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Abstract

A key result underlying the theory of MCMC is that any n-irreducible
Markov chain having a transition density with respect to n and possessing a
stationary distribution is automatically positive Harris recurrent. This paper
provides a short self-contained proof of this fact.
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1 Introduction

The use of Markov chain Monte Carlo methods (MCMC) has become a fundamental
numerical tool in modern statistics, as well as in the study of many stochastic models
arising in mathematical physics; see Asmussen and Glynn (2007), Gilks et al. (1996),
Kendall et al. (2005), and Robert and Casella (2004), for example. When applying
this idea, one constructs a Markov chain X = (X,, : n > 0) having a prescribed
stationary distribution 7. By simulating a trajectory of X over [0,n), the hope is
that the time-average n~! Z?;Ol f(X;) will converge to 7f = [ f(z)m(dz). Thus,
MCMC permits one to numerically investigate the distribution 7.

If 7= (n(z): x € 5) is a discrete distribution, X is a finite or countably infinite
state Markov chain. In general, if the dynamics of X are not chosen carefully, S
may be reducible and/or contain transient states, in which case the time-averages
may not converge to 7w f. However, if X is an irreducible discrete state space Markov
chain with stationary distribution m, then it is well known that

1 n—1
- Y (X)) s wf Pras. (1)

Jj=0

asn — oo for each f: S — R, where P,(-) 2 P(-| Xy = ) for x € S. Furthermore,
it is known that such a Markov chain automatically contains embedded positive
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recurrent regenerative structure, so that a path of X consists of independent and
identically distributed (iid) cycles; see, for example, Asmussen (2003).

Many statistical applications of MCMC involve distributions 7 that are continu-
ous. A central theoretical question in MCMC is therefore the extension of the above
result to general state space. As in the discrete state space setting, some notion of
irreducibility is required. The Markov chain X is said to be n-irreducible if 7 is a
non-trivial (reference) measure for which n(B) > 0 implies that K (z, B) > 0 for all
x € S, where

K(z,dy) £ 27"P,(X, € dy)
n=1
for x,y € S. This irreducibility concept is not quite strong enough to guarantee (1).
Instead, we further require existence of a jointly measurable transition density p :
S x S — R, for which

P.(X1 € dy) = p(z,y)n(dy) (2)

for x,y € S. Note that if S is discrete and 7 assigns positive mass to each state, (2)
is immediate. The n-irreducibility of X is then equivalent to the standard notion of
irreducibility in the discrete setting.

Our main contribution in this paper is to provide a simple and self-contained
proof of the following known result.

Theorem 1 Assume that X is an S-valued Markov chain satisfying (2). If X 1is
n-irreducible having a stationary distribution © and f : S — Ry, then

1«

- f(Xj)—=nf Pas.

1
J=0
asn — oo, for each v € S.

Note that by specializing to functions f that are indicators, it follows that when-
ever n(B) > 0, P,(X,, € B infinitely often) = 1 for x € S. This is precisely the defi-
nition of Harris recurrence. Thus, Theorem 1 implies that X is a positive recurrent
Harris chain. When the o-algebra on S is countable generated, it is known that
positive recurrent Harris chains contain embedded positive recurrent regenerative
structure; see, for example, Athreya and Ney (1978) and Nummelin (1978). Hence,
Theorem 1 is a natural generalization of discrete state space theory to the general
state space context.

Typical MCMC algorithms do not satisfy (2). Rather, the one-step transition
kernel can often be written in the form

P.(Xy € dy) = (1 — a(2))d,(dy) + a(z, y)q(x, y)n(dy), (3)

where §,(+) is a unit mass at = and a(z) and a(z,y) are non-negative. For example,
this arises in the context of the Metropolis-Hastings sampler with ¢(x,y) being
the proposal density at y for a given = and a(z,y) representing the probability of
accepting proposal y. Put fy = 0 and S, = inf{j > B,-1 : X; # X;_1}, so that
(Xp, : n>0) is the Markov chain X sampled at acceptance epochs. If a(z) > 0 for

2



each x € 9, then (Xg, : n > 0) is itself a well-defined S-valued Markov chain. Note
that the transition kernel is given by

(X, € dy) = DLy,

so that (Xz, : n > 0) has a one-step transition density with respect to 7. Further-
more, it is trivial that (X, : n > 0) is p-irreducible if and only if (Xg, : n > 0)
is m-irreducible. Finally, note that if 7 is a stationary distribution for X, then 7
defined by 7(dy) = a(y)w(dy)/ [¢7(dz)a(z) is a probability and

N _ Jsm(dz)a(z,y)q(z, y)n(dy)
/S (AP, (X, € dy) = e
Jom(dz) (P (X € dy) — (1 — a(x))d.(dy))
Jsm(dz)a(z)
(m(dy) — (1 —a(y))m(dy))
Jsm(dz)a(z)
= 7(dy),

so that 7 is stationary for (Xg, : n > 0). It follows that if (X, : n > 0) is n-irredu-
cible and possesses a stationary distribution, Theorem 1 applies to (Xgz, : n > 0),
establishing the positive Harris recurrence of (Xg, : n > 0). It is then immediate
that (X, : n > 0) is positive Harris recurrent. Hence the corollary below is a
consequence of Theorem 1.

Corollary 1 Assume that X is an S-valued Markov chain satisfying (3) for which
a(x) > 0 for each v € S. If X is n-irreducible and has a stationary distribution w,
then X 1is a positive recurrent Harris chain.

Results essentially equivalent to Corollary 1 appear in Tierney (1994), Roberts
and Rosenthal (2004), Roberts and Rosenthal (2006), and Robert and Casella
(2004). However, the proofs tend to rely on referencing a substantial body of ad-
vanced Markov chain theory (in particular, Nummelin (1984)). By contrast, the
alternative (short) proof that we offer here is self-contained and as background
knowledge requires only graduate probability (with the most advanced result being
the ergodic theorem in its standard form).

A nice feature of these recurrence results is that they do not require construction
of any Lyapunov functions to establish positive Harris recurrence. The assumed exis-
tence of a stationary distribution, which is natural in MCMC applications, dispenses
with this need.

2 Proof of Theorem 1

Let Pr(-) = [, 7(dz)P,(-) and let Er(-) be the expectation operator corresponding
to P,. The ergodic theorem implies that for each f: S — R,

n—1

%Z (X)) = Z Pras.

=0



asn — oo, where Z = E;[f(X)|-#] and .# is the invariant o-field. We first establish
that Z = E, f(Xo).

Note that we may assume that E f(X() < oo (for if this is not the case, we may
work instead with f, = f An and then send n — o0). Put h(z) = E,Z. Note that

E.[Z|Xo,...,Xn] = Z Pras.

as n — 0o. Since Z is invariant, the left-hand side equals h(X,,) Pr-a.s., so we may
conclude that

MX,) = Z Pgas. (4)

as n — 0o. Suppose that Z # E. f(X() Pr-a.s.. Then, there exists a,b € R, (with
a < b) for which 7(A;) > 0 and w(Az) > 0, where A; = {z : h(z) < a} and
Ay ={x: h(x) > b}.

Let 71, 7, ... be iid Geometric(1) random variables (rv’s) independent of X, and
set Tp=0and T,, = 7, + - - + 7, for n > 1. Note that (X7, : » > 0) is an S-valued
Markov chain having one-step transition kernel K and stationary distribution 7.
Then,

1 n
= I(Xr, € Ay)
n =1

n n—1
1 1
= — Y Xy, € A) = Po(Xy, € AlXp )+~ D K(Xp, 4) Pras. ()
1=1 1=0

n
Of course, since the rv’s in [ ] form a bounded sequence of martingale differences,
1 n
- D Xz, € Ay) = Po(X, € Ay|Xp, )] =0 (6)

P,-a.s. as n — oo. Also, because (X7, : i > 0) is a stationary sequence under P -a.s.,
a second application of the ergodic theorem ensures that

n—1
1
- > K (X7, A) = B [K(Xo, 41)|-F] Pras. (7)
i=0
asn — oo. The stationarity of m for X implies that 7(B) = [¢7(dx) [, p(z,y)n(dy),

so that 7 is absolutely continuous with respect to 7. It follows that n(A;) > 0. The n-
irreducibility of X then guarantees that K (x, A1) > 0 for each = € S. Consequently,
E.[K(Xo, A1)|-#] > 0 Pr-a.s., so that (5), (6), and (7) yield the conclusion

lim — ZIXTGA1)>O P,-a.s.

n—oo 1

and hence P.(h(X,) < a infinitely often) = 1. Similarly, we conclude that
P,(h(X,) > b infinitely often) = 1. Since this contradicts (4), it must be that
Z = E.f(Xy). Consequently, P,(N) = 0, where N = {n~! Z;:Ol f(X;) - nf as



The proof is complete if we can show that P, (N) =0 for x € S. Let C = {z :
P.(N) > 0}. If n(C) > 0, the n-irreducibility of X ensures that K (x,C) > 0 for all
x € S. By virtue of the fact that 7 is a stationary distribution of K, an immediate
implication would be that 7(C) > 0, contradicting the fact that P.(N) = 0. So,
n(C) = 0. But (2) implies that

P,(N) = / Pl 4Py (N)(dy) = /C P, )P, (N)n(dy) = 0

for each x € S, finishing the proof.

Acknowledgements

The authors would like to thank the Isaac Newton Institute for Mathematical Sci-
ences at Cambridge University for its support of a joint visit during which this paper
was completed.

References

Asmussen, S., 2003. Applied Probability and Queues, 2nd Edition. Springer-Verlag.

Asmussen, S., Glynn, P. W., 2007. Stochastic Simulation: Algorithms and Analysis.
Springer-Verlag.

Athreya, K. B., Ney, P., 1978. A new approach to the limit theory of recurrent
Markov chains. Trans. Amer. Math. Soc. 245, 493-501.

Gilks, W., Richardson, S., Spiegelhalter, D., 1996. Markov Chain Monte Carlo in
Practice. Chapman & Hall.

Kendall, W., Liang, F., Wang, J.-S. (Eds.), 2005. Markov Chain Monte Carlo: In-
novations and Applications. World Scientific.

Nummelin, E., 1978. A splitting technique for Harris recurrent chains. Z.
Wahrscheinlichkeitstheorie Verw. Geb. 43, 309-318.

Nummelin, E., 1984. General Irreducible Markov Chains and Non-Negative Opera-
tors. Cambridge University Press.

Robert, C., Casella, G., 2004. Monte Carlo Statistical Methods, 2nd Edition.
Springer-Verlag.

Roberts, G., Rosenthal, J., 2004. General state space Markov chains and MCMC
algorithms. Probability Surveys 1, 20-71.

Roberts, G., Rosenthal, J., 2006. Harris recurrence of Metropolis-within-Gibbs and
trans-dimensional Markov chains. Ann. Appl. Probab. 16, 2123-2139.

Tierney, L., 1994. Markov chains for exploring posterior distribution (with discus-
sion). Ann. Statist. 22, 1701-1786.



