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Abstract

The question of existence and properties of stationary solutions to Langevin
equations driven by noise processes with stationary increments is discussed,
with particular focus on noise processes of pseudo moving average type. On
account of the Wold-Karhunen decomposition theorem such solutions are in
principle representable as a moving average (plus a drift like term) but the
kernel in the moving average is generally not available in explicit form. A
class of cases is determined where an explicit expression of the kernel can be
given, and this is used to obtain information on the asymptotic behavior of
the associated autocorrelation functions, both for small and large lags. Appli-
cations to Gaussian and Lévy driven fractional Ornstein-Uhlenbeck processes
are presented. As an element in the derivations a Fubini theorem for Lévy
bases is established.
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1 Introduction
This paper studies existence and properties of stationary solutions to Langevin equa-
tions driven by a noise process with, in general, stationary dependent increments.
We shall refer to such solutions as quasi Ornstein-Uhlenbeck (QOU) processes. Of
particular interest are the cases where the noise process is of the pseudo moving
average (PMA) type. In wide generality the stationary solutions can, in principle,
be written in the form of a Wold-Karhunen type representation, but it is relatively
rare that an explicit expression for the kernel of such a representation can be given.
When this is possible it often provides a more direct and simpler access to the
character and properties of the process, for instance concerning the autocovariance
function.

The structure of the paper is as follows. Section 2 defines the concept of quasi
Ornstein-Uhlenbeck processes and provides conditions for existence and uniqueness
of stationary solutions to the Langevin equation. The form of the autocovariance

1



function of the solutions is given and its asymptotic behavior for t→∞ is discussed.
As a next, intermediate, step a Fubini theorem for Lévy bases is established in
Section 3. In Section 4 explicit forms of Wold-Karhunen representations are derived
and used to analyze the asymptotics, under more specialized assumptions, of the
autocovariance functions, both for t→∞ and for t→ 0. The results are applied in
particular to the case of Gaussian and Lévy driven fractional Ornstein-Uhlenbeck
processes. Section 5 concludes.

2 Langevin equations and QOU processes

Let N = (Nt)t∈R be a measurable process with stationary increments and let λ > 0
be a positive number. By a quasi Ornstein-Uhlenbeck (QOU) process X driven by
N and with parameter λ, we mean a stationary solution to the Langevin equation
dXt = −λXt dt+ dNt, that is, X = (Xt)t∈R is a stationary process which satisfies

Xt = X0 − λ
∫ t

0

Xs ds+Nt, t ∈ R, (2.1)

where the integral is a pathwise Lebesgue integral. For all a < b we use the notation∫ a
b

:= −
∫ b
a
. Recall that a process Z = (Zt)t∈R is measurable if (t, ω) 7→ Zt(ω)

is (B(R) ⊗ F ,B(R))-measurable, and that Z has stationary increments if for all
s ∈ R, (Zt − Z0)t∈R has the same finite distributions as (Zt+s − Zs)t∈R. For p ≥ 0
we will say that a process Z has finite p-moments if E[|Zt|p] < ∞ for all t ∈ R.
Moreover for t→ 0 or∞, we will write f(t) ∼ g(t), f(t) = o(g(t)) or f(t) = O(g(t))
provided that f(t)/g(t)→ 1, f(t)/g(t)→ 0 or lim supt|f(t)/g(t)| <∞, respectively.
For each process Z with finite second-moments, let VZ(t) = Var(Zt) denote its
variance function. When Z, in addition, is stationary, let RZ(t) = Cov(Zt, Z0)
denote its autocovariance function, and R̄X(t) = RX(0) − RX(t) = 1

2
E[(Xt −X0)2]

its complementary autocovariance function.
Before discussing the general setting further we recall some well known cases.

The stationary solution X to (2.1) where Nt = µt+ σBt, and B is a Brownian mo-
tion is of particular interest in finance; here X is the Gaussian Ornstein-Uhlenbeck
process, µ/λ is the mean level, λ is the speed of reversion and σ is the volatil-
ity. When N is a Lévy process the corresponding QOU process, X, exists if and
only if E[log+|N1|] <∞ or, equivalently, if

∫
{|x|>1} log |x| ν(dx) <∞ where ν is the

Lévy measure of N ; see Rocha-Arteaga and Sato (2003). In this case X is called
an Ornstein-Uhlenbeck type process; for applications of such processes in financial
economics see Barndorff-Nielsen and Shephard (2001, 2010).

2.1 Auxiliary continuity result

Let (E, E , µ) be a σ-finite measure space, and φ : R → R+ an even and continuous
function which is non-decreasing on R+, with φ(0) = 0. Assume there exists a
constant C > 0 such that φ(2x) ≤ Cφ(x) for all x ∈ R (that is, φ satisfies the
∆2-condition). Let L0 = L0(E, E , µ) denote the space of all measurable functions
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from E into R, and let Φ denote the modular on L0 given by

Φ(g) =

∫

E

φ(g) dµ, g ∈ L0,

and Lφ = {g ∈ L0 : Φ(g) <∞} the corresponding modular space. Furthermore, for
g ∈ L0 define

ρ(g) = inf {c > 0 : Φ(g/c) ≤ c} , and ‖g‖φ = inf {c > 0 : Φ(g/c) ≤ 1} .
Then ρ is an F -norm on Lφ, and when φ is convex, the Luxemburg norm ‖ · ‖φ is
a norm on Lφ; see e.g. Khamsi (1996). If not explicitly said otherwise, Lφ will be
equipped with the metric dφ(f, g) = ρ(f − g).

Theorem 2.1. Let f : R × E → R denote a measurable function satisfying that
ft = f(t, ·) ∈ Lφ for all t ∈ R, and

dφ(ft+u, fv+u) = dφ(ft, fv), for all t, u, v ∈ R. (2.2)

Then, (t ∈ R) 7→ (ft ∈ Lφ) is continuous. Moreover, if φ is convex, then there exist
α, β > 0 such that ‖ft‖φ ≤ α + β|t| for all t ∈ R.

To prove Theorem 2.1 we shall need the following lemma.

Lemma 2.2. Let f : R × E → R denote a measurable function, such that ft ∈ Lφ
for all t ∈ R. Then, (t ∈ R) 7→ (ft ∈ Lφ) is Borel measurable and has a separable
range.

Recall that f : E → F has a separable range, if f(E) is a separable subset of F .

Proof. We will use a Monotone Class Lemma argument to prove this result, so let
M2 be the set of all functions f for which Lemma 2.2 holds, andM1 the set of all
functions f of the form

ft(s) =
n∑

i=1

αi1Ai(t)1Bi(s), t ∈ R, s ∈ E,

where for n ≥ 1, A1, . . . , An are measurable subsets of R, B1, . . . , Bn are measurable
subsets of E of finite µ-measure, and α1, . . . , αn ∈ R. Then, Ψf : (t ∈ R) 7→
(ft ∈ Lφ) has separable range, and since t 7→ dφ(ft, g) is measurable for all g ∈ Lφ,
Ψf is measurable. This shows thatM1 ⊆M2. Note that the set bM2 of bounded
elements from M2 is a vector space with 1 ∈ bM2, and that (fn)n≥1 ⊆ bM2

with 0 ≤ fn ↑ f ≤ K implies that f ∈ bM2. Moreover, since M1 is stable
under pointwise multiplication the Monotone Class Lemma, see e.g. Chapter II,
Theorem 3.2 in Rogers and Williams (2000), shows that

bM(B(R)×F) = bM(σ(M1)) ⊆ bM2.

(For a family of functions M, σ(M) denotes the least σ-algebra for which all the
functions are measurable, and for each σ-algebra E , bM(E) denotes the space of all
bounded E-measurable functions). For a general function f define f (n) by f (n)

t =
ft1{|ft|≤n}. For all n ≥ 1, f (n) is a bounded measurable function and hence Ψf (n)

is a measurable map with a separable range. Moreover, limn Ψf (n) = Ψf pointwise
in Lφ, showing that Ψf is measurable and has a separable range.
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Proof of Theorem 2.1. Let Ψf denote the map (t ∈ R) 7→ (ft ∈ Lφ), and for fixed
ε > 0 and arbitrary t ∈ R, consider the ball Bt = {s ∈ R : dφ(ft, fs) < ε}.
By Lemma 2.2, Ψf is measurable, and hence Bt is a measurable subset of R for all
t ∈ R. According to Lemma 2.2 Ψf has a separable range, and therefore there exists
a countable set (tn)n≥1 ⊆ R such that the range of Ψf is included in ∪n≥1B(ftn , ε),
implying that R = ∪n≥1Btn . (Here, B(g, r) = {h ∈ Lφ : dφ(g, h) < r}). In par-
ticular, there exists an n ≥ 1 such that Btn has strictly positive Lebesgue measure.
By the Steinhaus Lemma, see Theorem 1.1.1 in Bingham et al. (1989), there exists
a δ > 0 such that (−δ, δ) ⊆ Btn − Btn . Note that by (2.2) it is enough to show
continuity of Ψf at t = 0. For |t| < δ there exists, by definition, s1, s2 ∈ R such
that dφ(ftn , fsi) < ε for i = 1, 2, showing that

dφ(ft, f0) ≤ dφ(ft, fs1) + dφ(ft, fs2) < 2ε,

which completes the proof of the continuity part.
To show the last part of the theorem assume that φ is convex. For each t > 0

choose n = 0, 1, 2, . . . such that n ≤ t < n+ 1. Then,

‖ft − f0‖φ ≤
n∑

i=1

‖fi − fi−1‖φ + ‖ft − fn‖φ

≤ n‖f1 − f0‖φ + ‖ft−n − f0‖φ ≤ tβ + a, (2.3)

where β = ‖f1 − f0‖φ and a = sups∈[0,1]‖fs − f0‖φ. We have already shown that
t 7→ ft is continuous, and hence a <∞. Since ‖f−t−f0‖φ = ‖ft−f0‖φ for all t ∈ R,
(2.3) shows that ‖ft − f0‖φ ≤ a+ β|t| for all t ∈ R, implying that ‖ft‖φ ≤ α + β|t|
where α = a+ ‖f0‖φ.

For (E, E , µ) = (Ω,F , P ) and φ(t) = |t|p for p > 0 or φ(t) = |t| ∧ 1 for p = 0, we
have the following corollary to Theorem 2.1.

Corollary 2.3. Let p ≥ 0 and X = (Xt)t∈R be a measurable process with stationary
increments and finite p-moments. Then, X is continuous in Lp. Moreover if p ≥ 1,
then there exist α, β > 0 such that ‖Xt‖p ≤ α + β|t| for all t ∈ R.

Note that in Corollary 2.3 the reversed implication is also true; in fact, all
stochastic processes X = (Xt)t∈R that are continuous in L0 have a measurable
modification according to Theorem 2 in Cohn (1972).

The idea by using the Steinhaus Lemma to prove Theorem 2.1 is borrowed from
Surgailis et al. (1998), where Corollary 2.3 is shown for p = 0. Furthermore, when µ
is a probability measure and φ(t) = |t| ∧ 1, Lemma 2.2 is known from Cohn (1972).

2.2 Existence and uniqueness of QOU processes

The next result shows existence and uniqueness for the stationary solution X to
the Langevin equation dXt = −λXt dt + dNt, in the case where the the noise N is
integrable. That is, we show existence and uniqueness of QOU processes X, and
moreover provide an explicit form of the solution which is used to calculate the mean
and variance of X.
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Theorem 2.4. Let N be a measurable process with stationary increments and finite
first-moments, and let λ > 0 be a positive real number. Then, X = (Xt)t∈R given by

Xt = Nt − λe−λt
∫ t

−∞
eλsNs ds, t ∈ R, (2.4)

is a QOU process driven by N with parameter λ (the integral is a pathwise Lebesgue
integral). Furthermore, any other QOU process driven by N and with parameter λ
equals X in law. Finally, if N has finite p-moments, p ≥ 1, then X has also finite
p-moments and is continuous in Lp.

Remark 2.5. It is an open problem to relax the integrability of N in Theorem 2.4,
e.g. is it enough that N has finite log-moments? Recall that when N is a Lévy
process, finite log-moments is a necessary and sufficient condition for the existence
of the corresponding QOU process.

Proof. Existence: Let p ≥ 1 and assume that N has finite p-moments. Choose
α, β > 0, according to Corollary 2.3, such that ‖Nt‖p ≤ α + β|t| for all t ∈ R. By
Jensen’s inequality,

E

[(∫ t

−∞
eλs|Ns| ds

)p]
≤ (eλt/λ)p−1

∫ t

−∞
eλsE[|Ns|p] ds

≤ (eλt/λ)p−1

∫ t

−∞
eλs(α + β|s|)p ds <∞,

which shows that the integral in (2.4) exists almost surely as a Lebesgue integral
and that Xt, given by (2.4), is p-integrable. Using substitution we obtain from (2.4),

Xt = λ

∫ 0

−∞
eλu(Nt −Nt+u) du, t ∈ R. (2.5)

By Corollary 2.3 N is Lp-continuous and therefore it follows that the right-hand
side of (2.5) exists as a limit of Riemann sums in Lp. Hence the stationarity of the
increments of N implies that X is stationary. Moreover, using integration by parts
on t 7→

∫ t
−∞ e

λsNs(ω) ds, we get
∫ t

0

Xs ds = e−λt
∫ t

−∞
eλsNs ds−

∫ 0

−∞
eλsNs ds,

which shows that X satisfies (2.1), and hence X is a QOU process driven by N with
parameter λ.

SinceX is a measurable process with stationary increments and finite p-moments,
Proposition 2.3 shows that it is continuous in Lp.

To show uniqueness in law, let L(V ) denote law of a random vector V , and by
limk L(Vk) = L(V ) we mean that, (Vk)k≥1 are random vectors converging in law to V .
Let Y be a QOU process driven by N with parameter λ > 0, that is, Y is a stationary
process which satisfies (2.1). For all t0 ∈ R we have with Zt = Nt −Nt0 + Yt0 that

Yt = Zt − λ
∫ t

t0

Ys ds, t ≥ t0. (2.6)
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Solving (2.6) pathwise, it follows that for all t ≥ t0,

Yt = Zt − λe−λt
∫ t

t0

eλsZs ds

= Nt − λe−λt
∫ t

t0

eλsNs ds+ (Yt0 −Nt0)e
−λ(t−t0).

Note that limt→∞(Yt0 −Nt0)e
−λ(t−t0) = 0 a.s., thus for all n ≥ 1 and t0 < t1 < · · · <

tn, the stationarity of Y implies that

L(Yt1 , . . . , Ytn) = lim
k→∞
L(Yt1+k, . . . , Ytn+k)

= lim
k→∞
L
(
Nt1+k − λe−λ(t1+k)

∫ t1+k

t0

eλsNs ds,

. . . , Ntn+k − λe−λ(tn+k)

∫ tn+k

t0

eλsNs ds
)
.

This shows that the distribution of Y only depends on N and λ, and completes the
proof.

Proposition 2.1 in Surgailis et al. (1998) and Proposition 2.1 in Maejima and
Yamamoto (2003) provide also existence results for stationary solutions to Langevin
equations. However, these results do not cover Theorem 2.4. The first result con-
siders only Bochner type integrals and the second result requires, in particular, that
the sample paths of N are Riemann integrable.

Let B = (Bt)t∈R denote an F -Brownian motion indexed by R and σ = (σt)t∈R
be a predictable process, that is, σ is measurable with respect to

P = σ((s, t]× A : s, t ∈ R, s < t, A ∈ Fs).

Next assume that for all u ∈ R, (σt, Bt)t∈R has the same finite distributions as
(σt+u, Bt+u −Bu)t∈R and that σ0 ∈ L2. Then N given by

Nt =

∫ t

0

σs dBs, t ∈ R, (2.7)

is a well-defined continuous process with stationary increments and finite second-
moments. (Recall that for t < 0,

∫ t
0

:= −
∫ 0

t
).

Corollary 2.6. Let N be given by (2.7). Then, there exists a unique in law QOU
process X driven by N with parameter λ > 0, and X is given by

Xt =

∫ t

−∞
e−λ(t−s)σs dBs, t ∈ R. (2.8)

Proof. Since N is a measurable process with finite second-moments it follows by
Theorem 2.4 that there exists a unique in law QOU process X, and it is given by

Xt = Nt − λe−λt
∫ t

−∞
eλsNs ds = λ

∫ 0

−∞
eλs (Nt −Nt+s) ds

= λ

∫ 0

−∞

(∫

R

1(t+s,t](u)eλsσu dBu

)
ds. (2.9)
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By a minor extension of Theorem 65, Chapter IV in Protter (2004) we may switch
the order of integration in (2.9) and hence we obtain (2.8).

Let us conclude this section with formulas for the mean and variance of a QOU
process X. In the rest of this section let N be a measurable process with stationary
increments and finite first-moments, and let X be a QOU process driven by N with
parameter λ > 0 (which exists by Theorem 2.4). Since X is unique in law it makes
sense to consider the mean and variance function of X. Let us assume for simplicity
that N0 = 0 a.s. The following proposition gives the mean and variance of X.

Proposition 2.7. Let N and X be given as above. Then,

E[X0] =
E[N1]

λ
, and Var(X0) =

λ

2

∫ ∞

0

e−λsVN(s) ds.

In the part concerning the variance of X0, we assume moreover that N has finite
second-moments.

Note that Proposition 2.7 shows that the variance of X0 is λ/2 times the Laplace
transform of VN . In particular, if Nt = µt+σBH

t where BH is a fractional Brownian
motion (fBm) of index H ∈ (0, 1), then E[N1] = µ and VN(s) = σ2|s|2H , and hence
by Proposition 2.7 we have that

E[X0] =
µ

λ
, and Var(X0) =

σ2Γ(1 + 2H)

2λ2H
. (2.10)

For H = 1/2, (2.10) is well-known, and in this case Var(X0) = σ2/(2λ).
Before proving Proposition 2.7 let us note that E[Nt] = E[N1]t for all t ∈ R.

Indeed, this follows by the continuity of t 7→ E[Nt] (see Corollary 2.3) and the
stationarity of the increments of N .

Proof. Recall that by Corollary 2.3, we have that E[|Nt|] ≤ α+β|t| for some α, β > 0.
Hence by (2.4) and Fubini’s theorem we have that

E[X0] = E

[
−λ
∫ 0

−∞
eλsNs ds

]
= −λ

∫ 0

−∞
eλsE[Ns] ds

= − λE[N1]

∫ 0

−∞
eλss ds = E[N1]/λ,

where in the third equality we have used that E[Ns] = E[N1]s. This shows the part
concerning the mean of X0.

To show the last part assume that N has finite second-moments. By using
E[X0] = E[N1]/λ, (2.4) shows that with Ñt := Nt − E[N1]t, we have

Var(X0) = E[(X0 − E[X0])2] = E

[(
λ

∫ 0

−∞
eλsÑs ds

)2]
.

Since ‖Ñt‖2 ≤ α + β|t| for some α, β > 0 by Corollary 2.3, Fubini’s theorem shows

Var(X0) = λ2

∫ 0

−∞

∫ 0

−∞

(
eλseλuE[ÑsÑu]

)
ds du,
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and since E[ÑsÑu] = 1
2
[VN(s) + VN(u)− VN(s− u)] we have

Var(X0) =
λ2

2

∫ 0

−∞

∫ 0

−∞

(
eλseλu(VN(s) + VN(u)− VN(s− u))

)
ds du

= λ

∫ 0

−∞
eλsVN(s) ds− λ2

2

∫ 0

−∞
eλu
(∫ −u

−∞
eλ(s+u)VN(s) ds

)
du. (2.11)

Moreover,

λ2

2

∫ 0

−∞
eλu
(∫ −u

−∞
eλ(s+u)VN(s) ds

)
du

=
λ2

2

∫

R

VN(s)eλs

(∫ (−s)∧0

−∞
e2λu du

)
ds

=
λ2

2

(∫ 0

−∞
VN(s)eλs

(∫ 0

−∞
e2λu du

)
ds+

∫ ∞

0

VN(s)eλs
(∫ −s

−∞
e2λu du

)
ds

)

=
λ

4

(∫ 0

−∞
VN(s)eλsds+

∫ ∞

0

VN(s)eλs
(
e−2λs

)
ds

)

=
λ

2

∫ ∞

0

e−λsVN(s) ds,

which by (2.11) gives the expression for the variance of X0.

2.3 Asymptotic behavior of the autocovariance function

The next result shows that the autocovariance function of a QOU process X driven
by N with parameter λ has the same asymptotic behavior at infinity as the second
derivative of the variance function of N divided by 2λ2.

Proposition 2.8. Let N be a measurable process with stationary increments, N0 = 0
a.s., and finite second-moments, and let X be a QOU process driven by N with
parameter λ > 0.

(i) Assume there exists a β > 0 such that VN ∈ C3((β,∞);R), and for t→∞ we
have that V′′N(t) = O(e(λ/2)t), e−λt = o(V′′N(t)) and V′′′N(t) = o(V′′N(t)). Then,
for t→∞, we have RX(t) ∼ ( 1

2λ2
)V′′N(t).

(ii) Assume for t→ 0 that t2 = o(VN(t)), then for t→ 0 we have R̄X(t) ∼ 1
2
VN(t).

More generally, let p ≥ 1 and assume that N has finite p-moments and t =
o(‖Nt‖p) as t→ 0. Then, for t→ 0, we have ‖Xt −X0‖p ∼ ‖Nt‖p.

Note that by Proposition 2.8(ii) the short term asymptotic behavior of R̄X is not
influenced by λ.

Proof. (i): Let t0 = β + 1, and let us show that t ≥ t0 and for t→∞,

RX(t) =
e−λt

4λ

∫ t

t0

eλuV′′N(u) du+
eλt

4λ

∫ ∞

t

e−λuV′′N(u) du+O(e−λt). (2.12)
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If we have shown (2.12), then by using that e−λt = o(V′′N(t)), V′′′N(t) = o(V′′N(t)) and
l’Hôpital’s rule, (i) follows.

Similar to the proof of Proposition 2.7 let Ñt = Nt − E[N1]t. To show (2.12),
recall that by Corollary 2.3 we have ‖Ñt‖2 ≤ α + β|t| for some α, β > 0. Hence by
(2.4) and Fubini’s theorem, we find that

RX(t) = E[(Xt − E[Xt])(X0 − E[X0])] = g(t)− λe−λt
∫ t

−∞
eλsg(s) ds, (2.13)

where

g(t) = − λ
∫ 0

−∞
eλsE[ÑsÑt] ds, t ∈ R.

Since E[ÑsÑt] = 1
2
[VN(t) + VN(s)− VN(s− t)] we have that

g(t) = −λ
2

∫ 0

−∞
eλs[VN(t) + VN(s)− VN(t− s)] ds

= −1

2

(
VN(t)− λeλt

∫ ∞

t

e−λsVN(s) ds

)
− λ

2

∫ 0

−∞
eλsVN(s) ds. (2.14)

From (2.14) it follows that g ∈ C1((β,∞);R) and hence, using partial integration
on (2.13), we have for t ≥ t0,

RX(t) = e−λt
∫ t

t0

eλsg′(s) ds+ e−λt
(
eλt0g(t0)− λ

∫ t0

−∞
eλsg(s) ds

)
. (2.15)

Moreover, from (2.14) and for t ≥ t0 we find

g′(t) = −1

2

(
V′N(t)− λ2eλt

∫ ∞

t

e−λsVN(s) ds+ λVN(t)

)
. (2.16)

For t→∞ we have, by assumption, that V′′N(t) = O(e(λ/2)t), and hence also V′N(t) =
O(e(λ/2)t). Thus, from (2.16) and a double use of partial integration we obtain that

g′(t) =
eλt

2

∫ ∞

t

e−λsV′′N(s) ds, t ≥ t0. (2.17)

Using (2.17), Fubini’s theorem and that V′′N(t) = O(e(λ/2)t) we have for t ≥ t0,

e−λt
∫ t

t0

eλsg′(s) ds = e−λt
∫ t

t0

eλs
(
eλs

2

∫ ∞

s

e−λuV′′N(u) du

)
ds

= e−λt
∫ ∞

t0

e−λuV′′N(u)

(∫ t∧u

t0

1

2
e2λs ds

)
du

= e−λt
∫ ∞

t0

e−λuV′′N(u)

(
1

4λ
(e2λ(t∧u) − e2λt0)

)
du

=
e−λt

4λ

∫ t

t0

eλuV′′N(u) du+
eλt

4λ

∫ ∞

t

e−λuV′′N(u) du

− e−λt
(
e2λt0

4λ

∫ ∞

t0

e−λuV′′N(u) du

)
.
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Combining this with (2.15) we obtain (2.12), and the proof of (i) is complete.
(ii): Using (2.1) we have for all for t > 0 that

‖Xt −X0‖p ≤ ‖Nt‖p + λ

∫ t

0

‖Xs‖p ds = ‖Nt‖p + λt‖X0‖p.

On the other hand,

‖Xt −X0‖p ≥ ‖Nt‖p − λ
∫ t

0

‖Xs‖p ds = ‖Nt‖p − λt‖X0‖p,

which shows that

1− λ‖X0‖p
t

‖Nt‖p
≤ ‖Xt −X0‖p

‖Nt‖p
≤ 1 + λ‖X0‖p

t

‖Nt‖p
.

A similar inequality is available when t < 0, and hence for t → 0 we have that
‖Xt −X0‖p ∼ ‖Nt‖p if limt→0(t/‖Nt‖p) = 0.

When N is a fBm of index H ∈ (0, 1) then VN(t) = |t|2H , and hence

V′′N(t) = 2H(2H − 1)t2H−2, t > 0.

The conditions in Proposition 2.8 are clearly fulfilled and thus we have the following
corollary.

Corollary 2.9. Let N be a fBm of index H ∈ (0, 1), and let X be a QOU process
driven by N with parameter λ > 0. For H ∈ (0, 1) \ {1

2
} and t → ∞, we have

RX(t) ∼ (H(2H − 1)/λ2)t2H−2. For H ∈ (0, 1) and t→ 0, we have R̄X(t) ∼ 1
2
|t|2H .

The above result concerning the behavior of RX for t → ∞ when N is a fBm
has been obtained previously, via a different approach, by Cheridito et al. (2003),
see their Theorem 2.3.

A square-integrable stationary process Y = (Yt)t∈R is said to have long-range
dependence of order α ∈ (0, 1) if RY is regulary varying at ∞ of index −α. Re-
call that a function f : R → R is regulary varying at ∞ of index β ∈ R, if for
t → ∞, f(t) ∼ tβl(t) where l is slowly varying, which means that for all a > 0,
limt→∞ l(at)/l(t) = 1. Many empirical observations have shown evidence for long-
range dependence in various fields, such as finance, telecommunication and hydrol-
ogy; see e.g. Doukhan et al. (2003). Let X be a QOU process driven by N , then
Proposition 2.8(i) shows that X has long-range dependence of order α ∈ (0, 1) if
and only if V′′N is regulary varying at ∞ of order −α.

3 A Fubini theorem for Lévy bases
Let Λ = {Λ(A) : A ∈ S} denote a centered Lévy basis on a non-empty space S
equipped with a δ-ring S. (A Lévy basis is an infinitely divisible independently
scattered random measure. Recall also that a δ-ring on S is a family of subsets
of S which is closed under union, countable intersection and set difference). As
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usual we assume that S is σ-finite, meaning that there exists (Sn)n≥1 ⊆ S such that
∪n≥1Sn = S. All integrals

∫
S
f(s) Λ(ds) will be defined in the sense of Rajput and

Rosiński (1989). We can now find a measurable parameterization of Lévy measures
ν(du, s) on R, a σ-finite measure m on S, and a positive measurable function σ2 :
S → R+, such that for all A ∈ S,

E[eiyΛ(A)] = exp
(∫

A

[
−σ2(s)y2/2 +

∫

R

(eiyu − 1− iyu) ν(du, s)
]
m(ds)

)
, y ∈ R,

(3.1)
see Rajput and Rosiński (1989). Let φ : R× S 7→ R be given by

φ(y, s) = y2σ2(s) +

∫

R

[(uy)21{|uy|≤1} + (2|uy| − 1)1{|uy|>1}] ν(du, s),

and for all measurable functions g : S → R define

‖g‖φ = inf
{
c > 0 :

∫

S

φ(c−1g(s), s)m(ds) ≤ 1
}
∈ [0,∞].

Moreover, let Lφ = Lφ(S, σ(S),m) denote the Musielak-Orlicz space of measurable
functions g with

∫

S

[
g(s)2σ2(s) +

∫

R

(
|ug(s)|2 ∧ |ug(s)|

)
ν(du, s)

]
m(ds) <∞,

equipped with the Luxemburg norm ‖g‖φ. Note that g ∈ Lφ if and only if ‖g‖φ <∞,
since φ(2x, s) ≤ Cφ(x, s) for some C > 0 and all s ∈ S, x ∈ R. We refer to Musielak
(1983) for the basic properties of Musielak-Orlicz spaces. When σ2 ≡ 0 and g ∈ Lφ,
Theorem 2.1 in Marcus and Rosiński (2001) shows that

∫
S
g(s) Λ(ds) is well-defined,

integrable and centered and

c1‖g‖φ ≤ E
[∣∣∣
∫

S

g(s) Λ(ds)
∣∣∣
]
≤ c2‖g‖φ,

and we may choose c1 = 1/8 and c2 = 17/8. Hence for general σ2 it is easily seen
that for all g ∈ Lφ,

∫
S
g(s) Λ(ds) is well-defined, integrable and centered and

E
[∣∣∣
∫

S

g(s) Λ(ds)
∣∣∣
]
≤ 2c2‖g‖φ. (3.2)

Let T denote a complete separable metric space, and Y = (Yt)t∈T be given by

Yt =

∫

S

f(t, s) Λ(ds), t ∈ T,

for some measurable function f(·, ·) for which the integrals are well-defined. Then
we can and will choose a measurable modification of Y . Indeed, the existence
of a measurable modification of Y is equivalent to measurability of (t ∈ T ) 7→
(Yt ∈ L0) according to Theorem 3 and the Remark in Cohn (1972). Hence, since
f is measurable, the maps (t ∈ T ) 7→ (‖f(t, ·) − g(·)‖φ ∈ R) for all g ∈ Lφ, are
measurable. This shows that (t ∈ R) 7→ (f(t, ·) ∈ Lφ) is measurable since Lφ is
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a separable Banach space. Hence by continuity of (f(t, ·) ∈ Lφ) 7→ (Yt ∈ L0), see
Rajput and Rosiński (1989), it follows that (t ∈ T ) 7→ (Yt ∈ L0) is measurable.

Assume that µ is a σ-finite measure on a complete and separable metric space T ,
then we arrive at the following stochastic Fubini result extending Rosiński (1986,
Lemma 7.1), Pérez-Abreu and Rocha-Arteaga (1997, Lemma 5) and Basse and Ped-
ersen (2009, Lemma 4.9). Stochastic Fubini type results for semimartingales can be
founded in Protter (2004) and Ikeda and Watanabe (1981), however the assumptions
in these results are too strong for our purpose.

Theorem 3.1 (Fubini). Let f : T ×S 7→ R be an B(T )⊗σ(S)-measurable function
such that

fx = f(x, ·) ∈ Lφ, for x ∈ T, and
∫

E

‖fx‖φ µ(dx) <∞. (3.3)

Then f(·, s) ∈ L1(µ) for m-a.a. s ∈ S and s 7→
∫
T
f(x, s)µ(dx) belongs to Lφ, all of

the below integrals exist and
∫

T

(∫

S

f(x, s) Λ(ds)
)
µ(dx) =

∫

S

(∫

T

f(x, s)µ(dx)
)

Λ(ds) a.s. (3.4)

Remark 3.2. If µ is a finite measure then the last condition in (3.3) is equivalent
to
∫

T

[ ∫

S

f(x, s)2σ2(s) +

∫

R

(
|uf(x, s)|2 ∧ |uf(x, s)|

)
ν(du, s)

]
m(ds)µ(dx) <∞.

Before proving Theorem 3.1 we will need the following observation:

Lemma 3.3. For all measurable functions f : T × S → R we have
∥∥∥∥
∫

T

|f(x, ·)|µ(dx)

∥∥∥∥
φ

≤
∫

T

‖f(x, ·)‖φ µ(dx). (3.5)

Moreover, if f : T×S → R is a measurable function such that
∫
T
‖f(x, ·)‖φ µ(dx) <∞,

then for m-a.a. s ∈ S, f(·, s) ∈ L1(µ) and s 7→
∫
T
f(x, s)µ(dx) is a well-defined

function which belongs to Lφ.

Proof. Let us sketch the proof of (3.5). For f of the form

f(x, s) =
k∑

i=1

gi(s)1Ai(x),

where k ≥ 1, g1, . . . , gk ∈ Lφ and A1, . . . , Ak are disjoint measurable subsets of
T of finite µ-measure, (3.5) easily follows. Hence by a Monotone Class Lemma
argument it is possible to show (3.5) for all measurable f . The second statement is
a consequence of (3.5).

Recall that if (F, ‖ · ‖) is a separable Banach space, µ is a measure on T , and
f : T → F is a measurable map such that

∫
T
‖f(x)‖µ(dx) < ∞, then the Bochner

integral B
∫
T
f(x)µ(dx) exists in F and ‖B

∫
T
f(x)µ(dx)‖ ≤

∫
T
‖f(x)‖µ(dx). Even

though (Lφ, ‖ · ‖φ) is a Banach space, this result does not cover Lemma 3.3.
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Proof of Theorem 3.1. For f of the form

f(x, s) =
n∑

i=1

αi1Ai(x)1Bi(s), x ∈ T, s ∈ S, (3.6)

where n ≥ 1, A1, . . . , An are measurable subsets of T of finite µ-measure, B1, . . . ,
Bn ∈ S, and α1, . . . , αn ∈ R, the theorem is trivially true. Thus for a general f ,
as in the theorem, choose fn for n ≥ 1 of the form (3.6) in such a way such that∫
T
‖fn(x, ·) − f(x, ·)‖φ µ(dx) → 0. Indeed, the existence of such a sequence follows

by an application of the Monotone Class Lemma. Let

Xn =

∫

E

(∫

S

fn(x, s) Λ(ds)
)
µ(dx), X =

∫

E

(∫

S

f(x, s) Λ(ds)
)
µ(dx),

and let us show that X is well-defined and Xn → X in L1. This follows since

E

[∫

E

∣∣∣∣
∫

S

f(x, s) Λ(ds)

∣∣∣∣ µ(dx)

]
≤ 2c2

∫

E

‖f(x, ·)‖φ µ(dx) <∞,

and

E[|Xn −X|] ≤ 2c2

∫

E

‖fn(x, ·)− f(x, ·)‖φ µ(dx).

Similarly, let

Yn =

∫

S

(∫

E

fn(x, s)µ(dx)
)

Λ(ds), Y =

∫

S

(∫

E

f(x, s)µ(dx)
)

Λ(ds),

and let us show that Y is well-defined and Yn → Y in L1. By Remark 3.3, s 7→∫
E
f(x, s)µ(dx) is a well-defined function which belongs to Lφ, which shows that Y

is well-defined. By (3.2) and (3.5) we have

E[|Yn − Y |] ≤ 2c2

∫

E

‖fn(x, ·)− f(x, ·)‖φ µ(dx),

which shows that Yn → Y in L1. We have therefore proved (3.4), since Yn = Xn

a.s., Xn → X and Yn → Y in L1.

Let Z = (Zt)t∈R denote an integrable and centered Lévy process with Lévy
measure ν and Gaussian component σ2. Then Z induces a Lévy basis Λ on S = R
and S = Bb(R), the bounded Borel sets, which is uniquely determined by Λ((a, b]) =
Zb − Za for all a, b ∈ R with a < b. In this case m is the Lebesgue measure on R
and

φ(y, s) = φ(y) = σ2 +

∫

R

(
|uy|21{|uy|≤1} + (2|uy| − 1)1{|uy|>1}

)
ν(du).

We will often write
∫
f(s) dZs instead of

∫
f(s) Λ(ds). Note that,

∫
R
f(s) dZs exists

and is integrable if and only if f ∈ Lφ, i.e.,
∫

R

(
f(s)2σ2 +

∫

R

(
|uf(s)|2 ∧ |uf(s)|

)
ν(dx)

)
ds <∞. (3.7)

Moreover, if Z is a symmetric α-stable Lévy process, α ∈ (0, 2], then Lφ = Lα(R, λ),
where Lα(R, λ) is the space of α-integrable functions with respect to the Lebesgue
measure λ.
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4 Moving average representations
In wide generality, if X is a continuous time stationary processes then it is repre-
sentable, in principle, as a moving average (MA), i.e.

Xt =

∫ t

−∞
ψ(t− s) dΞs

where φ is a deterministic function and Ξ has stationary and orthogonal increments,
at least in the second order sense. (For a precise statements, see the beginning of
Subsection 4.1 below). However, an explicit expression for φ is seldom available.

We show in Subsection 4.2 below that an expression can be found in cases where
the process X is the stationary solution to a Langevin equation for which the driving
noise process N is a pseudo moving average (PMA), i.e.

Nt =

∫

R

(f(t− s)− f(−s)) dZs, t ∈ R, (4.1)

where Z = (Zt)t∈R is a suitable process specified later on and f : R → R a deter-
ministic function for which the integrals exist.

In Subsection 4.3, continuing the discussion from Subsection 2.3, we use the MA
representation to study the asymptotic behavior of the associated autocovariance
functions. Subsection 4.4 comments on a notable cancellation effect. But first, in
Subsection 4.1 we summarize known results concerning Wold-Karhunen type repre-
sentations of stationary continuous time processes.

4.1 Wold-Karhunen type decompositions

Let X = (Xt)t∈R be a second-order stationary process of mean zero and continuous
in quadratic-mean. Let FX denote the spectral measure of X, i.e., FX is a finite and
symmetric measure on R satisfying

E[XtXu] =

∫

R

ei(t−u)x FX(dx), t, u ∈ R,

and let F ′X denote the density of the absolutely continuous part of FX . For each
t ∈ R let Xt = span{Xs : s ≤ t}, X−∞ = ∩t∈RXt and X∞ = span{Xs : s ∈ R}
(span denotes the L2-closure of the linear span). Then X is called deterministic
if X−∞ = X∞ and purely non-deterministic if X−∞ = {0}. The following result,
which is due to Satz 5–6 in Karhunen (1950) (cf. also Doob (1990)), provides a
decomposition of stationary processes as a sum of a deterministic process and a
purely non-deterministic process.

Theorem 4.1 (Karhunen). Let X and FX be given as above. If
∫

R

|logF ′X(x)|
1 + x2

dx <∞ (4.2)

then there exists a unique decomposition of X as

Xt =

∫ t

−∞
ψ(t− s) dΞs + Vt, t ∈ R, (4.3)
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where φ : R → R is a Lebesgue square-integrable deterministic function, and Ξ is
a process with second-order stationary and orthogonal increments, E[|Ξu − Ξs|2] =
|u − s| and for all t ∈ R Xt = span{Ξs − Ξu : −∞ < u < s ≤ t}, and V is a
deterministic second-order stationary process.

Moreover, if FX is absolutely continuous and (4.2) is satisfied then V ≡ 0 and
hence X is a backward moving average. Finally, the integral in (4.2) is infinite if
and only if X is deterministic.

The results in Karhunen (1950) are formulated for complex-valued processes,
however if X is real-valued (as it is in our case) then one can show that all the above
processes and functions are real-valued as well. Note also that if X is Gaussian then
the process Ξ in (4.3) is a standard Brownian motion. If σ is a stationary process
with E[σ2

0] = 1 and B is a Brownian motion, then dΞs = σsdBs is of the above type.
A generalization of the classical Wold-Karhunen result to a broad range of non-

Gaussian infinitely divisible processes was given in Rosiński (2007).

4.2 Explicit MA solutions of Langevin equations

Assume initially that Z is an integrable and centered Lévy process, and recall that Lφ
is the space of all measurable functions f : R→ R satisfying (3.7). Let f : R→ R

be a measurable function such that f(t − ·) − f(−·) ∈ Lφ for all t ∈ R, and let N
be given by

Nt =

∫

R

(f(t− s)− f(−s)) dZs, t ∈ R.

Proposition 4.2. Let N be given as above. Then there exists an unique in law
QOU process X driven by N with parameter λ > 0, and X is a MA of the form

Xt =

∫

R

ψf (t− s) dZs, t ∈ R,

where ψf : R→ R belongs to Lφ, and is given by

ψf (t) =

(
f(t)− λe−λt

∫ t

−∞
eλsf(s) ds

)
, t ∈ R. (4.4)

Proof. Since (t, s) 7→ f(t − s) − f(−s) is measurable we may choose a measurable
modification of N , see Section 3, and hence, by Theorem 2.4, there exists a unique
in law QOU process X driven by N with parameter λ. For fixed t ∈ R, we have by
(2.4) and with hu(s) = f(t−s)−f(t+u−s) for all u, s ∈ R and µ(du) = 1{u≤0}eλu du
that

Xt = λ

∫ 0

−∞
eλu(Nt −Nt+u) du =

∫ 0

−∞

(∫

R

hu(s) dZs

)
µ(du).

By Theorem 2.1 there exist α, β > 0 such that ‖hu‖φ ≤ α + β|t| for all u ∈ R,
implying that

∫
R
‖hu‖φ µ(du) < ∞. By Theorem 3.1, (u 7→ hu(s)) ∈ L1(µ) for

Lebesgue almost all s ∈ R, which implies that
∫ t
−∞|f(u)|eλu du < ∞ for all t > 0,
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and hence ψf , defined in (4.4), is a well-defined function. Moreover by Theorem 3.1,
ψf ∈ Lφ(R, λ) and

Xt =

∫

R

(∫ 0

−∞
h(u, s)µ(du)

)
dZs =

∫

R

ψf (t− s) dZs, t ∈ R,

which completes the proof.

Note that for f = 1R+ , we have Nt = Zt and ψf (t) = e−λt1R+(t). Thus, in this
case we recover the well-known result that the QOU process X driven by Z with
parameter λ > 0 is a MA of the form Xt =

∫ t
−∞ e

−λ(t−s) dZs.
Let us use the notation x+ := x1{x≥0}, and let cH be given by

cH =

√
2H sin(πH)Γ(2H)

Γ(H + 1/2)
.

A PMA N of the form (4.1), where Z is an α-stable Lévy process with α ∈ (0, 2]

and f is given by t 7→ cHt
H−1/α
+ is called a linear fractional α-stable motion of index

H ∈ (0, 1); see Samorodnitsky and Taqqu (1994). Moreover, PMAs with f(t) = tα

for α ∈ (0, 1
2
) and where Z is a square-integrable and centered Lévy process is called

fractional Lévy processes in Marquardt (2006).
A QOU process driven by a linear fractional α-stable motion is called a fractional

Ornstein-Uhlenbeck process. For previous work on such processes see Maejima and
Yamamoto (2003), where α ∈ (1, 2), and Cheridito et al. (2003), where α = 2.

Corollary 4.3. Let α ∈ (1, 2] and N be a linear fractional α-stable motion of index
H ∈ (0, 1). Then there exists a unique in law QOU process X driven by N with
parameter λ > 0, and X is a MA of the form

Xt =

∫ t

−∞
ψα,H(t− s) dZs, t ∈ R,

where ψα,H : R+ → R is given by

ψα,H(t) = cH

(
tH−1/α − λe−λt

∫ t

0

eλuuH−1/α du

)
, t ≥ 0.

For t→∞, we have ψα,H(t) ∼ (cH(H − 1/α)/λ)tH−1/α−1, and ψα,H(t) ∼ cHt
H−1/α,

for t→ 0.

Remark 4.4. For H ∈ (0, 1/α) the existence of the stationary solution to the
Langevin equation is somewhat unexpected due to the fact that the sample paths
of the linear fractional α-stable motion are unbounded on each compact interval, cf.
page 4 in Maejima and Yamamoto (2003) where nonexistence is surmised.

In the next lemma we will show a special property of ψf , given by (4.4); namely
that

∫∞
0
ψf (s) ds = 0 whenever f tends to zero fast enough. This property has a

great impact on the behavior of the autocovariance function of QOU processes. We
will return to this point in Section 4.4.

16



Lemma 4.5. Let α ∈ (−∞, 0), c ∈ R and f : R → R be a locally integrable
function which is zero on (−∞, 0) and satisfies that f(t) ∼ ctα for t → ∞. Then,∫∞

0
ψf (s) ds = 0.

Proof. For t > 0,
∫ t

0

(
λe−λs

∫ s

0

eλuf(u) du

)
ds

=

∫ t

0

(∫ t

u

λe−λs ds

)
eλuf(u) du =

∫ t

0

f(u) du− e−λt
∫ t

0

eλuf(u) du,

and hence by l’Hôpital’s rule we have that
∫ ∞

0

ψf (s) ds = lim
t→∞

∫ t

0

ψf (s) ds = lim
t→∞

(
e−λt

∫ t

0

eλuf(u) du

)
= 0.

Proposition 4.2 carries over to a much more general setting. E.g. if N is of the
form

Nt =

∫

R×V
[f(t− s, x)− f(−s, x)] Λ (ds, dx) , t ∈ R,

where Λ is a centered Lévy basis on R × V (V is a non-empty space) with control
measure m(ds, dx) = ds n(dx) and a(s, x), σ2(s, x) and ν(du, (s, x)), from (3.1), do
not depend on s ∈ R, and f(t − ·, ·) − f(−·, ·) ∈ Lφ for all t ∈ R, then using
Theorem 2.1, 2.4 and 3.1 the arguments from Proposition 4.2 show that there exists
a unique in law QOU process X driven by N with parameter λ > 0, and X is given
by

Xt =

∫

R×V
ψf (t− s, x) Λ(ds, dx), t ∈ R,

where

ψf (s, x) = f(s, x)− λe−λs
∫ s

−∞
f(u, x)eλu du, s ∈ R, x ∈ V.

We recover Proposition 4.2 when V = {0} and n = δ0 is the Dirac delta measure
at 0.

4.3 Asymptotic behavior of the autocovariance function

The representation, from the previous section, of QOU processes as moving averages
enables us to calculate the autocovariance function in case it exists. In Section 4.3.1
we calculate the autocovariance function for general MAs. By use of these results
Section 4.3.2 relates the asymptotic behavior of the kernel of the noise N to the
asymptotic behavior of the autocovariance function of the QOU process X driven
by N .
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4.3.1 Autocovariance function of general MAs

Let ψ be a Lebesgue square-integrable function and Z a centered process with sta-
tionary and orthogonal increments, and assume for simplicity that Z0 = 0 a.s. and
VZ(t) = t. Let X = ψ ∗ Z = (

∫ t
−∞ ψ(t − s) dZs)t∈R be a backward moving average

and RX its autocovariance function, i.e.

RX(t) = E[XtX0] =

∫ ∞

0

ψ(t+ s)ψ(s) ds, t ∈ R,

and let R̄X(t) = RX(0) − RX(t) = 1
2
E[(Xt −X0)2]. The behavior of RX at 0 or ∞

corresponds in large extent to the behavior of the kernel ψ at 0 or ∞, respectively.
Indeed, we have the following result, in which kα and jα are constants given by

kα = Γ(1 + α)Γ(−1− 2α)Γ(−α)−1, α ∈ (−1,−1/2),

jα = (2α + 1) sin(π(α + 1/2))Γ(2α + 1)Γ(α + 1)−2, α ∈ (−1/2, 1/2).

Proposition 4.6. Let the setting be as described above.

(i) For t→∞ and α ∈ (−1,−1
2
), ψ(t) ∼ ctα implies RX(t) ∼ (c2kα)t2α+1 provided

|ψ(t)| ≤ c1t
α for all t > 0 and some c1 > 0.

(ii) For t → ∞ and α ∈ (−∞,−1), ψ(t) ∼ ctα implies RX(t)/tα → c
∫∞

0
ψ(s) ds,

and hence RX(t) ∼ (c
∫∞

0
ψ(s) ds)tα provided

∫∞
0
ψ(s) ds 6= 0.

(iii) For t → 0 and α ∈ (−1
2
, 1

2
), ψ(t) ∼ ctα implies R̄X(t) ∼ (c2jα/2)|t|2α+1 pro-

vided ψ is absolutely continuous on (0,∞) with density ψ′ satisfying |ψ′(t)| ≤
c2t

α−1 for all t > 0 and some c2 > 0.

Recall that a function f : R → R is said to be absolutely continuous on (0,∞)
if there exists a locally integrable function f ′ such that for all 0 < u < t

f(t)− f(u) =

∫ t

u

f ′(s) ds.

Proof. (i): Let α ∈ (−1,−1
2
) and assume that ψ(t) ∼ ctα as t→∞ and |ψ(t)| ≤ c1t

α

for t > 0, then

RX(t) =

∫ ∞

0

ψ(t+ s)ψ(s) ds = t

∫ ∞

0

ψ(t(s+ 1))ψ(ts) ds

= t2α+1

∫ ∞

0

ψ(t(1 + s))ψ(ts)

(t(1 + s))α(ts)α
(1 + s)αsα ds

∼ t2α+1c2

∫ ∞

0

(1 + s)αsα ds as t→∞. (4.5)

Since ∫ ∞

0

(1 + s)αsα ds =
Γ(1 + α)Γ(−1− 2α)

Γ(−α)
= kα,

(4.5) shows that RX(t) ∼ (c2kα)t2α+1 for t→∞.
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(ii): Let α ∈ (−∞,−1) and assume that ψ(t) ∼ ctα for t → ∞. Note that
ψ ∈ L1(R+, λ) and for some K > 0 we have for all t ≥ K and s > 0 that
|ψ(t + s)|/tα ≤ 2|c|(t + s)α/tα ≤ 2|c|. Hence by applying Lebesgue’s dominated
convergence theorem we obtain,

RX(t) = tα
∫ ∞

0

(
ψ(t+ s)

tα
ψ(s)

)
ds ∼ tαc

∫ ∞

0

ψ(s) ds for t→∞.

(iii): By letting

ft(s) :=
ψ(t(s+ 1))− ψ(ts)

tα
t > 0, s ∈ R,

we have

E[(Xt −X0)2] = t

∫
[(ψ(t(s+ 1))− ψ(ts)]2 ds = t2α+1

∫
|ft(s)|2 ds. (4.6)

As t→ 0, we find

ft(s) =
ψ(t(s+ 1))

(t(s+ 1))α
(s+ 1)α − ψ(ts)

(ts)α
sα → c((s+ 1)α+ − sα+).

Choose δ > 0 such that |ψ(x)| ≤ 2xα for x ∈ (0, δ). By our assumptions we have for
all s ≥ δ that

|ft(s)| = t−α
∣∣∣
∫ t(1+s)

ts

ψ′(u) du
∣∣∣ ≤ t−α+1 sup

u∈[st,t(s+1)]

|ψ′(u)|

≤ c2t
−α+1 sup

u∈[st,t(s+1)]

|u|α−1 = c2t
−α+1|ts|α−1 = c2s

α−1,

and for s ∈ [−1, δ), |ft(s)| ≤ 2c[(1+s)α+sα+]. This shows that there exists a function
g ∈ L2(R+, λ) such that |ft| ≤ g for all t > 0, and thus, by Lebesgue’s dominated
converging theorem, we have

∫
|ft(s)|2 ds −−→

t→0
c2

∫ (
(s+ 1)α+ − sα+

)2
ds = c2jα. (4.7)

Together with (4.6), (4.7) shows that R̄X(t) ∼ (c2jα/2)t2α+1 for t→ 0.

Remark 4.7. It would be of interest to obtain a general result covering Proposi-
tion 4.6(ii) in the case

∫∞
0
ψ(s) ds = 0. Recall that ψf , given by (4.4), often satisfies

that
∫∞

0
ψf (s) ds = 0, according to Lemma 4.5.

Example 4.8. Consider the case where ψ(t) = tαe−λt for α ∈ (−1
2
,∞) and λ > 0.

For t→ 0, ψ(t) ∼ tα, and hence R̄X(t) ∼ (jα/2)t2α+1 for t→ 0 and α ∈ (−1
2
, 1

2
), by

Proposition 4.6(iii) (compare with Barndorff-Nielsen et al. (2009)).

Note that if X = ψ ∗Z is a moving average, as above, then by Proposition 4.6(i)
and for t→∞, RX(t) ∼ c1t

−α with α ∈ (0, 1), provided that ψ(t) ∼ c2t
−(α+1)/2 and

|ψ(t)| ≤ c3t
−(α+1)/2. This shows that X has long-range dependence of order α.

Let us conclude this subsection with a short discussion of when a MA X = ψ ∗Z
is a semimartingale. It is often very important that the process of interest is a semi-
martingale, especially in finance, where the semimartingale property the asset price
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is equivalent to that the capital process depends continuously on the chosen strategy,
see e.g. Section 8.1.1 in Cont and Tankov (2004). In the case where Z is a Brownian
motion, Theorem 6.5 in Knight (1992) shows that X is an FZ-semimartingale if and
only if ψ is absolutely continuous on [0,∞) with a square-integrable density. (Here
FZt := σ(Zs : s ∈ (−∞, t])). For a further study to the semimartingale property
of pseudo moving averages and more general processes see Basse (2008, 2009a,b) in
the Gaussian case, and Basse and Pedersen (2009) for the infinitely divisible case.

4.3.2 QOU processes with PMA noise

Let us return to the case of a QOU process driven by a PMA, so let Z be a centered
Lévy process, f : R → R be a measurable function which is 0 on (−∞, 0) and
satisfies that f(t− ·)− f(−·) ∈ Lφ for all t ∈ R, and let N be given by

Nt =

∫

R

[f(t− s)− f(−s)] dZs, t ∈ R. (4.8)

First we will consider the relationship between the behavior of the kernel of the noise
N and that of the kernel ψf of the corresponding moving average X.

Proposition 4.9. Let N be given by (4.8), and X be a QOU process driven by N
with parameter λ > 0.

(i) Let α ∈ (−1,−1
2
) and assume that for some β ≥ 0 and c 6= 0, f ∈ C1((β,∞);R)

with f ′(t) ∼ ctα for t → ∞. Then, for t → ∞, we have RX(t) ∼ ( c
2kα
λ2

)t2α+1,
provided |f(t)| ≤ rtα for all t > 0 and some r > 0.

(ii) Let α ∈ (−1
2
, 1

2
) and f(t) ∼ ctα for t→ 0. Then, for t→ 0, we have R̄X(t) ∼

(c2jα/2)|t|2α+1, provided there exists a β ≥ 0 such that f ∈ C2((β,∞);R) with
f ′′(t) = O(tα−1) for t→∞, and that f is absolutely continuous on (0,∞) with
density f ′ satisfying supt∈(0,to)|f ′(t)|t1−α <∞ for all t0 > 0.

Proof. (i): By partial integration, we have for t ≥ β,

ψf (t) = e−λt
(
eλaf(a)− λ

∫ a

−∞
eλsf(s) ds

)
+ e−λt

∫ t

a

eλsf ′(s) ds, (4.9)

showing that ψf (t) ∼ ( c
λ
)tα for t → ∞. Choose k > 0 such that |ψf (t)| ≤

(2c/λ)tα for all t ≥ k. By (4.4) we have that supt∈[0,k]|ψf (t)t−α| < ∞ since
supt∈[0,k]|f(t)t−α| <∞, and hence there exists a constant c1 > 0 such that |ψf (t)| ≤
c1t

α for all t > 0. Therefore, (i) follows by Proposition 4.6(i).
(ii): Since f ∈ C2((β,∞);R), it follows by (4.9) and partial integration that for

t > β and t→∞,

ψ′f (t) = f ′(t)− λψf (t) = f ′(t)− λe−λt
∫ t

β

eλsf ′(s) ds+O(e−λt)

= e−λt
∫ t

β

eλsf ′′(s) ds+O(e−λt) = O(tα−1),
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where we in the last equality have used that f ′′(t) = O(tα−1) for t→∞. Using that
|ψ′f (t)| ≤ |f ′(t)|+λ|ψf (t)| and supt∈(0,t0)|f ′(t)t1−α| <∞ for all t0 > 0, it follows that
there exists a c2 > 0 such that |ψ′f (t)| ≤ c1t

α−1 for all t > 0. Moreover, for t → 0,
we have that ψf (t) ∼ ctα. Hence, (ii) follows by Proposition 4.6(iii).

Now consider the following set-up: Let Z = (Zt)t∈R be a centered and square-
integrable Lévy process, and for H ∈ (0, 1), r0 6= 0, δ ≥ 0, let

f(t) = r0(δ ∨ t)H−1/2, and NH,δ
t =

∫

R

[f(t− s)− f(−s)] dZs. (4.10)

Note that when δ = 0 and Z is a Brownian motion then NH,δ is a constant times
the fBm of index H, and when δ > 0 then NH,δ is a semimartingale. We have the
following corollary to Proposition 4.9:

Corollary 4.10. Let NH,δ be given by (4.10), and let XH,δ be a QOU process driven
by NH,δ with parameter λ > 0. Then, for H ∈ (1

2
, 1) and t→∞,

RXH,δ(t) ∼ (r2
0kH−3/2(H − 1/2)/λ2)t2H−2, δ ≥ 0,

and for H ∈ (0, 1) and t→ 0,

R̄XH,δ(t) ∼
{

(r2
0δ

2−1/2)|t|, δ > 0,

(r2
0jH−1/2/2)|t|2H , δ = 0.

(4.11)

Proof. For H ∈ (1
2
, 1), let β = δ. Then, f ∈ C1((β,∞);R) and for t > β,

f ′(t) = ctα where α = H − 3/2 ∈ (−1,−1
2
) and c = r(H − 1/2). Moreover,

|f(t)| ≤ rδtα. Thus, Proposition 4.9(i) shows that RXH,δ(t) ∼ (c2kα/λ
2)t2α+1 =

(r2(H − 1/2)2kH−3/2/λ
2)t2H−2. To show (4.11) assume that H ∈ (0, 1). For t → 0,

we have f(t) ∼ ctα, where c = r0 and α = H − 1/2 ∈ (−1
2
, 1

2
) when δ = 0,

and c = r0δ
H−1/2 and α = 0 when δ > 0. For β = δ, f ∈ C2((β,∞);R) with

f ′′(t) = r0(H−1/2)(H−3/2)tH−5/2, showing that f ′′(t) = O(tα−1) for t→∞ (both
for δ > 0 and δ = 0). Moreover, f is absolutely continuous on (0,∞) with density
f ′(t) = r0(H − 1/2)tH−3/21[δ,∞)(t). This shows that supt∈(0,t0)|f ′(t)t1−α| <∞ for all
t0 > 0 (both for δ > 0 and δ = 0). Hence (4.11) follows by Proposition 4.9(ii).

4.4 Stability of the autocovariance function

Let N be a PMA of the form (4.1), where Z is a centered square-integrable Lévy
process and f(t) = cHt

H−1/2
+ where H ∈ (0, 1). (Recall that if Z is a Brownian

motion, then N is a fBm of index H). Let X be a QOU process driven by N with
parameter λ > 0, and recall that by Proposition 4.2, X is a MA of the form

Xt =

∫ t

−∞
ψH(t− s) dZs, t ∈ R,

where

ψH(t) = cH

(
tH−2/2 − λe−λt

∫ t

0

eλuuH−1/2 du

)
, t ≥ 0.
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Below we will discus some stability properties for the autocovariance function under
minor modification of the kernel function.

For all bounded measurable functions f : R+ → R with compact support let
Xf
t =

∫ t
−∞ (ψH(t− s)− f(t− s)) dZs. We will think of Xf as a MA where we

have made a minor change of X’s kernel. Note that if we let Y f
t = Xt − Xf

t =∫ t
−∞ f(t− s) dZs, then the autocovariance function RY f (t), of Y f , is zero whenever
t is large enough, due to the fact that f has compact support.

Corollary 4.11. We have the following two situations, in which c1, c2, c3 6= 0 are
non-zero constants.

(i) For H ∈ (0, 1
2
) and

∫∞
0
f(s) ds 6= 0, we have for t→∞,

RXf (t) ∼ c2RX(t)t1/2−H ∼ c1t
H−3/2.

(ii) For H ∈ (1
2
, 1), we have for t→∞,

RXf (t) ∼ RX(t) ∼ c3t
2H−2.

Thus for H ∈ (0, 1
2
), the above shows that the behavior of the autocovariance

function at infinity is changed dramatically by making a minor change of the kernel.
In particular, if f is a positive function, not the zero function, then RXf (t) behaves
as t1/2−HRX(t) at infinity. On the other hand, when H ∈ (1

2
, 1) the behavior of the

autocovariance function at infinity doesn’t change if we make a minor change to the
kernel. That is, in this case the autocovariance functions has a stability property,
contrary to the case where H ∈ (0, 1

2
).

Remark 4.12. Note that the dramatic effect appearing from Corollary 4.11(i) is
associated to the fact that

∫∞
0
ψH(s) ds = 0, as shown in Lemma 4.5.

Proof of Corollary 4.11. By Corollary 4.3 we have for t → ∞ that ψH(t) ∼ ctα

where c = cH(H − 1/2)/λ and α = H − 3/2. To show (i) assume that H ∈ (0, 1
2
),

and hence α ∈ (−∞,−1). According to Lemma 4.5 we have that
∫∞

0
ψH(s) ds = 0

and hence
∫∞

0
[ψH(s) − f(s)] ds 6= 0 since

∫∞
0
f(s) ds 6= 0 by assumption. From

Proposition 4.6(ii) and for t → ∞ we have that RXf (t)(t) ∼ c1t
2α+1 = c1t

H−3/2,
where c1 = c

∫∞
0

[ψH(s) − f(s)] ds. On the other hand, by Corollary 2.9 we have
that RX(t) ∼ (H(H − 1/2)/λ2)t2H−2 for t→∞, and hence we have shown (i) with
c2 = c1λ

2/(H(H − 1/2). For H ∈ (1
2
, 1) we have that α ∈ (−1,−1

2
), and hence (ii)

follows by Proposition 4.6(i).

5 Conclusion

In recent applications of stochastics, particularly in finance and in turbulence, mod-
ifications of classic noise processes by time change or by volatility modifications are
of central importance, see for instance Barndorff-Nielsen and Shephard (2010) and
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Barndorff-Nielsen and Shiryaev (2010) and references given there. Prominent ex-
amples of such processes are dNt = σt dBt where B is Brownian motion and σ is
a predictable stationary process (cf. Barndorff-Nielsen and Shephard (2001)), and
Nt = LTt , where L is a Lévy process and T is a time change process with sta-
tionary increments (cf. Carr et al. (2003)). The theory discussed in the present
paper applies to processes of this type (cf. Corollary 2.6). In the applications men-
tioned the processes are mostly semimartingales. However there is a growing in-
terest in non-semimartingale processes, see Barndorff-Nielsen and Schmiegel (2009),
Barndorff-Nielsen et al. (2009, 2010), and the results above covers also such cases.
An example in point is Nt =

∫
X B

(x)
t m(dx) where the processes B(x)

· are Brownian
motions in different filtrations and m is a measure on some space X .

Moreover, extensions of the theory to wider settings would be of interest, for
instance to generalized Langevin equations

Xt = X0 − λ
∫ t

0

(X ∗ k)(s) ds+Nt

where k is a deterministic function and (X ∗ k)(s) =
∫ s
−∞Xuk(s−u) du denotes the

convolution between k and X, as occurring in statistical mechanics and biophysics,
see Kou (2008) and references given there. We hope to discuss this in future work.
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