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Ole E. Barndorff-Nielsen
T.N. Thiele Centre; Department of Mathematical Sciences, Aarhus University

Abstract

The concept of subordination of Lévy processes is reinterpreted and then
extended to a definition of subordination of Lévy bases. This is extended a
step further, and then applied to give an alternative way of volatility/inter-
mittency modulation in the context of ambit fields.

1 Introduction

Random time change of stochastic processes is a procedure of considerable interest,
both theoretically and in various applications; see [BNShi10]. Of some special the-
oretical interest is the concept of subordination, [Bertoin99]. As regards modelling
and inference, mathematical finance and financial econometrics provide important
cases in point, see [BNS11].

Let X be a d-dimensional Lévy process and let T be a subordinator, i.e. a
nonnegative Lévy process on R+. The subordination of X by T , denoted Y = X ◦T ,
is obtained by timewise composition of X by T , that is Yt = XTt .

The present paper discusses extensions of the idea of time change to spatial and
tempo-spatial settings, with special reference to ambit fields and processes. Sec-
tion 2 provides some background material on Lévy bases and presents an alterna-
tive view of ordinary subordination of Lévy processes, as a lead up to the main part
of this note, which introduces a subordination of Lévy bases by measure changes,
in Section 3, and extends this to more general measure changes, with a view to
volatilty/intermittency and the ambit approach in Section 4. Section 5 concludes.

2 Preliminaries

This Section has two parts. The first provides background material on Lévy bases,
needed for the main part of this note, and the second presents an alternative view
on subordination of Lévy processes, leading to the extended subordination concept
introduced in Sections 3 and 4.

2.1 Lévy bases

This Section recalls basic definitions and properties of Lévy bases on Rd. For detailed
discusssions of the mathematical theory we refer to [RajRos89] and [Ped03].
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Let B denote the family of Borel sets in Rd and let Bb be the subfamily consisting
of the bounded elements of B. An independently scattered random measure M on
Rd is a collection {M (B) : B ∈ Bb} of random variables on some probability space
(Ω,A, P ) such that for every sequence {Bn} of disjoint sets in Bb with ∪∞n=1Bn ∈ Bb
the random variables M (Bn), n = 1, 2, . . . , are independent and

M (∪∞n=1Bn) =
∞∑

n=1

M (Bn) a.s.

Note that, in general, M may take both negative and positive values.

Definition. A Lévy basis L on Rd is an independently scattered random measure
on Rd such that for all B ∈ Bb the random variable L (B) is infinitely divisible and
its Lévy-Khintchine representation has the form1

C{ζ ‡ L (B)} = ia (B) ζ − 1

2
m (B) ζ2 +

∫ ∞

−∞

(
eiζx − 1− iζx1[−1,1] (x)

)
n (dx;B) (1)

where a and m are measures on R (a in general signed) and n (dx;B) is for fixed B
a Lévy measure on Rd\ {0} and for fixed dx a measure on Rd.

The associated measure

c (B) = ‖a‖ (B) +m (B) +

∫ ∞

−∞

(
1 ∧ x2

)
n (dx;B) ,

where ‖a‖ denotes the absolute variation of a, is called the control meaure of (1).
We introduce the Radon-Nikodym derivatives

a (s) =
da

dc
(s) ,

m (s) =
dm

dc
(s)

and

ν (dx; s) =
n (dx; ·)

dc
(s) .

Thus, in particular,
n (dx; ds) = ν (dx; s) c (ds) .

There is no loss of generality in assuming that ν (dx; s) is a Lévy measure for each
fixed s and we do so.

In other words, any Lévy basis on Rd determines a quadruplet (a,m, ν (dx; ·) , c)
or, written more explicitly,

(
a (s) ,m (s) , {ν (dx; s)}s∈Rd , c (ds)

)
where a and m ≥ 0

are functions on Rd, ν (dx; s) denotes for fixed s a Lévy measure on R and is for
fixed dx a measurable function on Rd, and c is a measure on

(
Rd,B

)
such that the

1We denote the cumulant function of a random variable Y by C{ζ‡Y } and the cumulant function
of Y conditional on another random variable X by C{ζ ‡ Y |X}. Similarly, we write φ (ζ ‡ Y ) and
φ (ζ ‡ Y |X) for the associated characteristic functions.
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integrals of a and m with repect to c exist and determine measures on
(
Rd,B

)
(in

the case of a possibly signed), and such that
∫

B

ν (dx; s) c (ds)

is a Lévy measure on R for each fixed B ∈ B. Conversely, any such quadruplet deter-
mines, in law, a Lévy basis on Rd. We refer to (a,m, ν (dx; ·) , c) as the characteristic
quadruplet of the Lévy basis. Given such a quadruplet we denote ν (dx; s) c (ds) by
n (dx; ds) and we define N (dx; ds) as the Poisson measure on Rd having compen-
sator n. Generally, n with or without a suffix will stand for a compensator of this
type and N with the same suffix denotes the corresponding Poisson measure

As is the case for Lévy processes, any Lévy basis has a Lévy-Ito representation

L (B) = a (B) +G (B) +

∫

|x|>1

xN (dx;B) +

∫

|x|≤1
x (N − n) (dx;B) (2)

where a is a, possibly signed measure, G (B) is a Gaussian independently scattered
random measure with G (B) ∼ N (0,m (A)), N is a Poisson measure, independent of
G and with compensator n (dx; ds) = E {N (dx; ds)}. This result is due to [Ped03].
The notation used here is consistent with that of the Lévy-Khintchine representa-
tion (1).

Remark 1. The representation (2) may conveniently be expressed in infinitesimal
form

L (ds) = a (ds) +G (ds) +

∫

|x|>1

xN (dx; ds) +

∫

|x|≤1
x (N − n) (dx; ds) . (3)

Correspondingly we may write the Lévy-Khintchine representation (1) infinitesi-
mally as

C{ζ ‡ L (ds)} = ia (ds) ζ − 1

2
m (ds) ζ2 +

∫ ∞

−∞

(
eiζx − 1− iζx1[−1,1] (x)

)
n (dx; ds)

= ia (ds) ζ − 1

2
m (ds) ζ2 + C{ζ ‡ L′ (s)}c (ds)

where to each s ∈ R we have now associated an infinitely divisible random variable
L′ (s) with Lévy-Khintchine representation

C{ζ ‡ L′ (s)} =

∫ ∞

−∞

(
eiζx − 1− iζx1[−1,1] (x)

)
ν (dx; s) .

We refer to L′ (s) as the Lévy seed of L at s. By {L′t(s)} we denote the Lévy process
generated by L′ (s), i.e. the Lévy process for which the law of L′1(s) equals that of
L′ (s).

In case a = m = 0, and thinking of the L′ (s) as independent, we may now
formally represent the basis L by

L (B) =

∫

B

L′ (s) c (ds)
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and then, for a general function f on Rd we have

f • L =

∫

Rd

f (s)L′ (s) c (ds) . (4)

When ν (dx; s) does not depend on s, the Lévy basis is said to be factorisable
and if, moreover, c is proportional to Lebesgue measure and a (s) and m (s) do not
depend on s then L is homogeneous.

The basis L is said to be non-Gaussian if G = 0. We will initially treat the
Gaussian case, where L = G or L = a + G, and the non-Gaussian case separately,
as these two cases are somewhat different in nature.

In the non-Gaussian case

L (B) = a (B) +

∫

|x|>1

xN (dx;B) +

∫

|x|≤1
x (N − n) (dx;B) , (5)

and so

C{ζ ‡ L (B)} = ia (B) ζ +

∫ ∞

−∞

(
eiζx − 1− iζx1(−1,1) (x)

)
n (dx;B) . (6)

For later reference we note that if a = 0 in (5) and if L is nonnegative then L
can in fact be expressed more simply as

L (B) =

∫ ∞

0

xN (dx;B) . (7)

With probability 1, an arbitrary realisation of a Lévy basis of this type is in fact an
ordinary measure on Rd. (This property does not hold generally for independently
scattered random measures.)

Example 1 (Inverse Gaussian seeds). We recall that the inverse Gaussian law,
denoted IG (δ, γ), is infinitely divisible with probability density function

δ√
2π
e−δγx−3/2 exp{−1

2
(δ2x−1 + γ2x)} (8)

where x > 0 and the parameters satisfy δ > 0 and γ ≥ 0. This has Lévy density

1√
2π
x−3/2 exp{−1

2
γ2x}

and cumulant function

C{ζ} = −δγ + δ
(
γ2 − 2iζ

)1/2
,

and a sum of independent observations from this law must consequently follow the
IG (nδ, γ) distribution. An inverse Gaussian homogeneous Lévy basis L may now
be specified by taking L (A) to have the IG (|A|δ, γ) law, where |A| is the Lebesgue
measure of A. More generally, a non-Gaussian Lévy basis whose seeds are of the
form

ν (dx; s) =
δ (s)√

2π
x−3/2 exp{−1

2
γ (s)2 x}dx

will be referred to as an inverse Gaussian basis.
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Example 2 (Normal inverse Gaussian seeds). The normal inverse Gaussian distri-
bution NIG (α, β, µ, δ) ([BN98]) equals the law at time 1 of the process obtained
by subordinating a Brownian motion of mean µ and drift β to the inverse Gaus-
sian subordinator with law IG (δ, γ) at time 1. It is the distribution on R having
probability density function

p(x;α, β, µ, δ) = a(α, β, µ, δ)q

(
x− µ
δ

)−1
K1

{
δαq

(
x− µ
δ

)}
eβx (9)

where q(x) =
√

(1 + x2) and

a(α, β, µ, δ) = π−1α exp
{
δ
√

(α2 − β2)− βµ
}

(10)

and where K1 is the modified Bessel function of the third kind and index 1. The
domain of variation of the parameters is given by µ ∈ R, δ ∈ R+, and 0 ≤ β < α.
The Lévy density is

δα

π
|x|−1K1 (α|x|) eβy

and the cumulant function has the form

C{ζ} = δ{√(α2 − β2)−√(α2 − (β + iζ)2)}+ iµζ. (11)

A non-Gaussian Lévy basis is then determined by having

L (A) ∼ NIG ((α, β, |A|µ, |A|δ)) .

This is the homogeneous normal inverse Gaussian basis, the general form of normal
inverse Gaussian bases having Lévy seeds

ν (dx; s) =
δ (s)α (s)

π
|x|−1K1 (α (s) |x|) eβ(s)xdx.

Integration of deterministic functions f with respect to an arbitrary Lévy basis
L is defined in [RajRos89], where criteria for existence of the integral f •L are also
given. We denote such an integral by f •L. The resulting integral is infinitely divisi-
ble with Lévy-Khintchine representation provided by Proposition 2.6 in [RajRos89].
In the above notation this can be written as

C{ζ ‡ f •L} = −1

2

∫

Rd

f 2 (s)m (s) c (ds) +

∫

Rd

C{ζf (s) ‡ a (s) +L′ (s)}c (ds) . (12)

When a = m = 0 this becomes

C{ζ ‡ f • L} =

∫

Rd

C{ζf (s) ‡ L′ (s)}c (ds) ,

a formula that also follows directly, though only formally, from (4).
Note finally, that any one-dimensional Lévy process {Lt} determines a Lévy

basis, given by L ((u, v]) = Lv − Lu for u ≤ v.
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2.2 Timewise subordination: an alternative view

Let L be a one-dimensional non-Gaussian2 Lévy process with compensator n(dx; ds) =
ν(dy)ds and Lévy-Ito representation

Lt = at+

∫ t

0

∫

|x|>1

xN (dx; ds) +

∫ t

0

∫

|x|≤1
x (N − n) (dx; ds) , (13)

let T be a subordinator with compensator n0 (du; ds) = ν0 (du) ds, Poisson basis N0

and Lévy-Ito representation

Tt =

∫ t

0

∫ ∞

0

xN0 (dx; ds) ,

and let L ◦ T be the subordination of L by T .
We denote by L0 the Lévy basis determined from the subordinator T . In

the terminology introduced above and denoting the Lebesgue measure by λ, the
Lévy basis determined by the processes L and L0 have characteristic quadruplets
(a, 0, ν (dx) , λ) and (0, 0, ν0 (dx) , λ), respectively. Note that, in consequence of a
remark above, the realisations of the Lévy basis L0 are almost surely ordinary mea-
sures.

We now introduce a new random measure L̂ on R by substituting λ (ds) in
(a, 0, ν (dx) , λ) by L0 (ds). In other words, conditional on L0, L̂ is the Lévy basis
with infinitesimal representation

L̂ (ds) = aL0 (ds) +

∫ t

0

∫

|x|≥1
xN̂ (dx; ds) +

∫ t

0

∫

|x|<1

x
(
N̂ − n̂

)
(dx; ds)

where n̂ (dx; ds) = ν (dx)L0 (ds) and, as specified above, N̂ is the Poisson measure
with compensator n̂ (dy; ds) = ν (dy)L0 (ds).

The aim of this Section is to show

Proposition. The (unconditional) law of L̂ is the same as the law of L ◦ T .

Proof. On account of (12), the conditional cumulant functional of L̂ given L0 satis-
fies,

C{ζ ‡ f • L̂|L0} =

∫ ∞

0

C{ζf (s) ‡ a+ L′}L0 (ds) = C{ζf (·) ‡ a+ L′} • L0

where L′ is the Lévy seed of the Lévy basis determined by L; since that seed does
not depend on s, in this proof we simply write L′ for L′ (s). Further, on account

2The argument presented below is easily extended to include a Gaussian term.
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again of (12),

C{ζ ‡ f • L̂} =

∫ ∞

0

C{C{ζf (s) ‡ a+ L′} ‡ L′0}ds

=

∫ ∞

0

∫ ∞

0

(
eiC{ζf(s)‡a+L

′}u − 1
)
ν0 (du) ds

=

∫ ∞

0

∫ ∞

0

(
eiC{ζf(s)‡au+L

′
u} − 1

)
ν0 (du) ds

=

∫ ∞

0

∫ ∞

0

(φ (ζf (s) ‡ au+ L′u)− 1) ν0 (du) ds.

Introducing the law P {a+ L′u ∈ dξ} of a + L′u the latter expression may be recast
as

C{ζ ‡ f • L̂}

=

∫ ∞

0

∫ ∞

0

∫ ∞

−∞

(
eiζf(s)ξ − 1− iζf (s) ξ1[−1,1] (ξ)

)
P {au+ L′u ∈ dξ} ν0 (du) ds

+ iζ

∫ ∞

0

∫ ∞

0

∫ 1

−1
f (s) ξP {au+ L′u ∈ dξ} ν0 (du) ds

or, equivalently,

C{ζ ‡ f • L̂}

= iζâ

∫ ∞

0

f (s) ds+

∫ ∞

0

∫ ∞

0

∫ ∞

−∞

(
eiζf(s)ξ − 1− iζf (s) ξ1[0,1] (ξ)

)
ν̂ (dξ) ds

(14)

where

â =

∫ ∞

0

∫ 1

−1
ξP {au+ L′u ∈ dξ} ν0 (du)

and

ν̂ (dx) =

∫ ∞

0

P {au+ L′u ∈ dx} ν0 (du) .

In other words, the random measure L̂ is a Lévy basis which generates a Lévy
process whose Lévy seed has Lévy-Khintchine representation

C{ζ ‡ L̂′} = â+

∫ ∞

0

∫ ∞

−∞

(
eiζξ − 1− iζξ1[0,1] (ξ)

)
ν̂ (dξ)

and the characteristic triplet of L̂ is given by â and ν̂ (dx) above and by the Lebesgue
measure λ. But, on noting that L′u has the same law as Lu, one observes that the
triplet (â, 0, ν̂λ) equals that of the Lévy-Khintchine representation of L ◦ T , as
follows from [Huff69] who by another, more analytical, type of reasoning, derived
the characteristic triplet of any subordinated Lévy process (cf. also [Bertoin99],
Section 8.4).
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3 Subordination of Lévy bases

Generalising the approach taken in Section 2, we now define the subordination of
an arbitrary Lévy basis L on Rd, with Lévy-Ito representation (5), by a nonnegative
and dispersive Lévy basis L0, also on Rd, that is independent of L and has Lévy-Ito
representation

L0 (ds) =

∫ ∞

0

xN0 (dx; ds) (15)

with compensator

n0 (dx; ds) = ν0 (dx; s) c0 (ds) . (16)

As pointed out above, the realisations of L0 are almost surely genuine measures
on Rd.

3.1 Non-Gaussian subordinand

Let L be a non-Gaussian Lévy basis with Lévy-Ito representation

L (B) = a (B) +

∫

|x|>1

xN (dx;B) +

∫

|x|≤1
x (N − n) (dx;B) .

The subordination of L by L0 is carried out via substituting the factor c (ds),
from the characteristic quadruplet of L, by L0 (ds). Provided ν (dx; s)L0 (ds) almost
surely determines a σ-finite measure on Rd, this construction yields a well-defined
random measure L̂ =

{
L̂ (B)

}
B∈Bb by the specification that conditionally on L0

the random variable L̂ (B) is infinitely divisible with infinitesimal Lévy-Khintchine
representation

C{ζ ‡ L̂ (ds) |L0} = iζa (s)L0 (ds) +

∫ ∞

−∞

(
eiζx − 1− iζx1[−ε,ε] (x)

)
ν (dx; s)L0 (ds)

and corresponding infinitesimal Lévy-Ito representation

L̂ (ds) |L0 = a (s)L0 (ds) +

∫

|x|>1

xN̂ (dx; ds) +

∫

|x|≤1
x
(
N̂ − n̂

)
(dx; ds)

where N̂ is a Poisson random measure with compensator n̂ (dx; ds) = ν (dx; s)L0 (ds).

Theorem. The random measure L̂ is a Lévy basis with infinitesimal Lévy-Khintchine
representation

C{ζ ‡ L̂ (ds)} = iâ (ds) ζ +

∫ ∞

−∞

(
eiζx − 1− iζx1[−1,1] (x)

)
n̂ (dx; ds)

where
â (ds) = ã (s) c0 (ds)

with

ã (s) =

∫ ∞

0

∫ 1

−1
vP {a (s)u+ L′u (s) ∈ dv} ν0 (du; s)
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and
n̂ (dx; ds) = ν̂ (dx; s) c0 (ds)

with

ν̂ (dx; s) =

∫ ∞

0

P {a (s)u+ L′u (s) ∈ dx} ν0 (du; s) .

Furthermore, the functional cumulant transforms of L, L0 and L̂ are related by

C{f • L̂} = C{C{f (s) ‡ a (s) + L′ (s)} ‡ L′0 (s)} • c0 (ds) . (17)

Remark 2. Formula (17) constitutes the generalisation to Lévy bases of the well
known composition relation (cf. for instance [Bertoin99] Proposition 8.6) of the
Laplace exponents for subordination of Lévy processes.

Proof of the Theorem. By formula (12) we find

C{f • L̂|L0} =

∫

Rd

C{f (s)‡a (s)+L′ (s)}L0 (ds) = C{f (·)‡a (·)+L′ (·)}•L0. (18)

Consequently

C{f • L̂} =

∫

Rd

C{C{f (s) ‡ a (s) + L′ (s)} ‡ L′0 (s)}c0 (ds)

=

∫

Rd

∫ ∞

0

(
eiC{ζf(s)‡a(s)+L

′(s)}u − 1
)
ν0 (du; s) c0 (ds)

=

∫

Rd

∫ ∞

0

(
eiC{ζf(s)‡a(s)u+L

′
u(s)} − 1

)
ν0 (du; s) c0 (ds)

=

∫

Rd

∫ ∞

0

(φ (ζf (s) ‡ a (s)u+ L′u (s))− 1) ν0 (du; s) c0 (ds)

=

∫

Rd

∫ ∞

0

∫ ∞

−∞

(
eif(s)v − 1− iζf (s) v1[−1,1] (v)

)

× P {a (s)u+ L′u (s) ∈ dv} ν0 (du; s) c0 (ds)

+ iζ

∫

Rd

f (s)

∫ ∞

0

∫ 1

−1
vP {a (s)u+ L′u (s) ∈ dv} ν0 (du; s) c0 (ds)

=

∫

Rd

∫ ∞

0

∫ ∞

0

(
eiζf(s)v − 1− iζf (s) v1[0,1] (v)

)
ν̂ (dv; s) c0 (ds)

+ iζ

∫

Rd

f (s) â (ds)

where

ν̂ (dv; s) =

∫ ∞

0

P {a (s)u+ L′u (s) ∈ dv} ν0 (du; s) (19)

and
â (ds) = ã (s) c0 (ds) (20)

with

ã (s) =

∫ ∞

0

∫ 1

−1
vP {aε (s)u+ L′u (s) ∈ dv} ν0 (du; s) . (21)
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This proves the first part of the Theorem.
Formula (17) is just a reformulation of formula (18).

Remark 3. The Lévy seeds of L, L0 and L̂ are related by L̂′ = L′ ◦ L′0 where the
latter formula is to be understood as saying that for (almost all) s∈ Rd the Lévy
process generated by L̂′ (s) is equal (in law) to the subordination of the Lévy process
generated from L′ (s) by the subordinator generated by L′0 (s).

3.2 Gaussian subordinand

Subordination of the Gaussian subordinand G by the independent subordinator L0,
given by (15)-(16), is now defined as the random measure Ĝ for which, conditionally
on L0, the law of Ĝ (B) is normal with mean 0 and variance L0 (B). A direct
calculation, using formula (12), shows that Ĝ is indeed a Lévy basis, and that it is
non-Gaussian with compensator ν̂ (dx; s) c0 (ds) where

ν̂ (dx; s) =

∫ ∞

0

ϕ (x;u) v0 (du; s) dx,

ϕ (x;u) denoting the density of the Gaussian law of mean 0 and variance u.

Example 3. Suppose that G is the white noise basis and that L0 is the homogeneous
IG (δ, γ) basis. Then Ĝ is, in law, equal to the homogeneous NIG(δ, 0, γ, 0) basis.

More generally (using the notation established in Section 2.1), subordination of
a Gaussian Lévy basis L = a+G by the independent L0 is defined as the Lévy basis
with compensator ν̂ (dx; s) c0 (ds) where

ν̂ (dx; s) =

∫ ∞

0

ϕ (x− a (s) ;m (s)) ν0 (du; s) dx.

Example 4. Taking again L0 to be the homogeneous IG (δ, γ) basis, the resulting
subordinated random measure Ĝ is, in law, equal to the Lévy basis with characteris-
tic quadruplet (a, 0, ν̂ (dx, ·) , c0), the Lévy seeds L̂′ (s) being NIG(α (s) , a (s) , δ, 0)
distributed where α (s) =

√
γ2 + a2 (s).

4 Extension and volatility modulation

Time changes of stochastic processes, other than subordination of Lévy processes, is
a subject of considerable interest (cf. again [BNShi10]), and in line with this we now
make some remarks extending the approach in the previous Section to modulation
of Lévy bases by more general random measures.

So, let τ be a nonnegative random measure on
(
Rd,B

)
and given a Lévy basis L,

independent of τ and with characteristic quadruplet (a,m, ν (dx; ·) , c), let L̂ be the
random, in general signed, measure that conditionally on τ is a Lévy basis with
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characteristic quadruplet (a,m, ν (dx; ·) , τ). (Existence of L̂ requires some mild
regularity ssumptions.) Then the cumulant functional of L̂ is determined by

C{ζ ‡ f • L̂} = log E

{
exp

[
−1

2

∫

Rd

f 2 (s)m (s) τ (ds)

+

∫

Rd

C{ζf (s) ‡ a (s) + L′ (s)}τ (ds)

]}
(22)

cf. formula (12) and generalising (17). In particular, if a = m = 0 then

C{ζ ‡ f • L̂} = C{−i ‡ C{ζf (·) ‡ L′ (·)} • τ}. (23)

This may be used, in particular, in relation to ambit fields and processes. In
complete generality, an ambit field Y = {Yt (x) : (x, t) ∈ Rd × R}, where t stands
for time, was defined ([BNSch04], [BNSch07], [BNBV09]) as

Yt (x) = µ+

∫

At(x)

g (ξ, s;x, t)σs (ξ)L (dξ, ds) +

∫

Dt(x)

q (ξ, s;x, t) as (ξ) dξds (24)

where the ambit sets At (x), and Dt (x) are subsets of Rd × (−∞, 0], g and q are
deterministic damping functions, σ ≥ 0 is a stochastic field referred to as the volatil-
ity, and L is a Lévy basis. An ambit process is then the realisation of Y along a
curve (x (θ) , t (θ)) in Rd × R, with t (θ) increasing in θ, from minus infinity to plus
infinity.

The volatility field σ has a key role in various modelling contexts, particularly in
turbulence (where it is referred to as intermittency), and in finance. See [BNSch07],
[BNBV09], [BNBV10] and references given there.

Of particular interest are the cases where Yt (x) is stationary in t. Considering
just the main term in (24), this occurs when Y is of the form

Yt (x) =

∫

A+(x,1)

g (ξ, t− s;x)σs (ξ)L (dξ, ds) (25)

for some fixed ambit set A and provided the volatility field σ is stationary and L is
homogeneous.

Now, while the multiplicative position of σ to the basis L in (24) goes naturally
together with L when the homogeneous L is Gaussian or more generally stable,
this is less so in general, and there are advantages in interpretation and calculation
by, instead of having σL as the integrator, to use L̂ obtained by subordinating L
by τ in the sense defined here and with τ = σ2. In particular, the dependence
structure in Y is then relatively simple to describe. Note that in the Gaussian and
stable cases the result of the multiplicative approach σL can equally be achieved
by subordination (in the Gaussian case by choosing τ (ds) = σ2 (s) ds); but the
subordination technique gives wider possibilties.

5 Concluding remarks

This paper has introduced a generalisation of the concept of subordination of Lévy
processes. In summary, this consists of substituting the control measure c of a Lévy
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basis L with characteristic quadruplet (a,m, ν (dx; s) , c) by a random measure τ . In
the case where τ is itself a Lévy basis L0 the construction implies that the resulting
random measure L̂ is itself a Lévy basis whose Lévy seeds L̂′, as defined here, are
determined pointwise by the classical subordination of the Lévy process generated
from the Lévy seed L′ (s) of L at s by the subordinator generated from the Lévy
seed L′0 (s) of L0.

Part of the interest in this extended concept of subordination lies in the possi-
bility for alternative modelling of the influence of volatility or intermittency, partic-
ularly in the context of ambit fields and processes.

The discussion given here has been on the level of distributional results for Lévy
bases and volatility modulation of such. Development and strengthening of the re-
sults in stochastic process settings will be studied in a follow-up paper, joint with
by Jan Pedersen.
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Sankhyā A, 31, 403–412.
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