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REGULARITY OF EIGENSTATES IN REGULAR
MOURRE-THEORY

JACOB S. MØLLER AND MATTHIAS WESTRICH

Abstract. The present paper gives an abstract method to prove that possibly
embedded eigenstates of a self-adjoint operator H lie in the domain of the k’th
power of a conjugate operator A. Conjugate means here that H and A have a
positive commutator locally near the relevant eigenvalue in the sense of Mourre.
The only requirement is Ck+1(A) regularity of H. Regarding integer k, our result
is optimal. Under a natural boundedness assumption of the multiple commutators
we prove that the eigenstate ‘dilated’ by exp(iθA) is analytic in a strip around
the real axis. In particular, the eigenstate is an analytic vector with respect to A.
Natural applications are ‘dilation analytic’ systems satisfying a Mourre estimate,
where our result can be viewed as an abstract version of a theorem due to Balslev
and Combes, [3]. As a new application we consider the massive Spin-Boson Model.

1. Introduction and main results

In this paper we study regularity of eigenstates ψ of a self-adjoint operator H,
with respect to an auxiliary operator A for which i[H,A] satisfies a so-called Mourre
estimate near the associated eigenvalue λ. Our results are partly an extract of a
recent work of Faupin, Skibsted and one of us [8], and partly an improvement of
a result of Cattaneo, Graf and Hunziker [4]. We consider in the present work the
case of regular Mourre theory, where the derivation of the bounds on Akψ is sim-
pler compared to [8]. In fact we derive explicit bounds which are independent of
proof technical constructions. The bounds are good enough to formulate a reason-
able condition on the growth of norms of multiple commutators which ensures that
eigenstates are analytic vectors with respect to A. We discuss how these growth con-
ditions may be checked in concrete examples and illustrate this for dilation analytic
N -body Hamitonians and the massive Spin-Boson Model.

The general strategy in this paper, as well as in [4] and [8], is to implement a
Froese-Herbst type argument in an abstract setting. In a formal computation the
Mourre estimate suffices to extract results of the type presented here but to make the
argument rigorous one has to impose enough conditions on the pair of operators H
and A to enable a calculus of operators. This is usually done by requiring a number
of iterated commutators between H and A to exist and be controlled by operators
already present in the calculus. The type of conditions imposed is typically guided by
a set of applications that the authors have in mind. Most examples, like many-body
quantum systems with or without external classical fields, have been possible to
treat using natural extensions of conditions originally introduced by Mourre in [20].
The same goes for a number of models in non-relativistic QED like confined massive
Pauli-Fierz models and massless models, with A being the generator of dilations.
These are the type of conditions used in [4].

Over the last 10 years a number of models that fall outside the scope of Mourre’s
original conditions, and hence not covered by [4], have appeared. We split them
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2 JACOB S. MØLLER AND MATTHIAS WESTRICH

in two types. The first type are models that, while not covered by Mourre type
conditions on iterated commutators, still satisfy weaker conditions developed over
some years by Amrein, Boutet de Monvel, Georgescu and Sahbani [2, 24]. These
conditions play the same role as Mourre’s original conditions in that they enable
the same type of calculus of the operators H and A. We call this setting for regular
Mourre theory. Examples of models that fall in this category but are not covered
by Mourre type conditions as in [4], are: P (φ)2-models [6] (with P (ϕ) 6= ϕ4), the
renormalised massive Nelson model [1], Pauli-Fierz type models without confining
potential [10], the standard model of non-relativistic QED near the ground state en-
ergy, where only local Ck conditions are available, [11], and the translation invariant
massive Nelson model [18].

The second type of models we wish to highlight are those for which the commu-
tator H ′ = i[H,A] is not comparable to H (or A). Here one views the commutator
as a new operator in the calculus and impose assumptions of mixed iterated com-
mutators between the three possibly unbounded operators H,A and H ′. This type
of analysis goes back to [15, 25] and was further developed in [19] and [12]. This
situation we call singular Mourre theory and is the topic considered in [8]. There are
two examples where this type of analysis is natural. The first is massless Pauli-Fierz
models with A being the generator of radial translations [7, 13, 8, 9, 25, 14] and
the second is many-body systems with time-periodic pair-potentials, in particular
AC-Stark Hamiltonians, [19, 8]. The technical complications arising from having to
deal with a calculus of three unbounded operators are significant.

Part of the motivation of this work is to extract the essence of [8] in the context
of regular Mourre theory, where the technical overhead is more manageable.

A second motivating factor is drawn from the paper [9], which is in fact intimately
connected to [8]. We remind the reader of the Fermi Golden Rule (FGR) which we
now formulate. Let P denote the orthogonal projection onto the span of the eigen-
vector ψ, and abbreviate P̄ = I −P . The FGR states that a, for simplicity isolated
and simple, embedded eigenvalue is unstable under a perturbation W provided

Im
(

lim
ε→0+
〈Wψ, P̄ (H̄ − λ− iε)−1P̄Wψ〉

)
6= 0. (1.1)

Here H̄ = P̄HP̄ as an operator on the range of P̄ . In the above statement the
existence of the limit is of course implicitly assumed. Due to the presence of the
projection P̄ , the operator H̄ has purely continuous spectrum near the eigenvalue
λ, and the existence of the limit can thus be inferred from the limiting absorption
principle (LAP). The LAP can be deduced using positive commutator estimates,
see e.g. [2], provided there exists an auxiliary operator A such that H and A satisfy
a Mourre estimate near λ and (H̄ − i)−1 admits two bounded commutators with A,
or more precisely H is of class C2(P̄AP̄ ) (see the next subsection). This implies in
particular that ran(P ) ⊆ D(A2), i.e. ψ ∈ D(A2). Even by the improvement of [8],
and in turn this paper, we would still need H to be of class C3(A) in order to verify
this property. This would for example preclude application to the model considered
in [18]. In [9] the authors study the limit in (1.1) directly, bypassing the general
limiting absorption theorems, albeit applying the same differential inequality tech-
nique, and prove existence of the limit assuming only ψ ∈ D(A). Combined with [8]
(or this paper) this establishes the existence of the limit in the Fermi Golden Rule [9]
abstractly under a C2(A) condition. The price to pay is that one needs a prior con-
trol of the norm ‖Aψ‖ locally uniformly in possibly existing perturbed eigenstates.
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While it is clear that such a locally uniform bound does hold, provided all the input
in [8] is controlled locally uniformly in the perturbation, it is however impractical
due to the complexity of the setup to extract such bounds in closed form. In this
paper we do just that in the simpler context of regular Mourre theory.

As a last motivation, we had in mind a consequence of having good explicit bounds
on the norms ‖Akψ‖. Namely, provided one imposes natural conditions on the
norms of all iterated commutators, we show as a consequence of our explicit bounds
on ‖Akψ‖ that the power series

∑
k=1

(iθA)k

k!
ψ has a positive radius of convergence,

thus establishing that ψ is an analytic vector for A. Here however, we have to work
with conditions of the type considered in [4]. Having established analyticity of the
map θ 7→ exp(iθA)ψ in a ball around 0 one may observe that this map is actually
analytic in a strip around the real axis, and thus this result reproduces a result of
Balslev and Combes, [3, Thm.1] on analyticity of dilated non-threshold eigenstates.
As an example of a new result, we prove for the massive Spin-Boson Model that
non-threshold eigenstates are analytic vectors with respect to the second quantised
generator of dilations.

1.1. Commutator Calculus. We pause to introduce the commutator calculus of
[2] before formulating our main results. Let A be a self-adjoint operator with domain
D(A) in a Hilbert space H. We denote with B(X, Y ) the set of bounded operators
on the normed space X with images in the normed space Y and B(X) := B(X,X).

Definition 1.1. A bounded operator B ∈ B(H) is said to be of class Ck(A), in
short B ∈ Ck(A), if

R 3 t 7→ eitABe−itA (1.2)

is strongly in Ck(R). A, possibly unbounded self-adjoint operator S is said to be of
class Ck(A) if (i− S)−1 ∈ Ck(A).

The property, that B ∈ B(H) is of class C1(A) is equivalent to the statement
that

(φ, [B,A]χ) := (B∗φ,Aχ)− (Aφ,Bχ), ∀φ, χ ∈ D(A)

extends to a bounded form on H×H, which in turn is implemented by a bounded
operator, adA(B), see e.g. [13]. If B ∈ C2(A), then an argument using Duhamel’s
formula shows adA(B) ∈ C1(A) and thus there exists a bounded extension of the
form [adA(B), A]. Thus, one constructs for B ∈ Ck(A) iteratively the bounded

operator adkA(B) := adA(ad
(k−1)
A (B)). We set ad0

A(B) := B.
Commutators involving two possibly unbounded self-adjoint operators H and A

will in general not extend to bounded operators on H and the definition of the
quadratic form [H,A] requires further restrictions on its domain. Thus we denote
by [H,A] the form

(φ, [H,A]χ) := (Hφ,Aχ)− (Aφ,Hχ), ∀φ, χ ∈ D(A) ∩ D(H).

If H ∈ C1(A), then D(A) ∩ D(H) is dense in D(H) in the graph norm of H and
[H,A] extends to a H-form bounded quadratic form, which in turn defines an unique
element of B(D(H),D(H)∗) denoted by

adA(H) : D(H)→ D(H)∗,

see [12]. The space D(H)∗ is the dual of D(H) in the sense of rigged Hilbert spaces.
Our result on the analyticity of eigenvectors of H with respect to A requires a

construction of multiple commutators of H and A which are bounded as maps from
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D(H) to H in the graph norm of H. The construction is as follows: Let H ∈ C1(A).
We assume that adA(H) ∈ B(D(H),H). Then, [adA(H), A] is defined as

(ψ, [adA(H), A]φ) := (− adA(H)ψ,Aφ)− (Aψ, adA(H)φ), (1.3)

for all ψ, φ ∈ D(A) ∩ D(H). Here we used, that adA(H) is skew-symmetric on the
domain D(A)∩D(H). Assume that this form extends in graph norm of H to a form
which is implemented by an element ad2

A(H) ∈ B(D(H),H). Proceeding iteratively,
we construct adkA(H) ∈ B(D(H),H).

Lemma 1.2. Let H,A be self-adjoint operators on the Hilbert space H and assume
H ∈ C1(A). If adjA(H) ∈ B(D(H),H) for 0 ≤ j ≤ k, then H ∈ Ck(A).

The proof of this lemma may be found in Section 5.
In several places we need an appropriate class of functions to regularise the self-

adjoint operators H,A, defined on D(H),D(A) respectively, and enable a calculus
for them.

Definition 1.3. Define B :=
{
r ∈ C∞b (R,R)

∣∣r′(0) = 1, r(0) = 0, ∀k ∈ N :

supt∈R |rk(t)〈t〉k| <∞, r is real analytic in some ball around 0
}

.

Let h ∈ B. For λ 6= 0 redefine hλ(x) := h(x − λ). In the following we will drop
the index λ as well as the argument of hλ(H) and other regularisations of H and A,
if the context is clear. The following condition is a local C1(A) condition, as in [24],
plus a Mourre estimate.

Condition 1.4. Let H,A be self-adjoint operators on H and λ ∈ R. There exists
an h ∈ B, hλ(s) := h(s− λ), with hλ(H) ∈ C1(A) and an floc ∈ C∞0 (R, [0, 1]), such
that floc(λ) = 1 and h′λ(x) > 0 for all x ∈ supp(floc). Assume there is a smooth
Mourre estimate, i.e. ∃C0, C1 > 0 and a compact operator K, such that

i adA(hλ(H)) ≥ C0 − C1f
2
loc,⊥(H)−K. (1.4)

floc,⊥ is defined as floc,⊥ := 1− floc.

Remark 1.5. (1) The requirement h′λ(x) > 0, ∀x ∈ supp(floc), implies floc ∈
Ck(A) if hλ ∈ Ck(A) for k ∈ N, since hλ is smoothly invertible (on each
connected component of supp(floc)) and floc may be written as a smooth
function of hλ.

(2) The assumption ofK being compact is not necessary. In fact we could replace
this by the requirement that 1|A|≥ΛK, where 1|A|≥Λ denotes the spectral
projection on [Λ,∞), can be made arbitrarily small.

(3) For a discussion of the ‘local’ Mourre estimate (1.4) with the standard form
of the Mourre estimate see Section 6.

Theorem 1.6 (Finite regularity). Let H,A be self-adjoint operators on the Hilbert
space H and ψ be an eigenvector of H with eigenvalue λ. Assume Condition 1.4 to
be satisfied with respect to λ and hλ(H) ∈ Ck+1(A) for some k ∈ N. There exists
ck > 0, only depending on supp(floc), C0, C1, K, ‖ ad`A(floc(H))‖, ‖ adjA(hλ(H))‖,
1 ≤ ` ≤ k, 1 ≤ j ≤ k + 1, such that∥∥Akψ

∥∥ ≤ ck ‖ψ‖ . (1.5)

Remark 1.7. In [8, Ex. 1.4] it is shown, that the statement of Theorem 1.6 is false in
general if one requires hλ ∈ Ck(A) only. Therefore, the result is optimal concerning
integer values of k.
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Condition 1.8. The self-adjoint operator H is of class C1(A) and there exists a
v > 0, such that for all k ∈ N

‖ adkA(H)(i−H)−1‖ ≤ k!v−k. (1.6)

Theorem 1.9 (Analyticity). Let H,A be self-adjoint operators on the Hilbert space
H and ψ be an eigenvector of H with eigenvalue λ. Assume Condition 1.4 to be
satisfied with respect to λ and that Condition 1.8 holds. Then, the map

R 3 θ 7→ eiθAψ ∈ H (1.7)

extends to an analytic function in a strip around the real axis.

2. Applications

The applications of our result on ‘finite regularity of eigenstates’ are well known
and discussed in the literature [23, 4, 16, 19, 9]. In contrast results on the analyticity
of eigenvalues in regular Mourre theory are to our knowledge unknown. Even though
the condition under which our result holds appears difficult to verify in concrete
situations, we will illustrate for some deformation analytic models that it is strikingly
simple to check the assumptions of Theorem 1.9.

Let H be a self-adjoint operator on the Hilbert space H and U(t) := exp(itA) a
strongly continuous one parameter group of unitary operators U(t). The self-adjoint
operator A is the generator of this group. Assume that U(t) b-preserves D(H), i.e. a

U(t)D(H) ⊆ D(H), ∀t ∈ R and sup
t∈[−1,1]

‖U(t)φ‖D(H) <∞, ∀φ ∈ D(H),

where ‖ψ‖D(H) denotes the graph norm of H.

Remark 2.1. Observe that the following are equivalent:

• U(t) b-preserves D(H).
• There exists µ0 > 0 and C > 0 such that for all µ ∈ R with |µ| ≥ µ0, we

have (A− iµ)−1 : D(H)→ D(H) and

‖(A− iµ)−1‖B(D(H),H) ≤ C|µ|−1.

By [12, Lemma 2.33] one observes that U◦(·) := U(·)|D(H) is a C0-group in the
topology of D(H).

Proposition 2.2. Let H,A be self-adjoint operators and U(t) := exp(itA). Assume
that U(·) b-preserves D(H). Then for any k ∈ N the following statements are
equivalent.

(1) H admits k H-bounded commutators with A, denoted by adjA(H), j =
1, . . . , k.

(2) The map t 7→ I(t) = (ϕ,U(t)HU(t)∗ψ) ∈ Ck([−1, 1]), for all ψ, ϕ ∈
D(H) ∩ D(A). There exist H-bounded operators H(j)(0), j = 1, . . . , k, such

that dj

dtj
I(t)|t=0 = (ϕ,H(j)(0)ψ), for j = 1, . . . , k and all ψ, ϕ ∈ D(H)∩D(A).

(3) t 7→ ψ(t) := U(t)HU(t)∗ψ ∈ Ck([−1, 1];H) for all ψ ∈ D(H), and there
exist H-bounded operators H(j)(0), j = 1, . . . , k, with the property that
dj

dtj
ψ(t)|t=0 = H(j)(0)ψ, for all j = 1, . . . , k and ψ ∈ D(H).
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If one of the three statements holds, then the pertaining H-bounded operators are
uniquely determined and we have

ij adjA(H) = (−1)jH(j)(0), j = 1, . . . , k. (2.1)

Proof. Assume the commutator form [H,A] has an extension from D(H) ∩ D(A)
to an H-bounded operator. Then an argument of Mourre, [20, Prop.II.2], keeping
Remark 2.1 in mind, implies that (H + i)−1 : D(A)→ D(A). Hence, it follows that
(H + i)−1 is of class C1(A). A consequence of this is that D(A) ∩ D(H) is dense in
D(H) (as well as in D(A)). (Alternatively use Remark 2.1 backwards in conjunction
with Nelson’s theorem, [22, Thm. X.49].) This remark implies that any extension
of the commutator form [H,A] to an H-bounded operator is necessarily unique.

(1) ⇒ (2): A consequence of the above observation is that adjA(H), for j =
1, . . . , k, is symmetric for j even and anti-symmetric for j odd. Compute first for
ϕ, ψ ∈ D(H) ∩ D(A)

d

dt
I(t) = −(ϕ,U(t)i[H,A]U(t)∗ψ) = −(ϕ,U(t)i adA(H)U(t)∗ψ).

If we evaluate at t = 0 we observe that H(1)(0) = −i adA(H) can be used as a weak
derivative on D(H) ∩ D(A). Iteratively we now conclude that

dk

dtk
I(t) = (−1)k(ϕ,U(t)ik[adk−1

A (H), A]U(t)∗ψ) = (−1)k(ϕ,U(t)ik adkA(H)U(t)∗ψ).

Taking t = 0 implies (2). The computation here also establishes the formula con-
necting adjA(H) and H(j)(0).

(2) ⇒ (3): From the computation of I’s first derivative above, evaluated at 0, we
observe that [H,A] extends from the intersection domain to an H-bounded operator.
Hence this extension is unique, and indeed all the derivatives H(j)(0), j = 1, . . . , k
are unique extensions by continuity. In particular H(j)(0) are symmetric operators
on D(H) and, for j = 1, . . . , k and ϕ, ψ ∈ D(H) ∩ D(A),

dj

dtj
I(t) = (ϕ,U(t)i[A,H(j−1)(0)]U(t)∗ψ) = (ϕ,U(t)H(j)(0)U(t)∗ψ).

That ψ(t) := U(t)HU(t)∗ψ is itself continuous is a consequence of U◦ being a C0-
group on D(H). We assume inductively that ψ(t) is Ck−1([−1, 1];H) and

dk−1

dtk−1
ψ(t) = U(t)H(k−1)(0)U(t)∗ψ.

Assume now ψ, ϕ ∈ D(A) ∩ D(H) and compute

1

t− s
(

(ϕ,
dk−1

dtk−1
ψ(t))− (ϕ,

dk−1

dtk−1
ψ(s))

)
− (ϕ,U(t)H(k)(0)U(t)∗ψ)

=
1

t− s

∫ t

s

(
ϕ, (U(r)H(k)(0)U(r)∗ − U(t)H(k)(0)U(t)∗)ψ

)
dr.

This identity now extends by continuity to ϕ ∈ H and ψ ∈ D(H). We can further-
more estimate (for s < t)

∥∥∥ 1

t− s
( dk−1

dtk−1
ψ(t))− dk−1

dtk−1
ψ(s)

)
− U(t)H(k)(0)U(t)∗ψ

∥∥∥

≤ 1

t− s

∫ t

s

∥∥(U(r)H(k)(0)U(r)∗ − U(t)H(k)(0)U(t)∗
)
ψ
∥∥dr.
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That the right-hand side converges to zero when s → t (from the left) now follows
from the strong continuity of U◦ on D(H). A similar argument works for s > t.

(3) ⇒ (1): Compute for ϕ, ψ ∈ D(H) ∩ D(A)

dj

dtj
(ϕ, ψ(t))|t=0 = (ϕ,H(j)(0)ψ).

Conversely one can compute the j’th derivative in terms of iterated commutators,
and hence (1) follows. Note again, that the very first step in particular ensures that
extensions are unique. �

Examples.
1. N-body Schrödinger operators. Consider the operator

H = −1

2
∆ +

1,...,N∑

i<j

Vij(xi − xj),

with Coulomb pair potentials Vij(x) := cik/(|xi − xj|), cik ∈ R, on L2(X), where

X :=
{
x = (x1, . . . , xN) ∈ R3N |xj ∈ R3, 1 ≤ j ≤ N,

N∑

j=1

xj = 0
}
,

[16]. As a shorthand we write x = (x1, . . . , xN). The unitary group of dilations,
U(·) is defined by

(U(t)ψ)(x) := et
3(N−1)

2 ψ
(
etx
)
,

and U(t) = exp(itA) for the generator of dilations A. From Proposition 2.2 infer for
some C > 0

‖ adkA(H)‖B(D(p2),H) ≤ C2k.

It is well known, that there is a Mourre estimate for a much more general class
than the Coulomb N-body Hamiltonian, including the following example, [16]. This
enables Theorem 1.9.

Another example for N -body Schrödinger operators to which Theorem 1.9 is ap-
plicable is defined with Yukawa pair potentials. The pair potentials Vik are now
given by

Vij(x) :=
cike

−µ|xi−xj |

|xi − xj|
, cik ∈ R, µ > 0.

Observe the estimate
∣∣∣∣
dk

dtk
e−t

r
eµre

t

∣∣∣∣∣∣t=0

≤ k!ak, r := |xi − xj|,

for some a > 0. The r-dependent functions on the right hand side of this inequality
are infinitesimally p2-bounded, which again shows the applicability of Theorem 1.9.
Hence non-threshold eigenvectors are analytic vectors with respect to A. This re-
produces known results of [3].
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2. The Spin-Boson Model. The ‘matter’ Hamiltonian is defined as

Hat := εσ3, ε > 0,

with the 2×2 Pauli-matrices σ1, σ2, σ3. The corresponding Hilbert space isHat := C2.
We briefly list the definition of the quantised bosonic field, but for the details of sec-
ond quantisation we refer to [5]. The Hilbert space of the bosonic field is the bosonic
Fock space,

F+ :=
∞⊕

n=0

Snh⊗n, h := L2(R3, d3k),

where Sn denotes the orthogonal projection onto the totally symmetric n-particle
wave functions. We denote for k ∈ R with a(k) and a†(k) the annihilation and
creation operator, respectively. The energy of the free field, Hf , is defined as

Hf =

∫

R3

a†(k)ω(k)a(k)d3k, ω(k) :=
√
k2 +m2, m > 0.

The Hilbert space of the compound system is

H := Hat ⊗F .
We define the coupling between atom and field by

Φ(v) :=
1√
2

∫

R3

v(k){G⊗ a†(k) +G∗ ⊗ a(k)}d3k,

with a complex 2× 2 matrix G. The function v is given by

v(k) :=
e−

k2

Λ2

ω(k)
1
2

, ∀k ∈ R3.

The constant Λ > 0 plays the role of an ultraviolet cutoff. We define the Hamiltonian
of the compound system, H, as

H := Hat ⊗ 1 + 1⊗Hf + Φ(v).

Define,

α :=
i

2
(∇k · k + k · ∇k) .

This operator is symmetric and densely defined on L2(R3) as it is the well known
generator of the strongly continuous unitary group

(u(t)ψ) (k) := e−
3
2
tψ
(
e−tk

)
.

We will denote the second-quantised operators of α and u(t) by A := dΓ(α) and
U(t) := Γ(u(t)), respectively. A is the generator of the strongly continuous unitary
group U(t). Observe that

i` ad`A(H) = dΓ(i` ad`α(ω)) + (−1)`+1Φ
(
(iα)`v

)

and

‖Φ
(
(iα)`v

)
(Hf + 1)−

1
2‖ ≤ ‖ω− 1

2 (iα)`v‖L2 . (2.2)

Since (iα)`v = d`

dt`
(eiαtv)

∣∣
t=0

, we have to estimate the multiple derivatives. Consider
the map

B
(

0,
π

4

)
3 z 7→

(
k2e−2z +m2

) 1
2 = ω

(
e−zk

)
, k ∈ R3,
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where B
(
0, π

4

)
denotes the closed ball of radius π/4, centered at 0. Observe, that

m√
2
≤ |ω

(
e−zk

)
| ≤ e

π
4ω(k) (2.3)

where the lower bound implies that z 7→ ω (e−zk)
− 1

2 is holomorphic in B
(
0, π

4

)
,

for all k ∈ R3. The upper bound ensures that D(1 ⊗ Hf) is b-stable with respect
to U(·). Below, we will also show that adA(H) ∈ B(D(H),H), which implies by
Proposition 2.2 that H ∈ C1(A). Analogously we define the holomorphic map

B
(

0,
π

4

)
3 z 7→ e−e

−z k2

Λ2

ω(e−zk)
1
2

= v
(
e−zk

)
, k ∈ R3.

We may compute by Cauchy’s formula,

d`

dz`

(
v(e−zk)e−

3
2
z
)
∣∣
z=0

=
`!
(
π
4

)−`

2π

2π∫

0

e−
3
2
γ(ϕ)v

(
e−γ(ϕ)k

)
e−i`ϕdϕ,

γ(ϕ) := (π/4)eiϕ, ϕ ∈ [0, 2π). Using the estimate
∣∣∣∣
d`

dz`
(v(e−zk)e−

3
2
z)∣∣

z=0

∣∣∣∣ ≤
(
m√

2

)− 1
2

e
3π
8 e−e

−π
2 k2

Λ2 `!
(π

4

)−`
, ∀k ∈ R3,

one finds together with (2.2)

‖Φ
(
(iα)`v

)
(Hf + 1)−

1
2‖ ≤ `!R−`,

for some R > 0. Analogously, we get from (2.3)
∣∣∣∣
d`

dz`
(ω(e−zk))∣∣

z=0

∣∣∣∣ ≤ `!
(π

4

)−`
e
π
4ω(k),

so that ∥∥dΓ(i` ad`α(ω))(Hf + 1)−1
∥∥ ≤ ‖i` ad`α(ω)ω−1‖∞ ≤ `!c−`,

for some c > 0. From [5] we may infer a Mourre estimate for our model. Dereziński
and Gérard use a different generator of dilations, namely

αω := i
2

(
(∇kω)(k) · ∇k +∇k · (∇kω)(k)

)
.

It is also possible to prove a Mourre estimate using their techniques if ω(k) is radially
increasing, ω(k) > 0, ∀k ∈ R3 and 0 is the only critical point of ω. Thus, we conclude
by Theorem 1.9 and Proposition 2.2 that any eigenstate pertaining to an embedded
non-threshold eigenvalue is an analytic vector with respect to A.

3. Preliminaries

In what follows, we need some regularisation techniques from operator theory. It
is convenient to perform calculations involving multiple commutators by using the
so-called Helffer-Sjöstrand functional calculus. Part and parcel of this calculus are
certain extensions of a subclass of the smooth functions on R, the almost analytic
extensions. The following proposition allows us to define such extensions.

Proposition 3.1. Consider a family of continuous functions (fn)n∈N ⊂ C∞(R), for

which there is an m ∈ R, such that 〈x〉k−mf (k)
n is uniformly bounded for all n ≥ 0.

There exists a family of functions (f̃n)n∈N, such that
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(1) supp(f̃n) ⊂ {z ∈ C|Re z ∈ supp(fn) and | Im z| ≤ 〈Re z〉}.
(2) |∂̄f̃n(z)| ≤ CN〈z〉m−N−1| Im z|N for all N ≥ 0.

The constant CN does not depend on n.

For a proof of this statement see [17].

Remark 3.2. We will call these extensions for almost analytic extensions, because
∂̄f̃n vanishes approaching the real axis.

Let ε > 0. For any self-adjoint operator L and any f ∈ C∞(R) with

sup
t∈R
|f (k)(t)〈t〉k+ε| (3.1)

we may define a bounded operator f(L), by

f(L) :=
1

2πi

∫

C

∂̄f̃(z)(z − L)−1dz ∧ dz̄. (3.2)

The integral on the right hand side converges in operator norm. It is well known,
that this definition coincides with the operator defined by functional calculus. Con-
cerning the class B however, we cannot directly apply this definition. Inspired by a
construction in [19] we consider the following instead.

Lemma 3.3. Let r ∈ B. There is an almost analytic extension of t 7→ r(t)/t =:
ρ(t), which satisfies due to Proposition 3.1 the bounds

|∂̄ρ̃(z)| ≤ CN〈z〉−N−2| Im(z)|N . (3.3)

Proof. Since r is real analytic around 0 we observe

sup
|t|≤1

∣∣ρ(k)(t)〈t〉k+1
∣∣ <∞.

On the other hand, the Leibniz rule yields r(k)(t) = ρ(k)(t)t+ kρ(k−1)(t) and thus by
induction

sup
|t|≥1

∣∣ρ(k)(t)〈t〉k+1
∣∣ <∞. �

For any r ∈ B, set rn(t) := nr(t/n), ρ(t) := r(t)/t, ∀t ∈ R and define rn(A) by

functional calculus. If we require ρ̃(z) = ρ̃(z̄) the well known formula

rn(t) =
1

2πi

∫

C

∂̄ρ̃(z)
t

z − t
n

dz ∧ dz̄ (3.4)

may be recovered. Observe, that

t

z − t
n

= −n
(

1− z

z − t
n

)
. (3.5)

The first term on the right hand side is constant and vanishes when computing
commutators. Although we cannot use the formula (3.4) directly as a representation
of rn(A) on H, it is possible to use it on the domain of A; a fact which is useful in
the next lemma.

Lemma 3.4. Let B ∈ C1(A), where B ∈ B(H). For any r ∈ B we have

[B, rn(A)] = r′n(A) adA(B) +R(rn, B), (3.6)
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with

R(rn, B) :=
1

n2πi

∫

C

∂̄ρ̃(z)zJ2
n(z)[adA(B), A]Jn(z)dz ∧ dz̄, (3.7)

where Jn(z) := n(nz−A)−1 and the integral being norm convergent. Moreover, there
is a c > 0

s-lim
n→∞

R(rn) = 0, and ‖R(rn, B)‖ ≤ c‖ adA(B)‖. (3.8)

If B ∈ C2(A), we have for any n ∈ N and some α, β > 0

‖AR(rn, B)‖ ≤ α‖ ad2
A(B)‖, ‖R(rn, B)‖ ≤ β

n
‖ ad2

A(B)‖. (3.9)

In addition,

s-lim
n→∞

AR(rn, B) = 0. (3.10)

Proof. Let first B ∈ C1(A). If we consider [rn(A), B] as a form on D(A)×D(A), the
commutator may be represented using (3.4) with t replaced by A, more precisely for
all ψ, φ ∈ D(A)

(φ, [B, rn(A)]ψ) =
1

2πi

∫

C

∂̄ρ̃(z)
{

(Aφ, Jn(z)Bψ)− (φ,BJn(z)Aψ)
}
dz ∧ dz̄.

Observe, that the sum in the integrand is by definition

(Aφ, Jn(z)Bψ)− (φ,BJn(z)Aψ) = (φ, [AJn(z), B]ψ).

But since B ∈ C1(A), we obtain using (3.5)

(φ, [AJn(z), B]ψ) = (φ, [nzJn(z)]ψ)

= ((φ, zJn(z) adA(B)Jn(z)ψ)

= (φ, zJ2
n(z) adA(B)ψ) + (φ, zJ2

n(z)[adA(B), A]Jn(z)ψ).

There is an almost analytic extension ρ̃(z) such that

|∂̄ρ̃(z)| |y|+ |x||y|2 ≤ CN |y|N−2〈z〉−N−2, (3.11)

with z = x+ iy, x, y ∈ R. Choose N = 2 and observe that the integral

1

2πi

∫

C

∂̄ρ̃(z)zJ2
n(z)dz ∧ dz̄

converges in norm. Moreover,

|∂̄ρ̃(z)| |z||y|3 (|y|+ |x|) ≤ C3〈z〉−3.

Thus from r′(t) = ρ(t)+ρ′(t)t we may infer that this integral equals r′n(A). Estimate
(3.11) shows that the integral (3.7) converges in norm. Since

s-lim
n→∞

A

n
Jn(z) = 0, (3.12)

the Theorem of Dominated Convergence implies (3.8).
Let now B ∈ C2(A). Choose in (3.3) N = 3, replace in (3.7) [adA(B), A] with

ad2
A(B) and observe that the integrand of AR(gn, h)(B) is point-wise bounded by

a constant times 〈z〉−3. The term R(gn, h)(B) is point wise bounded by a constant
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times 〈z〉−4. Both functions are in L1(R2) and hence the bounds follow. Equa-
tion (3.10) is a consequence of (3.7), (3.12) and an application of the Theorem of
Dominated Convergence. �

Lemma 3.5. Let r ∈ B and k ∈ N. If B ∈ Ck(A), then

s-lim
n→∞

adkrn(B) = adkA(B).

Proof. For k = 1 the statement follows from Lemma 3.4. Let k ∈ N and assume

s-lim
n→∞

adk−1
rn (B) = adk−1

A (B).

The first term on the right-hand side of

adrn(adk−1
rn (B)) = adk−1

rn (adrn(B)) = r′n adk−1
rn (adA(B)) + adk−1

rn (R(rn, B))

converges strongly by the induction hypothesis and Lemma 3.4 since adA(B) ∈
Ck−1(A). R(rn, adk−1

rn (B)) is a sum of two integrals:

adk−1
rn (R(rn, B))) =

1

2πi

∫

C

∂̄ρ̃(z)z
A

n
J2
n(z) adk−1

rn (adA(B))Jn(z)dz ∧ dz̄

− 1

2πi

∫

C

∂̄ρ̃(z)zJ2
n(z) adk−1

rn (adA(B))
A

n
Jn(z)dz ∧ dz̄.

Observe, that

s-lim
n→∞

A

n
Jn(z) = s-lim

n→∞
A(nz − A)−1 = 0.

By the uniform boundedness principle, the integrands are strongly convergent and
converge to the product of the strong limits. Lemma 3.4 and the Theorem of Dom-
inated Convergence imply that we may exchange integration with the strong limit
n→∞. �

We use of the following expansion formula for commutators.

Lemma 3.6. Let K,L ∈ B(H). Then, for any k ∈ N,

[K,Lk] =
k∑

j=1

(
k

j

)
Lk−j adjL(K). (3.13)

It is convenient to regularise the operator A such that we may use the Helffer-
Sjöstrand calculus and have sufficient flexibility in the proof. Let g ∈ C∞c (R,R)
such that

g(t) = t∀t ∈ [−1, 1], g(t) = 2∀t ≥ 3, g(t) = −2 ∀t ≤ −3, g′ ≥ 0, (3.14)

and that tg′(t)/g(t) has a smooth square root; clearly g ∈ B. We set gn(t) :=
ng(t/n) and define gn(A) by functional calculus. Observe, that

n 7→ g2
n(t) (3.15)

is monotonously increasing for all t ∈ R. Set γ(t) := g(t)/t, for the function g
defined in (3.14). We may pick an almost analytic extension of γ, denoted by γ̃,
such that γ̃ satisfies, up to a possibly different constant CN , the same bounds as ρ̃
in (3.3).
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4. Finite Regularity of Eigenstates

Proof of Theorem 1.6. Using the convention A0 = 1, the statement is correct for
k = 0. Let now be k ∈ N and assume ψ ∈ D(Ak−1). The starting point for the
proof is

0 = (ψ, i[h, gkngmg
k
n]ψ), (4.1)

which may be rewritten as

0 = (ψ(k)
n , i adgm(h)ψ(k)

n ) + 2 Re(ψ, gmi[h, g
k
n]ψ(k)

n ) + 2 Re(ψ, [i[h, gkn], gm]ψ(k)
n ), (4.2)

where we introduced the notation ψ
(k)
n := gknψ. We abbreviate

I0(n,m) := (ψ(k)
n , i adgm(h)ψ(k)

n ), (4.3)

I1(n,m) := 2 Re(ψ, gmi[h, g
k
n]ψ(k)

n ) (4.4)

and

I2(n,m) := 2 Re(ψ, [i[h, gkn], gm]ψ(k)
n ) = 2 Re(ψ, i[[h, gm], gkn]ψ(k)

n ). (4.5)

We organise the proof in three steps. In the first step we extract from I1 a term I ′0
which is of a similar type as I0. Then, starting with (4.2) upper bounds to I0, I ′0 are
established. Finally, using Mourre’s estimate we find lower bounds to I0, I ′0, from
which we conclude ψ ∈ D(Ak).

Step 1. By an application of Lemma 3.6 we rewrite I1(n,m) as

I1(n,m) = 2 Re
(
i

k∑

j=2

(
k

j

)
E1(j, k, n,m)

)
+ 2kRe

(
i(ψ(k−1)

n , gmR(gn, h)ψ(k)
n )
)

+ 2kRe
(
i(ψ(k−1)

n , gmg
′
n adA(h)ψ(k)

n )
)
, (4.6)

where E1(j, k, n,m) := (ψ
(k−j)
n , gm adjgn(h)ψ

(k)
n ) and 2kRe(i(ψ

(k−1)
n , gmR(gn, h)ψ

(k)
n ))

are present if k ≥ 2 only, in which case ψ ∈ D(A) by induction hypothesis. We
discuss the term in the last line of (4.6) first. One computes

2kRe
(
i(ψ(k−1)

n , gmg
′
n adA(h)ψ(k)

n )
)

= 2kRe
(
i(ψ(k)

n , γmp
2
n adA(h)ψ(k)

n )
)

= 2kRe
(
i(ψ(k)

n , γmpn adA(h)pnψ
(k)
n )
)

+ 2kRe
(
i(ψ(k)

n , γmpn[pn, adA(h)]ψ(k)
n )
)
,

with γm being the operator γm(A) and

p(t) :=

√
tg′(t)

g(t)
, pn(t) := p(t/n).

Hence, with

E1(j, k, n) := lim
m→∞

E1(j, k, n,m) = (Aψ(k−j)
n , adjgn(h)ψ(k)

n ), k ≥ j ≥ 2,
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we obtain

I1(n) := lim
m→∞

I1(n,m)

= 2 Re
(
i

k∑

j=2

(
k

j

)
E1(j, k, n)

)
+ 2kRe

(
i(ψ(k−1)

n , AR(gn, h)ψ(k)
n )
)

+ 2kRe
(
i(ψ(k)

n , pn[pn, adA(h)]ψ(k)
n )
)

+ 2k(ψ(k)
n , pni adA(h)pnψ

(k)
n ). (4.7)

Set
I ′0(n) := 2k(ψ(k)

n , pni adA(h)pnψ
(k)
n ), I ′1(n) := I1(n)− I ′0(n). (4.8)

Step 2. First note that by an application of Lemma 3.5

I2(n) := lim
m→∞

I2(n,m) = 2 Re(ψ, i[adA(h), gkn]ψ(k)
n )

= 2 Re
(
i

k∑

j=1

(
k

j

)
E2(j, k, n)

)
,

with
E2(j, k, n) := (ψ(k−j)

n , adjgn(adA(h))ψ(k)
n ), k ≥ j ≥ 1.

Equation (4.2) may be rewritten as

I0(n) + I ′0(n) = −I ′1(n)− I2(n). (4.9)

In order to find an upper bound for the right hand side, we first estimate E1(j, k, n),
E2(j, k, n) by

2|E1(j, k, n)| ≤ ε−1
jk ‖ adjgn(h)gk−jn Aψ‖2 + εjk‖ψ(k)

n ‖2,

2|E2(j, k, n)| ≤ µ−1
jk ‖ adjgn(adA(h))ψ(k−j)

n ‖2 + µjk‖ψ(k)‖2,

for all µjk, εjk > 0. The terms

‖ adjgn(h)gk−jn Aψ‖, ‖ adjgn(adA(h))ψ(k−j)
n ‖

are uniformly bounded in n by Lemma 3.5, h ∈ Ck+1(A) and the induction hypoth-
esis. For the remaining terms in (4.7) we have

2k|(i(ψ(k−1)
n , AR(gn, h)ψ(k)

n )| ≤ k
(
δ−1‖R(gn, h)Aψ(k−1)‖2 + δ‖ψ(k)‖2

)
,

2k|(ψ(k)
n , pn[pn, adA(h)]ψ(k)

n )| ≤ k(ν−1‖[pn, i adA(h)]gnψ
(k−1)
n ‖2 + ν‖ψ(k)

n ‖2).

R(gn, h)A is uniformly bounded in virtue of Lemma 3.4. The function t 7→ p(t) is
by assumption smooth. Note that

[pn, i adA(h)]gn = [pn, i adA(h)]Aγn.

Further, since p ∈ C∞c (R), an application of Proposition 3.1 together with

[pn, adA(h)]A =
−1

2πi

∫

C

∂̄p̃(z)Jn(z) ad2
A(h)

A

n
Jn(z)dz ∧ dz̄

shows the uniform boundedness of [pn, adA(h)]gn. For 1 ≤ j ≤ k − 1 is (ψ
(j)
n )n∈N

convergent in norm to Ajψ and hence (‖ψjn‖)n∈N is bounded. Choose now µjk :=(
k
j

)−1
k−1C0/12, εjk :=

(
k
j

)−1
(k − 1)−1C0/12, ν := C0/(12k) =: δ and observe

I0(n) + I ′0(n)− C0

3
≤ I3(n), (4.10)



REGULARITY OF EIGENSTATES 15

where (I3(n))n∈N is a bounded sequence.

Step 3. Note, that we may assume floc(x) = χ(h(x)), ∀x ∈ R, for some compactly
supported smooth function χ because h is chosen to be invertible on the support
of floc. This implies floc(H) ∈ Ck+1(A), since h ∈ Ck+1(A), see [12, Prop.2.23].
Inserting the Mourre estimate from Condition 1.4 yields

(ψ(k)
n , i[h,A]ψ(k)

n ) ≥ C0‖ψ(k)
n ‖2 − C1‖floc,⊥ψ

(k)
n ‖2 − (ψ(k)

n , Kψ(k)
n ).

The second term is evaluated by

floc,⊥g
k
nψ = −

k∑

l=1

(
k

l

)
(−1)l adlgn(floc)g

k−l
n ψ,

where we used, that ψ is an eigenstate and an adjoint version of (3.13). Thus, the
contributions from this term are uniformly bounded in n by Lemma 3.5 and the
induction hypothesis. The spectral projection 1|A|≤Λ(A) defines a partition of unity,
1 = 1|A|≤Λ(A) + 1|A|>Λ(A). Thus, we may write

(ψ(k)
n , Kψ(k)

n ) = (ψ(k)
n ,1|A|≤Λ(A)Kψ(k)

n ) + (ψ(k)
n ,1|A|>Λ(A)Kψ(k)

n ).

Furthermore, we may estimate

|(ψ(k)
n ,1|A|≤Λ(A)Kψ(k)

n )| ≤ 1

2

(
‖K1|A|≤Λ(A)ψ

(k)
n ‖2

ν
+ ν‖ψ(k)

n ‖2

)

and

|(ψ(k)
n ,1|A|>Λ(A)Kψ(k)

n )| ≤ 1

2

(‖1|A|>Λ(A)K‖2

δ
+ δ

)
‖ψ(k)

n ‖2.

Observe that since K is compact and s-limΛ→∞ χ|A|>Λ = 0 we have

∀ε > 0∃Λε > 0 : ‖χ|A|>ΛεK‖ < ε,

but this implies ∀Λ ≥ Λε

‖1|A|>Λ(A)K‖ = ‖1|A|>Λ(A)1|A|>Λε(A)K‖ ≤ ε.

Thus, we may choose ν = C0/9, δ = C0/9 and pick then a Λ > 0 big enough, such
that

2‖1|A|>Λ(A)K‖2 ≤ C2
0/(9)2, (4.11)

i.e. C0 − ν − δ − ε = C0/3. Thus we arrive at

I0(n) +
9‖K1|A|≤Λ(A)ψ

(k)
n ‖2

2C0

+ C1

∥∥∥∥
k∑

l=1

(
k

l

)
adlgn(floc)g

k−l
n ψ

∥∥∥∥
2

≥ 2C0

3
‖ψkn‖2.

The left-hand side is bounded in n by Step 2 and the induction hypothesis. Analo-
gously, one finds for I ′0(n)

I ′0(n) + bn ≥
C0

3
‖pnψ(k)

n ‖2,

for some bn ≥ 0, n ∈ N and supn∈N bn <∞. Let

I4(n) := bn +
9‖K1|A|≤Λ(A)ψ

(k)
n ‖2

2C0

+ C1

∥∥∥∥
k∑

l=1

(
k

l

)
adlgn(floc)g

k−l
n ψ

∥∥∥∥
2

.
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Finally, this gives with (4.10)

C0

3

(
‖pnψ(k)

n ‖2 + ‖ψ(k)
n ‖2

)
≤ I3(n) + I4(n),

where the right-hand side is bounded in n. By definition of g the result is now
a consequence of the Theorem of Monotone Convergence applied to the left-hand
side. �

5. Eigenstates as analytic vectors

To obtain explicit bounds, independent of the regularisations of A, we apply
Lemma 3.5 and use (4.9) as a starting point.

Proposition 5.1. Let k ∈ N, hλ(H) ∈ Ck+1(A) and Condition 1.4 be satisfied.
Then, for any eigenstate ψ of H with eigenvalue λ ∈ supp(floc) and Λ ≥ 0 being
chosen as in (4.11) we have

‖ψ(k)‖2 ≤ 27‖K1|A|≤Λ(A)Akψ‖2

C2
0

+
6C1

C0

∥∥∥∥
k∑

l=1

(
k

l

)
adlA(floc)A

k−lψ

∥∥∥∥
2

+
96

((1 + 2k)C0)2

(
‖ adk+1

A (h)ψ‖2 + k2‖ ad2
A(h)Ak−1ψ‖2

)

+
12

(1 + 2k)C0

k−1∑

j=2

(
k + 1

j + 1

)(
|(Ak+1−jψ, adj+1

A (h)Ak−1ψ)|

+ |(Ak−jψ, adj+2
A (h)Ak−1ψ)|

)
. (5.1)

Remark 5.2. The bounds derived in this proposition make the locally uniform bound-
edness of Akψ in the sense of Condition 1.10 of [9] apparent.

Proof. Note that ψ ∈ D(Ak) by Theorem 1.6. We observe

lim
n→∞

[pn, adA(h)] = lim
n→∞

−1

n2πi

∫

C

∂̄p̃(z)Jn(z) ad2
A(h)Jn(z)dz ∧ dz̄ = 0,

since ∂̄p̃ has compact support and h ∈ Ck+1(A). Further with ψ(l) := Alψ, for
0 ≤ l ≤ k,

lim
n→∞

E1(j, k, n) = (ψ(k+1−j), adjA(h)ψ(k)) =: E1(j, k), k ≥ j ≥ 2,

lim
n→∞

E2(j, k, n) = (ψ(k−j), adj+1
A (h)ψ(k)) =: E2(j, k), k ≥ j ≥ 1.

Note that E1(j+ 1, k) = E2(j, k) for k− 1 ≥ j ≥ 1. Thus, equation (4.9) reads after
taking the limit n→∞

(1 + 2k)(ψ(k), i adA(h)ψ(k)) = 2 Re
(
i
k−1∑

j=1

(
k + 1

j + 1

)
E2(j, k)

)
+ 2 Re iE2(k, k).

The term E2(k, k) is singular in the sense that one cannot commute one power of
A to the left-hand side and the estimate for E2(1, k) does not improve under such a
manipulation. To estimate E2(1, k) we note

−2 Re(ψ(k−1), i ad2
A(h)ψ(k)) ≤ 1

ε
‖ ad2

A(h)ψ(k−1)‖2 + ε‖ψ(k)‖2.



REGULARITY OF EIGENSTATES 17

We pick up a combinatorial factor (k + 1)k/2 and thus choose

ε =
(1 + 2k)C0

(k + 1)k
2−3.

For E2(k, k), the combinatorial factor is 1 and we estimate

−2 Re(ψ, i adk+1
A (h)ψ(k)) ≤ 1

µ
‖ adk+1

A (h)ψ‖2 + µ‖ψ(k)‖2.

Choose now
µ = (1 + 2k)C02−4.

This gives with (k + 1)k/2 ≤ k2 the inequality

(ψ(k), i adA(h)ψ(k))− C02−3‖ψ(k)‖2 ≤ 2

1 + 2k

k−1∑

j=2

(
k + 1

j + 1

)
|E2(j, k)|

+
16

(1 + 2k)2C0

(
‖ adk+1

A (h)ψ‖2 + k2‖ ad2
A(h)ψ(k−1)‖2

)
.

Note, that the upper bounds are modified as compared to the bounds in Step 2 of
the proof of Theorem 1.6. Namely we use for 2 ≤ j ≤ k − 1,

E2(j, k) = (ψ(k+1−j), adj+1
A (h)ψ(k−1)) + (ψ(k−j), adj+2

A (h)ψ(k−1)).

Next, lower bounds are established using an analogous argument as in Step 3 of the
proof of Theorem 1.6. Observe that

(ψ(k), i adA(h)ψ(k)) +
9‖K1|A|≤Λ(A)ψ(k)‖2

2C0

+ C1

∥∥∥∥
k∑

l=1

(
k

l

)
adlA(floc)ψ

(k−l)
∥∥∥∥

2

− C02−3‖ψ(k)‖2 ≥ C0

6
‖ψ(k)‖2.

Finally, we arrive at

C0

6
‖ψ(k)‖2 ≤ 9‖K1|A|≤Λ(A)Akψ‖2

2C0

+ C1

∥∥∥∥
k∑

l=1

(
k

l

)
adlA(floc)A

k−lψ

∥∥∥∥
2

+
16

(1 + 2k)2C0

(
‖ adk+1

A (h)ψ‖2 + k2‖ ad2
A(h)Ak−1ψ‖2

)

+
2

1 + 2k

k−1∑

j=2

(
k + 1

j + 1

)
|E2(j, k)|,

which implies (5.1). �
Lemma 5.3. Let K,L ∈ B(H) and J(z) := (z −K)−1 for z ∈ ρ(K). Then,

adkL(J(z)) =
∑

a∈C(k)

k!

a1! · · · · · ana !
J(z)

na∏

i=1

adaiL (K)J(z), (5.2)

where C(k) denotes the set of all possible decompositions of k = a1 + · · · + ana in
sums of natural numbers and further a := (a1, . . . , ana).

The formula may easily be observed to be correct. For a proof of similar statement
see [21].
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Proof of Lemma 1.2. We proof the statement by establishing the formula (5.2) in-
ductively for K replaced by H and L replaced by A. For k = 1 we observe
adA(J(z)) = J(z) adA(H)J(z), since H ∈ C1(A). Assume now for k − 1 ∈ N,
ρ(H),

adk−1
A (J(z)) =

∑

a∈C(k−1)

(k − 1)!

a1! · · · · · ana !
J(z)

na∏

j=1

ad
aj
A (H)J(z). (5.3)

Observe, that ad
aj
A (H)J(z) ∈ B(H), for all 1 ≤ j ≤ na. It is well known that the

bounded elements in C1(A) form an algebra. This means that it suffices to check
that each of the operators ad

aj
A (H)J(z) is in C1(A). For 0 ≤ m ≤ k− 1 we consider

[admA (H)J(z), A]. Let ψ, φ ∈ D(A) ∩ D(H), then

(ψ, [admA (H)J(z), A]φ) = ((−1)mJ(z̄) admA (H)ψ,Aφ)

+ (Aψ, admA (H)J(z)φ)

= (ψ, [admA (H), A]J(z)φ)

+ ((−1)m admA (A)ψ, J(z) adA(H)J(z)φ),

where in the last line we used

AJ(z)ψ = J(z)Aψ + J(z) adA(H)J(z)ψ, ∀ψ ∈ D(H).

By assumption, [admA (H), A] extends to a an element adm+1
A (H) ∈ B(D(H),H),

which implies that [admA (H)J(z), A] extends to a bounded operator for 0 ≤ m ≤ k−1,
i.e. admA (H)J(z) ∈ C1(A). Hence H ∈ Ck(A). �

We devote the rest of this section to prove Theorem 1.9.

Proof of Theorem 1.9. We organise the proof for analyticity in two steps and, for
simplicity, we suppose the eigenvalue λ with respect to H,ψ is 0. We consider
h(x) := x(1 + νx2)−1, for sufficiently small ν > 0, see Section 6 and replace floc by
fana, defined in (6.6). By assumption and Section 6, this h satisfies Condition 1.4.
The first step consists of proving that ψ is an analytic vector for A under the
condition

‖ adkA(h)‖, ‖ adkA(fana)‖ ≤ k!w−k, ∀k ∈ N, (5.4)

for some w ∈ R+. In the second step we prove (5.4) using Condition 1.8. Note, that
it is sufficient to prove analyticity of the map θ 7→ exp(iθA)ψ =: ψ(θ) in some ball

around 0. Namely, if ψ(·) is analytic in a ball then ψ̃(t+ θ) := exp(itA)ψ(θ), t ∈ R
defines an analytic extension of this map to a strip. Alternatively, one observes the
bounds in (5.1) to be invariant under conjugation of H with exp itA, t ∈ R and
hence ψ(·) extends to an analytic function in a strip around the real axis.

Step 1. Assume Condition (5.4) to be satisfied and abbreviate

α(j, k) :=
12

(1 + 2k)C0

(
k + 1

j + 1

)
|(ψ(k+1−j), adj+1

A (h)ψ(k−1))|,

β(j, k) :=
12

(1 + 2k)C0

(
k + 1

j + 1

)
|(ψ(k−j), adj+2

A (h)ψ(k−1))|.

Motivated by Condition (5.4), we use the ansatz

‖ψ(l)‖ ≤ l!q−l, for 1 ≤ l ≤ k − 1,
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for some q ∈ R+, q < w, independent of l. Employing the assumptions gives

α(j, k) ≤ k!2q−2k 12

C0wk
(k + 1− j)

( q
w

)j
,

thus

(k!2q−2k)−1

k−1∑

j=2

α(j, k) ≤ 12

C0w

( q
w

)2
k−3∑

j=0

( q
w

)j
≤ 12

C0w

( q
w

)2 1

1−
(
q
w

) .

Analogously,

β(j, k) ≤ k!2q−2k 12

C0wk
(j + 2)

( q
w

)j+1

and consequently

(k!2q−2k)−1

k−1∑

j=2

β(j, k) ≤ 24

C0w

( q
w

)3
k−3∑

j=0

( q
w

)j
≤ 24

C0w

( q
w

)3 1

1−
(
q
w

) .

We continue by estimating, (3.13),
(

6C1

C0

) 1
2

‖fana,⊥ψ
(k)‖ ≤

(
6C1

C0

) 1
2

k∑

j=1

(
k

j

)
j!(k − j)!

( q
w

)j
q−k

≤ k!q−k
(

6C1

C0

) 1
2 ( q

w

) 1

1−
(
q
w

) .

Further,

96k2‖ ad2
A(h)ψ(k−1)‖2

C2
0(1 + 2k)2

≤ 24

C2
0k

2w2

( q
w

)2

k!2q−2k,

96‖ adk+1
A (h)ψ‖2

C2
0(1 + 2k)2

≤ 96

C2
0w

2

( q
w

)2k

k!2q−2k

and finally

27

C2
0

‖K1|A|≤Λ(A)ψ(k)‖2 ≤ 27‖K‖2(Λq)2k

C2
0k!2

k!2q−2k.

Pick now q sufficiently small, such that all pre-factors of k!2q−2k are less than 1/6
and observe that this can be done uniformly in k. Then, we obtain for our specified q

‖ψ(k−1)‖ ≤ (k − 1)!q−(k−1) =⇒ ‖ψ(k)‖ ≤ k!q−k.

This proves that ψ is an analytic vector for A, given Condition (5.4).

Step 2. We first compute the multiple commutators of h. For some n0 ∈ N, see
Section 6, the function

h(x) = −1
2
((i− x/n0)−1 + (−i− x/n0)−1)

and (6.6) satisfy Condition 1.4. It follows from Condition 1.8 and (5.3) in the proof
of Lemma 1.2 that the multiple commutators of h may be expressed in terms of the
multiple commutators of J(z) := (z −H/n0)−1,

adkA(J(±i)) = n−k0

∑

a∈C(k)

k!

a1! · · · · · ana !
J(±i)

na∏

i=1

adaiA (H)J(±i), (5.5)
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for any z in the resolvent set of H. The number of elements in C(k) is given by
2k−1 − 1, which may be verified by induction. Thus, we may estimate (5.5) further
in virtue of (1.6).

‖ adkA(J(±i))‖ ≤ k!v−k(2k−1 − 1) ≤ k!w−k
(

2w

v

)k
.

Choose now 2w ≤ v and conclude as in Step 1 by induction that for h, Condition 1.8
implies (5.4) and in particular, h ∈ C∞(A). It is obvious that fana gives the same
bounds, which completes the proof. �
Remark 5.4. (1) If we had used arctan(x) instead of h(x) = x(1+x2)−1, we would

have encountered the problem that the bounds (5.4) are easily obtained from
(1.6) in graph norm w.r.t. H, only. In contrast, the decay at infinity of our
choice of h allows naturally for bounds in operator norm.

(2) Note, that the first step in the proof uses the relations (5.4) only and is,
abstractly, independent of the stronger assumption (1.6).

6. The Mourre estimate in localised form

The Mourre estimate is usually cast in a different form than it is used here. Let
H,A be self-adjoint operators, H ∈ C1(A). Let now C̃0 > 0 and K̃ be a compact
operator. We denote by 1I(H) spectral projections of H for an interval I ⊂ R.
Suppose, that in the sense of quadratic forms on H×H

1I(H)i[H,A]1I(H) ≥ C̃01I(H)− K̃. (6.1)

This inequality is usually referred to as a Mourre estimate. Choose floc ∈ C∞c (R)
such that supp(floc(H)) ⊆ I and floc(λ) = 1. Set floc,⊥ := 1−floc. Then, multiplying
(6.1) from the left and the right with floc(H) yields

floci[H,A]floc ≥ C̃0 + C̃0f
2
loc,⊥ − 2C̃0floc,⊥ −K,

where K := flocK̃floc is compact. As forms we observe ∀ε > 0

2floc,⊥ ≤ ε+ 1
ε
f 2

loc,⊥.

Pick ε = 1/4. Therefore, we may rewrite (6.3) as

floci[H,A]floc ≥ C̃0
3
4
− 3C̃0f

2
loc,⊥ −K. (6.2)

Let h ∈ B. Set h(t) := h(t− λ). By possibly shrinking the support of floc we may
assume supp(floc) ⊆ supp(hλ). To avoid obscuring the computations notationally,
we refrain from writing hλ and use h instead. Set hn(t) := nh(t/n), ∀t ∈ R and
abbreviate Kn(z) := (z −H/n)−1. Then, by similar arguments as in Lemma 3.4,

floci adA(hn)floc = floch
′
ni adA(H)floc +R,

where

R :=
1

2πn

∫

C

∂̄

(̃
h

t

)
(z)zKn(z)2floc[adA(H), H]flocKn(z)dz ∧ dz̄.

Note that
floci adA(H)floc = floc1I(H)i adA(H)1I(H)floc

is a bounded operator on H. Analogue estimates as in the proof of Lemma 3.4 yield

‖R‖ ≤ C

n
,
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for a C ≥ 0. This gives

‖floci adA(H − hn)floc‖ ≤ ‖(1− h′n)floci adA(H)floc‖+
C

n

≤ C ′
(
‖(1− h′n)1supp(floc)(H)‖+ 1

n

)
,

for some C ′ > 0. Taylor’s theorem implies for positive t ∈ supp(floc)

|1− h′n(t)| ≤

t
n∫

0

|h′′(s)|ds ≤
supt∈supp(floc) |t|

n
sup

s∈supp(floc)

|h′′(s)|

and analogously for negative t ∈ supp(floc). Thus, there is a C ′′ > 0 such that

floci adA(H − hn)floc ≤
C ′′

n
.

Choose n0 ∈ N large enough such that

floci adA(H − hn0)floc ≤
C̃0

4
. (6.3)

Using floc,⊥ = 1− floc we obtain from (6.3), (6.2)

i[hn0 , A] ≥ C̃0

2
− 3C̃0f

2
loc,⊥ −K − floc,⊥i[hn0 , A]floc,⊥ − 2 Re(floc,⊥i[hn0 , A]), (6.4)

Note, that all operators appearing in (6.4) are self-adjoint. With

floc,⊥i adA(hn0)floc,⊥ ≤ ‖ adA(hn0)‖f 2
loc,⊥,

∀δ > 0 : ±2 Re(floc,⊥i adA(hn0)) ≤ δ‖ adA(hn0)‖2 + 1
δ
f 2

loc,⊥,

and a choice of δ such that δ‖ adA(hn0)‖2 ≤ C̃0/4 we find

i[hn0 , A] ≥ C0 − C1f
2
loc,⊥ −K, (6.5)

where 0 < C0 := C̃0/4. The other constant is C1 := 3C̃0 + δ−1 + ‖ adA(hn0)‖.
We may choose a h which is real analytic and extends to an analytic function in

a strip around the real axis. Thus it is possible to reformulate inequality (6.5) using
analytic functions only; a fact we rely on in the proof of our analyticity result.

Consider the real analytic function

fana(x) :=
1

1 + (x− λ)2
=

1

2

(
1

1 + i(x− λ)
+

1

1− i(x− λ)

)
, ∀x ∈ R. (6.6)

Replacing the constant C1 with

C1 sup
x∈R

(
floc,⊥,(x)

fana,⊥(x)

)
,

where fana,⊥ := 1− fana, we may rewrite the Mourre estimate (6.5) as

i[h,A] ≥ C0 − C1f
2
ana,⊥ −K. (6.7)

We denote the constant in front of f 2
ana,⊥ in a slight abuse of notation again with C1.
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