——x+—/ (z—t)(1—t) Y2dt>1— .
27 8 J, 2

K

This proves (7.17).

Finally the term

Tr{¢7‘|H7‘€l + H|—} - Tr{¢7‘|Hrel|—}-

We note that the potentials V =
in the form (C.4):

Viz) =

Vi(z) =

—% and V, =V + k can be written

} for z € R®

with

U(z)=—6 , Y(z)=l|z|7V2 , F(z)=xlzl
We need to note that Y satisfies

|Yul]? < e(Hou,u) + ||ul|* for all u € C$°(R?)

with Hy = v/—-A+1 -1, since Hy — % > 0 as a quadratic form as
long as 0 < 2/m, see Herbst [14, Theorem 2.1]. This means that we
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can apply Theorem C.6 with « = 3 =1 and s = 1. This gives us that
for any fixed Lo > 0 we have, for all l > r, L > Ly and K > 3:

Te{y [ Hot + 5]} = Tr{6 Hrl-}|
< CxLPMP(IK 4+ kl) + O L'r® (7.18)
since the quantity K (0,r) defined in (C.8) is merely «l (remember that
r > 322; in Theorem C.6 the length [ was called p).
We now summarize: By the decompositions in (7.12) and (7.16) and

the results (7.13), (7.14) and (7.17) we have, for any [ > r and L > Ly,
that

Te{ | Hret + 5] -} = o) = F(3)|

lim
k—0

<

Te{6, [ Hal -} = Wal@y,0) - F(9)

C _ _
+ NG + Cx L3284 O L3, (7.19)
Choosing now L = r3*¢ and | = L'™ and K sufficiently large, Theo-
rem 7.1 gives us that the right hand side in (7.19) tends to zero as we
let r tend to infinity. This proves the theorem. O

Proof of Theorem 1.6. Let g(Z) be any function with g(Z) = o(Z?)
(such that o?g(Z) — 0 as @ — 0, with § = aZ fixed). Then The-
orem 7.4 gives us, again using the unitary transformation y = a~'z,
that

lim 77?2

Z—00

T |V=a, va= a2~ L1 g(2)| }
(271r)3 // & dp [%2 - % + g(Z)} - F(0)2?
|5, +1- 141 +a%(2)] }

- oy [[ S - S ata@)] - ro)|=o

This proves Theorem 1.6. O

= lim
a—0

APPENDIX A. SEMI-CLASSICAL ANALYSIS

In this appendix we will be citing results about the semi-classical
analysis of pseudo-differential operators (¥DO’s) needed for our study
of the relativistic Herbst-operator. We refer to Robert [26] for the gen-
eral theory of so-called ‘h — WDO’ and to Sobolev [38] for the results of
more specific relevans for our purposes (see also Helffer and Robert [13]
and Sobolev [37]). The idea of this appendix is to provide a result on
the trace of a certain class of operators — to leading order in some
parameter, this will be given by the appropriate semi-classical integral,
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the so-called ‘Weyl-term’. This result has a certain uniformity in the
symbol of the operator which we will take advantage of.

We start by some general set-up, for which we refer to the litera-
ture mentioned above. Results will be stated for general dimension n,
though we shall only be interested in the case n = 3.

Definition A.1. A ‘temperate weight in R’ is a continuous function
p: R* — [0, 00[, for which there exist Cy > 0 and Ny > 0 such that

p(z) < Coplar)(1+ |z — :E1|)N° for all z,z; € R".

Weights are used to measure the decay of symbols for ¥DO’s, in the
following sense:

Definition A.2. Let  C R* = R} x R} be an open set and let p
be a temperate weight in R?". We say, that ‘a is a symbol in 2 with
weight p’ if a € C*(Q) and if ¢ satisfies

1070¢a(z,8)| < Cypp(z, &) forall (z,£) € Qand v,n e N'. (A1)

This definition ensures that the iterated integral in the following
definition converges:

Definition A.3. For a Weyl-symbol a in R} x R in the above sense
and h €]0, hy| for some hy > 0 fixed, we define the operator A = op}a
by

(Au)(a eIa(ZEL hp; Bu(y) d'y d'p

- (Qﬁh)n //e% TR (T, & h)u(y) dy d€. (A.2)

We denote such operators by ‘h—pseudo-differential operators’ (h —
UDO’s).

First two criteria on the weight-function p that allow one to conclude
properties of the operator A = opya:
Proposition A.4.
(1) If the weight function p in (A.1) is bounded, then the operator A
defined by (A.2) is a bounded operator, and
Al <Cn  sup KO0 a(x, )], (A.3)
| <k(n),|n|<k(n)

with constants C,, and k(n) that only depend on the dimension
n.
(2) If pe L'(R} xRY), then A € &, (the trace class operators), and

Al <civ Y w [ ol aray, (A

[v]+In|<2n+2

where C), only depends on the dimension n.
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Next, it will be important to be able to compute the symbol of the
composition of A — ¥DO’s: For two symbols a; and ay in B®(R? x
R ), there exists a unique Weyl symbol a € B*(R} x Rf) such that
opyai opyas = opy a; this symbol satisfies the expansion:

a(z,§)
S Y (%)7 (—%)Wagagal(x,g)a;ag@(x,g)

yin!

=0 [v[+In|=t
+ hN+17“N+1(33;§§ h)
rni1( -, -3 h) € BX(R} x (R?) , VN > 0. (A.5)

By Proposition A.4 the operator Ryi1(h) = op¥ry41 is bounded, by
a constant uniform in the symbols a; and as in the sense that it only
depends on the constants in their respective weight estimates (A.1).

Furthermore, suppose one of the symbols a; or as is supported in
the ball B, ¢(F), for some E > 0. Then

BB <Ch™ , C=C(E). (A.6)
From the expansion (A.5) follows the next lemma:
Lemma A.5. Let ay,a; € BX(R} x RY) and

a(z,€) =0 , (v,§) € suppay.

Then

lop¥a; opfas|| < Cx AN, VN > 0. (A.7)
If furthermore ay € C§°(Bye(E)) for some E > 0, then

lop¥a; op¥aslly < Cnx AN, VN > 0. (A.8)
The constants Cy in (A.8) depend on the number E.

The next result will be the asymptotic expansion in powers of h for
a C§°- function of an h — UDO, by the calculus due to Helffer and
Robert [13]:

Theorem A.6. Given a symbol a(x,&;h), real and bounded from be-
low, then the operator A = op}a is essentially self-adjoint on C§°(R™).
Assume additionally that a(z,&;h) = a(x, &) is independent of h and
that there exist positive numbers, b and c, such that a + b is a temper-
ate weight, a(z,p) +b > ¢ and a is a symbol of weight a + b. Then for
g € CP(R) and any integer N > 0 we have the expansion

N
g(A) = hopyag; + N Ry n i (h) (A.9)

J=0
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with || Ry n+1(R)|| < Cu, independently of h, and the symbols a4 ; given
by

ago(z,€) = g(a(z,§)),

ag1(z,€) =0,
2]1

sl )= 3 8 L4y oko(atwe) . i>2
k=1 )

The coefficients d;j are universal polynomials of 8;”18?%, my +me <
j-

Remark A.7. Note, that if {a;}; is a family of symbols as above, such
that a; + b is a weight, a;+b > ¢ and a; is a symbol of weight a; + b, all
uniformly in the variable ¢ (including the constants in (A.1)), then the
expansion above is uniform in ¢, in the sense that the constants C'y in
the estimates || Ry y+1(h)|| < Cn do not depend on ¢. All results in this
appendix will be ‘uniform in the symbol’ in this sense. (See Sobolev
[37, Ch. 5, p. 361]). This fact will be crucial for our application of the
results in this appendix.

In the following, we will assume A to be an h — VDO with a real-
valued symbol, bounded from below, so that A is essentially self-adjoint,
according to Theorem A.6. We also need an h — YDO © = op}/(0),
with a real-valued symbol

0 € C°(BL(E) x B¢(R)), E>0, R>0. (A.10)

Think of this as a cut-off in phase-space.
What we will be discussing here is the h — asymptotics of the trace

Tr{©g(A)}

for some bounded function g; the finiteness of this quantity is ensured
by the fact that ||©]|; < co by Proposition A.4.

When studying semi-classical asymptotics for traces of functions of
h — ¥DQ’s, one starts by studying the propagator

Un(t; A) = exp{ 1 At},

and then uses the representation

HU(t; A) dt.
9(4) h\/27r n

where §(t) is the h — Fourier transform of g,

a(t) = \/% / (N .
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Then one approximates the propagator of the time evolution Uy (t; A)
by an h — Fourier integral operator (h — FIO) G1,(t), having the kernel

G(z,y,t) = (2mh)™ / erSEEDEy (5 € #: ) dE. (A.11)

Here, the phase S(z,&,t) is real-valued and the amplitude v is of the
form

v(z, &t h) = Zhvjxg,

with compactly supported functions v;(-,-,t). We suppose also that at
time ¢ = 0 the operator is close to the identity in the following sense:

Gi(0) = @ = opy's (A1)
with a real-valued function ¢ such that
6 € C(B,(2E) x Be(2R))
and
d(x, &) =1 for (z,€) € By(3E/2) x B¢(3R/2).
To ensure the initial condition (A.12), we have to assume that
S(x,&,0)=x-¢
vi(z,£,0)=0, j>1

This will not be used in the sequel though, all we need is the following
fact:

Proposition A.8. There exist a number Ty > 0 and functions
S,v; € C*(B,(3E) x B¢(3R) x [Ty, Tp))

such that for any integer N > 0
max || — ihd,Gr(t) + AGL(t)|| < Cyh™N .

[t|I<To

This says that the Fourier integral operator G approximates the
time-evolution Uy (t; A), in the sense that Uy(t; A) satisfies the differ-
ential equation

—ihatUh(t; A) + A Uh(t; A) =0
whereas the term
—ih0:Gh(t) + AGy(t)

is small, in operator norm, to all orders of A, uniformly in the time
t| < Tp.

To continue, we fix some notation that will needed more generally
than just in this chapter.
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Let T €]0,Tp], where Ty is the number (the ‘time’) from Proposi-
tion A.8, and let x € C§°(—T,T) be a real-valued function such that

X(t) =x(=t) ¥,

1
V()= — , |t <T/2.
X() NeT: It <T/
Then define
1 .
=—— [ x(t)e' dt. A.13
() = —= [ e (A13)

By (if necessary) replacing x with y * x and assuming x > 0, we can
assume, that x; > 0 and that there exists a 77 €10, T[, such that
x1(7) > ¢ > 0 for |7| < T5.

Define now the h — scaled version of xi:

Xn(T) = %Xl(%) (A.14)

Next, define for an integrable function g € L*(R") its by x5 smoothed
out version:

g™ (1) = (g% xn) (1)
— [otr=va@dr= [ g0l -vdn (219

We remark right away that
g™ (7)] < max X (v)|lgllcr < C A7 (A.16)

In order to say anything about the h — asymptotics of the trace
Tr{© g(A)} one needs to assume a ‘non-critical’ condition on the gra-
dient of the symbol on the ‘energy-shell’ {a(z, &) = A}:

Assumption A.9. On the set
A(X0) ={(z,8) |a(z,§) = A, (z,§) € suppb }

we have the lower bound
\Va(z,&)| > 6 > 0. (A.17)

We say that the value A is a non-critical (critical) value of the op-
erator A on the support of the function 6 if Assumption A.9 is (not)
satisfied. For a given energy A we will denote the whole ‘energy-shell’,
A(A 1), by A(N).

This defined, we can finally formulate the following result on the
h — asymptotics of the trace Tr{© g(A)} for various kinds of functions

g:
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Proposition A.10. Let A be an h — VDO with a real-valued symbol
a = a(x, &) which is bounded from below, so that A is essentially self-
adjoint (see Theorem A.6). Let © = op¥(0) with some real-valued
symbol

0 € C3°(B,(E) x B¢(R)), E>0, R>0.
(1) If g € C§°(R) then

Tr{©g(A)}

(27r1h)n /9(%5)9(@(%6)) d'rd€+Ch™.  (A18)

(2) Assume that Assumption A.9 is satisfied for some X\, with
Al < Ao for some fized A\g. Then

1©xi(4 =Nl < Ch™ (A.19)

The constant C is uniform in X, |A| < Ao. Here, xs(A — A) is
the operator obtained from the spectral theorem by applying the
function xy to the self-adjoint operator A — .

(8) Let g € L*(R™) be compactly supported, and assume that As-
sumption A.9 is satisfied for all A € suppg. Then

Tr{© g™ (A)}
1
(2wh)"

Observe that the last result, (A.20), in Proposition A.10 gives the
asymptotics of the trace related to ¢, the smoothed out version of the
function g, as an integral related to the function g itself. To obtain the
asymptotics of the trace related to the function g itself, we need what
is known as a ‘Tauberian argument’ (see Rudin [27, p. 226]). Before
that, we specify the class of functions we will be dealing with:

/ 0(z,)g(alw, &) dw d + C h".  (A.20)

Definition A.11. A function g € C*°(R\ {0}) is said to belong to the
class C>*(R) for s € [0, 1] if:

(1) g € C(R), s > 0.
(2) For some r > (0 and some C:
g(A) =0, A>C
09N < CulAl", A< =C, Vm2>0.
(8) For [A\| < C, A#0, and m > 0:
0% g(N)| < O AT, 0<s<1
105'9(N)] < Ci, s=0,1.

A function g is said to belong to C5™*(R), s € [0, 1], if g is of compact
support and g € C**(R).
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Define for s € [0, 1] the functions

A5, A<0
s)\:
9:(N) { 0, A> 0.

Note, that g, € C°*(R). We will mainly be interested in g, for s = 1,
in order to study the sum of the negative eigenvalues of an operator.

We are ready to state the last result needed from this theory, namely
on how, from information of the trace Tr{t g"(A)} related to the (by
the function yj;) smoothed out version of g, to retrieve information on
the trace Tr{y g(A)} related to g itself:

Proposition A.12. Let A be a self adjoint operator, and let the func-
tion g belong to C5>*(R) for some s € [0,1].

Let the function x1 be as defined above (see around (A.13)). Assume
that for an operator B € &, (the Hilbert-Schmidt operators), some
positive function Z(h) and some positive number 6 > 0, we have the
estimate

sup ||B*xn(A = A) Bl < Z(h), (A.21)
AEF(6)
where
F(0) ={) € R|dist{suppg,A\} <4 }. (A.22)

(See (A.14) and (A.19) for xn(A —N)).
Then, for all Ny > 0:

IB*(9(A) — g™ (A))B*|l, < Ch'™*Z(h) + Cn,h"™|B*Bl:.
(A.23)

Here, ¢ = g%y, see (A.15). The constants C and Cy, depend only
on the number § and the functions g and x1.

As mentioned earlier, we refer the reader to Robert [26], Helffer and
Robert [13], and Sobolev [37, 38] for proofs of all the statements in
this appendix. Here we only emphasize that all the above results are
uniform in the sense stated in remark A.7, which will be essential for
our use of these.

APPENDIX B. ESTIMATE ON RESOLVENTS

Throughout this appendix, H and H, will denote the relativistic
operators

Hy=+v-a'@A+a2-—a' |, H=Hy+V. (B.1)
We will also write Hy = \/a~1p? + a2 — o~ ! (with p = —i8V) for

convenience. Also, when we deal with the non-relativistic kinetic en-
ergy, —3?A, we will often denote this p?. We emphasize again, that
the ‘classical’ (non-relativistic) operator will never be denoted H.
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By A we denote an abstract operator, which is equal to H in an open
set D C R? in the following sense:

Assumption B.1.
A is selfadjoint in L?(R?), semi-bounded from below and for any ¢ €
C$°(D) the following holds:
(1) Vu € D[A] we have u¢ € D[A]. 3¢ € C§°(D) (depending on
() such that ;¢ = ¢ and

Alu, Cv] = A[Gu, Cv] + (B u,v) Yu,v € D[A],
with an operator B satisfying

IBll1 < Cy.pe (VapB)"  forall NeN. (B.2)
If D is a ball of radius p > py for some py > 0 fixed, then

N
||B||1 < CN,Cl <@) for all N € N. (B3)

(2) AV, real valued, with X = |V|'/2 satisfying
IXull < <(Houw ) + M50 )ull? Vue CRE) (B

for some € €10, 1], M (5, a,€) > 1 such that for allv € D[A],u €
D[H| we have Cu € D[A], v € D[H| and

AlGu, ¢v] = HICu, Co]
and
Ay = Hvy  for all Y € C5°(D). (B.5)
(3) The operator A satisfies the lower bound A > a1,

Here, D[A4] is the form domain of the operator A. In particular, we
note, that we only deal with potentials that are form bounded relatively
to Hp, with a relative bound less than or equal to 1.

The first aim is to show that, for certain purposes, A and H are
not too different. The idea being, that for certain properties of H, its
actual behaviour outside the domain D is inessential in that we can
use the operator A instead (modulo errors in powers of /), which only
needs to coincide with H on D.

To this end, we study resolvents R(z, H) of the pseudo-differential
operator H. We assume that V is as in (2) above—this implies, that
the operator H = Hy + V is well defined in the form sense, and gives
rise to a self adjoint operator by taking the Friedrichs extension; by
abuse of notation, we also shall denote this operator by H. From (2)
it follows, that this operator satisfies

info(H) > -M(B3,a,e) = —M.
That is, o(H) C [-M, o0); define dy(z) = dist{z, [-M, 00)}.
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Let x and ¢ be functions with separated supports, more specifically,
for some py > 0 fixed, satisfying
suppx C B(p), 0<|[x[<1
supp ¢ C R* \ B(vp), 0< g <1 (B.6)

for some p > pg and v > 1. Note, that we do not assume anything on
the regularity of either x or ¢.

These two functions shall be fixed throughout this appendix; the
aim is to obtain estimates on various operators—in various norms—in
powers of «, 3 and p.

Lemma B.2. Let n, k be such that n > 3 and k < 2n. Forp = 27" we
have, for all N > 1 and all P > 1:

b (e ) ol < € s (ﬁ) (g)m

" (|z| + M )Y? Y af
{( ) +dM(z>} (1)

In particular, for all K > 3, we have

(Jz] + M)\ o”
X{( ) +dM(z)} (B3)

Also, for all N > 1 we have

1 I N
etz 1)l < € 3w (E)

[ (UMY ar
{( e )*dm} (9

Proof. We first prove (B.8) from (B.7): Choose N =1 and k = 2n =
2K > 6, then p=1 and Nk = 2K.

Next, notice, that we only need to prove (B.7) for N = 1: assume
namely that it holds for N = 1, then for general N, 22¥ = 2% 354 50

> kN k
IxR(z, H)o| 2 = [[xR(2, H) || 2nx

<0 (ﬁ) i <§>W { <%)N ’ % }

=0 (3 ! <€>N { (o) o e }

Since p = 2%, this proves (B.7) for general N.
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The proof of (B.7) for N = 1 is by induction after k; we start by
proving the induction step. Let n > 3 be fixed, and let £ + 1 < 2n.
Assume the bound (B.7) is satisfied for k. The idea of the proof of
the bound (B.7) for for £ + 1 is to make use of the space between the
supports of the functions x and ¢ in the following way: Let n € C*°(R)
be a monotone function such that 0 <7 <1 and

1 t<1/3
"(t):{ 0 t§2§3.

For some m to be determined later, define the following family of
functions, x\) € C(R®),j =1,2,...,m:

@) = (o [l = o= 2=V gy

This means, that

‘ 1, 2| <w(j,m)p=(1+ @DU=2/3)
9 (z) :{ 2] < v (jim)p = ( (Vil)@il/g))p (B.11)

with p < v1(j,m)p < v2(j,m)p < vp and va(j,m) < vi(j + 1,m).
That is, xUtx@) = x) and x®¥¢ = 0. Moreover, xx¥) = x for
j=1,2,....m.

The idea is now to stick in x(!) after the x in xyR(z, H)$ and then

commute it through:

xR(z, H)¢ = xx""R(z, H)¢
= xxR(z,H)¢ — xR(z, H)x"V¢

= _X[R(Z’ H)a X(l)]¢ = XR(Z’ H) [Ha X(l)]R('Z’ H)¢
(B.12)

Now, had the commutator [H, x("] been local (as it is in the ‘classical’
case, with p? as kinetic energy), then we would have been able to stick
in the x@ after it: [p?, ("] = [p?, x(V]x¥. We could then use the
induction hypothesis on the factor x( R(z, H)¢ and gain the needed
powers of 3 etc. from the factor yR(z, H)[p?, x]. Now, in our case,
the involved commutator will be that of Hy = /o~ 1p?2 + a2 — o !
and x(M, which will not be local; we can therefore not stick in the x(?
after this commutator and iterate—at least not without paying for the
non-locality.

To this end, we shall make use of the following expression for the
square root:

Lemma B.3.

\/5:_1/000( ! —%)x/idt, z > 0.

™ T+t
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Proof. This follows from the calculation

/Ooo<xit_%)\/%dt:_$/ooot(\ffi)
——va [ = s

1492
by the change of variables, t = x /1. O

Using the lemma, this means that
[H,xV] = [Va~1p? + a2, xV]
1 o0
= ——/ (e 'p? + a2 4+ 1t)7 L XYV dt
T Jo

1 o0
=— / (o P+ a2 +1) o % xW)(a p? + o 2 +1) WVidt.
0

7
(B.13)
Note, that we have already repeatedly used the formula
[R(2,T),¢] = —R(2,T)[T, ¢|R(2,T). (B.14)
Using (B.12) and (B.13), we get that
xR(z, H)¢p = xR(z, H)[\/a~'p? + a~2, xV|R(z, H)¢
ke )2 [l @ b))

x (o '+ a4+t WV } dt R(z, H)¢p

Now, since [a P2, X D] = [a'p?%, x(V]x@, by commuting x? and R, =

(o~ 1p2 + a2 +1)7, we get that thls equals

[xR(z, H)> [ Ren dt] YO R(z, H)$

1 o
+ [XR(Z, H); / R,CiR,.Cy RVt dt] R(z, H)¢
0

Here, C; = [a~!p?, x]. Of these two terms, we can use the induction
hypothesm on the last factor of the first one, whereas we have to iterate
the procedure above on the second; using that Cy = [a~'p?, x?] =
[, xP]x®) = Cyx® we get, that

1 o
\R(z, H)$ = [xR(z, m2 [ ReRY dt] X®R(z, H)
0
1
+ [XR(Z,H); / R,CiR,CoR\V/t dt] G R(z, H)
0

1 oo
+ [R(z,H); / RtClRtCQRtC;),Rt\/Zdt] R(z, H)
0
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Continuing this way, we arrive at

xR(z, H)¢
m—1
1 o
=) [XR 2, H)= / R,C\R;--- R,C; R\t dt] UHDR(z, H)¢
J=1 0
To proceed, note that, since p = —:3V, we have the operator equalities
p*, ¢l = —iB(p- V¢ + V(- p)
= —iB3(2p- V¢ +iBA()
= —if(2V( - p — iBAC) (B.16)
and so

CiR, = [a‘lpz, X(j)](a_lp2 +a 2+ t)_1

—i(vaB)(2 VXY - (Vap) — ivasAxXD)(ap® + 1+ o)™
By the spectral theorem,

1

2/1+a2t
1

1+ a2t

IWapi(ap? +1+ )7 < 1=1,2,3,

[(ap® + 1+ a’t)7 <

and so, by the definition of x(), since all derivatives of 7 are supported
in the interval [1/3,2/3], and since a < g, § < fo, and p > po, we get
that

> 109l +\/5ﬂIIAX‘”IIOO>
VIt o2t 1+ a2t

< 3 () Il + 300 (ﬁ) 171l

m
+ 308 5 17l
‘pv—1)

ICiRl < (Vai)(

= C(Ck(), /605 Po, V, 1M, m)
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By the generalised Holder inequality (3.2), and (3.1), this gives us, that

1 [ .
Hhmam;/ RO R RO Rt XU Rz, H)
0

1 [ )
<= [ InRG HYRGLR: - ReCRilanVEdt XV R(z, H)l
0
1 o
S ;C(aﬂaﬂOaPananam)J 1||X(J+1)R(ZaH)¢||2T”
« / xR (2, H)R,Cy Rl V/E dt (B.17)
0

To bound the last factor in (B.17), we rewrite the operator R(z, H) as
follows:

R(z, H) = R(—\, Hy)"*(Hy + \)2R(z, H)(Hy + \)Y2R(—\, Hy)'/?
= R(—=\, Hy)Y2S(\, 2)R(—X\, Hp)'/? (B.18)
with
S(\,2) = (Ho + N)'2R(—=\, H)"*(I + (A + 2)R(2, H))
X R(=\, H)'?(Hy + \)'/? (B.19)
by the resolvent identity and since R(—\, H)/? and R(z, H) commute.
By the spectral theorem we have that

1

|R(=A, Ho)?|| < sgg(\/m —at N2 = 7
Next, we recall that the potential V' is assumed to satisfy (2) in As-
sumption B.1:

(|V|1/2u, |V\1/2u) < E(Hou,u) + M(8, a, 6)(u,u),
with € € (0,1) and M = M(B,a,¢) > 1, for all u € C§°(R®). This
means, that as quadratic forms,
—eHy— M < —|V| <V
and choosing A > M /e, we have, that
M+(1—-e)A<A

(B.20)

In this way,

((Ho+ N2, (Hy + N)Y?9) = ((Ho + N, ¥)

= = ((Ho— cHy = M+ M + (1 - ), )
1

1-—¢

<

“1-c¢
by the above, and so
1

1—¢

I(Ho +X)2R(=A, H)"?|| <
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for A > M/e. Since

dy(z)= inf |z—z|<|z—(—M)| < |z]+ M < |z| + A

z€[—M,00)

we have that

A+ |z 51
This, the factorisation (B.19) and
|R(z, H))| < — (B.21)
Z’ — ) .
du(2)
lead to the bound
2 A+ 7|
S(A < _ B.22
IS0 < T (B.22)

In this way, using (B.18) and that 0 < [x| < 1, we get the estimate

*© 2 1 A+ |7
R(z, HYR,C1 Ry||anVt dt < —
| ARG DRC Rl < 12 2
X / ||(H0 + A)_1/2Rt01Rt||2n\/%dt.
0

(B.23)

By the change of variable, s = o?t, and with ¢ = /ap = —i/afV,
k = a, we have, by (B.16), that

/ 1(Ho + N)~/2RiC R lonV/E dt
0

= (a‘lﬁ) /o (Vo lp?+ a2 — a4+ A)*I/Q(afpo +a 2+ t)*1

X (p- Vx(l) + Vx(l) -p) (oz_lp2 +a 2+ t)_1||2n\/7?dt

—ﬁ/ V@ +1-14+8) (P +1+5)"
x (q- VXU + VXD ) (@?+ 1+ 5) 7Y |onv/5ds
—ﬂ/ VEF1—-1+8) (P +1+5)"

x (2¢ - VXU 4+ ivaBAXM) (¢? + 1+ 5) 2nV/sds (B.24)
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Notice, that using (B.14) and (B.16) we get the formulae

(q-VXD) (@ +1+5)" Zq@x (@ +1+s)7"
=1

= (P +1+5) g - VxW

3
+2(=ivaB) Yl +1+5) 7' V(@OxD) - g +1+5)7"

=1
—af (@ +1+5)"q- V(AXD) (¢ +1+5)" (B.25)
and
Ax(”(qZ +1+5)7 = (¢ + 1+5) 7 AxY
T 2A=i/aB) (@ + 1+5) V(M) - (g +1+5) !
— a2+ 1+ ) AAYD) (P +1+5)7 (B.26)

We used that ¢; and (¢>+1+5)~! commute for [ = 1,2, 3. Using (B.25)
and (B.26), (B.24) gives us, that

Wty 2 R G Rl
0
<o{ [TIETT 107 1 14
0
x2(¢+1+5) g Vx5 ds
A(Vap) Z/ VE+1-148)7(F+1+9)7"
xq(@®+1+s) 1V((?X(l) q(@® + 1+ 5) Y2n/sds
2008 [ IWEFT - 1R 1)
0
x (@ +1+3)7"qg- VIAXD) (@ + 1+ 8) 7 |an/5ds
+(Vas) [ IWVEFT =14 @+ 1)
0
X (¢ + 14 5) TAXY||ny/5 ds

+ (f?) /000||(x/q?+1—1+fﬂ)‘1/2(q2+1+s)‘1

X2 +1+5) "V(AXD) - q(¢® + 1+ 5) Y2nv/5ds
4 (av/af®) / VT 1+48) 22 +145)"

0
(@ +1+8) AN (@ +1+ s)_1||2n\/§ds}.
(B.27)
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Using the inequality |[|AB|l2, < ||Al|2n]|B]| (see (3.1)) on all, but the

first and fourth term above, and the fact that by the spectral theorem,
for I = 1, 2,3, ( qr = (—zﬁﬁ) 8l )

) 1
la(g” +1+5)7 <

T 21 +s

@+ 149 < e <1, (5.25)

1
< Z
-2

1+ s

we are down to estimating the 2n-Schatten class norm of operators of
the form

(VEFT =140 7P + 14570
and
(VE+1—14r) (@ +145) % T
for various choices of functions ® and ¥ (Ax(), V(Ax™M),...). To this

end, we use the following lemma (see Reed and Simon [25, Thm. XI.20
p. 47)):

Lemma B.4. Let 2 < r < oo and suppose that f,g € L"(R?). Then
the operator f(z)g(—iV) is in &, (the r’th Schatten-class) and

1£ (@) g(=V)ll» < @m) =" flle-llgllze-

Remark B.5. By scaling, this means, that

1f(@)g(=iBV)|l; < 27B)~" || fllz-[lg]z--

That is, we need an estimate on

(V@ +1—1+k)7(¢+1+s) g2

and

I(V@? +1 =1+ 5)7(¢" + 1+ 5) || .

For this, note that, with ¢ = v/2 — 1,

2 _ cy, y=1
Vyi+1 12{ et yeo,1] (B.29)
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and so, since n > 3 (and dropping k), for [ = 1,2, 3:
(V@ +1 =1+ k)72(¢" + 1+ 5) g o0
2n
1/2n 1
< m) {/ y® dy
Ve 0o [V +1+5)?
[e's) 2n
y 9 1/2n
+ dy}
/1 ‘\/?(y2+1+s)2 s

1/2n 00 yn+2 1/2n
<O g ta iy [T Y
1

Y

Ve (2 + 1)4n
26 1/8 (47T)U2n 7,3

< [ == 1 —atidn,

- (25> Ve (1)

Similarly (dropping v/¢®> +1 — 1),
(V@2 +1=148) 2@ +145) 120

. 1 o 1/2n
<[4 2d
—<”/0 ‘\/E(y2+1+s)2 Y y)

(47)1/% —o4+3 (/oo 2\ —4n 42 )
= 1+s in 1+t "t dt
) ACRYS

1/8 1/2n
< 30 (4m) (1+ ) 2t
29 VE

In this way, since n > 4, by using Lemma B.4, we get
[e.e]
/||(\/q2+1—1+f~e)1/2(q2+1+s)2q-\1f}llzm/§ds
0

26\ '/* (4)!/2n
%) v

1/2n

3 o0
< (rvas) " Y [l ( JACER RN
=1 0

3
< CL(VaB)™ Y [ Wil g,
=1

with C; = (£)Y 8\/%. It is the convergence of the s-integral above

that demands n > 4. Analogously, we have that

/ (V@ +1—1+k)2(q* + 1+ 8) 2 0}|2n\/5ds
0

30\ "/* (4m)l/2n
E) VE

< (2m/aB) | on ( / T4 s) 2t ds

< % (VaB) /2|,
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with Cy = 21(22)1/8. Looking at (B.27) we notice that all terms of the

form right above (with ® and not ¢ - ¥) also contains a factor of \/c.
Since A > M/e > 1, we have a/k <1 (k = a]).

In this way, taking into account (B.28), we finally get from (B.27)
that

/ (Ho + \) "2 R,Cy RullanV/E dt
0

3 3
< B(/aB) {20 ( 3 1ol + (VaB) Y- 18i0x D e
=1

1,k=1

+ (8% D 1o Ax ) 20 )

3
+ GBI e + D (VBN
=1

+ (@)A1 )} (B.30)

Recalling the definition (B.10) of x(1):

W) (z) = L[ _ D
xW(z)=n zl—p
=1 (5
with
(1 t<1/3
"(t)_{ 0 t>2/3
we see, that all derivatives of x(!) are supported in {|z| > p}, (see

(B.11)) and so we get, that (with () being the j’th derivative of 7,
0 < |y| £4, and C, an integer))

vl

C m \J| m
a1y (z)] < 2 ( ) ey <7[‘x| _ pD‘
In this way,
187X | g2

m )j ( ) o 1/2n
w [ ) ¢ ar)
ph — <V -1 y(t)e[1/3,2/3]

( y(t):ﬁcf—ﬂ) )

since suppn'¥) C [1/3,2/3]. Now, by the change of variable y = y(t),
and using that the integration then takes place over y € [1/3,2/3], we
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get, since p > py, that (for 0 < |y| < 4)
107 | 2

m \’ v—1 *(v—1 e
_ 1 _ G|} 9m
S ) () e
<C’p71+%
with (since n > 3)

(B.31)

C=Cy(1+ pgl)3(87r)1/8(1 +

4
V—l)
v—1 v—1
x(2—|—( -I-(
m

)Y )
= C(po, m,v,n)

(Cy =max C,).

lv]<4

(B.32)
Now, since a < ap, 3 < (o, (B.30) and (B.31) give us, that

A M%+M*Wumw%ﬁﬁgég<¢%)
with

é = (18ﬁ002 + 3601)(1 + Od()ﬂg) é,

26\ /® 21
Cl == (2_5) ) 02 -

30\ /8
5 (=)
and C given by (B.32).

(B.33)

29
Combining this with (B.17) and (B.23), we arrive at the estimate
L[~ G+1)
XR(z, H)— [ RiCiRy - -R,C;RVtdt| XYtV R(z, H)¢
0

<

L“V\é( p ) G+ 2
75 dwlo) p \vag) IXTTRGEHl

Choosing A = |z| + M > M /e, (B.34) leads to the estimate

2n
+1

(B.34)

Hhmam;/ R R+ RO Rt | O R(, )6
0

1/2
JNIEES"

2\ (BY o
A () Q@J (J“W“R@Hmw

(B.35)
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We now turn to the last term in the decomposition (B.15):
1 o
[XR(Z, H)— / R,C\R; - RCrn RVt dt| R(z, H)g.
T Jo

Rewriting R(z, H) as in (B.18), using (B.16), and noting, with ¢ =
Vap = —iy/afV, k = a) and
Q)= [ +1+y) 7] [WO(@+1+9)7]  (B.36)
that
R(=\, Hy)"?R,C\R; - - - R,C, R;R(—\, Hy)*/?
= A (—iVaf)" (V@ +1—1+5) V@ + 1+ )2

X H {Qu(e?t) + Qu(c’t)*}
I=1
X (2 +14+2) (V@ +1 -1+

we get, upon making a change of variable, s = o?t, that

[XR(Z, H)% /0 h R,CiR,---R,Cr, RVt dt} R(z,H)¢

= XR(NH) S0, 7 [ (ivas)n (T 14 )
(@ + 1+ 572 ([[HQU0) + Qo)) (@ + 1+ 97
x(ViZ+1-1+ m;__ll/Z\/Eds S(\, 2)R(=A\, Ho)Y?¢ (B.37)

By the spectral theorem,
1 1
(V@2 +1=1+r)72(P+1+5)"

1/2
I< VE(L+ s) \/a)\(1+s)
(B.38)

and so by the generalised Holder inequality (3.2), and (3.1), and the
bound (B.22) on S(), z), we get the estimate

0

2n

+1

< wasy s (2 )L T (o)

=1

By the spectral theorem, for j = 1,2,3 (¢; = (—iv/aB3)0;),

1(¢® +1+5) 2] < 1,
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and so, by Lemma B.4, we get that (see (B.36) for definition of @);)

I(¢* +1+5) g

NE

1Qu(s)]]z2m <

k+1
1

x (2mv/a8) "5 [|(¢ + 1+ 5)72| L 10X O] 32m

k1

<.
Il

3
+1) _
Z(%\/—ﬂ) o [|(q? + 1+ 8) 2 gam [105x O] 30m

Finally, recall the definition of x:

K@) = (s ol - o - 2=

and so, for 7 = 1,2, 3,

@ m T , m v — —
aaﬁj :(,,(y_l)m)”(m[“"ﬂ‘p( 2(5 U])-

In this way,

<l k—+"f
) k X 3
o1y = [ 15| e
iyrll ! 2nm. o
<|\——7- dr N (y(t))| = t°dt
<P(V - 1)> y(t)€[1/3,2/3] m(w(@)
_m o pv-1E-1)
( y(t)_p(y—l)(t P m ) )

since suppn’ C [1/3,2/3]. By the change of variable y = y(¢), and
using that the integration then takes place over y € [1/3,2/3], we get



7

(remember, that [ < m)

< ( m )i"‘T? L (p+p(l/—1) P(V—l)(l—l))2
p(v—1) m m
2/3 2nm
<ar [ ()P dy
1/3
2nm 2n
<op o= (SE)T P an )T,
v—1 LRI (R)
All of this gives the estimate
o 3(k+1)
p 2nm _%+3(k+1)
@l < & (Tﬂ) (1+5)7 4+ (B.39)
with
k¥l 2\ oL
_ m Ty (21/) 2nm ,
c=3(2) T (BE) Tl gy (Ba0)

For m > 4, this leads to the bound

2n
k+1

m— 8+1) 2 oo
§é<ﬁ@) —L(A+M>/‘Q+Q"Tﬁﬁ”@
0

1 o
Mm@ma/R@mmm%mﬁﬂR@m¢
0

p aX? \ dy(z)
i 30k+1) 9
L (vVaB\" Y 1 A
<C|+— —
- p aX? \ dy(z)

1—¢ ™

é=3(2 Ymcw

where C is the constant from (B.40). As k + 1 < 2n, we need m > 4
in order to ensure the convergence of the integral

o0
/ (1+ 8)*mTH+3(IZ:1) ds.
0
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Given P € N, we have, that

1 %)
0

2n
k+1

3(k+1)

et ()™ ()03 25}

m—(k+1)
X (é> a%_l_P.
p

Choosing now m > max{2P + 2,k + 1,5}, and remembering, that
a < ag, B < By and p > py, we have (with A = |z| + M), that

2n

k+1

‘ |:XR(Z, H)% / R,CiR;:- - R,.C., RVt dt} R(z, H)¢
0

3(k+1) k1 P
~_ 1 P\ (B o
<camli) - (0) ool (B4
with
_ 2 \26™ (B, m(k+1) m—(2P+2)
() T

)™ (22
v—1 70 K ¥ Ry

Notice, that the function 7 changes smoothly and monotonically from
1 to 0 on the interval [1/3,2/3] and so can be chosen such that || < 6.
This means, that

k+1

1 2n
man < n o
LEI(R) — 0 (3)

and so we can, in (B.41), take

- 2 \?36m B, m—(k+1) m—(2P+2
=i (7)) () e

() (e

Recall the decomposition (B.15):
XR(z, H)p

7'l

m—1

1 [ .
. [xR(z, )% [ OB RO dt] X R(z, H)
0

1

J
1 oo
+ [XR(Z,H); / thlRt---RtC’mRt\/idt} R(z, H)¢.
0
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Let
(|2] + M2 o? ,
X=-— 7 Y= — <
du(z) (Jo[+ M )12 =0
then,

(l/P

 du(2)
and so, using the induction hypothesis, the bound (B.35) reads:

XY

1 [ _
H [XR(Z, H)- / R.CiR;--- R,C;RV/t dt] XYY R(z, H)¢
™Jo

3(k+1)

<cam () - () xeeem

Combining this with (B.41) gives the estimate
IRz, H)l 2

2n

k+1

3(k+1)

<C dMl(z) (ﬁ) " <§>k+1 (X" + X%V + XY} (BA42)

We get, that

X XY + XY < X1+ Y)+ XY (1+ X)
=X 4L XY(1+ X+ XF) < XM 4 XY (14 X)F
< XM 4 XY (Cr(1 4+ XF)) < C(XFT + XY).
with C), = 2¢1, since
(1+2z)¢ < max{2¢ 1, 1}(1 +z4) Vp,ge N | Vz>0. (B.43)

To prove this, look at the ratio of the expressions on the right- and left
hand side, and differentiate. All this finally leads us to the estimate

IRz, )l 2o

“Cam (vea)

Inserting the values of X and Y in (B.44), this gives exactly (B.7) for
k+1 (and N = 1). This proves the the induction step.

The proof of the induction basis is easy now. We still decompose as
in (B.15). The terms in the sum are bounded like in (B.17), just by

3(k+1)
2n

<§>k+1 {X*'+ XY},  (B44)
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using (3.1) and not the generalised Holder inequality (3.2):

1 [ .
Hhm@m—/ &Q&~R£ﬁNM4W“%@HM
0

™

2n

< C |xYUT™R(z, H)¢|
y / I R(z, H)RiCy Ryl|on v/ dt.
0

Bounding the first factor simply by (dus(2))™! (see (B.21)) and the
second using (B.23) and (B.33), using as before A\ = |z| + M /e, this is
bounded by

st () (2)

The last term in (B.15) is also treated as before — everything goes
through, right till (B.41), just using £ = 0 (so that £ + 1 = 1). This
gives a bound of

Ot (ﬁ) ' @) {dsz) } '

This proves (B.7) for £ = 1, and therefore for general £ by induction.

To prove (B.9), do as for (B.7) and note, that using the operator
norm inequality ||AB|| < ||A]| ||B]| instead of the generalised Holder
inequality (3.2), and (3.1), the bound (B.17) combined with (B.23)
gives

H [XR(Z, H)% / R.CiR;--- R,C;R/t dt] XUtV R(z, H)qu
0
< O |X9IR(z, )| / IR (z H)R.Cy Ri|| Vi dt
0

< O\ Rz, H)g| / IRz, HYRCy Ril|VE dt
0

, 1 A+ |z
< CINR( Mol 5

y / (o + A2 R,Cy Ry||V/E dt
0

Remains to bound the last factor above, similar to the bound (B.33),
but in norm instead of the 2n-Schatten-class norm (and then use the
induction hypothesis). To do this, we only need to estimate in norm
operators of the form

(WVE+1-14+8)" P +145)20

and

(W@ +1-148)"Y (P +145) % 0.
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Doing as when estimating the Schatten-class norm of these (using
(B.29) and dropping « and 1/¢? + 1 —1 respectively) and again noting,
that the resulting factor of K3 cancels, we get a bound that reads

/ |(Ho + \)""2R,C1R||Vtdt < C g.
0
Basically, the difference is the lack of the factor ( \/%ﬂ)% that occurs

when dealing with Schatten-class norms and not operator norms; it
stems from the use of the Lemma B.4. Same thing for the bound
(B.41); here we need to notice (which we will also need for later use),
that for (see (B.36))

Q) = [(@+1+9)7q] - [VXO(@ +1+y)7]
we have the bound
3
1) < 1@ +1+3) " all 1ol @ +1+3) 77|
=1
- 1 c o1
S 8lx(l) S _ .
2N = = L

Again, the only difference from the Schatten-class case is the lack of (a

(B.45)

3
power of) the factor (£3)*", see (B.39), and additionally, a positive
factor of 1 + y, stemming from the same effect. The lack of the last

only makes the convergence of the involved integrals (in y) better; in
particular, (B.9) holds for all N > 1. O

Note the following:
Lemma B.6. Assume the function X satisfies (B.4):
| Xull” < e(Hou,u) + M(B,a,)||ul|® Vue C3*(R?)
for some € €10,1[, M(B,a,e) > 1. Then
(l2| + M)Y?
du(2)
Proof. For A > M /e, with S(A, z) as in (B.19).
IX Rz, H)|| < [IXR(=A, Ho)' [ IS\, 2) || [|R(=A, Ho) ||
Recall (B.22):

|XR(:, H)l| < C (B.46)

2 A+|7|
<
Isoal < 24T

and that by the spectral theorem

IR(=A, Ho)'/?|| <

-
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Rests to bound the factor || X R(—\, Hy)'/?||. To this end, note, that
by assumption,

(Xu, Xu) <e(Hou,u) + M ||ul|* = 5{(H0u, u) + gHuHQ}

< 6{ (Hou,u) + )\||u||2} = e((Ho + \)*u, (Ho + \)*u)
and so
IXR(=X, Ho) 2|l < .
This proves the lemma, with C' = 7% for A = |z| + M/e. O
The same idea permits us to prove a result related to Lemma B.2:
Lemma B.7. Let the function X satisfy
| Xul]® < e(Hou,u) + M(B,a,¢)||ul]* Vu € CP(R®)

for some € €)0,1], M(B,a,e) > 1 and let K > 3. Then, for any
functions x and ¢ satisfying (B.6),

o< (1) ()

(UM N el
{( i) +dM<z)} (547

Proof. All we need to notice is that the difference from the proof of
Lemma B.2 is that the decomposition (B.18) will give rise to a first
factor of Xy R(—\, Hp)*/? and not merely x R(—\, Hy)'/2. Since

IXx R(=A, Ho)?|| < Ve

1
R(=\, Ho)'?|| < —
Ix R( 0) ”_\/X

(see proof of Lemma B.6) this gives, with the usual choice of \ =
|z| + Mg, rise to a factor of (|z| + M )2 compared to the estimate
(B.8) of Lemma B.2. This gives exactly the bound (B.47). O

The result (B.8) of Lemma B.2 generalises to any (positive integer)
power of the resolvent by induction:

Lemma B.8. Let x and ¢ satisfy (B.6). Then for allk > 1, K > 3
and P > 1:

<oy () (3

(2] + M)\ o
{(T()) +dM(z)} (B4
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Proof. The proof is by induction after k; the induction basis, £k = 1, is
(B.8) of Lemma B.2.

Assume that the estimate (B.48) holds for some k. Choose a function

x1 with supp x1 C B(%) such that |x;| < 1 and

(2+v)
3 P
and let ¢;1 =1 — x;. Since v > 1, we have that

2 142
p<< :,:V>p<( —gy>p<up. (B.49)

xi@) =1, |z] <

This means that the pairs of functions, x1, ¢ and x, ¢; satisfy the con-
dition (B.6) of Lemma B.2; for the pair x1, ¢, the values of (p,v) are
(Fp, 12%;), for the pair x, ¢, they are (p, 25%). This gives the same
dependence on p (and on py, due to (B.49)), but the constant, which

depends on v, will be different. This means, by (3.1), that
IXR(z, H)** 6|y = IxR(2, H)" (x1 + é1)R(z, H)o|lx
< IxR(z, H)*[| [Ix: R(z, H)é|lx
+ IxR(z, H)*¢: |l | R(z, H) |- (B.50)

Using that (see (B.21))

IR(z, H)¥|| < Vk €N, (B.51)

du(2)F

the first term in (B.50) satisfies the estimate (B.48) for £ + 1 due to
(B.8) of Lemma B.2, and so does the second one, due to the induction
hypothesis. The lemma now follows by induction. O

This will allow us to prove the following:

Lemma B.9. Let x satisfy (B.6): suppx C B(p) and |x| < 1, for
p > po, and assume 0 < a < o and 0 < B < By. Let k,n € N be such

that n > 3,k < 2n. Then, with p = 27", we have the estimate

IxR(+iM, H)*||, < C M~* (ﬁ) : (1 + (aM)%) (B.52)

Proof. By induction after k. Let £k = 1. Then
IXR(£iM, H)l2n < [[XR(=A, Ho)""?||2n [|S (A, £iM)|| |R(=A, Ho)'"?||

with S asin (B.19) and A > M/e. Now, by (B.22) and since dy, (£iM) =
M, we have that
2 A+|EiM|]  244e

A, £iM)| < -
L P ) M




84

for A\ = | £ iM|+ M/e, and by the spectral theorem (see (B.20))

<=
VA V1+evM

IR(=X, Ho)'?

Finally, by Lemma B.4,
_3
IXR(=A, Ho)"?|ln < (278)7 3% [ x| 2n [l g]| 20
with
— —_ —1 —1/2
9(z) = (Va2 +a2—a '+ ) "

Now, by the change of variables, y = \/at,

*° 2 dt
ol =t [ g
0o (Walt2+a?2—-—al4 )
= a""2 4r /OO Y dy
o (Wy2+1l—-1+a))"

To find the behaviour of the integral

/°° y? dy
o (VyP+1-1+kr)"

as a function of k, we again use, that
>1
/22 _ > cyY, Yy =
yorl 1—{ cy?, y€l0,1]
with ¢ = v/2 — 1. This means, that

/oo Y2 dy <c3/2ﬁ§n/‘/§t2i
o ( N o

\/?m_l_i_,{)n 2+ 1)"
+ ¢ 3R3m /OO i
C/K (t + 1)”
(by the changes of variables, ¢t = \/E y, t = £y, respectively).
Now,
12 Ve
/ (t2t+di)n = / £ dt = %03/2”_%
0 0
and

/°° 2 dt </°° 2 dt <9
cn(t+1)n_ 0 (t_|_1)n—

since n > 3, and therefore

oo 2
Yy dy /1 2 3
<K "-+—1—kK).
/o Wy +1—-14k)" (3 5vV2 -7 )
Still with A = | £ 4M| + M /e, and using that (see (B.43))
(1+2)" <max{2" ', 1}1+r") Vz >0 , VreQ,



85
we get, that (k = al)
llgllz2e < Cain M~z (1 i (on)%).
Since supp x C B(p), |x| < 1, we have, that ||x||z2 < (4%)1/271,0%’

3
and so we get the estimate
3

IXR(0M, H) |30 < C M~ (ﬁ) " (14 (@d))).

This proves the induction basis.

Assume now, that the estimate (B.52) holds for some k. Let x; be
a function with supp x1 C B(3p) such that x;(z) = 1 for |z| < 2p and
Ix1| <1, and let ¢ = 1—x;. Then the pair of functions Y, ¢ satisfies the
conditions of Lemma B.2, and x and x; those of this lemma (the latter
with 3p, instead of p), and so, by the generalised Holder inequality
(3.2), and (3.1),

IXR(EM, HY | 2 = [ XR(£iM, H)($ + x))R(£iM, H)*|
< [XR(EIM, H)B| 20 | R(iM, )|
I REM, H) |aala R(iM, HY |20,

Now, by (B.51) and (B.7) in Lemma B.2 (for £ + 1, and with N = 1)
the first term above is bounded by
3(k+1)

e () ()

" { (%) * } Cmeand

3(k+1)

2n

| 2n
k+1

< ~(k+1) (P
<oart (F5) 7
using, that o < ag, 8 < By, p > po and M > 1.

By the induction basis and the induction hypothesis (and using again
(B.43)), the second term is bounded by

{% (%5)23 (1+ (OtM)%)} {% (%ﬂfk (1+(aM)%)}

3(k+1)

<o M-k (P "y ) 2D
<C <\/&ﬂ ( + (aM) )

In this way,

3(k+1)

2n

I R(EiM, HY | 0 < C M0+ (ﬁ (14 (nr) ™57
! «

which is (B.52) for k + 1; the lemma now follows by induction. O
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Using the above lemma, we can prove the first result on local Riesz
means of H:

Lemma B.10. Let x be as before: suppx C B(p), |x| <1, p > po.
Let g = g(X\) be a function such that g(A) = 0, A > Ao and [g(N\)| <
Cy,s|A|® for some (fized) s > 0. Then

3
s p 3
H, <M | — 1 M)?). B.53
ol <o (o) (4 @mP). (B3
Remark B.11. We are mainly interested in the case s = 1, namely for
(a smoothed out version of) the function |z|_- = max{0, —z}.

Proof. From Lemma B.9 with £ = 2n > 6 we get, using (3.1) that
Ixg(E)lx < [IXR@EM, H)* ||| (H —iM)*g(H)|

3

<CM* (L) 14+ (aM)?) ||(H — iM)*kg(H)|.

) (1 (b)) 1 = ianPg()|
Now, by the spectral theorem,
I(H —iM)*g(H)|| < || fllo

with

F)=A—idM)fg(n), A€M, ]
Using that |g(A\)| < Cys|Al°, and that M > 1, we get, that || f||c <
C M**, with C = Cy54/2+ A2 (14 X\o)*. This proves the lemma. O

We will eventually need the following lemma, which relates to Lemma
B.7 and Lemma B.9.

Lemma B.12. Let, as before, supp x C B(p), |x| < 1, with p > po,
and let the function X satisfy

| Xul” < e(Hou, u) + M(B, a,e)|[ul* Yu € C5°(R?)
for some € €10,1[ and M = M(B,a,e) > 1. Then for any k > 6

| X XR(&iM, H)¥|), < 0 M~ (ﬁ) (14 (aM)?).  (B.54)

Proof. Let x1, suppx1 C B(3p), [xal < 1, xa(z) = 1 for |z] < 2p, be
the function from the proof of the induction step in the proof of Lemma
B.9, and let ¢ =1 — x;. Then

| X xR(£iM, H)* |y < || XxR(£iM, H)¢|: || R(£iM, H)¥||
+ || XxR(£iM, H)|| ||x1 R(E£iM, H)¥||,.

By Lemma B.6 and Lemma B.9 (with 2n = k£ > 6), the second term is
bounded by

(2M)'/2

Cocan <M (ﬁ)s (14 (aM)?)



87

whereas by Lemma B.7 and (B.51), the first term is (for K > 3)
bounded by

e () ()

Using, that o < ag, 8 < o, p > po and M > 1, this provides, for both
terms, the bound (B.54). O

Until now, we have only dealt with the operator H. We now embark
on studying the ‘abstract’ operator A, assumed only to equal H in part
of space; more specifically, we assume A to satisfy Assumption B.1 with
D = B(4p) for some p > py with py > 0 some fixed number.

The essential tool in comparing (resolvents of) the operators A and
H will be the following lemma, which gives a sort of ‘resolvent identity’:

Lemma B.13. For any function ( € C§°(D), we have
(R(z,A) = R(z, H)( + R(z, H) Z({)R(z, A) (B.55)
with
a~'p2+ a2 (¢ + B

with an operator B satisfying
N
IBll: < Cng (@) for all N € N.
P

Here, (1 € C§°(D), such that (¢ = ¢ (see (1) in Assumption B.1).
More generally:

k
(R(z,A)* = R(z, H)*¢+ Y R(z,H) Z({)R(z, A)* 7" Vk €N,
j=1

(B.56)

Proof. The proof is by induction; we will start with the induction step,
since this will show us, that the formula (B.56) does not rely on the
actual form of Z((): if there is a formula like (B.55), then we also have
(B.56), with the same Z({). Assume the formula (B.56) holds for £.
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Then
(R(z, A = (R(z, A)*R(2, A)
= (R('Z7 H)kc + Z R(Z, H)]Z(g)R(Z’ A)k—j-f-l) R(Z, A)

j=1

= R(z,H)*(R(z, H) + R(2, H) Z({)R(z, A))

k
+) R(z, HY Z(¢)R(z, A)*0t1

j=1
k+1

= R(z, H)*"'¢+ > R(z, HY Z({)R(z, A)*HD =311
j=1

the second equality by the induction hypothesis, the third by the in-
duction basis.

Rests to prove the induction basis. Note, that it suffices to prove
that for any u € D(A) and v € D(H), we have

(Cu,HU) — (Au,fv) = (u, Z(C)*v).

To prove this equality, notice that by (1) in Assumption B.1, there
exists a function (; € C§°(D), such that (;¢ = ¢ and

for all ¢, € D[A], with an operator B satisfying

N
1B]li < Cng, (@) for all N € N.

Now, (1v € D[A] by (2) in Assumption B.1, since v € D[H], and so,
since also u € D[A],

Afu, &) = Afu, E(G)] = AlGru, E(Go)] + (Buyv)
= AlGu, (v] + (Bu,v)

This means that

(Cu, Hv) — (Au, (v) = H[Cu,v] — Alu, (v]

= H[Cu,v] — A[Gu, (v] + (Bu,v).

By (2) in Assumption B.1, (v € D[A], since { € CZ(D). Since (¢ = ¢
this means, by (2) in Assumption B.1, that

AlGru, Cv] = AlGu, Gi(Cv)] = H[Gru, (1(Cv)] = H[Gu, (o]

and so
(Cu, Hv) — (Au, ZU) = H[Cu,v] — H[Cu, v] + (B u,v)

— (Cu, (m) U) — (C1u, (\/W)EU)

—+ (Cu, (V- ofl)v) - (Clu, (V- ofl)g_v) + (B u, v)
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The last term equals 0, since (;( = ¢, which leaves us with
(Cu(Va'p? + a2 v) = (Gu, (Va~'p? + a72) (v) + (Bu,v)
= (¢, (Var'p? +a72)v) = (Gu, (Va'p? +a72) (v)
+ (B u, v)
= (G (G Vo P+ a72) + (Bu,v)
= (u, Z(¢)*v)
with
Z(¢) = Wap* +a2,(G + B,

with an operator B satisfying

N
1Bl < Cwe, (@> for all N € N.
P

O

The previous lemma will provide us with the tool to study the trace
norm of differences of powers of the resolvents of A and H as in the
following lemma:

Lemma B.14. Let the operator A satisfy Assumption B.1 with D =
B(4p), p > po. Then for any x with suppx C B(p), |x| < 1, any
k>1, K>3 and P > 1 integers, we have that

Ix[R(=, A)" = B(z H)*]]],

=¢ (”%d;@) (ﬁﬁ) (%)K

(U N e 1
{( dn (2) ) +dM(z>}|1m<z)|k'
(B.57)

Proof. Let n € C§°(R), |n| <1, be a monotone function such that
_J L <2
n(t)—{ 0, [t[>3 "
Denote xi(z) = n(%) and let ¢ = 1 — x;. Then xx1 = x and so we
get, that

This means, that we have to prove the bound (B.57) for the two oper-
ators

Ty = x[x1R(z,A)* — R(z, H)"x1]
T2 = XR(Z: H)k(ls
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The pair of functions x, ¢ satisfies the condition (B.6) of Lemma B.8
(with v = 2), and so by that lemma we have, that

gt () ()

: { (%)M i djl(;) }

(UM ar 1
{( i (2) ) +dM(z>}|1m(z>|k‘
(B.58)

Remains to prove the bound (B.57) for the operator 7. Using
Lemma B.13 we have, since x; € C§°(B(4p)), that

k
T, = ZTl(J)’
7j=1
T = XR(z, HY Z(x1)R(z, A* 7, j=1,.. .k (B.59)
with
Z(Xl) = [\/OW, Xl] C_l + B

for some function (; € C§°(B(4p)) (see (1) in Assumption B.1), and
with an operator B satisfying

N
IBl: < Cwy, (@) for all N € N, (B.60)

and so it suffices to prove the bound (B.57) for the operators Tl(j ). To
this end, note that we have

TY =79 4 BO
with
TD = yR(z, H)? E /0 h R,C1 RVt dt] G R(z, At
BY = xR(z,H)? BR(z, A)Fi+!

where C; = [a71p? x1] and R; = (a™'p? + =2 + t)7! as earlier (see
(B.13)).
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Firstly, note that by (B.51) and (B.60), we have (choosing N suffi-
ciently large and using (3.1)) the bound

IBDNl: = xR (2, HY B R(z, A)*7*||,
N

co_ L (VaB 1

- | Im(z

du(2)? \ p )t

=¢ (ﬁ) @K df;;) g (B

Next, note also that supp d;x1 C B(3p) \ B(2p) C R® \ B(2p). This
means, that the supports of the functions x and 0;x1, | = 1,2, 3, are
separated like required in Lemma B.8 (with v = 2, see condition (B.6)).
The idea is to take advantage of this as in the proof of Lemma B.2.

To this end, choose a monotone C*°- function (, |(| < 1, such that

0, [t|<1/3
C(t):{ 1, ItIEQ?S

and define a family of functions, ¢, € B(R®), k =2,3,... ,2N, by

2N p(2N — k)}) '

or(z) = ¢ (7[|x| Bl Aniry (B.62)

This means, that

0, |z| <wi(k)p= (14 BERHE,

N
1, |a| > wm(k)p=(1+ 5523

or(z) = {

with p < v1(k)p < w(k)p < 2p and w(k + 1) < v4(k). That is,
or1Vor =Vor and gpx =0, k=2,... ,2N. Also, ¢2Vx1 = Vxi.
In this way, @o[a'p? x1] = [@ 'p?, x1] (see (B.16))) and so

i e ; '
T = xR(z, H)’ [;/ Rt€02CIRt\/%dt:| GLR(z, A7

0

1 . -
= xR(z, H)? ps [;/ thlRt\/%dt] G1R(z, A)F7H
0

1o _ :
—xR(z, H) [;/ RtO2Rt01Rt\/Edt:| GR(z, A)F7+
0

since Ryps = poRy — RyCyRy, by (B.14) (here, Cp = [a™1p%, 1], k =
2,...,2N). The first factor in the first term, x R(z, H)? ¢y, now satisfies
the conditions in Lemma B.8 (the condition (B.6), with v = 14(2) €
]1,2[), whereas the second term has gained another commutator, Cs.
Repeating this procedure, sticking in another ¢,, in front of the C,,_1
in the last term each time, using that ¢,,[a™'p?, @m_1] = [P, Om_1],
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we arrive at

Tl(j) —
2N 1 o0
{Z ((_1)mXR(ZaH)j(Pm {;/ RtleRt"'thlRt\/Edt] )
m=2 0
Y e _ .
—xR(z,HY [;/ RCon Ry - - -RtClRt\/Edt] } GR(z, A)FI+L,
0

(B.63)
To estimate the last term in (B.63), note that

1 *© - .
k(e 1) [ [ RiCa R R RE] GG, A
0

< IIXR(z, HY T G R(z, A)F |

1 o0
x ||R(z, H) [; / RthNRt---RtC’lRt\/idt]
0 1
< % R(z, H) [1 / RtCQNRt---RtolRt\/Edt]
| Im(2)] T Jo 1

As in the proof of Lemma B.2 (see (B.37)), with

Q) =[(+1+y)q] - [Vou (@ +1+y)?]
(with functions x1, ¢o, ¢3...) and k = o) for a A > M /e, we get that

R(z, H)= / R.Con Ry -+ - R,Cy R/t dt
0

™

= R(-\, Ho)'”S(\, z)% / T b (civap)N (VEF T — 14 5) 2
0

X (¢*+1+ aQt)*I/Q( II {@n(®) + Qm(a2t)*})

m=2N
x (¢ + 1+ a?t) Y2Vt dt.

Now, choosing A = |z| + M /e, making the change of variables s = o,
using the generalised Hélder inequality (3.2), the inequality (3.1) and
the bounds (B.22), (B.38) and (B.39) obtained in the proof of Lemma
B.2, we get the estimate

1 o
1R(2, H)— / RConRy - R,Ci RVt
0

<com(5) . el e

Choosing N > max{K, P + £} (note, that K > 3, so N > 3 and so
the s-integral above is convergent) and using that o < g, 5 < B and
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p > po, we finally have that

|1 o0 _ )
||XR(Z, H)J |:; / RtCQNRt s thlRt\/'E dt:| ClR(Z, A)k_ﬁ_l”
0

1 o
‘R(z, H) [; /O R,CynRy - R,C1RVt dt]

1
[ —
~ [Im(z)*|

1

=¢ (fﬂ)3 <§>K dj@ e (B64)

The first factor in each of the terms in the sum in (B.63) satisfies the
condition (B.6) of Lemma B.8 (with v = v1(k) €]1,2[). To estimate
the second factor in norm, we apply the same ideas as in the proof of
Lemma B.2:

1 o0
- / R,.C, Ry - R,CiRt dt
0

_ (—iy/aB)™ /Oo(qz 1 8)—1/2

TQ 0

(H{Qg s) +Q;(s })(q2+1+s)_1/2\/§d5

with Q;(s) as before. By the spectral theorem

1
1+s

(@ +1+s)7? <

;

I(¢* + 1+ )" gl <1

and

1R (s |I<ZII +1+45)" g 0651 I(¢* + 1+ )72

1
<§:a A
—l:1 || l¢]”\/m

(with x; for j = 1) and so

1 o0
- / R,C,R; - RyCiRt dtH
0

( H 22 ”al(bJ”) / (1+ 8)_mT+1 ds

]mll

\/ag)m ( H 22 ||8l¢j||) %

j=m [=1

IN
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as long as m > 1, in order for the integral

/ (1+ s)_mT+1 ds
0

to converge. By construction (see (B.62)),

1
lopal < = 177l loo

2N )
||8l¢]|| S 7 ||<,||007 J= 27" . 72N:

and so for £ > 2, and any K > 3, Lemma B.8 finally gives the estimate

. 1 [
1 Y [+ [RGB R R
0
x (1 R(z, A1,

< () 0) (™) i)
Ja )k 1l 1
P |

| Tm
<o ( fw) (%)K{< |z‘d;éw>)l/2> *dﬁl)}léz)k)
.65

X
/\

)|k —j+1

since a < o, B < By and p > py.
We are now left with the term

1 [ B .
XR(z, H) ¢q {;/ RtC1Rt\/l_fdt] GiR(z, A)F—IH
0

HY ool a~1p? + a2, x1]( R(z, A)F I+
To treat this, we prove the following:

Lemma B.15.

Vo= p? + a2, x| < C —= (B.66)

\/_p
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Proof. Note that, by (B.13), (B.14), (B.16), and the change of variables
s = a?t, we have, with ¢ = \/ap = —i,/afV, that

[ \% Ojilp2 + 0172, Xl]

3

=y 1P Oo(ozp2 + 1+ s)" (Vap) dixa
ma Jo

+ 01 (Vo)) (ap® + 1+ 5)"'/sds

- ;\’/é{/o A +1+5)2/sds - Vi

+Vx1-/ (> +1+5) %/sds
0

3 [’}
+3( [ a1+ 570 anal(a® + 1+ 5) Vs
0

=1

_ /Ooo(q2 +1+5) ¢ dalale® +1+5) Vs ds) }.
(B.67)

By the change of variable s = (¢® + 1)y, using the spectral theorem

and the definition of x;, x1(z) = n('%'), we get that

/ 9 +1+5)7*sds - Vxu
0

17l oo-

<([Tarwvia) Z (1 + 1724l ovcal) < >

Using (B.16), a < ayg, f < By and p > pg, we get that
le* dxa)(a® + 1+ 5) ||

3
< vap( Y l20:00all las(a* +1+ )7
j=1

+ IVaBa@x)l I¢* +1+5) ')

C
<=
P

(1 +s)*1/2

(remember that the derivatives of 1 are supported in [2,3]) and so,
since by the spectral theorem

la(e® +1+5) 2| < (1 +5) %2
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we get the estimate

/ a(g® +145) ¢ oxi)(* +1+5) sds
0

gg/ (1+s)*2\/§d5§9.
P Jo p

Noting, that all terms in (B.67) are of the above forms, this proves the
bound (B.66) O

Using (3.1), Lemma B.8 and Lemma B.15, we get the bound
IXR (2, HY galv/a~1p? + a2, xa ]G R(2, A)F 74|y

“a () (3

(UM of |
{( ) *dM(z>}¢ap|Im<z)\k' (B68)

Combining the bounds (B.58), (B.61), (B.64), (B.65) and (B.68), and
using a < g, f < By and p > py, we arrive at the estimate

Ix[R(z, A)F = R(z, H)*] ||, < [ITalls + 1Tl

=¢ (”%dﬂll(z)) (ﬁﬂ) (%)K

(UM N el 1
{( dn(2) ) +czM(z>} ()

This finally finishes the proof of the lemma. U

The first application of this lemma will be a bound on local traces
of functions of the operator A:

Lemma B.16. Assume that the operator A satisfy Assumption B.1,
with D = B(4p), p > po and let x satisfy supp x C B(p), |x] < 1.
Then for any g € C§°(R) and K > 3 we have that

Ixg(A)l < C (ﬁ) (1 +lad) + - (%)K> . (B.69)

Proof. For z = iM we have, that, for some k£ > 6,
Ixg (Al < xRz, A)F[1LlI(A = 2)"g(A)]
<104 = ) (AN (IR, HY s + IX(R(z, A)* — Rz, HY]Il).
Now, by the spectral theorem, (z = iM, g € C§°(R))
I(A = 2)Fg(A)|| < C M*.



97

By Lemma B.9, with 2n = k£ > 6, the first term in the second factor is
bounded by

CM* (ﬁ)?’ (1+ (aM)?) (B.70)

whereas the second term, by Lemma B.14, is bounded by

¢ (1 * %d;(z)) <\/§ﬂ> (%)K
p 172\ 2K P
X{(” ‘d;?j)) ) +dM(z)} T
sou () 52

since z = 1M, a < ag, B < [y and p > py. Together with the bound
(B.70), this proves the lemma. O

To study the difference g(A) — g(H) we use the following represen-
tation for a function of a selfadjoint operator in terms of its resolvent
(the formula will be proved in appendix F).

Proposition B.17. Let g € C°(R). Then for any self adjoint opera-
tor B we have, for allmn > 2:

g(B) = 2_: %/R(?jg()\) Im [/ R(A + 4, B)] dA

+ ﬁ /0 lT"—l dr /R 9"g(A\) Im [{"R(A + i1, B)] dA.
(B.71)

Using this on g(A) — g(H) and estimating the resulting differences
in resolvents, we arrive at:

Theorem B.18. Suppose A satisfies Assumption B.1 with D = B(4p),
p > po, and that supp x C B(p), |x| < 1. Let g € C*(R) be a function
such that g(\) = 0 for A\ > X\o and such that for some r > 0,Lg > 0
fized, we have, for all L > Lg, that

0"g(\)| < C,L™()\)" , VneN (B.72)
(here, (\) = (1 + [A[®)'/2). Then for any K > 3:
1

o

x[o(A) — g(H)] ||, < Cx L2E30 414 (@) 7 (B.73)

P

The constant C'x does not depend on V', other than on the constant
in (B.4), nor on x.
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Proof. Let A € R and 0 < |7| < 1. Denote

S\, 7) =R(A+ir,A) — R(A+i7, H).
Now, since |7| <1 < M, we have, for A < —2M, that

A
daa(2) = |z — (0) > A — > 2L
5+1
z| + M =V +12+ M < \f; Al
and so

(|z| + M )Y? 2v/5 + 2 1 2
S 9 S e
dur(2) VI du(z) = |A|

and for —2M < X\ < ), that

du(2) > | Im(2)| = |7|, |2|+ M < C M, C\,=1/5+N+1.

Then, by Lemma B.14, with £ = 1, we have, for any K > 3, that

oonse (o i) () ()7 o

ME  oP) 1
X{W—i-%}m —OIM <A< A
1 1 0 3 3 2K
||x5(A,T)||1§C( +TW) (fﬂ) (;> (B.75)
1 aof 1

Note, that the representation in Proposition B.17 does strictly speak-
ing not apply to the function g, since this is not of compact support.
In order to correct this, we use the fact, that H > —M, A > —a ! (see
(3) in Assumption B.1) and modify g: Let ( € C*°(R) be a monotone
function such that ((t) = 0,t < —2 and ((t) = 1,t > —3/2. Define
then, with M = max{M, o'}, the function § € C°(R) by

9A) = <(==) 9(N).

Since H > —M, A > —M and §(\) = g(\) for A > —%M, we have, by
the spectral theorem that §(A) = g(A) and §(H) = g(H). Note also,
that by (B.72), and since L > Ly,

0"G(\)| < C,L™(\)" , VYneN (B.76)

with constants C,, depending on the C;’s (j < n) in (B.72), on Lo, and
the derivatives of ¢ but not on the lower bounds, —M of H and —a !
of A, since M > M > 1. Then, by the representation (B.71) we get

§(A) —gH)=1" + 1" vneN

§1| >
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with

—

w— 1

I(n)
1 7j! -

/aﬂ (A) Im [¢/86(A, 1)] dA

I
)

J

1
B = ), o [ e m o, ] o
0 R

w(n—1)!

where the integration in A in fact only takes places over the interval
[_QMa )‘0]

To estimate xI{", choose n = 2K + 3. Using the estimates (B.74),
(B.75) and (B.76), and the fact that o < ag, 8 < By, M > 1, and
|7| <1 on the domain of integration, we get

I )(E>K
vas) \p
1 2M P
{/0 72K+1dr/ (1+%ﬁ) (ﬁ-l—m)Wrd/\

(Note, that [A|" < C(Ag) M" for —2M < A < A, since M > 1). Now,
again using that M = max{M,a '}, a < ap and M > 1, we have, for
r > 0, that

Lo 0 )

since M = max{M,a '}, @ < ap and M > 1. For r = 0, we get
—al log o instead of o¥’~", which is positive and also bounded above
for o €]0, 1].

In this way,

2K-3
n 1
||XIQ( )”1 < CL2K+3MK+1+T (g) ? (B77)
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By the same estimates we have (since L > Ly), that (recall, that n =
2K + 3)

) < € 12K+ (L) (§>2K
P vap) \p

—2M P
1 1 1 «
1+ ——) <—+—> IA|" dA
{/—QM ( va [AJ \AE A
Ao MK+7'
+ / ar}
o V@
2K-3 |
< CL2K+3MK+1+T é g
< P o7
Notice, that we can assume throughout, that M=at when dealing
with the integrals over A € [-2M, —2M], since otherwise M = M and
hence the integrals are zero; this also means, that & < 1 (in this case),
since M > 1.

Now, the estimates (B.77) and (B.78) provides the bound (B.73),
which finishes the proof of the theorem. O

(B.78)

Finally, we use the technique from the proof of this theorem, and
the estimate (B.8) from Lemma B.2, to prove the following bound on

Ix 9(H) ¢ll::

Theorem B.19. Let the functions x and ¢ satisfy (B.6) for p > po,
and let H be as in (B.1), with a potential satisfying (B.4) for X =
\VIY2. Let g € C®(R) be a function such that g(\) =0 for A > X\ and
such that for some r > 0, Ly > 0 fized, we have, for all L > Ly, that

0"g(N\)| < C, L™(\)" , VneN (B.79)
(here, (\) = (1 + |A[>)Y/2). Then, for any K >3
3 2K
Ix g(H) ¢||y < O LKF2MHHHT (ﬁ) <§) : (B.80)

The constant Cx does not depend on V', other than on the constant €
in (B.4), nor on x.

Proof. This goes as the proof of Theorem B.18; we again note that in
order to use the representation (B.71) we need to modify the function
g, since this is not of compact support: Let ¢ be the function from the
proof of Theorem B.18, and define §(\) = ((2-)g(}), then §(H) = g(H)
by the spectral theorem, since H > —M by (B.4). Again, § satisfies
estimates like (B.79), with constants only depending on Lo, the C;’s
(j <n) from (B.79), and the derivatives of the function . Now, since

g(A\) =0 for A < —2M, we only need the following:
2M <A< X = du(z)>|1], |7|+M <C)\ M.
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Using this, and (B.8), we have, for all K > 3, that

X R(A + i1, H) |1
3 2K K P
P Iv) 1 (M Qo

e () () 2 (2] e
vap) \p) Tl UrPX " |7 "
(B.81)

Applying the representation (B.71), with n = 2K + 2, to the operator
H, using the estimates (B.79) and (B.81) (and that L > Ly, a < ap),
we get that (since g and all its derivatives vanish for A < —2M)

3 2K
Ix RO\ + ir, H) ||, < C L2K+2 (ﬁ) (g)

Ao 1 Ao
X MEFd)\ + / dr M"XFTd)].
—2M 0 —2M
P 3 ﬂ 2K
< CLQK—l—QMK—I—l—I—T (_) (_) ]
- vaB) \p
This proves the theorem. O

We finish this appendix by proving a result on the non-locality of
the operator

Hy=+-a'A+a2-a".

As ususal, a €]0, ] and 3 €]0, 5] for some fixed g, By > 0. We
prove this result here, since it utilizes the techniques developed in this
appendix; it also (partly) explains the reason for Assumption B.1.

Proposition B.20. Let x € C(B(p)) for some p > po with py > 0
fized, and let ¢ be a function such that supp ¢ C R® \ B(vp) for some
v > 1. Then for all K > 1 there exists a constant C'x such that

[¢Hox|l1 < Ck (@) : (B.82)

Proof. We use the representation from Lemma B.3 (with p = —igV
and R, = (o 'p? + a2 +t)7! as usual):

dHyx = qs( - %/Ooo (@ 'pP’+a>+t) ' = t—l)\/idt)x
= qS( - %/Ooo(apo +a?+ t)fl\/idt>x

e /0 " Rfo 't IRV di) (B.83)
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since ¢x = 0. Using that also ¢[a™'p?, x] = 0 (see (B.16)), we have
that (B.83) equals

o(z [ imula xR ar)
= ¢( — %/000 Rio™'p%, [a~1p?, X]]Rf\/z_fdt).

Continuing this way, we arrive at

oHyx
=¢ ((_17T£ /000 Rt[\ailp{ [aipo, [V_ [Oflp2, X] 3 ]]lRiv\/I_fdt)
=¢ ((_2:1 /000 Rqu"’,[q%[--ti,x]...]]lR;Vﬁds) (B.84)

with Ry = (¢> + 1+ s)™", ¢ = —iy/aBV, by the change of variables
s = a?t. To proceed, we prove the following:

Lemma B.21. For all N, with ¢ = —i\/afV:
NP2 = (=ivaB)™ > a(ny) (@) ¢

[nl+|v[=2N
[n|<N

N::q2
(B.85)
for some constants a(n, ), depending also on o and (3, but bounded for
a €10, ap] and B €]0, Bo]-
Proof. Goes by induction: For N = 1, by (B.16):

[, x] = —ivaB(2Vx - ¢ — iv/aBAX)
= (—ivap)» {2 (@) @ + (—ivap) 3?)(}

=1

which is of the form (B.85).
Assume that the formula (B.85) holds for some N. Then

(1A (2 = (—ivaBd)” > am)e% (@X) ¢")

a2 [n|+|y|=2N
(N+1)xq nl<N

Now, an easy computation, using (B.16), yields that

[, (07X) q"]

=3~ {2(-ivaB) @) ad” + (~ivapEt ) ¢}

=1



103

Since |n| 4+ |y| = 2N and |n| < N by the induction hypothesis, this
proves that

1%, [¢% [ - [¢% x] - ]]]

-

-~

(N+1)x¢?

is of the form

(—ivap)™™ Y a@,49) (@7x) "
‘ﬁ|+|‘7\‘<:13g+1)

The lemma now follows by induction. O

We wish to use the following (see Reed and Simon [25, Thm. XI.21 p.
A47):

Lemma B.22. Define
L3®R) = {f | Iflls = (1 +2?)°/f (2) || s2esy < 00 }-

Suppose f,g € L3(R3) for some 6 > 3/2. Then f(z)g(—iV) is a trace
class operator and

1/ ()9 (=)l < csll flsllglls-

Remark B.23. By scaling this means, that for h €0, ho|:

. _3_
1/ (2)g(=ih V)|l < csnoh™> || fllsllglls (B.86)
with csp, = cs(1 + h2)%/?; compare also with Lemma B.4.

Indeed, with § = 3/2 + €, € > 0, we have that (remember that
Il < N)

_ B 1+ q2)3+26q21]
N2 _ 2\6/2 0 N (|2 _ (
lg" R l5 = 11+ ¢7)*"¢" R (|72 msy = /]Rg (+ 1+ s)2N

< 4m(1+ 8)7N+%+26 23—|—2€<1 n /oo (B+ae—2N dt).
1

by the change of variables ¢ = (/1 + s)z (t = |z|). Choosing € < 3/4
(so that § < 9/4) and N > 7, this gives us that

lg"RY NI} < 96v/2m (1 + 5)=N*

In this way, choosing N > 8 and remembering that e < 3/4, using
(3.1), and that ||Rs|| < (1+ s)™" by the spectral theorem, we have, by
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(B.86) that (remember that ¢ = —iy/afV)

[ @envi
0

1

< o(6, a0, o) (VaB) > / VR 107 xllslla" BN l5+/5 ds

0

< o(vas) > ol [+ oy FeY i
0

1+s

< O (vaB) i o7xlls

Remember, that |y| > N and that x € C§°(B(p)), so that, since § <
9/4,

15 _
107xll5 < 1107xlloa = (1 + &) 487 x(2)|| 2y < C p7 ",

and so

/ R(@X) R/ ds|| < C (Vap) i,
0 1

Finally, given K > 1, let N = K + 7 > 8; then the above shows that,
by Lemma B.21 and (B.84),

l6Hox||1
aB)N o .
< 1ol S atn | [T R vads
nl+7|=2N 0 !
[n|<N
C Lps (1\EHTE ®
<€ (vasy (D) <o (V)
o p p
since o €0, aql, B €10, o] and p > py for some fixed «, By, po > 0.
This finishes the proof of the proposition. O

APPENDIX C. REDUCTION TO ASYMPTOTIC POTENTIAL

The aim of this section is to study the reduction to the operator

Hy = +va 'p2+a2—a '+ W(x)

with the potential W (x), being the asymptotic part of the potential V'
as |x| — oo, instead of the full potential V' (x). Concretely, one should
think of

)
Vi(z) = 7l + prrs * x| (C.1)

where prps is the Thomas-Fermi density for an atom with nuclear
charge ¢ (see Lieb and Simon [21]; see also Lieb [19, 20]); one has, that
prFs * |z| ™! is continuous (even at |z| = 0).

The idea of this study is, that when treating the many-body problem,
one starts by eliminating the electron-electron interaction, by replacing
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it by an effective potential (plus an error). This effective potential will
later play the role of V', whereas its asymptotic behaviour will be that
of the Coulomb potential,

J

||’

W(z) = (C.2)
In this thesis we shall only use this analysis on a more trivial case
though, see the proof of Theorem 7.4.

The idea is to show that, under suitable conditions, we can replace
Hy in the trace Tr{v g(Hy)} by the operator Hy,, modulo errors. This
result, and the techniques to obtain it, are closely related to that of
the previous section, when replacing the abstract operator A with the
operator Hy. At the end of this section, we shall put these two results
together, to compare Tr{vy g(A)} with Tr{¢ g(Hw)}.

The general conditions on the two potentials W and V' will be the
following: Assume that both X = |[W|[*/2? and X = |V|'/2 satisfy:

1 Xull* < e(Hou,u) + M(B,€)llull®  forallu € C5°(R*)  (C.3)

for some M = M(f3,¢) and a fixed ¢ €0, 1[. Note, that we can assume
[W|'/2 and |V|'/? to satisfy the above with the same ¢ and M (8, ¢);
we can also assume, without restriction, that M = M(8,¢) > 1. This
means, that both Hy and Hy are bounded from below by —M (g, ¢),
and we can therefore define their Friedrichs-extensions, to get two self
adjoint operators in L?(R?). By abuse of notation, we shall also denote
these two operators by Hy and Hyy .

Secondly, we express, that W is the asymptotic form of V, as |z| —
oo, as follows: We assume, that we have real-valued functions ¥ €
L*([R?), F € LZ(R®) and Y satisfying (C.3), such that, for some
p>0

W(z) =Y (z)¥(x)Y ()
V(z) =Y (2)(¥(z)+ F(z))Y () } for z € B(p). (C4)

Remark C.1. Not, that the potentials V' from (C.1) and W from (C.2)
satisfy this.

The starting point is, as in the last section, to study the resolvents
of the two involved operators, Hy and Hy. To this end, note the
following:

Lemma C.2. For all ¢ € B¥(R®) we have that
¢R(z, Hy) = R(z, Hy)¢ + R(z, Hw) Z:1(¢) R(2, Hy) (C.5)
where

Z,() = [Va I + a2, 6] + F Y. (C.6)
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More generally,

¢R(z, Hy)* = R(z, Hw)* ¢

k
+> " R(z, Hw) Z1(¢)R(z, Hy)* 7+, ¥k € N. (C.7)

j=1

Proof. Note first, that the induction proof of the similar result, Lemma
B.13, does not rely on the exact expression for Z;(¢); this means, that
all we have to prove is (C.5). It suffices to prove, that

(¢u, Hyv) — (Hwu, ¢v) = (u, Z;(¢)v) Vu € D(Hw), v € D(Hy).
This follows from an easy computation. O

Next, let |f|, = supj,<, |f(2)| be the supremums-norm of f € L. (R*)
in the ball of radius p > 0, and let, for F' in (C.4),

K(z,p) = (|2 + M)|F|,. (C8)

Also, throughout this section, we assume that p > p, for some fixed
po > 0. We now prove a result similar to Lemma B.14 of the pair of
operators A and Hy:

Lemma C.3. Let V and W be as defined above, with some p > py.
Then for any function x, with suppx C B(p/2), |x| < 1, and any
integers N > 1 and P > 1:

|X[R(z, Hy) — R(z, Hw)]||

< dﬂ(f(va (1 " %d;@) <§>N

AR N K (2, p)
{( ) dM(z>} Tt (@Y

If k > 14 then for any K > 3
[X[R(&iM, Hy)* — R(£iM, Hw)*]||,

en (o) {(2)” (er50) ()
%(1 + (aM)3)}. (C.10)

_|_

The constants C'y and C'x do not depend on V, W, x or p.

Proof. The idea of the proof is very reminiscent of that of Lemma B.14:
Choose a monotone function 7 € C§°(R), |n| < 1, such that

_ L <3
77(75)—{0, |t‘21 .
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|

Letting x;(z) = 77(7) and ¢ =1 — x;, we have, that

X[R(Zv HV)k - R(Z, HW)k]

= x[x1R(z, Hv)* — R(z, Hw)*x1] — xR(z, Hw)"¢
(C.11)

since xY; = 1 on supp x. This means that we have to prove the bounds
(C.9) (with & =1) and (C.10) for the operators

Ty = x[x1R(z, Hv)* — R(z, Hw )" x1]
T2 == XR(Za HW)k¢

The estimate (C.10) is satisfied by the operator 75, due to Lemma B.8
(with z = +iM), since dist{supp x,supp ¢} > gp. (Note, that Lemma
B.8 did not use the form of the potential W, only that it satisfies the
condition (C.3)).

As for the operator 77, we use the same idea as in the proof of Lemma
B.14, namely to apply the ‘resolvent identity’ (C.7), to get the identity

k
T, = ZTl(j)
j=1
Tl(j) = xR(z, HW)jZl(Xl)R(z, Hv)k_j+1 , j=1,...k,
with

Zi(x1) = [Va P2 + a2, 1] + o FY>.

Let xo(7) = 77(%)- Then x1x2 = X1, and so

1T 9|y

= |[IxR(z, Hw)j {[ a lp? + a7 x| + X1X2FY2} R(z, Hv)k_j+1||1

< IXR(z, Hw)' [V a~'p? + a2, xa] R(z, Hy)* 7|,

+ |[XR(z, Hw ) x1 FY x2Y R(z, Hy )* 7. (C.12)
For j < k/2, we have that kK — j > 6, since k > 14, and using (3.1),
|XR(z, Hw ) x1FY x2Y R(z, Hy)* 7|
< IXR(z, Hw ) xa FY || [[Y X2 R(2, Hy)* 7.

The last factor is (with z = +iM), by Lemma B.12 (since k — j > 6
and the function Y satisfies (C.3)), bounded by

€ M+ (ﬁ)g) ()



108
The first factor is, by Lemma B.6, bounded by (recall that z = +iM)
|R(z, Hw)'x:Y || - ( sup [F(z)| )

TESUPP X1

< [|R(z, Hw) IR (z, Hw)x: Y[ [F,

< CM M3 |F|,=CM*3|F|,
All in all, recalling (C.8):

K(z,p) = (lz| + M)|F|,
we get, that for j < k/2, the last term in (C.12) is bounded by

CM™* ) IFl,(1+ (aM)?)

(e

_ —k p SK(OaP) aM)?
=CM (\/&ﬂ) Ji (1+ (aM)?). (C.13)

For j > k/2, we have that j — 1 > 6 (still, since £ > 14) and by (3.1)
IXR(z, Hw ) x1 FY? X2 R(z, Hy)* 7+,
< |IXR(z, Hw) i FY |[i[|Y x2R (2, Hy ¥+

and using the same procedure as above (now with Lemma B.12 on the
first factor, since j — 1 > 6) we get, that the last term in (C.12) is
bounded by the expression in (C.13) for all j =1,... k.
As for the first term in (C.12):
XR(Z: HW)J[ a_1p2 + a/_Qa XI]R(Z? HV)k_j+1
1 .
= XR(Z, Hw)J |:- / RtCIRt\/% dt:| R(Z, Hv)k_]_H
0

T
with C; = [a~!p?, x1]. By a computation similar to that for the term

|1 .
XR(z, Hy)’ [— / RtClRt\/Edt] R(z, Akt
0

™

in the proof of Lemma B.14 (see (B.64), (B.65), and (B.68)), we get
that (for all K >3 and P > 1)

IXR(z, Hw ) [v/ o 1p? + =2, x1]R(z, Hv )" 7t

< (1 Jemm) () ()
2 1/2 of
- {<(‘ |d;?4)) ) " z)} |Imtz)|k
1

o () () (o553 -3
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This is due to the fact that both
|R(z, A)|| < |Im(z)|""  and ||R(z, Hy)|| < |Im(2)|"".
This means, that

IX[R(£iM, Hy)* — R(£iM, Hy

<o () 1) (

+

)¢ ||1
) (i)
K (0, p)

i (H(aM))}

which proves the bound (C.10).
As for the bound (C.9), we have from (C.11) (with £ = 1) and (C.5)
in Lemma C.2, that

IX[R(z, Hy) — R(z, Hw)]||
<lIxbxaR(z, Hv) = R(z, Hw) x|l + |x2(z, Hw) ||
< [[xR(z, Hw)[Va='p? + a2, xa] R(z, Hy )|
+ IxR(z, Hw)oll + [[xR(z, Hw)x1 FY?R(z, Hy)|.

By using the estimate (B.9) from Lemma B.2, we get, for any N > 1
and P > 1, that

IxR(z, Hw)oll < C dMl(z) (S) N { (%)N " df;;) }

whereas using Lemma B.6 twice (with x1x2 = x1 as before)
IXR(z, Hw)x1FY?R(z, Hy)||
< IxR(z, Hw)xaY|[ [F, Ix2Y R(z, Hy)||

(2| + M )2 (2] + M )2
Y O R
1

A computation like the one in the proof of Lemma B.14 (see (B.63),
(B.64), (B.65) and (B.68)) shows that (for any N > 1 and P > 1)

IXE(z, Hw)[v o 'p* + a2, xa]R(z, Hy) |

< (1 ! %d;(z)) <§>N { <( |Z|d;?j>)l/2>zv ! di@) } |

the essential difference being the same as that that accounts for the
factor (fﬁ) lacking in the estimate (B.9), compared to (B.7) (see the

proof of Lemma B.2), namely the use of Lemma B.4 in the latter. Also,
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we use that we have ||R(z, Hy)|| < (da(2))™!, whereas in Lemma B.14
we used ||R(z,A)|| < |Im(z)|~'. This means that

| X[~ Bv) = Rz, )]
= dMCE@ (1 " \}ad;(z)])v (9
() i) ¢ e

This proves the bound (C.9), and thereby the lemma. O

We now continue, as when studying the passage from Hy to A, with
a result on differences of functions on Hy and Hy,. The assumptions
are as for Lemma C.2, that is, the potentials V' and W have the form
(C.4), with the function Y satisfying (C.3). Also, p > py. We then
have the following:

Theorem C.4. Let g € C®(R) satisfy g(A) = 0 for A > Ay and that
for some s > 0,L > Ly > 0 we have

10"g(N)| < C L™\’ , VneN (C.14)

(here, (\) = (1 + |A[?)Y2). Let x be any function such that supp x C
B(p/2), |x| < 1. Then, for any N > 1:

Ix[g(Hy) — g(Hw)]|

< CLN+3M5+1

1 (VM
va \ p

with K(0,p) = M |F|, = M sup, <, |F(z)|. The constants Cy do not
depend on V nor x.

) FK(0,p)|  (C.15)

Proof. This will go very much as the proof of Theorem B.18. The idea is
to use the representation (B.71), and estimate the resulting differences
in resolvents by Lemma C.3.

More precisely, letting A € R and 0 < |7| < 1, denote (as in the
proof of Theorem B.18)

d(\,7) = R(A+ir, Hy) — R(A + i, Hy).

Now using Lemma C.3 (and remembering, that 0 < |7| < 1 < M, so
|z| + M < |A| 4+ 2M, and that o < «g), we have, for any N > 1 and
any P > 1, that

16(A, ]

e[ O {2 o]

for all A € R. (C.16)
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As in Theorem B.18, we have to modify the function g, since this not
of compact support, in order to use the representation (B.71). The
difference will be, that in this case, both the operators in question
have the same lower bound, namely —M. Let therefore ( € C*(R)
be the function introduced in the proof of Theorem B.18: A monotone
function such that ((t) = 0,t < —2 and ((¢) = 1,¢ > —3/2. Define
then g € C$°(R®) by g(A) = ((A\/M)g(\). Then, since Hy, Hy > —M
by (C.3), we have, by the spectral theorem, that §(Hy) = g(Hy) and
§(Hw) = g(Hw). Because of (C.14) we have, that

0"g(N)| < CuL™(N)* , VneN, (C.17)

again, as in the proof of Theorem B.18, with constants C, depending
on the Cj’s, Ly, and the derivatives of ( but not on M; here we used
that L > Ly and M > 1. Using now (B.71), we get that

g(Hy) — §(Hw) = If )+I( n) Vn € N, with

= / ) Tm [#5(, 1)] dA

7=0

1 1

IV =——— [ 7 Ydr [ 8§\ Im [i"6(\, 7)] dA
W(n—l)!/OT TfRag()m[z (A, 7)]

where the integration in A in fact only takes places over the interval

[-2M, Ao]. Choose n = N + 3, then, using the estimates (C.16) and
(C.17), we have, that (remember, that |7| =1 in this integral)

IxI™|
N+2 s Ao L é N % P
< vy /2M [\/a (p) (A +20)% + )—l—K(A,p)] dx
< C LN M %(@) + K(0, p)

Here we used, that |A| < C(\g) M on the interval [-2M, X\y], and there-
fore K(\, p) < CK(0,)); also, L > Ly and a < ap. Similarly,

el SCLN”MS{/;dr/ZO [ia <§>N(|)\|+M)J¥)] i)
+/OITNdT/ZM [% (%) m+K(A ,0)] oy

N
< C LN Mt % (@) + K (0, p)
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Together with the bound on yI™, this proves the bound (C.15) and
so the lemma. O

This result will help us estimate the trace norm of the difference
g(Hy)—g(Hw). The idea is to pass the problem to one (in trace norm)
on differences of powers of resolvents, and one (in operator norm) on
the difference with some auxiliary function, g, instead of g¢; see also
Lemma B.10 and Lemma B.16.

Theorem C.5. Let the potentials V and W have the form (C.4), with
the function Y satisfying (C.3). Let g € C*(R) satisfy g(A) = 0 for
A > Ao and that for some s > 0,L > Ly > 0 we have

0"g(\)| < C,L™(A\)* , VneN (C.18)
(here, (\) = (1 + |A?)'/2). Let x be any function such that supp x C
B(p/2), |x| < 1. Then, for any K >3

Ix[g(Hv) = g(Hw)] x|, < Cx LF+20re+t (ﬁ)

e (@) LK) | (1 @M)).

(C.19)
The constants Cx do not depend on V., W or x.
Proof. As said, the idea is to define some auxiliary function: Denote
g\ = (A —iM)kg()) , k> 14.
Then, with z = 1M,

9(Hy) — g(Hw) = R(z, Hy)*§(Hy) — R(z, Hw)*§(Hw)
= [R(z, Hv)k — R(z, HW)k]g(HV)
+ R(z, Hw)"*[§(Hv) — §(Hw)],

so that, by (3.1),

Ix[g(Hv) — g(Hw)] x|, < lIx[R(z, Hv)" — R(z, Hw)*]|l1[|g(Hv)x|
+ [IxR(z, Hw )* |1 [g(Hv) — g(Hw)]x]|-
(C.20)

Note, that since z = iM and K(z,A) = (|z| + M )|F|,, we have that
K(z,p) < 2K(0,p). Since k > 14, using (C.10) from Lemma C.3 we
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get, for all K > 3 and all P > 1 the estimate
Ix[R(z, Hv)* — R(z, Hw)*]|Ix

o (i) L 0) (e (- 35)

Now, by the spectral theorem,
19(Hv)I| < [ flloo
for
fO) = (A —iM)fg(N), A€M,

since Hy > —M and ¢g(A\) = 0 for A > Xq. Since |[g(\)| < C,L™(N\)*
and M > 1, we have, that ||f]jec < C M*t* and so the first term in
(C.20) is bounded by

o () {0 (e 5) 0+ k)

3
< CL2K+3MS—|—1 < P )
B Vap

X {% (@) +K(0,p)}(1 + (aM)?) (C.21)

since M > 1, L > Ly, and o < . Next, using Lemma B.9 (since
k > 14), we get the estimate

IRz, Hy)* s < C M (ﬁ) (1+@vy).  ©2)

Now, remember, that §(A\) = (A — iM)¥g()\) with the function g satis-
fying |g(A\)| < C,L™())°. This means, that

g\ < C, L™\ , VneN

with § = s+k. In this way, using Theorem C.4 on the function § (with
N = 2K), the last factor in the last term in (C.20) gets bounded as
follows:

I[g(Hv) = §(Hw)]x|| < C LM [1 (@

NG P ) + K (0, p)
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and so, using (C.22), the last term in (C.20) gets bounded by (remem-
ber, that § = s + k)

O LK+ ot (ﬁ)g {% (@) +K(0,p)} (1 + (aM)3).

Together with the bound (C.21) this proves the theorem. O
We now combine the results of Theorem B.18 and Theorem C.5 into

a result relating Tr{vy g(A)} and Tr{v g(Hyw )} for the particular case
of the functions g,:

Theorem C.6. Suppose the operator A satisfies Assumption B.1 with
D = B(4p), p > po, and a potential V, along with the potential W
having the form (C.4), with the function Y satisfying (C.3). Assume
furthermore, that the function x satisfies suppx C B(r/2), |x| < 1,
for some r such that p > r > po. Let for s € [0,1]:

A A<0
s(\) = C.23
9s(A) {0 A0 (C.23)

and Ly > 2 be some fixed number. Then, for any L > Ly and K > 3
we have

1x[95(A) = gs(Hw)] x|,

3
< Oy LHEH3 o1 <—p ) (1+(aM)3)
(0%

The constants Ck,1 and Ck do not depend on the potentials V' and
W, nor on the the function x.

Proof. The idea is to ‘cut away’ the singularity of g, around zero (see
(C.23)), at distance ~ 1/L, by splitting g in a sum of two functions,
estimating the contributions from the two individually.

To this end, let ¢ € C§°(R), |¢] < 1, be a non-negative function such
that

Denote
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and

g (N = g, (V) (1= ¢(LN)

so that g, = ¢V + ¢g@_ Tt is clear, that ¢ € C*, since ¢ (\) = 0 for
|A| <1/2L. Also,

"¢ P (\)| < C,L™(\)*  VneN

(here, (\) = (1 + |A|?)'/2) by the definition of g, and since L > L
(we get at most a factor of L™, in the case when all derivatives fall on
¢(LA)).

Since suppx C B(r/2) € B(p/2) (as p > r), the conditions of
Theorems B.18 and C.5 are satisfied (with the function ¢(®), and these
two theorems give us that

Ix[9@(A4) — @ (Hw)] x|, < [|x[¢P(A) — ¢®@(Hv)] x|,
+ [|x[¢® (Hv) — ¢ (Hw)] x|,

3
< Oy LHEH3 s+ <ﬁ> (1 i (aM)3)

1L (pvM
Va\
To treat the part with ¢(!, that is, around the singularity of g, note
that, with L > Ly > 2,

CLAC(A) =C(LA)  VAeR,
and so, by the spectral theorem and (3.1), with T'= A, Hy,

Ixg™ (T)xlh = lIxgs (DICET)xllh = lIxgs(T)S(LT)C(T) x|
< lIxgs (A)C(LD) | xS (D]

Since, by construction,
195 (A)C(LA) |0 < C L7,

Lemma B.10 and Lemma B.16 give us (since ( € C§°(R)), that (re-
member, that supp x C B(r/2))

Ix(9®(4) = ¢ (Hw))xlh < € L7 (I(A) I + xS (Hw))ll )

<CL™® (\/;ﬁf) (1 + (aM)? + % (g)w) .
(C.26)

Note, that the constants in Lemma B.10 and Lemma B.16 depend on
the length of the support of the involved function (here, (), which is
why we assume a lower bound on L.

) + K(0,p) (C.25)
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The bounds (C.25) and (C.26 ) now establish the bound of the the-
orem, since g, = ¢(V) + ¢, O

APPENDIX D. AN A PRIORI ESTIMATE

In this appendix we prove results analogous to those in appendix B.
The difference is that results in this appendix will be uniform in « €
10, ap]. The price is that we do not get as good a behaviour in £.

Throughout this appendix, x and ¢ will denote functions satisfying
the condition (B.6):

suppx C B(p), 0<|x[<1
suppp C R\ B(vp), 0<[g| <1

for some p > pp and v > 1. Note that (as in appendix B) we do not
assume anything on the regularity of either x or ¢.
We start with an analogue of Lemma B.2:

Lemma D.1. There exist constants C1 and Cy such that for all X >
C]_.'

IXR(z, H)$lls < Cof2A72(1 4 (@X)*?)g(A, 2)" (D.1)
with

A Vv (Re(2) + N2+ (Im(z))2 }
2|’ | Tm(2)| '

Proof. The theme of the proof will be the following: for four functions,
F, = Fi(p,p) and Fy, = Fy(p,p) forp € R® and p € R, and (, £ €
C§°(R3), we have by using (3.2):

|ABllx < ||All2]|B|l2

g\, z) = max{

and Lemma B.4:

1f1(2) f2(=iV)[l2 < @m) || full ooy | foll 22y
and the Cauchy-Schwarz inequality:

/gl(u)gz(u) du < (/gl(ﬂ)Q dﬂ>1/2(/gg(u)2 du>1/2
that:

JIF (69, e @ =69 )] d
< n8)® [ 130 )t I I e | s 1)
< @n8) Ol €]

1/2 1/2
< ([ W) oy ) ([ 1Fslo. i0lByy i)
(D.2)
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Remark D.2. We shall use the inequality (D.2) numerous times, for
various choices of the functions F; and F5. When we do so, we will
always bound the L?—norm of the corresponding functions ¢ and £ by
constants. We here note that the analysis that follows will indicate that
we can in fact gain any power of A (paying in powers of the function
g) and any power of 5. We shall due to time pressure not pursue this
further — here, we will bound all gain of 3’s by a constant, due to the
fact that 3 €]0, Go).

We start by taking a function x; € C2°(R?) such that xx; = x and
X1¢ = 0. Then, by (B.12),

XR(Z> H)¢ = XR(Z’ H) [HOa Xl] R(Z’ H)¢

The idea of the proof is to keep in mind the ‘classical’ case with kinetic
energy p°, and separate off the terms that will be purely relativistic.
For instance, in the case of p? we have that [p2, Xl}(ﬁ = 0 as seen by
(B.16) whereas we have from the above that

XR(z, H)¢ = xR(z, H)[Ho, [Ho, x1]] R(2, H)¢
+ xR(z, H)*[Ho, x1] ¢. (D.3)
The last term will turn out to be bounded in trace norm, with a bound
tending to zero as a — 0; think of this as refinding the ‘classical’ result
mentioned above in the limit oo — 0.

Repeating to commute the (multiple) commutator in the first term
in (D.3) to the right, we arrive at

XR(z, H)$ = XR(z H)" [Ho, [Ho, ..., [Ho, 1] ... ]| R(z H)

-~

nX Hg
n—1
+ > XR(z, HY ™ [Hy, [Ho, .., [Ho, xi] .. ]| 6. (D.4)
7=l j>:;fo

To get rid of the potential V' in R(z, H), in order to get a function
purely of p (to use (D.2)), we note the following:

Lemma D.3. For all m > 1 there exist constants C(V,m), a(V,m)
and b(V,m) and operators A,, and B, such that for all A > C(V,m):

R(z,H)™ = Ap(Ho+ AN = (Ho+ \)"" B, (D.5)
with
[Anll < a(Vim)g(A,2)™ . ||Bull < b(V,m)g(A, 2)™,

where

_ A V(Re(z) + )2 + (Im(z))?
g()\,z)—max{ m, () }

Remark D.4. We note that g(\, z) > 1.
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Proof. We have, for A to be specified, that
R(z,H)"=(H—-2z)""™H+\N™H+X\™™

Since H is self adjoint, we have by the spectral theorem that

z+ A"
T —z

I(H —2)~"(H + A)™| < sup

>0

g(A, 2)™ (D.6)

with

A V(Re(z) + A)? + (Im(2))? }

o(%,2) = max{ 7. Tm(?)|

Next, note that
(H+N"=(Ho+N+V)"= > (Ho+\V*Hy+ \)
Jj+k+l=m
and so formally

H+N "= (3 (Hor AV H+N)

- ((H0 R ST (Ho+ A ™VR(Hy + A)l) B

= (14 D (Ho+ ) F(Ho+ ) VEH + N (Hy+X)

j+k+i=m
j#m
(D.7)

Remark D.5. Note that there are 2 ! — 1 terms in the sum. Also, for
k#0, [(Ho+N)7*|| < 1/|A%.

We wish to study the operator
(Ho + \)"'VF(Hy + M)
To this end, we write this in Fourier space: with

ho(p) = Va p?+ a2 — a !

we have that

(Ho + \) ™'V (Ho + w} () = (ho(p) + N7 (VE(Ho + X)) (p)

p)+ 07 ((VF) * (Ho + 1)) (9)
(

=/ (p— q)(zz(]q) ) W(q) d’ (D.8)
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Note that

ho (p) =

(Va P tat-a)(Ja @ ral+al)

( a 'p?+a %+ 04—1)

P’ 2
= —— < p°/2. D.9
Vor 141 (09
Now, for |g| > 2|p|:
2
(@) @2 _,
1+p—ql> = 1+¢*/4 7
and so, for A > 1 (and |q| > 2|p|):
ho(g) < 2(1+Ip—gI*) < 2(1+ [p — ¢/*) (ho(p) + )
= ho(q) + A <31+ [p— q*)(ho(p) + A). (D.10)
On the other hand, for |¢| < 2|p|, using (D.9):
holg) _ Vo' +a?—a™" _ lg| Va+1/lpP+1/lp| _
ho() a'pPP+al-al ol \/a+1/|‘J\2+1/|‘1‘

which means that for A > 1 (and |¢| < 2|p|):
ho(g) + A < 4(ho(p) +A) < 4(1+ |p — af*) (ho(p) + A).-
Together with (D.10) this means that

ho(q) + A
1T 2y VYpgeR, VA> 1.
ho(p) + A pnd =

That is, with (z) = (1 + 22)'/2:

(1+|p—gq”)”

(p- )”( E;i;)f‘ﬂ VpgeR® VA>1.  (D.11)

We now go back to (D.8). Let first
Via(p) = ()" (V) (p)-

Since V € C§°(R®), we have that Vi, € L'(R3), as the Fourier trans-

form VF is a Schwartz - function. Then, using (D.8), (D.11) and the
Hausdorff - Young inequality, we get that for all A > 1:

H[ Hy + \)"WE(Hy + \) wy (Rg)

=/‘/(V’“)(p—q )l d3q‘2d3p
SSl/</‘<P—Q>21 (Vk)(P—CI)‘ lﬁ(Q)‘d?’Q)Qd?’p

=8| [Vl [0 <8 (| Va3 sy - 101020

L2(R3)
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By Plancherel’s theorem this means that for all A > 1:

(Ho + X) V(o + M| < VE (| Vi (D.12)

R3)

We return to (D.7). By the estimate (D.12) and Remark D.5, there
exists a constant C' = C(m, V) > 1 such that for all A > C'(m,V) > 1:

> (Ho+ N 7H(Ho + \)TVEH + A

j+k+l=m
j#m
1
< By > H(HO + A) "V Hy +)\)1H < 1.
sHigtom

This justifies the manipulation (D.7) for A > C(m, V') and shows that
there exist constants a(V, m) such that

VA>C(m,V): (H+XN)=A,(Ho+ A", | Au] < a(V,m).

Together with the estimate (D.6) this proves the first half of the lemma.
The second half follows by an analogous proof. O

We now return to the proof of Lemma D.1. We will use Lemma D.3
on all factors of R(z, H) in all the terms of the decomposition in (D.4).
By Remark D.4, this will give us a common factor of g(), z)"*!, with

A V(Re(2) + A2 + (Im(z))?
g()\,z):max{ — () }

2]
for A > C, for some Cs. Recall next the formula (B.13):

1 o0
[Ho, x1] = - / (ap® + 1487 [P xa] (ap® + 1+ t) et
0

Using this repeatedly, together with the formula (B.14):
[R(:,T),%] = —R(z, T)[T, 9] [R(z,T)
we get (omitting all factors of 1/7 and signs from now on) that

[Ho, [Ho, . . -;[Ho, xi]-- -]

- -

kx Hg

:/0”.../0“’[_

k
Jj=

(op? +1+1;)7 | [p% [ [P - 1]

1 W

kxp?
k k
X [I_I(Ozp2 +1+ tj)_l] 114 dt.
7j=1 Jj=1

From now on we will omit the multiple integral sign and just write fooo
meaning integration over [0,c0[ in all variables ¢;. Recall also, from
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Lemma B.21, that with p = —iV:

Pl od = (=0 3 ety @x) e (D13)

7
[nl+|v|=2N
[n|<N

N xp?

Note that by a proof analogous to that of Lemma B.21, a similar for-
mula with all the p’s to the left holds.
We are now ready to embark on estimating each term in (D.4) in
trace norm, || - |[;. We will let n = 6.
Firstly, by the discussion above, what we need to estimate for the
first term in (D.4):
S; = xR(z, H)GLHO, [Ho,...,[Ho,x1]--.]] R(z, H)o

vy

-~

6><H0

is the trace norm of operators of the form

o k
@ =/O (Ho+\)~° [jl;[l(ozp2 +1+ tj)‘l}pm”xl

[Hap +1+1;) }HOJF/\ Hfdt (D.14)

with |y| < 6 and |y + n| = 12. Using the inequality from (D.2) with

k
Fy = (Hy+\)~ [Hap+1+t ]p,
j=1

Fy= [ﬁ(ap2 +1+ tj)*l} (Ho+ )"

=1

and

6
du =]/ dt;
7j=1

(and writing 0"x; as a product of two functions ¢ and &) we get that

1Q1l: < C (278)~°

{/ooo/ﬂasdgp(HoJ”\)_u[ﬁ(ap +1+1;) ] %\Hfdt } )

j=1

x{/ooo/R3d3p ﬁap +1+1t;) ](Ho-i—)\ Hfdt}/Q.

= (D.15)
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Let us estimate each of the factors above individually:

/ /des (Ho+ ) 12[f[ (ap® +1+1t;) } 2|A"l_[\fdt
:/Rgd?’p[(Ho—F)\ - 2|7|/Oo[f[ap +1+1;) }H\th]

= ¢ / dp [(Ho + )" (ap® + 1)_3]
R3
with ¢g = [;°(1 4 t)"2V/tdt, by perfoming the t;,—integrations by the
change of variables t; = (ap® + 1)s;.
Now, by (B.29), with ¢ = /2 — 1,

2 _ cy, y=>1
Vy2+1 12{ e, yel0,1] (D.16)

and so, for ap? < 1:

Q a 1
Hy+ M\t = < =
(Ho + ) Vopr+1—1+a) ~ cap*+aX  cp*+ A

(think of the RHS as (the constant 1/c times) the ‘classical’ resolvent
of p* at —\/c), whereas for ap? > 1:

(D.17)

o o
Hy+ )\ 1= < . D.18
(Ho ) VapP+1—14a)\ ~ c/ap+al ( )
This means that
/ > d*p (Hy + )\)_12p2|"|(a102 +1)73
ap?<
2[7| d%
< d3p7a2+1‘3<0/720)\—9/2,
N /ap2<1 P (cp® + /\)12( P )< g3 (cp? + A)8

since |y| < 6, and that

/ dp (Ho + X) 25?7 (ap? + 1)
ap?>1

a2~ (ap?)1
= d; 2 1 1) < Cap)a’?
N /ap2>1 P (ev/ap + a))!? (ap” +1)7" < Ca)a

since |y| < 6 and « €]0,ag]. In this way the first factor in (D.15) is
bounded by

C ()\79/2 + a9/2)1/2.



123
For the second factor we have that
/ /d3p [[(ep* +1+1;)" }H0+A Hfdt
R3
j=1

_ /]R & (Hy+ X)2(ap® + 1)

by performing the ¢;—integrals as before. Using (D.17) and (D.18) we
have that

/ d*p (Hy + \)%(ap®> +1)73
ap?<1

< d'p

— 2 _(ap?+ 1)< CON?
< e e+ 07 s

and that

/ @ (Hy+ \)2(ap? + 1)
ap?>1

= /ap2>1 dp m(aﬁ +1)7? < C Ve
This means that the last factor in (D.15) is bounded by
C (A2 +a'/?)?
and so
Qi < C B3 (A% + a9/2)1/2(xl/2 n a1/2)1/2

< CBENP2(1+ (aN)?). (D.19)
Look now at the term
SQ = XR(Z, H)6LH0, [H(), ey [H07X1] .. ]ld)
5x Ho

In the ‘classical’ case, with kinetic energy p?, this term would have
been zero:

xR(z,p* + V)GLpQ, p% ... % xa] - - ]]lqﬁ =0.

~
5xp?

By Lemma D.1 we need to estimate the trace norm of the operator

5

Q= [ o+ 0 *[T[er +1+4) ] Ll )

=1

5Xxp2

x[ﬁap +1+t)) ]qufdt
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The idea is that commuting the function ¢ to the left, through the
product H?Zl(ozp2 +1+t;)~", we gain powers of «, using the fact that

W% - I xal Dl ¢ = 0.

~
5xp?

More precisely, with T; = (ap? + 1 +¢;)~*

5
w1 [ [p xil M J(ep® +1+4) "¢
5xp j=1

= [... | LG T3¢
=[..] {:/1:/12:r3:r4 [Ts, 6] + T Ty T3 [Ty, 6] Ts + TV Ty [T, 6] TuTs
+ T4 [Ty, ) 5TV Ts + [T, 6] T2T3T4T5}
=.. .]{T1T2T3T4T5 [op?, 8| Ts + T\ T T5 Ty [ap?, ¢ Ty Ts
+ TV Ty [ap?, 6| TsTiTs + Ty Ta[op?, | Ty T3 TiTs
+ Ty [ap?, 6| YT TS T4 T } .

Now, also [...] - [ap? ¢] =
(with [2] = [ap2, [ap2,¢”):

0 (see (B.16)) and so the above equals

[ {T1T2T3T4T5[ 2|T2 + TV TyTsTy[ 2 | TyTZ + Ty ToTs[ 2 | Ts T, T2
+ TV [ 2 LTT T2 + Ty 2 WL TE + T T 3Ty 2 1T Ts
+ T\ Ty Ts[ 2 | T5T2Ts + Ty Ty 2 |ToTsT2Ts + T [ 2 | TV T TsT 2T
+ TV Ts| 2 |T2Ty Ty + Ty T | 2 | ToTETyTs + Th[ 2 | TV T T2T4 T
+ TV 2 T2 Ts + Ti| 2 1T T2T3 T Ts + T 2 ]TfT2T3T4T5}.
(D.20)

Using (D.13) we get that

5
INLTT[ 2]T2) < Ca [ +t) "

=1
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and using (3.1) this gives us that

I(Ho + 2 [ TI L[ B BT 2 1720,

=1

< CozH(Ho—i-/\) HT]

_ C’aH(H(ﬂ—/\)_G-HTj} (... T5ﬁ 1+t
=1 j=1

Here,

() =PI Pl ]

[2] = [ep®, [ap?, ¢]]

Recalling the formula (D.13), we need to estimate the trace norm of
terms of the form

5 5

Ry =(Ho+A)° [HTJ] I"x1p" T H(1 +)7

Jj=1 Jj=1

with |y| <5 and |+ | = 10. Letting

5
Fy=(Ho+ A [ J(ap® + 1+ 1) 7'p7,
j=1

5
B=(ap’+1+t;)" ] +1)™

7j=1
5
du =[] v/t dt;
j=1

we therefore get, by (D.2), that

||l < € (278) " ax

L ool

j=1
1/2

X {Amésd%(ap2+1+t5)2f[(1+tj)2\/tjdtj} . (D.21)
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Now, for the second factor,

o' {/ / d (ap® +1+t5)72
0 R3 .

1/2
(1 +t)2VG dtj}
Vi

<o {/3 dp (ap® + 1)—2}1/2{ /00(1 +t)‘2\/£dt}1/2 < Callt
) 0 (D.22)

5

1

As previously, performing the t;—integrals, the first factor in (D.21)
becomes (remember that T; = (ap® + 1+ ¢;)7!)

0 5 5
/ / dp (Ho + )" [H TJ] " [ Vi dt;
0 R3 j=1 j=1

= ¢,° /3 dp (Hy 4+ \) " 2p? " (ap? +1)7%/2, (D.23)
R

still with ¢g = [~ (1 +t)72v/tdt. Using (D.17) and (D.18), we have
(since |y| < 5) that

/ d (Ho + X) 25?7 (ap? + 1)
ap?<1

<C / _dp iy
re (

cp? + )8
and
/ d* (Hy + )\)_12p2|7|(04p2 + 1)_5/2
ap?>1
</ d% P2\7\ (ozp2+ 1)75/2 < Coll/2
- ap?>1 (ail(c\/ap + OA)\))H N
In this way,

(D.23) < CX2(1 + (aN)?)
and so, using (D.22) above,
| Ralls < C B2 A4 (1 + (a))°)
<CB3NP2(1+ (aN)?).

The same estimate can be proved in a similar way for the other 12
terms in (D.20), and so

1Q2lls < CB2AT2(1 4 (aN)*/?).
An analysis similar to the above for the terms (see (D.4))
XR(Z, H)j+1LH0,[H0,... s [H(),Xl]]l¢ s ] = 2,3,4,

-~

JXHo

1/2
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leads to the same estimate. We note that the difference is the number
of resolvents in front. In order to compensate for a lower power of
resolvents (and therefore of \), we need to gain more a’s and therefore
commutate more times in the analysis analogous to (D.20).

Finally, look at the last term in (D.4):

xR(z, H)2 [Ho, X1]¢

= xR(z, H)? /Ooo(ozp2 +14+¢)71 [pQ, Xl] (ap? +1+1t) T/t dt.

As mentioned, for the ‘classical’ case of the kinetic energy being p? we
have:

xR(z,p* + V)2 [p*, x1]¢ =0

— we wish to commute ¢ through the operator (ap?+1+t)~! above and
use that [p?, X1]¢ = 0. Doing this repeatedly, we have (using (B.14))
that

XR(Z H)2 HOaXl}
= xR(z, H) /ap +1+0)7 % xa](ap® +1+8)7"

[apQ, [ .. [ap® ,Xl] ...]l(apQ +1+t) Vet

-

~~
kxap?

By Lemma D.3, we need to estimate the trace norm of the operator

Qs = (Hy + )\)72 /(o:pQ +1+0)7' P’ xa](ap® +1+¢8)7"

Iap2, [ - Jap?, Xl] . .HJ(CVpZ + 1+ t)7 Ve dt.

~
kxap?

Now, by (D.13),

||L[ap2, [ . [apQ,Xl] . .”J(osz +14+8)7"

Ic><‘;p2
< (VaB)" 3 lalm )10l (vap) " (ap® + 1+ ) 7|
In\TI|7<|k=2k

<C(vVaB)"(1+1)
and so, using (D.2) with (see also (B.16))
Fi= (Hy+ N "2ap®* +1+8)p (1 +1)7*4
Fy=(ap® +14+1) (1 +1) ¥4
dp = +tdt
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we get that
1Qsll < € (278) (V)"

o0 1/2
X { / /3 d*p (Hy +N)"*p* (ap® + 1+ 1) %p? (1 + t)_k/Z\/fdt}
o Jr

2

o 1/
X {/ / d® (ap2+1+t)’2(1+t)’k/2\/idt} )
0o Jrs
Now,

/ / &p (ap? + 1+ )21 +t) ¥Vt dt

0o Jms

< <a3/2/ &y (q2+1)2)/ (1+1) "2/tdt < C a2
R3

0
and

/ / @ (Ho + N~ ap? + 1+ 1) 2p2(1 + 1) *2V/idt
0 R3

< (/ d’p (H0+)\)_4(ap2+1)_2p2)/ (14 t)7*2V/t dt.
R3 0
As before,

o dp _
d* (Hy + \)* 2+1+t22<0/ = =C )\
/ b (Ho+ A) (ap e P :

and

[ b (Hs N dap < 140
ap?>1
4 dp

<a4/ p 21 1)2 < O o2

- ap2>1 (CV/op + oz)\)4(ap ) <Ca
This leads to the estimate

1Qsll: < €57 (Va) (A2 4 a¥/2) P/

< C B3N (1 + (@N)?).

In this way,
IXR(z, H)lls < C B3N (1 + (@))*/?)g(A, 2)”

with

B A V(Re(z) + A2 + (Im(z))?
g()\,z)—max{ m, () }

This finishes the proof of the lemma. O

Remark D.6. In fact this analysis takes us even further. Noting that
the factor A%/ stems from the occurence of the highest power of resol-
vents in the decomposition (D.4), we see that commuting even further
(i. e., taking n > 6), we can in fact prove the estimate (D.1) with any
negative power of A\. We have chosen the power —5/2 in order to get
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integrability in the proof of Theorem D.12. Also, by the formula (B.16)
we see that we by the procedure of the proof (taking more and more
commutators) could gain any power of ; see Remark D.2.

We next note that we can prove a similar estimate for the operator
xR(z, H) po:
Lemma D.7. With x and ¢ as before we have
IXR(z, H) pgll1 < C B72A (1 + (aX)?)g(), 2)° (D-24)
with

A V(Re(z) + 1) + (Im(2))? }
||’ [ Tm(z)] '

Proof. Choosing the function y; as in the proof of Lemma D.1, we note
that, analogously to (D.4), we have the decomposition

XR(Z> H)p(ﬁ = XR(Z> H)nLHOa [Ho, . -;[HOa Xl] .- ]lR(Za H)p¢

nx Hyp

g()\, z) = max {

n—1
+ Z XR(Z: H)j+1 LHOa [H()a ey [HOa Xl] fee ]Jp(b

-~

JjxHo

- (D.25)

To bound the terms of the last sum in (D.25), we refer to the proof of
Lemma D.1: here, compared to that proof, we need to bound another
power of p. Commuting once more like (D.20) will gain another power
of @ and a factor of (ap?+1+t;)~" for some j. (Here we use that pg =
¢p — iV ). This is enough to bound the p uniformly in a €10, a):

2 -1 Ve
alap”+1+1; < —F—
o+ 1-+1) Tl < 5o <
As for the first term in (D.25), we first note that since p¢ = ¢p—i3V ¢

we only need to look at the term
xR(z, H)”LHO, [Hy, ... ,[Ho, x1] - - .]lR(z, H)op,

-~

nXx Hg

since the term with . .. R(z, H)V ¢ will be covered by Lemma D.1. From
the proof of that lemma we also have that

[Ho, [Ho, - -;[Ho,Xl] -] R(z, H)¢p

nxp?
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We note that since [p?, [... [p*,x1]]] # = 0 we have (by (B.14)) that

nxp?

[Pl [f[ (ap® +1+1t) ]R(z,H)qﬁp

Ve :1
nxp? J

] [ﬁTj}aﬁR(z,H)p

+ %] [HT_,} R(z, H) [Ho, §] R(z, H)p

+ ] [HT] [op?, §|T;R(z, H)p +

+ [p% . T [ep? 6T [HTJ] R(z, H)p. (D.26)

7j=2
We show that the operator R(z, H)p is bounded: By Lemma D.3 we
have that R(z, H)p = A1(Hy + A)~'p with ||A1]] < a(V)g(]), z). Sec-
ondly, (D.17) gives us for ap? < 1:
p 1

p_cp +A " 2\/__

where ¢ = /2 — 1, and (D.18) glves us for ap? > 1:
Ho+ M)~ ——— < Va < .

Look at (D.26) above. Since the operator R(z, H)p by the above is
bounded independently of «, the result of the lemma follows for all
but the second of the terms in (D.26), by the same proof as that of
Lemma D.1 (but with an extra factor of g(}A, z) and for A > C5 with
a possibly larger constant C3). What we need for the second term is
a bound on the operator norm of the operator [Hy, ¢ R(z, H)p. Then
the proof of the bound (D.24) for this term will follow from an analysis
like the one for (D.14).
Let us look at the operator [HO, gzﬂR(z, H)p:

[HOa (b]R(za H)p = [HOa ¢]pR(Z, H) + [H(), Qﬂ [R(Z’ H),p}
= [Ho, ¢]p(Ho + A) A1 + [Ho, ¢ R(z, H) [V, p| R(2, H)
= [Ho, ¢|p(Ho + \) 7" A1 + [Ho, 8] (Ho + \) "' A, [V, p| R(z, H).

Note that [V,p] = 48VV and so both A; and A, [V,p}R(z,H) are
bounded independently of o €]0, ] (giving rise to one, resp. two
extra powers of g(\, z)). This leaves us with the task of bounding the
operators [Hy, ¢|p(Ho + A\)~! and [Hy, @] (Ho + A)™*

(Ho+ )
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Firstly, by (B.16):
[Ho, ¢]p(Ho + A)~"

= /oo(ap2 +1+8)7 P o) (ap® + 1+ t) " Vidt p(Hy + )~
0
= (-2iB) /oo(ozp2 +14+8)7'Vé-plap® +14+t)"Vtdtp(Hy + \)7!
0

— 5 /Ooo(ap2 +1+1) "Ag(ap® +1+1) Widtp(Ho+ ).

Secondly, commute V¢, resp. A¢, through the factor (ap® + 1+ ¢)~!
to the left. Then the above equals

—2i6V¢ - (/oo(osz +1+ t)‘Q\/Edtp)p (Hy+ M) !
0
- 2@'5/ (ap® + 14 1) [ap®, Vo]p (ap® + 1+ )72Vt dt (Hy + \)7!
0
— BA¢ /oo(ap2 +1+ t)’Q\/;fdtp (Ho+ )71
0

_ g /oo(ap2 140 ap?, Adlp (ap® + 1+ 0)Vidt (Ho + )™
0

= (= 28V - (ap® +1)?p) p(Hy + A) !
— coﬂquﬁ(oqo2 + 1)_1/2p (Ho + /\)_1

— 2i3 /Oo(ozp2 +1+8)7 ap®, Vélp (ap® + 1+ ) 2Vtdt (Hy+ M)
0

— 3 /Ooo(oqo2 +14+1)7t [apQ, A¢]p (ap®* +1+1)"2/tdt (Hy+ \)*
(D.27)

by performing the ¢{—integration (using the usual change of variables,
t = (ap? + 1)s; here, as before, cg = [°(1 +¢)"%V/tdt). Now,

ap?

(ap? + D)YV2(\/ap? + 1 — 1+ a))
and so by (D.17), for ap? <1 (with ¢ = /2 — 1):
2 2
1
2 1) Y202 (. 1))l < ap s _ 1
(p™ + 1)  (Ho+ A)7 < (ap? + 1)2(cap® + a)) ~ cap® ¢

and by (D.18), for ap? > 1:

(ap2 + 1)71/2p2 (HO + )\)71 —

2
2 1122 (4 )L < ap
(op™+1) " (Ho+4) 7 < (ap? + 1)12(c\/ap + a))
ap? 1

L—F—=-.
VapieJap ¢
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Then, by the spectral theorem:

_ _ 1
e + 1) (Ho + )71 < -

Similarly:
vap
(ap? + 1)12(y/ap? + 1 — 1 + a))

(O!p2+1)_1/2p(H0+)\)_1 :\/a

and so, for ap? <1 :
24 1) (Ho+ 07t < b
(op™ + D)7 p (Ho+A)7 < (ap? + 1)2(cap? + al)
p 1
< < <C,
TepP+ AT 2Veh T

and for ap? > 1:
2 1) V2 (H AL < Vap
(op” + 1) Fp(Ho+A) " < \/a(apQ + 1)12(cy/ap + a))
<+Va/e < Jag/e.
Using the spectral theorem this means that
I(ep® +1)"2p (Ho + X)) < C.

This leaves us with the last two terms in (D.27). Now,
P _ ap
(Ho+2A)  Jap?+1—1+al
and so by (D.17), for ap? <1 and A > 1:
p < ap
(Ho+ ) — ap?>+ a)
and by (D.18), for ap? > 1:
e
o S \/api o = Veo
By the above and the spectral theorem:
Ip(Ho +A) | < C.

Using (B.16) we get that

1
< Z
-2

12i4 /Ooo(aﬁ +1+)" ap®, Vo (ap® + 1 +1) *Vidtp (Ho + 27|
<Cs [ ler + 1407 (2vap- V(v
— iVaBA(V)) (ap® + 1+ 1) 72|Vt dt
<Cp? /000(1 +t)"AVtdt < C.

The proof for the other term is the same.
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This finishes the proof of the lemma. O

Until now, we have only dealt with the operator H. We now embark
on studying the ‘abstract’ operator A, assumed only to equal H in part
of space; more specifically, we assume A to satisfy Assumption B.1 with
D = B(4p) for some p > py with py > 0 some fixed number.

We can now prove the analogue of Lemma B.14 (with £ = 1):

Lemma D.8. Suppose A satisfies Assumption B.1 with D = B(4p),
p > po, and that supp x C B(p), |x| < 1. Then there exists constants
C1 and Cy such that for X > C;:

IX(R(z2, A) = R(z, H))h
1
| Tm(z)]

< Cy BN (14 (@) (1 + )a(\, 2)? (D.28)

with

A \/(Re(z) + A)2 + (Im(2))? }

o0 7) =max{ 7, ()]

Proof. This goes like the proof of Lemma B.14. Choosing a function
X1 € C§°(B(3p)) such that xx; = x we have, with ¢; =1 — x4, that

The last term satisfies the bound (D.28) above due to Lemma D.1.
Using Lemma B.13, the first term equals

XR(Za H) [H0> X1:| 51R(Z> A) + XR(Z, H) B R(Za A)
with an operator B satisfying
IB|li < Cn (vVap)" forall N e N,

Here, (; € C§°(D), such that (;x1 = x1. This means by Lemma D.3
that
N
IR H) B R, Al < A0 2) 2
| Im 2|
with g(\.z) as in the lemma.
We need a bound on the trace norm of the operator yR(z, H) [HO, Xl] .

The idea is, as before, that in the ‘classical’ case of kinetic energy p?
(see (B.16)):

xR(z, 0> + V) [p? x1]
= —iB{xR(z,0* + V) pVx1 — i xR(z,p" + V)Ax1 }



134

which would then both be covered by results like the ones in Lemma D.1
and Lemma D.7. We wish to bring us in a situation close to that:

XR(Z, H) [HOa Xl]

= xR(z, H) / (ap®* +1+1)7! [p2, Xl} (ap* +1+t)"Wtdt
0
= xR(z, H)[p*, x1] / (ap® +1+1)72Vtdt
0

+ xR(z, H) / (ep® +1+1)" [op?, [P°, x1] | (ep® + 1+ 1) >Vt dt
0
= xR(z, H)[p*, xa] (ap® + 1) 1/?
+ axR(z, H) / (ap®> +1+t)7" [p2, [p2, Xl“ (ap® +1+ t)_Z\/Z dt.
0
Here, the second equality follows from commuting [p2, Xl] through

(ap*+1+1t)~! to the left, and the last one follows from performing the
t—integration, as seen earlier. Now, by (B.16)

[p?,x1] = —iB{2p- Vx1 — iBAX1 }
and so the estimate (D.28) for the operator
XR(z, H) [P, x1] (ap® +1)71/2
follows from Lemma D.1 and Lemma D.7 (first using (3.1)). Now

choose a second function xo € C§(B(2p)) such that xox = x and
X20x1 = 0. Then, letting ¢ = 1 — xa:

axRiz, H) /w(ap2 +1+8)7 % [P xa]] (ap® + 1+ 1) 72V dt
0
= axR(z, H)¢; /00(04292 +1+6)7p?, [p% xa] ] (ap® + 1+ )2V dt
0

+ axR(z, H) /000 xo(ap® +1+8)7 [P, [P xa ]| (ep® + 1+ )2Vt dt.
(D.29)

The functions x and ¢ now satisfy the conditions of Lemma D.1, and
SO

IXR(z, H)polls < CB3A2(1+ (@N)*?)g(), 2)" (D.30)
with
e A v (Re(z2) + A)? + (Im(z))?
o002 = max{ 7. () )
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Furthermore,

H /Ooo(ozp2 Tl PP ap? + 1+ t)—Q\/EdtH

gg/ (1+t)"2Vtdt.
@ Jo

Recalling the factor of « in (D.29) this and the estimate (D.30) above
proves the bound (D.28) for the first term in (D.29) (remember the
formula (D.13)).

As for the second term in (D.29):

o
< / 1P (ap® + 1+ )7 [[(ap® + 1 + )| Vi dt
0

axR(z, H)/ xa(ap® +1+1) 1 [p% [p% xa] [ (ap? + 1+ t) 2Vt dt
0

we use that x2 [p?, [p?% x1]] = 0 and commute [p?, [p?, x1]] to the left,
through (ap? +1+1¢) 1, to get

o / XR(z H)xs(ap +1+) "
0

x [ap?, ..., [P% x2]](ep® + 1+ t) "Vidt.

- v
-~

n—2xap?,2xp?

We estimate xR(z, H) and x2(ap?+1+t) ! in norm, using Lemma D.3:
for A > C(V) (for some suitable C'(V)),

IXR(z, H)[| < CA7lg(N,2) 5 Ixe(ep® +1+ )7 <C 1+

According to (D.13) we now need to estimate the trace norm of oper-
ators of the form (worst case)

Q= (Va)" "B /Oo 0" (Vap) " (ap? + 1+ 1) "(1 +)"Vidt

0

Secondly, by Lemma B.22:

171 (2)ha(=iBV) |1 < cs308™ 2|1l gl| ol

whenever
hiyhy € LER) = {f | I1flls = 11 +2%)°2 f (@) || 2y < 00 }
for some § > 3/2. This means that

IQll < ¢ (Va)" " /Ooo |(Vap)" (ap® + 1+ 1) ™"||5(1 + ¢) Ve dt
(D.31)
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Now, by the Cauchy-Schwarz inequality:

/0"" I(Vap)" (ap? + 1+ )" ||s(1 + 1)~ Vidt
1] 500 155 i
<{[Ta+orvia)”

g {/ooo /R d’p (1 + p*)** (vVap) " (ap® +1 _|_t)2n\/%dt}1/

Performing the t—integration in the last factor (by the usual change of
variables t = (ap® + 1)s), that factor equals

{c /RS d'p (14 )" (Vap) ™ (ap? + 1) 2+ |

1/2
< {Coa3/2/ d3q (1 +q2/a)3+eq2n(q2 + 1)72n+%}
R3

< C(ao) a—9/4—e/2

2

1/2

(by the change of variables ¢ = y/ap) for some n sufficiently large,
since for ¢?/a < 1 we have 1 + ¢*/a < 2 and for ¢*/a > 1, we have
14+ ¢*/a < 2a7'¢? (remember that a €0, ag]). Recalling the power of
« in (D.31), this proves that the last term in (D.29) is bounded by

Cru A ' g(N, 2) 2™
for any m. Since g(\, z) > 1, this finishes the proof of the lemma. [

We are now ready to embark on the main issue of this appendix,
namely comparing g(A) and g(H) for various functions g. But first we
prove two results on the trace norm of xg(H):

Lemma D.9. Let x € CP(R?) and let g € C°(R). Then
Ixg(H)|l. < C B~ (D-32)
The constant is independent of a €0, ay].

Proof. By Lemma D.3 there exists, for all £ € N, constants C(V, k)
and a(V, k) and an operator By such that for A = C(V, k):

Xg(H) = x(Ho + \)"*(Ho + N R(iA, H)*(H — i\)*g(H)
= X(Ho + N)*By(H —i)\)*g(H).
with ||Bx|| < C(V, k). Firstly, by the spectral theorem:
I(H —iN*g(H)| < C,
since g € C§°(R). Secondly, by Lemma B.22:
1 (2)ha(—iBV)l < cspB 2 *[1hullsllhalls
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whenever
hiyhe € LER®) = {f [ Iflls = (1 +2°)"2f (2) [l 2y < 00}
for some § > 3/2. Recall that
(Ho+A)7* = fi(—iBV)

with
N . (ﬁ)k , Vaz <1
fk(x):(\/W—l—Fa)\) - ( o )k , Var>1

vaz+al

and so it is obvious that f; € L2(R®) for k sufficiently large. This
shows that for k£ large enough:

IX(Ho + X) 7l < o0.
Now write ¢ = U+/|x|v/|x|, |U| = 1. Then

Ix(Ho +X) "1l = 1UV/[x|(Ho + \) ™ (Ho + X)~*V/Ix]llx

since ||U+/|x|(Ho + A)~%]|; < oo by the above and +/|x| is a bounded
operator. We now use (3.2) and Lemma B.4:

1T/ IxI(Ho + \) ™ (Ho + \) ™ /Ixllly
< 1UVIXI(Ho + X) " 1lallv/Ix] (Ho + A)*|l2
< @2m8) 11UV Ixllle2 e 1V Ix 22 ey | (Ho + A) #1129
= (2m8) *lIxl 2@yl (Ho + X) 7* 1172 (xs)-
Next, by (D.17):

d’ d’p
H+)\_2kd3</ 7</7<
LPQSI( 0+ ) P= ap2<1 (P )% 7 Jgs (p? + )% >

for £ > 1 and by (D.18):

2k d%
Hoa s [t
/ap2>1( 0 ) p ap221 (\/&p + Of)\)Qk

3
< a2k—3/2/ ﬂ < C(ap)
2>1 4%

for all & €10, o], when & > 1. This proves the bound (D.32). O

Remark D.10. We note that in fact the lemma holds for y € L' N
L%(R?). We also note the splitting in two terms above, for which one
(the first) is the one of the ‘classical’ kinetic energy p® and the other
one goes to zero as o« — 0, representing the relativistic part.

Secondly, we need the following lemma:
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Lemma D.11. For
jz|, <0
xT) =
7(2) { 0, z>0
and x € L*(R?) we have
Ixg:1(H) | < CB~° (D.33)
with a constant uniform in o € |0, ay).

Proof. Firstly,

Ixgr (H)lx < lixlloollgr (H ]2

Now, |lg1(H)||s = S(Ho + V), the sum of (the absolute values) of the
negative eigenvalues of the operator H = Hy + V. With

T(p) = T(Ip)) = Vo' Bp? +a=2 —a™

we have, by an inequality by Daubechies [2, see (2.1), (2.2) & (2.10)]
(see also the proof of Lemma E.2), that

W (z)
S(Ho+V) < ky / 2 ( / du [T~ (w)]?)
R3 0
with W = max{0, —V'} and k3 = 1/(672). Now,

_1 (u) \/2u / au

and so, making a Taylor expansion hke in the proof of Lemma E.2, we
get that

S(Ho+V)
2 3 2
< B %%, / P 2v3 L 2w ()52 + 30w )2 + S ()92
- 5 14 13
S C(C\fo, V)ﬂ_?’
since V € C§°(R?). This proves the lemma. O

Proving estimates on the trace norm of the difference x(g(4)—g(H))
we will eventually be able to carry the estimates of Lemma D.9 and
Lemma D.11 over to xg(A) (for g € C§°(R), g = ¢ resp.)

We start with the following analogue of Theorem B.18:

Theorem D.12. Suppose A satisfies Assumption B.1 with D = B(4p),
p > po, and that supp x C B(p), |x| < 1. Let g € C*(R) be a function
such that g(A) = 0 for A > Ao and such that for somer € [0, 1] we have
that

0"g(N)| < Cu{N)" , VneN (D.34)
(here, (\) = (1+ [\[?)Y?). Then
Ix[9(A) —g(H)]||, <CB? (D.35)
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with a constant C' independent of o €0, ay).

Proof. As in the proof of Theorem B.18, we want to use the represen-
tation (B.71).
Let k € R and 0 < |7| < 1. Denote

d(k,7) = R(k + i1, A) — R(k + ir, H).
Then, according to (D.28), for A > C for some constant C;:

[Ixd(k, 7)1

A (H+)\)2+7’2}9

< CB73A2(1+ (a))*?)7" max { ,
: Ve

(D.36)

Here we used that 0 < |7| < 1. For k € [—C4, Ag], let A = C1, then
(since a €0, a)):

1
Ixd (s, 7). < C" 877 CEEE [=C1, Ao- (D-37)

For k < —C1, let A = —k, then

o, 1)l < OO~ 21+ @) ) . K< =Ci (D39
Next we note, as in the proof of Theorem B.18, that the representation
in Proposition B.17 does strictly speaking not apply to the function g,
since this is not of compact support. We therefore modify the function
g as in the proof of Theorem B.18: we get a function g € C§°(R), with
G(k) = 0 for k < —2M = —2max{M, a '} and such that §(A) = g(A)
and g(H) = g(H). (Recall that H > —M and A > —a™1). Also,

0"G(k)| < Co(k)" , VneN. (D.39)
Using (B.71), we get that
(A —gH)=J" + 0" vneN,

with
n—1 1
J = Z — / & (k) Im [#5(k,1)] drk
=0 ) JR

: )! /01 ™ dT/Rang(“) Im [i"6(k, 7)] dr

J(n) —
2 w(n—1

where the integration in  in fact only takes places over the interval
[—2M, Xl



140

Now, by the estimates (D.37) and (D.38) we have that

1
<0 { [ RRl 0 (el ) do

Ao
+/ 1d/~c} <Cops. (D.40)
_Cl
Here we used that 7+ 1 —5/2 < —1/2, M = max{M,a"'} and o €
10, ap]. (The important fact is to note, that the power of  is sufficiently
negative as to give a positive power of o when integrated to o', which
is the worst case).
Next, still by the estimates (D.37) and (D.38), we get:

-

1
< 0a7{ [r2ar [ el (1 (o)) de
0 —

2M

1 Ao
+ / i g / 1dm} (D.41)
0 Cy

Choosing n > 11 we get, as in (D.40), that
i < 057
This proves the lemma. O

Remark D.13. We note that we can get a better result than this: as
noted in Remark D.6, we can get arbitrarily good (that is, negative)
powers of A in the estimate (D.1). More importantly, we can get ar-
bitrarily high (positive) powers of 5. In fact, we expect to be able to
carry all of this analysis through, as to get all of the results of appen-
dix B, without the loss of powers of «; due to time pressure, we will
not do this here — the results of this appendix will be enough for our
purposes.

Using this and Lemma D.9 we can prove:

Lemma D.14. For any function x with supp x C B(p), |x| < 1 and
any g € C§°(R) we have (with A as in Theorem D.12) that

Ixg(A)ll < CB~° (D.42)
with a constant independent of o €0, ayp].
Proof. It suffices to pass via xg(H):
Ixg (Al < lx[g(A) — g(E)] Il + lIxg(H) -

The estimate now follows from Theorem D.12 for the first term and
from Lemma D.9 and Remark D.10 for the second one. O

This allows us to return to x[g(A) — g(H)] and prove a bound like
the one in Theorem D.12 for g = g¢:
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Lemma D.15. For any function x with supp x C B(p), |x| <1 and
_ z[, <0
gl(w)_{ 0, >0
we have, with A as in Theorem D.12:
1x(91(A) — g(H)) x|l < OB~ (D.43)
with a constant independent of a €0, ay].

Proof. The idea is like that of the proof of Theorem C.6: to cut away
the singularity at 0 of the function g;: choose ¢ € C{°(R), |¢| < 1, to
be a non-negative function such that

Denote
g () = g1(N)¢(2))

and

9P\ =g (M) (1 -¢(2N)

so that g; = ¢ 4+ ¢@. It is clear that ¢® € C*, since ¢ (\) = 0 for
|A| < 1/4. Also,

"gP N < Ca(A)t VneN

(here, (\) = (1 + |A|?)'/2) by the definition of g;. To treat the part
with ¢, that is, around the singularity of ¢;, note that

CR2A)C(AN) =C(2))  VAER,
and so, by the spectral theorem and (3.1), with 7= A, H

Ixg™(T)xll: = Ixg1(T)¢ERT)x = Ixg (T)¢RTYCT) x|
< lxg (A) SR Ix< () ||y

Since, by the spectral theorem,

19 (T)SRT)| < 191 (M)E2Mleo < C,
we get from Lemma D.9 and Lemma D.14 (since ( € C§°(R)) that

Ix(e4) = gV () xls < € (Ix¢A + Ix¢ED)
<C' B3, (D.44)
]

We are ready to finish the ‘bootstrapping’:
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Theorem D.16. Suppose A satisfies Assumption B.1 with D = B(4p),
p > po, and that supp x C B(p) C R®, |x| < 1. Let

gl(m):{ lz|, <0

0, z > 0.
Then
Ixg1 (A < C B~ (D.45)
The constant C' is independent of « € ]0, o).
Proof. As in the proof of Lemma D.14, it suffices to pass via xg(H):
Ixg(A)lx < lx(9(A) — g(H)) I + lIxg(H)|1.

The estimate now follows from Lemma D.15 for the first term and from
Lemma D.11 for the second one. O

We now turn to the integral

1
(2mB)? / x(2) 91(0a (2, p)) d's dp.
By Remark 5.6 we have (since g;(A\) = 0 for z > 0) that
1
G [ 1@ ot ) sy

Combining Theorem D.16 and the bound (D.46) this proves the main
result of this appendix:

<Cp~°. (D.46)

Proposition D.17. Suppose A satisfies Assumption B.1 with D =
B(4p), p> po, and that supp x C B(p) C R?, |x| < 1. Let

g1($)={ lz|, <0

0, z > 0.

Then

Tr{x g(A)} = ——— / (@) glaa (e, p)) d' dp

(27 B)3
+0(B7%), (D.47)

with a remainder uniform in o« €0, o).

APPENDIX E. DECAY OF ENERGY OF EIGENFUNCTIONS

In this appendix, we will prove a result on the energy of the ‘tail’
of all the eigenfunctions corresponding to the negative eigenvalues of a
Herbst-operator, with Coulomb potential ‘pushed up’; more precisely:
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Lemma E.1. Let
)
H:H0+V:\/—A+1—1—m
for 6 < 2 and let H, = H + & for some k €]0,1]. Let {e;} be the
negative eigenvalues of H below —k and {¢;} corresponding normalised
eigenfunctions:
Ho;=ejp; , e <—k. (E.1)

Then {e; + K} are the negative eigenvalues of H, with eigenfunctions
{¢;}. Finally, let x, be the characteristic function of the set R*\ B(r),
with r = a k™" for some a > 1+ 6. Then, for some constant C':

0 2 Z (6]' + H) ((ZSJ', Xr¢j) Z —C \/E (EQ)
Proof. Start by noting that
Z (e + £) (¢4, xr5) > Z e; (05, Xr®;) (E.3)
ej<—K e <—K

since k is positive. Next, choose a smooth version of the characteristic
function x,: Let x, € B®(R®), |x,| < 1, be a function, monotone
in |z|, such that x,(z) = 1 for |z| > r = ax ! and x,(z) = 0 for
lz| < (@ —1)k7!, and such that |9,x,| < ek for | = 1,2,3, and
|0kO1Xr| < cor? for k,1 = 1,2,3. Next, we decompose the sum on the
RHS of (E.3) to take advantage of the fact that the potential V = — 2

a]
is not too negative for |z| > (a — 1)x~', first putting in the function
Xr, using that e;x, > e;Xx2 (the eigenvalues are negative):

0> Y ei(dxe85) > Y e5(¢5:%005) = D (65, X2 He;)

ej<—K ej<—K ej<—K

=N (G5 HGo) + Y (65 Tl H)

ej<—K ej<—K

5/-61 Z (¢j,>~(£¢j)+ Z (gzﬁj,)Zr[f(r,H]%)

a p—
e <—K ej<—K

Y4

+ Y (85, X HoXr$))

ej<—K
)
> = 3 e(08) + Y (6% % Hls)
ej<—kK ej<—K
- Z (6, Xr HoXr9;)-
ej<—K

The first equation because of (E.1), the third inequality because

ok .
— X

Ve > —- (E4)
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with the given choice of r = ax~! and ¥,, and the fourth, because we
are summing over e;’s that are smaller than —x. This means, that

(1 - %) PIRACHP N

ej<—K

> Z (QsjaXT[)ZraH](bj)'i_ Z (qua)ZTHO)ZT(bj)'

(E.5)

We now need to investigate the term (¢;, X, [)ZT,H]QSJ-). To this end,
recall from (B.13) and (B.16) that (with p = —iV)

[VPp*+ 1, %]

= —%/ P +1+8)7(p- Vi + Vi - p) 0> + 1+ 1) WVtdt.
0
(E.6)
Now, by (B.14), we have that

/ P +14+8)7p -V, (0 + 1+ 1) Wedt
0

= (/oo(p2+1+t)—2p\/idt) V¥,

3 o0
+ Z/ @+ 1407 p [P 0% 0 +1+8)7Widt.  (E7)
=170

Starting with the first term in (E.7) we have, by the change of variables
t = (p? +1)s, that

/ (P> +14+t)2pVidt = (p* + 1)_1/2p/ (14 5)72\/sds.
0 0

By the Cauchy-Schwarz inequality we then get that

@ ([0 41407 Vid) - Vi)
0

3
= C() ( Lir¢ j 5 i al>~<1"¢ )
; (p? +1)1270 !

v

3
p LN N
G X () ke ) @0kt k)
(E.8)

with Co =L [F(1 4 5)7?y/sds > 0.
We note that using (B.29):

>
m—lz{c‘)y’ y>1

Co y27 Y € [Oa 1]
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with ¢y = v/2 — 1, we have that for |p| € [0, 1]:

(V2-1) 7 <S(WV2-1p°<VpP+1-1

p*+1

and for |p| > 1:
2
(V2-1) 5 <(WV2-1)<(V2-Dpl <V +1-1
which gives the estimate
2

oo L (Eri-1) W (E.9)

pPP+1 7 21
In this way, using (E.8) and (E.9), we get that

(qufa,%(/ (P +1+8)7pVEdt) - VX, ;)
0

C B N _
2_\/%((%’)0]{0)(%%) ;(aer(ﬁj’aerqu) .

As for the second term in (E.7), by (B.14):

3

DO +1+0) Pp o] 00 +1+1)
=1

=S N WP +1+1)2p (E.10)

=1 k=1

eI
N|=

X (Pk OkOiXr + OO Xr pk) (P*+1+1t)"

By the spectral theorem,
1
| S PR
1+t

1
21407 pl| < —————
(" +1+8) " ml < (1+t)3/2
1
(1 +1¢)1/2

1
2 ~1
+1+1 <

and, using this and (E.10), we get the estimate

(P> + 1+ )% py py]

(P> +1+8) " pf <

.3 L
H - %Z/ (P* + 1+ pi[p*, O] (p2+1+t)1\/¥dtH
=170

3
<Y " 2C0|10k01%lloo < 18c2 Cok® (E.11)

=1 k=1
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with Cy as above, since |0x0;X,| < c2k? by construction. By the in-
equality (v, Ag) > —||All||¢]|||¢]l, we get, since the eigenfunctions are
normalised and Y, < 1, that

(9% — Z/ 1+ p % 0% (0° + 1+ ) Vi dt ¢)

> —18,Cok% (s 65, %o d;) 7 (07, 85) 7 > —18¢2Cor?.

For the other term in (E.6), commute V¥, to the other side and do as
above. This gives us that

(0, Xr[Xr, H]j) > —36c2Cok”
2C N N 1
- 70((15% XTHOXT¢] 2

VV2 -1

Going back to (E.5) this means (using that the inequality (X —Y)% > 0
gives X? — cXY > —c?Y?/4 and the facts, that x,20,X, = 9,X, and
|0Xr| < 1K) that

(1—ai1) > (5, %)

ej<—K

> Y (44, X Ho%rd;) —01%2( ) 1)

ej<—K e <—K

-
D=

3
> (0o s, 0% b5) -
=1

N

3
=G Y D (65 % HoXed3) ™ (00 Xr 265, Ok j25)

e;j<—k I=1
9 96%022
> —Cik Z 1]+ 1 K Z ej(Xr/2¢j>Xr/2¢j)
ej<—K ej<—K
with
Cl = 360200
C
02 = 0

V2-1
Here we again used, that we sum over e;’s that are smaller than —«x.
Using again, that e;x, > e;x2 this finally leads us to the estimate

> (@5 xe5) > Car Y (s Xrs205) —04»”»2( > 1)

ej<—K ej<—K ej<—kK
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with
_9¢iC*(a—1)
T AVZ - 1)(a—1-9)
_ 360200(0, - 1)
Ca= a—1-4§
Denoting

E(k,r) =Y €(¢, x:0;)

ej<—K

this proves, that, as long as 7 = a k™%, with @ > 1 + §, we have that

|E(k,7)| < Csk |E(k,7/2)| + C4/£2( Z 1). (E.12)

ej<fl€
Since
[E(s,r/2)| < > lesl(5,65)
e <—K

the lemma know follows from the estimate (E.12) and the following
lemma (see also (E.3)). O

Lemma E.2. There exist constants Cs and Cg such that, for all k €

10, 1]:
S Jesl= 3 1esl(65,05) < Cs =,

K
ej<—K ej<—K

Y 1<Cq L (E.13)

K/

ej<—K

Proof. This is a consequence of a generalisation of the Lieb-Thirring in-
equality (see Lieb and Thirring [22]) and of the Cwikel-Lieb-Rosenbljum
bound (see Reed and Simon [24, Thm. XIII.12] for references) due to
Daubechies [2, see (2.1), (2.2) & (2.10)]. It asserts, that for a single
particle Hamiltonian T'(—iV) 4+ V(z) (with certain conditions on T,
fullfilled for the operator Hy), the absolute value of the sum S(7T + V)
of negative eigenvalues of the operator 7'+ V' is bounded as

S(T+V) < k3/ & (/ du [T’l(u)]?’)

RS 0

with W = max{0, —V'} and k3 = 1/(67?), whereas the number of these
bound states, N(T' + V), is bounded as

N(T+V)< kg/ d* [T~ (W (x))]3.
R3
We have in our case, that

Tp)=T(p)=VIpP+1-1=T"(u) = Vu? +2u
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and so

F(s) = /0 du [T (u)]® = /S(tQ + 2t)3/2 dt

0

- /Os (20" (1+ %)3/2 dt.

Now, by a Taylor expansion of the second term in the integral, we get

3/2 3 1
! 3 3., 3 3/
1+ =1+ t+ 2 —— [ (1-5)*(1 d
(+2) Tttt T, )(+2) °

3 3
<1 t4+ —¢?
+4 +32

since the last term is negative for ¢ > 0. That is, for s > 0:

i 3/2 3 3

<

F(s)_/o (2¢) (1+4t+3 )dt

3 1
_ §12 1 2 GT/2 4 92
2\/_{ 148 + 488 }
In this way,
S(Hy+V) (E.14)

2 1
< kg/ dz 2v/2 {EW(JT)E)/? + %W(:ﬂ)?/2 + EW(:E)Q/Q}
R3

and

N(Hy+ V) (B.15)
< ks / % 2V {W(:c)3/2 + ZW(:E)W + 33—2 W(a:)7/2} |

The problem is that both of the integrals in (E.14) and (E.15) are
divergent for the potential

Ve=—— +&. (E.16)

In order to deal with this divergence, we need to ‘pull the Coulomb
tooth’ (an expression apparently coined by Lieb and Simon in [21, sec.
I11.4)).

To this end, we need the following formula from Lieb and Yau [23,
p. 186; here, m = 1]:

(f,(Vr2+1-1)f)

— 3 [ 1@ = 1) Pl = o] *Kallo — o)) e

Here, K, is a modified Bessel-function. (Note, that the formula as it
stands in Lieb and Yau [23] is incomplete: one need to substract the
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‘rest energy’ m = 1 from the square root to get the right formula.
This is also ‘morally’ right, since this is the true kinetic energy; see
Sgrensen [40, App. B] for more details). We also need the following
theorem from Lieb and Yau [23, Theorem 7]:

Theorem E.3 (Kinetic energy in balls). Let B be a ball of radius D
centered at z € R® and let f € L?(B). Define

(. Ipl)s / / F@) — F@)Pl -y dedy  (E17)

and assume this 1s ﬁmte. Then

(/. |plf)s = D™ /B QUz - 2/D)f@)P %, (B18)

where Q(r) is defined for 0 <r <1 by
Q(r) =2/(mr) = Yi(r)

for some continuous function Y satisfying Y1(r) < ¢ = 1.56712 for
r<l1.

The idea is to explore the fact, that Ky(z) ~ 2/2% for z ~ 0 (see
Abramowitz and Stegun [1, 9.6.9, p. 375]) to obtain a similar result for

v/p? +1— 1. More precisely, (see 9.6.11 loc. cit.)
1/1 \—2 1
Ky(z) = 3 (Ex) (1 — Z$2> —In(iz) L5 (z)

o (i‘,L.Q)k
2

+;( ) Z;{w k+1)+¢(2+k+1)}k.( AT
gl

> —3:2,

—z?2 2 16

since, ¥(n) = I'"(x) /T (z) satisfies ¥»(n) > 0 for n > 2 and ¥(1) = —v
(Euler’s constant — see 6.3.1, p. 258 loc. cit. ) and the modified Bessel-
function I, has the asymptotic behaviour I, ~ 22/24, x ~ 0 (see 9.6.7.
loc. cit. ). This means, that

2 2
TE2) T Vs
2 4 32

Because the postitive root of - y + 4y e=0is

4
vo = 3(V1+267 1) 2 ~(e7 = €7) = de(1 = 9),

(note, that we now need € < 1/y &~ 1.73) we have, that
y 7 9
< de(1 - = 1-Z-Lprsqo
y < 4e(l —e) 1 39V €

and so

< 2/e(l—ve) 2 =r(e) = @ >1-—e (E.19)
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Defining B = B(r(€)/2), this means that
(F(VP+1-1)f

2W,//\f Do~y

— |2 _

=9 57 [ [ 17@) = fPle =yl dtedy

=( €) (£:1plf)

since, by (E.19),

| \

z,ye B = |r—y|<r(e

1
= §|x — y\2K2(|m —yl)>1-e

This means, by Theorem E.3 (with z = 0) that

L nmri-n) - (£2 Ly,

1—e¢ T |x|

> T (VP T=11) = (F 2D

> (11910 n = (f. 27700 = (1.5 @lelr(@)1) .
(E.20)

In this way, given a § < 2/7, let € be such that § < 2(1 — €)?/7 (that

is, e < 1—4/07/2). Define the corresponding number r(¢) as in (E.19),
and the ball B = B(r(e)/2), then by the estimate in (E.20), we get
(with xp the characteristic function of the ball B) that (see (E.16))

H0+Vn:\/p2+]_—]_—ﬂ+/€
2(1—¢) 1
:(1—6)(\/1024-1—1—7( - deB)"‘K'
2(1 —¢)? 1 0/e€
+<u—5)| ‘XB+6(\/p2+1—1—ﬁXR3\B)

(1= K () - Lo )

2¢1(1 — €)? d/e K
er(e) |z | €
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with ¢; as in Theorem E.3. Using that the operator inequality 77 > €15
implies that N(77) < N(T3) and S(7T1) < € S(T»), we get that

Solel= > |ej|g( > \ejm\)m( > 1)

e;j<—kK e;j+K<0 e;j+r<0 e;j+Kk<0
=S(Ho+ Vi) +kN(Ho+ V)
< eS(Hy+V,)+kN(Hy+ V) (E.21)
with

In this way,

/R3 d*c (max{—f/,i(m), (]})n/2

7(e) n/2
S 9 1 — 2 / d/k 5 n/2
:47r/ (M—5> t2dt+47r/ (ﬁ—f) 12 dt.
0 er(e) € r@ \ t €

Now,

0 Nt e - (5/6)n/2 (L)R/QS, n > 6

53 n/2—3
Arr / N (6/6 K)n/z B R EETR / , n<6
r(e)
r(€)

by the change of variables y = k|z|/d, whereas
r(€)

: 9 1— 2 n/2
47r/ ; (M_E) 2 di
0 er(e) €
_an (10 (21— ¢ n/2
-3\ 2 er(e) ’
and so, since k €0, 1], we have that (for some C; here we lost track of
constants...)

/R3 d*c (mau({—f/,i,O})"/2 <Ck™? forallne {5,709}
whereas (for some C”)

/RS d* (max{—f/m 0})n/2 <C'k73% foralln e {3,5,7}.
By (E.14) and (E.15) this means, that

> lejl < €S(Ho+ Vi) + 6 N(Ho + Vy) < Cs

ej<—K

Si-
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and
1

R/ K

Y 1= > 1< N(Hy+ Vi) <Co

e;<—K e;j+k<0

for some constants C5 and Cg, that only depend on § (and the choice
of €). This proves Lemma E.2. O

APPENDIX F. AN INTEGRAL REPRESENTATION OF ¢(B)

In this appendix we will make the necessary calculations to prove
the formula (B.71) on the level of functions. The result for self-adjoint
operators follows by the spectral theorem.

Lemma F.1. For g € C°(R), alln > 2 and all £ € R we have

09 =X — [ P9 Il (6 = A~ )] ax

1
=0

-

1 ) /0 T ldr /R "g(N) Im[i? (£ — X — iT)] dA.

w(n—1

Proof. To prove this, we need two things. First of all, we need to extend
g into the complex plane: Let for A and 7 in R:

g+ i) = 3 29TV (;), by

Jj=0

(F.1)

Think of this as a formal Taylor-expansion. We also need the funda-
mental solution for the Laplacian in R?*: Let F(z) = (27) 'log|z|,
then AE = §y, in distribution sense (see Hérmander [15, Thm. 3.3.2]).
Now we are ready, the rest is pure calculus: Note, that with

1/0 .0 1/0 .0

we have 4A = 0;0,. By the above, for £ real and K C C a ‘nice’
compact set (since g € C§°(R?))
9(&) = 3(&) = (d, §) = ((2m) *Alog |- —£],9)
1
N 8 K

§(2)0:0, log |z — &| dz dz.

Now,
20,0, log|z — &| = 0,0, log |z — &|?

= 0:0;log {(z = §)(z =€)} = 0; <i>

and so, by Stoke’s theorem, we have

1 g(z)dz 1 0:9(z)
00 =5 [ BT [ s




153

A straightforward calculation, using (F.1) and (F.2) with z = A + it
shows, that

. 10%g(\) (i)™ 1
s = LTI

Choose now K C C to be a rectangle, K = [-C, C] x i[—1, 1], C large,
such that supp ¢ C [-C,C]. Then, noticing that § is zero on the
vertical sides of K, we get (since dz dz = 2dr d\)

/ ( D) 1 dX
~or = A—1—=¢
Cnl
1
dA
Z J! )\+z—£

47r/ /dt<an n—l)) A+¢1¢—g>

- L / ) Tl (€ — X — i)] dA

1

S,

1 Lo y .
_ "L d O"g(\) Im[#? (€ — \ — d).
+ / o dr / g(\) Tl (€ — A — ir)]

m(n —1)!

The last equality follows from splitting the last integral in integrations
over positive, resp. negative 7, making a change of variables and col-
lecting the terms. O

APPENDIX G. A NUMERICAL COMPUTATION

The following is the Maple(©)-code that generated the plot in the
introduction.

EnergyDirac := proc(d, n, k)

evalf((1/(1 + d?/(n + sqrt(k? — d?))*)1/? —1)/d?)
end

EnergySchr := proc(d, n, k) evalf(—=1/2 x 1/(n + k)?) end
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EnergyDiff := proc(d, N)
localn, k;
globaldFE;
dE = 0;
for kwhilek < N do
dE := dE + EnergyDirac(d, 0, k) — EnergySchr(d, 0, k) ;
for nwhilen + k£ < Ndo
dE := dE + EnergyDirac(d, n, k) — EnergySchr(d, n, k)
od
od;
dE = dE +1/2;
dE
end

PlotEnergyDiff := proc(n, N)
locali, points;
points == |
seq([[¢/n, EnergyDiff(i/n, N)], [(¢ + 1)/n, EnergyDiff(i/n, N)||, i = 1..n — 1)]
points := map(op, points) ;
PLOT(CURVES(points))
end

> PlotEnergyDiff(700,40);
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ABSTRACT. This paper is my progress-report for the qualifying
exam after the ‘del A’ of the PhD-program. It treats the large
Z-behaviour of the ground state energy of atoms with electrons
having relativistic kinetic energy \/p2c2 + m2c* — mc?.
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1. INTRODUCTION

As a model for a relativistic atomic with atom number Z and N
electrons, we wish to consider the operator

HFi VoA tai—ato 24y L
ws ' |4 — |z — ]
i=1 1<i<j<N

This dimensionless expression for the Hamiltonian of a relativistic atom
is developed in appendix C.
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This model has been much studied over the past twenty years. Sta-
bility in the case N = 1 was proved independently by Herbst [7] and
Weder [19]. The ‘Stability of Matter’ for the model was first proved by
Conlon [1], later by Fefferman and de la Llave [5], and also by Lieb and
Yau [15]; see the latter for an overview. This paper relies to a great
extent on the work by Lieb and Yau.

It is well-known that the operator H,, is bounded from below on
C5°(R*N) if, and only if, Zor < 2. Only in this case is the atom stable;
and we define the operator H,,; as a self-adjoint, unbounded operator by
Friedrichs-extending this semi-bounded operator. To study the energy
of large atoms, one would normally then consider the limit as Z — oo of
the infimum of the spectrum of this operator. Due to the upper bound
on Z however, this is not possible here. To overcome this problem, we
consider

H,el:a—l{i{m_a—l N> %‘“‘}

i=1 - il 1<i<j<N
_ <i<j<

Z;

where § = Z« is held fixed. This ensures that as o — 0, and therefore
Z — 00, the operator H,, remains well-defined—as long as 0 < ¢ < %
Also, we shall keep A = N/Z fixed. The energy of the atom is then
defined as

EN(Z, 6) := inf SpeC‘HF Hel

where the spectrum of H, is calculated on Hp = A" L?(R3,C?), the
Fermionic Hilbert space, describing N Fermions, each with ¢ possible
spin states. We will take ¢ = 2 from now on. We note, that since
(the extension of) H, is self-adjoint and bounded from below, we have
the Rayleigh-Ritz principle: If C is a form core for the corresponding
quadratic form, then

inf H,.,= inf , Hpe
Specy,, Hra = ol (0 Hrat)

Our main result will be the following:

Theorem 1.1. Let 6 be fized, 0 < 6 < 2/m, and let H,q and En_z(Z, )
be as above. Then one has:

En—7(Z,0) = CppZ® +0(Z7) | Z > (1.1)
where CrpZ"/3 is the Thomas-Fermi enerqy of the atom.

This shows that, to leading order, the ground-state energy of a rel-
ativistic atom is given by the semi-classical Thomas-Fermi energy ap-
proximation, as it is for the non-relativistic atom (Note that the case
6 = 2 is included). This was first proved by Lieb and Simon [12]; see
also Lieb [9]. This expresses the fact that for large atoms the majority
of the electrons are non-relativistic.
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The aim of the sequence of my work is to try to understand the
relativistic corrections to the energy of the atom. These are expected
to appear in the lower order terms in the asymptotic expansion (in Z)
of En—z(Z,§). More precisely, we expect:

Conjecture 1.2. For all §, 0 < § < %, there is a constant s(d) such
that

En_z(Z,6) = Crp 2 +5(0) 2% + 0(Z2%) , Z — ¢ (1.2)
where s(9) satisfies

lims(0) = 1/2. (1.3)
6—0

For non-relativistic atoms, this asymptotic limit is well-known; the
second term in (1.2) is known as the ‘Scott-correction’ and is equal to
Z?%/2. This was conjectured by Scott [16] and proved by Hughes [§]
and Siedentop and Weikard [17, 18]. The non-relativistic case is what
makes us expect (1.3), since, in some sense, the limit as § — 0 is the
non-relativistic limit. The proof of the theorem will be by semi-classical
eigenvalue estimates, while the proof of the conjecture is expected to
involve Fourier Integral methods. It would also, if the conjecture holds,
be interesting to study the function s(d) and compare this both with
numerical (Dirac-Hartree-Fock) calculations of the energy of relativis-
tic atoms, and with experimental results. Mass-spectroscopic measure-
ments of the energy exists for Z < 25.

The proof of the theorem will be by finding upper and lower bounds
on En_z(Z,5). As noted in appendix C, the relativistic kinetic energy
is always lower than the non-relativistic one:

2

Vptal4+at—a?=a"? ( 1+ (ap)? — 1) < % (1.4)

(Note: since we will later make Taylor expansions of the square root
in the relativistic kinetic energy, we will have to insist on the non-
relativistic kinetic energy being p?/2). This means, that all upper
bounds derived earlier for the non-relativistic operator

Y2z 1
chzz{%_|:vi\}+ 2 Tl

i=1 1<i<j<N [2i =y

will still be valid; in particular, to prove theorem 1.1, we need only
derive a lower bound.

2. ORGANISATION OF THE PAPER

We start in section 3 by reducing the N-body operator to a one-
particle one; having done that, we only need to consider wave functions
given as Slater-determinants when trying to minimise the energy. To
proceed, we need to localise the kinetic energy. To do so, we use an
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analogue of the IMS Localisation Formula for the Schrodinger opera-
tor, see [2, p.27]. This formula has already been developed by Lieb and
Yau in [15] for both the operator v/—A + a2 and the hyper relativis-
tic kinetic energy |p|. This is essentially done by finding the integral
kernels of these operators. For v —A + «~2, this involves the modified
Bessel function K5, and the derivation of the formula and of needed
properties of K, are carried out in the appendix A. The localisation
error, given by a bounded operator L{*) expressed as an integral op-
erator involving K5 is then estimated. Estimating the error is rather
technical (calculative) and involves localisation of the operator and the
above mentioned properties of K5. Some of the localised terms are
estimated with the localised energy itself.

Coming to the localised energy, we have to estimate the kinetic en-
ergy close to the nucleus. This is the region, where the electrons are
relativistic, since this is the high-energy region, and so this term should
be of lower order, since, to leading order, there should be no relativis-
tic contribution to the energy. As the relativistic kinetic energy is
asymptotically linear in p in the high-energy region—as opposed to the
classical one which is quadratic—the singularity in the potential causes
substantially more trouble. The problem is solved by a clever choice
of parameters in an estimate by Lieb and Yau in [15] on the sum of
the eigenvalues of the energy in a ball around the nucleus. This also
determines the scale on which one can localise close to the nucleus.
A part of two of the localised terms of the operator L(® is estimated
along with this term.

In the outer region, one uses essentially the same idea as Lieb did in
the classical case, see [10], to re-find the desired phase space integral,
which is to give the semi-classical Thomas-Fermi energy. This involves
introducing coherent states and estimating the error by doing so. The
formulae for the relativistic case were developed in [14], but the error
obtained there is too rough for our purposes. We therfore develop a
better estimate by a more careful analysis. In order to make all this
work, one need the coherent state to be supported further out than
the initial cut-off around the nucleus. To get this, an intermediary
zone is introduced by an additional cut-off. The energy in this core
is estimated by a generalised version of the Lieb-Thirring inequality,
proved by Daubechies in [3]. Also the other part of the previously
mentioned two terms of the localised operator L(® is estimated in this
way.

Finally we relate the energy in the outer region to the Thomas-
Fermi energy from the classical (that is, the Schrédinger) case. In
this region, the kinetic energy is small and using the specific scaling
property of Thomas-Fermi theory allows one to make the change from
the relativistic energy v —A + a~2 to the classical one, p?/2, getting
errors of the desired order.
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3. REDUCTION TO A ONE-PARTICLE PROBLEM

We will use the notation

H:aHrd:i{\/m—a_l— 5.}-{- Z .L

i=1

With this, since we wish to consider « as the free parameter, the rele-
vant order of all error terms will be o(a~*/3), since § = Za is fixed and
since the ground state energy of H, is to be proved to be of leading
order Z7/3. We apologise to the reader for the inconvenience of this
unfamiliar choice, but since we started out by using this approach, we
will stick to this notation in this paper. Also, we will denote the oper-
ator vV—A + a2 by /p?2 + a2, and so T(p) = \/p?2 + a2 — o~ ! will
be the kinetic energy.

We now start by reducing the problem from an N-particle problem to
a one-particle one. This is done by using an inequality on the electron
- electron interaction Y, . |z; — z;/~", which will reduce this to a one-
particle potential.

Choose a spherically symmetric function g € C$°(R?), non-negative,
supported in the unit ball B(0,1) of R?, and such that [g(z)*d*% = 1.
Let ¢(z) = g(x)? and let for ¢ > 0 (a to be chosen later), ¢,(z) =
a *¢(z/a), so that [@,(z)d*> = 1. Then for all p: R> — R we have:

Z . |_Z/ d)ax_xzd)a( _'Ij)dsdey
Ti— Tj

i<j

1§i<j<N i<j |z =y
:_Z//% ~ 2)0aY = 23) 4
|z —y|

N// %Ifﬂ—yl T
:Z// \:v—y_\ e dy
_ 5//Wdf’mﬁ@,—c(gb)J\fa—l

1// (Zi $a(r — i) — P(@) (Zj ¢a(y — ;) — P(ZD) oy

lz —y|

B z) 3. 13
> dxr d
_Z/ va—yl ey

Z PA\PIPNIT 33, 93, -1
2// \m—y| dxdy c(p)Na™".
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In the last inequality, we used that |z — y|™' is of positive type (a
positive kernel) since

//f W) gy gty — 4 [ @)L
|z —y| |p?

The constant ¢(¢) is independent of a:

2
-4
Noting that (using spherical symmetry of ¢,)
— ) 5 3 B p(Y)¢a(2) 3, 13
[P ey = [[ AR e
= /p(y)(%* 17 (i —y) dy
= (p* o x| | ") (i) = pxgaxz]’

we get the operator inequality:

N
) Q
H=Y {\m+a?-a'=1+ 3 2
P preTTe TRt 2 m—a

o p()p(y) 5 —ac a!
5//7|x—y| d’r d% (¢)Na .

Having reduced the N-body operator H to a one-body operator, we
only need to consider Slater-determinants when trying to minimise the
energy. That is, when considering (1), Hiy)) we need only consider those
1 € Hp, which are given by

w(l‘l,...,.%N) = det(mz(mj))

1
Vv N!
where m; € L?(R®),s = 1,...,N are orthonormal. Note also that
since C5°(R?) is a core for the operator 1/p? + a2 — a™' — §/|z| (see
Herbst [7]), we need only consider m;’s in this space. Then, as soon as
h is a one-particle operator acting on L?(R?), we find that

w,Zh ) = Z mi, hm;).
=1

Here, ( , ) and ( , ) denote inner products in L?(R3"), respectively
L?(R3), both linear in the second variable, and h; is h acting on the
variable z; of 1. Also, we will use || - ||, for the norm in L?(R?).



THE LARGE - Z BEHAVIOUR OF PSEUDO-RELATIVISTIC ATOMS 7
4. LOCALISATION OF THE KINETIC ENERGY

In order to treat the one-body operator in (3.1) and in particular
the singularity in the Coulomb-potential —which causes considerably
more trouble than in the non-relativistic case—we introduce, following
Lieb and Yau [15], a partition of unity (see also Cycon, Froese, Kirsch
and Simon [2, definition 3.1]). For 3 € (0, 3), let 6; and 65 be positive
smooth functions on Ry, 0 < #; <1, such that

1 iféE<1-p
&@):{0 if€>1+4

[0 ife<1-5
%@y‘{1 6> 148

and such that 0,(£)% + 0(£)®> = 1 for all £ € R,. Now define, with
8/9 < r < 1and 1/3 <t < 2/3 (these choices of parameters are
governed by the later analysis), the following partition of unity in R3:

xi() =0, ()
xole) = 01 () 8, ()

xo(x) = ()

Then we have the following picture, at least for « sufficiently small:

> >

- l3)a (l+l3)01 - B)a (1+|3)a

FiGURE 1. The partition of unity.

According to Lieb and Yau [15, Theorem 9; o' corresponds to m)]
we have for f € C$°(R?), that

(f, VP2 +a2f) =Z (Foxi VP + o 2Gf) — (FL9f)  (41)
7j=1

where L(® is a bounded operator on L?(R?), given by the kernel

L, y) = & K@=V S0y w2

472 |z — y|? =
Here K is a modified Bessel-function, defined on (0, c0) by

1 o0
Ky(t) = 5/ ze 2@ gy
0
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For the derivation of this, see appendix A.

Using this we find, with T'(p) = \/p* + a=2—a™!, V(z) = 6 /|z| and
1) a Slater-determinant as mentioned in the previous section, that

(¥, Z {T(p:) = V(@) + ap* o * |zl }9)

= Z(mi, {T(p) = V(2) + ap* do* 2] Imy)
= ZZ(mu Xi{T(P) = V() + ap* ¢ x |z| " }xymi)
- i(mi,[z(a)m,-)

since 23:1 x;j(z)? =1 for all z € R®.

5. THE LOCALISATION ERROR

We now estimate the error introduced by the localisation of the ki-
netic energy carried out in the last section. This error is given by a
bounded operator L(®), whose kernel is calculated in appendix A:

3
L (z,y) =Y L (z,y)
j=1

where

(@) _

We shall start by localising this operator, thereby splitting it it into
twelve terms (!) which we will then treat individually. The terms are
going to fall into groups though, and the terms in each of these will
be estimated together by different means. Two of the terms will be
estimated in later sections, together with the energies near the nucleus
and in the intermediary zone, related to respectively x; and xs.

In this section, the scale of the inner cut-off will be called [, that is,
Il =a", 8/9 <r < 1. Let x_ be the characteristic function of the ball
B(0,20) in R* and x, that for the complement of this ball. Then each

Lg.a), j =1,2,3, splits into four terms:
LOz,y) = x4 (@)L (@, 9)x4 () + x4 (@) L (2, )x- (v)
x- (@) L (2, ) x4 () + x- (@) L (2, ) x (1)

The following lemma will eventually take care of six of these twelve
terms:
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Lemma 5.1. Let | = a", 8/9 < r < 1 and assume that on

supp X+ (2) L\ (2, y)x— ()

one has:
b
lz| >al , |yl <bl |, 751—a>0.
Then, for f € L*(R®), one has
(o L %= < p(@)1£13

where p(e) = o(e 2 ") as @ — 0 for all € such that 0 < € < 7. In
particular, p(a) = o(a™) as o — 0 for all n € N.

Remark 5.2. Note that the result is symmetric in x and y.

Proof. By the assumption, we have that

& —y| > 7|z on supp x4 Lx-

Since both |z| 2 and Ky(a!|z|) are decreasing in |z| (the last is obvious
from the definition of K3), and since (x;(z) — x;(y))* < 1, we get,
pointwise:

a? Ky(a™'ylz))

(@)L (@ 9X-0) < x4 @) = x- )
on supp x+L{"x_. Therefore
|(Fx L x- f)]

< [[ 5@l (x)m(cr%'x')x()d &y

=(/|f(y)\x—(y)d3y)( D [ T ).

Both of these terms can be estimated using the Cauchy-Schwartz in-
equality. For the first, we get

/ F@) )y < 171k Il = 22502 1)

and for the second

[0 D

< I £1l2 (/ (X+($)K2(C|Y+W)2d3x) 1/2.
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Using the estimate (B.7) in appendix A on K, we now get the estimate

[ (et T g

|z

S 4’/T/ 16‘$|72+672a_1’7|w|
21 207 1y|z]

2
x (1+ 207 yjz) ™ + (207 y]2)) ) 22 do
o 1 1

= 1287r2a_1fy/ e 1+ -+ )2 dt
dyla~1 t t

where the last equality follows by the change of variables t = 2ya™!|z|.
Dominating e * in the integrand by e %" " and working out the re-
sulting integral, we arrive at the following (remember, that [ = a"):

r—1 /
(2 @L @ )x- ] < C Btz {10

where C = (8\/5)/(7?)/\/5) and

1/2 1 2
{ C } = {1(47)_4044(1_7") + 5(4,)/)—5a5(1—7')

Lo e stmm 20 r memy 1 e i) M2
+ 5000 4 2 () T 4 L (ay) et L

Now, since 8/9 < r < 1, this term tends to zero as « tends to zero.
Also

(3r—5)/2€—2'yar_1 —26(17_1)

a =o(e

for all € satisfying 0 < € < 7. This proves the lemma. O

We now return to investigating the above mentioned twelve terms.
Firstly, note that two of these terms are actually zero:

X4 (@) L (2, 9)x 1 (y) =0
X- (@)L (z,9)x—(y) =0

as is easily seen by looking at the supports of xi, x—, x1 and xs.
Next, we note that the following three terms fulfill the conditions in
the lemma and therefore are o) for some € > 0:

X+ @)L (2, y)x (y) # 0 for 2] > 20 and |y| < (1+ B)I
X+ (@) L (2, 9)x_(y) # 0 for |z] > (1 - B)a’ and |y| < 21

X+ (@) L5 (2, y)x-(y) # 0 for [z > (1 - B)a’ and |y| < 21
and for |z| € 21, (1 — B)a’] and |y| < (1 + B)I.
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This is due to the fact that for @ small enough, o > ", since t < 2/3 <
8/9 < r. The above is symmetric in z and y, which gives another three
terms.

We are then left with four terms. For these, we will need the Mean
Value Theorem in R3:

Theorem 5.3. Let ¢ : R* — R be C!, and let x and y be in R®. Then
there erists & € Lin]z,y[ (the line from x to y) such that

Vo) - (v —y) = d(z) — o(y).

Proof. This is seen by parametrising Lin[z, y] by v(t) = tx + (1 — t)y,
t € [0,1] and then using the normal Mean Value Theorem on the
function o~y :[0,1] = R. O

In this way, (x;(z) —x;(¥))* < |[|Vx;ll% |z — y|?. Note that for the four
remaining terms,

X+Lga)X+ Xnga)X—
X+L:(J,Q)X+ X—Lga)X—

we only need to take the supremum of |V, (£)| over the £’s between z
and y in the support of the relevant term. In this way we get:

(o) < [[ 176 @I @) )L ) s dy
cF(a)a?
< S [@Ixe@((f]x2) + Go) @)
where Go(z) = Ky(a™'|z]) and ¢ (a) = sup >, |Vx;(z)[?. By first
using the Cauchy-Schwartz inequality, then Young’s inequality, we get

cE(a)a?

oDl < T el 111 xe) = Gall

4

+ —2
¢ (o)
< T Gl

Since

|GallL = /KQ(ofl\acD d’r = 47r/ Ky (t)adt = 67%a°
0
(see (B.6) in appendix A for [;*¢*K,(t)dt) we get the following in-
equality:

3¢t (a)

N E ()
(f, XiL§- e f)| < ]T“in“%-
(@)

For two of these terms, x4 Ly ' x4 and X+L§a) X, this is sufficient, since

cf(a) = sup |Vy;* = ja_% , i=2,3

J
|z|>21



12 THOMAS OSTERGAARD SORENSEN

and since t < 2/3, one gets
N

Z(mi, X+L:(3Q)X+mi) < Ngcfal_% = o(a™?)
i=1
as N = A\Z = XMa™! () and § fixed) and ||m;|]s = 1. Similarly for

X+L§a)X+-

For the other two terms, note that

I x ||2—/|f 2 [y (@) & —/|f

= (fix-f) = (fix-0xi +x3)f)
= (x1f, x=xaf) + (xaf, x=x2f)
since X2 = x_ and x? + x2 = 1 on supp x_. Using this, we obtain
(since x—x1 = X1):

N
> (mix (B8 + L5)x-my)
i—1
N N
< Cal™ ( Z(lei’ X1m;) + Z(X2mi; X—szi)) (5.1)
i—1 i=1
where
C=3(c+0)
cio”® = sup |Vxi(z)]” = [Vxull3
|z <21
coa”? = sup |Vxa ()|
|z| <2l

The two terms in (5.1) will be estimated in the following two sections,
the first one along with the energy at the nucleus, the second one with
the energy in the intermediary zone.

6. THE ENERGY NEAR THE NUCLEUS

In this section we will estimate the energy at the nucleus, that is,
the term

Z(mz‘, X1 {T () = V(x) + ap* o * ||~ Fxims). (6.1)

Also, half of the remaining term (5.1) of the localisation error, treated
in the previous section, will be estimated here. We start by noting,
that p * @, * |z|~! is positive, so that we get a lower bound of (6.1) by
dropping this term. The remaining expression will be treated by using
the following result on the hyper relativistic operator |p| by Lieb and
Yau [15, Theorem 11]:
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Theorem 6.1. Let C' > 0 and R > 0 and let
2.
Her = |p| — ;|x| '-C/R

be defined on L*(R3) as a quadratic form. Let 0 < v < q be a density
matriz (that is, any bounded operator on L?(R3®) which satisfies the
operator inequality 0 < v < q and for which Tr(y) < 0o) and let x be
any function with support in B = {z ||x| < R}. Then

Tr(xyxHer) > —4.4827 C*R™'q{(3/47R?) / Ix(z)|?d’}.  (6.2)

Note, that when x =1 in Bg, then the factor in braces {} in 6.2 is 1.

Here, Tr(+yh) is shorthand for »_, (f, Afr)Vk, where (fi, %) are the
eigenfunctions and eigenvalues of 7. For more details, see Lieb [11].
In our situation, ¢ = 2. For our purpose, let II be the projection on
span{m;|i =1,... N}, then II is a density matrix as above, and

N
Tr(x1Illx1Her) = Z(mi, x1Herxim;).

=1

Since supp x1 C B(0, (14 f)a") with 8/9 <r < 1,set R = (1+ f)a’
and C' = 2(1+ 8)a™ . Then

T(p)—Vi(x)= W — ot

2
> |p| — ol — ;\x|_1 =Hep+ o™t

kd

since /p?+ a2 —a ! > |p| —a! and § < 2/7. Including the first

term in (5.1) we now have

N N

Z(mi,xl{T(p) - V(x)}lei) —Ca'™ Z(mi, X1X17M2;)

N
> Z(mi; x1{Hcr +a ' = Ca' ™ }xim)
=1

v

1=
N
Z(miaXlHCRlei) = Tr(x.IIx1 Her) > —ca® ™
i=1

where ¢ = 44 [ |60,(t)|*t*dt. The second inequality is valid for o
small enough, since r < 1, so that o*!=") — 0 for @ — 0. Now
3r —4 > —4/3, so that the last term is o(a~*/?), @ — 0, which is the
desired order. Note that the above procedure is what decides the scale
a’, 8/9 < r < 1, on which one can localise near the nucleus.
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7. THE INTERMEDIARY ZONE

The energy in this area is given by the term

N

Z(mi,xg{T(p) — V(@) + ap* do* ||~ Fxam). (7.1)

i=1
The zone defined by the y, was introduced to separate the outer zone
defined by x3 and the support of the coherent states to be introduced
later. As in the previous section, we note, that by dropping the term
involving p* ¢, *|z| !, we get a lower bound of the energy in (7.1). The
remaining expression will be estimated by a generalisation of the Lieb-
Thirring inequality (see Lieb and Thirring [13]), proved by Daubechies
in [3, page 518|. See also page 516 loc. cit. for the conditions on the
function T'(p).

Proposition 7.1. Let F(s) = [, dt[T7'(t)]*, where T(p) = T(|p|) =

Ip|2+ a2 —a! as a function. Then

N

6.3 AT0) = Vie)}o) = —aC[ P(V(@)) s

where C < (0.163.

Note, that this in particular means, that the negative part of the
spectrum of the operator T'(p) — V' (z) is discrete and that the sum of
the negative eigenvalues of this operator is bounded from below by the
quantity —¢C [ F(|V(z)]) d*. To see this, let {e;}22, be these negative
eigenvalues, eg < e; < ..., and {g; 72 corresponding orthonormal
eigenfunctions, and let ¢/ be the Slater-determinant of the first N of
the g;’s. Then, by the above proposition,

N
~aC[ F(V@)Dd's < (0,3 {Tm) - V(e }w)
i=1
N N
= (9, {T) = V(@) }g;) =D e;.  (72)
Jj=1 j=1
Since the left-hand-side is independent of NV, we get the statement by

taking the limit N — oo. This will, as mentioned above, be used on
the energy related to the cut-off xo, but also on the remaining half of

the term x_ (L{* + L{)x_ discussed in section 5, see (5.1). First, let
us calculate F":

Tp)=T(p))=VIp*+a2—a =T '(t) = VI +2a L.
Then

0 0

(67
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Now, by a Taylor expansion of the second term in the integral, we get

3/2 2 343 pl
t 3 3 3a°t t\—
(1+%> — 1+ S - /(1—3)2(1+%) 2 ds
0

4 32 128

3a 3a?
<14 — s )
<1+ 4t+ 3 (7.3)

since the last term is negative for ¢ > 0. That is, for s > 0:

s 2
F(s) < / (Y2214 2% 4 3% 2y g
0

« 4 32
_ (2 3/2{2 5/2 , O 7/ a’ 9/2}
= (a) = + 18 +488 .

The two terms we wish to estimate in this section are, as mentioned
above

N

Z(mi’ X2{T(p) - V(z) }X2mi)

and

N
Cal™ Z(Xﬂnz’, X-X2m).
i=1

In order to do so, note that on supp x_x2 we have

0 0 12
= — > > 4
V(z) 7 2 2ar 2 Ca

for o small enough, since r < 1, so that a'™" — 0 as o — 0. Therefore,
by the above estimate on F'(s), and still for a small enough, we have

N

Z(mi: X2{T(p) — V(@) }xami) — C o' 2"y " (my, xax—X2mi)

=1

> Z(mi,m{T(p) — 2V () }x2mi)

I
.MZ

(mi, x2{T(p) = 2V (z) b o)

=1

with V(z) = x2(z)V(x). Letting (e, g;) be the negative eigenvalues
and corresponding orthonormal eigenvectors for the operator 7'(p) —
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2V (z) as before, we then have
N

Z(mi;X2{T( ) — 2V () }xam) _E(XQmi;{Zej(gja )gj}XQmi)

i=1

_Zzeg| Xami, ;)| —ZZ&” mi, X295)|
2 Zej”XQQj ? > Zej-
J J

Here we used Bessel’s inequality (remember, that the m;’s are orthonor-
mal), that e; < 0 and that 0 < x» < 1. Using (7.2) on T'(p) — 2V (z),
in the limit N — oo, we now reach

N

Z(mi, x2{T(p) — V(z)}xom;) — C " Z(mi: X2X—X2M;)

=1

> _é/ FEV()]) d

supp X2

> o[ () v eve)™

+ 5 @V@) "} d

A o 9\3/2(2,25 5/2 3,20\ 7/2
__047r/w GG+ 50

o |z|
042 2(5 9/2 9
— (= d
+ 48(|.1‘|) }\a:\ |z|
= —C’[é(a% — a%) + @(a_(r;l) — a_(t;rl))
5 7
i 4(52( 1—23r %)]
—\« —
72

where C' = 647C6%?. Since 8/9 < r < 1 and 1/3 < t < 2/3 , all of
these terms are o(a~*/?3), which is the desired order. We note, that it
is this analysis that decides the scale o of the outer cut-off xs3.

8. THE OUTER ZONE AND THOMAS-FERMI TEORY

Up to order o(o*/3) we are now left with

Z(mi, Xs{T(p) — V(z) + ap* ¢q * |z~ } x3rm5)

o p()p(y) 5 —ac a1
5//7\$—y\ d’rd?y (¢)Na™".
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This expression will now be related to the semi-classical Thomas-Fermi
energy. This is done by introducing coherent states, following Lieb and
Yau in [14, proof of lemma B.3]. Let g be the function chosen in
section 3, that is, g € C$°(R®), spherically symmetric, non-negative,
supported in the unit ball B(0,1) of R* and such that [g¢(z)*d% = 1.
Let go(z) = a™%/?g(z/0®), 1/3 <t < s < 2/3, that is, ¢a(2) = ga(z)?
with @ = o®. In this way, since N = \Z = Mo !:

ac(p)Na™t = dc(p)a™ = o(a™?/?)

which is also 0(04_4/ 3). Define now the coherent states g?%, p,q € R®
by

95°(x) = ga(z — q)e™".

With T(p) the function 1/p? + a2 — o', one then has the formulae

/ / ab % (£, 629) (g2, f)

(f,(V*g2)f d’p [ 989 (gh4, f)

d* £, 2 (g2, f) _0(04—1/3).
(8.1)

(T

The proof of these formulae is carried out in appendix B. In this way,
letting V' (z) = §/|z| — ap * |z|7! (remember, that ¢, = g2):

Z(mz’, xs{T(p) = V(z) + ap* ¢q * x|~ } x3mm:)

- 5
Z mg, X3{T * (bas ook ¢as - H}X?)mz)

mi7 X3{T - ‘7(37) * ¢as}X3mz’)

Il
I Mz i

N

Aoy (T() = V(@) (3 mexs, 029

— No(a™'73).

The second equality follows from Newton’s theorem (since @,s is spher-
ically symmetric): |z|™' — |z|™! % ¢os = 0 outside supp @,s, and since
supp x3 Nsupp ¢qs = P for a sufficiently small (as s > t),

al 5 5
;(mia X3{m * Pos — m}Xiﬁmi) =0.
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This is one of the reasons for introducing the intermediary zone by the
function 3. Note also that No(a'/?) = o(a~*/?). Now, for a small
enough, a®~" < 1/4, since s > ¢, so that if |g| < o', then

s 1 t
|z —q| < &’ = |z| <3
and so (m;xs,g2?) = 0, since supp g, C B(0,a*) and supp x3 C
R? \ B(0, 50'). That is, for & small enough
supp, | (mixs, g&9)|* € R* \ B(0, ;)
so that for any u > 0 we have, with M(p, ¢) = SN, [(mixs, g29)|* and
[f]i = max{+f,0}:

N

d® f/(q)) (Z [(mixs, g29)°)

dp d’q (T(p) — (V(q) — ap)) M(p, q)

ItJI> at
N

- 04#2 X3Mi, X3M;)

dp - (Vlg) — o)|_—anN

\Q\> at

since 0 < M(p,q) < 1 and (x3m;, xam;) < ||m;]|5 = 1. The first is seen
by Bessel’s inequality, since the m;’s are orthonormal and ||x3¢%7||2 <
lg%|l2 = 1. In this way we have shown that for p > 0, p: R* - R

and o) € Hp = \V L2(R3 ?):

(6, Hp) > d — (V(g)—om)|

|q|> at

_a [[P@)PWY) 5 s N ot
2// P— dx d’ — auN — o( ). (8.2)

Choose now p to be the Thomas-Fermi density pJZYFZ, that is, the func-
tion that minimises the Thomas-Fermi functional (here, v = (37r )/3):

erelp) = 371 [ o) i [ ofo) T o+ 5 [[ 2

over the set

{pe IPPR)NLR®)|p> 0,/,0(33) d’r < N}.
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(For the Thomas-Fermi theory, see Lieb and Simon [12] and Lieb [9]).
Then pN:7 satisfies the Thomas-Fermi equation:

v p(2)*? = [‘i

z|

for some unique p = u(N). Furthermore, for N < Z,

—pxlalT —p (8:4)
+

/péYFZ( Yd» =N and u(N)>0
and for N > Z

[ i@ ds=2 and u) =0

(see Lieb and Simon [12, theorems I1.17, 18 and 20]). In this way,
[ ppiZ(x) d*% < N implies N > Z, and therefore u(N) = 0, so that we
always have

H(N) [ (@) dis = (NN, (8.5)
Let Erp(N, Z) = Epp(phi?) and define the Thomas-Fermi potential by

Vip' (@) = Zf|al — ppy’ * |27t — p(I)

then we have the scaling ([12, (2.24) p.608]) (remember, that A = N/Z
is fixed):

Ern(N,2Z) = Z"P&p(\1) = CrpZ™? (8.6)
V2 (x) = Z*3V (2 Px) = Z3Vipp(ZYx). (8.7)

The idea is now to estimate the difference between the integral
n (8.2) (with p = p:Z and u = pu(N)) and

a2 = (2= o a1 = )]

lq|>Fat

This is done in two steps: first, we change the domain of the integration,
then we change the integrand, each time estimating the error.
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First,
_ ﬁ // & d% [T(p) — aVﬁm’Z(Q)]f
g>30!

d* d% (T (p) — oV’ (q))

|‘I\> at T(p <aVTF

d* — aVQ{\;;Z(q))

// d3p — oV (q))-

lg/>% at T <aVTF

|q|> at ap <aVTF

Since T(p) > 0, we get

[ @@ - Tw)

la|>Lat; T(p y<aV q)<o¢7J
<a / / & d’q Vi (q)

=~ N,Z 2
q|>fat; T(p)<aVip” (q)<aly

Using the scaling (8.7) and the change of variables w = §/3a~1/3¢, the
above is equal to

51/3a2/3// d*p d* Vg (w). (8.8)
|w|>i(51/3at—1/3

- 2
T(p)<64/3a= 1 3Vpp(w)<alr

The limits in the integral means, that

1
26303V (w) < p? < 26Y3a7 3 Vpp(w) (1 + 554/3&2/3VTF(“)))

so that with

X = 2(54/30!_4/3VTF(U))
1

Y = 554/3042/3VTF(W)

= [pl?

1,

W = —g§l/3t1/3
4
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we have

(8.8) = (4m)26"/307/3 / dleo] 02 Vi ()
w

(1+Y)*2 —1).

*° X
— (4m)25M 302 / dlw| |w ]2 Vi (@)

w

By the Taylor-expansion (7.3), we have

u+Yf”§1+;Y+§Y2

8
and so
2 7/3 4/32
(88) < (47‘-) 0 f/ |w‘2 )5/2
3 3
X (164/3a2/3VTF(w) + 558/3a4/3VTF(w)2) d|wl.

Using that V.7 (z) < Z/|z|, since u(N) > 0 and pY:7 > 0 (remember
- :
that Vrp = V7)), we arrive at

(8.8) < 8v/2r2511/3q2/3 / dlw| w2 + V/ar5 / dlw| |w| "2
w w
~ 2B L3223 M6t g (1302

= o(a™"%) + o(a™")

since ¢ < 2/3. This means, that
s / [ dvia [To) - i ()]
(2 )3 TF _

Iq\>lat
/ [ dbdu(T) - Vi ) - ofa™).

|q|> ozt ap <aVTF

Next note that since |¢| > 7o and oV Z (q) < 8/|q| in the area of
integration, we here have, that

Tp) =P +a?2-at> a% N L
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In this way, we get

# / / dp dy T<p>—av%if<q))

|q|> at ap <aVPR?(

4

b
d* 3@ — Oerﬁ}Z(q))

|q\> at a®y <aVTF (9)

2
p
d* d% (oz? — aVT]\;;Z(q))

2 N,Z
|q|>%at; a%<aVTl; (9)

(2%)3/ %ld?’pd?’q. (8.9)

2 N,Z
\q|>iat; af-<aVip® (q)

Note, that

// d* a— - aVT{\;Z(q))

\q\> at afy <aVTF (q)

dody |2~ (2= o2« ol - u(N))]
o [ Bl

Iq\> at

- (ﬂ _PTF lq|” - (N))]

Let us now look at the last term in (8.9). Again using, that V2.7 (z) <
Z/|z|, we have that

4 4
// D dipdy < //%d%od?’q

2 N.Z 2
q|>3ot; al<aVapi(e)  lal>3et; al<d/lq]

o0 V2Z[ldl |4
— (4n)’ / dlq (w / 2L P dip
iat 0
o0 2Z/\q|
—2r [y (\q|2[t7/7] )
iat 0

271— (2Z)7/2/ ‘Q| 3/2 d| ‘ _ 871-2(2Z)7/2a7t/2_
7 1 7
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Using this, we then get the following

L / / dp d’ T(p)—qu{fw’Z(Q))

|q|> at, ol <aVTF

Z
&’ d3 W_pTF * |q|” t— p(N)

2Z 7/2
T

—_

ENGE nye 22)77

Hence, since § = Za is fixed, we have

o 6=1)/2 (2Z)7/2 _ 8\/§a—(1+t)/257/2
T e

which is o(a~%/3), since ¢t < 2/3.
Summing up, we have now proved that for ¢ € Hp = A\~ L*(R?,C?):

(b, Hy) > 'y 5 = (= la = ()]
// ngZu _P:TUT Y) s d*dP — ap(N)N — 0(0474/3).
(8.10)

Integrating firstly in p in the first integral in (8.10), we get, for each ¢
fixed:

Jan[ — (= i ol = )] (8.11)

= [ (5~ el = n)

lq|

The [---]4, since, if the term in brackets is negative, the integrand
n (8.11) will be zero.
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Now, because pQIY;vZ satifies the equation (8.4), we get, that

A 5/2
[ PTF *|q|” I_M(N)]
lq] +
=" ppi (@)
3/2 N,Z Z 1
=M @) — A ™ = ().
In the last equation, no [---]; is needed, since, if the last term is

negative, pnr7 is zero, because of (8.4). In this way, by the above and
by (8.5):

Z
pri (2)ori (Y)
— ()5/3d3 NZ( )£d3
5’}/ pTF Prp ‘(]| q
+CY//’%w(q) prie * g™ d3q+au(N)/p¥FZ( ) d%

//pTF )orie ( Y) g vy — ap(N)N

lz —y|

A
=a (G [ @ a - [ @ d
5 k4
NZ
/ / PTF PTF ) B d3y
lz —y

—O[gTF NZ

Since Hyey = o 'H, and Z = da !, with § fixed, 0 < § < 2/7, this
shows, that for all ¢ € Hp = A~ L*(R3,C?):

(W, Hyp) > Crp 2" — o(Z71°)
because of the scaling (8.6). This ends the proof of theorem 1.1. O

APPENDIX A. THE DIMENSIONLESS OPERATOR

In this appendix we derive a dimension-less expression for relativistic
atomic Schrodinger operators. Instead of setting h = m = c =1 as
done most-where in the literature, we keep all relevant physical con-
stants, to reach an expression for the relativistic quantum mechanical
energy. This will be given by a dimension-less operator times the rel-
evant fundamental energy R.,, Rydberg’s constant for infinite nuclear
mass, related to the Born-Oppenheimer approximation.
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In relativistic mechanics, the kinetic energy of an electron with mass
m and momentum p is given by

Erin = /P22 + m2¢t — mc.
In this expression, [p] = MLT~!. Since we wish to consider the mo-

mentum p as p = %V, where [p| = L™, we re-scale p with the relevant
physical constants: since [fic] = ETLT ' = EL, the appropriate ex-

pression is:

Erin = \/B2¢2p? + m2¢* — mc?.
Choosing Gaufian units, in which gy = (47)~!, the Coulomb energy of
two charges, Z1e and Zse at x; resp. xo becomes

Z1Z2€2
Eoou = ——.

Looking then at the relativistic Schrodinger operator H,. of N elec-
trons around a nucleus of charge Ze, assumed to be at rest at the
origin—the so-called Born-Oppenheimer approximation—one has

N

H Z f2c2p2 4+ m2ct 2 Ze? + Z e?
rel — Ccop mc* —me" — —— .
’ VR 2] £ ai— g

Jj=1

Now look at all the relevant physical constant. Apart from A, m, c and
e, there are several combinations of these that will be of our interest:

a= the fine structure constant.
c
h? h . .
a=—5=——1:  the Bohr radius for atomic hydrogen.
me maoc
1, 5 _ me ) . .
Ry = Qe me =5 Rydberg’s constant for infinite nuclear mass.

We now use these relations to derive the wanted expression for H,;:

H rel

al 7Ze? e?
:Z{,/h202pj2-+m2c4—mcz——}+ Z —_—
al a’Z a?
= R Z{\/a2a2p§+a4—a_2——}+ Z — .
= EZ1 B i L 2]
Now, to get a dimension-less expression, make the change of variables
x5 h?
yj = —J, a =

a me?’
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This amounts to measure lengths in units of the Bohr radius. Since

pj = %%, one gets g; = ap;, with ¢; = %a%* Note, that both y; and
J J

g; now are dimension-less. Inserting above yields

N

7 1
Hyy = Rog Z{\/a2q?+a4—a‘2——}+ DD el
2 |y — v

j=1 1<i<g<N

This is the desired expression for the Hamiltonian H,, with relativistic
kinetic energy. To get the ’classical’ Hamiltonian H. note that

Vol +at—a?= a‘2< 1+ (agj)? — 1)

_ 1 q;
o™ (1+5(0g)?) ~1) = 3

Q

in the non-relativistic limit, that is, for ag; small, so that

Hclsz{i{§_£}+ 3 ;}

Since

q?
oz_Q( 1+ (agj)? — 1) < Ej

for all o and all g;, one gets, that

<¢7 Hrel¢> < <¢, Hcl¢>

for all » € Hp = AV L2(R?,C2). In Thomas-Fermi theory, this imme-
diately proves the upper bound on the relativistic quantum mechanical
energy H,,; by the semi-classical Thomas-Fermi energy by Lieb and

Simon’s proof [12] of this bound on the ’classical’ Hamiltonian H;; see
also Lieb [9].

APPENDIX B. A FORMULA FOR THE KINETIC ENERGY

In this appendix we shall prove the localisation-formula (4.1) for the
operator /p? + a~2 (which is the equivalent of the IMS Localisation
Formula for the Laplace operator —A, see Cycon, Froese, Kirsch and
Simon [2, Theorem 3.2]). Let firstly K> be a modified Bessel-function
of second order, defined on (0, 00) by

1 [ 1 -
Ky(t) = —/ ze 21 gy
2 0
It is easily seen that K5 is well-defined, decreasing and differentiable.

Other properties of Ky will be derived later. Let then x;,7 =1,...,k
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be smooth positive functions on R?, such that . x3(z) = 1 for all x
in R? and define on L?(R®) the bounded operator L(®) by the kernel

L(o‘)(a:,y) _ a2 KQ(Oé—1|-T - y|) Z(X](x) _ Xj(y))2-

@2m)? e —yl?

Then for f € S(R?) one has the formula:

k
(F VP +a2f) =) (fxVP+a2Gf) — (LL9f).  (B1)
7j=1
The proof of the localisation formula (B.1) will be a consequence of the

following formula:

Lemma B.1. For f € S(R?®) with Fourier transform f, one has
(f, (VPP + a2 =a™)f)
-2 K. 1|, _
— o [ 170 - s 2 ey, m)

lz —y

Proof. Note, that by dominated convergence in momentum space, one
has

VP T a2f) = limo{(f, f) = (f, e VP )

tN\O ¢
To calculate the integral kernel exp[—ty/p? + a~2](z,y), expand the

Fourier transforms:

(f, e VP ) / )PtV gy

— a5 [T ( [ ey ) as e,

This is justified by the fact, that f € S(R?). Now, for x, y fixed, choose
polar coordinates (|p|, 8, ¢), for p such that (x—y)-p = —|p| |z —y| cos@.
Then

/e—t\/zmei(z—y)-p 4
B / ) / i / "tV ilblleyleost sin .4 d pf? dlp)
0
= 27r/ Ip|%e _t\/m</l ellp! lz=ylu du) dp| , u=—cosf
0 —1
[ eV sinlpl o = ) dlo

ta 2|z — y| (|:E —y* + t2)_ K, [a/_ (|lz —y* + t2)1/2]

Iw - yl
A7

|z -y
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where the last equality is given in Erdelyi, Magnus, Oberhettinger and
Tricomi [4]. In this way,

(fe V)

—2 . K. -1 — g2+ 2 1/2
= t;rz //f(l‘)f(y) 2[04 |a§‘i y|2y|+;; ) } dvd¥y.  (B.3)

Now, letting F}(p) = e~*VP***™ the above shows, that

File) = W / Fy(p)e™? d'p

R el R
™

]2 + 22

and therefore, for all y € R3:

ta 2 / Ky |a Yz —yf? + ¢2)1/?]
272 |z —y|? + t2

1

d*r = F;(0) = e™'

(B.4)

Hence we get, using (B.3) and (B.4), which are both symmetric in z
and y, that

N ) - (foe V)
= %{(fa f) - (f’ e_taflf)} n %{(f, e—torlf) _ (f’ e_t\/sz)}

—0-~ !

e
1

+of [5(r@r + 1P - T ) - Tl @)

4
ta*? K2 [Q{_l(|f1) _ y|2 + t2)1/2j|
X
272 |z —y|? + 12

d>x dy

——

Cancelling ¢ and noting that

—ta~! —0-a~!
e —e d 1
tl\O t—20 dt (e )

we get that

i L {(f, f) = (f, VP )

tN\O ¢

— ol a”? ) — o Kootz — yl) 3 3

This proves the lemma. O
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Now, to prove the formula (B.1), we simply use the fact, that Zj X? (z) =
1 for all z in R3:

Z 1 (@) f (@) — x5 (y) f(y)]?
=[f(@)*+|f(y) Zx; ) (FW)f (@) + f(2)f(y))

= [/ |2+ng z) + f(2)f () (s (@) = x3(%)).

Note, that x;f € 8(R3), since x; is smooth and bounded, so that using
the formula (B.2):

k

Z(fan(Vp2+a72 ZX]f, VD 2+a72_a_1)Xjf)

j=1

—

@ NS ) ) v o Kol e —y)) 5
5/ D= @)~ S ey
= f@P+ 2 x(@) (Fv)f ()

<.

+ @) W) (@) — x;(v) } K2(|O;_—‘:Z/|; ) .
(B.5)
Using now, that
//XJ (=) = xi(v)) KZ(T;_JZ‘; ) d’r d¥
-/ / T te) ~rs) AT g

simply by interchanging x and y, we finally get from (B.5), that

Z Fixi VP + a2, f)

a | y|) 3

27r //If |x_y|2 d’ d%
_2 k QKQ(a_l‘.'E—yD s
+ —(%)2 //f(x)f(y) ; (xi(2) = x;(»)) p— dr d%

which, using (B.2), proves the formula (B.1). O
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We now derive two facts about the function Kj:
3
/ 121K, (t) dt = 2” (B.6)
0

Ky(t) < 4\/; 1+ 21t + (21) ) forallte R, (B.7)

The proof of (B.6) is straightforward by using the definition of Kj:

o o 1 o
QK :/ 2 _/ 2 (z4+2~
/0 t°Ky(t) dt i t (2 i ze~ d:c) dt
1 [ &0 _
= —/ m(/ 2e z(@te 1)dt) dx
2 Jo 0

where the interchanging of the order of integration is allowed by Tonel-
li’s theorem. By applying partial integration three times,

0 (x 4+ 271
and so

° 1 [ 16z
PKy(t) dt = = — " d
/0 2(t) 2/0 @tz )"

0 4 o 4
— A v
8/0 @i /Oo @™

4

. z .
:4-2W2R68(m,2>
_ gm0 =3

321 2

For the estimate (B.7), we need to rewrite Ky. This is done following
Gray and Mathews [6, pp. 50].

Observation B.2.

K= e [ @) e @

To prove the observation, we start on the right-hand-side of (B.8).
Setting t + & = /12 + 1, one gets, since then n = £2 4 2t£, that

RHS (B8) — m F / —\/t24+n Qt)3/2d727’]
\/ 2/ +1

Using the formula (to be found in any table of integrals)

/ o @e ) ge _ VT oa
0

2a
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with a = \/t2 4+ n, b =1/2, we arrive at

RHS (B.8) = % /oo 773/2(/000 — (@2 +me2+1/(202) df) dn

1 T —weryeon ([ e 3
= (5)(215)2 e ( e n dn) d&
5 0
= 2/006 (P€2+1/(26)%) =5 ge
0

since one has the formula
/ e dn = €7°1(3).
0

Making the change of variables x = we finally get

2t§2’
1 [ i,
RHS (B.8) = 3 / ze 3 4y = Ko(t).
0

Now, to prove the estimate (B.7), use the Tayloer expansion (7.3) on
the integrand in (B.8), to get

£*) d¢

0 3
—t —£¢3/2 1 -~
¢ /0 ¢¢ (+4t€+32t2

_ 1 00—53/2
“Varg© (/ e

3 3 *
e £g5/2 —£¢7/2
+ 7 dE+ —— 3912 / e ¢ d§)

4t

™ 1 _t( 5 3 7 3 9>
= /= LG+ 2r@) + -2 (2
2t T(2) ° G+ 3G+ 510
T . 15 105 T o, 11
(- <4/ Zet(ie =+ ).
2 ¢ (1 g+ og) <45 +2t+(2t)2)

APPENDIX C. INTRODUCING COHERENT STATES

In this section we will introduce coherent states and prove the for-
mulae in section 8. The error introduced by using coherent states will
also be estimated here.

Lemma C.1. Let g € C°(R®) be spherically symmetric, non-negative,
supported in the unit ball and such that ||g|ls = 1, and let g7 (z) =
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g(z — q)e™*. Then

q (f,g"") (g™, f)

(f, (V *|g|*) f dp O)(f, 79 (g7, f)
(fa\/mf)z (2 d* P2 + a2 P9 (g"4, f)
— 3o ||V9||§OV01(SUPP 9) ||f||§- (C.1)

Proof. The idea of the above formulae is to write the identity and
other operators on L?(IR?) as superpositions of the one-rank operators
Tpg = (,977)g"?%. To prove the above formulae, start with the right-
hand-side of the second formula (the proof of the first formula is similar,
just more simple):

o &V (q)(f, 979 ("% f)

& d% V(g / FW)gly— Zpyd3y} (C.2)
/f g(z —q)e Zp‘”d?’x} (C.3)

Notice, that the function in the last brackets is (27)%? times the
Fourier-transform of the function F,(z) = f(z)g(x —¢). In this way
we get, by Parseval’s formula:

C3= / dhdqV(g) | Ey(p)? = / V() | E

:/dng(Q)HFqH%=/d3qV(q)(/\f(x)‘2|g($_q)|2d3x>
:/d%\f(g;)‘z(/v(q) \g(x—q)|2d3q)

= (f,(V*g)f).

This proves the second (and the first) formula.
To prove the formula for the operator 1/p? + a~2, note that

/g(w —q)?d’=1for all 7 in R?
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so that, by the symmetry of the operator y/p? + a2
(VP Fan = [ [ F@ot - o (VP + a2 ) @)
5 [ P ra @t - 1) dyd
=5 [ T@ar (Vi +an @)
+5 [[T@ \/p2+a‘2(gq2f))(x) s (C4)

Here, g,(z) = g(z—¢). Remembering, that g,(z)? is reel and letting g,
denote the multiplication operator defined by this function, we have

Cd=— //f p+a—2

+\/qu ~ 2g, p2+a_29q)f]( ) d% d
// (9./) (@) [V/P? + a2(g,f)] (z) d° d*
——//f(a:) L.f)(z)dqd’
I (s ( [ emnmima)e )

94(2) () dy d (C.5)

where

)@ = [ { [ loaw? + ato?
— 29,(2) 94 ()] V/P* + a~2eP=Y) d3p}f (y) d%.

The second term in (C.5) is equal to

J[ avan e ([ Tomer i) ( [ swate i)
- / / dpdg Vp* +a” (£,9"0) (", ).

The first term in (C.5) is the error, which will now be estimated. Keep-
ing z and y fixed, we have, as showed in the proof of (B.2):

Ly(z,y) = / [90(1)? + 94(2)? = 294(2)9,(1)| V/P* + o> P dp

= [0o) - ()] G 2L
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In this way, using the same ideas as in section 5, we reach the estimate
o2

Ly(z,y) < ||ng||oo A2 2(0‘71|33 —yl) (Xsupp gq(x) + Xsupp gq(y))

where Xsupp ¢, 15 the characteristic function of supp g,. This gives us,
that

/ Ly(z,y) dq

< [ 190l p * Kafo™ |z ) (e () + X510D 05(9))

=2|VyllZ —Kz( ~Hz — y|) Vol(supp g).

By this, we finally get, by using first Cauchy-Schwartz’s, then Young’s
inequality, that

[7® [ Lo du ) a

< [[1s@i( 2||Vg||2—K2< lwx—ynvm(suppg))\f<y>|d3xd3
<2Vl oy i 1151 % Galls Vollsupp ), Gale) = Ka(a )

<|IVall% 5 = ||f||2 |Gallx Vol(supp g)

o2
= Vol = 67r2a3||f||§Vol(supp 9) (see B.6 for ||Gy]|1)

=3a IIVgllioVol(Supp 9) |1£15-
O

For the case 8.1 in section 8, let the coherent state g¢ be defined from

the scaled version of the function g chosen there—that is, g € C$°(R?),

spherically symmetric, non-negative and with support in the unit ball
B(0,1) of R®. Then the coherent states are

. T — )

g29(x) = galw — @)™ = a3/ (F L) e

aS

In this way, [|[Vgal2% = o ||Vgl[3, and Vol(supp ga) = 0, and

therefore

P T a2 'y /P (£, g a2, )

o /3
since, as s < 2/3,

4
oo |Vl 0% |fI3 = Cal® = ofa %) as a =0,
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This proves the formula 8.1, since

1 3 P59\ ( P4
(10) = o [ dbdu(r.a2iaen.

and T(p) = /p*+a 2 —a '

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.
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