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Introduction

The topic of this thesis relates to the fundamental problem in physics of giving a
sensible quantum-theoretical description of a physical system which explains the clas-
sical perception of that system. A general procedure for producing such a quantum
description from its classical description is called a quantization scheme.

The need for quantization stems from the well-known fact that the laws of classical
physics break down on atomic and subatomic scales. Strangely, measurements on this
scale tend to be non-deterministic and allow only a discrete set of possible outcomes,
and consequently a different ’quantum’ description of a system is needed to explain
and predict its behaviour.

Unfortunately, quantization is no straightforward procedure. There is no such
thing as the corresponding quantum system of a classical system, and some quantum
systems have no meaningful classical counterpart. In fact, it can be proved that in
a certain sense no general procedure for quantization can exist. This has lead to
a wealth of different quantization methods, each with their individual flaws and
favors, and has spawned an entire field in mathematics, engaged in the study of the
mathematical structure of these quantization schemes.

In this thesis, we shall be working with two different quantization methods called
geometric quantization and deformation quantization. One of the characteristic fea-
tures of geometric quantization is the need for a choice of an auxiliary structure
— a complex structure on the classical phase space — to define it. From a physical
perspective, the result of the quantization should, however, not depend on this struc-
ture, and this is where the notion of a Hitchin connection comes into the picture as
a gadget for relating the quantizations produced from different choices of auxiliary
structure. The construction and study of Hitchin connections forms a major part of
this thesis.

Although not as ubiquitous in deformation quantization, the choice of an auxiliary
complex structure can also be helpful when constructing this type of quantization. In
fact, we shall present a general and explicit constuction of deformation quantization
from a choice of complex structure. Once again, the final outcome of quantization
should not depend on this choice, and we shall investigate this problem by similar
techniques and define the notion of a Hitchin connection in the context of deformation
quantization.

Scientific Context

Let us increase the level of mathematical detail and give a brief overview of the
origins and development of deformation quantization on Kähler manifolds as well as
the Hitchin connection.

v
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Deformation Quantization on Kähler Manifolds

One of the first to study deformation quantization on Kähler manifolds was Berezin
[Ber], who wrote down integral formulas for a star product in this setting, but had
to make severe assumptions on the Kähler manifold.

Years later, the fundamental questions of existence and classification of formal
deformation quantizations on a general Kähler manifold were solved by Karabegov
[Kar1], who proved that deformation quantizations with separation of variables are
in bijective correspondence with closed, formal (1, 1)-forms.

A geometric but implicit construction of a deformation quantization on any com-
pact Kähler manifold was given by Schlichenmaier [Sch], who used the asymptotic
expansion of products of Toeplitz operators in geometric quantization to construct
the star product.

The first explicit construction of a deformation quantization on a general Kähler
manifold was given by Reshetikhin and Takhtajan [RT1], who interpreted Berezin’s
integral formulas formally and studied their asymptotic behavior. This yielded an
explicit formula for a star product in terms of Feynman graphs interpreted as dif-
ferential operators. However, the graphs produced by the expansion of Berezin’s
integrals have relations among them, expressing fundamental identities on the Käh-
ler manifold. Moreover, the expansion produces disconnected graphs which prevent
the star product from being normalized.

Inspired by the work of Reshetikhin and Takhtajan, and using Karabegov’s clas-
sification, we shall give an explicit, combinatorial formula, in terms of Feynman
graphs, for any deformation quantization with separation of variables on a Kähler
manifold.

The Hitchin Connection

In [Wit], it was proposed that quantum Chern-Simons theory should form the two-
dimensional part of a topological quantum field theory (TQFT) in 2+1 dimensions.
This leads to the study of geometric quantization of the moduli space M of flat
SU(n)-connections on a surface Σ. This moduli space has a natural symplectic
structure ω and admits a prequantum line bundle, which is a Hermitian line bundle
L with a compatible connection whose curvature is given by the symplectic form.
The Teichmüller space T of the surface Σ parametrizes complex structures on the
moduli space, so for each point σ ∈ T and each natural number k, called the level
of quantization, we have the quantum state space of geometric quantization, which
is the space Qk(σ) = H0(Mσ,Lk) of holomorphic sections of the k’th tensor power
of the prequantum line bundle. These form the fibers of a vector bundle Q̂k over
T , called the Verlinde bundle, and it was shown independently by Hitchin [Hit] and
Axelrod, Della Pietra and Witten [ADW] that this bundle admits a natural pro-
jectively flat connection, which we shall call the Hitchin connection. Consequently,
the quantum spaces associated with different complex structures are identified, as
projective spaces, through the parallel transport of this connection.

The mapping class group Γ of the surface acts by symplectomorphisms on the
moduli space, and this action lifts to an action on the prequantum line bundle.
This gives an action of Γ on the Verlinde bundle, covering the action of Γ on the
Teichmüller space. The Hitchin connection is equivariant with respect to the action
of Γ, and consequently one gets a family of projective representations, called the
quantum representations, of the mapping class group on the covariantly constant
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sections of the projectivized Verlinde bundle.
By studying the asymptotic relationship between Toeplitz operators and the

Hitchin connection, Andersen [And3] has proved that the quantum representations
are asymptotically faithful. Moreover, he has applied similar techniques to prove
that the mapping class group does not have Kazhdan’s property (T).

Andersen [And1] also extended his asymptotic analysis of the relationship be-
tween the Hitchin connection and the Toeplitz operators to higher orders, which
lead him to define the notion of a formal Hitchin connection. The asymptotics of
products of Toeplitz operators give rise to the Berezin-Toeplitz formal deformation
quantization, and Andersen noticed that the formal Hitchin connection can be used to
identify these deformation quantizations and obtain a mapping class group equivari-
ant deformation quantization on the moduli space, provided that certain cohomology
groups of the mapping class group vanish.

As part of his work, Andersen [And1] constructed the Hitchin connection in the
bundle of quantum spaces arising by geometric quantization on a general symplectic
manifold sharing certain properties with the moduli space. We shall generalize his
construction to metaplectic quantization and calculate the curvature of the Hitchin
connection. Moreover, we shall study the question of unitarity of the Hitchin con-
nection and give some asymptotic results in this direction. Finally, we shall develop
the formal Hitchin connection from a meteplectic perspective and give explicit ex-
pressions for it.

Summary

Let us give an outline of the structure and results of the thesis.

Chapter 1

This first chapter serves as an easy start by recalling some of the basic concepts from
complex differential geometry. The purpose is to fix conventions and familiarize the
reader with notation.

Chapter 2

The second chapter discusses the concept of quantization in general terms and in-
troduces the notions of geometric quantization and deformation quantization.

Geometric quantization is presented using the three steps of prequantization,
complex structure and metaplectic correction. Afterwards, the notion of a Hitchin
connection is loosely discussed. The concept of metaplectic quantization is central
to the thesis as one of the main results is the construction of a Hitchin connection
in this setting.

The chapter then moves on to define the notion of formal deformation quanti-
zations and discuss their classification on symplectic manifolds. The significance of
a complex structure to support construction of deformation quantization is briefly
touched upon, as is the notion of a formal Hitchin connection.

Chapter 3

In this chapter, we study deformation quantization on Kähler manifolds. We start by
recalling Karabegov’s classification of star products with separation of variables on



viii Introduction

a Kähler manifold. Then we prove the first main result of the thesis (Theorem 3.10)
which gives an explicit combinatorial formula for any deformation quantization with
separation of variables from its classifying Karabegov form.

Chapter 4

This chapter gives the definition and some af the main properties of Toeplitz opera-
tors in geometric quantization. In particular, we recall how the Berezin-Toeplitz star
product arises through the asymptotic expansion of products of Toeplitz operators,
and we discuss its properties and classification.

Furthermore, we recall the basics of differential operators on the quantum spaces
of geometric quantization. We prove that a differential operator acts as a Toeplitz
operator when followed by the projection back onto the quantum space, and we give
an explicit formula for this Toeplitz operator.

Chapter 5

The fifth chapter lays the foundation for our construction of the Hitchin connection
by investigating families of Kähler structures on a symplectic manifold. We show
how a number of structures vary with the Kähler structure and discuss the important
implications of two conditions, called holomorphicity and rigidity, on a family of
Kähler structures.

Chapter 6

In Chapter 6, we finally introduce the Hitchin connection. We start by reviewing the
explicit differential-geometric construction by Andersen [And1] in standard geometric
quantization. Then we give an analogous construction of a Hitchin connection in
metaplectic quantization (Theorem 6.10), which is one of the main results of the
thesis. The assumptions of this theorem are fewer than needed in standard geometric
quantization, but it does not give a completely explicit formula for the connection.

Whenever the conditions for the existence of the Hitchin connection in standard
geometric quantization are met, we can also give an explicit formula for the Hitchin
connection in metaplectic quantization (Theorem 6.12). Furthermore, we prove that
the two variants of geometric quantization can be related and that the Hitchin con-
nections agree (Theorem 6.14).

Towards the end of the chapter, we calculate the curvature of the Hitchin connec-
tion in metaplectic quantization, and we prove that it is projectively flat whenever
the symplectic manifold has no holomorphic vector fields (Theorem 6.22).

Finally, we investigate the question of unitarity of the Hitchin connection, and we
prove that if the connection is projectively flat, then it is asymptotically projectively
unitary to any order (Theorem 6.25).

Chapter 7

In this chapter, we apply the ideas of the Hitchin connection to deformation quantiza-
tion. We define the notion of a formal Hitchin connection for a family of deformation
quantizations, and discuss how the parallel transport of such a connection can be
used to relate the various deformation quantizations in the family.
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Then we show how to construct a formal Hitchin connection for the Berezin-
Toeplitz family of deformation quantizations by studying the asymptotics of covariant
derivatives of Toeplitz operators with respect to the Hitchin connection in geometric
quantization. We consider the Toeplitz operators in standard geometric quantization
first and do the same analysis, with fewer details, for the metaplectic case, which is
simpler in many ways.

Chapter 8

The final chapter applies the results of the thesis to the moduli space of flat connec-
tions on a surface. This is not only the most prominent example of application but
also the setting in which many of the ideas were originally developed.

We give the definition of the moduli space and the main structures it carries,
and then we apply our results on the Hitchin connection to the quantization of the
moduli space. In particular, we prove that the Hitchin connection is projectively flat
in this setting (Theorem 8.1). Some comments on the quantum representations of
the mapping class groups are also made.





Chapter 1

Complex Differential Geometry

In this first chapter, we shall briefly review some basic definitions and results from
complex differential geometry. The material covered is fairly standard, and we in-
clude it with the purpose of fixing conventions and establishing notation for later
chapters.

1.1 Almost Complex Structures

Consider a smooth manifold M of even dimension 2m. An almost complex structure
on M is a smooth section J of the endomorphism bundle End(TM) of the tangent
bundle satisfying J2 = − Id. This turns the tangent bundle into a complex vector
bundle TMJ , where multiplication by i is given by J . Therefore, any almost complex
manifold must be even-dimensional and has a canonical orientation.

If we consider the complexified tangent bundle TMC, the complex linear extension
of J induces a decomposition,

TMC = T ′MJ ⊕ T ′′MJ , (1.1)

into the bundles of fiberwise eigenspaces for J , corresponding to the eigenvalues i
and −i, respectively. The decomposition is explicitly given by the projections onto
each summand,

π1,0
J = 1

2 (Id−iJ) and π0,1
J = 1

2 (Id +iJ).

We use the notation X = X ′J +X ′′J for the decomposition of a vector field on M .
Conjugation on TMC identifies T ′MJ and T ′′MJ as real vector bundles. Also, the

projection π1,0
J gives an isomophism between the complex vector bundles TMJ and

T ′MJ .
The almost complex structure J acts on the cotangent bundle TM∗ by (Jα)X =

α(JX), and as above we get a decomposition, TM∗
C

= T ′M∗J⊕T ′′M∗J , into the bundles
of eigenspaces. It is easily seen that T ′M∗J is the subbundle of TM∗

C
consisting of

forms that vanish on T ′′MJ . Likewise, T ′′M∗J is the subbundle of forms that vanish
on T ′MJ .

The splittings of TMC and TM∗
C
induce splittings of the tensor bundles of TMC

into direct sums of tensorproducts of the eigensubbundles of TMC and TM∗
C
. In

1



2 Chapter 1 · Complex Differential Geometry

particular, if we let
∧p,q

TM∗J =
∧p
T ′M∗J �

∧q
T ′′M∗J , then we get a decomposition,∧k

TM∗C =
⊕
p+q=k

∧p,q
TM∗J ,

which induces a splitting of the complex-valued differential forms,

Ωk(M) =
⊕
p+q=k

Ωp,qJ (M),

into the spaces Ωp,qJ (M) = C∞(M,
∧p,q

TM∗J ) of complex valued differential forms of
type (p, q). If α is a k-form on M , we denote by αp,q its component of type (p, q).

Of course the bundle
∧k

TMC splits in a similar fashion, as does the symmetric
powers Sk(TM∗

C
) and Sk(TMC), and any tensor bundle in general.

The canonical line bundle KJ is defined by

KJ =
∧m

T ′M∗J ,

and will be of particular interest to us. At this point, it is just a complex line bundle,
but its structure will become richer as we put more structure on M .

Using the projections

πp,qJ : Ωp+q(M)→ Ωp,qJ (M)

and the exterior differential d, we can form the operators

∂J : Ωp,q(M)→ Ωp+1,q(M), ∂J = πp+1,q
J ◦ d

∂̄J : Ωp,q(M)→ Ωp,q+1(M), ∂̄J = πp,q+1
J ◦ d.

These operators will determine the exterior derivative if the almost complex structure
does in fact define a complex structure.

1.2 Complex Structures

A complex structure on M is a maximal atlas of smooth charts, ϕj : Uj → U ′j ⊂ Cm,
such that every transition function,

ϕkj = ϕk ◦ ϕ−1
j : ϕj(Uk ∩ Uj) ⊂ Cm → ϕk(Uk ∩ Uj) ⊂ Cm,

is holomorphic, in the sense that each coordinate function is holomorphic in each of
its variables.

By the Cauchy-Riemann equations, the differentials of the transition functions
dϕij : R2m → R2m are complex-linear, viewed as transformations of Cm.

Any complex manifold has a naturally induced almost complex structure on its
tangent bundle. For local holomorphic coordinates zk = xk+iyk, with corresponding
coordinate vector fields Xk and Y k, this is given by

JXk = Y k and JY k = −Xk.

Since the transition functions on M are holomorphic, this definition is easily seen to
be independent of the coordinates chosen. In this way, the tangent bundle becomes
a complex vector bundle. Moreover, the usual coordinates for the tangent bundle
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have holomorphic transition maps, so TMJ has the structure of a holomorphic vector
bundle.

An almost complex structure which is induced by a complex structure is called
integrable. Amazingly, it turns out that integrability is characterized by a tensorial
property. As one can easily verify, the expression

NJ(X,Y ) = [JX, JY ]− [X,Y ]− J [JX, Y ]− J [X, JY ], (1.2)

defines an anti-symmetric tensor on M , called the torsion or the Nijenhuis tensor
of J . It is straightforward to show that an integrable almost complex structure is
torsion-free in the sense that NJ vanishes. The converse statement is the famous
theorem of Newlander and Nirenberg [NN].

Theorem 1.1 (Newlander-Nirenberg). Any torsion-free almost complex structure is
induced by a unique complex structure.

There are several equivalent formulations of integrability. We recall a few of them
in the following proposition.

Proposition 1.2. Let J be an almost complex structure on M . Then the following
statements are equivalent

1. The Nijenhuis tensor NJ vanishes.

2. The bundle T ′MJ is preserved by the Lie-bracket.

3. The exterior differential decomposes as d = ∂J + ∂̄J

As usual, the third of these properties implies the identities

∂2
J = 0, ∂̄2

J = 0, ∂J ∂̄J = −∂̄J∂J . (1.3)

In particular, we get a cochain complex

Ωp,0(M)
∂̄J−→ Ωp,1(M)

∂̄J−→ Ωp,2(M)
∂̄J−→ · · · ,

for each non-negative integer p. The cohomology of this complex is denoted by
Hp,q
J (M,C) and called the Dolbeault cohomology of M .
Throughout this section, we have been careful to decorate anything depending

on the almost complex structure by a subscripted J . In the future, we shall not
follow this convention as meticulously, especially when the almost complex structure
is clear from the context.

1.3 Symplectic and Poisson Manifolds

A symplectic structure on M is a non-degenerate and closed two-form ω ∈ Ω2(M).
As with almost complex manifolds, a symplectic manifold must be of even dimension
and has a canonical orientation given by ωm. This also gives a canonical notion of
volume, although the volume form is usually normalized as ωm

m! .
Since the symplectic form is non-degenerate, it defines an isomorphism iω : TM →

TM∗ by contraction in the first entry. Using this isomorphism, we define the anti-
symmetric bivector field ω̃ = −(i−1

ω � i−1
ω )(ω), which satisfies ω·ω̃ = ω̃·ω = Id. The

Hamiltonian vector field of a function f is then defined by Xf = i−1
ω (df) = df ·ω̃.



4 Chapter 1 · Complex Differential Geometry

Notice the way we use a dot to denote contraction of tensors. For instance, the
expression ω·ω̃ denotes contraction of the right-most entry of ω with the left-most
vector of ω̃. This can be useful to keep track of contractions involving anti-symmetric
tensors such as the symplectic form.

A symplectic structure gives rise to the Poisson bracket on functions by the
formula

{f, g} = df ·ω̃·dg = −ω(Xf , Xg),

which satisfies the Jacobi identity and the Leibniz rule

{f, gh} = {f, g}h+ g{f, h}.

For this reason, the tensor ω̃ is also called the Poisson tensor.
In general, a Poisson structure on a manifold is an anti-symmetric, bilinear map

{·, ·} : C∞(M) × C∞(M) → C∞(M) satisfying the Jacobi identity and the Leib-
niz rule. The latter implies that such a Poisson bracket is given, as above, by an
anti-symmetric bivector field, called the Poisson tensor. On a symplectic manifold,
the Poisson tensor is non-degenerate, but this is not required of a general Poisson
manifold. In fact, a Poisson structure is induced from a symplectic structure if and
only if the Poisson tensor is non-degenerate.

On a Poisson manifold, we have the identity

[Xf , Xg] = X{f,g}.

This shows that the association f 7→ Xf defines a homomorphism from the Lie
algebra of smooth functions, equipped with the Poisson bracket, to the Lie algebra
of Hamiltonian vector fields.

If X is a vector field on M , the divergence of X is the unique function δX such
that

LXωm = δXωm.

Clearly, symplectic vector fields, and in particular Hamiltonian vector fields, are
divergence free.

1.3.1 Compatible Almost Complex Structure

If M is a manifold equipped with a symplectic structure ω and an almost complex
structure J , then ω and J are said to be compatible if the expression

g(X,Y ) = ω(X, JY ) (1.4)

defines a Riemannian metric on M . In other words, the bilinear form g must be
symmetric and positive definite.

If J is an almost complex structure, g is a Riemannian metric and ω is a symplectic
form, then the triple (J, g, ω) is called compatible if the three structures are related
by (1.4). Clearly, each of the structures in a compatible triple is determined by the
other two.

It is easily shown that symmetry of g is equivalent to J-invariance of ω, and
therefore also of g. Consequently, both g and ω have type (1, 1).

As usual, the metric g induces an isomorphism ig : TM → TM∗. This is related
to the isomorphism iω by iω = ig ◦ J . Since the metric and the symplectic form
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have type (1, 1), these isomorphisms interchange types. The inverse metric tensor is
defined by g̃ = (i−1

g � i−1
g )(g), and it is the unique symmetric bivector field which

satisfies g·g̃ = g̃·g = Id. The relation between the Poisson tensor ω̃ and the inverse
metric tensor g̃ is of course ω̃ = J ·g̃.

The Riemannian metric g induces a Hermitian structure hT
′M , or simply h, on

the eigensubbundle T ′M by

h(X,Y ) = g(X, Ȳ ),

which in turn gives rise to a Hermitian structure hK on the canonical line bundle K.
In general, we shall denote the Hermitian structure of a Hermitian vector bundle

by h with the name of the bundle as a superscript. However, the relevant bundle will
typically be clear from the context, and we shall therefore often drop the superscript,
as above.

1.3.2 First Chern Class

The expression (1.4) defines an injective map from the space of compatible almost
complex structures to the space of Riemannian metrics on M . In fact, one can
define a retraction of this map from the space of Riemannian metrics to the space
of compatible almost complex structures. Since the space of metrics is convex, the
space of compatible almost complex structures is contractible.

Using this, we can define the first Chern class of a symplectic manifold by

c1(M,ω) = c1(M,J) = −c1(KJ),

where J is any almost complex structure compatible with ω. By integrality of the
first Chern class, this definition is independent of J , since the space of almost complex
structure is contractible.

The first Chern class is an element of the cohomology group H2(M,Z). Its
reduction modulo 2 is a class w2(M) ∈ H2(M,Z2), called the second Stiefel-Whitney
class, which is independent of the symplectic structure. In other words, the second
Stiefel-Whitney class is a topological invariant of M .

In general, if L is any complex line bundle on M , the image of its first Chern
class c1(L) under the homomorphism H2(M,Z) → H2(M,R) is denoted by c̃1(L)
and called the real first Chern class. Recall that if ∇ is any connection on L, then
the real first Chern class is given by

c̃1(L) =
i

2π
[F∇],

where F∇ is the curvature of ∇.

1.3.3 Metaplectic Structure

Consider the positive Lagrangian Grassmannian L+M , which is just the space of
pairs (p, Jp) where p ∈ M and Jp is a compatible almost complex structure on the
tangent space TpM . The space L+M has the structure of a smooth bundle over
M , with the obvious projection. Sections J : M → L+M of this bundle correspond
precisely to compatible almost complex structures on M . Therefore, the space of
sections is contractible, and the projection L+M → M is a homotopy equivalence
with any section as homotopy inverse.
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At each point (p, Jp) ∈ L+M , we can consider the one dimensional space KJp =∧m
T ′M∗Jp . These form a smooth bundleK over L+M , and the pullback by an almost

complex structure, in the form of a section J : M → L+M , yields the canonical line
bundle KJ associated with the almost complex structure.

A metaplectic structure is a square root of the bundleK → L+M . More precisely,
we define

Definition 1.3. A metaplectic structure on the symplectic manifold (M,ω) is a line
bundle δ → L+M and a map

ψδ : δ2 → K,

which is an isomorphism of line bundles over L+M .

Clearly, a metaplectic structure exists if and only if the first Chern class c1(K) ∈
H2(L+M,Z) is even. But H2(L+M,Z) is canonically isomorphic to H2(M,Z) since
the projection L+M →M is a homotopy equivalence. Moreover, as noted above, any
compatible almost complex structure J : M → L+M provides a homotopy inverse,
inducing an isomorphism J∗ : H2(L+M,Z)→ H2(M,Z) which is independent of J .
By naturality of the first Chern class, we have J∗c1(K) = c1(KJ) = −c1(M,ω).
It follows that c1(K) is even if and only if the second Stiefel-Whitney class of M
vanishes. Thus we have proved

Proposition 1.4. A symplectic manifold (M,ω) admits a metaplectic structure if
and only if the second Stiefel-Whitney class of M vanishes.

Clearly, a metaplectic structure defines an element c1(δ) ∈ H2(M,Z), satisfying
2c1(δ) = −c1(M,ω). Moreover, inequivalent choices of metaplectic structures are
parametrized by H1(M,Z2).

The important feature of a metaplectic structure is that it provides a canonical
choice of a square root of the canonical line bundle, for any compatible almost com-
plex structure on a symplectic manifold. We shall have use for this later when we
construct a Hitchin connection in metaplectic quantization.

1.4 Kähler Manifolds

A Kähler manifold is a complex, symplectic, and Riemannian manifold such that
all three structures are compatible. More precisely, a Kähler manifold is a smooth
manifold M equipped with a compatible triple (J, g, ω), where J is an integrable
almost complex structure.

The Hermitian metric g on a Kähler manifold is called the Kähler metric, and
the symplectic form ω is called the Kähler form.

Notice that choosing a Kähler structure on a symplectic manifold amounts to
choosing a compatible and integrable almost complex structure. This will be used
later when we consider families of Kähler structures on a symplectic manifold.

The Levi-Civita connection on a Kähler manifold is the unique connection ∇ on
the tangent bundle which is both torsion-free,

∇XY −∇YX − [X,Y ] = 0,

and compatible with the metric, in the sense that

∇g = 0 or X[g(Y,Z)] = g(∇XY, Z) + g(Y,∇XZ),



1.4.1 · Curvature 7

for any vector fields X, Y and Z onM . A crucial fact about Kähler manifolds is that
the almost complex structure is parallel with respect to the Levi-Civita connection,

∇J = 0 or ∇X(JY ) = J∇XY. (1.5)

This implies that the Kähler form ω is parallel with respect to the Levi-Civita con-
nection, since it is related to g and J , which are both parallel, by (1.4).

Furthermore, (1.5) implies that the Levi-Civita connection preserves types, in the
sense that it preserves the subbundles T ′MJ and T ′′MJ of TMC. Consequently, the
Levi-Civita connection restricts to a connection ∇T ′M on T ′M , which is compatible
with the Hermitian and holomorphic structure of this bundle. As with Hermitian
structures, we shall in general avoid the superscript on connections when the bundle
in question is clear from the context.

On a Kähler manifold, we also have the canonical line bundle K. The Hermitian
structure and compatible connection on T ′M induce a Hermitian structure hK and a
compatible connection ∇K on K. The canonical line bundle inherits a holomorphic
structure from T ′M , which is of course compatible with the connection.

One of the characteristic properties of a Kähler manifold is the existence of certain
special coordinates (see [Wel]).

Proposition 1.5. Around any point p of a Kähler manifold, there exist complex co-
ordinates z1, . . . , zm such that the corresponding coordinate vector fields Z1, . . . , Zm

satisfy

g(Zj , Z̄k) = δjk and ∇Zj = 0, (1.6)

at the point p. Such coordinates are called geodesic coordinates.

1.4.1 Curvature

The Kähler curvature is simply the curvature of the Levi-Civita connection

R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z.

It is a two-form with values in the endomorphism bundle End(TM). A simple
consequence of (1.5) is that the curvature endomorphism commutes with J

R(X,Y )JZ = JR(X,Y )Z.

Thus the endomorphism-part of the curvature preserves types. By the usual sym-
metries of the Riemannian curvature, we see that R(JX, JY ) = R(X,Y ), so that R
is a (1,1)-form with values in End(T ′M)⊕ End(T ′′M).

As usual, the metric can be used to raise or lower indices. In particular, by
lowering an index, the curvature can be viewed as a symmetric section of

∧1,1
TM∗J �∧1,1

TM∗J , known as the curvature tensor. Alternatively, by raising an index, we get
a endomorphism of

∧1,1
TM∗J , known as the curvature operator.

The Ricci tensor r is the symmetric, J-invariant, bilinear form defined by

r(X,Y ) = Tr[Z 7→ R(Z,X)Y ],

and the associated skew-symmetric (1,1)-form ρ, given by

ρ(X,Y ) = r(JX, Y ),
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is called the Ricci form. Using the symmetries of the Kähler curvature, it can be
shown that the Ricci form is minus the image of the Kähler form under the curvature
operator ρ = −R(ω).

The curvature of the canonical line bundle is easily calculated using the general
fact that the curvature of the top exterior power of a vector bundle with connection
is the trace of the endomorphism-part of the curvature. This tells us that

F∇K = TrF∇T∗ = −iR(ω) = iρ, (1.7)

where the second equality is easily verified using the relationship between the Kähler
form and the Kähler metric. It follows that the Ricci form is closed and that the real
first Chern class of a Kähler manifold is represented by ρ

2π .

1.4.2 Divergence

Even though the divergence of a vector field X on a Kähler manifold only depends
on the symplectic structure, a simple computation shows that the divergence can be
calculated using the Levi-Civita connection by the formula

δX = Tr∇X,

in which the independence of the complex and Riemmanian structures is perhaps
not so evident. This formula generalizes to tensors of higher order. For vector fields
X1, . . . , Xn, we define

δ(X1 �· · ·�Xn) = δ(X1)X2 �· · ·�Xn +
∑
j

X2 �· · ·�∇X1
Xj�· · ·�Xn.

This defines a map δ : C∞(M,TMn)→ C∞(M,TMn−1), also called the divergence,
which does depend the Riemannian and complex structure. Repeated application of
the divergence defines a map δk : C∞(M,TMn)→ C∞(M,TMn−k).

The generalization of divergence to sections of the endomorphism bundle of the
tangent bundle will also be convenient. If α ∈ Ω1(M) is a one-form and X is a vector
field, we define

δ(X � α) = δ(X)α+∇Xα,

which gives a map δ : C∞(M,End(TM))→ Ω1(M).

1.4.3 Hodge Theory and the Ricci Potential

On any complex manifold M , closed forms are locally exact with respect to the
∂∂̄-operator. More precisely, if α ∈ Ωp,q(M) is a closed form and U ⊂ M is some
contractible open subset, then there exists a form β ∈ Ωp−1,q−1(U) such that

α|U = ∂∂̄β.

On compact Kähler manifolds, a global version of this statement can be proved using
Hodge theory.

Assume for the rest of this section that M is a compact Kähler manifold. Define
an inner product on forms by

〈α, β〉 =

∫
M

g(α, β)
ωm

m!
, (1.8)
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where g(α, β) denotes the pointwise inner product on forms induced by the Kähler
metric. Let d∗ and ∂̄∗ be the adjoints of d and ∂̄, with respect to the inner product
(1.8). These can be given explicitly in terms of the Hodge star operator , which is the
unique bundle isomorphism

∗ :
∧k

TM∗ →
∧2m−k

TM∗

satisfying

α ∧ ∗β = g(α, β)
ωm

m!
.

In fact, using this operator, the adjoints are given by

d∗ = − ∗ d ∗ and ∂̄∗ = − ∗ ∂̄ ∗ . (1.9)

The Laplacians ∆ and �̄ are then defined by

∆ = dd∗ + d∗d and �̄ = ∂̄∂̄∗ + ∂̄∗∂̄. (1.10)

Forms in the kernel of ∆ are called ∆-harmonic, and similarly for �̄.
The following theorem says that ∆-harmonicity is the same as �̄-harmonicity on

a Kähler manifold (see [Wel]).

Theorem 1.6. The Laplacians satisfy ∆ = 2�̄ on any Kähler manifold.

Using this theorem, it is easily seen that the Laplacian of a function on a Kähler
manifold can be calculated by

∆f = −2i δX ′f . (1.11)

Indeed, the divergence of a vector field is related to the adjoint of the exterior deriva-
tive by

δX = −d∗ig(X), (1.12)

for any vector field X on M , which gives

δX ′f = −iδJX ′f = id∗∂̄f = i(∂∗ + ∂̄∗)∂̄f = i∂̄∗∂̄f = i�̄f =
i

2
∆f,

since ∂∗∂̄f = −∂̄∂∗f = 0 on a Kähler manifold.
As can be seen by an elementary calculation, using the above definition of the

star operator and the formulas (1.9) for the adjoints, the Kähler form is an example
of a harmonic form.

It is a classical result (see e.g. [Wel]) that each cohomology class in Hk(M,C)
is represented uniquely by a harmonic form. Likewise, each cohomology class in
Hp,q(M,C) is represented uniquely by a harmonic form. The harmonic part αH of
a closed form α ∈ Ωk(M) is the unique harmonic representative of the cohomology
class [α] ∈ Hk(M,C).

By using harmonic representatives, the Dolbeault spaces Hp,q(M,C) sit as sub-
spaces of Hp+q(M,C), and we get the following Hodge decomposition of the coho-
mology

Hk(M,C) =
⊕
p+q=k

Hp,q(M,C). (1.13)

Further Hodge techniques can be applied to prove (see [Bes])
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Proposition 1.7. For any exact form α ∈ Ωp,q(M), there is a β ∈ Ωp−1,q−1(M)
such that α = 2i∂∂̄β.

We can apply this proposition to the Ricci form ρ, which is a real, closed (1,1)-
form on M and consequently differs from its harmonic part ρH by a real, exact
(1,1)-form. Therefore, we can write

ρ = ρH + 2i∂∂̄F,

where F ∈ C∞(M) is a real function, called a Ricci potential. Clearly, a Ricci
potential is determined up to a constant, by the compactness ofM , and consequently
it is uniquely determined if we require that its average over M is zero.



Chapter 2

Quantization

Quantization is concerned with the transition from classical to quantum mechanics.
Starting from a classical theory, the aim is to produce a quantum theory which
encodes its classical origin in the sense that the classical system can be recovered
through a certain limit. Quantization is, however, not a straighforward procedure as
there are quantum systems which do not have a meaningful classical limit, and also,
different quantum systems might have the same classical limit.

Let us be a bit more precise about the goals of quantization. In the Hamiltonian
viewpoint of classical mechanics, the phase space of states of a mechanical system can
be described by a symplectic manifold, with observables being the smooth functions
on the phase space. The dynamics evolve along the flow of the Hamiltonian vector
field of a special function called the Hamiltonian.

On the other hand, the state space of quantum mechanics is a (projective) Hilbert
space Q, and the observables are self-adjoint operators on Q.

Ideally, a quantization scheme associates a Hilbert space Q to a symplectic man-
ifold (M,ω), and a self-adjoint operator Q(f) on Q to a smooth function f on M ,
such that the assignment f 7→ Q(f) is linear and sends the constant function 1 to
the identity operator, and such that

[Q(f), Q(g)] = i~Q({f, g}). (2.1)

Furthermore, the quantization scheme should reproduce the so-called canonical quan-
tization when applied to R2m with the standard symplectic form. This means
that if we give R2m the standard coordinates of position q1, . . . , qm and momentum
p1, . . . , pm, then Q must be L2(Rm, dq) and the quantum observables corresponding
to position and momentum must be given by

Q(qi)ψ = qiψ and Q(pi)ψ = i~
∂ψ

∂qi
.

Finally, the quantization should also incorporate the symmetries of the classical the-
ory. If there is a natural group of symmetries Γ, acting onM by symplectomorphisms,
there should be an unitary action of Γ on Q so that the quantization of observables
is equivariant with respect to the two actions.

In summary, a quantization should define a functor, from the category of symplec-
tic manifolds to the category of Hilbert spaces, which satisfies (2.1) and reproduces
canonical quantization on R2m.

11
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Unfortunately, it can be proved that a quantization scheme satisfying all of these
properties does not exist (see [AE]). There are several ways of handling this incon-
venient fact. One is to restrict the set of quantizable observables to a subset of the
smooth functions. However, in the quantization schemes that we will consider, this
approach will severely limit the number of quantizable functions. Another approach
is based on the principle that (2.1) should only hold asymptotically as h goes to zero
and therefore be replaced by[

Q(f), Q(g)
]

= ihQ({f, g}) +O(h2) as h→ 0. (2.2)

We shall be working with two quantization schemes based on this idea. The first is
called geometric quantization, in which the quantum Hilbert space is constructed ge-
ometrically as an appropriate space of sections of a line bundle on the classical phase
space. The second is deformation quantization, where the inherent non-commutative
nature of the quantum observables is achieved through a deformation of the algebra
of classical observables. In this way, deformation quantization can be viewed as a
way of avoiding the need for a Hilbert space of quantum states.

In the following, we give a more detailed overview of these quantization methods.
For further information on quantization, we refer to [AE] and [Woo].

2.1 Geometric Quantization

In geometric quantization, the Hilbert space of quantum states arises as sections of
a certain Hermitian line bundle over the phase space. We shall present the construc-
tion by first introducing the notion of prequantization, which is a clean geometric
construction carrying most of the properties required of a quantization.

2.1.1 Prequantization

Consider a classical phase space in the form of a symplectic manifold (M,ω) of
dimension 2m. We shall denote by Γ a group of symmetries, which acts on M by
symplectomorphisms.

Definition 2.1. A prequantum line bundle over the symplectic manifold (M,ω) is
a complex line bundle L endowed with a Hermitian metric hL and a compatible
connection ∇L of curvature

F∇L = −iω.

Even though we shall be considering several different line bundles with connection,
we shall almost always consider only one connection on each bundle, and conseqently
we just denote the connection by ∇ when there is little or no chance of confusion.

With the symmetry group Γ acting on M , it is often natural to require that this
action lifts to an action on the prequantum line bundle L by bundle maps which
preserve the Hermitian structure and connection.

A symplectic manifold admitting a prequantum line bundle is called prequan-
tizable. Evidently this is not the case for every symplectic manifold. Indeed, the
real first Chern class of a prequantum line bundle is given by c̃1(L) =

[
ω
2π

]
, leading

us to the following necessary condition for prequantizability, called the prequantum
condition, [

ω
2π

]
∈ Im

(
H2(M,Z)→ H2(M,R)

)
. (2.3)
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This is, in fact, also sufficient to ensure the existence of a prequantum line bundle.
When they exist, the inequivalent prequantum line bundles overM are parametrized
by H1(M,U(1)).

For any natural number k, we consider the Hilbert space Pk = C∞(M,Lk) of
quantum states (or rather its completion), with the inner product

〈s1, s2〉 =

∫
M

h(s1, s2)
ωm

m!
. (2.4)

If f ∈ C∞(M) is a classical observable, the corresponding quantum observable is
given by the prequantum operator,

Pk(f) =
i

k
∇Xf + f,

which acts on Pk. It is easily checked that the prequantum operator of a real function
is self-adjoint, and that they satisfy the relation

[
Pk(f), Pk(g)

]
=
i

k
Pk({f, g}). (2.5)

The integer k is called the level of the quantization. By comparing (2.5) and (2.1),
we see that k−1 acts as a descretized substitute for ~, which can only attain a discrete
set of values by the prequantum condition.

Prequantization satisfies all the properties required of a quantization, except that
it fails to reproduce canonical quantization when applied to R2m. In a sense, it
produces a Hilbert space of wave functions which depend on twice as many variables
as they should. A standard way around this is to pick an auxiliary polarization on
M and consider the space of polarized sections of the line bundle. Several types of
polarizations can be applied, but we shall only be working with Kähler polarizations.

2.1.2 Kähler Structure

From now on, we assume that the symplectic manifold admits a Kähler sturcture.
If we choose a complex structure J on M which is compatible with the symplectic
structure, then this gives M the structure of a Kähler manifold, which we denote by
MJ . Since the Kähler form ω has type (1, 1), it follows that the connection on the
prequantum line bundle L gives it a holomorphic structure. Therefore, we can define
the space of quantum states to be the space of holomorphic sections,

Qk(J) = H0(MJ ,Lk) = {s ∈ Pk | ∇Xs = 0, ∀X ∈ T ′′MJ},

which is a subspace of the prequantum space Pk of smooth sections. If the manifold
M is compact, then Qk(J) is a finite dimensional space by standard theory of elliptic
operators.

This approach resolves the issue with the size of the quantum space when applied
to R2m, but unfortunalely the prequantum operators do not in general preserve
the space of holomorphic sections. One solution is to reduce the set of quantizable
functions. Indeed, the operator Pf preservesQk(J) if and only the function f satisfies

[Xf , T
′′MJ ] ⊂ T ′′MJ ,
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and only such functions will therefore be quantizable. For a real function f , this
condition implies that Xf is a Killing vector field of the Kähler metric, and conse-
quently the space of quantizable observables is at most finite-dimensional and often
trivial (see [Woo]).

To get more quantizable observables, we shall take a different approach in the
spirit of (2.2). The space Qk(J) is in fact a closed subspace of Pk (see [Woo]), and
therefore we have the orthogonal projection πk(J) : Pk → Qk(J). If f ∈ C∞(M) is
a classical observable, we define the corresponding quantum observable Qk(f)J by

Qk(f)J = πk(J) ◦ Pk(f).

These operators do not form an algebra, but they satisfy (2.2) (at least if M is
compact) in the sense that∥∥∥[Qk(f), Qk(g)]− i

k
Qk({f, g})

∥∥∥ = O(k−2) as k →∞, (2.6)

with respect to the operator norm on Qk(J). The proof of (2.6) relies on the fact
that these operators are Toeplitz operators, which we shall have much more to say
about later.

Although this quantization scheme gives a Hilbert space of the right size, it still
fails to produce the right answers on basic examples from quantum mechanics. In
the end, what really matters is the spectrum of the operators, and if the above
procedure is applied to the one-dimensional harmonic oscillator, the quantization
yields a spectrum which differs from the correct one by a shift. To deal with this
problem, the so-called metaplectic correction is introduced.

2.1.3 Metaplectic Quantization

Recall that the canonical line bundle KJ on the Kähler manifold MJ is a Hermitian
holomorphic line bundle, with Hermitian metric hKJ and compatible connection ∇KJ
of curvature iρJ , where ρJ is the Ricci form.

Suppose that M has vanishing second Stiefel-Whitney class and choose a square
root δJ of the canonical line bundleKJ . Then δJ inherits the structure of a Hermitian
holomorphic line bundle, with metric hδJ and connection ∇δJ of curvature i

2ρJ .
In analogy with the previous section, we consider the infinite-dimensional vector

space Pδk(J) = C∞(M,Lk � δJ), and the quantum space of metaplectic quantization
is then defined to be the subspace of holomorphic sections,

Qδk(J) = H0(MJ ,Lk � δJ) = {s ∈ Pδk(J) | ∇Xs = 0, ∀X ∈ T ′′MJ}.

Again, this is a closed subspace of Pδk(J), and if M is compact, it is of finite dimen-
sion.

The prequantum operator P δk (f)J , which now obviously depends on the complex
structure through the bundle δJ , and the quantum operator Qδk(f)J associated with
a classical observable f ∈ C∞(M) are defined by exactly the same formulas in terms
of the covariant derivative.

Although metaplectic quantization is the right thing to consider from a physical
perspective, a lot of the mathematical work on quantization is done in the simpler
case of standard geometric quantization, that is, without the metaplectic correction.
On many occasions, we shall work through both approaches and discuss some of the
differences and similarities.
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2.1.4 The Hitchin Connection

Obviously, the spaces Qk(J) and Qδk(J) depend on the choice of auxiliary Kähler
structure J , which from a physical perspective they should not. Moreover, the action
of the symmetry group is not likely to be by automorphisms of the Kähler structure.
Rather the group acts on the space of complex structures and permutes the quantum
spaces associated with different complex structures.

Suppose that the spaces Qk(J), for different choices of J , constitute the fibers of a
bundle over the space of Kähler structures. Then one could try to relate the different
fibers through parallel transport of some unitary connection. This is indeed the idea
behind the Hitchin connection, which will be one of our main objects of study. If the
Hitchin connection is flat, then the identification is essentially canonical. In addition,
it is natural to require that the Hitchin connection is equivariant with respect to the
action the symmetry group Γ. In particular, this would yield a representation of Γ
on the space of covariantly constant sections with respect to the Hitchin connection.

Similar ideas apply to the spaces Qδk(J), but since these spaces also depend on the
choice of square root of the canonical line bundle, the approach calls for a consistent
way of choosing such a square root. This is achieved through the use of a metaplectic
structure on the symplectic manifold.

Since the final outcome of quantization should not depend on the Kähler struc-
ture, we have so far been careful to indicate such depence in the notation throughout
the construction. In order to simplify notation and avoid unnecessary clutter, we
shall not be as meticulous in the future.

2.2 Deformation Quantization

Instead of constructing a Hilbert space of quantum states, the idea of deformation
quantization is to construct a non-commutative deformation of the algebra of classical
observables. More precisely, one looks for a family of non-commutative star products
∗h on C∞(M), parametrized by a real parameter h, which reproduces the usual
product of functions when the parameter is zero. By expansion in h, such a family
of products would have the form

f ∗h g =
∑
j

Cj(f, g)hj , (2.7)

where we require that C0(f, g) = fg.
In the description of quantization through Hilbert spaces and operators, one can

think of the star product as representing the product of quantum operators, so that
QfQg = Qf∗hg. Therefore, to comply with (2.2), we must require that

C1(f, g)− C1(f, g) = i{f, g}.

There are approaches to quantization which sidestep the Hilbert space completely
and define a spectrum of observables using the star product (see [BFF+]).

When considering general schemes for constructing star products, the question of
convergence in (2.7) is usually deferred by regarding h as a formal parameter. In this
case, the star product becomes a product on the algebra C∞h (M) = C∞(M)[[h]] of
formal functions, that is, of formal power series with coefficients in smooth functions.
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Definition 2.2. A formal deformation quantization on a symplectic manifold (M,ω),
is an associative andC[[h]]-bilinear product on the space of formal functions C∞h (M),

f ∗ g =
∑
j

Cj(f, g)hj ,

which satisfies

C0(f, g) = fg and C1(f, g)− C1(f, g) = i{f, g},

for all functions f, g ∈ C∞(M).

It is often natural to impose further conditions on a deformation quantization.
For instance, the star product is said to be differential if the operators Ck are bidif-
ferential operators. Moreover, a star product is normalized if 1 ∗ f = f ∗ 1 = f , for
any function f . Equivalently a star product is normalized if Cj(1, f) = Cj(f, 1) = 0,
for j ≥ 1, and consequently the phrase null on constants is also used.

If the manifold M is equipped with a complex structure, a star product is said
to be with separation of variables if f ∗ g = fg whenever f is holomorphic or g is
anti-holomorphic.

Finally, in the presence of a symmetry group Γ acting on M , it is natural to
seek a star product which is equivariant with respect to this action. More generally,
the quantization should be functorial, in the sense that the star product should be
equivariant with respect to any symplectomorphism.

2.2.1 Equivalence and Classification

An equivalence of two star products is an automorphism of C∞h (M) which sends one
star product to the other. It is natural to require an equivalence to be h-linear, which
implies that it has the form A =

∑
j Ajh

j , where each Aj is an endomorphism of
C∞(M). Moreover, since star products are deformations of the product on C∞(M),
the equivalence should restrict to the identity on this space.

Definition 2.3. An equivalence of two star products ∗ and ∗′ is a formal operator
A = Id +

∑
j≥1Ajh

j on C∞h (M) which satisfies

A(f ∗ g) = Af ∗′ Ag,

for all functions f, g ∈ C∞(M).

Since an equivalence A starts with the identity, the operators Aj do not have to
be invertible to ensure invertibility of A.

If the operators Ak are differential operators, the equivalence is said to be differ-
ential. As proved in [GR], an equivalence of differential star products must in fact
be a differential equivalence.

Clearly, the notion of deformation quantization makes sense for a general Poisson
manifold. By the famous result of Kontsevich [Kon], any Poisson manifold admits a
deformation quantization. Moreover, he gives a classification of equivalence classes
of star products on Poisson manifolds by certain formal deformations of the Poisson
tensor.

The existence of deformation quantizations on symplectic manifolds was first
proved by De Wilde and Lecomte [DWL] through purely cohomological considera-
tions. A more geometric proof of existence was given by Fedosov [Fed]. Using a
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symplectic connection, which is a torsion-free connection preserving the symplectic
form, he constructs a flat (Fedosov) connection on the bundle of formal Weyl alge-
bras on the tangent bundle. The covariantly constant sections are identified with
formal functions on M , and the Weyl product defines a star product on this space.

Associated with a Fedosov connection is its Weyl curvature, which is a closed
formal two form

−iω 1

h
+ ω0 + ω1h+ · · · ,

where ω in the first term is the symplectic form of the manifold.
The characteristic class of a Fedosov star product ∗ is the formal cohomology

class,

cl(∗) ∈ [ω]

2πh
+H2(M,C)[[h]],

represented by the Weyl curvature, multiplied by i
2π , of the Fedosov connection.

Fedosov showed that the star products defined by different Fedosov connections
are equivalent if and only if their characteristic classes agree. Moreover, Nest and
Tsygan [NT1, NT2] have showed that any differential star product is equivalent to a
Fedosov star product, and consequently the notion of characteristic class applies to
any differential star product.

2.2.2 Kähler Structure and the Formal Hitchin Connection

In order to construct deformation quantizations, additional structure is often helpful.
As with geometric quantization, we shall call upon a Kähler structure to aid us in
the construction of star products. On a Kähler manifold, Karabegov [Kar1] has
proved that deformation quantizations with separation of variables are completely
classified, not only up to equivalence, by formal deformations of the Kähler form.
Using this classification, we shall prove a general explicit formula for any deformation
quantization with separation of variables in Chapter 3.

On compact Kähler manifolds, a particular deformation quantization can be con-
structed using geometric quantization and the theory of Toeplitz operators. We shall
look further into this so-called Berezin-Toeplitz deformation quantization in Chap-
ter 4. It turns out that this star product fits into Karabegov’s classification, and we
can therefore give an explicit formula for it.

Once again, a quantization should not depend on the complex structure, and
consequently it is natural to seek a way of identifying star products constructed using
different complex structures. For the Berezin-Teoplitz star product on a compact
Kähler manifold, Andersen [And1] proposed that the star products obtained from
different complex structures should be identified by parallel transport of a formal
analog of the Hitchin connection. The construction of a star product from a Kähler
structure is not equivariant with respect to the action of a symmetry group Γ on the
space of Kähler structures, but permutes the different star products. If the formal
Hitchin connection is flat and equivariant with respect to the action, then this could
be used to define a symmetry equivariant star product on the space of covariantly
constant sections.





Chapter 3

Deformation Quantization
on Kähler Manifolds

In this chapter, we take a closer look at deformation quantization on general Kähler
manifolds. More precisely, we study star products with separation of variables, and
we shall give a local formula for any such star product, specified in terms of it
classifying Karabegov form.

The formula that we give is described in terms of combinatorial graphs in a
way which is greatly inspired by the work of Reshetikhin and Takhtajan [RT1].
Whereas they derived their formula through asymptotic expansion of integrals, our
presentation will be purely combinatorial.

We start with a review of Karabegov’s classification of star products with sepa-
ration of variables.

3.1 Karabegov’s Classification

Throughout this chapter, we will consider an arbitrary Kähler manifold M . As
usual, the Kähler metric is denoted by g, and, for reasons which will become obvious
shortly, the Kähler form is denoted by ω−1.

As with the classification of star products on Poisson and symplectic manifolds,
the notion of a formal deformation of the structure on the manifold forms a corner-
stone in Karabegov’s classification.

Definition 3.1. A formal deformation of the Kähler form ω−1 is a formal two-form

ω = ω−1
1

h
+ ω0 + ω1h+ ω2h

2 + · · · ,

where each ωk is a closed form of type (1, 1).

Following [Kar1], we assign a formal deformation of the Kähler form to any
star product with separation of variables in the following way. For any set of local
holomorphic coordinates z1, . . . , zm on a contractible subset U ⊂ M , there exists a
set of formal functions Ψ1, . . . ,Ψm on U ,

Ψk = Ψk
−1

1

h
+ Ψk

0 + Ψk
1h+ Ψk

2h
2 + · · · ,

19
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which satisfy the following system of equations

Ψk ∗ zl − zl ∗Ψk = δkl. (3.1)

Using these functions, a formal two-form on U is defined by

ω|U = −i∂̄
( m∑
k=1

Ψkdzk
)
,

and as the notation suggests, this two-form is independent of the solution to (3.1)
and the choice of local coordinates. The resulting global two-form ω is a formal
deformation of the Kähler form, called the Karabegov form of the star product, and
is denoted by Kar(∗).

Theorem 3.2 (Karabegov). Any deformation quantization with separation of vari-
ables is completely determined by its Karabegov form.

We stress that the Karabegov form determines the star product completely and
not only up to equivalence. If ω is a formal deformation of the Kähler form, we
denote by ∗ω the unique star product such that

Kar(∗ω) = ω.

Now, a deformation quantization with separation of variables is in particular a
differential star product, and, as shown in [Kar2], the characteristic class is given in
terms of the Karabegov form by

cl(∗) =
[Kar(∗)]

2π
− c̃1(M)

2
, (3.2)

where c̃1(M) denotes the real first Chern class of the Kähler manifold. It follows
immediately that two star products with separation of variables are equivalent if and
only if their Karabegov forms are cohomologous.

3.1.1 Change of Parameter

Later, we will need to consider star products which arise from another star product
by a change of parameter. Given a star product ∗, with coefficients Ck, and a formal
constant

ϕ(h) = h+ ϕ2h
2 + ϕ3h

3 + · · · ∈ C[[h]],

we can consider a new star product ∗ϕ(h) given by the following change of parameter

f ∗ϕ(h) g = (f ∗ g)[ϕ(h)] =
∑
k

Ck(f, g)(ϕ(h))k

= fg + C1(f, g)h+ (C2(f, g) + ϕ2C1(f, g))h2 + · · · .

As in (f ∗g)[ϕ(h)] above, we use square brackets to denote substitution in the formal
parameter. If ∗ is with separation of variables, then so is ∗ϕ(h), and if Ψ1, . . . ,Ψk

are solutions to (3.1), then by substituting ϕ(h) for h, we get that

Ψk[ϕ(h)] ∗ϕ(h) z
l − zl ∗ϕ(h) Ψk[ϕ(h)] = δkl,
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where the inverse of ϕ(h), which is needed when substituting in the expression for
Φk, is the inverse in the field of formal Laurent series.

This shows that the Karabegov form is equivariant with respect to parameter
change,

Kar(∗ϕ(h)) = Kar(∗)[ϕ(h)]. (3.3)

It also proves that the form cl(∗), characterizing the equivalence class of the star
product, is equivariant with respect to change of parameter.

3.2 A Combinatorial Formula for Star Products

Having recalled the classification of deformation quantizations on a Kähler manifold,
we set out to give an explicit formula for any such star product.

More precisely, we fix a formal deformation ω of the Kähler form ω−1, and we
shall ultimately present a local formula for the unique star product ∗ω such that
Kar(∗ω) = ω.

The formula is given by an interpretation of certain combinatorial graphs as bi-
differential operators, acting on pairs of functions onM , and we start by introducing
the graphs that will constitute the main ingredient in the construction.

3.2.1 Graphs

A directed graph consists of vertices connected by directed edges. If G is a graph,
then the set of vertices is denoted by VG and the set of edges by EG. The vertex
on which an edge is incoming is called the head, and the vertex at the other end is
called the tail.

An edge is a loop if it has the same head and tail, and a cycle is a path that
starts and ends at the same vertex. If two edges connect the same vertices, they are
said to be parallel.

We shall allow parallel edges in our graphs, but not cycles. In particular, we do
not allow any loops. A graph without cycles is said to be acyclic, and if it is finite, it
must have at least one vertex, called a source, with only outgoing edges and at least
one sink with only incoming edges.

Any graph that we shall consider must also have a distinguished set of numbered
vertices, which we shall call external. The rest of the vertices are called internal.
The set of external vertices is denoted by Ext(G), and the internals by Int(G). The
first external vertex must be a source and the last must be a sink. In general, only
external vertices are allowed to be either a source or a sink.

A weighting of a graph is an assignment of a weight, which is an integer from the
set {−1, 0, 1, 2, . . .}, to every internal vertex. All graphs that we shall consider must
be weighted, and furthermore, we require the vertices of weight -1 to have degree at
least three.

If G is a graph, the weight of a vertex v ∈ Int(G) is denoted by w(v). The total
weight of G is defined by

W (G) = |EG| +
∑

v∈Int(G)

w(v).

An isomorphism of two graphs is a bijective mapping of vertices to vertices and
edges to edges, preserving the way vertices are connected by edges, and preserving
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Figure 3.1: A weighted acyclic graph of total weight 27.

the external edges and their numbering. Moreover, an isomorphism should preserve
the weights on internal vertices. The set of automorphisms of a graph G is denoted
by Aut(G).

The set of isomorphism classes of finite, acyclic and weighted graphs with n
external vertices is denoted by An. The subset of graphs with total weight k is
denoted by An(k).

3.2.2 Labelled Graphs and Partition Functions

In this section, we define the partition function of a graph. Let us fix a set of
holomorphic coordinates z1, . . . , zm on an open and contractible subset U of M . On
the subset U , we choose a formal potential of the form ω, that is, we choose a formal
function

Φ = Φ−1
1

h
+ Φ0 + Φ1h+ Φ2h

2 + · · · ,

such that ω|U = i∂∂̄Φ. The existence of such a potential is guaranteed by the fact
that ω is closed and of type (1, 1).

On U , the Kähler metric is given by the matrix with entries

gpq̄ = g(Zp, Z̄q) =
∂2Φ−1

∂zp∂z̄q
,

where Zp denotes the coordinate vector field of zp, as usual. Of course this matrix is
invertible, and we denote the entries of the inverse by gq̄p. This is the matrix for the
inverse metric tensor g̃ in local coordinates. With this notation, the Poisson bracket
is given by

{f1, f2} = i
∑
pq

gq̄p
(∂f1

∂zp
∂f2

∂z̄q
− ∂f1

∂z̄q
∂f2

∂zp

)
.

Having fixed notation, we now define the partition function of a graph. We start
by considering graphs with additional structure.

A labelling l of a graph G ∈ An is an assignment of indices to the incoming and
outgoing edges at each vertex of the graph. If v is a vertex and e is an incident edge,
then the index specified by the labelling is an integer in the set {1, . . . ,m} and is
denoted by l(v, e).

An isomorphism of labelled graphs is of course an isomorphism preserving the
labels. The set of labellings of a graph G is denoted by L(G), and the set of isomor-
phism classes of labelled graphs with n external edges is denoted by Ln.
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Figure 3.2: A labelled graph.

Consider smooth functions f1, . . . , fn on M , and let us introduce a partition
function ΛlG(f1, . . . , fn) of a labelled graph G with labelling l. For notational con-
venience, we first define two maps V lf1,...,fn : VG → C∞(U) and El : EG → C∞(U),
which assign a function to each vertex and edge of the graph, respectively.

Let v be a vertex of G with p incoming and q outgoing edges, and suppose that
the incoming edges are labelled with indices i1, . . . , ip, and the outgoing edges are
labelled with indices j1, . . . , jq. If v is the k’th external vertex, then we define

V lf1,...,fn(v) =
∂p+qfk

∂zi1 · · · ∂zip∂z̄j1 · · · ∂z̄jq
.

If v is an internal vertex of weight w, then we define

V lf1,...,fn(v) = − ∂p+qΦw
∂zi1 · · · ∂zip∂z̄j1 · · · ∂z̄jq

.

Notice that this does not depend on the choice of potential Φ, since internal vertices
have at least one incoming and outgoing edge.

Now, suppose that e is an edge from u to v, and let s = l(u, e) and r = l(v, e).
Then the function El is defined by

El(e) = gs̄r.

Using this, we define the partition function of a labelled graph by

ΛlG(f1, . . . , fn) =
( ∏
v∈VG

V lf1,...,fn(v)
)( ∏

e∈EG

El(e)
)
.

Finally, we can define the partition function of a graph without labelling.

Definition 3.3. For any graph G ∈ An and smooth functions f1, . . . , fn, the parti-
tion function ΓG(f1, . . . , fn) ∈ C∞(U) is given by

ΓG(f1, . . . , fn) =
∑

l∈L(G)

ΛlG(f1, . . . , fn),

where the sum is taken over all labellings of G.

Let us give a more concise description of this partition function. First, we intro-
duce the following notation. If f ∈ C∞(U) is a function, we define, for each pair of
non-negative integers p and q, a covariant symmetric tensor f (p,q) on U of type (p, q)
by

f (p,q)(Zi1 , . . . , Zip , Z̄j1 , . . . , Z̄jq ) =
∂p+qf

∂zi1 · · · ∂zip∂z̄j1 · · · ∂z̄jq
.
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Assign to each vertex v ∈ VG, with p incoming and q outgoing edges, a symmetric
tensor by the following rule. If v is the k-th external vertex, we associate the tensor
f

(p,q)
k , and if v is an internal vertex of weight w, we associate the tensor −Φ

(p,q)
w . Then

the partition function ΓG(f1, . . . , fn) is given by contracting the tensors associated
with each vertex, using the Kähler metric, as prescribed by the edges of the graph.
Since the tensors are completely symmetric, this contraction is well-defined.

3.2.3 A Local Star Product

Using the partition functions of graphs, we can define the following formal multi-
differential operator

D(f1, . . . , fn) =
∑
G∈An

1

|Aut(G)|
ΓG(f1, . . . , fn)hW (G).

If we define the operators

Dk(f1, . . . , fn) =
∑

G∈An(k)

1

|Aut(G)|
ΓG(f1, . . . , fn),

then D is given by the formal power series D =
∑
kDkh

k.
The following important theorem will take a few sections to prove.

Theorem 3.4. The product

f1 • f2 = D(f1, f2) =
∑
k

Dk(f1, f2)hk (3.4)

defines a normalized formal deformation quantization with separation of variables on
the coordinate neighborhood U .

Since the only graph with two external vertices and total weight zero is the graph
with no edges and no internal vertices, we clearly have

D0(f1, f2) = f1f2.

Moreover, there is only one graph of total weight one, namely the graph with no
internal vertices and only one edge connecting the two external vertices. Therefore,

D1(f1, f2) =
∑
pq

gq̄p
∂f1

∂z̄q
∂f2

∂zp
,

and we get that

D1(f1, f2)−D1(f2, f1) = i{f1, f2},

as required of a deformation quantization. It follows that • defines a star product if
it is associative, and this is indeed thar hardest part to prove.

If we assume associativity for moment, then we note that the expression for the
star product • is with separation of variables since the first external vertex has no
incoming edges and the second has no outgoing. Also, note that the star product is
normalized since any graph of total weight higher than zero must have edges, and
therefore the external vertices must have degree at least one.
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Thus the only part of Theorem 3.4 that remains to be proved is associativity of
the star product. We will prove this by combinatorial arguments involving certain
modifications on graphs. Since the size of the automorphism group of a graph does
not behave well under these modifications, the expression for the star product given
above is not suitable to work with. Therefore, we need to find a different expression
which behaves better when modifying the graphs.

3.2.4 Circuit Graphs

If G is a graph in An, a circuit structure on G is a total ordering of the incoming
as well of the outgoing edges at each vertex of G. This gives rise to a numbering
of the incoming as well as the outgoing edges at each vertex. More precisely, if v is
a vertex of G with an incident edge e, then the circuit structure specifies a natural
number c(v, e). An isomorphism of circuit graphs is an isomorphism which preserves
the ordering on the incoming and outgoing edges at each vertex.

Figure 3.3: Different representations of a circuit graph.

Figure 3.3 shows two ways of representing a circuit structure graphically. The
latter, with rectangular vertices, is usually preferred. This also motivates the name
circuit structure as it resembles a diagram of an electrical circuit, where a number
of chips, with input and output pins, are connected by wires. This analogy is also
supported by the fact that our graphs are acyclic.

The set of circuit structures on G is denoted by C(G), and the set of isomorphism
classes of circuit graphs with n external vertices is denoted by Cn.

Very often, we shall be working with graphs equipped with both a labelling and
a circuit structure, and we will need to enforce a certain compatibility between the
two structures.

If G ∈ An is a graph equipped with a labelling l and a circuit structure c, we say
that l and c are compatible if for any vertex v and any two edges e and e′ incident to
v, with the same orientation, we have that c(v, e) ≤ c(v, e′) implies l(v, e) ≤ l(v, e′).
In other words, the incoming edges of a vertex should be labelled ascendingly with
respect to the ordering given by the circuit structure, and likewise for the outgoing
edges.

If G is a graph with labelling l, the set of compatible circuit structures is denoted
by C(G, l). The set of isomorphism classes of labelled graphs with a compatible
circuit structure is denoted by LCn .

Given a labelled graph, the number of compatible circuit structures will be im-
portant to us. To calculate this, we will need some notation.

Recall that a multi-index is an m-tuple α = (α1, . . . , αm) ∈ Nm0 . The length
of α is defined to be |α| = α1 + . . . + αm, and we define α! = α1! · · ·αm!. A
labelling of a graph assigns two multi-indices to each vertex in a canonical way.
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Figure 3.4: A labelled circuit graph.

More precisely, if G is a graph with labelling l, then we have two canonically defined
maps αl, βl : VG → Nm0 . If v is a vertex of G, then the multi-index αl(v) counts the
number of occurrences of each label among the incoming edges of v. Similarly, the
multi-index βl(v) counts the occurrences of each label among the outgoing edges.

Now, given the graph G with labelling l, the number of compatible circuit struc-
tures is given by

C(G, l) =
∏
v∈VG

αl(v)!βl(v)!.

Using this, we can rewrite the formula for the operator D as

D(f1, . . . , fn) =
∑
G∈An

∑
l∈L(G)

∑
c∈C(G,l)

1

|Aut(G)|C(G, l)
ΛlG(f1, . . . , fn)hW (G),

since the circuit structure does not influence on the value of the partition function.
Suppose that G ∈ An is any graph with n external edges. If we pick a labelling

l and a compatible circuit structure c, then (G, l, c) represents an element of LCn .
If we choose a different labelling l′ and circuit structure c′ on G, then (G, l′, d′)
represents the same isomorphism class in LCn if and only if there exists an automor-
phism of G which sends the labelling l to l′ and the circuit structure c to c′. Such
an automorphism is uniquely determined, since circuit structures do not have any
automorphisms, and thus we have proved the following proposition

Proposition 3.5. The operator D is given by

D(f1, . . . , fn) =
∑
G∈LCn

1

C(G)
ΛG(f1, . . . , fn)hW (G),

for any functions f1, . . . , fn.

As we shall often do when the additional structure is clear from the context, we
have omitted the labelling from the notation in this proposition.

3.2.5 Associativity of the Star Product

With the alternative expression for the operator D given in Proposition 3.5, we
are ready to prove associativity of the local product defined by (3.4). This is an
immediate corollary of the following theorem.

Theorem 3.6. We have

D(f1, D(f2, f3)) = D(f1, f2, f3) = D(D(f1, f2), f3),

for any functions f1, f2 and f3.
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We shall only prove the first equality of this theorem as the second equality
will follow by analagous arguments. To prove Theorem 3.6, we must have a better
understanding of the expression D(f1, D(f2, f3)). Writing this out in further detail,
we have

D(f1, D(f2, f3)) =
∑

G1∈LC2

∑
G2∈LC2

1

C(G1)C(G2)
ΛG1

(f1,ΛG2
(f2, f3))hW (G1)hW (G2),

and consequently ΛG1
(f1,ΛG2

(f2, f3)) is the crucial part to understand.
Before we prove Theorem 3.6, let us illustrate, with an example, how graphs in

the expression for D(f1, f2, f3) arise from D(f1, D(f2, f3)).

Example 3.7. Suppose that we have two graphs G1 and G2 in LC2 as depicted in
Figure 3.5.

Figure 3.5: The graphs G1 and G2.

We think of G2 as representing a term of the inner D in D(f1, D(f2, f3)), and G1 as
representing a term of the outer D. More precisely, we let

f̂ = ΛG2
(f2, f3) =

∂2f1

∂z̄1∂z̄4

∂3Φ0

∂z1∂z̄2∂z̄3

∂4Φ1

∂z2∂z4∂z4∂z̄3

∂f2

∂z1
g1̄4g4̄1g2̄2g3̄4g3̄1,

and we want to calculate the partition function

ΛG1(f1, f̂) = − ∂2f1

∂z̄2∂z̄4

∂6Φ2

∂z1∂z4∂z̄2∂z̄3∂z̄3∂z̄4

∂4f̂

∂z1∂z1∂z2∂z4
g2̄1g4̄4g2̄2g3̄1g3̄4g4̄1.

Informally, we have the picture in Figure 3.6 in mind as a graphical representation
of this expression.

Figure 3.6: Calculating ΛG1
(f1,ΛG2

(f2, f3)).

Since f̂ is given by a product, the Leibniz rule says that ∂4f̂
∂z1∂z1∂z2∂z4 is given by a

sum where each term represents a certain way of distributing the partial derivatives
among the factors.

Let us focus on one such term, say the one where the first and the third partial
derivative from the left hit the factor ∂3Φ0

∂z1∂z̄2∂z̄3 , the second derivative hits the factor
∂2f1
∂z̄1∂z̄4 , and the fourth hits the factor g3̄4. That term is then given by

∂3f1

∂z1∂z̄1∂z̄4

∂5Φ0

∂z1∂z1∂z2∂z̄2∂z̄3

∂4Φ1

∂z2∂z4∂z4∂z̄3

∂f2

∂z1
g1̄4g4̄1g2̄2 ∂g

3̄4

∂z4
g3̄1.
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But partial derivatives of the inverse metric can be easily expressed in terms of partial
derivatives of the metric, as in

∂g3̄4

∂z4
= −

∑
pq

g3̄p ∂gpq̄
∂z4

gq̄4 = −
∑
pq

g3̄p ∂3Φ−1

∂z4∂zp∂z̄q
gq̄4.

If we choose particular values, say p = 1 and q = 2, for the summation variables,
then we arrive at

− ∂3f1

∂z1∂z̄1∂z̄4

∂5Φ0

∂z1∂z1∂z2∂z̄2∂z̄3

∂4Φ1

∂z2∂z4∂z4∂z̄3

∂3Φ−1

∂z1∂z4∂z̄2

∂f2

∂z1
g1̄4g4̄1g2̄2g3̄1g2̄4g3̄1

as an example of what terms in the expression for ∂4f̂
∂z1∂z1∂z2∂z4 look like.

If we insert this into the expression for ΛG1
(f1, f̂) above, we get an example

of what terms in the expression for D(f1, D(f2, f3)) look like. But this particular
example can be represented graphically by ΛG(f1, f2, f3), where G ∈ LC3 is the graph
shown in Figure 3.7.

Figure 3.7: A fusion G of the two graphs G1 and G2.

With Example 3.7 in mind, let us turn to more general considerations. The graph
in Figure 3.7 is an example of a fusion of the graphs G1 and G2. Let us define this
notion more carefully.

Let G1 and G2 be two graphs in LC2 . A fusion of G1 onto G2 is a graph G ∈ LC3 ,
with three external vertices, obtained through the following procedure. Cut out the
second external vertex of G1, leaving a collection of labelled edges with loose ends.
Connect each of these loose ends, one at a time, to the graph G2 in one of two possible
ways. The first is to connect a loose end to one of the vertices of G2 and extend the
circuit structure at the vertex, in any way compatible with the labelling, to include
the newly attached edge. The second possibility os to attach a loose end to one of
the edges of G2. This is done by adding a vertex of weight -1 on the edge, choosing
any labelling of the two edges incident to the new vertex, attaching the loose end to
the new vertex, and choosing a circuit structure at the vertex. Finally, the first and
second external vertices of G2 will be the second and third external vertex of the
fusion, respectively.

Clearly, a fusion of two graphs results in a labelled circuit graph with three
external vertices. The set of isomorphism classes of such graphs, which can be
obtained from two graphs G1 and G2 through a fusion procedure, is denoted by
F(G1, G2).

Given a labelled circuit graph G ∈ LC3 , it is natural to ask if G can be obtained
as a fusion of two graphs G1 and G2 in LC2 . Moreover, it is natural to ask how much
information about the graphs G1 and G2 is encoded in a fusion.
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Given two vertices u and v of a graph, we say that v is a successor of u if there
exists a directed path from u to v. A crucial observation is that when G1 is fused
to G2, any vertex in G2 which is a successor of the first external vertex in G2 will
be a successor of the second external vertex in the fusion. Moreover, vertices that
arose by attaching a loose end to an edge of G2 will also be successors of the second
external vertex. On the other hand, none of the vertices of G1 will succeed the second
external vertex in the fusion.

These observations can be used to reconstruct nearly all the information about
the structure of the graphs G1 and G2 from a fusion of these. Moreover, as we shall
see, any labelled circuit graph with three external vertices arises as a fusion.

Suppose that G ∈ LC3 is any labelled circuit graph. We seek two labelled circuit
graphs G1 and G2 such that G ∈ F(G1, G2). We can completely determine the
isomorphism class of G2 in LC2 by the following procedure. Delete all vertices from
G which are not successors of the second external vertex, as well as all edges incident
to at least one such vertex. The result may contain vertices of weight -1 and degree
2. These are the remnants of vertices arising during the fusion when a loose edge
end is connected to an edge of G2. Every such vertex is deleted and the resulting
two loose ends are spliced, forgetting their labelling. Finally, the second and third
external vertices are the only external vertices left, and they will be the first and
second external vertices in G2, respectively.

In a similar way, we can almost determine the isomorphism class of the labelled
circuit graph G1 by deleting all successors of the second external vertex in G, and
all edges between two such successors, and then connect all the remaining loose edge
ends to a new vertex, which will be the second external vertex of G1. There is
however no canonical way of telling what the circuit structure at the second external
vertex should be.

To deal with this ambiguity, we define an equivalence relation on the set LC2 of
labelled circuit graphs with two external vertices. Consider two graphs G and G′

in LC2 , with labellings l and l′ and circuit structures c and c′. We say that these
graphs are equivalent, and we write G ∼ G′, if there exists an isomorphism between
G and G′ which preserves the labelling at all vertices, and which preserves the circuit
structure, except possibly at the second external vertex. In the discussion above, the
equivalence class of the graph G1 is then completely determined.

We summarize our findings in the following proposition

Proposition 3.8. For any labelled circuit graph G ∈ LC3 , there exist two labelled
circuit graphs G1, G2 ∈ LC2 such that G ∈ F(G1, G2). Moreover, the equivalence
class of G1 is uniquely determined by G, and so is the isomorphism class of G2.

When calculating D(f1, D(f2, f3)), we are basically faced with the task of cal-
culating ΛG1

(f1,ΛG2
(f2, f3)) for any two labelled circuit graphs G1 and G2. As

illustrated in Example 3.7, this is given by a sum where each term can be repre-
sented by a fusion of G1 and G2.

Now, suppose that during a fusion an edge incident to the second external vertex
in G1 and with label j is attached to a vertex v in G2, and suppose that v already
has k incoming edges with label j. Then, when extending the circuit structure at v
to include the newly attached edge, there are k + 1 ways of placing the new edge in
the ordering of the incoming edges. Moreover, suppose that l is the labelling of G1,
and let u be the second external vertex. Then the size of the equivalence class [G1]
is given by αl(u)!.
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These observations suffice to realize that∑
G∈[G1]

1

C(G)C(G2)
ΛG(f1,ΛG2

(f2, f3)) =
∑

G∈F(G1,G2)

1

C(G)
ΛG(f1, f2, f3).

Since W (G1) + W (G2) = W (G) if G ∈ F(G1, G2), we can multiply the left-hand
side by hW (G1)hW (G2) and the right-hand side by hW (G) and sum over all graphs
G2 ∈ LC2 and all equivalence classes [G1] in LC2 /∼ to get

D(f1, D(f2, f3)) =
∑

G1∈LC2

∑
G2∈LC2

1

C(G1)C(G2)
ΛG1

(f1,ΛG2
(f2, f3))hW (G1)hW (G2)

=
∑

[G1]∈LC2 /∼

∑
G2∈LC2

∑
G∈F(G1,G2)

1

C(G)
ΛG(f1, f2, f3)hW (G).

But as [G1] runs through all equivalence classes of LC2 /∼, and G2 runs through
LC2 , then Proposition 3.8 tells us that the sets F(G1, G2) partition the set LC3 , that
is, they form a collection of disjoint sets whose union is all of LC3 . Thus we conclude
that

D(f1, D(f2, f3)) =
∑
G∈LC3

1

C(G)
ΛG(f1, f2, f3)hW (G) = D(f1, f2, f3).

This proves the first equality of Theorem 3.6. The other equality is proved by
similar methods, and therefore the theorem is proved. Furthermore, this also proves
Theorem 3.4, which follows as an immediate corollary.

3.3 Coordinate Invariance and Classification

In this section, we prove that the local star product of Theorem 3.4 is independent
of the coordinates used in its definition. This implies that it defines a global star
product on M , and, as we shall see, the Karabegov form of this global star product
is given by the formal deformation ω of the Kähler form which was used in its
construction. These claims will be simple consequences of the following theorem.

Theorem 3.9. The local star product • on U has Karabegov form ω|U .

Proof. We shall prove that the formal functions Ψr = ∂Φ/∂zr satisfy the relation

Ψr • zs − zs •Ψr = δrs. (3.5)

With reference to Section 3.1, this will prove the theorem since

ω|U = i∂∂̄Φ = −i∂̄(
∑
k

Ψkdzk).

Clearly, we have D0(Ψr
−1, z

s)−D0(zs,Ψr
−1) = 0 and

D1(Ψr
−1, z

s)−D1(zs,Ψr
−1) = −i{Ψr

−1, z
s} = δrs,
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so the identity (3.5) is equivalent to the system of identities

k−1∑
l=−1

Dk−l(Ψ
r
l , z

s) = 0, k ≥ 1.

To prove these, we define a modification on graphs called a budding. If l > −1 and
G ∈ A2(k − l) is a graph, we define the budded graph B(G) ∈ A2(k + 1) by the
following procedure. Let u denote the first external vertex of G and convert this to
an internal vertex of weight l. Then add a new first external vertex and connect it
to u by a single edge.

Figure 3.8: A budding of a graph.

We had to exclude the case l = −1 because the first external vertex of G might
have degree one, in which case the budded graph would not satisfy the rule that
internal vertices of weight -1 must have degree at least three. However, if we let
A1

2(k + 1) be the set of graphs with degree one on the first external vertex, and
A>1

2 (k + 1) be the set of graphs with degree more than one on the first external
vertex, then the budding construction defines a map B : A>1

2 (k + 1)→ A1
2(k + 1).

We conclude that the budding construction gives a map

B : A>1
2 (k + 1) ∪

k−1⋃
l=0

A2(k − l)→ A1
2(k + 1).

The inverse map can easily be constructed, so clearly this map is a bijection. Fur-
thermore, it is clear that the budding map preserves the size of the automorphism
group.

Now, the crucial property of the budding map is that

ΓB(G)(Ψ
r
−1, z

s) = −ΓG(Ψr
l , z

s),

for any graph G in the domain of B. Since B is a bijection which preserves the size
of the automorphism group, this implies that

k−1∑
l=−1

Dk−l(Ψ
r
l , z

s) =

k−1∑
l=−1

∑
G∈A(k−l)

1

|Aut(G)|
ΓG(Ψr

l , z
s)

=
∑

G∈A1
2(k+1)

ΓG(Ψr
−1, z

s)

|Aut(G)|
+

∑
G∈A>1

2 (k+1)

ΓG(Ψr
−1, z

s)

|Aut(G)|
+

k−1∑
l=0

∑
G∈A2(k−l)

ΓG(Ψr
l , z

s)

|Aut(G)|

= 0.

This proves the theorem.

Karabegov’s classification has the obvious property that restriction of a star prod-
uct to an open subset corresponds to restriction of the Karabegov form. Therefore,
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it follows immediately that • is the restriction of the unique star product ∗ω on M
with Karabegov form ω. In particular, the explicit expression (3.4) for • must be
independent of the local coordinates used on U .

Let us write the partition functions as ΓωG to emphasize the dependence on our
initial choice of formal deformation of the Kähler structure ω. With this notation,
we can summarize our findings of this chapter in the following theorem.

Theorem 3.10. The unique formal deformation quantization on M with Karabegov
form ω is given by the local formula

f1 ∗ω f2 =
∑
G∈A2

1

|Aut(G)|
ΓωG(f1, f2)hW (G),

for any functions f1 and f2 on M .

This theorem implies that the operator D is coordinate independent when ap-
plied to two functions, and hence also when applied to three by Theorem 3.6. We
conjecture that the general formula for D is coordinate invariant and that there are
relations analagous to Theorem 3.6 when applied to a larger collection of functions.

Finally, it would be interesting to use the local combinatorial formula for the star
product to give a global formula for the star product in terms of covariant derivatives
and the global form ω. Possibly this could be achieved by applying a similar graphical
tensor notation.



Chapter 4

Differential and Toeplitz Operators

In this chapter, we return to geometric quantization. As discussed in Chapter 2, the
observables in quantization are self-adjoint operators on the space of quantum states.
In geometric quantization, this quantum space is formed by sections of a line bundle,
and we shall investigate the properties of two particular types of operators on this
space, namely differential and Toeplitz operators, and the relationship between the
two.

As usual, we consider a Kähler manifold M with a prequantum line bundle L.
All results of this chapter are valid for both metaplectic and standard geometric
quantization, so let us work in a slightly more general setting which includes both.
Let L be any Hermitian holomorphic line bundle on M and consider the space PLk =
C∞(M,Lk �L) of smooth sections and the quantum space QLk = H0(M,Lk �L) of
holomorphic sections. Metaplectic and standard geometric quantization correspond
to the cases where L is a square root of the canonical line bundle and the trivial
bundle, respectively. The prequantum and quantum operators are defined by the
usual expressions and denoted by PLk (f) and QLk (f), respectively.

4.1 Differential Operators

A differential operator acting on PLk is an operator which, with a choice of local
coordinates, can be written as a polynomial in the partial derivatives with coefficients
in smooth functions. A differential operator has order at most n if, around every
point in M , it has a local representation with no terms of degree higher than n in
the partial derivatives. The space of differential operators on PLk of finite order is
denoted by D(M,Lk � L).

The Hermitian holomorphic line bundle Lk � L is equipped with the Chern con-
nection ∇, and for any number of vector fields X1, . . . , Xd on M , we consider the
inductively defined differential operator on PLk ,

∇nX1,...,Xns = ∇X1
∇n−1
X2,...,Xn

s−
∑
j

∇n−1
X1,...,∇X1

Xj ,...,Xn
s, (4.1)

with the obvious induction start given by the covariant derivative. It is easily verified
that this expression is tensorial in the vector fields, so we get a map

∇n : C∞(M,TMn)→ D(M,Lk � L).

33



34 Chapter 4 · Differential and Toeplitz Operators

To any differential operator D ∈ D(M,Lk �L) of order at most n, we can assign
the principal symbol σP (D) ∈ C∞(M,Sn(TM)), which is a symmetric section of the
n’th tensor power of the tangent bundle. If the principal symbol vanishes, then D is
of order at most n−1. It is easily shown that for any tensor field Tn ∈ C∞(M,TMn),
the symbol of ∇nTn is given by the symmetrization S(Tn) ∈ C∞(M,Sn(TM)) of Tn.

In general, there is no good notion of lower order symbols of differential operators,
but in our case we can use the covariant derivative and the Levi-Civita connection
to define symbols of all orders. If D ∈ D(M,Lk � L) is an operator, of order at
most n, with principal symbol σP (D) = Sn ∈ C∞(M,Sn(TM)), then the operator
D − ∇nSn is of order at most n − 1, since its principal symbol vanishes. It follows
that the operator D can be written uniquely in the form

D = ∇nSn +∇n−1
Sn−1

+ · · ·+∇S1 + S0,

where Sd ∈ C∞(M,Sd(TM)) is called the symbol of order d and gives rise to a map

σd : D(M,Lk � L)→ C∞(M,Sd(TM)).

Any finite order differential operator is uniquely determined by the values of these
symbol maps.

4.1.1 Adjoints

In case the manifold M is compact, we have the Hermitian inner product

〈s1, s2〉 =

∫
M

h(s1, s2)
ωm

m!
(4.2)

on the space PLk of smooth sections. We will need to know the adjoints of several
differential operators with respect to this inner product. Building on the idea of
the covariant derivative as the basic differential operator, we have the following
fundamental lemma

Lemma 4.1. The adjoint of ∇X is given by

(∇X)∗ = −∇X̄ − δX̄,

for any complex vector field X ∈ C∞(M,TMC).

Proof. Recalling that the divergence δX̄ is the unique function satisfying LX̄ωn =
δX̄ωn, we get that

LX̄h(s1, s2)ωm = h(∇X̄s1, s2)ωm + h(s1,∇Xs2)ωm + h(s1, s2)δX̄ωm,

for any smooth sections s1, s2 ∈ C∞(M,Lk�L). By the Cartan formula for the Lie-
derivative, this is an exact expression, and therefore integration and Stokes theorem
yields

〈(∇X)∗s1, s2〉 = −〈∇X̄s1, s2〉 − 〈δX̄s1, s2〉,

which is the desired statement.
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The adjoints of the higher-order operators ∇nSn are not easily calculated in gen-
eral. However, if B ∈ C∞(M,TM2) is a bivector field, we introduce the following
second-order differential operator

∆B = ∇2
B +∇δB ,

and the adjoint of this operator is easily calculated and given by the following lemma.

Lemma 4.2. The adjoint of ∆B is given by

∆∗B = ∆B̄ ,

for any complex, symmetric bivector field B ∈ C∞(M,S2(TMC)).

Proof. If we write B =
∑
j Xj � Yj , then

∆B =
∑
j

∇Xj∇Yj +∇δ(Xj)Yj .

For any complex vector fields X and Y , Lemma 4.1 yields

(∇X∇Y )∗ = (∇Y )∗(∇X)∗

= (∇Ȳ + δ(Ȳ )(∇X̄ + δ(X̄))

= ∇Ȳ∇X̄ +∇Ȳ δ(X̄) + δ(Ȳ )∇X̄ + δ(Ȳ )δ(X̄),

and

(∇δ(X)Y )∗ = −∇δ(X̄)Ȳ − δ(δ(X̄)Ȳ )

= −δ(X̄)∇Ȳ − Ȳ [δ(X̄)]− δ(X̄)δ(Ȳ )

= −∇Ȳ δ(X̄)− δ(X̄)δ(Ȳ ),

so we conclude that

∆∗B =
∑
j

∇Ȳj∇X̄j + δ(Ȳj)∇X̄j = ∆B̄ ,

since B is symmetric.

Operators of the type ∆B will play a central role in our construction of the Hitchin
connection in Chapter 6.

Although this entire section on differential operators was formulated for sections
of the line bundle Lk � L, the statements are also true when k is equal to zero, and
hence for the general line bundle L. In particular, for the trivial line bundle with the
trivial connection, the sections are just functions on M , and the operator ∆g̃ is the
Laplace-Beltrami operator, which is equal to minus the Laplace-de Rham operator
∆ defined in (1.10).

4.2 Toeplitz Operators

Another important class of operators is the Toeplitz operators. If f ∈ C∞(M) is
a smooth function, we define the associated Toeplitz operator TLk (f) : PLk → QLk at
level k by

TLk (f)s = πLk fs,
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where s ∈ PLk is any smooth section, and πLk : PLk → QLk is the orthogonal projection
onto the closed subspace QLk . Although this is not indicated in the notation, the
Toeplitz operators clearly depend on the complex structure of the manifold.

The definition of the Toeplitz operators does not require the manifold M to be
compact, but the work of Bordemann, Meinrenken and Schlichenmaier [BMS, Sch]
shows that the Toeplitz operators have powerful asymptotic properties in this case.
Henceforth, we shall therefore assume the manifold M to be compact.

The Toeplitz operators restrict to endomorphisms of the finite-dimensional space
QLk , which is equipped with the operator norm associated with the Hermitian in-
ner product (4.2). The following theorem shows that the collection of all Toeplitz
operators associated with a function represent the function faithfully.

Theorem 4.3. For any function f ∈ C∞(M), the Toeplitz operators satisfy

lim
k→∞

‖TLk (f)‖ = ‖f‖∞,

and this limit is approached from below.

This theorem is proved by Bordemann, Meinrenken and Schlichenmaier [BMS] in
the case of trivial L. The general case is considered by Hawkins in [Haw].

The Toeplitz operators do not form an algebra since the product of two Toeplitz
operators does not yield a Toeplitz operator in general. Asymptotically, however, the
product of two Toeplitz operators can be approximated by Toeplitz operators. We
shall have more to say about this when we discuss the Berezin-Teoplitz deformation
quantization in Chapter 4.4, but for the moment, we just state the following theorem
on the commutator of two Toeplitz operators.

Theorem 4.4. The Toeplitz operators satisfy∥∥∥[TLk (f), TLk (g)
]
− i

k
TLk ({f, g})

∥∥∥ = O(k−2) as k →∞,

for any smooth functions f, g ∈ C∞(M).

It follows that the Toeplitz operators satisfy (2.2) in the precise meaning of the
theorem. The quantization scheme that uses the Toeplitz operators to quantize
observables is called Berezin-Toeplitz quantization.

Now, the Toeplitz operators are related to the quantum operators QLk by the
following theorem, which we shall prove in the next section.

Theorem 4.5 (Tuynman). The quantum operators are Toeplitz operators and satisfy

QLk (f) = TLk

( 1

2k
∆f + f

)
,

for any smooth function f ∈ C∞(M).

As an easy consequence of Tyanman’s theorem and Theorem 4.4, the quantum
operators also satisfy the condition (2.2)

Theorem 4.6. The quantum operators satisfy∥∥∥[QLk (f), QLk (g)
]
− i

k
QLk ({f, g})

∥∥∥ = O(k−2) as k →∞,

for any smooth functions f, g ∈ C∞(M).
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Tuynman’s theorem does not require compactness of the manifold M , and in
fact, it is a special case of a general relationship between differential operators and
Toeplitz operators.

4.3 Toeplitz Operators from Differential Operators

The quantum operators of geometric quantization are given by the prequantum op-
erators, which are differential operators, followed by the projection onto holomorphic
sections. By Tuynman’s theorem, this yields Toeplitz operators, and in this section,
we shall see that in general it is also the case that a differential operator followed by
the projection is a Toeplitz operator of a function.

Proposition 4.7. If X ∈ C∞(M,T ′M) is a smooth section of the holomorphic
tangent bundle on M , then we have

πLk∇Xs = −TLk (δX)s,

for any smooth section s ∈ PLk .

Proof. The result follows by partial integration. If s′ ∈ QLk is any holomorphic
section, then

X[h(s, s′)] = h(∇Xs, s′) + h(s,∇X̄s′) = h(∇Xs, s′),

so by taking the Lie-derivative along X of h(s, s′)ωn, we obtain

d(h(s, s′)iXω
n) = h(∇Xs, s′)ωn + h(s, s′)δXωn.

Finally, integration over M yields

0 = 〈∇Xs, s′〉+ 〈δXs, s′〉,

and the result follows.

Tuynman’s theorem follows easily from Proposition 4.7 and the formula (1.11)
for the Laplacian. Indeed, for any holomorphic section s ∈ QLk , we have

QLk (f) = πLk

( i
k
∇X′f + f

)
s = πLk

(
− i

k
(δX ′f ) + f

)
s = πLk

( 1

2k
∆f + f

)
s,

which is the statement of Tuynman’s theorem.
A generalization of Proposition 4.7 to higher-order differential operators is given

by the following theorem.

Theorem 4.8. If Sn ∈ C∞(M,Sn(T ′M)) is a smooth tensor field, then we have

πLk∇nSns = (−1)nTLk (δnSn)s,

for any smooth section s ∈ PLk .

Proof. If X1, . . . , Xn are smooth sections of the holomorphic tangent bundle T ′M ,
then the expression (4.1) can also be written as

∇nX1�···�Xns = ∇X1
∇n−1
X2�···�Xns−∇

n−1
δ(X1�···�Xn)s+ δX1∇n−1

X2�···�Xns.
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Applying the projection πLk to both sides, Proposition 4.7 implies that

πLk∇nX1�···�Xns = −πLk∇n−1
δ(X1�···�Xn)s,

and by induction, we get that

πLk∇nX1�···�Xns = (−1)nπLk δ
n(X1 � · · ·�Xn)s,

which implies the desired statement.

The following is an immediate corollary of this theorem.

Corollary 4.9. If B ∈ C∞(M,S2(T ′M)) is a symmetric bivector field, then the
operator ∆B satisfies

πLk ∆Bs = 0,

for any smooth section s ∈ PLk .

4.4 The Berezin-Toeplitz Star Product

The asymptotic property of Toeplitz operators in Theorem 4.4 is a consequence of
a more general statement about the asymptotics of the product of two Toeplitz
operators. As previously mentioned, the product of two Toeplitz operators is in
general not a Toeplitz operator, but it can be approximated by Toeplitz operators
in the sense of the following theorem.

Theorem 4.10. For any smooth functions f, g ∈ C∞(M), there exists a sequence
of uniquely determined functions CLj (f, g) such that

∥∥∥TLk (f)TLk (g)−
N∑
j=0

TLk (CLj (f, g))
(1

k

)j∥∥∥ = O
( 1

kN+1

)
as k →∞, (4.3)

for any natural number N . Moreover, the product H
L on C∞h (M) given by

f H
Lg =

∞∑
j=0

CLj (f, g)hj

defines a formal deformation quantization on M .

The theorem gives an asymptotic expansion of the product of Toeplitz operators
and we shall write

TLk (f)TLk (g) ∼
∞∑
j=0

TLk (CLj (f, g))
(1

k

)j
, (4.4)

or even

TLk (f)TLk (g) ∼ Tk(f H
Lg)
[1

k

]
with the precise meaning of (4.3).
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The theorem is proved by Schlichenmaier [Sch] in the case where L is the trivial
line bundle, but his proof should extend to the general case with minimal modifica-
tions. The general case is also studied by Hawkins in [Haw], where he proves that
the classifying characteristic class of the star product is given by

cl(H
L) =

[ω]

2πh
− c̃1(M)

2
− c̃1(L). (4.5)

We shall refer to the star product H
L as the twisted Berezin-Toeplitz star product.

In case L is trivial, the star product is just denoted by H, and is commonly known
as the Berezin-Toeplitz star product.

As proved by Karabegov and Schlichenmaier [KS], the Berezin-Toeplitz star prod-
uct is with separation of variables, albeit with the roles of holomorphic and anti-
holomorphic switched. For a general star product ∗, we can define its opposite by
f ∗o g = g ∗ f , which defines a star product on the opposite symplectic manifold.
As shown in [KS], the Karabegov form of the opposite to the Berezin-Toeplitz star
product is given by

Kar(Ho) = −ω 1

h
+ ρ, (4.6)

where ρ denotes the Ricci form on M . By Theorem 3.10, we can therefore give an
explicit formula to all orders of the Berezin-Toeplitz star product.

Although this has not been done, we suspect that the methods of [KS] could
be used to prove that the opposite to the twisted Berezin-Toeplitz star product has
separation of variables and that

Kar(H
L
o ) = −ω 1

h
+ ρ+ iF∇L , (4.7)

where F∇L is the curvature of the line bundle L. Since the characteristic class satisfies
cl(∗o) = − cl(∗), this would comply with the formula (4.5), by using (3.2) and the
fact that the Ricci form represents the first Chern class of the manifold.

Finally, we remark that the characteristic class of the twisted Berezin-Toeplitz
star product arising through metaplectic quantization is trivial,

cl(H
δ) =

[ω]

2πh
, (4.8)

which follows immediately from (4.5) since δ is a square root of the canonical line
bundle.





Chapter 5

Families of Kähler Structures

In this chapter, we study families of Kähler structures on a symplectic manifold.
Such families lie at the heart of our construction of the Hitchin connection, which
relates the quantum spaces associated with different choices of Kähler structures
through parallel transport in a bundle which has the quantum spaces a fibers. The
results obtained will therefore play an important role in subsequent chapters.

5.1 Families of Kähler Structures

If T is a smooth manifold and (M,ω) is a symplectic manifold, we define

Definition 5.1. A family of Kähler structures on (M,ω) parametrized by T is a
map

J : T → C∞(M,End(TM)),

which associates an integrable and ω-compatible almost complex structure to every
point σ ∈ T .

A family of Kähler structures is called smooth if J is a smooth map, in the sense
that it defines a smooth section of the pullback bundle π∗M End(TM) over T ×M ,
where πM : T ×M →M denotes the projection.

In the presence of a symmetry group Γ acting on M , we shall require that Γ also
acts on T and that the map J is equivariant with respect to this action.

For any point σ ∈ T , the manifold endowed with the Kähler structure defined by
ω and J(σ) is denoted by Mσ. The corresponding Kähler metric is denoted by gσ
and similar notation will be used for other structures which depend on the complex
structure. We shall, however, often omit the σ from the notation, indicating that
the formula in question is valid for any point in T .

5.2 Infinitesimal Deformations

For a smooth family of Kähler structures, we can take its derivative along a vector
field V on T to obtain a map

V [J ] : T → C∞(M,End(TM)).

41
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Differentiating the identity J2 = − Id, we see that V [J ] satisfies

V [J ]J + JV [J ] = 0, (5.1)

which implies that V [J ]σ interchanges types on Mσ. Thus we get a decomposition

V [J ] = V [J ]′ + V [J ]′′, (5.2)

where V [J ]′σ ∈ C∞(M,T ′Mσ � T ′′M∗σ), and V [J ]′′σ ∈ C∞(M,T ′′Mσ � T ′M∗σ) is its
conjugate.

Notice that this splitting occurs for any infinitesimal deformation of a complex
structure on M and defines an almost complex structure on the space of almost
complex structures on M .

Differentiating the integrability condition on J , stating that the Nijenhuis ten-
sor (1.2) vanishes, reveals that V [J ]′ ∈ Ω0,1(M,T ′M) satisfies ∂̄V [J ]′ = 0, and the
associated cohomology class in H1(M,T ′M) is the Kodaira-Spencer class of the de-
formation (see [Kod]).

Define a bivector field G̃(V ) ∈ C∞(M,TMC � TMC) by the relation

V [J ] = G̃(V )·ω,

for any vector field V on T . Differentiating the identity g̃ = −J ·ω̃ along V , we get

V [g̃] = −V [J ]·ω̃ = −G̃(V ),

and since g̃ is symmetric, this implies that G̃(V ) is a symmetric bivector field. Fur-
thermore, the combined types of V [J ] and ω yield a decomposition,

G̃(V ) = G(V ) + Ḡ(V ),

where G(V )σ ∈ C∞(M,S2(T ′Mσ)) and Ḡ(V )σ ∈ C∞(M,S2(T ′′Mσ)).
Similarly, the variation of the Kähler metric is obtained by differentiating the

identity g = ω·J , which yields

V [g] = ω·V [J ] = ω·G̃(V )·ω.

By the types of ω and G̃(V ), it follows that the (1, 1)-part of V [g] vanishes.
Finally, we shall need the variation of the Levi-Civita connection, which is the

tensor field

V [∇] ∈ C∞(M,S2(TM∗) � TM)

given by (see [Bes] Theorem 1.174)

2g(V [∇]XY,Z) = ∇X(V [g])(Y,Z)

+∇Y (V [g])(X,Z)

−∇Z(V [g])(X,Y ),

(5.3)

for any vector fields X,Y and Z on M .
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5.3 The Canonical Line Bundle of a Family

For a family of complex structures, we can consider the vector bundle

T̂ ′M → T ×M

with fibers T̂ ′M(σ,p) = T ′pMσ given by the holomorphic tangent spaces of M . As we
have done here, we shall in general use a hat in our notation to indicate that we are
working over the product T ×M . Following this convention, the exterior differential
on T ×M is denoted by d̂, whereas the differential on T is denoted by dT and by d
on M .

The Kähler metric induces a Hermitian structure ĥT
′M on T̂ ′M , and the Levi-

Civita connection gives a compatible partial connection along the directions of M .
We can extend this partial connection to a full connection ∇̂T ′M on T̂ ′M in the
following way.

If Z ∈ C∞(T ×M, T̂ ′M) is a smooth family of sections of the holomorphic tangent
bundle, and V is a vector field on T , then we define

∇̂V Z = π1,0V [Z].

In other words, we regard Z as a smooth family of sections of the complexified tangent
bundle TMC, and then we simply differentiate Z along V in this bundle, which does
not depend on the point in T , and project the result back onto the holomorphic
tangent bundle.

Of course, the connection ∇̂T ′M preserves the Hermitian structure in the direc-
tions of M since it is induced by the Levi-Civita connection. Moreover, if V is a
vector field on T , and X and Y are sections of T̂ ′M , we get that

V [h(X,Y )] = V [g(X, Ȳ )] = V [g](X, Ȳ ) + g(V [X], Ȳ ) + g(X,V [Y ])

= h(∇̂VX,Y ) + h(X, ∇̂V Y ),

since the (1, 1)-part of V [g] vanishes. It follows that ∇̂T ′M preserves the Hermitian
structure on T̂ ′M .

Now consider the line bundle

K̂ =
∧m

T̂ ′M∗ → T ×M,

which we shall call the canonical line bundle of the family of complex structures. As
usual, the Hermitian structure and connection on T̂ ′M induce a Hermitian structure
ĥK and a compatible connection ∇̂K on K̂.

5.3.1 Curvature of the Canonical Line Bundle

The next proposition gives formulas for the curvature of ∇̂K , but before stating it,
we introduce the following notation. For any vector fields V and W on T , we define

θ(V,W ) = − i
4

Trπ1,0
[
V [J ],W [J ]

]
. (5.4)

Clearly, this defines a two-form θ ∈ Ω2(T , C∞(M)) on T with values in smooth
functions on M .



44 Chapter 5 · Families of Kähler Structures

Proposition 5.2. The curvature of ∇̂K is given by

F∇̂K (X,Y ) = iρ(X,Y )

F∇̂K (V,X) =
i

2
δ(V [J ])X

F∇̂K (V,W ) = iθ(V,W ),

for any vector fields X,Y on M and V,W on T .

Proof. Since the curvature is a tensor, we can assume the vector fields X,Y, V and
W to be commuting. The curvature in the direction of M is clearly given by the
Ricci form since ∇̂K extends the Chern connection in the canonical line bundle on
M .

To calculate the curvature of ∇̂K in the mixed directions, we first calculate the
curvature of ∇̂T ′M in these directions. For any smooth section Z ∈ C∞(M, T̂ ′M),
we get that

F∇̂T ′M (V,X)Z = ∇̂V ∇̂XZ − ∇̂X∇̂V Z
= π1,0V [∇XZ]−∇Xπ1,0V [Z]

= π1,0V [∇XZ]− π1,0∇XV [Z]

= π1,0V [∇]XZ.

Now fix a point σ ∈ T and a point p ∈M , and let e1, . . . , em be a basis of the fiber
T̂ ′M(σ,p) = T ′pMσ which satisfies the orthogonality condition gσ(ej , ēk) = δjk. Then
we get that

F∇̂K (V,X) = −TrF∇̂T ′M (V,X) = −Trπ1,0V [∇]X = −
∑
j

g(V [∇]Xej , ēj).

Taking into account the type of V [g], the formula (5.3) yields

g(V [∇]Xej , ēj) =
1

2
∇ej (V [g])(ēj , X)− 1

2
∇ēj (V [g])(ej , X)

=
1

2
ω(ēj ,∇ej (V [J ])X)− 1

2
ω(ej ,∇ēj (V [J ])X)

= − i
2
g(ēj ,∇ej (V [J ])X)− i

2
g(ej ,∇ēj (V [J ])X).

After summing over j, we get that

F∇̂K (V,X) =
i

2
δ(V [J ])X,

which is the desired expression of the curvature in the mixed directions.
Finally, we calculate the curvature in the directions of T . For any section Z ∈

C∞(T ×M, T̂ ′M), we have

∇̂V Z = π1,0V [Z] = V [π1,0Z]− V [π1,0]Z = V [Z] +
i

2
V [J ]Z,

and this can be used to calculate

∇̂V ∇̂WZ

= ∇̂V (W [Z] +
i

2
W [J ]Z)

= VW [Z] +
i

2
VW [J ]Z +

i

2
W [J ]V [Z] +

i

2
V [J ]W [Z]− 1

4
V [J ]W [J ]Z.
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Since V and W commute, this implies that

F∇̂T ′M (V,W )Z = ∇̂V ∇̂WZ − ∇̂W ∇̂V Z

=
1

4
(W [J ]V [J ]− V [J ]W [J ])Z

= −1

4

[
V [J ],W [J ]

]
Z,

so the curvature of ∇̂K is given by

F∇̂K (V,W ) = −TrF∇̂T ′M (V,W ) =
1

4
Trπ1,0

[
V [J ],W [J ]

]
= iθ(V,W ).

This proves the proposition.

5.3.2 The Bianchi Identity

By applying the Bianchi identity to the connection ∇̂K , and using the formulas of
Proposition 5.2, we get three useful results.

The first is a trivial reformulation of the Bianchi identity on three vector fields
on T .

Proposition 5.3. The two-form θ ∈ Ω2(T , C∞(M)) is closed.

The second result is a formula for the variation of the Ricci form.

Proposition 5.4. The variation of the Ricci form is given by

V [ρ] =
1

2
dδ(V [J ]),

for any vector field V on T .

Proof. This is a statement about tensors, so we can let X and Y be commuting
vector fields on M . The Bianchi identity for the connection ∇̂K then gives that

0 = V [F∇̂K (X,Y )] +X[F∇̂K (Y, V )] + Y [F∇̂K (V,X)].

Inserting the appropriate expressions for the curvature, which are given in Proposi-
tion 5.2, we get that

V [iρ(X,Y )] =
i

2
X[δ(V [J ])Y ]− i

2
Y [δ(V [J ])X],

and since the vector fields commute, this is equivalent to

2V [ρ](X,Y ) = dδ(V [J ])(X,Y ),

which proves the proposition.

The third result follows by applying the Bianchi identity to two vector fields on
T and one vector field on M .

Proposition 5.5. We have the identity

dθ(V,W ) =
1

2
W [δ](V [J ])− 1

2
V [δ](W [J ])

for all vector fields V and W on T .
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Proof. Choose commuting vector fields V and W on T and X on M . Then the
Bianchi identity yields

0 = X[F∇̂K (V,W )] + V [F∇̂K (W,X)] +W [F∇̂K (X,V )].

Applying Proposition 5.2, and using the fact that the vector fields commute, we get

0 = 2X[θ(V,W )] + V [δ(W [J ])X]−W [δ(V [J ])X]

= 2X[θ(V,W )] + V [δ](W [J ])X −W [δ](V [J ])X + δ(VW [J ]−WV [J ])X

= 2X[θ(V,W )] + V [δ](W [J ])X −W [δ](V [J ])X.

This proves the proposition.

5.4 Holomorphic Families of Kähler Structures

In case the manifold T is itself a complex manifold, we can require the family J to be
a holomorphic map from T to the space of complex structures. This is made precise
by the following definition, which uses the splitting (5.2) of V [J ].

Definition 5.6. Suppose that T is a complex manifold, and that J is a family of
complex structures on M , parametrized by T . Then J is holomorphic if

V ′[J ] = V [J ]′′ and V ′′[J ] = V [J ]′′,

for any vector field V on T .

Let us give an alternative characterization of holomorphic families of Kähler struc-
tures. If I denotes the integrable almost complex structure on T induced by its
complex structure, then we get an almost complex structure Ĵ on T ×M defined by

Ĵ(V ⊕X) = IV ⊕ JσX, V ⊕X ∈ T(σ,p)(T ×M).

The following proposition gives another characterization of holomorphic families.

Proposition 5.7. The family J is holomorphic if and only if Ĵ is integrable.

Proof. We show that J is holomorphic if and only if the Nijenhuis tensor for Ĵ
vanishes. Clearly, the Nijenhuis tensor vanishes when evaluated only on vectors
tangent to T since I is integrable. Likewise, it will vanish when evaluated only on
vectors tangent to M since J is a family of integrable almost complex structures.
Thus we are left with the case of mixed directions.

Let X and V be vector fields on M and T , respectively. Then [V, JX] = V [J ]X,
and we get that

NĴ(V ′, X) = [IV ′, JX]− [V ′, X]− Ĵ [IV ′, X]− Ĵ [V ′, JX]

= i[V ′, JX]− Ĵ [V ′, JX]

= iV ′[J ]X − JV ′[J ]X

= 2iπ0,1V ′[J ]X.

Similarly, one shows that NĴ(V ′′, X) = −2iπ1,0V ′′[J ]X, and we see that NĴ(V,X)
vanishes if and only if

π0,1V ′[J ]X = 0 and π1,0V ′′[J ]X = 0.

This proves the proposition.
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By Proposition 5.7, a holomorphic family induces a complex structure on the
product manifold T ×M . Clearly, the projection πT : T ×M → T is a holomorphic
map, and its differential is the projection dπT : T̂ ′T ⊕ T̂ ′M → T ′T , where T̂ ′T is
the pullback of T ′T by πT . Since the bundle T̂ ′M over T ×M is the kernel of this
map, it has the structure of a holomorphic vector bundle, and it is easily verified
that the connection ∇̂T ′M is compatible with this holomorphic structure. Since the
connection also preserves the Hermitian structure, it must be the Chern connection.
Of course the same holds for the induced connection ∇̂K on K̂, so we have proved

Proposition 5.8. The Chern connection on the canonical line bundle K̂ of a holo-
morphic family is given by ∇̂K .

Whenever we have a holomorphic family of complex structures, we can prove the
following useful lemma on the second-order variation.

Lemma 5.9. If J is a holomorphic family of Kähler structures, then

W ′′V ′[J ] =
i

2

[
V ′[J ],W ′′[J ]

]
(5.5)

for any vector fields fields V and W on T such that V ′ and W ′′ commute.

Proof. The holomorphicity of J implies that V ′[J ]π1,0 = 0, which yields

W ′′V ′[J ]π1,0 =
i

2
V ′[J ]W ′′[J ]

by differentiation alongW ′′. Similarly, by differentiation ofW ′′[J ]π0,1 = 0, we obtain

V ′W ′′[J ]π0,1 = − i
2
W ′′[J ]V ′[J ].

By adding these identities, and using the fact that V ′ and W ′′ commute, the lemma
is proved.

Holomorphicity has other useful consequences. For instance, it implies that

G̃(V ′) = V ′[J ]·ω̃ = V [J ]′·ω̃ = G(V ),

and a similarly G̃(V ′′) = Ḡ(V ). This means that (5.5) can also be written in the
form

W ′′[G(V )] =
i

2
G(V )·ω·Ḡ(W )− i

2
Ḡ(W )·ω·G(V ). (5.6)

Finally, we remark that the two-form θ, defined in (5.4), has type (1,1) on T since
the composition V [J ]W [J ] is zero whenever V and W have the same type.

5.5 Rigid Families of Kähler Structures

The following rather serious assumption on a family of Kähler structures will be
crucial to our construction of the Hitchin connection.

Definition 5.10. A family of Kähler structures J is called rigid if

∇X′′G(V ) = 0, (5.7)

for all vector fields V on T and X on M .
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In other words, the family J is rigid if G(V ) is a holomorphic section of S2(T ′M),
for any vector field V on T . Let us give a simple example to illustrate that rigid
deformations of a complex structure exist.

Example 5.11. Let (M,ω) be R2 with the standard symplectic form ω = dx ∧ dy,
and let T = Rn. Consider the following family of complex structures,

Jσ

(
∂

∂x

)
= A(σ, x, y)

∂

∂x
+B(σ, x, y)

∂

∂y
,

given by functions A,B ∈ C∞(T ×M). The identity J2 = − Id yields

J

(
∂

∂y

)
= −

(
1

B
+
A2

B

)
∂

∂x
−A ∂

∂y
,

and it is easily verified that ω is J-invariant, and that g = ω·J is positive definite
when B > 0.

For simplicity, suppose that B is constant along T . Given a vector field V on T ,
the variation of J is then given by

V [J ] = V [A]
∂

∂x
dx−

(
2AV [A]

B

∂

∂x
+ V [A]

∂

∂y

)
dy,

and the relation V [J ] = G̃(V )·ω gives the formula

G̃(V ) = −2V [A]
∂

∂x

∂

∂y
− 2AV [A]

B

∂2

∂x2
.

From this, we calculate that

G(V ) =
−2iV [A]

B

∂2

∂z2
,

which implies that J is rigid if

0 = −V [A]
∂B

∂y
+B

∂V [A]

∂y
= V [A]

∂B

∂x
−B∂V [A]

∂x
.

These equations have solutions B(x, y) = B0(x, y) and A(σ, x, y) = A0(x, y) +∑l
i=1 σiB0(x, y), where A0 and B0 are arbitrary functions on M . This means that

given any initial complex structure,

J0

(
∂

∂x

)
= A0(x, y)

∂

∂x
+B0(x, y)

∂

∂y
,

we have obtained a rigid family of deformations parametrized by Rn.

If we differentiate the rigidity condition (5.7) along T , we get the following im-
portant result

Proposition 5.12. Any rigid and holomorphic family of Kähler structures satisfies

S(G(V )·∇G(W )) = S(G(W )·∇G(V )), (5.8)

for any vector fields V and W on T .
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Proof. Throughout the proof, let V and W be vector fields on T such that V ′ and
W ′ commute, and let U and Z be any vector fields on M . Furthermore, fix a σ ∈ T ,
and let X and Y be any vector fields of type (1, 0) on Mσ.

We shall first prove a fact about the variation of the Levi-Civita connection. By
(5.3), we get that

2g(V ′[∇]Z′′X,U) = ∇Z′′(V ′[g])(X,U) +∇X(V ′[g])(Z ′′, U)−∇U (V ′[g])(Z ′′, X).

The first term vanishes because the family is holomorphic and rigid, and the last
term vanishes because V ′[g] has no (1, 1)-part, so we get

V ′[∇]Z′′X·g·U =
1

2
∇X(V ′[g])(Z ′′, U) =

i

2
Z·ω·∇X(G(V ))·g·U,

and it follows that

V ′[∇]Z′′X =
i

2
Z·ω·∇X(G(V )),

which is the fact we need.
Locally on Mσ, we can write G(W ) =

∑
j Xj � Yj , and we get that

V ′[∇]Z′′(G(W )) =
∑
j

V ′[∇]Z′′Xj � Yj +
∑
j

Xj � V ′[∇]Z′′Yj

=
i

2

∑
j

Z·ω·∇XjG(V ) � Yj +
i

2

∑
j

Xj � Z·ω·∇Yj (G(V ))

=
3i

2
Z·ω· S(G(W )·∇G(V ))− i

2
Z·ω·G(W )·∇G(V ),

(5.9)

where the last equality can be verified by writing out the symmetrization and using
the symmetry of G(W ).

Now the family is rigid, so ∇Z′′G(W ) vanishes, and by differentiating along V ′,
we get that

0 = V ′[∇]Z′′(G(W ))− i

2
Z·ω·G(V )·∇G(W ) +∇Z′′(V ′[G(W )]).

Combining this with (5.9), we get that

3Z·ω· S(G(W )·∇G(V ))

= Z·ω·G(V )·∇G(W ) + Z·ω·G(W )·∇G(V ) + 2i∇Z′′(V ′[G(W )]),

and clearly this is symmetric in V and W because

W ′[G(V )] = −W ′V ′[g̃] = −V ′W ′[g̃] = V ′[G(W )].

This proves the proposition.

By taking the divergence of (5.8), we get the following result.

Proposition 5.13. Any rigid and holomorphic family of Kähler structures satisfies

∇2
G(V )G(W ) +∇δG(V )G(W ) + 2S(G(V )·∇δG(W ))

= ∇2
G(W )G(V ) +∇δG(W )G(V ) + 2S(G(W )·∇δG(V )).

for any vector fields V and W on T .

These propositions will prove very useful when we calculate the curvature of the
Hitchin connection.
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5.6 Families of Ricci Potentials

Throughout this section, we will assume that M is compact, which enables us to
apply Hodge theory to a family of Kähler structures and ensure the existence of
Ricci potentials.

For each σ ∈ T , we have a Ricci potential on the Kähler manifold Mσ. Recall
that this is a real function Fσ ∈ C∞(M) satisfying

ρσ = ρHσ + 2i∂σ∂̄σFσ, (5.10)

where ρHσ is the unique harmonic part of the Ricci form. By compactness ofM , such
a function is uniquely determined up to a constant, so we can fix the Ricci potential
by demanding that it has zero average on M ,∫

M

Fσω
m = 0. (5.11)

Clearly, with this normalization, the Ricci potentials define a smooth function F̂ ∈
C∞(T ×M), which we interpret as a smooth map F : T → C∞(M). In general, we
say that a smooth map F : T → C∞(M) is a smooth family of Ricci potentials if it
satisfies (5.10) for any σ ∈ T .

The family af Ricci potentials defined by the normalization (5.11) is equivariant
with respect to the action of a symmetry group Γ since this acts by symplectomor-
phisms on M and hence preserves the volume form.

Now, we will make the additional assumption that there exists an n ∈ Z such
that the real first Chern class of (M,ω) is given by

c̃1(M,ω) = n[ ω2π ].

But the real first Chern class is also represented by ρ
2π , since c1(M,ω) = −c1(Kσ)

for any σ ∈ T , and consequently the identity (5.10) becomes

ρ = nω + 2i∂∂̄F, (5.12)

since the Kähler form ω is harmonic. The following proposition gives a useful identity,
involving the variation of the Ricci potential, under this assumption.

Proposition 5.14. Suppose thatM is a compact, symplectic manifold which satisfies
H1(M,R) = 0 and c̃1(M,ω) = n[ ω2π ], and let J be a holomorphic family of Kähler
structures on M . Then any family of Ricci potentials satisfies

4i∂̄V ′[F ] = δ(V ′[J ]) + 2dF ·V ′[J ], (5.13)

for any vector field V on T .

Proof. By differentiating the identity (5.12) in the direction of V ′, we get

V ′[ρ] = −d(dF ·V ′[J ]) + 2i∂∂̄V ′[F ],

and by using Proposition 5.4 on the left-hand side, this yields

dδ(V ′[J ]) + 2d(dF ·V ′[J ])− 4id∂̄V ′[F ] = 0.
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On one hand, it follows that the one-form

δ(V ′[J ]) + 2dF ·V ′[J ]− 4i∂̄V ′[F ]

is closed and hence exact by the assumption H1(M,R) = 0. On the other hand, it
is of type (0,1) since J is holomorphic, so by the compactness of M , it cannot be
exact unless it is zero. This proves the lemma.

On several occasions, we will use (5.13) on the form

∂̄V ′[F ] =
i

4
ω·δG(V ) +

i

2
ω·G(V )·dF, (5.14)

so we state it here for easy reference.
Using Proposition 5.14, we can express the divergence of V [J ] in terms of the

Ricci potential.

Lemma 5.15. With the assumptions of Proposition 5.14, we have that

δ(V [J ])X = 4iV ′X ′′[F ]− 4iV ′′X ′[F ],

for any vector fields X on M and V on T .

Proof. By Proposition 5.14, we get that

4iV ′X ′′[F ] = −2(V ′[J ]X)[F ] + 4iX ′′V ′[F ] = δ(V ′[J ])X,

and by conjugation, this implies that

−4iV ′′X ′[F ] = δ(V ′′[J ])X.

The result follows by adding these identities.

5.6.1 Curvature and Ricci Potentials

As we shall see in this section, the curvature of the canonical line bundle of a family
of Kähler structures can be expressed in terms of Ricci potentials.

Proposition 5.16. Given the assumptions of Proposition 5.14, we have that any
family of Ricci potentials satisfies

θ − 2i∂T ∂̄T F ∈ Ω1,1(T ).

In other words, the form takes values in constant functions on M , and hence it
defines an ordinary two-form on T .

Proof. Choose commuting vector fields V ′ and W ′′ on T and X on M . Then, by
Proposition 5.5 and Lemma 5.15, we get that

2X[θ(V ′,W ′′)] = W ′′[δ](V ′[J ])X − V ′[δ](W ′′[J ])X

= W ′′[δ(V ′[J ])X]− V ′[δ(W ′′[J ])X]

= 4iW ′′V ′X ′′[F ] + 4iV ′W ′′X ′[F ]

= 4iV ′W ′′X[F ]

= 4iXV ′W ′′[F ]

= 4iX[∂T ∂̄T F (V ′,W ′′)].

(5.15)
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In other words, the expression

θ(V ′,W ′′)− 2i∂T ∂̄T F (V ′,W ′′),

is constant along M , which proves the proposition.

Proposition 5.17. Suppose that the assumptions of Proposition 5.14 are satisfied
and that the manifold T is contractible. Then there exists a family of Ricci potentials
F̃ such that

θ = 2i∂T ∂̄T F̃ . (5.16)

Proof. Fix a smooth family F of Ricci potentials, say the one satisfying (5.11). From
Proposition 5.16, we know that

α = θ − 2i∂T ∂̄T F

defines a two-form α ∈ Ω1,1(T ), and by Proposition 5.3 this two-form is closed. Since
T is contractible, it follows that we can find a real function A ∈ C∞(T ) such that
α = 2i∂T ∂̄T A. But then the expression

F̃ = F +A,

defines another smooth family of Ricci potentials, and we see that

θ = 2i∂T ∂̄T F̃ ,

as desired.

This proposition shows that the curvature of ∇̂K in the directions of T can be
expressed in terms of an appropriately chosen family of Ricci potentials, although this
is likely to break the equivariance of the Ricci potential with respect to a symmetry
action.

Clearly, the assumption that T is contractible is not the minimal assumption
needed to prove Proposition 5.17, but is chosen for simplicity. We shall usually
apply this assumption to avoid restrictions caused by the topology of T , and in the
important example discussed in Chapter 8 it is actually satisfied.

The next proposition shows that the curvature in the remaining directions can
also be expressed in terms of this particular family of Ricci potentials.

Proposition 5.18. Suppose that the assumptions of Proposition 5.14 are satisfied
and that manifold T is contractible. Then there exists a family of Ricci potentials F̃
such that

F∇̂K = niπ∗Mω − 2∂̂
¯̂
∂F̃ . (5.17)

Proof. Let X and Y be vector fields on M , and let V and W be vector fields on T .
By Proposition 5.17, we can find a family of Ricci potentials satisfying (5.16), and
by Proposition 5.2, this equation is exactly the desired statement in the directions
along T . For the curvature in the directions of M , the identity (5.12) yields

R∇̂K (X,Y ) = iρ(X,Y ) = niω(X,Y )− 2∂∂̄F̃ (X,Y ).
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In the mixed directions, a direct calculation yields

¯̂
∂∂̂F (X ′′, V ′) = d̂∂̂F (X ′′, V ′)

= X ′′(∂̂F (V ′))− V ′(∂̂F (X ′′))− ∂̂F ([X ′′, V ′])

= X ′′V ′[F ] +
i

2
dF ·V ′[J ]X ′′

= − i
4
δ(V ′[J ])X ′′

= −1

2
F∇̂K (V ′, X ′′),

where we used Proposition 5.14 and Proposition 5.2 for the last two equalities. The
case of X ′ and V ′′ is similar, by conjugation of the identity in Proposition 5.14, and
the proposition is proved.





Chapter 6

The Hitchin Connection

In this chapter, we give a differential geometric construction of a Hitchin connection
in the bundle of quantum spaces associated with a family of Kähler structures on a
symplectic manifold.

We start by reviewing the construction by Andersen [And1] of a Hitchin connec-
tion in the bundle of quantum spaces arising from standard geometric quantization.
Then we give an analogous construction in the metaplectic setting and show how the
two constructions can be related. After calculating the curvature of the connection,
we give sufficient conditions for flatness and discuss the issue of unitarity.

6.1 The Hitchin Connection in Standard Geometric
Quantization

In this section, we recall the differential geometric construction of a Hitchin con-
nection in the setting of standard geometric quantization. Although the results are
all proved in [And1], we include the proofs to illustrate the similarities with the
metaplectic setting, which we shall be dealing with afterwards.

Consider a compact, symplectic manifold (M,ω), equipped with a prequantum
line bundle L, and assume that H1(M,R) = 0 and that the real first Chern class of
(M,ω) is given by

c̃1(M,ω) = n
[
ω
2π

]
, (6.1)

for some integer n ∈ Z. Further, assume that M is of Kähler type, and let J be a
rigid and holomorphic family of Kähler structures on (M,ω), parametrized by some
complex manifold T .

The prequantum space Pk = C∞(M,Lk) forms the fiber of a trivial, infinite-rank
vector bundle over T ,

P̂k = T × Pk.

If ∇t denotes the trivial connection on this bundle, we consider a connection on P̂k
of the form

∇ = ∇t + a, (6.2)

where a ∈ Ω1(T ,D(M,Lk)) is a one-form on T with values in the space of differential
operators on sections of Lk, and we seek an a which makes the connection ∇ preserve
the subspaces Qk(σ) = H0(Mσ,Lk) of holomorphic sections, inside each fiber of P̂k.

55
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Definition 6.1. A Hitchin connection on the bundle P̂k is a connection of the form
(6.2) which preserves the fiberwise subspaces Qk.

To prove the existence of such a connection, we first look at the bundle P̂k from
a slightly different perspective. Consider the pullback L̂ = π∗ML of the line bundle
L to the product T × M . Sections of P̂k are in one-to-one correspondence with
sections of L̂k, and the prequantum connection on Lk defines a partial connection
on L̂k along the directions of M . We can easily extend this to a full connection ∇̂Lk

on L̂k. Indeed, for any section s of L̂k and any vector field V on T , we define

∇̂V s = ∇tV s = V [s],

simply expressing differentiation in the direction of V , in which L̂k is trivial.
The bundle L̂k has a Hermitian structure, which is induced from L, and ∇̂ is

easily seen to be compatible with this. Moreover, it is a simple task to calculate the
curvature.

Proposition 6.2. The curvature of the connection ∇̂ on L̂k is given by

F∇̂ = −ikπ∗Mω,

where πM : T ×M →M denotes the projection.

It follows that the curvature of ∇̂ has type (1, 1) on T ×M , and consequently it
defines holomorphic structure on L̂k.

The fact that ∇̂ only has curvature in directions along M can be used to prove

Proposition 6.3. The connection ∇ preserves the fiberwise subspaces Qk of P̂k if
and only if the one-form a satisfies

∇0,1a(V )s+
i

2
ω·G(V )·∇s = 0, (6.3)

for any vector field V on T , any point σ ∈ T and any section s ∈ Qk(σ).

Proof. Let V and X be vector fields on T andM , respectively. It is easily calculated
that

[X ′′, V ] = − i
2
V [J ]X =

i

2
X·ω·G̃(V ). (6.4)

Consider a point σ ∈ T , and suppose that s ∈ Qk(σ). Let ŝ be any extension of s to
a smooth section of P̂k → T . Then we have that ∇̂X′′ ŝ = 0 at the point σ, and we
get that

∇̂X′′∇V ŝ = ∇̂X′′∇̂V ŝ+ ∇̂X′′a(V )ŝ

= R∇̂(X ′′, V )ŝ+ ∇̂V ∇̂X′′ ŝ+ ∇̂[X′′,V ]ŝ+ ∇̂X′′a(V )ŝ

=
i

2
X·ω·G(V )·∇̂ŝ+ ∇̂X′′a(V )ŝ,

(6.5)

at the point σ, where the curvature term vanishes by Proposition 6.2. Finally, it is
clear that (∇V ŝ)σ ∈ Qk(σ) if and only if the left-hand side of (6.5) vanishes at σ,
and the proposition follows.
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If we can find a one-form a satisfying (6.3), then it follows that ∇ preserves the
fiberwise subspaces Qk of the bundle P̂k. In this case, these subspaces must form
a smooth subbundle Q̂k since it can be trivialized locally through parallel transport
by ∇. Futhermore, ∇ induces a connection in this subbundle.

To solve the equation (6.3), we need the following proposition.

Proposition 6.4. The operator ∆G(V ) satisfies

∇0,1∆G(V )s = −2ikω·G(V )·∇s− iρ·G(V )·∇s− ikω·δ(G(V ))s, (6.6)

for and any (local) holomorphic section s of Lk.

Proof. Fix a vector field V and a point σ ∈ T . The statement of the proposition
is local on M , and since the family of complex structures is rigid, the bivector field
G(V ) is holomorphic and can therefore be expressed locally as G(V ) =

∑
j Xj � Yj ,

where Xj and Yj are local holomorphic vector fields on Mσ. With this notation, the
operator ∆G(V ) has the expression

∆G(V ) =
∑
j

∇Xj∇Yj +∇δ(Xj)Yj .

For any local holomorphic section s of Lk and any local anti-holomorphic vector field
Z̄, we get that

∇Z̄∇Xj∇Yjs = −ikω(Z̄,Xj)∇Yjs− ikω(Z̄, Yj)∇Xjs− ikω(Z̄,∇XjYj)s,

since the Kähler form is parallel. On the other hand, we have

Z̄[δ(Xj)] = Z̄[Tr∇Xj ] = Tr∇Z̄∇Xj = TrR(Z̄, ·)Xj = −iρ(Z̄,Xj),

so we get that

∇Z̄∇δ(Xj)Yjs = −ikω(Z̄, δ(Xj)Yj)s− iρ(Z̄,Xj)∇Yjs.

Finally, using the expressions above, it follows that

∇Z̄∆G(V ) = −
∑
j

ikω(Z̄,Xj)∇Yjs+ iρ(Z̄,Xj)∇Yjs+ ikω(Z̄, δ(Xj � Yj))s,

which is the statement of the proposition.

We emphasize the importance of the rigidity condition on the family of Kähler
structures in this proposition.

If not for the last two terms of (6.6), we could use 1
4k∆G(V ) as our a(V ), so in the

following, we shall try to get rid of these terms. As we shall see, the Ricci potential
will play a centrol role in this.

Recall that the assumption (6.1) on the first Chern class implies that ρH = nω
since the Käher form is harmonic. In particular, for any smooth family of Ricci
potentials F , we have the identity

ρ = nω + 2i∂∂̄F. (6.7)

Inserting this in (6.6), and using the identity

∇0,1∇G(V )·dF s = −∂∂̄F ·G(V )·∇s− ikω·G(V )·dFs,



58 Chapter 6 · The Hitchin Connection

which is valid at any σ ∈ T and for any (local) holomorphic section s of Lk, we get
that

∇0,1
(
∆G(V )s+ 2∇G(V )·dF s

)
= −(2k + n)iω·G(V )·∇s− ikω·δ(G(V ))s− 2ikω·G(V )·dFs.

(6.8)

The obvious improvement over (6.6) is that we have replaced a first-order term by a
zero-order term. Moreover, we can get rid of the last two terms using (5.14), and it
follows that the one-form a ∈ Ω1(T ,D(M,Lk)) defined by

a(V ) =
1

4k + 2n
(∆G(V ) + 2∇G(V )·dF + 4kV ′[F ]) (6.9)

satisfies the condition (6.3). Later, it will be convenient to write the operator a(V )
in the form

a(V ) =
1

k + n/2
b(V ) + V ′[F ] with b(V ) =

1

4

(
∆G(V ) + 2∇G(V )·dF − 2nV ′[F ]

)
,

which splits the operator into orders of k. In conclusion, we have proved the following
theorem.

Theorem 6.5 (Andersen). Let (M,ω) be a compact, prequantizable symplectic man-
ifold with H1(M,R) = 0 and c̃1(M,ω) = n

[
ω
2π

]
. Further, let J be a rigid, holomor-

phic family of Kähler structures on M , parametrized by a complex manifold T . Then
the expression

∇V = ∇tV +
1

4k + 2n
(∆G(V ) + 2dF ·G(V )·∇+ 4kV ′[F ])

defines a Hitchin connection in the bundle Q̂k over T .

Clearly, with an equivariant family of Ricci potentials, the Hitchin connection
given in this theorem is equivariant with respect to the action of the symmetry
group Γ.

Having reviewed the construction by Andersen of a Hitchin connection in stan-
dard geometric quantization, we turn to the metaplectically corrected setting.

6.2 The Hitchin Connection in Metaplectic Quantization

It turns out that a Hitchin connection in metaplectic quantization can be constructed
with fewer assumptions than in standard geometric quantization. We start by de-
scribing the setup that we shall consider.

Let (M,ω) be a symplectic manifold equipped with a prequantum line bundle L.
Further, let J be a rigid family of Kähler structures, parametrized by a smooth man-
ifold T and satisfying that the Dolbeault cohomology group H0,1(Mσ,C) vanishes
for every point σ ∈ T .

Assume that the second Stiefel-Whitney class of M vanishes, and pick a meta-
plectic structure δ onM . The family J can be viewed as a smooth map J : T ×M →
L+M , and if we pull back the metaplectic structure δ → L+M by this map, we get
a line bundle δ̂ → T ×M .
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The isomorphism ψδ in Definition 1.3 induces an isomorphism between the canon-
ical line bundle K̂ → T × M and the bundle δ̂2. The Hermitian structure and
compatible connection ∇̂K on K̂ induce a Hermitian structure and compatible con-
nection ∇̂δ on δ through this isomorphism. The restriction of δ̂ to a point σ ∈ T
yields a square root δσ of the canonical line bundle Kσ over the Kähler manifoldMσ.

The spaces Pδk(σ) = C∞(M,Lk � δσ) form the fibers of a vector bundle

P̂δk → T , (6.10)

and we wish to define a connection in P̂δk which preserves the fiberwise subspaces
Qδk(σ) = H0(Mσ,Lk � δσ). We shall approach this in a way which is similar to what
we did for standard goeometric quantization, where we used the trivial connection
as a reference point in the space of connections and added an appropriate one-form
to make the connection preserve the subspaces of holomorphic sections over M .

Since the trivial connection is not available to us in the bundle P̂δk , we must
first choose a good connection to use as a reference point. The space of sections
of P̂δk → T is equal to the space of sections of the line bundle L̂k � δ̂ → T ×M .
The bundle L̂k is equipped with the connection ∇̂Lk , which we used in the previous
section, and δ̂ is equipped with the connection ∇̂δ, as discussed above. Together,
these define a connection ∇̂Lk�δ on the line bundle L̂k � δ̂, and in particular this
defines a connection on P̂δk → T .

The curvature of the line bundle L̂k � δ̂, which we will need shortly, is easily
calculated from Proposition 5.2, and we state it here for convenience.

Proposition 6.6. The curvature of the connection ∇̂ on L̂k � δ̂ is given by

F∇̂(X,Y ) = −ikω(X,Y ) +
i

2
ρ(X,Y )

F∇̂(V,X) =
i

4
δ(V [J ])X

F∇̂(V,W ) =
i

2
θ(V,W ),

for any vector fields X,Y on M and V,W on T .

The spaces D(M,Lk � δσ) of differential operators on Lk � δσ form a bundle
D̂(M,Lk � δ) over T , and we seek a one-form aδ ∈ Ω1(T , D̂(M,Lk � δ)) such that
the connection

∇δ = ∇̂+ aδ (6.11)

preserves the subspaces Qδk inside each fiber of P̂δk . In complete analogy with Defi-
nition 6.1, such a connection is called a Hitchin connection.

As in the case of standard geometric quantization, the property of being a Hitchin
connection reduces to a condition on the one-form aδ.

Lemma 6.7. The connection ∇δ preserves the fiberwise subspaces Qδk of P̂δk if and
only if the one-form aδ satisfies

∇0,1aδ(V )s+
i

2
ω·G(V )·∇s+

i

4
ω·δ(G(V ))s = 0, (6.12)

for any vector field V on T , any point σ ∈ T and any section s ∈ Qδk(σ).
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Proof. Let V and X be vector fields on T and M , respectively, and consider a point
σ ∈ T and a section s ∈ Qδk(σ). Let ŝ be any extension of s to a smooth section of
P̂δk → T . Then we have that ∇̂X′′ ŝ = 0 at the point σ, and we find that

∇̂X′′∇δ
V ŝ = ∇̂X′′∇̂V ŝ+ ∇̂X′′aδ(V )ŝ

= ∇̂V ∇̂X′′ ŝ+ F∇̂(X ′′, V )ŝ+ ∇̂[X′′,V ]ŝ+ ∇̂X′′aδ(V )ŝ

=
i

4
X·ω·δ(G(V ))ŝ+

i

2
X·ω·G(V )·∇̂ŝ+ ∇̂X′′aδ(V )ŝ,

at the point σ ∈ T , where we used (6.4) and Proposition 6.6 for the last equality.
The proposition follows since (∇δ

V ŝ)σ ∈ Qδk(σ) if and only if the left-hand side
vanishes.

To solve the equation (6.12), we once again turn to the operator ∆G(V ). The
following proposition is similar to Proposition 6.4 and its proof is completely analo-
gous.

Proposition 6.8. The operator ∆G(V ) satisfies

∇0,1∆G(V )s = −2ikω·G(V )·∇s− ikω·δ(G(V ))s+
i

2
δ(ρ·G(V ))s, (6.13)

for any σ ∈ T and any (local) holomorphic section s of Lk � δσ.

We see that if not for the last term we could use 1
4k∆G(V ) as our aδ(V ). Notice,

however, that (6.13) is valid for any integer k. In the particular case of k = 0, the
proposition yields

∇0,1∆G(V )s =
i

2
δ(ρ·G(V ))s.

By applying the ∂̄-operator on both sides, we see that

∂̄δ(ρ·G(V )) = 0,

at every point σ ∈ T . Since we assumed that the family J satisfies H0,1(Mσ,C) = 0
for every σ ∈ T , we have proved

Proposition 6.9. There exists a one-form bδ0 ∈ Ω1(T , C∞(M)) on T such that

∂̄bδ0(V ) = − i
8
δ(ρ·G(V )),

for any vector field V on T .

It follows that the one-form aδ ∈ Ω1(T , D̂(M,Lk � δ)) defined by

aδ(V ) =
1

4k
(∆G(V ) + 4bδ0(V )) (6.14)

satisfies the condition (6.12). The peculiar name for bδ0 is explained if we write

aδ(V ) =
1

k
bδ(V ) with bδ(V ) =

1

4
∆G(V ) + bδ0(V ),

as we did in the case of standard geometric quantization, so that bδ0(V ) is the zero-
order term of bδ(V ). This way of writing aδ will be convenient later.

In conclusion, we have proved the following theorem.
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Theorem 6.10. Let (M,ω) be a prequantizable symplectic manifold with vanishing
second Stiefel-Whitney class. Further, let J be a rigid family of Kähler structures
on M , parametrized by a smooth manifold T , all satifying H0,1(M,C) = 0. Then
there exists a one-form bδ0 ∈ Ω1(T , C∞(M)) satisfying ∂̄bδ0(V ) = − i

8 (ρ·G(V )), and
the connection

∇δ
V = ∇̂V +

1

4k
(∆G(V ) + 4bδ0(V ))

is a Hitchin connection on the bundle Q̂δk over T .

Let us highlight some of the differences between this result and Theorem 6.5.
The most important difference is that the assumption on the first Chern class of
the symplectic manifold is no longer needed. This comes at the cost of an explicit
expression for the Hitchin connection, however. Furthermore, we do not need the
family of Kähler structures to be holomorphic, and in particular, the manifold T
does not have to be complex. Finally, the symplectic manifold is not required to be
compact, but we remark that in the compact case, the Hodge decomposition theorem
ensures that the assumption H0,1(M,C) = 0 on each of the Kähler structures can
be replaced by H1(M,R) = 0.

6.3 Relating the Hitchin Connections

Let us impose the combined assumptions of Theorem 6.5 and Theorem 6.10, which
ensures the existence of a Hitchin connection in metaplectic as well as standard
geometric quantization. This will allow us to give an explicit formula for the Hitchin
connection in the metaplectic setting and eventually compare it with the connection
in standard geometric quantization.

To rephrase our assumptions, the manifold M is assumed to be compact with
H1(M,R) = 0 and w2(M) = 0. Moreover, we assume that the real first Chern class
satisfies

c̃1(M,ω) = n[ ω2π ], (6.15)

for some integer n ∈ Z. In fact, we shall strengthen this assumption a little by
requiring that the first Chern class c1(M,ω) is divisible by n in H2(M,Z). Since
first Chern class must be even, we shall also assume that the integer n is even.

6.3.1 Explicit Formula for the Hitchin Connection

As a first consequence of our additional assumptions, we are able to give an explicit
formula for the one-form bδ0 in Theorem 6.10.

Proposition 6.11. If F is a smooth family of Ricci potentials, then the one-form
bδ0 ∈ Ω1(T , C∞(M)) given by

bδ0(V ) = −1

4

(
∆G(V )F + dF ·G(V )·dF + 2nV ′[F ]

)
(6.16)

satisfies ∂̄bδ0(V ) = − i
8δ(ρ·G(V )), for any vector field V on T .
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Proof. Since ω is parallel with respect to the Levi-Civita connection, we get

− i
2
δ(ρ·G(V )) = − i

2
nω·δ(G(V )) + δ(∂∂̄F ·G(V )).

Moreover, it is easily verified that

δ(∂∂̄F ·G(V )) = −iρ·G(V )·dF − ∂̄δ(dF ·G(V ))

= −inω·G(V )·dF + 2∂∂̄F ·G(V )·dF − ∂̄δ(dF ·G(V )).

But ∆G(V )F = δ(dF ·G(V )), so the lemma follows by (5.14) and the identity

∂̄(dF ·G(V )·dF ) = −2∂∂̄F ·G(V )dF,

which is easily verified using the symmetry of G(V ).

Under the assumptions of this section, we have thus given a completely explicit
formula for the Hitchin connection. Let us restate Theorem 6.10 with this formula.

Theorem 6.12. Let (M,ω) be a compact, prequantizable symplectic manifold with
H1(M,R) = 0, vanishing second Stiefel-Whitney class and c̃1(M,ω) = n

[
ω
2π

]
. Fur-

ther, let J be a rigid, holomorphic family of Kähler structures on M , parametrized
by a complex manifold T . Then the expression

∇V = ∇̂V +
1

4k
(∆G(V ) −∆G(V )(F )− dF ·G(V )·dF − 2nV ′[F ])

defines a Hitchin connection in the bundle Q̂δk over T .

6.3.2 Relating the Quantum Spaces and Hitchin Connections

We wish to relate the quantum spaces of metaplectic quantization to the spaces of
standard geometric quantization, with the intent to describe the relation between
the Hitchin connections in the two settings.

To this end, we must choose our prequantum line bundle wisely. More precisely,
it must by chosen to be compatible with the choice of metaplectic structure, and this
is possible by the assumption on the first Chern class of M .

Lemma 6.13. There exists a prequantum line bundle L on M such that

n

2
c1(L) = −c1(δ), (6.17)

where c1(δ) is the class specified by the metaplectic structure on M .

Proof. Let L0 be any prequantum line bundle, and let J be any Kähler structure
on M . Further, let F be a Ricci potential on M , and consider the Hermitian line
bundles (L−n/20 , eFhL0) and (δ, hδ) over M . It is easily calculated that these line
bundles have the same curvature, and therefore the tensor product of the former
with the dual of the latter yields a flat Hermitian line bundle L1. Since 2c1(δ) =
c1(K) = −c1(M,ω), which is divisible by n, there exists a flat Hermitian line bundle
L2 such that Ln/22

∼= L1. Finally, the line bundle L = L0 �L2 has the structure of a
prequantum line bundle, and n

2 c1(L) = c1(Ln/2) = −c1(δ). It follows that L is the
desired prequantum line bundle.
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From now on, we will assume that our prequantum line bundle satisfies (6.17).
Suppose that T is contractible, and let F̃ be a family of Ricci potentials satisfying
(5.16). We wish to find an isomorphism ϕ̂ of Hermitian holomorphic line bundles
over T ×M ,

ϕ̂ : (L̂k−n/2, eF̃ ĥL)→ (L̂k � δ̂, ĥ). (6.18)

Since n
2 c1(L) = −c1(δ), the line bundles are isomorphic as complex line bundles.

The curvature of L̂k−n/2, with the given Hermitian structure, is easily calculated
and seen to agree with the curvature of the bundle L̂k � δ̂, which can be found using
Proposition 5.18.

Thus the obstruction to finding the structure preserving isomorphism ϕ̂ lies in
the first cohomology of T ×M . But this is trivial by the Künneth formula since T
is contractible and H1(M,R) = 0, by assumption. The isomorphism (6.18) gives an
isomorphism of the bundles of quantum spaces Q̂k−n/2 and Q̂δk.

It is easily seen that the pullback under ϕ̂ of the Chern connection ∇̂Lk�δ is given
by

ϕ̂∗∇̂L
k�δ = ∇̂L

k−n/2
+ ∂̂F̃ (6.19)

since the right hand side is the unique Hermitian connection compatible with the
holomorphic structure on L̂k−n/2.

Recall that the Hitchin connection in the bundle Q̂k is given by ∇V = ∇tV +a(V ),
where

a(V ) =
1

4k + 2n
(∆G(V ) + 2∇G(V )·dF̃ − 2nV ′[F̃ ]) + V ′[F̃ ]. (6.20)

Using (6.19), it is straightforward to verify that the pullback by ϕ̂ of the operator
∆G(V ), acting on sections of L̂k � δ̂, is given by

ϕ̂∗∆G(V ) = ∆G(V ) + 2∇G(V )·dF̃ − 4bδ0(V )− 2nV ′[F̃ ], (6.21)

where bδ0(V ) is given by the expression in Proposition 6.11, but in terms of F̃ . Fur-
thermore, in the bundle L̂k−n/2, the formula (6.20) becomes

a(V ) =
1

4k
(∆G(V ) + 2∇G(V )·dF̃ − 2nV ′[F̃ ]) + V ′[F̃ ]

=
1

4k
(ϕ̂∗∆G(V ) + 4bδ0(V )) + V ′[F̃ ]

= ϕ̂∗aδ(V ) + V ′[F̃ ],

(6.22)

and this means that the pullback by ϕ̂ of the Hitchin connection in the metaplectic
setting is given by

ϕ̂∗∇δ
V = ϕ̂∗∇̂V + ϕ̂∗aδ(V )

= ∇tV + V ′[F̃ ] + ϕ̂∗aδ(V )

= ∇tV + a(V )

= ∇V .

(6.23)

Thus the two connections agree, and we have proved
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Theorem 6.14. Let (M,ω) be a compact, prequantizable symplectic manifold with
vanishing second Stiefel-Whitney class and H1(M,R) = 0. Further, let J be a rigid,
holomorphic family of Kähler structures on M , parametrized by a contractible com-
plex manifold T . Assume that the first Chern class of (M,ω) is divisible by an even
integer n and that its image in H2(M,R) satisfies

c1(M,ω) = n[ ω2π ].

Then there exists a smooth family F̃ of Ricci potentials on M and an isomorphism
of vector bundles

ϕ : Q̂k−n/2 → Q̂δk

such that

ϕ∗∇δ = ∇,

where ϕ∗∇δ is the pullback of the Hitchin connection on Q̂δk, and ∇ is the Hitchin
connection on Q̂k−n/2, both of which are expressed in terms of F̃ .

6.4 Curvature of the Hitchin Connection

In this section, we calculate the curvature of the Hitchin connection and prove that
it is projectively flat under certain conditions. We will focus on calculating the
curvature in the metaplectic case, and therefore we shall work under the assumptions
of Theorem 6.12, which guarantee that the Hitchin connection exists and that we
have an explicit expression for it.

Recall that the Hitchin connection is given by

∇δ
V = ∇̂V +

1

k
bδ(V ) with bδ(V ) =

1

4
∆G(V ) + bδ0(V ),

where bδ0(V ) is given by (6.16). Since the family of Kähler structures is holomorphic,
the one-form bδ has type (1, 0) on the complex manifold T , as can be seen from its
explicit expression. But then

F∇δ(V ′′,W ′′) = F∇̂(V ′′,W ′′) =
i

2
θ(V ′′,W ′′) = 0, (6.24)

for any vector fields V and W on T , where the second equality follows by Propo-
sition 6.6, and the last equality is due to the fact that θ has type (1, 1) when the
family is holomorphic. In other words, the (2, 0)-part of the curvature of the Hitchin
connection vanishes. In particular, this means that the Hitchin connection induces
a holomorphic structure on the bundle Q̂δk over T .

The (1, 1)-part of the curvature is somewhat more laborious to calculate, so we
split the calculation into a few lemmas.

Lemma 6.15. On sections of Q̂δk, the commutator
[
∇̂W ′′ ,∆G(V )

]
is given by[

∇̂W ′′ ,∆G(V )

]
= 2ikθ(V ′,W ′′)− 1

4
Tr Ḡ(W )·ω·G(V )·ρ+

i

4
δ(δḠ(W )·ω·G(V )),

for any vector fields V and W on T such that V ′ and W ′′ commute.
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Proof. Let s be any section of Q̂δk. Using Proposition 6.6, which gives the curvature
of the connection ∇̂ on L̂k � δ̂, one can calculate that[

∇̂W ′′ ,∆G(V )

]
s = ∆W ′′[G(V )]s+

i

2
∇δḠ(W )·ω·G(V )s+

i

4
δ(δḠ(W )·ω·G(V ))s,

even if s was a section of P̂δk . Now the family is rigid, so the formula (5.6) tells us
that

δ(W ′′[G(V )]) =
i

2
δG(V )·ω·Ḡ(V )− i

2
δḠ(W )·ω·G(V ),

and therefore we get

∆W ′′[G(V )]s = ∇2
W ′′[G(V )]s+∇δ(W ′′[G(V )])s = ∇2

W ′′[G(V )] −
i

2
∇δḠ(W )·ω·G(V )s

since s is a section of Q̂δk, so we conclude that[
∇̂W ′′ ,∆G(V )

]
s = ∇2

W ′′[G(V )]s+
i

4
δ(δḠ(W )·ω·G(V ))s.

For any pair of vector fields X and Y on M , we clearly have

∇2
X′,Y ′′s = ∇X′∇Y ′′s−∇∇X′Y ′′s = 0,

and furthermore

∇2
Y ′′,X′s = ∇Y ′′∇X′s−∇∇Y ′′X′s = −ikω(Y ′′, X ′)s+

i

2
ρ(Y ′′, X ′)s,

so

∇2
W ′′[G(V )]s = − i

2
∇2
Ḡ(W )·ω·G(V )s

=
k

2
Tr
(
Ḡ(W )·ω·G(V )·ω

)
s− 1

4
Tr
(
Ḡ(W )·ω·G(V )·ρ

)
s

= 2ikθ(V ′,W ′′)s− 1

4
Tr
(
Ḡ(W )·ω·G(V )·ρ

)
s,

which proves the lemma.

Lemma 6.16. The one-form bδ0 satisfies

W ′′[bδ0(V )] =− in

4
θ(V ′,W ′′) +

1

16
Tr Ḡ(W )·ω·G(V )·ρ

− i

16
δ(δḠ(W )·ω·G(V ))− n

2
W ′′V ′[F ].

for any vector fiels V and W on T , such that V ′ and W ′′ commute.

Proof. Since ∆G(V )F = δ(G(V )·dF ), the identities (5.6) and (5.14) give us that

W ′′[∆G(V )(F )] = δ(W ′′[G(V )]·dF ) + δ(G(V )·W ′′[F ])

=
i

4
δ(δḠ(W )·ω·G(V ))− i

2
δ(Ḡ(W )·ω·G(V )·dF )

=
i

4
δ(δḠ(W )·ω·G(V ))− i

2
δḠ(W )·ω·G(V )·dF +

i

2
∂∂̄F (Ḡ(W )·ω·G(V )),
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where rigidity of the family of Kähler structures was used for the last equality. The
Ricci potential satisfies the equation ρ = nω + 2i∂∂̄F , and so we get that

i

2
∂∂̄F (Ḡ(W )·ω·G(V )) =

n

4
Tr Ḡ(W )·ω·G(V )·ω − 1

4
Tr Ḡ(W )·ω·G(V )·ρ

= inθ(V ′,W ′′)− 1

4
Tr Ḡ(W )·ω·G(V )·ρ.

Finally, the identities (5.6) and (5.14) can be used to verify that

W ′′[dF ·G(V )·dF ] =
i

2
δḠ(W )·ω·G(V )·dF,

and the proposition follows by combining the identities above.

Proposition 6.17. The (1, 1)-part of the curvature of the Hitchin connection is
given by

F 1,1

∇δ =
in

4k
(θ − 2i∂T ∂̄T F )

on the bundle Q̂δk.

Proof. Let V and W be vector fields on T such that V ′ and W ′′ commute. Then
the curvature of the Hitchin connection is given by

F∇δ(V ′,W ′′) =
[
∇δ
V ′ ,∇

δ
W ′′
]

=
[
∇̂V ′ , ∇̂W ′′

]
+

1

k

[
bδ(V ), ∇̂W ′′

]
.

By Proposition 6.6, the first term is given by[
∇̂V ′ , ∇̂W ′′

]
=
i

2
θ(V ′,W ′′),

and by Lemma 6.15 and Proposition 6.17, the last term is given by

1

k

[
bδ(V ), ∇̂W ′′

]
= −1

k

[
∇̂W ′′ ,

1

4
∆G(V ) + bδ0(V )

]
= − i

2
θ(V ′,W ′′) +

in

4k
(θ(V ′,W ′′)− 2i∂T ∂̄T F (V ′,W ′′)).

This proves the proposition.

Notice that Proposition 5.16 implies that the (1, 1)-part of the curvature of the
Hitchin connection is just a projective factor, in the sense that its endomorphism-part
is just multiplication by a scalar.

Finally, we shall calculate the (2, 0)-part of the curvature of the Hitchin connnec-
tion, and once again, we shall aid the computation with a few lemmas. First, we
have

Lemma 6.18. For any Kähler structure on M , any vector field X ∈ C∞(M,T ′M)
and any bivector field B ∈ C∞(M,S2(T ′M)), we have the symbols

σ2(
[
∇X ,∇2

B

]
) = ∇XB − 2S(B·∇X)

σ1(
[
∇X ,∇2

B

]
) = −∇2

BX

σ0(
[
∇X ,∇2

B

]
) = 0,

for the commutator of the operators ∇X and ∇2
B on Pδk .
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Proof. Locally, we can write B =
∑
j Yj �Zj , where Yj and Zj are local vector fields

of type (1, 0). By writing out the commutator in terms of these vector fields, and
using that the (2, 0)-part of the curvature of Lk � δ vanishes, it is easily verified that[

∇X ,∇2
B

]
= ∇2

∇XB −∇
2
B·∇X −∇2

∇(X)·B −∇∇2
BX

+
∑
j

R(Yj , X)Zj .

But the Kähler curvature has type (1, 1), so the last term vanishes, and the operator
∇2 only depends on the symmetric part of a bivector field of type (2, 0), so the lemma
follows.

The next lemma is proved in a completely analogous way, although the compu-
tations are lengthier.

Lemma 6.19. For any Kähler structure on M and any bivector fields A,B ∈
C∞(M,S2(T ′M)), we have the symbols

σ3(
[
∇2
A,∇2

B

]
) = 2S(A·∇B)− 2S(B·∇A)

σ2(
[
∇2
A,∇2

B

]
) = ∇2

AB −∇2
BA

σ1(
[
∇2
A,∇2

B

]
) = 0

σ0(
[
∇2
A,∇2

B

]
) = 0,

for the commutator of the operators ∇2
A and ∇2

B on Pδk .

Using these two lemmas, we can prove the following important proposition.

Proposition 6.20. The commutator of bδ(V ) and bδ(W ) is a first-order operator
on Pδk with symbols given by

σ1(
[
bδ(V ), bδ(W )

]
) =

1

16
∇2
G(V )δG(W )− 1

16
∇2
G(W )δG(V ) +

1

16

[
δG(V ), δG(W )

]
+

1

2
dbδ0(W )·G(V )− 1

2
dbδ0(V )·G(W )

and

σ0(
[
bδ(V ), bδ(W )

]
) =

1

4
∆G(V )b

δ
0(W )− 1

4
∆G(W )b

δ
0(V ),

for any vector fields V and W on T .

Proof. First of all, we get[
bδ(V ), bδ(W )

]
=

1

16

[
∆G(V ),∆G(W )

]
+

1

4

[
∆G(V ), b

δ
0(W )

]
− 1

4

[
∆G(W ), b

δ
0(V )

]
.

By applying Lemma 6.19 and Proposition 5.12, the third-order symbol of the first
term vanishes,

σ3(
[
∆G(V ),∆G(W )

]
) = σ3(

[
∇2
G(V ),∇

2
G(W )

]
)

= 2S(G(V )·∇G(W ))− 2S(G(W )·∇G(V ))

= 0.
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Likewise, by Lemma 6.18, Lemma 6.19 and Proposition 5.13, the second-order symbol
vanishes,

σ2(
[
∆G(V ),∆G(W )

]
)

= σ2(
[
∇2
G(V ),∇

2
G(W )

]
) + σ2(

[
∇δG(V ),∇2

G(W )

]
)− σ2(

[
∇δG(W ),∇2

G(V )

]
)

= ∇2
G(V )G(W ) +∇δG(V )G(W ) + 2S(G(V )·∇δG(W ))

−∇2
G(W )G(V )−∇δG(W )G(V )− 2S(G(W )·∇δG(V ))

= 0.

It follows that the commutator is a first-order operator, with the claimed symbols,
as is easily verified using Lemma 6.18 and Lemma 6.19.

With the above results at hand, we can calculate the (2, 0)-part of the curvature
of the Hitchin connection.

Proposition 6.21. The (2, 0)-part of the curvature of the Hitchin connection is the
first-order operator on Pδk given by

F 2,0

∇δ(V,W ) =
1

k
∂T b

δ
0(V,W ) +

1

k2

[
bδ(V ), bδ(W )

]
, (6.25)

for any vector fields V and W on T .

Proof. Let V and W be vector fields on T , such that V ′ and W ′ commute. Then
the curvature of the Hitchin connection is given by

F∇δ(V ′,W ′) =
[
∇δ
V ′ ,∇

δ
W ′
]

=
[
∇̂V ′ , ∇̂W ′

]
+

1

k

[
∇̂V ′ , bδ(W )

]
− 1

k

[
∇̂W ′ , bδ(V )

]
+

1

k2

[
bδ(V ), bδ(W )

]
.

The curvature of the bundle L̂k � δ̂ has type (1, 1), which implies that the first term
vanishes. Furthermore, it implies that[

∇̂V ′ ,∆G(W )

]
= ∆V ′[G(W )],

as is easily verified, and therefore[
∇̂V ′ , bδ(W )

]
−
[
∇̂W ′ , bδ(V )

]
=

1

4
∆V ′[G(W )] −

1

4
∆W ′[G(V )] + V ′[bδ0(W )]−W ′[bδ0(V )]

= dT b
δ
0(V ′,W ′),

where we used that V ′[G(W )] = W ′[G(V )] for the last equality.

The symbols of the curvature are easily obtained from Proposition 6.20. Fur-
thermore, we can use Proposition 6.21 to prove projective flatness of the Hitchin
connection under certain conditions.

Theorem 6.22. If none of the Kähler structures in the family admit a holomorphic
vector field on M , then the Hitchin connection is projectively flat.
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Proof. We must prove that the curvature of the Hitchin connection at a point σ ∈ T
is a projective factor, that is, its endomorphism-part is given by multiplication with
a scalar. By Proposition 6.17 and (6.24), this is the case for the (1, 1) and (0, 2)-part,
and by Proposition 6.21, the (2, 0)-part is at most a first-order operator.

Since the Hitchin connection preserves the subbundle Q̂δk of P̂δk , the endomorphism-
part of the curvature must preserve the subspace Qδk(σ) of Pδk(σ), and consequently
the symbol must be a holomorphic vector field on Mσ. By assumption, such a vec-
tor field cannot exist, and therefore the endomorphism-part of the curvature must
be an operator of order zero on Qδk(σ). In other words, it is given by multiplica-
tion by a function on M , which must also be holomorphic and hence constant by
compactness.

If the Hitchin connection is projectively flat, then each of the terms in (6.25),

∂T b
δ
0(V,W ) and

[
bδ(V ), bδ(W )

]
,

must be a projective factor since the curvature must be a projective factor for each
value of k. In particular, this means that the first-order symbol of

[
bδ(V ), bδ(W )

]
must vanish, and the symbol of order zero must be constant on M . But for any
function f on M , the function ∆G(V )f = δ(G(V )·df) has average zero since∫

M

δ(X)ωm =

∫
M

LXωm =

∫
M

diXω
m = 0,

for any vector field X on M , and conseqently we have[
bδ(V ), bδ(W )

]
= 0,

for all vector fiels V and W on T . Moreover, if we define the one-form β on T by

β(V ) =
1

Vol(M)

∫
M

bδ0(V )ωm = − 1

4 Vol(M)

∫
M

dF ·G(V )·dF ω
m

m!
,

then ∂T β = ∂T b
δ
0 since the latter takes values in constant functions on M , by pro-

jective flatness of the Hitchin connection. In conclusion, we have proved

Proposition 6.23. If the Hitchin connection is projectively flat, its curvature is
given by

F 2,0

∇δ =
1

k
∂T β, F 1,1

∇δ =
in

4k
(θ − 2i∂T ∂̄T F ), F 0,2

∇δ = 0,

on the bundle Q̂δk.

If the Hitchin connection is projectively flat, the parallel translation maps along
homotopic curves are equal up to scale. Thus, if the parameter space T is simply
connected, the Hitchin connection gives a canonical identification of the projectivized
quantum spaces associated with different complex structures. In this sense, the
quantization is independent of the complex structure. Furthermore, the action of a
symmetry group Γ permutes the various quantum spaces, so if they are canonically
identified as projective vector spaces, then we get a projective representations of Γ,
for each level k of the quantization.

But quantization is not only about producing the projective vector space. The
Hilbert space structure on the quantum space is an essential part of the theory, as
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is the quantization of observables. Ultimately, the interest is in the spectrum of
the quantized observables, since the spectrum represents the possible outcome of
measurements. The identification of the quantum spaces, provided by the Hitchin
connection, should therefore preserve the Hermitian structure and the quantization
of observables.

In the following section, we discuss the relation between the Hermitian structure
and the Hitchin connection. The relation between the Hitchin connection and the
quantized observables will take us back to deformation quantization and lead us to
define the notion of a formal Hitchin connection. This will be the topic of the next
chapter.

6.5 Unitarity of the Hitchin Connection

Throughout this section, we shall work under the assumptions of Theorem 6.12 to
ensure that the Hitchin connection exists and that we have an explicit formula for
it. Moreover, we shall assume that the Hitchin connection is projectively flat.

By projective flatness, the parallel transport identifies the quantum spaces as
projective vector spaces, and we would like to prove that this identification is iso-
metric, which asserts that the Hitchin connection is compatible with the Hermitian
structure

〈s1, s2〉 =

∫
M

h(s1, s2)
ωm

m!
, (6.26)

on the bundle Q̂δk. But the Hitchin has no chance of preserving this Hermitian
structure, or indeed any other, unless the (2, 0)-part of its curvature vanishes, which is
not generally the case by Proposition 6.23. This can be fixed, however, by considering
∇̃δ = ∇δ− 1

kβ, which is also a Hitchin connection. Indeed, this connection preserves
the subbundle Q̂δk since β is constant along M , and furthermore the curvature has
type (1, 1), as one can easily verify.

Now, the restriction of the connection ∇̂ on L̂k� δ̂ to directions along T preserves
the inner product (6.26). Indeed, we get that

V [〈s1, s2〉] =

∫
M

(
h(∇̂V s1, s2) + h(s1, ∇̂V̄ s2)

)ωm
m!

= 〈∇̂V s1, s2〉+ 〈s1, ∇̂V̄ s2〉,

for any vector field V on T , and consequently the Hitchin connection does not gen-
erally preserve this inner product. It might, however, preserve a different Hermitian
structure, so consider a general inner product on Q̂δk, given by

Hk(s1, s2) = 〈Dks1, s2〉 =

∫
M

h(Dks1, s2)
ωm

m!
, (6.27)

where Dk : T → C∞(M) is a smooth family of real positive functions on M , de-
pending on the level k of the quantization. The Hitchin connection preserves this
Hermitian structure if and only if

0 = ∇̃δ
V (Hk)(s1, s2) = V [Hk(s1, s2)]−Hk(∇̃δ

V s1, s2)−Hk(s1, ∇̃δ
V̄ s2), (6.28)

which is equivalent to

〈V ′[Dk]s1, s2〉 =
1

k
〈Dkb

δ(V )s1, s2〉 −
1

k
〈Dkβ(V )s1, s2〉, (6.29)
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since Dk takes values in real functions.
Now for any smooth section s of P̂δk , the operator ∆G(V ) satisfies

πδkDk∆G(V )s = πδk(∆G(V )Dk − 2∇G(V )·dDk −∆G(V )(Dk))s = πδk∆G(V )(Dk)s,

where we used Corollary 4.9 and Proposition 4.7. This can be applied to (6.29),
which is therefore equivalent to

〈V ′[Dk]s1, s2〉 =
1

k
〈bδ(V )(Dk)s1, s2〉 −

1

k
〈β(V )Dks1, s2〉

whenever s2 is holomorphic. It follows that the Hitchin connection preserves Hk on
Q̂δk if and only if

V ′[Dk] =
1

k
bδ(V )Dk −

1

k
β(V )Dk. (6.30)

If we introduce b̃δ(V ) and β̃(V ) which are given by replacing G(V ) with G̃(V ) in the
expressions for bδ(V ) and β(V ), then the following proposition follows by conjugating
the condition (6.30).

Proposition 6.24. The Hitchin connection ∇̃δ preserves the Hermitian structure
Hk on Q̂δk if and only if the family of functions Dk satisfies

V [Dk] =
1

k
b̃δ(V )Dk −

1

k
β̃(V )Dk, (6.31)

for all vector fields V on T .

The question is therefore whether (6.31) has any solutions. This question becomes
much simpler if we consider an expansion of Dk in powers of k and write

Dk = D̃0 +
1

k
D̃1 +

1

k2
D̃2 + · · · ,

where each D̃j : T → C∞(M) is a family of smooth real functions, which is indepen-
dent of the level k of the quantization. The equation (6.30), which is equivalent to
(6.31), then becomes the recursive system of equations

V ′[D̃0] = 0 and V ′[D̃j+1] = bδ(V )D̃j − β(V )D̃j . (6.32)

Clearly, the constant function D̃0 = 1 solves the first equation, so we can try to
solve (6.32) inductively. Assume that solutions have already been found up to some
natural number j. If V and W are vector fields on T such that V ′ and W ′ commute,
then (6.32) can only have a solution if

0 = V ′[bδ(W )D̃j ]−W ′[bδ(V )D̃j ]− V ′[β(W )D̃j ] +W ′[β(V )D̃j ]

= (bδ(W )− β(W ))V ′[D̃j ]− (bδ(V )− β(V ))W ′[D̃j ] + ∂T (bδ0 − β)(V,W )D̃j ,

where we used that V ′[∆G(W )] = ∆V ′[G(W )] = ∆W ′[G(V )] = W ′[∆G(V )] for the last
equation. But the function D̃j is assumed to satisfy (6.32), so the equation above is
equivalent to

0 =
[
bδ(W ), bδ(V )

]
D̃j−1 + ∂T (bδ0 − β)(V,W )D̃j−1.
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As we proved in the previous section, both of these terms vanish since the Hitchin
connection is projectively flat. Consequently, there is no local obstruction to solving
the system of equations (6.32). Let us therefore assume that T is contractible, which
implies that we can find functions D̃j satisfying the equations.

Using these solutions, we define the functions

DN
k =

N∑
j=0

1

kj
D̃j

and the Hermitian structures

HN
k (s1, s2) = 〈DN

k s1, s2〉 =

N∑
j=0

1

kj

∫
M

h(Djs1, s2)
ωm

m!
, (6.33)

for any sections s1 and s2 of Q̂δk.
Since the functions D̃j satisfy the equations (6.32), it is easily verified that the

covariant derivative of these Hermitian structures with respect to the Hitchin con-
nection are given by

∇̃δ
V (HN

k )(s1, s2) = − 1

kN+1

(
〈bδ(V )(D̃N )s1, s2〉+ 〈β(V )D̃Ns1, s2〉

)
. (6.34)

This shows that the Hitchin connection preserves the Hermitian structure HN
k up to

order N in k. In fact, if we use the inner product (6.26) to define an analog of the
operator norm on bilinear forms by

∥∥∇̃δ
V (HN

k )
∥∥ = sup

s1,s2∈Qδk

∣∣∇̃δ
V (HN

k )(s1, s2)
∣∣

‖s1‖‖s2‖
,

then we have the following asymptotic result regarding unitarity of the Hitchin con-
nection.

Theorem 6.25. Assume that T is contractible and that the Hitchin connection is
projectively flat. Then, for any natural number N , there exist Hermitian structures
HN
k on Q̂δk such that ∥∥∇̃δ

V (HN
k )
∥∥ = O

( 1

kN+1

)
as k tends to infinity.

Proof. Let HN
k be the Hermitian structures defined by (6.33), so that (6.34) is sat-

isfied. But ∣∣〈bδ(V )(D̃N )s1, s2〉
∣∣ ≤ ∥∥T δk (bδ(V )(D̃N ))s1

∥∥‖s2‖
≤
∥∥T δk (bδ(V )(D̃N ))

∥∥‖s1‖‖s2‖
≤
∥∥bδ(V )(D̃N )

∥∥
∞‖s1‖‖s2‖,

where we used Theorem 4.3 for the last inequality, and similarly,∣∣〈β(V )D̃Ns1, s2〉
∣∣ ≤ ∥∥β(V )(D̃N )

∥∥
∞‖s1‖‖s2‖,

so the theorem follows immediately from (6.34).
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In the presence of a symmetry group Γ, the Hermitian structure should also be
preserved by the symmetries. This is clearly the case for the inner product (5.13), but
not necessarily for the Hermitian structures HN

k constructed above. Indeed, we must
solve the equations (6.31) equivariantly to obtain an invariant Hermitian structure,
and we can only guarantee that this is possible if the equivariant cohomology group
H1

Γ(T , C∞(M)) vanishes. If the manifold T is contractible, this cohomology group
is equal to the the group cohomology H1(Γ, C∞(M)), which is therefore required to
vanish.

Although the Hitchin connection ∇δ has no chance of being unitary, due to the
(2, 0)-part of its curvature, it might be preserve some Hermitian structure projec-
tively. By definition, this is the case if there exists a Hermitian structure Hk and a
one-form κk ∈ Ω1(T ) such that

∇δ
V (Hk)(s1, s2) = κk(V )Hk(s1, s2), (6.35)

for all vector fields V on T and all sections s1 and s2 of Q̂δk. This condition implies
that the parallel transport identifies the quantum spaces with the inner product Hk

as projective Hilbert spaces. Ultimately, this is all we need, since the projective
Hilbert space is the object of interest in quantization.

If we assume that ∇̃δ preserves a Hermitian structure Hk, then ∇δ is projectively
unitary with respect to the same Hermitian structure. Indeed, it is easily verified that
∇δ satisfies (6.35) with κk(V ) = − 1

k (β(V ) + β(V )). Consequently, the particular
choice of Hitchin connection is not important from a metric point of view.

6.6 Quantization Revisited

Having discussed the Hitchin connection in detail, let us briefly recall the objective
of geometric quantization and the role of the Hitchin connection.

Suppose that the manifold T is contractible and that the Hitchin connection ∇δ

is projectively flat on the bundle Q̂δk of quantum spaces associated with different
complex structures. Moreover, assume that the Hitchin connection is projectively
unitary with respect to some Hermitian structure Hk on Q̂δk.

Then the various quantum spaces are canonically identified as projective Hilbert
spaces through the parallel transport of the Hitchin connection, and in this sense,
the quantization is independent of the choice of complex structure. More precisely,
one can consider the space of covariantly constant sections of the projectivization of
Q̂δk, and this projective Hilbert space should be the true space of quantum states.

The quantization of an observable f ∈ C∞(M) should be a self-adjoint operator
acting on the space of quantum states. The quantum operators of Chapter 2 are not
really the right operators to consider as they are based on the Hermitian structure
(2.4), and consequently they are not self-adjoint with respect to Hk. Neither are
they covariantly constant with respect to the Hitchin connection, which is required
in order to act on the space of covariantly constant sections.

However, as we saw in Section 4.2, the quantum operators are examples of
Toeplitz operators, and it is natural to follow this idea and define the quantization
of the observable f by

Qδk(f)s = πHk fs,

where πHk : P̂δk → Q̂δk denotes the orthogonal projection with respect to the Hermitian
structure Hk. Clearly, these operators are self-adjoint with respect to Hk, and it is
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easily checked that they are covariantly constant with respect to the Hitchin connec-
tion, so they act on the space of covariantly constant sections of (the projectivization
of) Q̂δk, which is the space of quantum states.

With our limited understanding of unitarity, these operators are not very practical
to work with, however. In Section 7.4 of the next chapter, we shall briefly return to
the discussion of quantum observables and show how Toeplitz operators, with respect
to the Hermitian structure (6.26), can be used to construct quantum observables
which are self-adjoint with respect to (6.26) and covariantly constant with respect
to the Hitchin connection to arbitrary order in k.



Chapter 7

Formal Hitchin Connections

In this chapter, we return to the setting of formal deformation quantization. Previ-
ously, we have discussed various ways of constructing a formal deformation quanti-
zation on a symplectic manifold whenever a Kähler structure has been chosen. Once
again the fundamental problem is that a quantization should not depend on this
choice of complex structure. In geometric quantization, we approached this problem
through the Hitchin connection, and in this chapter, we shall pursue an anologous
idea and define a formal Hitchin connection. The ideas applied are heavily influenced
by Andersen [And1], and so is the exposition given.

The Toeplitz operators provide a link between geometric and deformation quanti-
zation. On one hand, the quantum operators of geometric quantization are Toeplitz
operators, and on the other hand, the asymptotic expansion of products of Toeplitz
operators gives rise to a formal deformation quantization. As we shall see, the Hitchin
connection manifests itself in the world of formal deformation quantizations through
this link, and parallel transport of this formal Hitchin connection can be used to
relate the deformation quantizations arising from different Kähler structures.

7.1 Formal Hitchin Connections

Let (M,ω) be any symplectic manifold, and let T be a smooth manifold. Consider
the trivial bundle Ĉ∞h (M) = T ×C∞h (M) over T of formal functions onM . Sections
of this bundle are in bijective correspondence with the space C∞(T × M)[[h]] of
formal functions on T ×M . Furthermore, let Dh(M) = D(M)[[h]] be the space of
formal differential operators on M .

Suppose that we have a smooth family ∗̂ of formal deformation quantizations on
M , parametrized by T . In other words, for each σ ∈ T , we have a star product ∗̂σ
on the fiber C∞h (M) of the bundle Ĉ∞h (M).

As we did in the setting of geometric quantization, we consider a connection D
on Ĉ∞h (M) of the form

D = Dt +A, (7.1)

where Dt is the trivial connection on Ĉ∞h (M), and A ∈ Ω1(T ,Dh(M)) is a one-form
on T with values in formal differential operators on M . Such a connection will be
called a formal connection, and we seek an A such that this connection preserves
the quantization in an appropriate sense. More precisely, the parallel transport with

75
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respect to the connection should constitute an equivalence between the star products
on different fibers, which leads us to the following infinitesimal definition of a formal
Hitchin connection.

Definition 7.1. A formal Hitchin connection for a family of star products ∗̂ is a
formal connection D on Ĉ∞h (M), of the form (7.1), which satisfies

DV (f ∗̂ g) = DV (f) ∗̂ g + f ∗̂DV (g),

for any sections f and g of Ĉ∞h (M).

In other words, a formal Hitchin connection should be a derivation for the family
of star products. Since the one-form A takes values in formal differential operators,
we shall write it as

A(V ) =
∑
j

Aj(V )hj

for any vector field V on T , where Aj(V ) is a differential operator on M .
If we have a symmetry group Γ acting on M and T in such a way that the family

∗̂ is equivariant, then it is natural to require that a formal Hitchin connection is also
equivariant.

7.1.1 Curvature and Formal Trivializations

Flat connections admit covariantly constant sections over simply connected subsets
of the base space. For a formal connection, we formulate this fact in terms of formal
trivializations.

Definition 7.2. A formal trivialization of a formal connection D is a map P : T →
Dh(M) satisfying

DV (P (f)) = 0,

for all vector fields V on T and all functions f on M .

A formal trivialization therefore identifies formal functions onM with covariantly
constant sections of Ĉ∞h (M). Since the map P : T → Dh(M) is a family of formal
differential operators, we shall write

P =
∑
j

Pjh
j .

The next proposition gives sufficient conditions on a formal connection for the exis-
tence of a formal trivialization.

Proposition 7.3 (Andersen). If T is contractible, any flat formal connection D =
Dt +A with A0 = 0 admits a formal trivialization.

Proof. A family of formal differential operators P : T → Dh(M) is a formal trivial-
ization for D if and only if

0 = DV P =

∞∑
j=0

(
V [Pj ] +

j∑
r=0

Ar(V )Pj−r

)
hj .
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This formal equation is of course equivalent to the system of equations

V [Pj ] = −
j∑
r=1

Ar(V )Pj−r, (7.2)

for each natural number j. Notice how the assumption A0 = 0 implies that the
variation of Pj is determined by the terms of P of lower degree. This means that we
can try to solve the equations inductively.

Clearly, P0 = Id satisfies the first of the equations. To prove existence of the
higher-degree terms of P , we assume that the equations (7.2) have been solved up to
some degree j − 1, and we must show that right-hand side of (7.2) defines a closed
one-form on T . More precisely, the term Pj only has a chance of satisfying (7.2) if

0 =
∑
r=1

dT Ar(V,W )Pj−r +

j∑
r=1

j−r∑
s=1

[
Ar(V ), As(W )

]
Pj−r−s,

for any commuting vector fields V and W on T . This is indeed the case if the
formal connection D is flat, as can be seen by considering the term of degree j of
the curvature, which is given by

0 = FD(V,W ) = dT A(V,W ) +
[
A(V ), A(W )

]
.

Consequently, there is no local obstruction to finding a local formal trivialization,
and the proposition follows since T is contractible.

If the space T is contractible and the cohomology group H1(Γ,D(M)) vanishes,
then the equivariant cohomology H1

Γ(T ,D(M)) vanishes, and the proof above can
be used to produce an equivariant formal trivialization.

7.1.2 The Invariant Star Product

A formal trivialization of a formal Hitchin connection for a family of star products
can be used to identify the star products corresponding to different points in T .

Proposition 7.4 (Andersen). Suppose that D is a formal Hitchin connection for a
family of star products ∗̂ and that P is a formal trivialization of D. Then

f ∗ g = P−1(P (f) ∗̂ P (g)) (7.3)

defines a star product which is independent of the point in T .

Proof. Clearly, the expression (7.3) defines a new family of star products, and we
must show that the variation of this family along any vector field V on T vanishes.

On one hand, we have that

V [f ∗ g] = V [P−1](P (f) ∗̂ P (g)) + P−1V [P (f) ∗̂ P (g)],

and on the other hand, since P is a formal trivialization of D = Dt +A, we get that

0 = P−1DV (P (f) ∗̂ P (g)) = P−1V [P (f) ∗̂ P (g)] + P−1A(V )(P (f) ∗̂ P (g))

But since P is a formal trivialization, we get that

0 = DV (P (f)) = V [P ](f) +A(V )P (f),
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which implies that

V [P−1] = −P−1V [P ]P−1 = P−1A(V ),

and if we apply this to the above, we get that V [f ∗ g] = 0, as desired.

If one has a good way of constructing a deformation quantization from a choice of
complex structure, then this proposition can be used to obtain a quantization which
is independent of the complex structure, as a good quantization should be.

In the presence of a symmetry group Γ, the star product ∗ will clearly be equiv-
ariant if the family ∗̂ and the formal trivialization are equivariant.

7.2 The Berezin-Toeplitz Formal Hitchin Connection

By the classification of deformation quantizations with separation of variables on a
Kähler manifold, we have plenty of examples of families of deformation quantizations.
For the purpose of constructing a formal Hitchin connection, however, the family of
deformation quantizations given by the Berezin-Toeplitz star products has the advan-
tage that it is defined in terms of the Toeplitz operators in geometric quantization,
where we have already constructed a Hitchin connection. As we shall see, this will
help us construct a formal Hitchin connection for the family of Berezin-Toeplitz star
products. The key is to understand the interaction of the Toeplitz operators and the
Hitchin connnection.

Throughout all of this section, we shall assume that the conditions of Theorem 6.5
are satisfied, so that the Hitchin connection exists and we have an explicit formula
for it.

7.2.1 Covariant Derivatives of Toeplitz Operators

The Hitchin connection ∇ on Q̂k induces a connection on the endomorphism bundle
End(Q̂k) → T , and the Toeplitz operators, which act on the quantum spaces, are
sections of this bundle. More precisely, if f : T → C∞(M) is a family of smooth
functions on M , then Tk(f) defines a smooth section of the bundle End(Q̂k) → T .
The Toeplitz operators are not covariantly constant with respect to the Hitchin
connection, but as we shall see, the covariant derivative of a Toeplitz operator, much
like the product of two Toeplitz operators, has an asymptotic expansion in terms of
Toeplitz operators.

First, we must find a formula for the covariant derivative of a Toeplitz operator
with respect to the Hitchin connection. For any section s of P̂k, this is given by

∇V (Tk(f))s = ∇tV (Tk(f))s+
[
a(V ), Tk(f)

]
s.

Since the Hitchin connection preserves the bundle Q̂k, the covariant derivative of a
Toeplitz operator will also take values in this bundle, so we might as well compose
with the projection onto Q̂k, which yields

πk∇V (Tk(f)) = πkV [πk]f + πkV [f ] + πka(V )πkf − πkfa(V ). (7.4)

To develop this expression further, we need the following lemma from [And1].
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Lemma 7.5. The variation of the projection πk : P̂k → Q̂k satisfies

πkV [πk] = πka(V )∗πk − πka(V )∗,

for any vector field V on T .

We recall that the explicit formula for the Hitchin connection is given by

a(V ) =
1

k + n/2
b(V ) + V ′[F ] with b(V ) =

1

4

(
∆G(V ) + 2∇G(V )·dF − 2nV ′[F ]

)
.

For the sake of notation, we further introduce the operator-valued one-form

c(V ) =
1

4

(
∆G̃(V ) − 2∇G̃(V )·dF − 2∆G̃(V )(F ) + 2nV [F ]

)
, (7.5)

with zero-order part

c0(V ) =
1

2

(
−∆G̃(V )(F ) + nV [F ])

)
.

With this notation and Lemma 7.5, the expression (7.4) becomes

πk∇V (Tk(f)) = πkV [f ] + πk(a(V ) + a(V )∗)πkf − πkfa(V )− πka(V )∗f

= πkV [f ] + πkV [F ]πkf + πkV [F ]f

+
1

k + n/2

(
πk
(
b(V ) + b(V )∗

)
πkf − πkfb(V )− πkb(V )∗f

)
.

(7.6)

Using Lemma 4.1 and Lemma 4.2, the adjoint of b(V ) is easily calculated,

b(V )∗ =
1

4

(
∆Ḡ(V ) − 2∇Ḡ(V )·dF − 2∆Ḡ(V )(F ) + 2nV ′′[F ]

)
= c(V ′′),

so by Proposition 4.7 and Corollary 4.9, we get that

πk
(
b(V ) + b(V )∗

)
πk =

1

2
πk
(
−∆G̃(V )(F ) + nV [F ]

)
πk = πkc0(V )πk.

Finally, we get

πkfb(V ) = πk

(1

4
∆G(V )f −

1

2
∇G(V )·df +

1

2
∇G(V )·dF f − b(V )(f)

)
=

1

4
πk

(
∆G(V )(f)− 2∆G(V )(F )f − 2dF ·G(V )·df + 2nV ′[F ]f

)
= πkc(V

′)(f),

and

πkb(V )∗fπk = πkb(V )∗(f)πk = πkc(V
′′)(f)πk,

so by combining the identities above with (7.6), we have proved

Proposition 7.6. The covariant derivative, with respect to the Hitchin connection,
of a Toeplitz operator acts by

∇V (Tk(f)) = Tk(V [f ]) + Tk(V [F ])Tk(f)− Tk(V [F ]f)

+
1

k + n/2

(
Tk(c0(V ))Tk(f)− Tk(c(V )(f))

)
,

(7.7)

on sections of Q̂k.
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This proposition will give us an asymptotic expansion of the covariant derivative
of a Toeplitz operator since we already have an expansion for products of Toeplitz
operators by Theorem 4.10. This expansion is, however, in powers of k, which does
not play well with the factor k+n/2 in (7.7). It would therefore be more convenient
to work with an asymptotic expansion of products of Toeplitz operators in powers
of k + n/2.

7.2.2 The Shifted Berezin-Toeplitz Star Product

Recall from Theorem 4.10 that the product of two Toeplitz operators has an asymp-
totic expansion

Tk(f)Tk(g) ∼
∞∑
j=0

Tk(Cj(f, g))
(1

k

)j
, (7.8)

where the functions Cj(f, g) are uniqely determined and specify the coefficients of
the Berezin-Toeplitz star product

f H g =
∑
j

Cj(f, g)hj .

If we consider the real function ϕ(t) = t
1−tn/2 , which satisfies ϕ

(
1

k+n/2

)
= 1

k , then
(7.8) becomes

Tk(f)Tk(g) ∼
∞∑
j=0

Tk(Cj(f, g))
(
ϕ
( 1

k + n/2

))j
. (7.9)

The asymptotic expansion of ϕ, in powers of t as t tends to zero, is just the Taylor
series expansion of ϕ around zero, and the corresponding formal series, with the same
coefficients, yields the formal constant

ϕ(h) =

∞∑
j=1

(n
2

)j−1

hj = h+
n

2
h2 +

n2

4
h3 + · · · .

Then it is a simple task to verify that we get an asymptotic expansion

Tk(f)Tk(g) ∼
∞∑
j=0

Tk(C̃j(f, g))
( 1

k + n/2

)j
,

where the functions C̃j(f, g) are determined by∑
j

C̃j(f, g)hj =
∑
j

Cj(f, g)(ϕ(h))j = (f H g)[ϕ(h)] = f Hϕ(h) g.

For convenience, let us denote the star product Hϕ(h) by H̃.
To summarize, the star product H̃ gives the asymptotic expansion of the product

of two Toeplitz operators, but in powers of k + n/2,

Tk(f)Tk(g) ∼ Tk(f H̃ g)
[ 1

k + n/2

]
. (7.10)
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It is not difficult to fit the star product H̃ into the classification schemes. The
multiplicative inverse of the formal constant ϕ(h) is given by

1

ϕ(h)
=

1

h
− n

2
,

and consequently, by (3.3) and (4.6), the Karabegov form of H̃ is given by

Kar(H̃o) = Kar(Ho)[ϕ(h)] = −ω 1

ϕ(h)
+ ρ = −ω 1

h
− n

2
ω + ρ.

Therefore, Theorem 3.10 gives an explicit expression for this star product. Moreover,
by (3.2), the characteristic class of H̃ is easily found

cl(H̃) = − cl(H̃o) =
1

2π

(
[ω]

1

h
+
n

2
[ω]− 1

2
[ρ]
)

=
1

2π

(
[ω]

1

h
− i[d∂̄F ]

)
=

[ω]

2πh
. (7.11)

By comparing this with (4.8), we see that H̃ is equivalent to the twisted Berezin-
Toeplitz star product H

δ arising from metaplectic quantization.

7.2.3 The Formal Hitchin Connection

Having introduced the star product H̃, we can derive an asymptotic expansion of the
covariant derivative of a Toeplitz operator from Proposition 7.6 and (7.10).

Theorem 7.7. The formal connection D̃ = Dt + Ã, where Ã is given by

Ã(V )(f) = V [F ] H̃ f − V [F ]f +
(
c0(V ) H̃ f − c(V )(f)

)
h,

is the unique formal connection such that

∇V (Tk(f)) ∼ Tk(D̃V f)
[ 1

k + n/2

]
, (7.12)

for any vector field V on T and any family of smooth functions f on M .

The precise meaning of (7.12) in the theorem is∥∥∥∇e
V (Tk(f))− Tk(V [f ])−

N∑
j=0

Tk(Ãj(V )(f))
( 1

k + n/2

)j∥∥∥ = O
( 1

kN+1

)
, (7.13)

as k tends to infinity. Also, the formal connection is equivariant with respect the
action of a symmetry group Γ, which is clear from the explicit expression.

We remark that

Ã = 0 mod h (7.14)

since the zero-degree term of a star product is just the usual product on functions.
In particular, this means that the Toeplitz operators are covariantly constant to first
order in k. More precisely, we have∥∥∇V (Tk(f))

∥∥ = O
(1

k

)
, (7.15)

for any smooth function f on M , which follows by (7.13) for N = 0.
We aim to prove that the formal connection of Theorem 7.7 is a formal Hitchin

connection for the family of star products defined by the shifted Berezin-Toeplitz
star product H̃. To prove this, we will need the following proposition from [And1]
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Proposition 7.8. We have the asymptotic expansion

∇V

(
Tk(f)Tk(g)

)
∼∇V

(
Tk(f H̃ g)

)[ 1

k + n/2

]
,

for any families of smooth functions f and g on M .

Proof. In [And1], it is proved that

∇V

(
Tk(f)Tk(g)

)
∼∇V

(
Tk(f H g)

)[1

k

]
,

which implies the desired statement by the relation between H̃ and H.

With this proposition, we can finally prove

Theorem 7.9. The formal connection of Theorem 7.7 is a formal Hitchin connection
for the family of shifted Berezin-Toeplitz star products H̃.

Proof. From Proposition 7.8, we have that

∇V

(
Tk(f)Tk(g)

)
∼∇V

(
Tk(f H̃ g)

)[ 1

k + n/2

]
, (7.16)

and by using (7.12) on each of the terms ∇V (Tk(Cj(f, g)(k + n/2)j)) on the right-
hand side of (7.16), it follows that

∇V

(
Tk(f)Tk(g)

)
∼ Tk

(
D̃V (f H̃ g)

)[ 1

k + n/2

]
.

On the other hand, the Leibniz rule gives

∇V

(
Tk(f)Tk(g)

)
= ∇V (Tk(f))Tk(g) + Tk(f)∇V (Tk(g)),

and by applying the expansions (7.10) and (7.12), it follows that

∇V

(
Tk(f)Tk(g)

)
∼ Tk

(
D̃V (f) H̃ g + f H̃ D̃V (g)

)[ 1

k + n/2

]
.

Therefore, uniqueness of asymptotic expansions implies that

D̃V (f H̃ g) = D̃V (f) H̃ g + f H̃ D̃V (g),

which shows that D̃ is a derivation for H̃, as desired.

Recall that the shifted Berezin-Toeplitz star product H̃ is given by

f H̃ g = (f H g)[ϕ(h)].

The inverse function of ϕ is given by ϕ−1(t) = t
1+tn/2 , and its Taylor expansion

around zero gives rise to the formal constant

ϕ−1(h) =

∞∑
j=1

(
−n

2

)j−1

hj = h− n

2
h2 +

n2

4
h3 − · · · .

If we define a formal connection D = D̃[ϕ−1(h)] by substituting this formal constant
into D̃, then the following is an immediate corollary of Theorem 7.9.
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Theorem 7.10. The formal connection D is a formal Hitchin connection of the
Berezin-Toeplitz star product H.

The next proposition concerns the curvature of the formal Hitchin connection.

Proposition 7.11. If the Hitchin connection on Q̂k is projectively flat, then the
formal Hitchin connection D̃ for the shifted Berezin-Toeplitz star product H̃ is flat.

Proof. From Proposition 7.6, we get that

∇W

(
∇V (Tk(f))

)
= ∇W

(
Tk(V [f ])

)
+ ∇W

(
Tk(V [F ])Tk(f)

)
−∇W

(
Tk(V [F ]f)

)
+

1

k + n/2

(
∇W

(
Tk(c0(V ))Tk(f)

)
−∇W

(
Tk(c(V )(f))

))
,

and by applying Theorem 7.7 and Proposition 7.8, we see that

∇W

(
∇V (Tk(f))

)
∼ Tk(D̃W D̃V f)

[ 1

k + n/2

]
.

This implies that the formal Hitchin connection is flat if the Hitchin connection on
the endomorphism bundle of Q̂k is flat, and this is indeed the case if the Hitchin
connection on Q̂k is projectively flat.

Since the formal Hitchin connection D for the Berezin-Toeplitz star product H

is flat if and only if D̃ is flat, a statement analogous to Proposition 7.11 obviously
holds for D.

7.2.4 The Invariant Star Product

If we assume that T is contractible and that the formal Hitchin connection D̃ is flat,
then Proposition 7.3 and (7.14) guarantee the existence of a formal trivialization P̃
of the formal Hitchin connection D̃ for the shifted Berezin-Toeplitz star product H̃.
By Proposition 7.4, we can then define a star product

f Ĩ g = P̃−1(P̃ (f) H̃ P̃ (g)),

which is independent on the complex structure, and which must have trivial charac-
teristic class by (7.11).

It turns out that the formal Hitchin connection D̃ is always flat to second order,
which implies that it has a formal trivialization to first order. In fact, we can give
an explicit formula for the first-order term.

Proposition 7.12. Any family of formal operators of the form

P̃ = Id +
(1

4
∆− i∇X′′F

)
h+O(h2) (7.17)

is a formal trivialization to first order of the formal Hitchin connection D̃ for the
shifted Berezin-Toeplitz star product H̃.

Proof. With reference to the proof of Proposition 7.3 and the formula for the formal
Hitchin connection given in Theorem 7.7, we must show that P̃1 = 1

4∆ − i∇X′′F
satisfies

V [P̃1] = −A1(V ) =
1

4
∆G̃(V ) −

1

2
∇G̃(V )·dF − C̃1(V [F ], ·),
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where C̃1 is the first-degree term of the shifted Berezin-Toeplitz star product, which
is given by

C̃1(f1, f2) = −∂f1·g̃·∂̄f2 = i∇X′′f1 f2,

according to Theorem 3.10. The variation of the Laplace operator is given by

V [∆] = −V [∆g̃] = −∆V [g̃] = ∆G̃(V ),

and it is easily verified that

iV [∇X′′F f ] = V [C̃1(F, f)] =
1

2
dF ·G̃(V )·df + C̃1(V [F ], f),

for any function f on M , so the proposition follows.

If we choose a formal trivialization of the form (7.17), then we can calculate the
first-order term of the invariant star product Ĩ. In fact, a simple calculation shows
that

f Ĩ g = fg +
i

2
{f, g}h+O(h2), (7.18)

which is perhaps not too surprising.
Since the two formal Hitchin connections D and D̃ agree on their first two terms,

the discussion above can be carried through, word for word, for the connection D.
In particular, we obtain an invariant star product I from the Berezin-Toeplitz star
product H, which is also of the form (7.18).

As previously mentioned, if T is contractible and we have a group action by Γ
for which the cohomology H1(Γ,D(M)) vanishes, then the invariant star products
will be equivariant.

7.3 The Metaplectic Case

All of what we have done above for the Berezin-Toeplitz star product H can also
be done for the twisted Berezin-Toeplitz star product H

δ arising from metaplectic
quantization. In this section, we shall briefly go through the analogous results in the
metaplectic setting, and as we shall see, the simplicity of formulas suggest that this
is in fact a more natural setting to consider.

Recall from Theorem 6.12 that the Hitchin connection in metaplectic quantization
is given by ∇δ = ∇̂+ 1

k b
δ, where

bδ(V ) =
1

4
∆G(V ) + bδ0(V ),

with zero-order part bδ0(V ) given by

bδ0(V ) = −1

4

(
∆G(V )(F ) + dF ·G(V )·dF + 2nV ′[F ]

)
.

The proof of Lemma 7.5 in [And1] can be used without modification to prove

πδkV [πδk] =
1

k
πδkb

δ(V )∗πδk −
1

k
πδkb

δ(V )∗,
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and by an analysis similar to the proof of Proposition 7.6, one can deduce that

∇δ
V

(
T δk (f)

)
= T δk (V [f ]) +

1

k

(
T δk (b̃δ0(V ))T δk (f)− T δk

(
b̃δ(V )(f)

))
, (7.19)

on sections of Q̂δk, where b̃δ0(V ) is the function given by

b̃δ0(V ) = −1

4
(∆G̃(V )(F ) + dF ·G̃(V )·dF + 2nV [F ]),

and b̃δ(V ) is the operator given by

b̃δ(V ) =
1

4
∆G̃(V ) + b̃δ0(V ).

In other words, b̃δ(V ) and b̃δ0(V ) are obtained by replacing G(V ) with G̃(V ) in the
expressions for bδ(V ) and bδ0(V ).

By Theorem 4.10, the twisted Berezin-Toeplitz star product H
δ encodes the

asymptotic expansion of the product of two Toeplitz operators in metaplectic quan-
tization. Applied to (7.19), this gives the asymptotic expansion

∇δ
V (T δk (f)) ∼ T δk (Dδ

V f)
[1

k

]
, (7.20)

where Dδ = Dt +Aδ is the formal connection with

Aδ(V )(f) =
1

4
∆G̃(V )(f)h+ (b̃δ0(V ) H

δ f − b̃δ0(V )f)h.

Using the expansion

∇δ
V

(
T δk (f)T δk (g)

)
∼∇δ

V

(
T δk (f H

δ g)
)[1

k

]
, (7.21)

which is the analogous statement of Proposition 7.8 in the metaplectic setting, we
get that

Dδ
V (f H

δ g) = Dδ
V (f) H

δ g + f H
δ Dδ

V (g).

It follows that Dδ is a formal Hitchin connection for H
δ, and it is flat if the Hitchin

on Q̂δk is projectively flat. In this case, the existence of a formal trivialization P δ is
guaranteed by Proposition 7.3, and it is easily seen that it can be chosen of the form

P δ = Id +
1

4
∆h+O(h2). (7.22)

Moreover, a simple calculation shows that the invariant star product has the form

f I
δ g = (P δ)−1(P δ(f) H

δ P δ(g)) = fg +
i

2
{f, g}h+O(h2).

Finally, the characteristic class of this star product is trivial, and since this was also
the case for Ĩ, the invariant star products Ĩ and I

δ are equivalent.
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7.4 Observables in Geometric Quantization

Formal trivializations of the formal Hitchin connection can be used to produce quan-
tized observables in geometric quantization which are covariantly constant with re-
spect to the Hitchin connection up to any given order in k.

Suppose that the Hitchin connection on Q̂δk is projectively flat, so that the formal
Hitchin connection Dδ is flat, and let P δ be a formal trivialization of the formal
Hitchin connection of the form (7.22).

If f ∈ C∞(M) is a classical observable and N is some natural number, we can
use the formal trivialization to define

PNk (f) =

N∑
j=0

P δj (f)
1

kj
,

and by the expansion (7.20), this function satisfies∥∥∇δ
V

(
T δk (PNk (f))

)∥∥ = O
( 1

kN+1

)
,

which shows that the operator

QNk (f) = T δk (PNk (f))

is covariantly constant to order N in k. In this way, the operator

Q1
k(f) = T δk

(
f +

1

4k
∆f
)
,

is a more natural quantization of f than the usual quantum operator, which is given
by Tuynman’s formula in Theorem 4.5, because it is covariantly constant to a higher
order.

Furthermore, this quantization of observables gives a better approximation of the
property (2.1) than (2.2) because it satisfies∥∥∥[Q1

k(f), Q1
k(g)

]
− i

k
Q1
k({f, g})

∥∥∥ = O(k−3) as k →∞. (7.23)

To see this, one must verify that the Laplace operator on the Poisson bracket of two
functions is given by

∆{f, g} = {∆f, g}+ {f,∆g}+ 4Cδ2(f, g)− 4Cδ2(g, f), (7.24)

where the operator Cδ2 is the second-order coefficient of the star product ∗ whose
opposite star product ∗o has Karabegov form

Kar(∗o) = −ω 1

h
+

1

2
ρ.

Theorem 3.10 gives an explicit formula for the operator Cδ2 , and using this, it is a
simple matter to verify the identity (7.24). Furthermore, if the formula (4.7) holds
true, then the star product ∗ is exactly the twisted Berezin-Toeplitz star product H

δ

which gives the expansion

T δk (f)T δk (g) ∼ T δk (f H
δ g)
[1

k

]
.

Using this and the identity (7.24), it takes a simple computation to verify (7.23).
We find it unlikely that the property (7.23) is coincidential, and we conjecture

that the operators QNk have a similar property to higher orders in k. This would
make them even better candidates for the quantization of observables.



Chapter 8

The Moduli Space of Flat
Connections

The purpose of this chapter is to present an interesting example of a symplectic
manifold to which our work on quantization can be applied. This example is the
moduli space of flat SU(n)-connections on a Riemann surface, and in fact, many of
the ideas that we have discussed were first developed in this setting.

As mentioned in the introduction, the moduli space of flat connections appears
naturally in classical Chern-Simons theory, where the flat connections are the critical
points of the Chern-Simons action functional. The quantization of the moduli space
should then form the two-dimensional part of a topological quantum field theory, as
proposed by Witten in [Wit].

There is a vast amount of literature that studies the moduli space. Some of the
primary references for us are [AB], [And1] and [ADW]. Also, we refer to [Vil] which
gives a good exposition of the moduli space that is well adapted to our situation.

8.1 Definition of the Moduli Space

Let Σ be a compact, smooth and orientable surface of genus g ≥ 2 and with one
boundary component. Furthermore, let π1 denote the fundamental group of Σ, with
respect to some arbitrary but fixed base point x ∈ ∂Σ on the boundary.

We consider the space

M = Hom(π1,SU(n))/ SU(n) (8.1)

of representations of the fundamental group, endowed with the compact-open topol-
ogy, modulo conjugation. This is called themoduli space of flat SU(n)-connections on
Σ. The name comes from the standard identification, through the holonomy repre-
sentation, of this space with the space of gauge equivalence classes of flat connections
on a principal SU(n)-bundle over the surface.

Let us say a few more words about this identification. Consider a principal SU(n)-
bundle P over Σ, and let G denote the corresponding group of gauge transformations,
which is the group of bundle maps from P to itself. The gauge tranformations act by
pullback on the space A of connections on P . The curvature of a pullback connection
is the pullback of the curvature, and therefore the gauge tranformations preserve the
subspace F of flat connections.

87
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The quotient F/G is the moduli space of flat connections. It is identified with
(8.1) through the following map. For any flat connection, the parallel translation of
a point in the fiber over x along a closed curve only depends on the homotopy class
of the curve, and therefore it defines a homomorphism from π1 to SU(n), called the
holonomy representation of the connection. Had we chosen to transport a different
point in the fiber, we would have obtained a conjugate homomorphism, and conse-
quently we get a well-defined map F →M. Moreover, gauge equivalent connections
have conjugate holonomy representations, so in fact we get a map

F/G →M,

which is surjective, since any representation can be realized as the holonomy of a flat
connection, and injective, since the the holonomy determines the gauge equivalence
class of a connection.

Since the surface Σ has one boundary component, the fundamental group is a
free group on 2g generators, and consequently the space Hom(π1,SU(n)) is a smooth
manifold, which can be identified with the product of 2g copies of SU(n). The moduli
space, which is the quotient by the conjugation action, is rarely a smooth manifold,
however. This is due to the existence of reducible representations. In fact, the
space Homirr(π1,SU(n)) of irreducible representations is a dense and open subset of
Hom(π1,SU(n)), and the quotient

Mo = Homirr(π1,SU(n))/ SU(n)

is a smooth manifold.
Using the fact that Σ has boundary, we shall go further and require the represen-

tations to have a fixed central holonomy around the boundary. More precisely, let
γ ∈ π1 be the element represented by a curve going once around the boundary of Σ,
and let D = e2πidI, where d ∈ Zn, be a generator of the center of SU(n). Then we
define

Homd(π1,SU(n)) = {ρ ∈ Hom(π1,SU(n)) | ρ(γ) = D},

which is preserved by the conjugation action since D is central. It is not difficult to
see that every representation in Homd(π1,SU(n)) is irreducible, which leads to the
the conclusion that the space

Md = Homd(π1,SU(n))/ SU(n)

is a smooth, compact manifold.
The moduli space was studied by Atiyah and Bott in [AB], where they proved

that it is simply connected with H2(Md,Z) = Z. Furthermore, the second Stiefel-
Whitney class of the moduli space vanishes.

8.2 Symplectic Structure

The moduli space has a natural symplectic structure, defined in the following way.
The space A of connections on P is an affine space for the space Ω1(Σ,AdP ) of
one-forms with values in the adjoint bundle, and we can define a non-degenerate,
skew-symmetric pairing on such one-forms by

ω(α, β) = −
∫
M

Tr(α ∧ β).
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This pairing constitutes a symplectic form on A, being constant and hence closed on
this space.

The gauge group acts by symplectomorphisms, and the moment map of the ac-
tion by the subgroup G0 of gauge transformations that restrict to the identity on the
boundary is given by the curvature map on connections. Consequently, the preim-
age of zero by this moment map is exactly the flat connections, and therefore the
quotient F/G0 is a symplectic space. The group G/G0 acts on this space by symplec-
tomorphisms, and the quotient of this action is the moduli spaceMo, which inherits
a Poisson structure. The symplectic leaves are obtained by fixing the conjugacy class
of the holonomy around the boundary (see [Aud]). In particular, the moduli space
Md is symplectic.

If A is a flat connection on P , the tangent space to Mo at [A] is given by the
first cohomology group H1

A(Σ,AdP ) of the complex of AdP -valued forms with the
covariant exterior derivate dA, which squares to zero by the flatness of A. If [α] and
[β] are tangent vectors toMd at [A], then the symplectic form is given by

ω([α], [β]) = −
∫

Σ

Tr(α ∧ β),

which is easily seen to be independent of representatives.
The symplectic structure can also be described in purely algebraic terms. The

tangent spaces of the moduli space are expressed as cohomology groups of π1 with
coefficients in the Lie-algebra of SU(n), and the symplectic form can be defined using
the cup product on cohomology. For further details, we refer to [Gol] and [Vil].

8.3 The Mapping Class Group

The moduli space has a natural group of symmetries. Let Diff(Σ) be the group of
diffeomorphisms of Σ which restrict to the identity on the boundary, and denote
by Diff0(Σ) the subgroup of diffeomorphisms isotopic to the identity. The quotient
Γ(Σ) = Diff(Σ)/Diff0(Σ) is the mapping class group of the surface.

The mapping class group acts on the moduli space of flat connections through its
action on the fundamental group. Indeed, since the base point for the fundamental
group was chosen on the boundary, it is fixed by every diffeomorphism in Diff(Σ),
and we get an action of this group on π1. Clearly, the subgroup Diff0(Σ) acts by the
identity, and we get an action of the mapping class group on π1 which induces an
action on the moduli spaceMd.

One can easily verify that the action of the mapping class group preserves the
symplectic structure on the moduli space.

8.4 Teichmüller Space and Kähler Structure

Another space related to the surface is the Teichmüller space T (Σ) of complex struc-
tures on Σ. Any Riemannian metric on Σ gives rise to a Hodge star operator ∗
on forms, and this restricts to an anti-involution ∗ : Ω1(Σ) → Ω1(Σ), which only
depends on the conformal class of the metric. In particular, it defines an almost
complex structure on the surface, which is integrable for dimensional reasons. This
is the well-known correspondence between complex and conformal structures on a
surface. Now, we consider the space C(Σ) of conformal equivalence classes of Riem-
mannian metrics on Σ. The group of diffeomorphisms Diff0(Σ) acts on this space by
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pullback, and the quotient T (Σ) = C(Σ)/Diff0(Σ) is the Teichmüller space of the
surface.

Clearly, the full group of diffeomorphisms also acts on C(Σ), so we get an action
of the mapping class group on Teichmüller space, and the quotient by this action is
the Riemann moduli space of the surface.

It is a classical result that the Teichmüller space is contractible. Moreover, it
has a natural complex structure defined as follows. A point σ ∈ T (Σ) is represented
by a complex structure on Σ, and the tangent space to T (Σ) at σ is given by the
first cohomology group H1(Σ, T ′Σ) with coefficients in the sheaf of sections of the
holomorphic tangent bundle of Σ with respect to the complex structure specified by
σ. This is clearly a complex vector space, and we get an almost complex structure
on T (Σ), which is in fact integrable.

The Teichmüller space parametrizes Kähler structures on the moduli space in
the following way. A conformal structure on Σ gives rise to a Hodge star operator
∗, and after extending this operator to AdP -valued forms, one defines the adjoint
d∗A = − ∗ dA∗ and the Laplacian ∆A = dAd

∗
A + d∗AdA in the usual way. By standard

Hodge theory, the tangent space T[A]Mo = H1
A(Σ,AdP ) is identified with the space

of harmonic forms. But harmonicity is preserved by ∗, and therefore J = −∗ defines
an almost complex structure on Mo. In other words, we have constructed a map
J : C(Σ) → C∞(Mo,End(TMo)). Since this map is equivariant with respect to
the action of Diff(Σ), and since the subgroup Diff0(Σ) acts trivially on the moduli
space, this induces a map J : T (Σ) → C∞(Mo,End(TMo)), which is equivariant
with respect to action of the mapping class group.

The almost complex structures parametrized by the Teichmüller space are easily
seen to be compatible with the symplectic structure. Moreover, they are integrable,
and hence Kähler, by the result of Narasimhan and Seshadri [NS]. Finally, they
preserve the subspaceMd, which is therefore a compact Kähler manifold. In conclu-
sion, the Teichmüller space parametrizes a family of Kähler structures on the moduli
spaceMd, and this family is holomorphic, in the sense of Definition 5.6, with respect
to the complex structure on T (Σ).

8.5 Quantization of the Moduli Space

The results of previous chapters can be applied to the symplectic manifold (Md, ω).
Indeed, the first Chern class of the moduli space is given by c1(Md, ω) = 2n[ ω2π ], and
consequently the prequantum condition (2.3) is satisfied. A prequantum line bundle
L is constructed by Freed in [Fre], and using this construction one can lift the action
of the mapping class group to an action on L by Hermitian bundle maps. Moreover,
as observed by Hitchin [Hit], the family of Kähler structures parametrized by the
Teichmüller space is rigid in the sense of Definition 5.10.

In summary, all the assumptions of Theorem 6.5 and Theorem 6.12 are satis-
fied, and consequently a Hitchin connection exists in the bundles Q̂k and Q̂δk over
Teichmüller space.

Traditionally, the bundle Q̂k = H0(M,Lk) over Teichmüller space is called the
Verlinde bundle. This was the bundle originally studied by Hitchin in [Hit], where he
proved that it has a natural projectively flat connection. The work of Narasimhan
and Ramanan [NR] shows that the moduli space does not admit any holomorphic
vector fields, and Hitchin relied on this fact to prove projective flatness, by using
methods specific to the moduli space to show that the curvature must be a first-
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order holomorphic operator.
Using that no holomorphic vector fields exist on the moduli space, we can give an

alternative, although similar, proof of projective flatness of the Hitchin connection.
Indeed, Theorem 6.22 implies that the Hitchin connection in the metaplectic setting
is projectively flat, and by Theorem 6.14 this is the case if and only if the Hitchin
connection in standard geometric quantization is projectively flat. Thus we have
proved

Theorem 8.1. The Hitchin connection in the Verlinde bundle over the moduli space
Md is projectively flat.

We emphasize that our proof uses rigidity of the family of Kähler structures to
deduce that the curvature is a first-order operator.

We can also apply the theory developed in Chapter 7 to the moduli space.
The Berezin-Toeplitz star products give rise to a family of star products on Md

parametrized by Teichmüller space, and this family is equivariant with respect to
the action of the mapping class group. Furthermore, Theorem 7.9 ensures that we
have a formal Hitchin connection for this family, which is flat by Theorem 8.1 and
Proposition 7.11. Since the Teichmüller space is contractible, it follows from Propo-
sition 7.3 that we can find a formal trivialization, which in turn gives us an invariant
star product on the moduli space. If the cohomology H1(Γ(Σ),D(Md)) vanishes,
then we can choose the formal trivialization to be equivariant with respect to the
action of the mapping class group, and this will imply that the invariant star prod-
uct is equivariant with respect to this action. Furthermore, if the cohomology group
H1(Γ(Σ), C∞(Md)) vanishes, then this is the unique equivariant star product on the
moduli space (see [And1]).

It is, however, not known whether these cohomology groups of the mapping class
group do indeed vanish, although some results in this direction, with various other
coefficients, have been proved by Andersen and Villemoes [AV2, Vil, AV1].

8.5.1 Quantum Representations and Unitarity

By the explicit formulas for the Hitchin connection, it is clear that it is equivari-
ant with respect to the action of the mapping class group, and consequently we get
a projective representation of the mapping class group on the space of covariantly
constant sections of the projectivized Verlinde bundle. In fact, we get such a repre-
sentation for each level k of the quantization, and these representations are known
as the quantum representations of the mapping class group. Using the fact that the
Toeplitz operators are asymptotically flat, in the sense of (7.15), Andersen [And3] has
proved that the quantum representations are asymptotically faithful, meaning that
the intersection of their kernels is trivial. Furthermore, Andersen [And2] used the
asymptotic relationship between the Toeplitz operators and the Hitchin connection
to prove that the mapping class group does not have Kazhdan’s property (T).

The question of unitarity of the Hitchin connection in the moduli space setting
is not well understood within the framework of geometric quantization. However,
through the relation with other fully established TQFT constructions, such as the
algebraic construction by Reshetikhin and Turaev [RT2, RT3, Tur], using representa-
tions of quantum groups, or the combinatorial construction by Blanchet, Habegger,
Masbaum and Vogel [BHMV1, BHMV2], using skein theory, it is known that there
exists a Hermitian structure on the Verlinde bundle which is preserved by the Hitchin
connection and invariant with respect to the action of the mapping class group. This
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follows by work of Andersen and Ueno, using also work of Laszlo, and we refer to
[And2] for a more detailed outline and further references. In particular, the corre-
spondence proves that the quantum representions are equal to the representations
produced by the aforementioned TQFTs, which are known to by unitary.

At least if the cohomologyH1(Γ(Σ), C∞(Md)) vanishes, then Theorem 6.25 gives
a mapping class group equivariant asymptotic approximation to the Hermitian struc-
ture preserved by the Hitchin connection.
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