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Abstract

The three dimensional spatial arrangement of particles or cells, for exam-
ple glial cells, with respect to other particles or cells, for example neurons,
can be characterized by the radial number density function, which expresses
the number density of so called “secondary” particles as a function of their
distance to a “primary” particle.

The present paper introduces a new stereological method, the saucor, for
estimating the radial number density from thick isotropic uniform random
(IUR) or vertical uniform random (VUR) sections. In the first estimation
step, primary particles are registered in a disector. Subsequently, smaller
counting windows are drawn with random orientation around every primary
particle, and the positions of all secondary particles within the windows are
recorded. The shape of the counting windows is designed such that a large
portion of the volume close to the primary particle is examined and a smaller
portion of the volume as the distance to the primary object increases. The
experimenter can determine the relation between these volumina as a function
of the distance by adjusting the parameters of the window graph, and thus
reach a good balance between workload and obtained information. Estimation
formulae based on the Horvitz-Thompson theorem are derived for both IUR
and VUR designs.

The method is illustrated with an example where the radial number density
of neurons and glial cells around neurons in the human neocortex is estimated
using thick vertical sections for light microscopy. The results indicate that the
glial cells are clustered around the neurons and the neurons have a tendency
towards repulsion from each other.
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1 Introduction

Biological tissue is not fully described by first order quantities like the mean number
NV of cells per volume, but also characterized by the spatial arrangement of cells.
The necessity to quantify three-dimensional spatial relationships has been stated in
many medical fields such as embryology (Chandebois, 1976), oncology (Mattfeldt
et al., 1993a,b), and diabetic nephropathology (Mayhew, 1999).

In the present paper, we analyse the spatial distribution of glial cells around
neurons in different subregions of the human neocortex. According to the classical
view of the nervous system, the more abundant glial cells play an inferior role in that
they just provide an ideal environment for neuronal cell function. However, research
has suggested that glial cells are intimately involved in the active control of neuronal
activity and synaptic transmission. Any change in the spatial arrangement of glial
cells with respect to the neurons may reflect functional changes in the relationship
between them. Since the functions of the glial cell subtypes are different (Berry &
Butt, 1997; Araque et al., 1999; Ullian et al., 2001), the spatial arrangement of glial
cell subtypes around neurons should be expected to differ as well.

Since the methods presented below are not restricted to glial cells and neurons
but can be applied to any kind of cells or particles, we will refer to the neurons as
“primary” cells and to the glia as “secondary” cells in the following. This does not
mean that primary and secondary particles necessarily have to belong to different
types. In fact, we also analysed the distribution of neurons around other neurons in
the practical part. The spatial distribution of secondary cells around primary cells
is described by the so called radial number density function NV 12. The quantity
NV 12(r) can be understood as the average number of secondary cells in shells limited
by spheres of radii r − δ and r + δ around arbitrarily picked primary cells, divided
by the volume of the shell, with an infinitesimally small δ.

NV 12 is closely related to well known second order functions from the theory of
spatial point processes. They are popular tools in the statistical analysis of spatial
point patterns. Consequently, a rich literature exists on applications and estima-
tion of these functions, for summaries see e.g. the books by Stoyan et al. (1995),
Diggle (2003) or Illian et al. (2008). However, almost all applications concentrate
on the two dimensional case. The few exceptions include the paper by Hanisch
& Stoyan (1981), who propose a method for the stereological estimation of three
dimensional second order functions from planar sections under the additional as-
sumption that the particles or cells are spherical. The studies by Baddeley et al.
(1987, 1993) investigate the spatial arrangement of osteocytes in bone by registering
the positions within thick “bricks” with the help of a tandem scanning reflected
light microscope. Jensen et al. (1990) provide a unified mathematical theory for the
general n-dimensional case.

The need for tedious registration of the positions of cells or particles in thick
bricks has probably been the main hamper to applying second order functions in
the analysis of three dimensional structures. We therefore propose a new method
that limits the sampling to thinner physical or optical sections, and moreover fur-
ther reduces the data collection effort by restricting measurements to small subsets
around primary cells. These subsets are called “saucors” after their shape. The
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saucor sampling scheme extends (and corrects) earlier work of Evans & Gundersen
(1989).

Saucor sampling can be used with isotropic uniformly random (IUR) sections as
well as with vertical uniformly random (VUR) sections, thus enabling its applica-
tion to tissue that is preferably examined by vertical sections, such as the brain. We
provide estimation formula for the neighbour density function for both sectioning
schemes. The estimators have been implemented in the Cast-GRID R© software pack-
age (Visiopharm, Hørsholm, Denmark) for semi-automatic image analysis, which
greatly facilitates the measurements and the computations.

A formal definition of the radial number density function is provided in Sec-
tion 2, where we also discuss the relation of NV 12(r) to other second order summary
functions. The saucor sampling scheme and estimators for NV 12(r) are introduced
in Section 3. Section 4 is dedicated to the practical analysis of neocortical tissue.
The paper concludes with a discussion in Section 5.

2 The radial number density function NV 12 and its
relation to other second order summary functions

In order to describe the spatial arrangement of secondary particles with respect to
primary particles, we will reduce the particles to points in the following. Thus
we deal with the description of the mutual arrangement of two point patterns,
representing primary and secondary particles. The average radial number density
NV 12(r1, r2) is defined as the expected number of secondary points with distance
between r1 and r2 to an arbitrary random primary point, divided by the volume of
the shell limited by spheres of radii r1 and r2, which is equal to 4/3π(r32 − r31):

NV 12(r1, r2) :=

E

[
# secondary points within distance r1 and r2

to an arbitrary primary point

]

4/3π(r32 − r31)
. (1)

If the pattern of secondary points is completely independent of the primaries,
NV 12 is constant and equal to the overall number density NV 2 of secondary particles.
High values of NV 12 for small distances indicate clustering of secondary particles
around primary particles. Conversely, repulsive behaviour results in small initial
values of NV 12. In general, we will observe that NV 12 approaches NV 2 for large
distances. When dealing with real particles or cells, NV 12 always vanishes for very
small distances since cell or particle centres cannot come closer than the diameter
of the cells or particles. The different cases of spatial interaction between primary
and secondary particles are illustrated in Figure 1.

A continuous version of the radial number density of secondary points as a func-
tion of the distance to the primary is obtained by considering infinitesimally thin
shells, limited by spheres of radii r1 = r − δ and r2 = r + δ, namely

NV 12(r) := lim
δ→0

NV 12(r − δ, r + δ). (2)

The functions NV 12 defined by equations (1) and (2) are closely related to
the multivariate K-function K12 and the multivariate pair correlation function g12.

3



r1,r2

NV 12

NV 2

r1,r2

NV 12

NV 2

r1,r2

NV 12

NV 2

Figure 1: Spatial arrangement of particles with respect to other particles. Top: Example
of a primary particle(dark) with surrounding secondary particles (light gray). Spherical shells with
different distance to the primary are shaded in different gray levels. Bottom: Graph showing
the piecewise constant version of the radial density NV 12 as given in Equation (1) corresponding
to these shells. Left panel: completely random arrangement (Poisson case), middle: secondary
particles cluster around the primary, right: repulsion between primary and secondaries.

These functions have a long standing tradition in the statistical analysis of station-
ary spatial point processes consisting of several types of points, for summaries see
e.g. the books by Cressie (1993), Stoyan et al. (1995), Diggle (2003), or Illian et al.
(2008). The bivariate K-function K12(r) is defined as the expected number of points
of type 2 in a ball of radius r around a type 1 point, divided by the number density
of type 2 points. In the setting of infinite stationary point processes, the K-function
thus relates to NV 12 via

K12(r) =
NV 12(0, r) · 43πr3

NV 2

.

The derivative of the K-function, normalized by the surface area of a sphere of
radius r, is the popular bivariate pair correlation function g12(r), and it is

g12(r) = NV 12(r)/NV 2.

In recent years, a two dimensional version of NV 12, the so called Wiegand-Moloney
ring statistic (Wiegand & Moloney, 2004), has furthermore become popular in ecol-
ogy to describe the spatial arrangement of plants.

3 Estimation of radial number density using saucor
sampling

3.1 The general estimation principle for NV 12(r1, r2)

The radial number density NV 12 is defined as the expected number density of sec-
ondary particles around an arbitrary primary particle, which means that all primary
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particles contribute by the same amount to NV 12. Therefore we start by sampling
primary particles with equal probability. This is achieved using a disector design
(Sterio, 1984) which combines uniform random thick sections with a systematic uni-
form random positioned unbiased counting frame. In the second step, the number
of secondary particles in the shell with radius between r1 and r2 around each sam-
pled primary is separately estimated from the same thick section using an efficient
unbiased estimator that is described in detail below. This second estimator requires
that the thick sections be uniformly randomly orientated. Depending on the situa-
tion, the experimenter may choose either isotropic uniform random sections (IUR,
randomly rotated around two axes) or vertical uniform random sections (VUR, ran-
domly rotated around an identifiable axis, see Baddeley et al. (1987)).

The estimator for NV 12 is then simply obtained by averaging over the individual
results. Formally, let n denote the number of primary particles sampled in the first
step, and N̂2(ci; r1, r2) be the estimated number of secondary particles with distance
between r1 and r2 to the ith primary particle located in point ci, then the proposed
estimator reads

N̂V 12(r1, r2) =
1

n

n∑

i=1

N̂2(ci; r1, r2)

4/3 π(r32 − r31)
. (3)

Since the primary particles are sampled with equal probability and their number
n is random, the estimator N̂V 12(r1, r2) is ratio unbiased. A thorough discussion
on estimators of the form (3) for particle populations can be found in the excellent
book by Baddeley & Jensen (2005).

We now turn to the unbiased estimation of the number N2(ci; r1, r2) of secondary
particles around the i-th primary. In order to find out whether or not a secondary
particle found in the thick section lies within distance between r1 and r2 to the
given primary, its three dimensional coordinates have to be recorded. As mentioned
before, particles are reduced to associated points for distance measurement; we will
refer to these points as to the particles centres in the following.

If all observable secondary particles were evaluated, one would have to perform
many more measurements in shells with large radii than in shells close to the pri-
mary centre ci. By simple calculation one finds the number of secondary cells in the
thick section at a distance between r − δ and r + δ to the primary to be roughly
proportional to r. Moreover, the spatial distribution of secondary particles far away
from the primary is expected to be less informative from a biological point of view.
It is therefore desirable to reduce the measurement effort associated with the esti-
mation of NV 12(r) for larger values of r. This is achieved by restricting the counting
of secondaries to a subset of the observation field, the saucor graph described in
Section 3.3.

This graph is drawn individually with random orientation in the observation
plane for every primary particle; we denote the graph belonging to the i-th primary
by Wi. A secondary centre cj is thus only sampled for the estimation of N2(ci; r1, r2)
if it lies both in the (randomly orientated) thick section T and in the (randomly
orientated) saucor graph Wi. The probability that cj is sampled as a “satellite” of
the the primary ci factorizes into the probability

psect(cj; ci) := Prob(cj lies in T |T contains ci)
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that the j-th secondary is observed in the thick section if the i-th primary has been
observed, and the probability

psau(cj; ci) := Prob(cj lies in Wi |T contains ci and cj)

that cj falls into the saucor graph around ci. The probability psect depends on the
type of orientation randomization (IUR or VUR) for the thick section sampling; we
distinguish between pIsect and pVsect correspondingly. Formulae are given for both
cases in Subsection 3.2. Subsection 3.3 is devoted to the saucor graph and to the
calculation of psau.

Following the Horvitz-Thompson principle (Horvitz & Thompson, 1952), we now
obtain an unbiased estimator of the total number N2(ci; r1, r2) of secondary centres
around the primary by weighting the individual counts with the inverse of the sam-
pling probability psect(cj; ci) · psau(cj; ci), that is,

N̂2(ci; r1, r2) =
∑

sec. centres
cj∈T∩Wi

1(r1 < dist(cj, ci) ≤ r2)

psect(cj; ci) · psau(cj; ci)
(4)

where dist(cj, ci) stands for the Euclidean distance between the secondary point cj
and the primary point ci, and the indicator function 1 is used to count the secondary
points with distance between r1 and r2 to the primary ci,

1(r1 < dist(cj, ci) ≤ r2) =

{
1, r1 < dist(cj, ci) ≤ r2,

0, otherwise.

By combining (3) with (4), the estimation procedure finally boils down to the
following recipe:

1. Take a uniform random thick section (VUR or IUR) of the containing organ
or reference space (the section can also be an optical section, and guard zones
may be required, see the remark below).

2. Position a counting frame on the section, identify the primary particles therein,
and record the 3D positions of their centres (associated points). Let n denote
their number and c1, . . . cn denote their centres.

3. For every centre ci, estimate the number of surrounding secondary particles
as follows:

(a) According to the instructions in subsection 3.3, make a randomly orien-
tated saucor graph Wi around ci on the observation window or screen.

(b) Identify the secondary particle centres within the thick section T that fall
into Wi and record their positions.

(c) For every sampled secondary centre cj, calculate the probability psect(cj; ci)
using formula (6) in the case of IUR sections or (8) in the case of VUR
sections, and find the probability psau(cj; ci) from (11).

(d) Apply formula (4) to get the estimate N̂2(ci; r1, r2).
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4. Obtain an estimate for the radial number density by averaging the results from
step 3 according to formula (3).

Remark: Although secondary particles or cells are counted by means of an asso-
ciated point such as the nucleolus centroid, they do have a spatial dimension. This
causes problems with counting particles close to the physical thick section boundaries
— for example, particles may get lost due to the sectioning process, and for those
that are hit by the section boundary, it is not clear whether or not their associated
centre falls within the section. Similar problems also affect the disector counting of
primary particles. Therefore we equip the original physical section with an upper
and a lower guard zone, as recommended by Andersen & Gundersen (1999). These
guard zones actually reduce the original thick section of thickness h original section to
an optical thick section of thickness (or height)

h := h original section − (hupper guard zone + h lower guard zone).

In what follows, we will always identify the section plane with the xy-plane and
the focal depth with the z-coordinate. Thus the xy-plane is identical with what
is seen on the microscopical screen. If the section is vertical uniform random, the
direction of the y-axis is as usual set to the vertical direction.

3.2 UR section sampling

Saucor sampling starts with an UR thick section T of height h that is bounded
by two parallel UR planes. Uniform random (UR) sectioning consists in a jointly
uniform randomization of direction and position of the section plane. The direction
is represented by the normal vector, and the position by the distance to the origin.
For IUR sections, the normal vector takes values the whole unit sphere (all directions
in three dimensions). VUR sections are parallel to a predefined vertical direction
that is often given by the situation Baddeley et al. (1986). VUR section is necessary,
for example, when substructures in certain organs are only easy to identify if the
organ is cut perpendicular to its surface. This perpendicular plane is called the
“horizontal plane”. For a mathematical description of IUR and VUR sectioning see
e.g. Baddeley & Jensen (2005).

In the following, we will give heuristical derivations of the conditional probability
psect(cj; ci) for observing a secondary point cj in the section given the primary point
ci has fixed distance di ≤ h/2 to the closer one of the two section boundary planes.
One might object that this condition is somewhat stronger than the condition “T
contains ci” used in the previous definition of psect(cj; ci) in subsection 3.1. However,

this does not infringe the unbiasedness of the estimator N̂2(ci; r1, r2) as given by (4).
We will always let xi, yi, zi denote the coordinates of a point ci representing the
primary particle centre and xj, yj, zj the coordinates of the secondary particle centre
cj as measured under the digitally equipped microscope.

IUR sections. IUR sampling is designed such that all points in the reference
space have equal probability to be contained in the IUR thick section. However, if
we fix a point ci and condition on that point being contained in the section T , we
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Figure 2: IUR sampling. Section centred on a primary particle marked as black dot. Of all
secondary particles with the same distance to the primary as the one marked with a light dot,
only those who lie in the dark shaded surface are sampled by this section. Due to the isotropic
uniform randomization of the section, all points on the sphere are sampled with equal probability
corresponding to the fraction of the dark shaded part in the surface area of the whole sphere.

will sample points that are close to ci with higher probability than points further
away.

Due to the isotropic rotation of T , all points on a sphere with fixed radius around
ci are sampled with the same conditional probability. This probability is therefore
equivalent to the fraction of the sphere surface which is contained in the section, as
illustrated in Figure 2.

Consequently, the probability pIsect(cj; ci) is a function of the distance rij between
ci and cj,

rij :=
√

(xi − xj)2 + (yi − yj)2 + (zi − zj)2. (5)

The surface area of the spherical layer in T is equivalent to 2πrijh
∗, where h∗ is

the height of the spherical layer, which also depends on the distance di of ci to the
section boundary, see Figure 3.

h horig. section

guard zone

guard zone

z

ri j

di

h∗
ri j

di

h∗
ri j

di

h∗

Figure 3: IUR conditional sampling probability pIsect(cj ; ci) depends on di and rij. IUR
section (with guard zones) viewed edge on in the plane that contains both ci and cj , that is, the
sphere around ci (black dot) through cj (white) is cut centrally. h∗ denotes the height of the
spherical layer within the section. Points cj with rij ≤ di are sampled with probability 1, because
the whole sphere is contained in the section (left part). If di < rij ≤ h − di, more than a entire
half of the sphere is contained in the section (middle), otherwise if rij > h− di, the sphere is cut
on both sides (right part).
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The resulting probability is

pIsect(cj; ci) =
Area(sphere around ci with radius rij ∩ thick section)

Area(sphere with radius rij)
=

2πrijh
∗

4πr2ij

=





1, rij ≤ di,
1
2
(1 + di/rij), di < rij < h− di,
h/(2rij), rij ≥ h− di.

(6)

VUR sections. Just as IUR sections, also VUR sections sample all points in the
reference space with equal probability. Again, we condition on the case that the
point ci which represents the primary has a given distance di to the closer one of the
two boundary planes of the section. The VUR sections that fulfill this condition are
obtained by uniform rotation around the vertical axis through ci. This implies that
all secondary points with the same given distance to that axis are sampled with the
same probability pVsect(cj; ci). These points lie on a cylinder, as shown in Figure 4.
The sampling probability corresponds to the fraction of the cylinder surface which
is contained in the thick section. Therefore, pVsect(cj; ci) depends on the distance

r
(xz)
ij :=

√
(xj − xi)2 + (zj − zi)2 (7)

of cj to the vertical axis through ci (recall that the vertical direction is identified with
the y-direction in the microscopical section, and the horizontal plane perpendicular
to this direction is the (xz)-plane).

Figure 4: VUR sampling. Section centred on a primary particle ci marked as black dot.
Due to the vertical uniform randomization of the section, secondary points with equal conditional
sampling probability pVsect are located on cylinders around the vertical axis through ci. The
sampling probability corresponds to the fraction of the dark shaded part in the surface area of the
whole cylinder. The distance of a point cj to the vertical axis does not depend on its vertical (y-)
coordinate.

Since cylinder surface is obtained by multiplying the length of the profile on
the horizontal plane with the cylinder height, the cylinder surface fraction within
the section equals the the length fraction of the circle with radius r

(xz)
ij around

the horizontal projection of ci that is covered by the horizontal profile of the thick
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i j
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i j

di r (xz)
i j

di
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Figure 5: VUR conditional sampling probability pIsect(cj ; ci) depends on di and r
(xz)
ij .

The projections of the VUR thick section (with guard zones) and the cylinders as in Figure 4 onto
the horizontal plane are shown, that is, the vertical axis is perpendicular to the paper, and the
black and white dots represent the projections of primary and secondary point ci and cj , i.e., their
x- and z- coordinates. Points cj with r

(xz)
ij ≤ di are sampled with probability 1 (left part). The

calculation of the sampling probability in the case r
(xz)
ij > di requires determination of arc lengths

— the hatched angle in the middle part is equal to arcsin (di/r
(xz)
ij ).

section, see Figure 5. Thus, the probability pVsect(cj; ci) is given by

pVsect(cj; ci) =
Length(circle in xz-plane around ci with radius r

(xz)
ij ∩ section)

Length(circle with radius r
(xz)
ij )

=





1, r
(xz)
ij ≤ di,

1
2

+ 1
π

arcsin
(
di
/
r
(xz)
ij

)
, di < r

(xz)
ij < h− di,

1
π

[
arcsin

(
(h− di)

/
r
(xz)
ij

)
+ arcsin

(
di
/
r
(xz)
ij

)]
, r

(xz)
ij ≥ h− di.

(8)

3.3 The saucor

The idea of the saucor sampling method is to restrict coordinate measurement for
secondary particles to independently randomly orientated observation windows Wi,
drawn on the microscopy screen around the individual primary particles ci, i =
1, . . . , n, as shown on Figures 7 and 8. Once the random orientation of the window
is established for a given primary ci, it remains fixed across focal depths. A secondary
particle cj is counted (or measured) with ci if its x- and y- coordinates fall into Wi,
no matter what its z-coordinate is. The window is limited to points with distance
less or equal to Rmax to the centre ci. This radius is chosen by the experimenter as
the upper limit of biological interest for the determination of NV 12. On the other
hand, the window contains all points with distance less or equal to a user determined
Rmid. In the neuroanatomical study presented in Section 4 we chose Rmid = 12 µm
and Rmax = 48 µm.

The shape of Wi is defined by Equation (9) in polar coordinates r and θ, where
r denotes the distance in the focal plane to the centre point of Wi, and θ denotes
the (planar) angle to the axis of Wi. A point with polar coordinates (r, θ) belongs
to the Wi if and only if |θ| ≤ θ(r), and r ≤ Rmax, where

θ(r) =

{
π, r ≤ Rmid,

π
(
Rmid

r

)1+β
, r > Rmid.

(9)
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The parameter β determines how many of the secondary particles with distance
larger than Rmid to the primary have to be counted and how fast this number
decreases. Figure 6 shows the graph of Wi for various values of β in the case where
the axis of Wi coincides with the x-axis. For the practical example, we chose β = 1.
The name “saucor” was inspired by the shape that is obtained if the graph in Figure 6
were rotated around the y-axis.

r
θ(r )

Rmax
Rmid

β= 0.5

β= 1.5

Figure 6: The saucor graph, here oriented along the x-axis. Left part: saucor graph for β = 1,
middle: saucor graphs for β = 0.5 (outer) and β = 1.5 (inner graph). Right: rotation of the graph
around the vertical axis through the primary would produce a shape that resembles a flying saucer.

Randomization of the saucor orientation is performed by uniform rotation of the
saucor axis around the primary particle. The probability psau(cj; ci) that a secondary
point cj with coordinates xj, yj as seen on the microscopy screen lies inside the graph

therefore depends only on the xy- (or screen-) distance r
(xy)
ij to the primary with

coordinates xi, yi,

r
(xy)
ij :=

√
(xj − xi)2 + (yj − yi)2. (10)

This probability is given by the length fraction of the arc through cj in the saucor
window, see Figure 7,

Length(circle around ci with radius r
(xy)
ij ∩ saucor graph)

Length(circle with radius r
(xy)
ij )

=
2θ(r

(xy)
ij ) · r(xy)ij

2π · r(xy)ij

,

that is,

psau(cj; ci) =





1, r
(xy)
ij ≤ Rmid,(

Rmid

/
r
(xy)
ij

)1+β
, Rmid < r

(xy)
ij ≤ Rmax.

(11)

Note that the saucor estimator holds only for NV 12(r) with r < Rmax. Very few
secondary particles may be observed on the edge of the saucor graph with three
dimensional distance rij larger than Rmax, since the screen distance is in general
smaller than the true three dimensional distance, namely

r
(xy)
ij =

√
rij − (zi − zj)2. (12)

These particles normally constitute less than 1 % of all measured particles and are
excluded from the computation.
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ci

c j

r (x y)
i j

ci

c j

r (x y)
i j

Figure 7: Random rotation of the saucor graph around the primary point. Two real-
izations of the uniformly rotated saucor graph as drawn on the screen are shown, see also Figure 8.
Secondary cells are only sampled when they fall into the white area.

3.4 Number of measurements associated with saucor sampling

The workload associated with measuring particle coordinates in a thick section is
roughly proportional to the expected number of particles in the evaluated volume.
Traditional methods capture all secondary particles that can be seen by focussing
up and down in a given counting frame. The expected number EQ(disector box)
of secondary particles depends on the area of the frame, the height h of the section
and the number density NV 2, namely

EQ(disector box) = NV 2 · Area(frame) · h. (13)

When sampling secondaries individually for every primary, the effort increases with
the number of primary particles in the disector box. For the saucor method, one
has to evaluate cylinder volumes that equal the area of the saucor graph multiplied
by the height h. This yields an expected number EQ(saucor) of secondary counts
given by

EQ(saucor) = NV 2 ·#primaries · Area(saucor) · h. (14)

Thus, saucor sampling will require less measurement effort than disector sampling
if and only if #primaries < Area(frame)/Area(saucor).

Using the standard formula for the area swept out by a radius-vector function,
we find

Area(saucor) =

∫ Rmax

0

2θ(r)rd r

= πR2
mid +

∫ Rmax

Rmid

2πr−βR1+β
mid d r

= πR2
mid ·





1 + 2 log Rmax

Rmid
, if β = 1,

−1+β
1−β + 2

1−β

(
Rmax

Rmid

)1−β
, otherwise.

(15)

In the following neuroanatomical study, a saucor graph was used with β = 1,
Rmid = 12 µm and Rmax = 48 µm, having area 1707 µm2.
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4 Practical application: Estimating radial number density
around neurons in the human neocortex in VUR sections

4.1 Tissue and tissue preparation

To illustrate the saucor method we analysed vertically uniformly random neocortical
sections. The post mortem tissue consisted of one hemisphere from a 61-year-old
woman who had no history of psychiatric or neurological disorders and died of car-
diac arrest. The brain was removed from the calvarium within 72 hours of death and
fixed in 0.1m sodium phosphate buffered (pH 7.2) 4 % formaldehyde for 5 months.
The meninges were removed, and the cerebellum and brainstem detached at the
level of the third cranial nerve. The frontal, temporal, parietal and occipital regions
were delineated and indicated by applying different colours to the pial surface of the
right hemisphere Pakkenberg & Gundersen (1997). The hemisphere was embedded
in 6 % agar, and sliced coronally at 7 mm-intervals, and the neocortical volume of
the sliced hemisphere was estimated by Cavalieri’s principle. From every second
slice, using a special sampling plate, transcortical wedges were sampled uniformly
and systematically random from each neocortical region. Each wedge was cut into
2 mm-wide parallel bars. Each subsampled bar was rotated randomly around its
vertical axis and embedded in LKB-historesin. One 35 µm-thick vertical section was
cut from each block, and stained with a modified Wolbach’s Giemsa stain. This
resulted in a set of thirty-three 35 µm-thick vertical Giemsa stained sections; nine
frontal, ten temporal, eight parietal and six occipital bars, which were mounted on
glass slides for microscopic examination.

4.2 Equipment

The slides were placed on the stage of a BH-2 Olympus microscope. The slide holder
could be freely rotated to enable sampling along the direction of the vertical axis of
the section. The image of the section was captured by a digital video camera and
transmitted to a computer screen. A high image resolution and a thin focal plane was
obtained using a high numerical aperture (NA = 1.4), 100× oil-immersion objective
for cell counting and cell volume estimation. A Heidenhein microcator with digital
readout for measuring movements to the nearest 0.5 µm kept track of the z-direction.
The stage of the microscope and hence the specimen could be moved precisely in
x, y, and z-directions and its movements were tracked and recorded. The position
of the cursor was also tracked and 3D coordinates of the points marked with the
cursor were recorded automatically. The final magnification at the computer screen
was 3040X.

The volume of each sampled neuron was estimated by the vertical planar ro-
tator method using the CAST-GRID computer-program (Visiopharm, Hørsholm,
Denmark), which also controlled all data acquisition from the saucor.

4.3 Data acquisition

The primary neurons were identified in an optical disector (Gundersen et al., 1988)
with a disector area of 3500 µm2 and a disector height of 10 µm (from 10 µm to 20 µm
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Figure 8: The saucor probe on the live screen, the focal plane of the image is several µm
below the central focal plane centred on the nucleolus of a neuron. Two glial cells are sampled
(yellow X), the upper one in this focal plane. The width of the field of view is ca. 80 µm.

leaving 10 µm thick guard zones on each side). Then the saucor was applied (see
details below). The dimensions of the saucor were defined by β = 1, Rmid = 12 µm
and Rmax = 48 µm. An example of the saucor on the screen is shown in Figure 8.

The secondary cells were classified on cytoarchitectonic characteristics into neu-
rons, oligodendrocytes, astrocytes, microglial or endothelial cells. Cell classification
was based solely on morphology because immunohistochemical staining cannot pen-
etrate the plastic sections. The cells were identified as neurons if they had a combi-
nation of a single large nucleolus free of any surrounding heterochromatin, a typical
pale chromatin pattern in a triangularly rounded nucleus, and were surrounded by
a visible cytoplasm. Astrocytes were defined as cells with a round and pale nucleus
having the heterochromatin concentrated in granules in a rim below the nuclear
membrane and a relatively translucent cytoplasm. A small nucleolus was not al-
ways identified, but when present, it was most often situated eccentrically. The
nuclear membrane of astrocytes has a sharp profile, and the cells are often located
singularly. Oligodendrocytes are often situated in groups and in close proximity to
neurons or blood vessels. They are characterized by a small rounded or oval nucleus
with dense chromatin structure and a perinuclear halo. Microglia cells are defined
by a small elongated or comma-shaped nucleus with dense peripheral chromatin.

A total of 151 primary neurons were sampled for the the estimation of ra-
dial number density, 32 in the frontal region, 49 in the temporal, 37 in the pari-
etal and 33 in the occipital lobe. This means that an aggregate saucor area of
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151 µm× 1707 µm = 257 757 µm2 had to be scanned for secondary cells. The tra-
ditional disector box counting methods would have required to inspect all disectors
containing primary neurons. Since 100 of the 120 disectors that were screened did
contain neurons, this would correspond to an area of 100× 3500 µm2, which is about
36 % larger than the aggregate saucor area.

4.4 The practical use of the Saucor and the final computations

First the direction of the vertical axis was indicated, in this case the longitudinal axis
of the sections. With a random start, the sampling of primary cells was performed
with a constant sampling period of 1500 µm between the disectors along the centre
of the section. All primary neurons in a disector must be sampled to ensure uniform
sampling.

When the centre of a primary cell is indicated with the mouse in the relevant
frame, the system moves the table so that the primary is at (0, 0), and a saucor probe
is drawn, rotated uniformly random, cf. Figure 8. The user indicates all secondary
cell centres that in any way touch the saucor graph. At this stage the borders of
the shells are concealed for the investigator. Coordinates (x, y, z) are automatically
recorded for primary and secondary cells. When sampling in a saucor probe is
exhausted, the investigator activates the rotator probe to estimate the volume of
the primary neuron. This procedure is done for all primary neurons within a disector.

For simplification we have described the primary cells as neurons and secondary
cells as glial cells. One can off cause pick any type of cell or other objects to be
defined as primary or secondary, the same type of object can also be defined as both
primary and secondary. For this practical application we chose primary cells to be
neurons and both neurons and glial cells as secondary cells.

4.5 Data analysis and results

We present the radial number density of neocortical cells around primary neurons as
a sequence sorted according to radial distance. The distance is classified or binned
based on the observed radii, rij. It is most efficient to use a binning that reflects
the inverse density of observations as the statistical properties of such estimates
are mostly governed by the roughly constant number of observations in each class
and the total number of observations; therefore the width of the individual classes
reflects the observation density in that specific class (if the spatial distribution were
uniform). In short: wide classes at the perimeter to obtain enough observations in
the decreasing observed shell volume fractions and narrow classes in the centre and
its vicinity to ensure precision and details of the interesting part of the distribution.

Unless many observations are made (>200), there is no extra information in
more than roughly ten informative classes. Since there will often be some empty
and thereby uninformative classes in the centre (the beginning of the distribution
will often start some distance from the primary object centre) a few extra classes
are needed to end up with about ten informative classes; we have chosen n = 14.

Finally, secondary particle centres cannot be arbitrarily close to that of the
primary, so we have fixed the beginning of the sequence of bins at R1 = 2.4 µm. The
binning is a refined geometric progressing or quasi-logarithmic sequence of classes,
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Figure 9: Binning of the saucor. Left panel: Profile of the binned saucor. In the central black
circle secondary particle centres are excluded due to the presence of the primary cell. Right panel:
The volume per bin of a saucor with a thickness of 10 µm.

which provides freedom to make it fit the three constants R1, Rmid, and Rmax (in
a logarithmic sense it is symmetric around Rmid). The generating equation for the
complete sequence of lower bin limits is

Ri = c · f i−1 − off = 3.490− 1.20783i−1 − 1.09, (16)

where

c =
(Rmid −R1)

2

Rmax − 2Rmid +R1

, (17)

f =

[
Rmid −R1

c
+ 1

]2/n
(18)

and

off = c−R1. (19)

The factor of geometric progression, f ≈ 1.21, means that each class is 21 % wider
than the previous one, providing an essentially constant sampling volume per bin
outside of Rmid, as shown in Figure 9.

For each neocortical region the numerical density in each saucor shell was cal-
culated for secondary cells: neurons divided into three volume groups and glial
cells divided into astrocytes, oligodendrocytes and microglial cells. This produced a
heavy data load, here we present the summarized data in plots where the abscissa
is the volume of the spheres in the surface of which each secondary cell is situated,
and the ordinate is the secondary cell density.

Figure 10 illustrates the difference in the spatial arrangement of glial cells and
neurons with respect to (primary) neurons by comparing the radial glial and neuron
number density averaged over all four regions. The graph for glial cells shows a
pattern with high densities close to the neurons and a gap with lower density before
the background density is reached, thus indicating clustering of glia around neurons.
On the contrary, the radial density of neurons around neurons is small for small
distances and approaches the final density from below. This suggests a tendency
towards repulsion from the primary neuron.

We have chosen to illustrate the distribution of all cells around neurons with
the four subdivisions (frontal, temporal, parietal, and occipital cortex) with the
distribution in neocortex in the same graphs to make the regional differences more
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Figure 10: Radial number density of neurons and glial cells in the neocortex as a
function of the distance from neurons, averaged over all four neocortical regions.

visible (see Figure 11). For estimating total radial number density of neocortical
cells, each region is weighted with the fraction of the total number of neurons in
that specific region. It is a very limited sample but there is a tendency towards glial
attraction in all four regions, the glial cells are distributed in the same pattern over
the four neocortical regions. The distribution of secondary neurons on the other
hand presents a difference in the density when comparing the pattern of the frontal
region to the other regions, probably due to the simple fact that the neurons in the
frontal cortex have a larger volume than the neurons in the other regions.

For this study the embedding material was historesin, which has low shrink-
age potential, unlike paraffin or frozen sections, for example. For studying spatial
distribution of cells it is important to choose an embedding material with as little
shrinkage potential as possible. Frozen and vibratome sections are special in that
it is usually possible to restrict the shrinkage to the z-axis, and that is easily moni-
tored locally Dorph-Petersen et al. (2001). If the sections are cut using a calibrated
microtome one may then correct for the local shrinkage of the z-coordinate.

5 Conclusions

The spatial distribution of neurons in relation to other nearby neurons is of interest
because the distribution of cells within a given region of the brain may have im-
portant implications for the function of that region. The ability of an ensemble of
neurons to work in a coordinated fashion depends on the intensity of its synaptic
connectivity, which in turn may be reflected in the physical proximity or arrange-
ment of the cells. Spatial arrangement of cells or particles with respect to each
other is suitably characterized by the radial number density which expresses the
local mean number per volume of cells of one type as a function of their distance to
cells of another (or the same) type. With this paper, we introduce a stereological
probe, the saucor that allows efficient sampling and estimation of the radial number
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Figure 11: Regional differences in the distribution of neurons and glial cells around
primary neurons, radial number density in the four neocortical subregions, frontal, parietal,
temporal and occipital cortex. The graphs appear less smooth than in Figure 10 which is probably
due to the smaller sample size

density from vertical or isotropic uniform random sections.

Application of the saucor is of course not restricted to neuroscience, but in this
field of science it is a particularly valuable tool because it enables the researcher
to obtain data on the cellular spatial relations with a reasonable workload and
sensitivity which previously were considered difficult to acquire. Even though the
saucor is a manual method and the data collection cannot be done by a computer,
the labor burden is manageable; the data collection from the brain studied in Section
4 took eight hours per region.

Our results indicate that glia cells are clustered around neurons, whereas neurons
showed a tendency towards repulsion from each other. This could be explained
with the role of neurons as the morphological, ontogenetical and functional units
of the central nervous system, whereas glia cells primarily are the metabolically
supportive cells, which assist neurons in their function and development. Although
these outcomes are plausible, they are difficult to verify because they were obtained
on only one neocortex and there are only few previous studies concerning spatial
distribution of cells in healthy human neocortex they could be compared against.
Still, the densities found in the present study are within the same ranges as reported
earlier for both neurons (Pakkenberg & Gundersen, 1997) and glia cells (Pelvig et al.,
2008).

The saucor method also allows analysing the spatial distributions with respect to
the size of the primary neurons. Neuron size crudely indicates function (small local
interneurons, larger neurons communicating with distant regions in the brain, and
very large neurons with axons going far outside the brain). The spatial distributions
around neurons of very different sizes are therefore likely to be quite different. This
may or may not be interesting in itself, but it represents a known source of variation
which may be effectively handled by analysing with respect to a number of size
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classes of neurons. Although data on neuron size were collected in the present
investigation, we did not include any results since the sample size was too small.

When dealing with tissues like the human neocortex, it would also be inter-
esting to study the layer specific spatial distribution of cells with respect to each
other. However, due to the random rotation of the tissue during preparation and
the much folded cortical surface it is impossible to identify all six layers in all sec-
tions. Knowledge of the 3D spatial relationship between neurons and glial cells may
give new insight to the organization and function of the central nervous system, in
brains with and without disease. In an earlier pilot study of the human cell distri-
bution in neocortex (Stark et al., 2007), no statistically significant differences were
found between healthy male and female brains, nor between young and old brains.
This apparent uniformity could be interpreted as an indicator for the importance
of spatial arrangement to healthy brain function. Non healthy brains might show a
deviation from that spatial distribution pattern. Thus, the radial number density
data might provide valuable information when trying to understand the complexity
of diseases such as Alzheimer’s dementia and schizophrenia where histological data
so far have provided only sparse results, but not lead us to fully understand the
pathology behind the diseases
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