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Stereological estimation
of surface area from digital images

Johanna Ziegel∗and Markus Kiderlen†

Abstract

A sampling design of local stereology is combined with a method from
digital stereology to yield a novel estimator of surface area based on counts
of configurations observed in a digitization of an isotropic 2-dimensional slice
with thickness s. The method is based on a result in (Kiderlen M, Rataj
J (2006). On infinitesimal increase of volumes of morphological transforms.
Mathematica 53: 103–127) which is generalized in this paper. The proposed
surface area estimator is asymptotically unbiased in the case of sets contained
in the ball centred at the origin with radius s and in the case of balls centred at
the origin with unknown radius. For general shapes bounds for the asymptotic
expected relative worst case error are given. A simulation example is discussed
for surface area estimation based on 2× 2× 2-configurations.

Keywords: Configurations, digital stereology, local stereology, surface area

1 Introduction

Methods of local stereology are in world-wide use in microscopic studies of biological
tissue. The sampling designs of local stereology are based on sections through a fixed
reference point of the structure under consideration. It is often encountered that
the observations within the sections are obtained by methods of digital stereology,
such as point counting for area estimation. In this paper we are taking the idea of
combining local and digital stereology a step further. We derive an estimator for the
surface area of three-dimensional objects based on discrete binary images obtained
by a local sampling design under very weak assumptions on the shape.

The estimator is based on a generalization of an asymptotic result in (Kiderlen
and Rataj, 2006). The original result was successfully used for boundary length es-
timation in (Kiderlen and Jensen, 2003; Jensen and Kiderlen, 2003) and for surface
area estimation in (Gutkowski et al., 2004; Ziegel and Kiderlen, 2009). Let X ⊆ R3

be a compact gentle set; see the next section for details. Suppose we observe a digi-
tization of X ∩ Ts, where Ts is an isotropic thickened 2-dimensional linear subspace
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of thickness 2s. Then the weighted number Nf
t of occurrences of a boundary con-

figuration (B,W ) of black B and white W points in the digitized picture of X ∩ Ts
behaves in mean like ct−2 as t → 0, where t > 0 is the lattice distance. The esti-
mator we present relies on the fact that the normalization constant c can be given
explicitly as the double integral

1

det L

∫

L

∫

∂X∩Ts

f(a)H(φXa,l)H2(da)µ(dl) (1)

over the set L of all 2-dimensional linear subspaces of R3 and over the observed part
of the boundary of X. The value f(a) determines the weight given to an observed
configuration located at a and H is a positive function on [0, π], which depends only
on (B,W ). The function φXa,l gives the angle between l and the outer normal of ∂X
at a. The constant det L depends on the lattice L chosen for the digitization.

For surface area estimation we choose a set of boundary configurations (Bi,Wi),
i = 1, . . . , m and weight functions λi on the positive halfline to estimate S(X) by

Ŝ(X) = t2(det L)
m∑

i=1

Nλi
t ,

where Nλi
t is the λi-weighted number of occurrences of (Bi,Wi) in the digitized

picture of X ∩ Ts. For a set X that is contained in the ball B(0, s), centred at the
origin 0 with radius s, the weight functions can be chosen to yield an asymptotically
unbiased estimator. This is also possible if the set under consideration is a ball
centred at the origin with unknown radius. For general shapes one cannot expect
to obtain an unbiased estimator. We propose a method for determining the weight
functions, which yields bounds for the expected asymptotic relative worst case error.
We illustrate this method in the case of 2× 2× 2-configurations.

In the next section basic notations and concepts are introduced together with an
asymptotic result (Theorem 2.1) on weighted volumes of morphological transforms.
The subsequent section is devoted to the proof of the main theoretical result, for-
mula (1), which is stated with all necessary assumptions in Theorem 3.1. In the
penultimate section Theorem 3.1 is used to establish a surface area estimator based
on weighted counts of m different configurations in a digitization of an isotropic slice
section of X. We determine estimates for the asymptotic relative mean error, which
can be improved whenever X ⊂ B(0, R) for some known radius R > 0; see (15). In
the final section we specialize these results to the scaled standard lattice L = tZ3,
define an estimator based on the m = 102 informative 2× 2× 2-configurations, and
compare its performance in a simulation example with the theoretical asymptotic
results.

2 Preliminaries

By Sd−1 we denote the unit sphere in Rd. The standard scalar product on Rd

is 〈·, ·〉. By a k-subspace we mean a k-dimensional linear subspace of Rd. Let
A,B ⊂ Rd. The reflection of A at the origin is denoted by Ǎ = {−x | x ∈ A},
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its complement by Ac = Rd\A and its topological boundary by ∂A. We write
A⊕ B = {a + b | a ∈ A, b ∈ B} for the Minkowski sum of A and B, and A⊖ B =
{x ∈ Rd | x + B̌ ⊂ A} for the dilatate of A by B̌. The positive part of a real
valued function f is denoted by f+ = max(f, 0). The support function of a convex
body K in Rd is denoted by h(K, ·). We use this notion also for compact sets A,
A 6= ∅, defining h(A, ·) = h(conv(A), ·), where conv(A) is the convex hull of A. The
exoskeleton exo(A) of a closed set A is the set of all z ∈ Ac, which do not have a
unique nearest point in A. The set exo(A) is measurable and has Lebesgue measure
zero, see (Fremlin, 1997).

A closed set X ⊂ Rd is gentle if for Hd−1-almost all x ∈ ∂X there are two non-
degenerate open balls touching in x such that one of them is contained in X and the
other in Xc, and if also Hd−1(N(∂X)) <∞. Here Hk is the k-dimensional Hausdorff
measure in Rd and N(∂X) is the reduced normal bundle of ∂X; for further details
see (Kiderlen and Rataj, 2006). The class of gentle sets is rather large. It contains
for instance all convex bodies (compact convex subsets of Rd) with interior points,
all topologically regular sets in the convex ring (the family of finite unions of convex
bodies), and certain unions of sets of positive reach.

At almost all boundary points a of a gentle set X a unique outer unit normal n(a)
to X exists. Let Cd−1(X, ·) be the image measure of Hd−1 on ∂X under the map a 7→
(a, n(a)). The measure Cd−1(X, ·) vanishes outside N(X). Let ξ∂X : Rd\ exo(∂X) →
∂X denote the metric projection. The following theorem is a generalization of
(Kiderlen and Rataj, 2006, Theorem 1).

Theorem 2.1. Let X ⊆ Rd be a closed gentle set, f : Rd → R a compactly supported
bounded measurable function and B,W and P,Q four non-empty compact subsets of
Rd. Then

lim
ε→0+

1

ε

∫

[(X⊕εP )⊖εB]\[(X⊖εQ)⊕εW ]

f(ξ∂X(x))dx

=

∫

N(X)

f(a)(h(P ⊕ Q̌, n)− h(B̌ ⊕W,n))+

× Cd−1(X; d(a, n)). (2)

If f is in addition continuous in all points of ∂X, then f(ξ∂X(x)) can be replaced by
f(x) in (2).

Proof. Let C ⊆ Rd be a bounded Borel set. Then (2) holds for f = 1C by (Kiderlen
and Rataj, 2006, Theorem 1). It is immediate that (2) also holds for compactly sup-
ported measurable step functions. For a non-negative compactly supported bounded
measurable function f , let (fk)k∈N, (gk)k∈N be sequences of step functions such that
fk ↑ f and gk ↓ f and fk ≥ 0. Let Mε := [(X ⊕ εP )⊖ εB]\[(X ⊖ εQ)⊕ εW ]. Then
we obtain with h(·) = (h(P ⊕ Q̌, ·)− h(B̌ ⊕W, ·))+ that

∫

N(X)

fk(a)h(n)Cd−1(X; d(a, n))

≤ lim sup
ε→0+

1

ε

∫

Mε

f(ξ∂X(x))dx

≤
∫

N(X)

gk(a)h(n)Cd−1(X; d(a, n)).

(3)
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Using the monotone convergence theorem we obtain

lim sup
ε→0+

1

ε

∫

[(X⊕εP )⊖εB]\[(X⊖εQ)⊕εW ]

f(ξ∂X(x))dx

=

∫

N(X)

f(a)h(n)Cd−1(X; d(a, n)). (4)

Note that for applying the monotone convergence theorem to the right-hand side
of (3) we can assume that ∪k∈N supp(gk) is compact and that the sequence (gk)k∈N
is uniformly bounded. The same argument holds if we take lim infε→0+ in (3) and
hence the claim is shown for f ≥ 0. For general f = f+ − f− we can treat f+

and f− separately to obtain (2). If f is in addition continuous in all points of ∂X,
we obtain uniform continuity in the following sense. For each η > 0 there exists a
δ > 0 such that for all x ∈ ∂X ∩ supp(f) and y ∈ Rd with ‖x − y‖ ≤ δ it follows
that ‖f(x) − f(y)‖ < η. Furthermore x ∈ Mε implies ‖x − ξ∂X(x)‖ ≤ εR, where
R = 2 max{‖y‖ | y ∈ (W ⊕Q) ∪ (B ⊕ P )}. This implies the second claim.

Let x1, . . . , xd be a basis of Rd and let

L = {n1x1 + · · ·+ ndxd | n1, . . . , nd ∈ Z}

be the lattice generated by this basis. A given lattice L is generated by infinitely
many different bases, but the volume of the fundamental cell C0 = [0, x1]⊕· · ·⊕[0, xd]
depends only on L and not on the basis chosen. This number is denoted by det(L).
If ξ is a uniform random variable in C0, then the random lattice ξ+L is a stationary
random lattice.

Let X ⊆ Rd be a compact gentle set and let the function f be measurable non-
negative or integrable. Let ξ + L be a stationary random lattice, and let B,W ⊆ L
be two non-empty finite subsets of L. Define

Nt :=
∑

x∈t(ξ+L)

f(x)1{x+tB⊆X∩t(ξ+L),x+tW⊆t(ξ+L)\X}.

Calculation shows that

E [Nt] =
t−d

det(L)

∫

[X⊖tB̌]\[X⊕tW̌ ]

f(x)dx. (5)

Corollary 2.2. Let X ⊆ Rd be a compact gentle set. Let f be a locally bounded
measurable function, which is continuous on ∂X and let B and W be two non-empty
finite subsets of a lattice L. Then

lim
t→0+

td−1 det(L)E [Nt] =

∫

N(X)

f(a)(−h(B ⊕ W̌ , n))+Cd−1(X; d(a, n)).

Proof. Let C be a compact set such that [X ⊖ tB̌]\[X ⊕ tW̌ ] ⊂ C for all t smaller
than some fixed t0 > 0 and X ⊂ C. Replacing f , P , B, Q and W in Theorem 2.1
by 1Cf , {0}, B̌, {0} and W̌ , respectively, yields the claim.
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3 Combining local and digital stereology

In the following we restrict ourselves to R3. The results can be generalized to Rd,
d ≥ 4, in a straightforward manner. We prefer to present them only in R3 in order
to keep the notation concise.

Denote the standard basis vectors in R3 by e1, e2, e3. Let R be a random proper
rotation with distribution given by the normalized Haar measure on SO3. Fix the
2-subspace l0 = span(e1, e2). We define the random 2-subspace L = Rl0. It is
uniformly distributed in the set L of all 2-subspaces of R3. Let µ be the distribution
of L. For l ∈ L define Ts = Ts(l) = l ⊕ B(0, s). The set Ts = Ts(L) = R(l0 ⊕
B(0, s)) = L ⊕ B(0, s) is called a random 2-slice with thickness 2s. It will be clear
from the context whether Ts refers to the deterministic 2-slice Ts(l) or the random
2-slice Ts(L).

Theorem 3.1. Let X ⊆ R3 be a compact gentle set. Let R be a random proper
rotation and let ξ + L be a stationary random lattice, which is independent of R.
Let B,W ⊂ L be two non-empty finite subsets of the lattice L and f a continuous
non-negative function on R3. The weighted sum Nf

t of occurrences of (B,W ) in the
digitization of X, which lie entirely in Ts, is given by

∑

x∈tR(ξ+L)
x+tR(B∪W )⊆Ts

f(x)1{x+tRB⊆X∩tR(ξ+L),x+tRW⊆tR(ξ+L)\X} ,

for t > 0. It satisfies

lim
t→0+

t2(det L)E[Nf
t ] =

∫

L

∫

∂X∩Ts

f(a)H(φXa,l)H2(da)µ(dl),

where H(φ) is given by

1

4π| cosφ|

∫

S2∩{|〈e3,·〉|=| sinφ|}
(−h(B + W̌ , v))+H1(dv), (6)

and φXa,l is the angle between l and the outer normal of X at a ∈ ∂X.

The proof of Theorem 3.1 is based on the following Proposition 3.2 and Lem-
mas 3.3, 3.4. The difference of Nf

t in Theorem 3.1 and Ñg
t in Proposition 3.2 is that

the latter also counts configurations which do not lie entirely in the slice T2. These
are of course not observable in practice.

Proposition 3.2. Let X ⊆ R3 be a compact gentle set. Let R be a random proper
rotation and let ξ + L be a stationary random lattice, which is independent of R.
Let B,W ⊂ L be two non-empty finite subsets of L. Let g : R3 × L → R be a non-
negative bounded measurable function such that g(·, l) is continuous for all l ∈ L.
Then the number

Ñg
t =

∑

x∈tR(ξ+L)

g(x, L)1{x+tRB⊆(X∩Ts)∩tR(ξ+L)} × 1{x+tRW⊆tR(ξ+L)\(X∩Ts)},
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for t > 0 satisfies
lim
t→0+

t2(det L)E[Ñg
t ] = E[Fg(R)],

where

Fg(r) :=

∫

N(X∩Ts)

g(a, rl0)h(r
−1n)C2(X ∩ Ts; d(a, n)) (7)

for r ∈ SO3 with h = (−h(B ⊕ W̌ , ·))+.

Proof. For µ-almost all l ∈ L we have that H2(∂X ∩ ∂Ts) = 0, which can be seen
using Fubini’s theorem. This implies that the set X ∩ Ts is compact gentle for µ-
almost all l ∈ L. Applying Corollary 2.2 we obtain that t2E[Ñg

t |R = r] → Fg(r)
for t→ 0+ pointwise for almost all r ∈ SO3 as (−h(rB ⊕ rW̌ , n))+ = h(r−1n). We
claim that the conditional expectation t2E[Ñg

t |R] is uniformly bounded for t ≤ 1,
hence Lebesgue’s dominated convergence theorem yields the assertion. In fact (5)
implies

E[Ñg
t |R = r] = t−3

∫

[(X∩Ts)⊖trB̌]\[(X∩Ts)⊕trW̌ ]

g(x, rl0)dx.

By assumption there is a constant C > 0 such that |g| ≤ C. If x ∈ [(X ∩ Ts) ⊖
trB̌]\[(X ∩ Ts) ⊕ trW̌ ], then dist(x, ∂(X ∩ Ts)) ≤ tC ′, where C ′ > 0 is a constant
depending only on (B,W ). Hence we obtain

∣∣t2E[Ñg
t |R]

∣∣ = |t−1

∫

[(X∩Ts)⊖tRB̌]\[(X∩Ts)⊕tRW̌ ]

g(x, L)dx|

≤ Ct−1H3(∂(X ∩ Ts)⊕B(0, tC ′))

≤ Ct−1H3(∂X ⊕ B(0, tC ′))

+ Ct−1H3(∂(Ts ∩ B(0, diamX))⊕ B(0, tC ′)).

Applying (Kiderlen and Rataj, 2006, Proposition 4), which is derived from a far-
reaching generalization of Steiner’s formula (see Hug et al. (2004)), we obtain

t−1H3(∂X ⊕B(0, tC ′))

=

3∑

i=1

iκi

∫

N(∂X)

∫ δ(∂X;a,n)

0

si−11∂X⊕B(0,tC′)(a + sn)

× dsµd−i(∂X; d(a, n))

≤ t−1
3∑

i=1

iκi

∫

N(∂X)

∫ tC′

0

si−1ds|µd−i|(∂X; d(a, n))

≤ t−1
3∑

i=1

κi(tC
′)i|µd−i|(∂X; ∂X),

where µi(∂X; ·) are the support measures of ∂X, and δ(∂X; a, n) = inf{t ≥ 0 | a +
tn ∈ exo(∂X)} is the reach function of ∂X at (a, n). The support measures have
locally finite total variation as X is gentle and hence the compactness of X yields
boundedness of the last term in the above inequality for t ≤ 1. The same argument
can also be applied to t−1H3(∂(Ts ∩ B(0, diamX))⊕ B(0, tC ′)) as Ts ∩ B(0, tC ′) is
compact gentle.
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Lemma 3.3. Let g : R3 × L → R be a non-negative measurable function such that
g(·, l) is continuous for all l ∈ L. Let Fg(r) be given by (7). Then the conditional
expectation E[Fg(R)|L = l] can be expressed as

∫

∂X∩Ts

g(a, l)H(φXa,l)H2(da) +

∫

X∩∂Ts

g(a, l)H(φXa,l)H2(da)

for µ-almost all l ∈ L, where H(φ) is given by (6).

Proof. For µ-almost all l ∈ L we have that H2(∂X ∩ ∂Ts) = 0. This implies that
there is a unique normal n(a) for H2-almost all a ∈ ∂(X ∩ Ts). Hence we obtain for
r ∈ SO3

Fg(r) =

∫

∂(X∩Ts)

g(a, rl0)h(r
−1n(a))H2(da).

There exists a regular version of the conditional distribution of R given L (Klenke,
2006, Satz 8.36). Therefore we can use Fubini’s theorem to obtain

E[Fg(R)|L = l] =

∫ 1∂(X∩Ts)(a)g(a, l)E[h(r−1n(a))|L = l]H2(da).

Recall that µ-almost surely 1∂(X∩Ts) = 1∂X∩Ts +1X∩∂Ts. The claim now follows from
Lemma 3.4.

Lemma 3.4. For n ∈ S2 and l ∈ L we have

E[h(R−1n)|L = l] = H(φ),

where φ is the angle between n and l, and H(φ) is given by (6).

Proof. Fix ρ ∈ SO3 such that ρl = l0. Then

E[h(R−1n)|L = l] = E[h(R−1n)|ρRl0 = l0] = E[h(R−1ρn)|Rl0 = l0].

We have 〈n, l〉 = 〈ρn, l0〉, hence the last conditional expectation in the above equa-
tion can be written as the normalized integral over the two small circles ⊂ S2 parallel
to l0 at height ± sin φ with radius cosφ, where φ is the angle between n and l.

Proof of Theorem 3.1. Let 0 < ε < s/2. For l ∈ L, define the continuous function
χls,ε : R3 → [0, 1] as a smoothed version of 1Ts such that χls,ε(x) = 0, if x ∈ (Ts)

c

and χls,ε(x) = 1, if x ∈ Ts−ε. Substituting g(x, l) = f(x)χls−ε,ε(x) in Lemma 3.3 we
obtain

E[Ffχl
s−ε,ε

(R)|L = l] =

∫

∂X∩Ts

f(a)χls−ε,ε(a)H(φXa,l)H2(da).

The right hand side converges pointwise in l to
∫

∂X∩Ts

f(a)H(φXa,l)H2(da),

as ε→ 0. It is also bounded independently of ε and l, hence by dominated conver-
gence E[FfχL

s−ε,ε
(R)] converges to

∫

L

∫

∂X∩Ts

f(a)H(φXa,l)H2(da)µ(dl). (8)
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Proposition 3.2 yields that

lim
ε→0

lim
t→0+

t2(det L)E[Ñ
fχL

s−ε,ε

t ]

is also given by (8). It remains to show that

lim
ε→0

lim
t→0+

E
[∣∣ÑfχL

s−ε,ε

t −Nf
t

∣∣
]

= 0.

Choose q > 0 such that B ∪W ⊆ B(0, q). Then for t < ε/q we have that x ∈ Ts−2ε

implies χLs−ε,ε(x) = 1 and x+ t(B ∪W ) ⊆ Ts. Therefore

Ñ
fχL

s−ε,ε

t −Nf
t =

∑

x∈tR(ξ+L)
x∈Ts+ε\Ts−2ε

f(x)(χLs−ε,ε(x)− 1{x+tR(B∪W )⊆Ts})It(x),

where It(x) = 1{x+tRB⊆X∩tR(ξ+L),x+tRW⊆tR(ξ+L)\X} and we used that χLs−ε,ε(x) = 0
for x ∈ (Ts−ε)C . Using (5) this yields

t2E
[∣∣ÑfχL

s−ε,ε

t −Nf
t

∣∣
∣∣∣R = r

]
≤ t−1

∫

[X⊖trB̌]\[X⊕trW̌ ]

|f(x)|1∂Ts⊕B(0,2ε)(x)dx.

Choose a constant C such that |f | ≤ C on a compact set containing [(X∩Ts)⊖trB̌]
for all r ∈ SO3 and all t ≤ 1. Then the last expression in the above inequality is
bounded by

Ct−1

∫

[X⊖trB̌]\[X⊕trW̌ ]

1∂Ts⊕B(0,3ε)(ξ∂X(x))dx.

This integral converges for all r ∈ SO3 by Theorem 2.1 as t→ 0+ to
∫

∂X

(−h(rB ⊕ rW̌ , n(a)))+1∂Ts⊕B(0,3ε)(a)H2(da),

where n(a) is the unique normal of X at a. It exists for H2-almost all a ∈ ∂X.
The function (−h(rB ⊕ rW̌ , ·))+ is bounded by a constant C ′, independent of r.
Therefore, using dominated convergence, the limit of the above integral as ε→ 0 is
bounded by C ′H2(∂X ∩ ∂Ts) = 0 for almost all r, which yields the claim.

4 An estimator for surface area

In the following we will derive an estimator for surface area using Theorem 3.1,
which is based on a local stereological sampling design.

Let X ∈ R3 be a compact gentle set. Suppose we observe X ∩R[(l0 +B(0, s))∩
t(ξ + L)] for some random proper rotation R, ξ + L a stationary random lattice,
which is independent of R, and t > 0. Let (Bi,Wi), i = 1, . . . , m be boundary
configurations of L, i.e. Bi, Wi are non-empty, disjoint finite subsets of L with
Bi ∪Wi = C0 ∩ L, where C0 is the fundamental cell of L. We define the following
estimator for surface area

Ŝ(X) = t2(det L)
∑

i

N i
t , (9)
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where N i
t = Nλi

t as defined in Theorem 3.1 with B = Bi, W = Wi. The continuous
functions λi : [0,∞) → [0,∞) are weight functions, which have to be suitably chosen
according to the choice of (Bi,Wi). We give an example for 2× 2× 2-configurations
in the following section. By Theorem 3.1 we obtain that

lim
t→0+

E[Ŝ(X)] =

∫

L

∫

∂X∩Ts

∑

i

λi(‖a‖)Hi(φ
X
a,l)H2(da)µ(dl), (10)

where Hi is given by (6) for (Bi,Wi). Using Fubini’s theorem we can rewrite the
right-hand side of (10) as

∫

∂X

∑

i

λi(‖a‖)
∫

L
1Ts(a)Hi(φ

X
a,l)µ(dl)H2(da).

We have
∫
L 1Ts(a)Hi(φ

X
a,l)µ(dl) = gi(‖a‖, ψXa ), where ψXa ∈ [0, π] is the angle between

a and n, where n is the outer normal of X at a ∈ ∂X. The function gi(r, ψ) for
ψ ∈ [0, π] and r ∈ [0,∞) is given by

gi(r, ψ) =





∫ 1

0

Hi(arcsin(z))dz, for r ≤ s,

∫ 1

0

Hi(arcsin(z))Gψ,s/r(z)dz, for r > s.

Let x∗ denote the two sided cut-off function x 7→ x∗ = min{1,max{−1, x}}. The
function Gψ,q(z) for ψ ∈ (0, π) and q ∈ (0, 1] is given by

Gψ,q(z) =
1

π

(
arccos

(
α∗ψ,−q(z)

)
− arccos

(
α∗ψ,q(z)

))
, (11)

where αψ,q(z) = (q − z cosψ)/(sinψ
√

1− z2). For ψ ∈ {0, π} we have

G0,q(z) = Gπ,q(z) = 1[0,q](z).

Note that for all ψ ∈ [0, π] and all r ∈ (s,∞)

∫ 1

0

Gψ,s/r(z)dz =

∫

L
1Ts(a)µ(dl) =

s

r
, (12)

see (Jensen, 1998). We assume that none of the functions Hi, i = 1, . . . , m, is
identical zero. This is fulfilled, when Bi and Wi can be strictly separated by a
hyperplane for all i = 1, . . . , m. As gi(0, 0) = gi(r, ψ) for all (r, ψ) ∈ [0, s] × [0, π],
and as (10) can be rewritten as

lim
t→0+

E[Ŝ(X)] =

∫

∂X

∑

i

λi(‖a‖)gi(‖a‖, ψXa )H2(da), (13)

the choice λi(r) = aiηi with ηi = gi(0, 0)−1 implies that Ŝ(X) is asymptotically
unbiased for all X ⊂ B(0, s) whenever the coefficients a1, . . . , am ∈ R are summing
up to one.
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If the set X under consideration is a ball centred at the origin with unknown
radius, we have ψXa = 0 for all a ∈ ∂X. In this case it is sensible to assume that the
sets Bi, Wi are such that we have gi(r, 0)−1 > 0 for all r ∈ [0,∞) and i = 1, . . . , m.
This is equivalent to requiring that the support of each Hi contains an interval
[0, ε) for some ε > 0. Choosing λi(r) = aigi(r, 0)−1, where

∑m
i=1 ai = 1, yields an

asymptotically unbiased estimator Ŝ(X) of S(X).
For general shapes we cannot expect to obtain an unbiased estimator by (13).

A suitable choice of λi for r > s will strongly depend on the choice of the pairs
(Bi,Wi). In the sequel we propose one method to choose the weight functions λi
and show how the asymptotic relative worst case error can be determined in this
case. Suppose we can determine coefficients µi ≥ 0 such that for all z ∈ [0, 1] we
have

m∑

i=1

µiHi(arcsin(z)) ≈ 1,

then by (12) we obtain for all ψ ∈ [0, π] that
∑m

i=1 µigi(r, ψ) ≈ f(r)−1, where
f(r) = max{1, r/s}. The function f(‖a‖)−1 is the probability that a is contained in
the random 2-slice Ts, see (Jensen, 1998). Setting λi(r) = µif(r), we obtain by (13)

lim
t→0+

E[Ŝ(X)] ≈ S(X).

We suggest to chose (µ1, . . . , µm) within the set S ⊆ [0,∞)m of all (µ1, . . . , µm)
such that there exists (a1, . . . , am) ∈ [0, 1]m with

∑m
i=1 ai = 1 and µi = aiηi. This

guarantees that the estimator is asymptotically unbiased for sets X ⊆ B(0, s).
In the remainder of this section we show how to determine the asymptotic relative

worst case error for given coefficients (µ1, . . . , µm) ∈ S. It is immediate from (10),
that if 1 − νm1 ≤ ∑m

i=1 µiHi(arcsin(z)) ≤ 1 + νM1 for some νm1 , ν
M
1 > 0 and for all

z ∈ [0, 1], then

1− νm1 ≤ limt→0+ E[Ŝ(X)]

S(X)
≤ 1 + νM1 .

This error bound is independent of the size and shape of X. If we know that
X ⊆ B(0, R) for some R > 0, then the worst case error is typically smaller
and one can determine a bound using the Lipschitz continuity of the function∑m

i=1 λi(r)gi(r, ψ) = (r/s)
∑m

i=1 µigi(r, ψ) for r > s.
In order to find a Lipschitz constant with respect to ψ for

m∑

i=1

µigi(r, ψ) =

∫ 1

0

m∑

i=1

µiHi(arcsin(z))Gψ,s/r(z)dz

we use partial integration to rewrite the function for r > s as

H
(π

2

) s
r
−

∫ 1

0

d

dz
(H(arcsin(z)))

∫ z

0

Gψ,s/r(x)dxdz, (14)

where H =
∑m

i=1 µiHi. Then (∂/∂ψ)
∑m

i=1 µigi(r, ψ) is given by

−
∫ 1

0

d

dz
(H(arcsin(z)))

∫ z

0

∂

∂ψ
Gψ,s/r(x)dxdz.

10



Let q = s/r and ψ, q, z such that |αψ,q(z)| ≤ 1. Then we obtain

∂

∂ψ
arccos(αψ,q(z)) =

q cos(ψ)− z

sin(ψ)
√

sin(ψ)2 − z2 − q2 + 2qz cos(ψ)
,

and hence
∫

∂

∂ψ
arccos(αψ,q(z))dz =

1

sin(ψ)

√
sin(ψ)2 − z2 − q2 + 2qz cos(ψ).

The above expression is non-negative and bounded by
√

1− q2. Therefore

∂

∂ψ

m∑

i=1

µigi(r, ψ)

is bounded by

∫ 1

0

∣∣∣∣
d

dz
(H(arcsin(z)))

∣∣∣∣
∣∣∣∣
∫ z

0

∂

∂ψ
Gψ,s/r(x)dx

∣∣∣∣ dz ≤
∥∥∥∥
d

dz
(H(arcsin(z)))

∥∥∥∥
1

1

π

√
1− q2,

hence we suggest to use the upper bound

M(r) =
1

π

√
r2

s2
− 1

∥∥∥∥
d

dz
(H(arcsin(z)))

∥∥∥∥
1

for the Lipschitz constant of
∑m

i=1 λi(r)gi(r, ψ) with respect to ψ. Here ‖·‖1 denotes
the L1-norm on [0, 1].

To find a Lipschitz constant for
∑m

i=1 λi(r)gi(r, ψ) with respect to r we first
differentiate with respect to r and obtain

1

s

∫ 1

0

H(arcsin(z))Gψ,s/r(z)dz +
r

s

∂

∂r

∫ 1

0

H(z)Gψ,s/r(z)dz.

The first term of the above expression is bounded by 1/r‖H(arcsin(·))‖∞. In order to
find a bound for the second term we use partial integration to rewrite

∑m
i=1 µigi(r, ψ)

for r > s as in (14). Then (∂/∂r)
∑m

i=1 µigi(r, ψ) is given by

−H
(π

2

) s

r2
−

∫ 1

0

d

dz
(H(arcsin(z)))

∫ z

0

∂

∂r
Gψ,s/r(x)dxdz.

Let ψ, r, z such that |αψ,s/r(z)| ≤ 1, then we have

∂

∂r
arccos(αψ,s/r(z)) =

s

r2

√
sin(ψ)2 − z2 − s2

r2
+ 2 s

r
z cos(ψ)

,

and

∫
∂

∂r
arccos(αψ,s/r(z))dz =

s

r2
arctan


 z − s

r
cos(ψ)√

sin(ψ)2 − z2 − s2

r2
+ 2 s

r
z cos(ψ)


 .
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The term on the right-hand side of the above equation is bounded in absolute value
by

s

r2

π

2
.

Therefore, for r > r0, the function
∑m

i=1 λi(r)gi(r, ψ) has Lipschitz constant (1/r0)L
in r uniformly in ψ, where L is given by

‖H(arcsin(·))‖∞ +H
(π

2

)
+ 2

∥∥∥∥
d

dz
(H(arcsin(z)))

∥∥∥∥
1

.

Let ε > 0. Define rk = (1 + ε/(2L))ks for k ∈ N. Let n be minimal such that
rn ≥ R. For each k = 0, . . . , n let 0 = ψk0 < ψk1 < · · · < ψknk

= π be a partition of
[0, π], such that |ψk,l+1 − ψk,l| ≤ ε/(2M(rk)) for all l = 0, . . . , nk. We set

νM2 = max
k,l

m∑

i=1

λi(rk)gi(rk, ψkl)− 1,

νm2 = 1−min
k,l

m∑

i=1

λi(rk)gi(rk, ψkl).

We claim that for all X ⊆ B(0, R) we obtain

1− νm2 − ε ≤ limt→0+ E[Ŝ(X)]

S(X)
≤ 1 + νM2 + ε. (15)

Let ψ ∈ [0, π]. Then with l ∈ {0, . . . , nk − 1} such that ψ ∈ [ψkl, ψk,l+1] we obtain

m∑

i=1

λi(rk)gi(rk, ψ)

=

m∑

i=1

λi(rk)gi(rk, ψ)−
m∑

i=1

λi(rk)gi(rk, ψkl) +

m∑

i=1

λi(rk)gi(rk, ψkl)

≤Mi(rk)|ψ − ψkl|+ 1 + νM2

≤ 1 + νM2 +
ε

2
.

Hence for r ∈ [s, R] with k such that r ∈ [rk, rk+1) we have

m∑

i=1

λi(r)gi(r, ψ)

=
m∑

i=1

λi(r)gi(r, ψ)−
m∑

i=1

λi(rk)gi(rk, ψ) +
m∑

i=1

λi(rk)gi(rk, ψ)

≤ L

rk
(r − rk) + 1 + νM2 +

ε

2

≤ 1 + νM2 + ε.

By the same arguments one obtains the analogous lower bound for
∑m

i=1 λi(r)gi(r, ψ).
Using (13) this implies the claim (15).
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5 Coefficients for 2× 2× 2-configurations

A 2 × 2 × 2-configuration is a pair (B,W ) of non-empty disjoint subsets of Z3,
such that B ∪W = Z3 ∩ [0, 1]3. It is called informative, if there is a hyperplane,
which strictly separates B and W . In this section we want to investigate the surface
area estimator (9) in the case, where (Bi,Wi) runs through the family of all 102
informative 2 × 2 × 2 configurations. These configurations were thoroughly inves-
tigated in Ziegel and Kiderlen (2009). In particular the functions (−h(Bi + W̌i))

+

are explicitly given, hence we can numerically determine the functions Hi. As in
Ziegel and Kiderlen (2009) we classify the informative 2×2×2 configurations in five
types, depending on the number and position of black points B or white points W .
A configuration of type one has exactly one black point or exactly one white point, a
configuration of type two has exactly two black points or exactly two white points,
and a configuration of type three has exactly three black points or exactly three
white points. Configurations of type four and five have exactly four white and four
black points, which are affinely dependent in the case of type four, and affinely
independent in the case of type five.

For configurations of type one, all functions Hi are identical and we denote them
by H1. The function H1(arcsin(z)) for z ∈ [0, 1] is shown in Figure 1. All functions
Hi(arcsin(z)), z ∈ [−1, 1], are symmetric with respect to the origin, which is why we
only display them for values z ∈ [0, 1]. For configurations of type two, three and four
there are two different functions Hi occurring per type. We denote them by H2,1,
H2,2,H3,1,H3,2 andH4,1,H4,2 respectively, see Figures 2, 3 and 4. For configurations
of type five all functions Hi coincide and we denote them by H5, which is displayed
in Figure 5. Figure 6 shows all functions Hi scaled by the number of their occurrence
amongst all functions Hi induced by informative 2× 2× 2-configurations.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

Figure 1: Plot of the function Hi(arcsin(·)) for a configuration of type one. There
are 16 configurations of type one (not identifying twins).
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Figure 2: Plot of the functions Hi(arcsin(·)) that occur for configurations of type
two. There are eight configurations of type two with Hi = H2,1 (left curve) and 16
configurations with Hi = H2,2 (right curve).
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Figure 3: Plot of the functions Hi(arcsin(·)) that occur for configurations of type
three. There are 32 configurations of type three with Hi = H3,1 (left curve) and 16
configurations with Hi = H3,2 (right curve).
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Figure 4: Plot of the functions Hi(arcsin(·)) that occur for configurations of type
four. There are eight configurations of type four with Hi = H4,1 (curve for z ∈
[0, 0.7], zero otherwise) and four configurations with Hi = H4,2 (curve for z ∈ [0.7, 1],
zero otherwise).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.005

0.01

0.015

0.02

0.025

0.03

Figure 5: Plot of the function Hi(arcsin(·)) for a configuration of type five. There
are 16 configurations of type five.
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Figure 6: Plot of all functions Hi(arcsin(·)) that occur for 2× 2× 2-configurations
scaled according to their number of occurrence.
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The coefficients ηi for informative 2× 2× 2-configurations are given in Table 1.
We have seen that the estimator in (9) with

λi(r) = µif(r) (16)

is unbiased for S(X) if X is a subset of B(0, s), whenever (µ1, . . . , µ102) ∈ S. We
wish to choose (a1, . . . , a102) ∈ [0, 1]102 such that νm1 , ν

M
1 are small. In (Ziegel and

Kiderlen, 2009) a one-parameter family of coefficients (µ′1(u), . . . , µ
′
102(u)), u ∈ [0, 1]

was derived that minimizes

max
n∈S2

∣∣∣∣
102∑

i=1

µ′i(u)(−h(Bi + W̌i, n))+ − 1

∣∣∣∣ (17)

for each u ∈ [0, 1]. From the definition (6) of the functions Hi it is clear that
(17) is an upper bound for νm1 , ν

M
1 . Adapting the coefficients (µ′1(u), . . . , µ

′
102(u))

to yield an asymptotically unbiased estimator for spherical shapes, we obtain the
family of coefficients (µ1(u), . . . , µ102(u)), u ∈ [0, 1] given in Table 2. It turns out
that (µ1(0), . . . , µ102(0)) ∈ S or in other words

102∑

i=1

µi(0)

ηi
= 1.

We therefore suggest to set µi = µi(0) and λi as in (16). With this choice we obtain
νm1 = 0.0461, νM1 = 0.0225, ‖(d/dz)(H(arcsin(z)))‖1 = 5.7002 and L = 13.3768.

Hi ηi =
(∫ 1

0
Hi(arcsin(z))dz

)−1

H1 η1 =38.119
H2,1 η2,1 =48.179
H2,2 η2,2 =48.179
H3,1 η3,1 =171.187
H3,2 η3,2 =171.187
H4,1 η4,1 =25.856
H4,2 η4,2 =25.856
H5 η5 =114.825

Table 1: Coefficients ηi for informative 2× 2× 2-configurations.

As a simulation example we consider a cylinder with radius 1 and height 2 centred
at 0 which is contained in B(0,

√
2). We observe an isotropic slice of thickness

s = 1. For a lattice distance of t = 0.055 we obtain a mean estimated surface area
of 18.115 with variance 1.146 in 1000 Monte Carlo simulations. This corresponds
to a mean relative error of 3.8%. For t = 0.020 the mean estimated surface area in
1000 simulations is 18.553 with variance 1.205 and mean relative error 1.6%. The
asymptotic relative mean error for sets X with X ⊆ B(0,

√
2) and ψXa ∈ [0, π/4] for

all a ∈ X is less than 1.2%. We determined this value numerically using the method
described in the previous section. With ε = 0.0030 we obtain νM2 = 0.0042 and
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Hi µi(u), u ∈ [0, 1]

H1 µ1(u)= (1.652/2)u 16
H2,1 µ2,1(u)= 0.675 8
H2,2 µ2,2(u)= 0.675 16
H3,1 µ3,1(u)= 1.168− (1.652/4)u 32
H3,2 µ3,2(u)= 1.168− (1.652/2)u 16
H4,1 µ4,1(u)= 0.954 4
H4,2 µ4,2(u)= 0.954 2
H5 µ5(u)= 1.652(1− u) 8

Table 2: One-parameter family of coefficients µi for u ∈ [0, 1]. The number in the
last column indicates the number of occurrences of the function H1, H2,1, H2,2,
H3,1, H3,2, H4,1, H4,2, H5, respectively amongst all functions Hi for informative
2× 2× 2-configurations.

νm2 = 0.0082. In summary this simulation example indicates that the bias of the
simple linear surface area estimator (9) with weight functions (16) is of reasonable
magnitude. It appears that the theoretical asymptotic error bounds are often too
optimistic, and should only be used in the case where good to very good resolution
images are available.
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