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1. INTRODUCTION.

In this paper the coefficient ring of the cohomology groups is F;, when no other ring
is presented in the notation. The mod two Steenrod algebra is denoted A. Let n = 2"
where r is a positive integer and let X be a space with finitely generated cohomology
in each degree. The cyclic construction of order n on X is the orbit space

E,X := EC, xc, X"

where C), is the cyclic group on n elements. The mod two cohomology of the cyclic
construction can be computed using the following classical theorem:
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2 IVER OTTOSEN

Theorem 1.1. There is a natural isomorphism

ox : H(E,X) — H*(C,; H*(X)®")
which takes the cup-product in H*(E,X) to the group cohomology product in
H*(C,; H*(X)®").

The group cohomology on the right hand side can be computed using the standard
resolution of Fy with free Fy[C),]-modules. It is the homology of the complex

0 — H*(X)®" =5 H*(X)®" &5 H*(X)%" 5 ...

where T denotes a generator of C,, and N =1+ T +T? + ---+ T""!. An invari-
ant element a € (H*(X)®")% gives an element in the quotient H*(C,; H*(X)®")
(possibly zero) which we denote €* @ a. An element b € ker N gives an element in
the quotient H**(C,; H*(X)®") which we denote e*™!' @ b. With this notation one
obtains the following result for the cyclic construction of order two:

Proposition 1.2. Let B consist of a basis for H1X for every q. Then H*Ey X has
a basis of the following form

{"@@@y+yer),e ®:2%|z,y,2€ B,z #y,k >0}

The most important fact about F3X is that it can be used to define the Steenrod
squares:

Theorem 1.3. (Steenrod) Let A : X — X x X denote the diagonal map. The map
(1 X A)* : H*(EQX) — H*(BCQ X X)

satisfies
|| , ,
(1 x Ay (e"@2%%) =Y e g Sz

=0

Another important fact about the cyclic construction of order two is that one knows
the mod two Steenrod algebra structure of H*FE, X given the one for H*X:

Theorem 1.4. The mod two Steenrod algebra structure of H*EyX 1is given by the
following formulas

. k — 9 L .
(1) Sql(ek ® Z®2) — Z ( + |Z| ' ])ekJrzZ] ® (quz)®2

[552] . '
+ Ok,0 Z ®(Sq2® 8¢ "2+ 8¢ "2 ® Sq" )

r=0
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2) Se(eEoy+tyor) =7 o (S¢?r® S¢ 'y+S¢ Ty S¢x)

=0

where 6 denotes the Kronecker delta.

In this paper, these results are generalized to E, X where n is any power of two.
First of all Theorem 1.1 gives the following extension of Prop 1.2

Proposition 1.5. Pick a basis for H1X for every q, and let B(n) denote the product
basis for H*(X)®". C, acts on B(n) by cyclic permutation. Let O denote the orbit
space of this action. Then one has

H*E,X = P H*(Cn; V(B))
Beo

where V(3) denotes the Fy-span of the elements in 3. Let |3| denote the length of the
orbit 3. Let s(3 denote the sum of the elements in 3 and let 3 denote a representative
of B. For || < n one has

H*(Cy; V() = Span{e™ @ 543}
H**Y(C,: V(B)) = Span{e*’™ @ 3}

For |B| = n one has

H°(C,,; V(B)) = Span{e’ ® s3}
HY(C,; V(B)) =0 for g >1

One main result of this paper is the following generalization of Theorem 1.3

Theorem 1.6. Let m = 2", r > 0 and let A : X — X*™ denote the diagonal map.
Then the map (1 x A)* : H*(Ey4, X) — H*(BCly, x X) satisfies

|z| . ,
(1 % A)*(eﬂc ® I®4m) :Z€2k+2m(|z|—z) ® (qux)Zm 4
=0
Z 62k+1—|—2m|$|—2z ® (Sq2z(x2(m—1)sq\z\—1x) + Qg:{l(fﬂ))
=0

and
(1 % A)*(62k+1 ® l_®4m) — 262k+1+2m(\m\—1) ® (qux)%n
=0
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where the QQ-operation is defined by

2]
Q3(z) =3 S¢(x)Sq" ()

J

N3

Qp(x) == S¢ (@ Qs (2) , k> 2

- 1

0

<.
Il

Another main result is the generalization of Theorem 1.4.

Theorem 1.7. The mod two Steenrod algebra structure of H* F4,, X is given by the
following formulas.

(3) Sq23(62k ® l‘®4m) — Z

320

W s o = (

<2k + 2m|x|

_.7 2(k+s—3) S 27 (,.@4m
25 — 2j )e @8¢7 (@)

||

) >€2k+1l’®4m + 61@,060 ® Sql(l’®4m)

k —mj . .
(5) Sg¥(e* ! @ 2®m) = 3 ( +S"i|12’|mjm-7)e2(k+s—y)+1 ® (Sqlz)®im
720

(6) Sq2s+1(62k+1 ® l‘®4m) =0

This gives a complete description of the structure since all elements of lower symmetry
equals the transfer of an element of highest symmetry.

One should expect the above to work for a general unstable .A-algebra, not nec-
essarily of the form H*X for some space X. The following result from this paper
confirms this and one gets some grip of the underlying algebra making things work.

Theorem 1.8. Let M be an unstable A-algebra. The formulas in Theorem 1.7 define
an A-module structure on the group cohomology modules H*(Clyy; M®*™) i.e. the
Adem relations are respected. The formulas in Theorem 1.6 define a map

§ : H*(Cyn; M®*™) — H*(Cy) @ M
which is A-linear with respect to this action.

The thing that makes the A-linearity work is that some other operations closely
related to the Q-operations above satisfy Adem-like relations (see Definition 6.3 for
the definition of the operations and Theorem 6.8 for the Adem-like relations).

The last four chapters are about getting information of the free loop space using

these results. These chapters do not have the character of a final theory. Let AX
denote the free loop space on X. The S! homotopy orbits of AX is the space

(AX)hsl = ESl X g1 AX

This construction has interesting connections to Waldhausen’s A-theory, see [K6].
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We give an approximation to the mod two cohomology of (AX),s1 which is a
functor of the mod two cohomology of X. To be more precise let ev : AX — X"
denote the map which evaluates a loop in the n’th roots of unity. It is a C),-equivariant
map thus it induces a map

(1 x ev)*: H(E,X) — H*(ES' x¢, AX)

We only use the maps where n is a power of two. For two different values of n we
have a transfer map between the two corresponding right hand sides. Passing to the
direct limit we get the reduced cohomology of ¥((AX )ps1)4. There is a limit system
on the left compatible with the transfer limit system on the right. The approximation
¢(X) is a quotient of the direct limit of the left hand side. Neglecting the suspension
factor we get a map of degree -1.

¢:UX)— H ((AX)ps1)

It is shown that this map is an isomorphism when X = CP* and X = RP*. There
are however also examples where it is not an isomorphism.

The approximation can be used together with the Serre spectral sequence associ-
ated to the fibration AX — FES'x g AX — BS'. We use it in the case X = K (I, n)
to show that all differentials d, with » > 3 are zero, and in this way we compute the
mod two cohomology of (AK(Fy,n))ss1 for all n > 2.

2. THE CYCLIC CONSTRUCTION.

Let C,, = {1,T,T?% ... T" '} denote the cyclic group on n elements. Let X be a
topological space. C,, acts on X™ = X x --- x X by permuting the factors:

Co X X" = X" T (x1,...,25) = (Tp, T1y - -, Tn1)

Let 7 : EC,, — BC,, denote the universal principal C,-bundle. We get an associated
fiber bundle
X" — EC, x¢, X" % BC,

from the equivariant map EC,, x X" — EC,. Since EC,, — BC), is locally trivial p
is a locally trivial bundle and thus a fibration. The space

E,X = EC, x¢, X" = (EC, x X™)/C,

is called the cyclic construction of order n on X. A map f : X — Y induces a bundle
map F,X — FE,X over the identity thus the cyclic construction gives a functor
from spaces to bundles over BC,,. The cohomology of the cyclic construction can be
computed using the following theorem based on ideas of Dold [D].

Theorem 2.1. Let F be a field. There is a natural isomorphism

b¢x : H(E,X;F) — H*(C,; H*(X;F)®")
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which maps the cup-product of two classes in H*(E,X;F) to the group cohomology
product of their images in H*(C,, H*(X;F)®").

Proof. The essential parts are written in [May| and we use his notation. Let X be
a simplicial set and let A be a commutative ring. The standard resolution of A
with AC,-modules is denoted W, - A. Let C, denote the singular complex with
A coefficients. According to [May| p. 193 there is an equivariant chain homotopy
equivalence

W, ® Co(X)®" L W, @ C,(X™)
There is also an equivariant equivalence

C.(BEC,) ® C.(X™) — Cy(BEC, x X™)

Combining these with a shift of resolution f : W, — C,(EC,,) one gets an equivariant
equivalence

W, ® C.(X)®" — C,(EC, x X™)

Since

W* ®ACn C*(X)®n = W* ® C*(X)®n ®ACn A

and
Cy(EC, X¢, X") 2 C,(EC, x X™) ®@ac, A

we actually have an equivalence
W, @ac, Co(X)®" — C\ (B, X)
Suppose that A = T is a field. According to [May] p. 156 there is an equivalence
W, ®rc, H (X)®" — W, ®pc, Cu(X)®"
We get a natural isomorphism
HL(E,X) & H.(C; Ho(X)°")

Dually

H*(E,X) = H*(C,; H(X)®")
The claim about the product follows from a homotopy commutative diagram describ-
ing the two products by coproducts on the chain level.

The covering q : EC,,, X¢, X" — EC,., X¢,,, X™" induces a transfer map
Tr: H(E,(X™)) —» H(Ep,X)
and we have a restriction map
Res =q¢" : H'(EpnX) — H(E,(X™))

Under the isomorphism of Theorem 2.1 they correspond to the transfer and restriction
in group cohomology since we have the following result:
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Proposition 2.2. There are commutative diagrams

H*(E,(X™)) H*(Ep X)

] y

H*(C; H(X™)®") "= H*(Crom, H*(X)®™)

Tr

and

H*(B,(X™)) & H*(EpnX)

! y

H (o HY(X™)P") 2 (G, HY (X))
where res and tr are the restriction and the transfer in group cohomology correspond-
wng to the inclusion C,, C Ch,

Proof. We prove the result about the transfer maps. The proof for the restriction
maps is similar. First we recall the definitions of the two transfer maps. Let H be a
subgroup of a finite group G. Choose a projective resolution P, — A of A with AG
modules. Let M be a AG-module. The group cohomology transfer map is given by
the following on the chain level

tr:Po@ae M — Po@pag M 5 tr(pe@m)= > pror’'m
reG/H

If G acts properly discontinuously on X then the transfer associated to the covering
X — X/@ is given by
Tr:Cy(X/G) — Cu(X) 5 Trit]=[gt]
geG

where ¢’ is a lifting of . One checks that the following diagram is commutative:
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W, ®rc,,, HJ(X)®" 2 W, ®pc, H(X)®"

W, @, C(X)Emm 2 W, @, Cu(X)mm

W, Qrc,,, Co(X™) o W, Qgc, Cu(X™™)

C(ECym) ®rc,,, Co(X™™) —Ls C,(EChm) @pc, Cu(X™™)

nm

Co(ECpm x X™™) @p¢,, F —"— Cy(ECppm x X™™) Qp¢, F

Co(ECum X, X™)  —Ly  Cu(ECpum xc, X™™)

where the vertical arrows are the ones described in Theorem 2.1 O

3. GROUP COHOMOLOGY COMPUTATIONS.

Let F, be the field on two elements. We shall from now on use Fy-coefficients
everywhere unless otherwise is specified. Let » > 1 be an integer. We will calculate
the group cohomology

(7) H*(Cor; H*(X)®%")
Put n = 2". We use the standard resolution

of the trivial Fy[C,,]-module F, with free Fy[C),]-modules. That is W;(n) = Fy[C,,]e;
with differential given by

desiyr = (1 +T)eq; , deg; = Negiq
where N =147 +7T?%+...4+T" is the norm element. The augmentation is defined
by €(eg) = 1.
For a field £ and a finite group G there is an isomorphism of £[G]-modules

o

k[G] = Homy(k[G], k) = (k[G])*
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mapping an element a = Y ccay9 to & given by &(g9) = o, The action on
Homy (k[G], k) is given by (g - f)(h) = f(¢g~'h). For any k[G]-module M we get

an isomorphism
Homy g (k|G], M) = M = k|G| ®xjq) M = (k[G])" @ria) M
determined by f—1® f (1). We will use this to get a convenient notation:
Homp,c,,](Wi(n), H*(X)®") = Wi(n) Qe H(X)® (i) e @

2

The differential in the last complex is given by

5(e¥ ! @ ) = %72 @ Nz

S(e¥@x)=e""@(1+T)x
An invariant element x € (H*(X)®")% gives a class in the quotient

e @z € H(Cp; H*(X)®")
and an element y € ker(H*(X)®" 25 H*(X)®") gives a class in the quotient

e @y € HA L (C,; HY(X)2")

Observe that € @ x = 0 when € ImN and 7 > 0 and that e @ y = 2 @ Ty
for all 7 > 0, considered as elements in H*(C,; H*(X)®").

“Assume that H*(X) is of finite type i.e. H*(X) is finite dimensional for each i. Let
ay, ..., ay,, denote a basis for H'(X). Then we have the following basis for H*(X)®"

Let O be the set of orbits under the permutation action of C,, on B(n). For an orbit
B let V(3) denote the Fy-span of the elements in 3 and let || denote the length of
the orbit. We have a C),-stable splitting

H'(X)*" = P V(B)

BeO

and the group cohomology splits

H*(Co; HY(X)®") = ﬂG%H*(Cn; V(5))

The possible lengths of the orbits are 2/ where 5 = 0,1,...,7r. Consider an element
Q=(a1®---®am)®%
in an orbit 5 of length || = m. For |3| < n one finds
H*(C,; V(0)) = Spang, {e* @ (1+T +---+T™ ')a}
H**Y(Cy, V(B)) = Spang, {e* " @ a}
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and when || = n one finds

H®(C,;V(f)) = Spang, {¢” © Na}
HY(Co;V(B) =0, k>0

The additive structure of the cohomology groups (7) is now determined.

Next let us determine transfer and restriction maps. Let T denote a generator of
Cym and t a generator of C,,, where m = 2° and n = 2". C,, acts on B(nm) via the
inclusion C,, C C,,,,, t — T". For an element a € B(nm) we let 57" denote the orbit
of a under the action of C,,. For a subset 3 C B(nm) we let s denote the sum of
all elements in 3.

Lemma 3.1. Let a = a1 ® - -+ ® a,, where ay s a basis element for 1 < k < n. The
transfer map

tri™ s H*(Chs (H*(X)®")®m) — H*(C’nm;H*(X)@"m)

18 given by the following formulas when applied to highest symmetry elements

tri(e? @ a®™) = e @ Y T7a®™
=1

tr%m(em—f—l ® a®m) — 62z—|—1 ® a®m

Proof. Define a Fy[C),]-linear chain map over the identity s, : W.(nm) — W.(m)
by T* s tl=] in even degrees and in odd degrees by T* — tla) for k = —1 mod n |
T* — 0 for k # —1 mod n. Then tr?™ is induced by the composite

*

Homp, (¢, (Wi(m), H*(X)®™™) = Homp,(c,, (Wi (nm), H*(X)®"™) &
Homp, [¢,,,,.) (W, (nm), H*(X)®"™)

where tr(f)(x) = X0 T f(T*z). The result follows. [J

Note that by this lemma all elements in (7) which are not of highest symmetry
equals the transfer on an element of highest symmetry. In this way the lemma gives
a complete description of the transfer maps since tr*"™ o trmm = ¢yknm

nm m ‘

Lemma 3.2. Let a € B(nm) and put r(a,n) = min{|B™|,n} — 1. Then the restric-
tion map

rest™ : H*(Cppm; H*(X)®™™) — H*(C,pn; (H*(X)®™)®™)
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18 given by the formulas

r(a,n)

rest™(e? @ ) = Z e? @ s,
j=0

n—1
Tesnmm(€2i+1 ® (L) — Z 62i+1 ® Tja
=0
Especially res™ (e ! @ a) = 0 when n > |37™|.

Proof. W,(nm) is a Fy[C,,]-module via the inclusion C,, C C,,,, ; t — T". Define a
Fy [C)]-linear chain map over the identity

iy : Wi(m) — W, (nm)
by eg; — ey; and eg;y1 — E?;(} T7ey; 1. This map induces resy™. [
Corollary 3.3. The restriction map
resy’ + H(Com; H*(X)®*™) — H*(Cra (H(X)%)%™)
has the following kernel
ker(res’) = Spang, {e* ! @ 2%°™|i > 0,z € H*(X) basis element}

The algebra structure of the group cohomology H*(Cy:) is as follows. For k > 2
one has
H*(Cy) = A(v) @ Fy[u]
that is an exterior algebra on v of degree one tensor a polynomial algebra on u of
degree two. For k = 1 one gets a polynomial algebra H*(Cy) = Fy[a] on a one
dimensional generator a.

Lemma 3.4. Let k > 1 and m = 2* then

(1) tr2™: HY(Cy,) — H(Cyy) is zero for j even and the identity for j odd.
(2) res*™ : HI(Cyy,) — HI(Cy,) is zero for j odd and the identity for j even.

Proof. Use the standard resolution and the chain maps from Lemma 3.1 and Lemma
32 O

Our next step is to describe the multiplicative structure of (7). It is induced by
the coproduct ¢ : W,(n) — W,(n) ® W,(n) given by

Y(eziq1) = Z €2j @ egry1 + Z eaj+1 @ Tey
JHl=t JHl=i
Pleq) = Z €2; & eg + Z Z T ez511 @ T eqqq

jH=i jHl=i—1 0<r<s<n
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Let fi € Homg,[c,)(W;(n), H*(X)®") and f, € Homp,|c,)(W,(n), H*(X)®") and let
¢ be the composite

W.(n) 5 W.(n) @ W.(n) L22 H*(X)®" @ H*(X)®" & H*(X)®"

Then [f1] U [f2] = [¢]. The following table gives the relevant parts of 1

r s [Y(erts))rs € W, @ Wy

2i 27 +1 €2; @ €gjyi1

20+ 1 25 e2i+1 @ Tey;

21 27 €2; X ey

21+ 1 27 +1 P0<u<v<n L €241 @ T35 41

From this it is easy to get the cup product of two given elements e.g.
(621' ® $®n)(€2j ® y®n) — 62(i+j) ® (xy)®n

Finally we describe most of the action of the mod 2 Steenrod algebra A on
H*(E,X).

Theorem 3.5. Let m = 2" forr > 0. Then

st o =3 (P

7=0
Proof. 1t is enough to prove the formula when X = K (F,,n) with fundamental class
tn. The A-action on H*(FE,X) is known. By mapping both sides one step down by
Resy™ one gets by induction that the formula is right modulo some terms in the kernel
of Resj™. But these elements have odd degrees and the degree of S¢**(u® @ (2*™) is

even thus there are no such terms. [

>Ub+s—j ® Sq2j($®4m)

Remark that this also determines the action of the even squares on elements of the
form vub ® x®" since we can use the Cartan formula on

v’ @ 2% = (v 1)(ud @ 2®™)

Using that all other types of elements are hit by the transfer on elements of the
highest symmetry, we have a complete description of the action of the even squares
on H*(E,X). (Recall that there is a description of the transfer map using geometrical
maps, thus it commutes with the squares.)
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Lemma 3.6.
Sq'(® ® 2% = a(|z|)e’ @ 2% + € ® Sq' (%)
where a(|z|) € Fy.

Proof. 1t is enough to show the result for X = K(F,,n). Mapping both sides one
step down by Res3™ one gets the following by induction

Sql(eo ® L§4m) — oz(n)el ® L§4m + ﬂ(n)e4mn+1 Q1+ 60 ® Sql(L%Am)

By using the map K(Fy,n) — * where * is a point one finds that 3(n) = 0 for all
n. O

We shall show later that a(n) = n. One can already see that «(2n) is zero by choosing
amap f: K(Fy,n) — K(Fy,2n) with f*(19,) = (2.
4. THE Q)" AND Sq; OPERATION.

In this chapter we define some operations ;' and Sg¢; and prove some purely
algebraic results about them. The operations occurs in the description of the diagonal
map

(1x A)* : H (B X) — H*(BCy) @ H*(X)

as we shall see in the next chapter. The algebraic results in this chapter are all needed
to study this diagonal map. Let K be an unstable .4-algebra.

Definition 4.1. Define the operations S¢; : K — K, k > 0 by
Sqi(z) =S¢ (2)

Lemma 4.2.

Sga(zy) = > Sqi(z)Sq;(y)

+j=n
Proof. Follows by the Cartan formula [
Lemma 4.3.

Sq2m(Sq1x) =S¢ (Sq"x)
S (Sqz) = (m+ |z)(Sq¢"z)?

Proof. To prove the first relation we must show

S¢*™ 8¢ (z) = SqlTm S g™ (x)
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Both sides of this equation are zero when m > |z| and when m = |z| — 1 the equation
is obvious. Assume that m < |z| — 2. Then one can use the Adem relation on the
left hand side

_ "oz —=2-7) ., i
SquSqm ae) = ( 2 1Sq m+|z| iS¢ (z
(z) JZ_:O 2m — ) ()

but because of the degree the only term in the sum different from zero is the one
corresponding to 5 = m and the result follows. The proof of the second relation is
similar. [

Deviation from linearity will play a central role. For a set map F': K — K we define
the deviation from linearity AF : K x K — K by

AF(z,y) = F(z +y) — F(z) — F(y)
Note that for G(z) = I(z)F(x) where [ is Fy-linear we have
(8) AG(z,y) = (I(z) + L)) AF (z,y) + U(z)F(y) + l(y) F (z)
Definition 4.4. Define Ayx : K — K for £ > 1 by
Age(z) = 2% S g (x)
Lemma 4.5. There is a product formula
Age(zy) = 2% Age (y) + ¥ Agi(2)
and the deviation of linearity is given by
k—1
Abgr(z,y) =Sau(zy) > 2y* =3 Y Au(@Ty*T)
r4s=2k—1_2 =1 pgs=2k—1-i_1
where |x| = |y|. The sums should be read as zero when k = 1.
Proof. By Lemma 4.2 we have
(9) Sqi(zy) = 2°Sqy + y*Squx

and the product formula follows directly from this. Put m = 2*7! and let F(x) :=
22™=2. By the binomial formula we get

AF(JL‘, y) — Z £U2Ty2s _ l,2m72 _ y2m72 — (l'y Z l,?"ys)Z
r4+s=m—1 r4+s=m—3
and using (8) this implies
AMgm(z,9) =y*Sqr(z) 3o a"y* +2%Squ(x) 3o 2"yt 4

r4+s=m-—3 r+s=m—3

2" Sq1(y) + y*" 7 Sqi () = Sqi (wy) Z ¥y

r+s=m-—2
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and the first relation is proved. Note that (9) implies Sq;(ab?) = Sqi(a)b*. It follows
that Sq (x? T1y?* 1) = Sqi (zy)z* y** hence

r s l,r i—1_ is i—1_
A2¢(x2 +1y2 +1) — 2242 1)y2(2 +2 l)Sql(xy)

It remains to show that

Z ¥y = Z Z x2(2i7“+2i’1*1)y2(2"8+2i*171)

r4s=2k-1_9 1=1 pyg=2k-1-1_1

This follows since 2ir + 2171 — 1 +2is + 2171 —1=2F _1 -2 and

k—1

[Tr+27t=1r=0,1,2,3,...,28 7 -1} ={0,1,2,3,...,2" ' - 2}
The last is easily seen by using the binary expansion of the numbers. [

Definition 4.6. Define operations Q5. : K — K for k > 0 by
Q1 (x) := S¢"(z)

(3]
—X_:Sq' Sq" ()
i 2’“—2 (),kZQ

and define the total operations @y : K — K]|t] by
Q2k Z Q2k

n>0

There is a recursive formula for these operations
n
n ] k —J
ber () =Y S¢? (a) QR (x)
j=0

This is seen by using total operations. Let Sq denote the total square i.e. Sq(z) :=
>0 5¢"(z) t*. For k > 1 the following holds

Qu+1(7) = Sq(a”" 7?)Qu(2) = Sq(z”")Sq(a” ?)Qa(x) = Sq(z™) Qo (x)
giving the recursive formula above.

Theorem 4.7. For k > 1 and n > 0 odd we have

Qe (xy) = 3 (S (@)@ () + 5S¢ (4™ Qi ()

J=0
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Proof. We prove the formula by induction on k. We start by the initial case £ =1
which is the hardest. Let F(z,y) = Q3(zy) and G(z,y) = X1—o(S¢ (2)Q5 7 (y) +
S (y*)Qs 7 (x)). We find
AQ3(z,y) = Sq"(xy)

Sipce A F(zy,29,y) = AQY(z1y, 2y) and A F(x, y1,v2) = AQY(zy1, xys) this im-
plies

A1 F (1, 29,y) = Sqn(ﬂflwzyQ) s Do F (21, 29,y) = Sq"(x2y1y2)
We also find

qu(?JQ)AQgij(xhxz)

M=

AIG(mlaxZay) =

<.
Il
=)

S¢ (y*)Sq™ (129) = Sq™(z1297?)

Il
M=

(=)

\,ul.
|

and AyG(x,v1,y2) = Sq¢"(2y1y2). That is A(F —G) =0, v =1,2 thus F — G is

bilinear. We have that
(F—G)(z,y) = 5q¢%(x)Sq" (x)Sq% (y)Sq* (y)

and since this is bilinear the terms Sq% (x)S¢” (l‘) and Sq¢%(y)Sq% (y) are linear. Let
f(x) = Sq*(z)Sq¢b(x). We find Af(z,y) = Sq%(x)Sq®(y) + Sq*(y)Sqb(x). We see that
f is linear if and only if @ = b. Thus F' — G = 0 since the degree n is odd and the
initial case is done. Define the odd total Q-operations from K to K[t| by

@21& (I Z Q2m+l t2m+l

We have
8¢ )Q (2) = Qe (2)
for £ > 1 and we would like to prove
Que(xy) = Sq(2”)Que(y) + Sa(y™ ) Qs (2)
Assume that this is OK for k. Then
Qa1 (2y) = Sq((29)*") Qe (2y)
= Sq(e*)Sq(y™ ) (Sa(«* )@ (v) + Sa(y™ ) Qe ()
= (Sq(2*))*Sq(y™ ) Qe (v) + (Sa(y*))*Se(2* ) Qe (2)
= Sq(a*" Qs (9) + Sa(y™ ) Qoun (2)
and the formula is OK for £k +1. O
Note that for n odd we have Qj(2%) = 0.
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Theorem 4.8. Forn odd, |x| = |y| and for k > 1 we have

Asz T y Z Z QQz( 2r+1 23—|—1)

1=0 p4s=2k—1-1_1

Proof. The formula is proved by induction on k. The initial case is OK since

AQy(z,y) = Sq"(zy)

Assume that the formula is OK for k. Using (8) on the definition we get

Ang+1 ('Ta y) =

n

SIS (22) + S (v* ) AQLT (z,y) + S¢ (22) QL (y) + S (v ) Qi ()]

J=0

By Theorem 4.7 this equals

n

AQZkH (I’ y) sz x?/ Z + Sq ( ))AQZ’:J('T? y)

where AQy, g (z,y) is known by the induction hypothesis. Using Theorem 4.7 and
the fact 22° = (22" ")?)?" we find

quj(xzk) (x2r+1 25+1) sz( 2k— i+27«+1yzs+1)
=0

thus
AQ;’*H ($’ y) =

k—1 ) _
Qi(zy) + 3 3 (Qu(a¥ IR L (yF T L)) =

1=0 p4g=2k—i-1_1
Q2k Ty +Z Z Q ( 2r+1 2s+1 Z Z Q ( 2r+1 25+1)

1=0 p4s=2k-i_1 1=0 p4s=2k—i_1

O

Lemma 4.9. Assume that |x| =1 and k > 1. Then

(1) sz Yz) = 221 for 1 <i <21 and 0 otherwise.
(2) Sq¥Ag(x) = 221 for 0< i < 281 — 1 and 0 otherwise.
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Proof. (1) k =1 is OK since Q,(x) = 2%t. Assume that the formula holds for k. We
have

Quen (1) = Sq(a™)@yu () = (@ +2771) z PP

2k—1 2k—1
Z I2’°+1—|—2j—1t2j—1 + Z x2k+1+2’°—|—2j—1t2’°+2j—1 _ Zx2’°+1+2j—1t2j—1
Jj=1 Jj=1 Jj=1

(2) Sqi(x) = x hence Ay (z) = 221 and S¢¥ Ay (z) = (2’“2;1>x2’“+2i71. 0
Let Sq,....an (21, - - - Tn) denote the symmetric polynomial one obtains from symmetri-

cising the monomial z{*...x0".

Lemma 4.10. Let k > 1 and put m = 2*. Assume that z1, ..., x, all have degree 1
and put x = x1...2,. Then

(1) Sq% Ao () + Q%N (z) = 0 for i ¢ mZ

(2) SE*™ Ao (T) = Sam,...amam... 2m2m—1(T1,- .., T,) where there are r times 4m
and n—r —1 times 2m
(3) Qrmi(z) = S4m,. . am2m... 2mam—1(T1, - - ., Tn) where there are r — 1 times 4m

and n —r times 2m
Proof. (1) This is OK for n = 1 by lemma 4.9. Assume that it holds for n — 1 and
let i ¢ mZ. By lemma 4.5 and the Cartan formula we find

2

S Nom () = D (S¢ (&™) ST Ny (€0) + S (227) S 7 Ay ()

=0

And by lemma 4.7 we have

21—1
s M @wa) = Y (SP (@@ (@) + S (22M) Q5 (7))
7=0

In these sums only the terms corresponding to j € mZ contribute and for these j we
have Sq* 7 Agm () + Qo7 (2) = 0 and Sq¥ 7 Agm () + Q5 (x,) = 0 and the
result follows.

(2) Sql(l') = 52,2,..,2,1 hence Agm(l‘) = S2m,2m,...,2m,2m—1 and we get SQZTmAQm(I) =
Sam,...,Am,2m,...,2m,2m—1 with r times 4m.

(3) Let o; denote the elementary symmetric polynomial s1, 1,0 with ¢ times 1.
We put o; = 0 for + > n. We have
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Define fyr 4 := 89k ok 9k o With k times 2% For m = 1 we must show

r—1
fz,rq = Z 0j02r—1—j
7=0

We prove this by taking partial derivatives. For a polynomial p(xy,...,z,) we let
(p); denote the polynomial (p);(z1,...,z,) =p(x1,..., %4, ..., T,). We have
= (‘77“—1)12

and this equals

arl r—1

or; 2_30-]0-27‘ 1-j = ;}((Uj—1)i02r—1—j +0;(09r—2-)i) =
33;2_:((03 1)i(09r— 2—]) +(0] 1)i(02r—2- J) )+72((0-J 1)i(o9r1- J) +(U]) (0902 ]) ) =
(Ur—l)?

We now have that the difference of the two sides is a symmetric polynomial ¢ with
all partial derivatives equal to zero. Since the degree of ¢ is odd Euler’s formula

dq
ri—— =de
Zi: i, = deg(0)e
gives that ¢ = 0.
for m > 2 we must show
2r—1
f2m,r—1 = Z J;?lfmﬁr—l—j

=0

Again we take partial derivatives:

0
81‘1f2mr 1 — .’E

2m—2

2 (Samymy0,0)i = T 2 (00 1)

This equals

a 2r—1 2r—1
£ Y 0 fmaem1mi = Y 05wl T (0201 -5)]" =
Ti j=0 =0

2r—1 2r—1

2m2 m m2 m
2‘711 (02r-1-5); ZUJ (02r-1-5);

since 3375 (05)i(02r—1-)i = 0 and 33" (051)i(02r-1-5)i = (0v_1)?. The result
follows using Euler’s formula. [
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5. THE DIAGONAL MAP.

Let n =2" and let A: X — X"; z+ (z,...,2) be the diagonal map. This is a

7
C,-equivariant map hence it gives rise to a map

BC, x X X5 B X

In this section we will determine the induced map
A*=H*(1xA): H(E,X)— H*(C,) ® H'(X)

It is enough to find A*(e* ® 2®™) since the other classes in H*(F,X) are hit by the
transfer map applied to this type of elements.

Lemma 5.1. Let n = 2% and m = 2! and let
A X — X" A X — (XM Ayt X — X™
be the corresponding diagonal maps. There is a commutative diagram

H*(BC,) @ H*(X)®™

H*(E,(X™)) H*(BC,) ® H*(X)

trzml \Ltrﬁm(&l
H*(EnmX) )®H*(X)

A*

H*(BCpm,
A*

Proof. The upper part of the diagram commutes since A equals the composite
ECpun/Cp x X 25 ECppn/Ch x X™ 2% ECpp X, X™

The lower part of the diagram commutes since the following diagram commutes

Co(ECpm X0, X™™) <2 C(ECpm/Ch x X)

| |

Co(ECpm X, X™™) <2 C(ECym/Crm x X)

The commutativity of the last diagram is easily seen: Let A™ denote the geometrical
n-simplex. A map « : A" — EC,,/C, X X has a lifting o' : A" :— EC,,,,/Cp, X X
that is ¢ o o/ = a where ¢ : ECp;,,/Cry X X — ECy,/Cy, x X is the quotient map.
We have

A, otr([a]) = Al Z glo]) = Z glA o]

gecnm/cn gECnm/Cn
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and this equals

o dulfo) =tr(Aoa)) = 5 glaoa]

O

Lemma 5.2. Let n = 2*. The composite
H*(EC, x X™) 1% H*(E,X) 25 H*(BC, x X)
is zero. That is A*(e® @ Na; ® ... ® a,) = 0.

Proof. See [St-Ep]. The map ¢* : H*(BCy; x X) — H*(ECy x X) is surjective and
we have the commutative diagram by lemma 5.1

H*(EC, x X") —“~ H*(EC, x¢, X")

| |+
H*(EC, X¢, X) AR H*(EC, x X) I, H*(EC, x¢, X)
The composite on the bottom line is multiplication by n thus the 0-map. O

Lemma 5.3.

A*(ei Q 1®2k) —®l
Proof. Put n = 2* and let x € X. We have maps r : X — * and 7 : ¥+ — X with
r ot = id. There is a commutative diagram

E,X «—— BC,x X
1xA

En(r)J lxrl

E,(x) «—— BC, x %
1xA

Note that F,(x) = BC, x %™ and that 1 x A induces an isomorphism in cohomology
on the bottom line. We have e’®1%" = H*E,,(r)(e!@1%°") and (1@7*)o A*(e!@1%") =
1@7r*(e'@1) =€’ @1 and the result follows. [

Corollary 5.4. A*: H*Ey(X) — H*(Cy) @ H*(X) is H*(Cy)-linear
Theorem 5.5. Let k > 0 and let m = 2*. Define the maps

R4m,F4m : H*(X) — H*(C4m) (029) H*(X)
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by
Run(@) = S w19 & (St
1=0
m|z|
F4m Zvum|w| SqQZ( 2(m— 1)Sq l,)_i_QZz 1( ))
Then

A*(e® @ 29%™) = Ryp (2) + T (2)

Proof. Let pre,pr, : H*(Cyym) — H*(Cyy) be the maps defined by letting pr. be the
identity in even degrees and zero in odd degrees and pry zero in even degrees and the
identity in odd degrees.

Stepl: (pr. @ 1) o A*(e® @ 2%*™) = Ry,,(x). We prove this by induction on k. We
have a commutative diagram induced from a commutative diagrams of spaces

* res2m™
H*(BynX) —2 H*(Cym) @ HY(X) =22 H*(Com) @ H*(X)

| |
H*(Eym(X?)) SN H*(sz)®H*(X2) H*(sz)®H*(X)

For £ = 0 this gives
(res2@1) o A*(e? @ 2%%) =

2|z|

(1eA) oA (e @on)®) =10A Yy o sfror) =
=0

2|| ||

Z a2 & S’q Z a2(lz1=1) & (S¢' x)

7=0 1=0

and the initial case is OK. Assume that Step 1 is OK for £ then
(resgm @1) 0 A*(e? @ 2%™) = (1 @ A*)Rym (7 @ 7) = Ry (2%) = R (2)
thus Step 1 is OK for k£ 4+ 1 and we are done. The proof of
(pro ®1) 0 A*(e” ® 2*™) = Dy ()

is divided into two steps. First we show that the formula have the right deviation
from linearity. Since Ry, is linear this means
Step 2: For |z| = |y| we have

A’ @ (z+9)%" = " @27 — € @ y®'™) = Alyn(2,y)
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We prove this by induction on k. Let £ = 0 and define
1—\2 Za||22—|—1®5211()

i>0
for elements z with |z| even. We have
@ (@+y)* - -y =0 (1+Treyerey =T e (t0y)®)
and since A* o Try = (Try @ A*) o A* by lemma 5.1 we get
A*(@ 1+ Tz oy r@y) =Ty(zy) = Aly(z,y)
and the initial case is OK. As before define
Ty(z) = > v @ S¢*=(z)

120
for |z| even. Assume that Step 2 is proved for all | < k — 1. Let
M={a1®...Q a4n|Vi: a; € {x,y}}

Cym acts on M by cyclic permutation. For a € M we let 3, denote the orbit of a and
584 = ¥ 1ep, 7 the sum of the elements in the orbit. We have a splitting

k+2

(@+y)®m =3 > sp
i=0 | =21
Let 7yi = 3 |520: €° @ 5. We claim that
A*(T%) = Z F2k+2—i(£L‘2T+ly2s+1)
r+s=2i-1-1
fori=1,2,...,k+1. Let i € {1,2,.. k-l—l}andputn—Q’ = 4" Tet a be an

element with |8| = n. We can write a = (a1 ® ... ® a,,)®" Where a € {x y} for all [.
Using lemma 5.1 we get

A @8B,) = Ao Trim(e @ (a1 ®...® a,)") =Tw(ay - . .a,)

We define the type of 3, as the number ¢(3,) of z‘is in ¢; @ ... ® a,. We see that
orbits @ and 3 with the same length and type have A*(e? ® sa) = A*(e’ @ s3). We
have already observed that Q3:!(2?) = 0 and since Sq;(z%) = 0 we have I'y(2?) =0
for all z and all /. Thus orbits of even type maps to 0 under A*. The number of
orbits with length n and type 2s 4+ 1 equals

1 n
n\2s+1
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since a string a; ® ... ® a, with an odd number of z‘is satisty a; @ ... ® az #
az41 @ ... Q ap. The 2-valuation of this number is

02(1( n )):vz((T—2)(2’—4)(2’—6)...(2’—25)):0

n\2s+1 2.4.6-...-2s

thus there is a odd number of these orbits and the claim follows. We have

k1
A @ (x+y)®* - @™ - @y"™) = A (D ) =

k+1

Z Z F2k+2—i (l_2r+1y2s+l)

=1 p4s=2i-1_1
and since |22 T1y?+ = 2'z| for r + s = 2°7! — 1 this equals

2k || k+1

Z v @Y ST S Ak + QAL ] (@ YY)

=1 p4s=2t-1-1
By lemma 4.5 and lemma 50 this is the same as

2% |z|
Z vu2 |z|— l® A[qulA2k+1 =+ Q2k+1]($ y)

=0

and Step 2 is proved. Now we have that
A*(eo & $®4m) = R4m(x) + F4m(x) + L4m($)

where L,, is linear. It remains to show that L4, = 0. This follows from Step 3
below.

Step 3: Let X = [ ,RP>. We have H*(X) = Fy[zy,...,x,] where |z;| =1 for
1<l<n. Putxz=2x...2, then

A* (eO ® x®4m) = Rym () + Tym(2)

We start by proving the case n = 1 where H*(X) = Fy[z] and |z| = 1. We can
write

2m
A*(eO ® x®4m) — R4m(ﬂl’) + Z Aivu?m—i ® x22’—1
=1

for some A\; € Fy. We can determine Ay, A3, ..., Ag, by Step 2. Put Y = RP* x RP*®
Since RP* = K (I, 1) we can find maps f,g,h: Y — RP* such that f*(z) = z,
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g* () = x9, h*(x) = z1 + 25. We find
A*(eo ® (1‘1 + $2)®4m - 60 ® x?4m _ 60 ® $é®4m) —
Ao (H*Eyn(f) + H* Egn(9) +* Esm(h))(e® @ ™) =
(1@ +10g +1@h") o A (e’ @ 2®™) =

2m
Z )\iUUZm—i ® ((1’1 + I2)2i—1 _ m%i—l _ CL‘gi_l)
=1

and by Step 2 this equals ALy, (21,25). Note that (21 + 29)% ™! — 2%t — 2271 is
nonzero for ¢ > 2. By lemma 4.9 we find

Al (21, 22) =
v [(xl + x2)4m—1 o Z,zfm—l o x;lm—l] + o™ ® [(1'1 + I2)2m_1 o I%m_l - x%m—l]

For m = 1 this gives Ay = 1 and for m > 1 this gives \y,, = A,, = 1 and all other \'s
are zero. That is

A @2®) =102 +ue2* +ve2° + Mvu® o
and
A*(eo Q l_®4m) =1® :L,4m + u™ ® CL'2m 10 m4m—1 + vu™ ® :L_Zm—l + A]_UU2m_1 ®x
for m > 2. The A-action on H*E,Y is known. Especially
Sq'(e” @ y®*) = (“?{‘)61 @y +e" @ (1 +1t)y® Sq¢'(y)
This implies
Sql o Res;lm(eo ® .T®4m) — Sql(eo ® (.T®2m)®2) — 60 ® (1 +t)x®2m ® Sql(x®2m)

This equals Res;™ o Sq' (e @ x®4™). Since the degree of Sq'(e® ® x®*™) is 4m + 1 we

can write
2m Ny

Sql(eo ® I®4m) — Z 262j+1 ® Z?n%—j,i 4 260 ® Nyi
j=01i=1 i
where z;; = a1 ® ... ® Qg With ¢; € {1, 2} for all [ and the number of z's equals k.
Using lemma 3.2 we see that

Sq'(° @ a®*™) = ae™™ T @ 19" 4 Be' @ 2% 4+ ) e © Ny;

for some «, 3 € Fy. Now we have
A* o Sql(eo ®I®4m) —
v’ @ 1+ fuA*(e® @ 2%') = avu® @ 1+ B(v @ 2™ + vu™ @ 2*™)
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This equals
Sql o A*(eo ®x®4m) — /\1UU2m_1 ® .’L'2 4+ ® x4m +vum ® .,L,2m

form > 2 and Mjvu @22 +v®@a* form=1. Thusa=0and S =1 and \; =1 for
m =1 and \; = 0 for m > 2. We have shown

A*(eo ® l_®4m) =1 ® I4m + um ® :L,Zm +0® l,4m—1 + vum ® ‘I2m—1

for all m > 1. By lemma 4.9 this equals Ry, (x) + ['yn(z) and step 3 is proved

for n = 1. Now consider the general case x = x;...7,. Since €’ @ %™ = (e @

zP™) L (2 @ 294™) we have

A*(€0®.’E®4m) — H A*(60®l‘]®4m) — H(1®x§m+um®$§m+v®$;&mfl+vum®$§m71)
j=1 7=1

Since v? = 0 this equals

1_[1(1 ® 2" +u™ @ zI™) + Z%)(vum ® 22 p oy @ i) 1;[(1 ® 2" 4+ u™ @ ™)
i= s= J#s

The first term clearly equals Ry, (x) and the second term equals [y, (z) by lemma
4.10. O

Note that the product formulas in lemma 4.5 and lemma 4.7 now follows from the
fact that A* is a ring homomorphism:

A*(e® @ 297 )A%(e° @ y©") = A (e @ (2y)®%")
We can now find the action of Sq¢' on H*E,,,, X.

Proposition 5.6.

]

Sqt(e® @ 2%*™) = ( 1

)el ® 2™ 4+ e @ Sqt (z®'™)

Proof. We know from Lemma 3.6 that
S¢'(e" @ 2®'™) = a(|z))e! ® ¥ + €* © Sq' (z°)
We can now find «(|z|) by using the A-linearity of A*. We have
A*(Sq (e © 1947)) = S A% (" © a¥7) = Sg} Ty () =

m|z|

Z vum|z|—i ® (Sq2i+1(az2(m_1)5q1x) + Squggl(I))
1=0



CYCLIC CONSTRUCTIONS IN MOD TWO COHOMOLOGY 27

This equals

A*(a(|a])e’ @ 2 + € @ Sq' (%)) =
2
af|zJvA*(e® @ 29™) = a(|2])vSim(z) = allz]) 3o vu™ =) @ (Sg'z)*™

Especially for : = 0 we get
Sq (@* ™V Sqx) = af|x|)r?
By Lemma 4.3 we have S¢'Sq 1z = ('f')xQ and using eg. X = K(Fy,n) we see that

a(lz) = (7). O

6. THE CASE OF A GENERAL UNSTABLE A-ALGEBRA.

Let M be an unstable A-algebra. The formulas in Theorem 3.5 and Proposition
5.6 define an A-module structure on H*(Cly,,; M®*™) that is the Adem relations are
respected. We also have a map

8+ H*(Cypm; M®*™) — H*(Cy) @ M
defined by the formulas in Theorem 5.5. We now show directly that ¢ is A-linear.

Proposition 6.1.
Sqtos=0608¢

Proof. By the proof of Lemma 5.6 we must show

x .
SqZH-l( 2(m—1) Sqlff)‘i‘sq QZZ 1( )_ <|1|>Sq2z(ﬂf2m)

This is done by induction. For m =1 we have

Sq'Q3 7 (x) =

ZSqlqu(w)quifl - +ZS(] (2)Sq'Sg* +(x) =
j—O

Z qu+1 21 1- g Z 21 J(m) —
621(8(] I)

and by Lemma 4.3 we have

; 14 |x ;
sevisno) = (7 ) s
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Thus the formula holds when m = 1. Assume that the formula is OK for m. Writing
22D Sq x as 22™2(™= D Sq,x and using the Cartan formula we get

Sq2i+1(x2(2m—1)sq1x) _ Z Sq2(z’—j)(I2m)8q2j+1(x2(m—1)sqlx)

=0
The other term in the formula can be written as
2i—1 2i—1

Sq'Q (@) = X S¢'a)Se' Q8 @) = X S¢S0 Q) =
=0

=0
> S (@*™)Sq'Qy ()
7=0
Using induction and these two equations we get
||

SE S ga) + Sq' Qi () = 3 S (@) ( |

J=0

) Sq¥ («*™)

and by the Cartan formula we are done. [
We will now prove that
Sq2305: 603(]23

First some notation. Given a sequence a = (ay, ..., a;,,) of nonnegative integers, we
write [(«) := m for the length of a and |a| := a1 + - - - + «,, for the degree of a. Put

A(m,i) = {a|ll(e) =m, |a] =i}

Cy, acts on A(m, 1) by cyclic permutation: T'(aq,...,0m) = (Qm, 01,y .., 0 1). Let
A(m,i,7) be the set of multiindices in A(m,?) lying in an orbit of length . We use
the following notation for the quotients: B(m,i,r) := A(m,i,r)/Cp, and B(m,i) :=
A(m,1)/C,,. Finally for o € A(m, 1) we define

Sqg(z) = S¢*(z) ® ... ® S¢*"(z)

Sq;(x) == Sq¢™(x)...S¢" ()

The following description of the Q}.-operations is needed.

Theorem 6.2.
Qu(x)= Y Sqi(a)

a€B(2* n)

Proof. Let Dy.(x) denote the right hand side of the equation in the theorem. It is
clear that D7?(z) = Q7 (x) and that D}(x) = Q%(x). Thus it is enough to show

n(2) = 30 S () DI ()

J=0
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For a multiindex a = (a, . . ., o, ) we define the type of a as t(a) = (4o, . .., i,) where
r = maz{ay,...,q,} and i is the number of I‘s in the string ay, .. ., a;,. Remark that
an a with ¢(a) = (4,...,4,) has |a| =0-ig+1-41+---+7ri, and [(a) =ig+ - -+ 1.
Given a sequence of non negative integers (ig,...%,) with 49 + -+ + 4, = 2F and
0-ig+1-i; +---+ ri, = n. The number of multiindices of type (ig,...,1,) is

ok 2k1
T iol .. .3,

and the number of orbits of length 2! and type (i, .. .,4,) is

1 2l 2l—1
5[ o—ktljo 2=kt |\ okt o=k ]

where a multinomial coefficient should be read as zero if the indices are not all
nonnegative integers. The number of orbits of type (ig, ..., i,) is thus

k 1 2l 2l—1
olio, i) = l; ?[<2k+lz’0, o 2k+liT) B <2k+z+1i0, .. .,2k+l+1ir>]

We now have the formula

e (x) = > o (i, ..., ir)(Sq°z)® ... (Sq"z)"
gt tip =2k
0204121+ -4r2p=n
and we must show

T

Za(io,...,it—Qk’l,...,z’T) = o(ig,...,4) mod 2
=0

We start by proving this in the case where there is an odd ;. Since iy + - - - +1i, = 2*
there is at least two odd 7;’s. Assume that this is 7o and 7;. We have

(i ) 2k —1 (2 —2)! _ 2k — 2
g1 . Z"' = . . B . . . = . . . .
0reee ioty (1o — 1)!(ip — 1)) .. .4, io— 1,41 —1,4—2,...,14,

From the definition of the multinomial coefficient one sees the following relation

( m >:<m)<m—j0>(m—jo—j1> (m—jo—"'—jr—1>
Joy--sJr Jo J1 J2 Jr

From this we see that the multinomial coefficient modulo 2 can be determined as
follows. Write the binary expansion of the numbers jy,... 7. under each other. If
there is more than one 1 in a column we get 0 otherwise we get 1. Using this and the
fact that ig+- - -+, = 2 we see that o (ig, ...,4,) = 1 if and only if there are exactly
two ones in the column corresponding to 2° and one one in each of the columns
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corresponding to 2%, 22,...,2F"1. The result follows. The general case follows from
the case above if we can prove

o(2joy---,27:) = a(Jo, - - -, jr) mod 2

This relation is easy to verify. Assume that jo + - -+ + 7, = 2*. We have

1 2kt 2"
20+ 24) — (o - -1 n , =1 ez
(240 Gr) — 0(Joy - vy Jr) = 2k+1[<2jo’m’2h) (joj__.’])]

Let vy denote two valuation i.e. v5(a) equals the number of times 2 divides a. Then
it is easy to see that

y2(<so, 2l , sr>) N g#(sl) B

where #(a) is the number of one’s in the binary expansion of a. We see that

2k+1 2k
Vz( . . )= Vz( . . )
2705320 30y -y Jr

and the result follows. O
Definition 6.3. Define operations S;,;b : M — M for k> 0 by
St*(z) := S¢"S¢’(x)
83 («) = Sans(aﬂ + 630Q5 (S )
Y S SET ) h22
r=0 5=0

and define a total operation

Sop : M — Ms,t]; So(z) == > S;,;b(x)tasb

a,b>0

Note that Syeri(z) = Sy(22")Sy(x) for k > 1 giving the recursive formula

S5b (2) Z Z S sa b= ()

r=0s=0

Theorem 6.4. Let k > 1. For j odd we have

6(60 ® Sq2] ®2k+1 Z’UU% |$| ® SQZ’L J ( )

>0
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and for j even we have
6(e° ® Sq¥ (x°2")) = 625 Ryws (Sq* ™ ()
+ 3 vuld T @ (S¢2 ST Age (2) + Spi ()
i>0
Proof. We have

k+1
S =3 S 4T+ 4T )¢ ()

1=0 aeB(2k+1,2j,2!)
From this we get

k+1
(10) @S¢ ) =3 S k(@ (S ()2

1=0 e B(2t,2kj,21)

Assume that j is odd. Then this reduces to the terms [ = k£ and [ = k + 1 since
B(m,n,r) = @ when n is not an integer. By definition of 6 we get

6(60 . quJ ®2k+1 Zvu [4]4+2% 1 |z|—i ® Sq%( Z ng(x))
i>0 BEB(2,5,2%)

Since j is odd every orbit in A(2F,5)/Cy is of maximal length. Using this and
Theorem 6.2 we get

(5(60 ® S 2] ®2k+1 Zvu% |a;| ® Sq2zQ] ( )
>0

and the result follows from the lemma below.
Assume that j is even From equation 10 we get

5(e° ® Sg (a®")) — 6%, Ryesa (S¢? =Y pudt? Ml g
>0
. k_l .
(S Yoo A (Sq ()] + Z Yoo QiZi(Sq(a)]
1=0 aeB(2!2!-%;2}) 1=0 acB(2!,2i=%j5,2)

the result follows from the lemma below. O

Lemma 6.5. For k > 1 we have

(1) 2n,2 1
S n,2m-+ ( ) SanQ2m+l( )

2k

(2)

k—1

Sq 27” A2k Z Z A2k71(5qz($))

=0 aeB(2!2l-k+1m 2l)
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St @) =3 by Qi (Sqi(x))

=0 aEB(2l,21_k+1m,21)

Proof. 1) By definition of the Q-operations and the Cartan formula
2m+1 2n X
Sq2nQ2m—|—1 ) — Z qutsqr(x2 —2) 2n— tQ2m—|—1 r( )

r=0 t=0

Since the terms with r or ¢ odd are zero and S¢*Q¥ ™ (z) = S3"**!(z) we are done.
2) From the product formulas for the A-operations we find

A2k ZA2k -TZ Z..../L'n>2k

Using this we get

Z Azk*l(S(IZ‘(x)) =

a€B(2t,21—k+1m 2l)

3 Age-t(Sq® (x))(Sq°2 (z) . . . Sq° ()

acA(2 2t=k+1m 2)

Using Ay (y) = y? ~2Sq1(y) we see that this equals

Y Sa(Se"a)(Se" (). .. S¢" (2)

ﬂeA(2k—l,m,2l)

hence the right hand side of the formula (2) in this lemma equals

Z SQl(SC]ﬁlw)(Sq52 (x)... Sqﬁgkq (I))z

BEA(2F~1,m)

Since Sq1(Sq"(z)) = S¢* (Sqi(z)) and (Sq"(z))? = Sq¢*"(x) we can rewrite this as
Sq2m(x2k*25q1$) by the Cartan formula.
3) From the product formulas for the Q-operations we get

Qo (z1...15) = gSq((asl B ) ) Qe ()

= i Sq((wy ... 3¢ ... 2s)" 27 72)Qy(x4)
t=1
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Using this we find for [ < k
2n—1 «
Z QQk—l (SQIJ, (‘/’C)) =

a€B(2t 2t k+1m 21)

2n+1 21

S % el Sa @) (ST (st =

A(zlyzl—k+lm’2l) 7=0

2n+1 2’c L

Z Z Sq H Sqaz 2n+1 ](SqQQk,lx)

acA(2k—1 m,2l) j=0

Using this and Theorem 6.2 together with the fact that S¢*"*!(y%) = 0 we see that
the right hand side of the formula (3) in this lemma equals

2n+1 2’° 11 2 .

> > S H S¢% (2))1Qy" 1 (Sg 1 w) + ST QI (x) =
a€A(2k=1 m) 5=0
m 2n+1 1 o] 2m .
>3 SEISE (@ TR T (S T w) + S (Y- SqT (e TR () =
r=0 5=0 r=0
2m 2n+1 ) . 2m 2n+1 .
Z Z qusqr(xQ —2)Q2n+1 —J 5 +Z Z qusq 2 2)5 2n+1— ]QQm T(.’L’)
r=0 j=0 r=0 j=0

and this equals S5 "™ (z) O

Theorem 6.6.
6OSQ2S :Sq2506

Proof. It is enough to show that the equation holds when evaluated on u® ® 2@
for £ > 1 and b > 0 that is we must show

2c—1
2s — 2t

(11) Sq25 o 6(u ® ®2k+1) _ Z ( )6(Ub+s_t 2 Sth(x®2k+1))
=0

where ¢ = b+ 2F71|z|. As before define degree preserving maps p.,po : H*(Cor1) —
H*(Cyr+1) by letting p. be zero in odd degrees and the identity in even degrees and
Do zero in even degrees and the identity in odd degrees. If we apply p. ® 1 on both
sides of equation 11 we get

2c—t

525 bR —
PR ) =3 ()

) 5ZBR21¢+1 (Squtx)

and this straight forward to verify. Thus it is enough to show that if we apply p, ® 1
on both sides of equation 11 then the resulting equation is true. From the left hand



34 IVER OTTOSEN

side we get

(po ® 1) o Sq2s o (5(ub ® I®2k+1) _

2*|a|
(Y v @ (SgAn(e) + Q@) =
7=0
2k|z| c— i o . .
2020(8_1) uc+s—z—]®(sq225q2]A2k( ) 5222] 1( ))
J=U 1=

and from the right hand side we get using Theorem 6.4
2c—1t

i (28 - Qt) (b @ 1) 0 0(u** ' @ S¢ (™)) =
2(20 )ZU’LL‘H—S i—[4] ®[(5 (Sq2isth2k(x)+S22i—lt( ))+62 82”( ) =

2s — 2t >0

vt e Y| ( 43) (S¢*Sq* Age(z )+S2Z 12]( ) +

>0 i+j=r
2C — 2t + 1 2i,25—1
(23 —4j+ 2) S @)

Thus it is enough to show the two equations
c—J c—J 2 o 25
12 Sq”'Sq7 A =0
(12) S (7)) + (2] ssan
1+j=r
and

) SIS ) (s =

t+j=r

We can rewrite equation 12 by using the Adem relations when possible and Lemma
6.7

c—1J c—7J . .
£ (2) (5 st

375<r
c—7J c—7J 2j—1 20r—t) @2t
]+ . Sg¥r—vs Aok
T<§§3r((s— 23) (s—rﬂ))tg (2(7"—1) 475) ! ()

thus equation 12 follows if we can prove the following for 35 < r

w0 2 (T (0T = (7))
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The left hand side of equation 13 equals
Z[ 20 - t + 20 - t ]S2T—1_t’t(x)
S \2s — 2t 2s—2r+1+t)" %

By Theorem 6.8 this equals
2c—1t 2c—1t t—1-1
> [( C >+( C )JZ( )Sil”’l(xH
o Tese \28 — 2t 2s —2r+1+t >0 2r—1—t— 2l

2c—1 2c—1 2r—1—1,1
53[Qs_m>+(%_ar+1+)]% (@)

2r—1>31

By putting ¢ = 2¢, s’ = 2s and ' = 2r — 1 we see that equation 13 also holds if we
can prove equation 14. Equation 14 is proved in Lemma 7.4. O

Lemma 6.7.
Sq2r+lsq2s+1A2k (CL‘) =0

Proof. For k = 1 the result follows from Lemma 4.3. Assume the formula holds for
some k > 1. Then

Sq2s+1A2k+1 (I) — Sq2s+1(£€2kA2k (l’)) — Z(Sqi(gﬂk—l))QSQQ(S—i)+lA2k (.CC)
1=0

2r+1

If we apply Sq to this we get zero [

Theorem 6.8. The operations S;,;b satisfy odd Adem relations i. e. For a < 2b and
a+ b odd we have

(5] :
2 (b—1— y
sp=y (L, s

2o a—2j

Proof. The case k = 0 is the usual Adem relations for a + b odd. The case k£ =1 is
proved as follows. We may view S5 as an element in S2(A) = AQ A/(a®@b—b®a).
There is a commutative diagram

B(A)

A A —2 S2(A)

1—|—twl q

Ao A —2 A2A)
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where p and ¢ are the quotient maps, ®(A) is the kernel of ¢, tw the twisting map
ie. tw(a®b) =b®a and ¢ is the inclusion p(x Ay) =2 @ y+ y @ x. Recall that A
is a Hopf algebra with diagonal map

v:A— AR A, ¥(Sq) ZSq ® Sq" "

=0
In A® A we have the element
o | 5] b b
Cs* =1(Sq") Y. S¢ @ S¢"7 + 659> Sq'Sq? @ Sq* 'S¢z
7=0 =0
satisfying p(C5?) = S¢°. The following relations holds
(1+tw)(C5®) = ¥(Sq*Sq®) + 624620Sq? Sq* © Sqt S¢
When b + a is odd the last term is zero. Defining
b—1— y
Ryt .= gt Z ( % )Cg“’—“
j=0 \ ¢~

for a < 2b and a + b odd we see that (1 + tw)(Ry") = 0. Thus p(R3") € ®*(A). But
since a + b is odd p(R3?) N ®2(A) = 0 and p(R3®) = 0 proving the case k = 1. The
case k > 2 follows form the lemma below. O

Lemma 6.9. Let A = Fy[a™/|i,j > 0] and B = Fy[b"7]i,5 > 0]. Let A be A modulo

the Adem relation and the relation a®? = 0 for p or q odd. Let B be B modulo odd
Adem relations. Define

c b — Zak,l ® ba—k,b—l c A ® B

Then c*® € A ® B satisfy odd Adem relations.

Proof. Define ¢ : B — A ® B by ¢(b™°) = ¥y, 0 @ 0" %1 We must show that
there is a map ¢ making the following diagram commutative

B, A9oB

L

B Y. AgB
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Dually we must show that there is a map p making the following diagram commutative

B* <_* A*®B*

| T

B* L A*®B*

Defining ¢ : A — A® A by ¢(a"7) = ¥, 0" ® a"*77! we have a coproduct on A
and the following diagram commutes

B —Y. AoB

.

A9B 22 A9 A9 B

Thus ¥* defines an A* module structure on B*. There is an isomorphism between A
and Ap) == [S ¢'S¢’] given by aP? — Sq%Sq%. Dually we have an ring isomorphism
of A* with A2)*. The dual algebra of the mod 2 Steenrod algebra is a polynomial
algebra A* = Fy[&;]i > 0] where deg(&;) = 2°— 1. We find that Afyy =TF2[&1, &) Thus
it is enough to show that the image of &+ : B* — B* is contained in B* and that the
image of &+ : B* — B* is contained in B*. Dually we must show that the composite

aU:Bi»A®B—>A®B—>B

where the last map is projection on the a>° coefficient when v = 1 and on the
a** coefficient when v = 2 factors through B for v = 1,2. This is OK for a; since
ai(b"*) = br=2*+b"*"? and thus corresponds to kox. We find that ay(b™*) = b"~+572,
Assume that r + s is odd and r < 2s. We have

(5] - (5] .

11— ) —1- -

RN (S 2 'j> b = b (S 2 -‘7) pre=4=ii=2
j=o \ T —4] j=o \ T —4]

Changing summation index ¢ = j—2 in the last sum we get the uneven Adem relation
for b"=%*=% and « also factors through B. [
7. BINOMIAL COEFFICIENTS MODULO 2.
For any real number z and any integer n the binomial coefficient (fl) is defined by
z(z—1)...(z—n+1) n> 0

(2) n!
= ,n=20
n

1
0 ,m<0
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The following properties holds. If m is a positive integer and n > m then (ZL) =0.

For all real numbers z and any integer n the Pascal triangle equality holds

(15) @ " (ni1> B (Zi)

For z > 0 and any integer n

()= ()

It follows that for any integers m and n we have

(5)-r(")

In the rest of this section binomial coefficients is always taken modulo 2. The
following summation formula can be found in [Ad]. Here we give an easier proof.

Theorem 7.1. For a,b,c € Z the following formula holds

an 2 () =)

Proof. If ¢ < 0 the theorem is trivial. Assume that ¢ > 0. (17) is equivalent to
showing the following for integers a, b, ¢ where ¢ > 0

(1) 5 (2m+a) <2n+b) _ (2c+a+b>

n4m=c m n Cc

This is seen by using (16) on each of the three binomial coefficients in the formula.
Define for all integers a

h= 3 (75 e me)

m=0

Note that fo(¢) = 1. We see that (18) is equivalent to
fa(t)fb(t) = fa+b(t)

l.e. we must show

(19) fa(t) = (12(2))*
for all integers a. By (15) we get

(20) fa(®) + farr1(t) = tfar2(D)
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Using the binary expansion m = Yi_,m; - 28, m; = 0,1 we have

2m 41\  [mg) (M my\ (Mg 1
m ~\o my ) \mg) \mq) \myg
thus (2":;1) =1 if and only if m = 2° — 1 for some integer s > 0. That is

[e o]

fl (t) — Z t2371

s=0

and from this fi(t) + t(f1(¢))> = 1. Now (19) follows for a > 0 by induction. It is
true for ¢ = 0,1. Assume it is true for a and a + 1 where @ > 0. Then

t(0) = (A1) (1 + () = fa(t) + farr(t) = tfara(t)

Finally we prove that f_,(t) = (fi1(¢t))~® for @ > 1 by induction. Assume it is OK for
—a+1and —a+ 2. Then

(f1(@)* f-a(t) = (/1(£)*(tf-ar2(t) + [-arr(t)) =
(A EAH@®)2 + (1)) = (A1) + filt) =1
and we are done. [J

For a > 0 and ¢ > a — 1 we have
L b—k\(k—a b—c
2 S0 =6
This follows from by (17) and (16) since
(k—a)_(a—i—c—l—%)_(a+c—1—2k>_(—c+k—1>
c—k c—k a—1—k a—1—k
From (17) and (21) we get forb>c¢>a >0
‘S (b—k\(k—a b—a+1 b—c
& 3L G o R (R R Y
Lemma 7.2. For x > 0 and y € Z the following relation holds
o fx—73\ (=147 x
Z%(yﬂ)(m—j):(\y\)

Proof. We first assume that y > 0. For x = 0 the relation is trivial and we assume
that > 1. In (22) we perform the substitution a =y+ 1, b=c=z+4+y, k =y +j.

We obtain
o fr—7\[(7—1 T 0)
. . f— + :O
2 ()G =05+
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Next assume that y < 0. By the substitution e = —y — 1, b =c=z + y in (17) we
get

x x e +y—k\[(-y—-1+k I (x—j\[(-1—-7
() =(5) -5 005 -500)05)
O
Lemma 7.3. For a > 0 and b,c € Z the following holds

(b —1 b+20\,(l—-1
) (6T =
o \ct+a—2] c+l) \a—1
Proof. Let f(a,b,c) denote the left hand side. We have f(a,b,c) =0 for ¢ < —a and

fla,b,c) + f(a,b,c+ 1) = f(a,b+ 1,c¢+ 1). Because of this it is enough to show
f(a,0,¢) =0 for all ¢. Using Lemma 7.2 we find

EID o1 (RN T B of (0N [ R 0

Assume that ¢ < 0. We have

2L Py R of V| G o iy 9

By the substitution { = ¢+ k and (17) this gives

oo ()TN0 = (1)

Assume that ¢ > 0. Since

()= ()= ()
we have
o )R-

where we have used (24) to see the lase equality. Combining (24) and (25) we get for
c any integer

(26) > ()0 =(0)

From (23) and (26) we see that f(a,0,¢) =0. O
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Lemma 7.4. For integers c, s,r,j with 37 < r we have

—k —k k—1—3j —J —J
ST (S EET) - (5) - (50)
ahor \S — 2k s—r+k)\r—k—-2j s—27 s—r+7
Proof. Let f(c,s,r,j) be the sum of the left hand side and the right hand side. We
have f(c¢,s,7,7) + f(e,s+1,7r,7) = f(c+ 1,5+ 1,7, j) and it is enough to show that
f(0,s,7,5) = 0. Since k > 3 > j we have £ —1 —j > 0 and (Tk:kljzjj) = 0 unless
k—1—j>r—k—2j. Using this and the fact that j < 7 we see that we can extend
the summation to 1+ j < k < co. Using this and (16) we obtain
_ X [(s—1—k s—1—r+2k k—1—3j
0 -
1(0,5,7.7) kz:][< s — 2k )+< s—r+k )]<r—k—2j>
By the substitution [ =k —j,a=r—-37>0,b=s—1—7r+2j,c=s—1r+j the
result follows from Lemma 7.3. O

8. AN APPROXIMATION TO THE S!'-HOMOTOPY ORBITS OF THE FREE LOOP
SPACE.

The free loop space on X is defined as the set of all maps from the circle S* into
X with the compact open topology. We denote this space AX. The circle S* is a
compact lie group under complex multiplication. Let BS! denote the corresponding
classifying space and ES! its universal cover. The free loop space has an obvious
Sl action induced by the multiplication in the circle group. Thus one can form the
Borel construction

(AX)hsl = ESl X g1 AX

That is the S' homotopy orbits of AX.

The cohomology of BS! is a polynomial algebra on a two dimensional class «. For
the cohomology of the classifying space of a cyclic group of two power order we still
use the notation

H*(BCyn) = {A(v) @ Fy[u]  when m > 2

IFs [a] when m =1
here a and v are one dimensional and « is two dimensional. The inclusion j : Cym C S*
satisfies (Bj)*(u) = v when m > 2 and (Bj)*(u) = a®> when m = 2 as seen by the
spectral sequence associated to S' — BCym — BS!. To construct the approximation
functor we shall need the following result.
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Theorem 8.1. Let m > 2 be an integer and let Y be a connected S'-space. Consider
the following diagram

ES'x¢,, Y —%5 ES'xaY
(27) ml prll
BCiynm =
where Q) denotes the quotient map. There is an isomorphism
0 : H*(BCym) @pg-psty H'(ES' x1 Y) = H*(ES' Xy Y)
defined by © @ y — pri(x)Q*(y). The transfer map
Trmt . HY(ES' x¢,, Y) — H*(ES' x¢

om—+1

Y)

is zero on elements of the form 1 @ Q*(y) and the identity on elements of the form
v ® Q*(y) (here v=a when m =1). We get an isomorphism

lim H*(ES! X¢,,, V) & H*(S(ES' x1 Y)y)
Proof. Filling in the fibers of diagram (27) we get

* — Y LN Y

S —— ES'x¢,, VY —25 ES' xa Y

pri pri

S' ——  BCy 22,  BS
Since the fundamental group of BS! is zero, the Serre spectral sequence E of the
lowest horizontal fibration has trivial coefficients, and since @) is the pull back of this,
the Serre spectral sequence E associated to () also has trivial coefficients. We get

Ey* = H'(ES' xq1 Y)® H*(S') = H*(ES" x¢,, Y)

B = H*(BSY) @ H*(S') = H*(BCyn)
and pry gives a map of these two spectral sequences. Writing H*(S') = A(v) we know
that dy(v) = 0 in E. Since pri(v) = v we get that dyv = 0 in E hence E, = E.
It is now obvious that the map 6 is an isomorphism. Using the map pri we get

that Tr™"!(v) = v. By Frobenius reciprocity the description of the transfer map
follows. [
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The above theorem is inspired by the following result of Tom Goodwillie, which can

be found in [BHM].

Theorem 8.2. (Goodwillie) For any based S'-space Z, there is a map

7: Q(SES| As1 Z) — holimQ(ES'. A, 7)

which induces an isomorphism on homotopy groups with I, coefficients.

Definition 8.3. Let L,, and P,, be the endofunctors on the category of spaces de-
fined by

Ln(X) = ES' X¢pm AX
P.(X) = ES* x¢,, X*"
for m=0,1,2,3,...
By applying Theorem 8.1 to each component of the free loop space we obtain
Corollary 8.4. For any space X there is an isomorphism
H*L,X = H*(ES' xg1 AX) ® vH*(ES* xg1 AX)

where v is a one dimensional class. When m > 2 we have v> = 0 and when m = 1
we have v? = pri(u). The transfer map

Trmt H* L X — H* Ly X
18 the identity on the v-component and zero on the other component thus
lim H*L,, X = H*(S(ES* xg1 AX),)

There are natural transformations, defined below, making the following diagram
commute

H*Pn—|—m ev"i) H*Ln—l—m
(28) tz+n]~ TTm+n]A
P, -2 H'L,

Let (, = €>™/* and consider the evaluation map, which evaluates a loop in the k’th
roots of unity:

ev i AX — X5 ev(f) = (F(1), £(G), - F(GT)
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We get a commutative diagram of spaces

1Xev

ES' x¢, X™ << ES! ¢ AX

l

(29) ES' x¢, (X7)* Q

1xev
1><(pr1)sl \

ESl X, X3 W ESl X, AX

where ¢ and @) are quotient maps and pr; projection on the first factor. Put s = 2™
and r = 2". Then Tr™*" is the transfer associated to the covering Q). The map ™"
is defined as the composite ™" = Tro(1x (pry)*)* where T'r is the transfer associated
to the covering ¢. Finally ev* is the map induced by the evaluation ev¥, = (1 X ev)*.
The commutativity of (28) follows from (29). Passing to the direct limit in (28) one
obtains a map

(30) limy H* P, X <5 limy H* L, X

The approximation functor is a quotient of the left hand side. The relations arise
from the following result.

Proposition 8.5. Let A : X — X X X be the diagonal map. In the diagram below,
the square with the quotient maps, the square with the transfer maps and the triangle
are commutative.

ev*

H*Pp(X) — = H*L,,(X)

el Jo

(31) H*Pyp_1(X?) <> H*L,,_1(X)

x|
*
evy 4

H*P,, 1(X)

Proof. We need only prove the commutativity of the triangle since the rest follows
from (29). We do it by showing that the corresponding triangle of spaces is homotopy
commutative. The evaluation ev,, : AX — X?" is homotopic to the composite

m—1
A2

AX St Tt A X
via the homotopy H : I x AX — X?" defined by
H(t, f) = (F(1), F(C)s F(CD), FICT2)s s FGT2), F(G7Y)
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where s = 2. This homotopy is actually Cym-1-equivariant when the action is trivial
on I, by ¢2 on AX and by cyclic permutation on X®. Thus we obtain a homotopy

I % Ly (X) — ES* xc,,_, (I x AX) =5 Py 1(X?)

with 1 X ev,, in one end and (1 x A?™) o (1 x ev,,_;) in the other. This completes
the proof. O

We use the notation from chapter 3 for the cohomology classes in H*P,, X.

Corollary 8.6. Let r = 2", s = 2™ and let k > 0. Suppose that a; @ ... R a, 15 1n
an orbit of length r under cyclic permutation by C,.. Then the following holds

32)  evi (@Y TH a1 ®...®a,)®") =Tri ™o evy, (e @ (I a:)®*)
=1

J=1

(33) ev;+m(e%+1 @ (01 ®...®a)%) =Tr"moev? (e2 ® (I] @:)®*)
=1

Proof. The elements in H*P,,,X above are hit by the transfer from H*P,(X?*). By
iteration of (31) the result follows. [

Because of this corollary it is enough to consider elements of highest symmetry i.e. of
the form e*®2®?" when one wants to determine the evaluation map (30). Proposition
8.5 reduces this problem still further because of the following two corollaries.

Corollary 8.7. The evaluation map (30) maps elements of the form e* @ (22)%%"
to zero.

Proof. Put s = 2™ and look at e** @ (22)®* in the cohomology group H*P,, 1(X)
placed at the bottom of diagram (31). We will show that the image of this class

z=evy (e @ (2%))

maps to zero under the transfer i.e. Tr™_,(z) = 0. Since the diagonal map satisfy

A*(e?* @ (29%)%%) = e2* @ (2?)®* the commutativity of the triangle of (31) implies
z = evl,_;(e** @ (9%)%)

We also have ¢*(e** @ 29%) = e2* @ (292)®*. Thus the quotient map square of (31)
implies

2= Q" oev’, (e¥ ® 2%)
Since Tr™_; o Q* is zero (multiplication by 2) z is mapped to zero by the transfer
Try . O



46 IVER OTTOSEN

Corollary 8.8. The evaluation map (30) satisfy
ev*[eZkH ® ($2)®2n] _ ev*[62k+1 Q az®2"+1]
forallk >0 andn > 1.

Proof. As above put s = 2™ ! and look at e?**! @ (2%)®° in the cohomology group
H*P,,_1(X) placed at the bottom of diagram (31). From the triangle of (31) we
obtain

ev* _1(62k+1 ® (x2)®s) — ev;_l(e%—f—l ® (I®2)®3)

m

Since Tr(e?**! @ (22)®%) = % +1 @ 22 the transfer part of the square of (31) shows
that

TTz—l o 60;_1(€2k+1 ® (I2)®S) — 6?};(62k+1 ® :L‘®25)

and the result follows. O

Definition 8.9. Define a functor ¢ from the category of spaces to the category of
unstable A-modules by

U(X) = lim H* P (X)/ ~

where ~ is the equivalence relation generated by

(34) 0 T © .0 6)] ~ [ o (f[ 0:)®]
(35) [ @ (01 ®...®a)®] ~ [* e H a;)®’]
(36) [e** ® (2*)*] ~ 0

(37) [62k+1 ® (1'2)®5] ~ [62k+1 ® l‘®23]

where r = 2" and s = 2™ for integers n, m > 0.

Note that the limit systems starts at H*PyX = H*X and in this particular group
we only have classes of the form ¢° @ z. The classes ef ® x with k£ > 1 are zero.
The evaluation map (30) gives a map

(38) UX) 25 lim H* L, X
and by neglecting the suspension factor we get a map of degree -1
(39) UX) S H(BES' x g1 AX)

We use /(X)) as an approximation to the cohomology of (AX),s1 via this A-linear
map.
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The results of chapter 5 give informations about the map ¢. Let i : X — AX
denote the map which sends a point x € X to the constant loop with value z. We
get a commutative diagram of spaces

ES) x¢, AX < BC, x X
ql Bjxll
ES' x¢, AX = BC,, x X

where j : C, C C,, is the inclusion. From this and (28) we get a commutative diagram

H* Py X 204 2L X 27 % (BCyuin) @ H (X)
(40) tﬂ“[ ﬂ;’ﬁ"] Trm"@J
H'P, X -2 H'L,X —™» H*(BCym)® H*X)

Since the composite X 4 AX 2 XM is the diagonal map A : X — X", the
horizontal composites of (40) are computed in chapter 5. Passing to the limit we get

A* (X)) <5 lim H* Ly X -5 limy H*(BCym) © H*(X)

We finish this chapter with a lemma which shall be used to do computations in the
next two chapters. It is well known but since we were not able to find a reference for
it we also give a proof.

Lemma 8.10. Let Y be a connected S*-space and let X\ : S' x Y — Y denote the
action map. Define a map d : H*(Y;Z) — H*Y(Y;Z) by

N HY(Y,Z) — H*(SYZ)® H*(Y;Z)
Ny)=c@dy)+1y

The fibration Y — ES' x¢1 Y — BS' have the following Serre spectral sequence
Ey* = H*(BSY,Z)® H*(Y;Z) = H*(ES' xs1 Y;Z)
The differential in the Ey-term is connected with the action map in the following way
dy: H*(Y;Z) — uH*(Y;Z) 5 do(y) = Fud(y)

where u 1s the two dimensional algebra generator of the cohomology of the base space

i.e. H"(BSYZ) = Zu).
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Proof. The map A* is injective since A o v = id where 7 is the map defined by
v(y) = (1,y). We also see that A* have the form stated in the lemma. We check that
d is a differential i.e. that d o d = 0. There is a commutative diagram

Slx Slxy 22, slyy

”XIJ AJ
Slxy 25 v
where 1 : S* x S — St is the multiplication map. In cohomology it satisfy u*(o) =

0 ®1+1® 0. By pulling back a class y € H*(Y;Z) the two ways in the diagram it
follows that d o d(y) = 0.

Letting S act on S' x Y by p on S! and trivially on Y we have that A is an
equivariant map. We get a map of fibrations

SI'xY —— ES'xg (S'xY) —— BS!

AJ 1><,\l ,-dl
Yy — ES'xq Y —— BSt

giving a map of the corresponding spectral sequences \* : £ — E where E is the
spectral sequence associated to the upper fibration. Since ES! x 1 S'xY ~ ES' xY
it looks like

Ey = H*(BSY Z) @ H*(SYZ) @ H*(Y;Z) = H*(Y; Z)
In F, the differential on the fiber elements are given by
(41) d(c®@z)=3u(l®z), d(1®2)=0

To see this, assume that Y is contractible. Then the F., term has a 7Z placed at
(0,0) and zero at all other places, It follows that dy(c) = +u and dy(1) = 0. Since
the action on Y was trivial this case imply (41). Let y € H*(Y;Z) be a fiber class

A

in Ey. By A\* it maps to 0 ® dy + 1 ® y and applying the FE,- differential to this
we get fu(l @ dy). We see that dy(y) = ux where v € H*(Y;Z) is a class with
A*(z) = £1®dy. Since z = +dy satisfy this equation and A* were injective the result
follows. [

9. THE APPROXIMATION FOR THE INFINITE COMPLEX PROJECTIVE SPACE.

In this section we compute the map (39) in the case where X = CP*. We shall
need the following result
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Proposition 9.1. Let A be an Abelian group and n > 2 an integer. There is a
homotopy equivalence

AK(A,n) ~ K(A,n—1) x K(A,n)
where the product is the product in the category of CW-complexes.
Proof. K(A,n) is an Abelian group since the functor B applied to an Abelian group

gives an Abelian group. AK(A,n) is an Abelian group by the pointwise operations.
There is a commutative diagram

QK(A,n) —2— QK(A,n) x K(A,n) -2 K(A,n)

al "| al
QK(A,n) —— AK (A, n) —, K(A,n)
The map ev evaluates a loop in 1 € S* and the map 4; maps a loop f to (f, ) where
e € K(A,n) is the neutral element. There is a section s : K(A,n) — AK(A,n)
mapping a point to the constant loop at that point. The map m is defined by

m(f,p) = i(f)s(p). By the long exact sequences of homotopy groups for the two
horizontal fibrations and the five lemma we get that m is a homotopy equivalence. [

Since CP*® = K(Z,2) we get ACP>® ~ S x CP*. We now compute the cohomology
of the space (ACP*),s1. The fibration

(42) ACP> 2L ES' x g1 ACP™ = BS"

give the following Serre spectral sequence

(43) Ey* = H*(BS';Z)® H*(ACP*;Z) = H*(ES' x51 ACP™;Z)

The cohomology of the base space is a polynomial algebra on a two dimensional gen-
erator u i.e. H*(BS';Z) = Z[u] and the cohomology of the fiber is an exterior algebra
on a one dimensional generator e tensor a polynomial algebra on a two dimensional
generator c i.e.

H*(ACP*;Z) = Ae) ® Z|(]

Lemma 9.2. The differential in the Ey-term of the spectral sequence (43) is given

by
da(e) =0, dy(c) = teu

Proof. Any constant loop in ACP® is a S!-fixpoint, thus there is a section
(44) s:BS' — ES' xg1 ACP® , mos=id

In this way Z[u] becomes a direct summand in the cohomology of the total space
implying dy(e) = 0.
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By Lemma 8.10 one may describe the differential d, by
dy : H*(ACP*) — uH*(ACP®) ; dy(y) = +ud(y)
where d is determined by the action
A: St x ACP™® — ACP™
Ny)=oc@dly) +1Ry

We will find d(c). Since it has degree one we get d(c) = ke for a constant k € Z.
Consider the composite

P S x QCP® X4 81 x ACP™® 2 ACP™ 2 CP™
satisfying ¥(z, f) = f(z). Since ev*(c) = c and A*(¢) = 0 ® ke + 1 ® ¢ we obtain
V*(c) =0 @ ke
The map 7 factors through the smash product

S1 % QCP> L cp>
Ql /
P
S' A QCP™

We first consider the map 121 There is a commutative diagram of homotopy groups

15(S' A QCP>) Vs 1, (CP™)

E —
T adj

7T1(Q(CPOO)

where ¥ is the suspension map and adj is the adjunction isomorphism. All three
homotopy groups in the diagram equals Z and it follows that 1, is multiplication by
plus or minus one. By Hurewicz theorem we get the same result in dimension two
homology and by universal coefficients we find

H2(CP>;Z) 5 HX(S' AQCP™;Z), *(c) = o ® e
To complete the proof we only need to show that Q* is an isomorphism in degree 2.
Consider the long exact cohomology sequence associated to the pair 7 : S v St C
St x St

e H(S'v S & H2(ST x SY) & HMSTASY) — ...
Since H?(S' Vv S') = 0 we see that Q* : Z — Z is surjective thus it is multiplication
by plus or minus one. [
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We go back to mod two coefficients, and use the same names for the algebra generators
i.e. H*(BS') = Fy[u] and H*(ACP>) = A(e) @ Fy[c].

Theorem 9.3.

H*(ES xg1 ACP®) = A(e, &) @ Fy[b,u]/1
where I is the ideal generated by the elements eu and e§. The degrees are |e| = 1,
€| =3, |b| =4 and |u| = 2.

Proof. From the lemma above we find the F5 term of the spectral sequence associated
to the fibration (42)
E7 =Ae, &) @ Fa[b,u]/I

where £ = ec and b = ¢?. For dimensional reasons all higher differentials on the classes
e and b are zero, and the only possible non-zero higher differential on ¢ are d,& = u?.
But because of the section (44) the class u? survives to E hence ds§ = 0. We have
shown E3* = E**. Choose liftings of the generators e, &, b,u € H*(ES! x g1 ACP>).
By using the section (44) when necessarily one finds that the liftings satisfy the
relations e? = 0, eu = 0, e£ = 0 and &2 = \bu where A € F, is a constant. The
constant loop inclusion 7 : CP* — ACP* induces a map from the trivial fibration

CP*>® — BS' x CP® — BS!

to the fibration (42). By the corresponding map of spectral sequences one finds that
the map of total spaces

(1 x4)*: H*(ES" xg1 ACP®) — H*(BS' x CP*)

satisfy £ — 0, z — z and b — c* + ycu for a v € F,. It follows that A = 0. Thus the
liftings satisfy the all the relations in the E-term. Because of this we can define a
ring homomorphism

Ae, &) @ Fy b, u]/I — H*(ES* xg1 ACP™)
which is easily seen to be an isomorphism. [J

We proceed by finding the A-module structure of H*(ES! x g1 ACP*). To do so
it is enough to find Sq¢'¢ , Sq¢?¢, Sq'b and S¢?b. The constant loop section and the
inclusion of the fiber map

H*(ACP®) & H*(ES' xg1 ACP®) 25 H*(BSY)
gives the following information about these
(45) Sq'é =0, Sq*6 =eb+ Mué, Sq'b = Mué, S¢*b = Asub

where A\, € Fy are constants to be determined. The map

H*(ES' x g1 ACP®) -5 H*(BS' x CP*™)
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maps e and £ to zero, u to u and going to the fiber one finds that :*(b) = ¢* + \yuc
for a constant Ay € Fy. This together with the quotient map shows that
H*L,CP> & H*(BC, x CP™)

is given by e,£ — 0, a — a and b — c¢? + A\sa’c. Since the diagonal map

A* . H*P,CP* — H*(BCy x CP*)
satisfy A*(1®@c¢®?) = a*c+c?, and A* = i} oev} we see that \y = 1 and i;(b) = *+a’c,
i*(b) = ¢* + uc. Further more we get that

ev* (1 ® c®) = b+ Asal

for a constant A5 € F,. Now we can find S¢?b using the A-linearity of i*. We have

Sq*(i*(b)) = S¢*(c* + uc) = u’c + uc?
and this equals

i*(S¢*b) = i*(A\zub) = Azu(c® + uc) = A3(uc® + u’c)

thus A3 = 1 and S¢%b = ub.

We can use Lemma 9.2 to find Sq'b. The Fj-term of the spectral sequence (43)
is determine by Lemma 9.2. The only possible non-zero higher differential is d4(ec)
but the section (44) shows that it is zero. One finds that HY(ES! xg1 ACP>;Z) is
Z&Zfor g =4 and Z& Z/2 for ¢ = 5. By the long exact sequence associated to the
coefficient sequence

0—>Z1>Z—>Z/2—>0

one sees that there is a non-trivial bockstein from dimension four to five. Dimension
four of the mod two cohomology of the total space consists of the classes b and u?.
Since Sq'(u*) = 0 we get Sq'b # 0, thus Ay = 1 and Sq'b = u.

We can use this to determine \5. By the formulas for the A action on H*P; X we
get that Sq'(1 ® ¢®?) = 0 and hence

0=25¢" ev;(1® c®?) = Sq' (b + \séa) = a’€ + N\séa?
giving A\s = 1 and
ev}(1®c®?) =b+ a
We get further information by applying Sq?. We have
SPE1@c®) =a*>2c®?+10(*@c+c®c?)
and from this
evf(S¢*(1® ™)) = a’b + a’€ + ev](1@ (P ® c+c @ %))

This equals
Sq? evi(1® c®?) = S¢*(b + a&) = a’b + M\ a*€ + aeb
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Multiplication with a annihilates the terms aeb and evi(1 ® (¢ ® ¢+ ¢ ® ¢?)) giving
A1 =1 and S¢*(€) = eb + u. Further we get that

evi(1®@ (2 ®@c+c®c?)) = aeb
Since (1® ¢®*)(1® (c®1+1® c¢)) it follows that
(b+al)evi(1®@ (c®@1+1R®¢c)) = aeb
In degree two we have a? and ea and it follows that
ej(1®(c®@1+1®c)) =ae

Since t2(1®¢) =1®@ (c®1+1® c) and evj(l ® ¢) = c it follows that Tri(c) =
ae. By Frobenius reciprocity this determines Tri. We have show the following two
propositions

Proposition 9.4. The transfer maps
Trm*tt . H*L,,CP® — H*L,,;;CP*

are given by the following. When m = 0 the elements c** and ec® maps to zero and
2 maps to aeb®. When m = 1 monomials with a in an even power maps to zero
and monomials with a in an odd power 2k + 1 maps to the same monomial with
a®+1 replaced by vu*. When m > 2 monomials without a v is mapped to zero and
monomials with a v 1s mapped identically.

Let Sq(z) denote the total square of the class z i.e. the formal power series

Sq(z) =Y (Sq'z)t’

i>0

Proposition 9.5. The A-module structure of H*(ES! x g1 ACP®) is given by the
following. The total squares on the exterior generators are

Sq(e) = e, Sq(§) = &+ (eb + ud)t’
and the total squares on the polynomial generators are
Sq(u) = u+ut®, Sq(b) = b+ ult + ubt® + u*&t® + bt
The next step is to compute ev}, for each m. We shall need the following result
Lemma 9.6. Form >2 andr=0,1,2,...,2™ ' —1 one has
Eu?T 21 when r is even
S (b u?" Ay = L ep? ! ,when r=2m"1 -1
0 , otherwise

m_o(y r 9m_9(p r 2m —1—r
Sqt gV ut" ) = gt X “)((1)“( 2 )“2>
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Proof. Since both e and £ annihilates £ we have
Sq(eb a2 H) = (€ + (eb + ué)t) (b + ubt® + bt (u + )" 2+

and by finding the coefficient to t* we get
Sq2(€bTu2m—2(T+1)) — (eb + ué')bTUZT"—Z(r—i—l) + (:) fbruszz’“*l

which equals the result stated above. Since ex = 0 we map put e = 0 in the expression
of the total square when computing Sq*. The expression then equals

§u2m—2(r+1)br(1 +u + bt4)r(1 +ut2)2m—2r—1

by the binomial formula we get

(1+ut2+bt4) (1+ut2)2 “or 1 (1+ut2)2 1 (:)bt’"(lﬁ—uﬁ)w_z—r

+Z( )bzt4z 1+Ut2)2 —1l—r—2

We may neglect the last sum since the powers of ¢ are to big and the stated result
follows by finding the coefficient to t*. [

Theorem 9.7. For all integers m > 1 we have
vt (1@ ™) =" + b !

Proof. We have already seen that this is correct when m = 1. Since S¢'c = 0 the
Qs-operation from chapter 4 satisfy Q3 *(c) = 0 and it follows that Q%*'(c) = 0 for
r = 2F with k any positive integer. We also have S¢ic = S¢*c = 0 And the formula
for the diagonal map reduces to

A (1@ ) = (ue)? ™ + &

The map i}, is given by % (v) = v and the same as the map i* on the other algebra
generators. Since A* =¥ oev} we find that

evp(1@ ™) =0"" +y

for some y in the kernel of 77 . The even dimensional elements in the kernel of 7,
is spanned by the elements veb! and v&b™u® with I, 7, s > 0. Since the degree of y is
2m+1 and the degree of veb! is 4] + 2, y is in the span of v€b"u® where r and s satisfy
2™ =2+ 2r 4+ 5. We conclude that
am—1-1
evt (1@ ) =" + S kwgbu® A

r=0
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for some constants k; € F,. In the case m = 2 we have
Sl =19 N*®c®c®c

and this element is the transfer on ¢ ® ¢ ® ¢ @ ¢ in H*Py((CP>)*). By applying
Proposition 8.5 we obtain

ev3(SE(1® @) = Tryoevi(1® ) = veb?
and by the A-linearity of ev; this equals
Sq*(b* + kovéu® + kyvéb) = kovué + kyveb?

Thus ky = 0 and £; = 1 and we have proved the stated formula when m = 2. Assume
m > 3. By Lemma 9.6 the map

(S¢*,S¢*) : H*L,,CP*® — H*L,,CP* & H*L,,CP*®

is injective when restricted to the subspace spanned by the elements £b"u2" ~2(r+1),
r=0,1,...,2m"1 — 1. Thus it is enough to show that

v’ (Sq' (1@ ¢®2™)) = Sg'(b*" " + veb®™ ')
for 1 = 2 and 7 = 4. We have
SPE1@c®?") =10 N@c@---®c
and

2m—l
S 1@ ) =12 S¢" () =10 Y. T @c@ - @ c)*

k=1
+Y 1N Q@ ®cRRc®---®c
By applying Proposition 8.5 as above we get
ev: (S (1 @ c®*™)) = veb
and by applying Proposition 8.5 to the equation for square four we get
el (Sg* (1@ ™) =Tr (1@ (")) + Y. Trf o evi(1@ 1)
The proof of corollary 8.7 gives that the last sum is zero and we have
evs, (Sq*(1@ ™)) = Tr((b+ a)*™ ) = veb
By Lemma 9.6 we have
SEB T + v T Y = web?™ T, ST 4+ 0eb? T L) = weh?™
which completes the proof. [

2m71

2m—1

Using that ev}, is a ring homomorphism and the description of the transfer maps, we
get the following main result.
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Theorem 9.8. The map
0(CP>) 2 H*(ES! xg1 ACP™)
1S an itsomorphism given by
[1® Y i ebt
€21 @ ()82 s wibh
[622' Q (C2k+1)®2’"] N ui§b2mk+2m_1—1
where m >1 and k>0

Note that any nonnegative integer r can be written as r = 2™k 4+ 2™~ — 1 for a
unique m > 1 and k£ > 0. If r is even m must be one and k£ =r/2. If r is odd m — 1
must be the two valuation of 7 + 1 since r +1 = 2™~ !(2k + 1) and we can solve this
to find k.

10. THE S'-HOMOTOPY ORBITS OF THE EILENBERG MACLANE SPACES K (IFy, n).

Let n be an positive integer and let K,, = K(Fy,n) denote an Eilenberg MacLane
space of type (Fy,n). Assume that n > 2. The fibration

AK, — ES! x¢1 AK,, = BS*
has the following Serre spectral sequence
(46) Ey* = H*(BS') @ H*(AK,,) = H*(ES' xs1 AK,,)

The cohomology of the fiber is H*(AK,,) = H*(K,_;) ® H*(K,,) by Proposition 9.1.
We shall denote the fundamental class of H*(K,) by ¢,.

Proposition 10.1. In the above spectral sequence the differential dy 1s given by
dy(tn_1) =0 and dy(ty,) = uty_1.

Proof. The map 7 has a section
(47) BS' % ES' x g1 AK,

since any constant loop is a fixpoint in AK,. Because of this section the class u
survives to E* and dy(t, 1) = 0. (At this place we only need this argument when
n = 2). By lemma 8.10 one may describe the differential dy by

dy : H*(AK,) — uH*(AK,)
dy(y) = ud(y)
where d is determined by the action
A:SYx AK, — AK,
Ny)=oc@dy)+1ey
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We will find d(t,,). Since it has degree n — 1 we get
d(tn) = ktn_1, k €y
Consider the composite
¢:S' x QK, 5% §' x AK, 2 AK, 2%

satisfying ¥(z, f) = f(z). Since evi(t,) = tn, and XN (i,) = 0 @ ki1 + 1 ® 1, We
obtain

V*(tn) = 0 @ ki,
and it is enough to show that
v* HY(K,) — H"(S' x QK,,)

is non trivial. The map 1 factors through the smash product

SLx QK, "~ K,

o| A

S'AQK,

We first consider the map 1& There is a commutative diagram of homotopy groups

T (ST AQK,) Y (K,

2 =
T adj

7Tq,1 (QKn>

where ¥ is the suspension map and adj is the adjunction isomorphism.

Assume that n > 3. By Freudenthal’s suspension theorem ¥ is an isomorphism for
q < 2n — 2 especially for ¢ < n. Thus ¢, is an isomorphism for ¢ < n. By Hurewicz
theorem

H,(S' A QK,) 25 H,(K,)

is an isomorphism. To complete the n > 3 case we only need to show that )* is non
zero in degree n. Consider the long exact cohomology sequence associated to the pair

1 Sl V anl g Sl X anl:
L HY(S'V K, 1) < HYS' x K, 1) & HYS' A K, ) — ...

Since * : Fy & Fy — [y has a non trivial kernel we see that Q* is non trivial.
When n = 2 the proposition follows from Lemma 9.2 by using the reduction map
K(Z,2) — K(IF,,2). O
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Recall that a multi index of non-negative integers I = (iy,is,...,1%) is called
admissible if ¢,y > 2i, for £ > s > 2 and 7, > 1. We denote the set of admissible
multiindeces by A. The excess of I is the number

6(1)211—22——219

Theorem 10.2. Let n > 2 be an integer. The cohomology H*(ES' x g1 AK,,) is the
quotient of the Fy-polynomial algebra generated by the elements

u of degree 2
{bs|J € A, e(J) <n—2} with |bs| = 2(|J]| +n)
{Xi/ITe€eA,elJ)=n—1} with | X;|=|I|+n
{D(Jy,...;,J)|lr>1;J,....J, € A;e(J;) <n—2,i=1,...,r}
with |D(Jy, ..., )| = ||+ +|J]+rn—1
by the ideal generated by the elements
D(Jy,....J.)+ D(Jg(l), cee Ja(r))
D(J, J, Jy,...,J5) +b;D(Jy, ..., Js)

D(Jy,...,J;.)D(Ky,...,K,)+ ZD(JZ-)D(Jl, o diy e Ky . K)
i=1

uD(Jy,. .., J,)

here o is any permutation of the numbers from 1 to r, and the “hat” means that the
term is left out.

Proof. We start by computing the F3-term of the spectral sequence (46). Again we
use the notation

dy : H*(AK,) — uH (AKy) 5 dy(y) = ud(y)
and we can write the Es-term as follows
By =ker(d) @ uH(d) @ v*H(d) D ...
Because of (9.1) we get the cohomology of the fiber
(48)  H*(AK,) 2Ty [Sq tn, Sq¢"tn1|[,J € A, e(I) <n—1,¢e(J)<n—2|

Assume that [ is admissible and e(I) = n — 1. We will express dSq’t, = Sqlt, 1 as
a polynomial in the variables from (48). Define I(¢) for t =1,2,...,k by

I(t) = (Z'tu 7/‘75+17 te. 7Zk:)
We have
e(I(t)) —e(I(t+1)) =iy — 24,1 >0
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hence the excess is weakly decreasing with increasing ¢. Define the number o(I) by
o(I) = max{tle(I(t)) =n—1}
and put L(I) = (i1, ..., %eq)-1) and R(I) = (io(r)41, - - -, 7). We claim that
dSq'i, = (SqR(I)Ln_l)Za(I)
where R([) is admissible with e(R(I)) < n — 2. This follows since
i1 = 219,103 = 213, .. ., lo(1)=1 = 2lo(1)

and

Z'U([) = 7;0(1)+1 R Zk +n— 1= |SqR(I)Ln,1|
By definition of o(I) we have e(R(I)) < n — 2. We chose another set of polynomial
generators for (48) as follows. Define X; for I admissible with e(/) =n — 1 by

X; =S¢l + S¢*D(S¢RD,, S¢RM,, 1)
and we have
(49) H*(AK,) =TF5[Sq”tn 1,5¢" tn, X7|I,J € A, e(J) <n—2,e(I)=n—1]
where
dSq’ 1, 1=0,dS¢ 1, =8¢7 1,1, dX; =0
Applying the Kiinneth formula we find the cohomology of d:
H(d)=TFyb;, Xs|I,J €A, e(I)=n—1,¢e(J) <n-—2]

where by = (SqJ Ln)2. Thus the Fs-term is determined except for the first column.
Splitting the kernel of d, we may write it as

Ey =im(d)® H(d) & uH(d) ®v*H(d) & . ..

where uy = 0 for all y € im(d).
We will now prove that all higher differentials vanish such that E5* = EZ*. Because
of the quotient map

(50) Q:L,X — ES' xg AX
the Serre spectral sequence of the fibration
AX — L, X — BCym
also have Ey-differential dy given by Proposition 10.1 and the E3-term looks as follows
Ey =im(d) ® H(d) ® v(im(d) @ H(d)) ® uH(d) ® vuH(d) D . ..
where the classes v and v comes from

H*(BCym) = A(v) @Fy[u], |v| =1, |u| =2
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when m > 2. For m = 1 we have H*(BC3) = Fy[a] where a is a one dimensional
class, and the above should be interpretaded by v = a and u = a’. The quotient map
(50) also gives that a non zero higher differential in E}* implies one in E* and visa
versa.

Assume that d;, = 0 for all s <r — 1. If r is odd, d, = 0 since it begins or ends in
a zero column in E**. Assume r is even, r = 2[. For a class y € im(d) we can write
d.y = u'z for some z € H(d). But since uy = 0 we have

0=d,(uy) = udy = u"*'z

which implies z = 0 and we have shown d,y = 0. Thus it is enough to show that
d,b; =0 and d,X; = 0. At this point we use (40).

Let us examine the map of spectral sequences induced by the constant loop inclu-
sion 7.

AK, K,

L, K, L BCym x K,

BCym ——  BCjym
on the fibers we have
i H'(AK,) — H(K,); tno1— 0, 1y 1y
because of the degree and the fact that the composite
H*(K,) <5 HY(AK,) 5 H*(K,)
is the identity. This implies that ¢*(y) = 0 for all y € im(d) and
i*(X1) = Sq"tn , i*(by) = (Sq”1,)?

as a map of spectral sequences.
Assume J is admissible with e(J) < n — 2. The map

A* 2 H*PL(X) — H*(BCy) ® H*(X)
satisfy
A*(a ® (Sq71,)%?) = a(Sq”1,)* + a®Sq¢H 1S, + . ..

There is a class z € H*L;(X) which maps to this under the map 4} in (40). Thus the
class w = Tr?(z) maps to

v(Sq7 1) + vuSq T 2S¢, +
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under the map 75. We claim that the class corresponding to w in the spectral sequence
has zero in the first column. This follows from a general fact. The composite

TZ ) *
(51) HLX 2% B L, X 25 H*AX

is zero, where j is the inclusion of the fiber. To prove this observe that we have a
commutative diagram

SOx AX —— LlX

o

AX — X

from which we get the following commutative diagram in homology

H.(AX)& H(AX) 222 g X

TTA“ T’I‘% ]‘

H,(AX) > H,L,X

where j; and j, are the two inclusions coming from the top horizontal arrow of (52).
Clearly j; and j; are homotopic and ji. + jox. = 2j1. thus it is zero with mod two
coefficients. Passing to cohomology, we see that (51) is the zero map.

we can now conclude that there is a class ¢ in the E-term such that i*(vc) =
v(Sq’1,)%. This forces the class b; to survive.

Assume I = (iy,...,1) is admissible with e(I) = n — 1. Let K be the multi index
K =1(2) = (4g,...,%). We have

A (1@ (5¢%1,)%) =1 (8¢5 1) +a® Sq! K+ =18¢K 1, +a? @ Sq K 25¢% 1, + . ..
and since e(I) = n — 1 we have that iy =n — 1 +1iy+ - -+ + i) thus

Sqli, = Sq K145,
A similar argument to the one above forces the class X; to survive to EZ*. We have
proved E3* = E2.

Next we give a precise description of the im(d) part. For a sequence .Jp, ..., J, of
admissible multiindeces all with excess at most n — 2 we define the class

(53) D(Ji,.... J) = d([[ S¢%wn) = > Sq” a1 [[ Sa’itn
i=1 i=1 j#i

The following relations are obvious

(54) D(Jl, ... Jr) = D(Jg(l), ceey Ja(,«)) for all o € X,

(55) D(J, J, Ji,...,Js) =byD(Jy,...Js)
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Where ¥, denotes the symmetric group. The following relation is easily verified
(56) D(Ji,...,J)D(K1,...,K)) =S D(J)D(Jy,.... Jiy..., Jp, Ky, ... Ky)
i=1

where the “hat” means that the element is left out. We see that im(d) is a module
over the ring

Fy[D(J), by, Xi|I,J € A, e(J)<n—2,¢e(l)=n—1]

and as such generated by the classes (53). In fact (54) , (55) and (56) generates all
relations in im(d) and we have

E:: :IFQ[U,D(Jl,---,Jr),bJO,XI|Jz' EA, 6(]1) S’I’L—l fOI'jZO,...,T

(57) and [ € A, e(I)=n—1]/R
where R is the ideal generated by (54), (55) and (56) and the relations
(58) uD(Jy, ..., J;) =0

Choose liftings of the algebra generators of (57) in H*(ES! x g1 AX). We can do this
such that the relations (58) still holds. With this choice the other relations (54) ,
(55) and (56) also holds. Using these liftings we can define an algebra morphism

Al* L H*(ES' x 1 AX)

where Al* is the algebra in (57). Any element in E** is the quotient of an element
of the form f(a) where a € Al*, and from this it follows that f is surjective. It is
equally easy to see that f is injective. [

In order to complete the description we consider the initial case K1 = RP>* = B(C,.
For a discrete group G one has a homotopy equivalence

ABG~ ]| BCalx)
ze<G>
where Cg(x) is the centralizer of  and < G > is the set of conjugacy classes in G.
With G = Cy we find
(59) ABCy ~ BC, [[ BC-

Let iy : BCy — ABCj denote the constant loop inclusion i.e. iy(z)(z) = z for all
z € S'. Since BC, is connected io(BC,) is contained in one of the two components
in A(BC5). We denote this component (ABCy)y and the other (A(BCs));. Let
ev : ABCy — BC, be the map which evaluates a loop in 1 € S!. Since the composite

BCy 2% (ABCy)y <% BC,

is the identity ig. : m,(BC3) — m,((ABCy)o) is an injective map. Since both ho-
motopy groups equals F; when ¢ = 1 and 0 when ¢ > 2 we have that iy, is an
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isomorphism. Since (ABCj)y has the type of a CW-complex by (59) the Whitehead
theorem shows that iy : BCy — (ABCy) is a homotopy equivalence. Let (BCjy)g
denote BC, with the trivial S'-action. Then iy : (BCs)g — (ABCs)g is a homo-
topy equivalence and an S'-equivariant map. By the Whitehead theorem we get a
homotopy equivalence

BS' x BCy = ES" xg1 (BCy)g —2% ES" x g1 (ABCy)q

There is an homeomorphism S' ~ S'/C, given by z — +,/z. Via this we get a
free S'-action on BCs:

(60) S1/Cy x ES/Cy — ES'/Cy

From this action we define a map 4; : BCy — ABC, by i1([e])(z) = z - [e] = [/z€]
for z € S! and e € ES'. 4,(BC,) lies in the component (ABC,), of ABC, and
the composite ev o 7; is the identity. By a similar argument as above we get that
iy : BCy — (ABC)), is a homotopy equivalence. Letting (BC3); denote BCy with
the S'-action (60) we have that i; : (BCy); — (ABC3), is a homotopy equivalence
and an S'-equivariant map. We get a homotopy equivalence

ES' xg1 (BCy), =% ES' xg1 (ABCh),

Since the Sl-action on (BCh); was free projection on the second factor of the left
hand side gives a homotopy equivalence to (BC,);/S' ~ BS! thus v = 1 and we
have shown

(BS' x BCy) [[ BS' ~ ES" x51 ABC;
Hence the following cohomology
H*(ES' x51 ABCy) & Fy[u, t] ® Fy[u]
where the degree of ¢ is one. Of cause we also have a homotopy equivalence

ES %¢, (BCy)o [[ ES' %y (BC), ~H 1, BO,

and since the second factor on the left hand side is homotopic to (BCy);/Com =~
BCym+1 we get

(Bsz X BCQ) HBsz-‘rl ~ LmBC2

In this initial case the approximation (39 ) has also been determined. It has the
following form:

Theorem 10.3. The map

(RP®) & H*(ES" x g1 ARP™) = Fy[u, t] @ Fy [u]
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18 given by
1@t (0, u)

€4 0 ()% = (3 (.

7

(7") ukti @ 201 0)

2r+1
[6% Q (t2r+1)®2m] N ( ~ <2T + 1) uk+2m—2i Q th(2T+l)—l—2m_1i 0)

)uk—H ® tQ(T—i) , 619’07_[)

.

[6219 ® (t2r—|—1)®2] s (i

Y

where k,r > 0 and m > 2.
Proof. We first check that pry o ¢ is as stated. The composite
BCym x BCy =% [,,BCy % P, BC,
equals the diagonal 1 X A and from chapter 5 we get for m > 2:
A1t =10t +u @t +vot T 4o @t !

Since A* is a ring homomorphism A*(1® (¢7)®2™) is the r’th power of the right hand
side. We compute this by the binomial formula using that v> = 0 and obtain after
some reductions

A* 1 t,,, ®2m _ r T 2m—2]’ t2m7._2m—lj T T T 2m—2]' tzm,,._l_Qm—lj
(Te()") ;}(j)u 02y + 1 Zojvu ®
i= j=
This implies the stated result. When m = 1 we have by Steenrod’s formula
A1) = @S¢t => <T> @ @ ¥
j=0 j=o0 \J

implying the stated results. Finally for m = 0 we have that the composite
ES' x BC, =2 ES' x ABC, 2% ES' x BC,

is the identity thus 1 ® t***! — 1 @ t?**! and in the limit we get zero.
Next we consider pry o ¢. The equivalence

ESl XCQm (BCg)l &) (BCg)l/Cgm

goes in the wrong direction thus we need an inverse to prj. There is a map s :
ES'/Cy — ES! satisfying

s([ze]) = 2"s([e])
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for all z € S! and e € ES'. We construct this simplicially. There is a simplicial map
ESY % ES! given by (2q,...,2,) = (28,...,22) in degree n. Since S! is abelian we
have

s(2(20 -y 2n)) = 2%5(20, -+, Zn)
The realization s : ES' — ES! is a map satisfying s(ze) = 2%s(e) and since s(1le) =
s((—1)e) it factors through the quotient £'S'/Cy. Define a map

f:ES'/Cy — ES' x (ES'/Cy)
by f([e]) = (s([e]), [e])- Tt is easy to verify that f is S'-equivariant and we get a map
f:(ES'/Cy)/Com — ES' x¢,. (ES'/Ch)

Clearly pryo f = id hence f*oprj = id and since we know that pr} is an isomorphism
we have f* = f*oprio (pr3)~' = (pr3)~!. We wish to compute the cohomology of
the composite

g BCyusr 5 ES' ¢, (BCy)y = L,,BCy 22, P, BC,

First consider
BCQm+1 N ESl X Cym (BCQ)l 2, BC2m

given by [e] — [s([e])]- It is the reduction map B(—)? : BCym+1 — BCam. By lemma
10.4 we get ¢*(u ® 192™) = 0 and ¢*(v ® 19?™) = v To finish the computation of g*
we only need to find g*(1 ® t®2™). There is a commutative diagram

BCQm—H L) ESI X Cym (BC2)2"‘
BZI QT
BC, —— ES'x (BGCy)™"

where ¢ : Cy C Cym+1 is the inclusion and the bottom map is homotopic to the
diagonal map. Since A* o Q*(1 ® t®?") = a®" we get

FAot®?) =4 m>1
When m = 0 we simply have the identity
id : ES' x BCy, 2% L,BC, X% Py,BC,
Since the limit system are by transfer maps, we get the stated result. O

Lemma 10.4. Let s = 2™ and let r : Cy;, — C, be the reduction map T +— t where
T is a generator for Cys and t s a generator for Cs. Then the induced map

r* : H*(BC,) — H*(BCy,)

is given by v — v and u — 0.
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Proof. Since r is a group homomorphism, it induces a map in group cohomology
(61) r*: H*(Cy Z) — H*(Cos;r# (7))

The 7# means that the action is via 7. Here Z has trivial C, action and then 7#(Z)
is of cause Z with trivial Cys-action. Let W,(Cy) denote the standard resolution of
Z with free Cy-modules. There is a chain map over the identity F, : W, (Cys) —
red®*W,(C,) and it is uniquely determined up to homotopy. The map (61) is induced
by

Homzc (W.(Cs); Z) Lad”, Homzc,,] (F*W.(C,): r*Z)
L*> HOmZ [Czs](W* (023)7 T#Z)
We choose F, as below

7 —— Z[Cy] = Z[Cy| 2 Z[Cy] = ...

T R
7 —— 1*7[C,] —— r#7Z[C,] —— *Z[C,] —— ...
where N =1+T7T+4 ... 7% Yand n=1+4t+...t* ! are the norm elements. Passing

to mod two coeflicients the result follows. O

Theorem 10.5. The map
URP™) 2 H*(ES! x g1 ARP™)
18 an 1somorphism.

Proof. We first prove that it is a surjective map. Since [1 @ t*"*!] — (0,u") it is
enough to show that pry o ¢ is surjective. We must hit «* @17 for all k, ¢ > 0. Assume
that ¢ is even ¢ = 2r. We have [e?**! © 19%] — u* hence the elements with 7 = 0 are
hit. Assume that u* ® t*" are hit for all £k and 0 < r < s — 1. Then

[s/2]

o2 @ ($9182] 1y o @ 425 4 (5> wb i @ $2(5=9)

[ @ (1) > (5
and we can hit the first term since the last sum is hit by induction. Thus all elements
with ¢ even are hit. Assume ¢ is odd ¢ = 2r + 1. Since [e?* @ t9?] — u* @t the
elements with » = 0 are hit. Assume that the elements u* @ t>*! are hit for all k
and 0 < 7 < s — 1. Let b be the two valuation of s + 1. Then 1+ s = 2°(2i + 1) for
an integer ¢. If b = 0 we have

(€2 @ (129 o b @ 12541 4 i (Z> ukti @ (12

=1
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and the last sum is hit by induction. If b > 1 we use

[ezk ® (t2i+1)®2b+1] kb @ 25t 4 i: (l> uk+2b*1j Q t2b+1(2i+1)*172bj
i=1 \J
Again the last sum is hit by induction. We have proved that ¢ is surjective. To
complete the proof we check that the dimensions in corresponding degrees are the
same. In degree 2s — 1 on the right hand side, we have the span of the elements
(u* @ t2=*)=1 0) where k = 0,1,...s— 1. Thus the dimension is s in this degree. In
the corresponding degree 2s on the left hand side we have the span of the elements
et @ (7 T1)®¥" with 2k + 2™ (2r + 1) = 2s. Given k there are exactly one choice for
m and 7. m must be the two valuation of 2(s — k) and 27 + 1 must equal 2'"™(s— k).
Since £k =0,1,...,s— 1 the dimension of the left hand side in degree 2s is also s. In
degree 2s of the right hand side the dimension is s 4+ 2 and this equals the dimension

on the left hand side in degree 2s + 1. [

11. PROBLEMS WITH THE APPROXIMATING FUNCTOR.

As seen in the last two chapters the map (39) is an isomorphism when the space X
is CP* or RP*°. There are however also examples where the approximation does not
work very well. When X = K(IFy,2) one can count the dimensions in corresponding
degrees and see that the map (39) is not surjective e.g. dim(H?*((AX)ps1)) = 2
and dim(¢*(X)) = 1. Another example where we have computed the map (39) is
when X = BT where T denote the torus T = S* x S!. It is of course related
to the CP* case since BT = BS!' x BS' = CP> x CP*. The free loop space
ABT = ACP> x ACP* has the following cohomology:

H*(ABT) = Ae,e') @ Fye, (]

where the degrees of e and e’ are one and the degrees of ¢ and ¢ are two. The coho-
mology of (ABT),s1 can be found using the Serre spectral sequence of the fibration

ABT L ES' x 51 ABT = BS'
The E, term equals H*(BS') ® H*(ABT) and using the two projections
(62) BT = CP> x CP> % CP> v =1,2

one finds dy(e) = dy(e’) = 0, dy(c) = eu and dy(c’) = €'u. Introducing the names
E=ec, & =¢ed, b=c%V = () and n = ec + €'c one gets the following F3-term

E{:* = A(ea 61) 57 gla 77) ® ]F2 [b7 blv U]/I

Here I is the ideal generated by the elements e, €'¢', en + €& | e'n + e£’, bee' +
&n, blee! + &', eu, e'u and nu. By the constant loop section of 7 and the two
projections (62) one sees that all higher differentials on the algebra generators are
zero thus F3=F,,. Thus the additive structure of the cohomology of the total space
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is determined. One can apply the constant loop section and the two inclusion maps
of CP* in CP* x CP* together with this and obtain a description of the algebra
structure of the total space.

H*(ES* xg1 ABT) = Ae, €', €, &' n) @ Fy[b, b, u] /1

where [ is as above.

We need also determine the lowest transfer map Trj. From the CP> case one
obtains Tr}(c) = ae and Trj(c') = ae'. By Frobenius reciprocity we have eTr}(cc') =
Tri(ecd) = ETri(c) = ae'€ especially Try(cc’) # 0. Because of the dimension we
have

Try(cd) = Maé + Mpa&' + Azan + M\sa*
for some constants A, € Fy. Since T'rj(cc’) = Tryoevi(1®@cc’) we see that aTri(cc')
0 and A\; = Ay = Ay = 0. Since T'rj(cc’) was non-zero we have A3 = 1 and Trj(cc’) =
an.

For each m the evaluation ev}, : H*P,,X — H*L,,X is an algebra homomorphism.
Thus the computation of these maps when X = CP* gives these maps when X =
BT. Passing to the limit we find that the map (39) is given by

I B (W), (L0 ¢ () e Y
© (P o ()
1 @ (¢ (¢))] o Wl () + u €D ()
e @ ® (c 27‘—|—1( >2s>®2m] . ujé-me_l(2r+1)—l(bl)2ms
e @ ( ( >2s+1>®2m] N u]§ 2T (b/)2m (2s+1)-1
62 ( 2r+1( )2s+1)®2m] NP A (b/)Qm (f i 1(b/)2m—1—1 +§b2m—1—1(b/)2m—1)

We see that the map is not surjective since e.g. elements of the form ee’d"(d')* are
not hit.

le
1
[
[
[
[
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Parts of the introduction and the chapters 2 to 7 (both inclusive) have already
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Marcel Bokstedt & Iver Ottosen: ”Higher cyclic reduced powers”, preprint no. 32,
November 1996, University of Aarhus.



