Meta-Times and Extended Subordination

Ole E. Barndorff-Nielsen and Jan Pedersen

Meta-Times and Extended Subordination

Ole E. Barndorff-Nielsen and Jan Pedersen
Department of Mathematical Sciences, University of Aarhus, Denmark.
E-mails: oebn@imf.au.dk, jan@imf.au.dk.

Abstract

The problem of defining subordination of a homogeneous Lévy basis by a non-negative homogeneous Lévy basis is discussed. An explicit construction, generalizing the usual one-dimensional case, is given. This construction involves certain random meta-time changes.

Keywords: Subordination; Lévy bases and sheets; meta-time change.
AMS Subject Classification: 60G51; 60G57.

1 Introduction

In recent years the fundamental concept of subordination of a Lévy process by a subordinator has been generalized in many directions; see e.g. [3, 4, 8]. Related to this, Barndorff-Nielsen [2] considered the following problem: Given an \mathbb{R}^{d}-valued homogeneous Lévy basis $\Lambda_{X}=\left\{\Lambda_{X}(A): A \in \mathcal{B}_{b}\left(\mathbb{R}^{k}\right)\right\}$, and an independent $\mathbb{R}_{+}{ }^{-}$ valued homogeneous Lévy basis $\Lambda_{T}=\left\{\Lambda_{T}(A): A \in \mathcal{B}_{b}\left(\mathbb{R}^{k}\right)\right\}$ how should one define subordination of Λ_{X} by Λ_{T} ?

Let us first consider the case $k=1$. There are Lévy processes $X=\left\{X_{t}: t \geq 0\right\}$ and $T=\left\{T_{t}: t \geq 0\right\}$ associated with Λ_{X} and Λ_{T} in the sense that

$$
\begin{equation*}
X_{t}=\Lambda_{X}((0, t]) \quad \text { and } \quad T_{t}=\Lambda_{T}((0, t]) \tag{1.1}
\end{equation*}
$$

for $t \geq 0$. Thus, we can simply define a subordinated process $Y=\left\{Y_{t}: t \geq 0\right\}$ in the usual way as $Y_{t}=X_{T_{t}}$. However, when $k \geq 2$ there is no immediate analogue. To see this, note that there are so-called Lévy sheets $X=\left\{X_{t}: t \in \mathbb{R}_{+}^{k}\right\}$ and $T=$ $\left\{T_{t}: t \in \mathbb{R}_{+}^{k}\right\}$ associated with Λ_{X} and Λ_{T}, and these are defined as in (1.1), where $(0, t]$ now is an interval in \mathbb{R}^{k}. But T_{t} is one-dimensional while t is k-dimensional, thus excluding the possibility of defining Y_{t} as $X_{T_{t}}$ when $k \geq 2$. Barndorff-Nielsen argued that one should not construct a subordinated process; rather, the appropriate concept is a subordinated random measure $M=\left\{M(A): A \in \mathcal{B}_{b}\left(\mathbb{R}^{k}\right)\right\}$ defined such that conditional on $\Lambda_{T}, M\left(A_{1}\right), \ldots, M\left(A_{n}\right)$ are independent for all disjoint A_{1}, \ldots, A_{n}, and the distribution of $M(A)$ for $A \in \mathcal{B}_{b}\left(\mathbb{R}_{+}^{k}\right)$ is $\mu^{\Lambda_{T}(A)}$ where $\mu=$ $\mathcal{L}\left(\Lambda_{X}((0, e])\right)$ and $e=(1, \ldots, 1) \in \mathbb{R}_{+}^{k}$ is the vector of ones.

In the present paper we give an explicit construction in terms of Λ_{X} and Λ_{T} of Barndorff-Nielsen's subordinated measure M. For notational convenience, instead of considering M and Λ_{X} as Lévy bases on \mathbb{R}^{k} we look at the restriction to \mathbb{R}_{+}^{k}; the
general case follows trivially from this. Specifically, we argue that a natural definition of $M=\left\{M(A): A \in \mathcal{B}_{b}\left(\mathbb{R}_{+}^{k}\right)\right\}$ is $M(A)=\Lambda_{X}\left(\phi_{T}^{-1}(A)\right)$ where $\phi_{T}: \mathbb{R}_{+}^{k} \rightarrow \mathbb{R}^{k}$ is a (random) mapping satisfying that $\operatorname{Leb}\left(\phi_{T}^{-1}(A)\right)=\Lambda_{T}(A)$ for $A \in \mathcal{B}_{b}\left(\mathbb{R}_{+}^{k}\right)$. We also use the notation $\mathbf{T}=\phi_{T}^{-1}$ for the inverse image of ϕ_{T}. In a sense one can think of \mathbf{T} as a kind of meta-time change, replacing time changes in the case $k=1$. We show that this definition generalizes the case $k=1$ in a natural way and, in particular, that M is a homogeneous Lévy basis.

This construction gives emphasis to the viewpoint that in the multiparameter case $k \geq 2$ the right concept is a subordinated measure instead of subordinated process.

In Section 2 we recall the definitions of homogeneous Lévy sheets and bases and show that these are in one-to-one correspondence. To pave the way for the analysis of M we state in Section 3 a lemma showing that it is possible to define a mapping ϕ_{T} with the above properties. Section 4 is about meta-time changes, meaning that we consider the measure M for a fixed outcome of T. Although meta-times exist for any T they are in full generality somewhat involved to define explicitly. However, in practice the most important case is when the measure induced by T is the sum of a constant times Lebesgue measure and a discrete measure. In this case alternative useful representations of M are given. In the last section it is shown that M is a homogeneous Lévy basis.

2 Homogeneous Lévy sheets and Lévy bases

Let d and k denote positive integers. For $x=\left(x^{1}, \ldots, x^{d}\right)$ and $y=\left(y^{1}, \ldots, y^{d}\right)$ in \mathbb{R}^{d} let $\langle x, y\rangle$ denote their inner product and $|x|$ be the corresponding norm. Let $D=\left\{x \in \mathbb{R}^{d}:|x| \leq 1\right\}$. Throughout the paper all random variables are defined on a common probability space (Ω, \mathcal{F}, P). Let $\mathcal{L}(X)$ denote the law of a random vector X. For a set S and two families $\left\{X_{t}: t \in S\right\}$ and $\left\{Y_{t}: t \in S\right\}$ of random vectors with X_{t} and Y_{t} in \mathbb{R}^{d} write $\left\{X_{t}: t \in S\right\} \stackrel{\mathscr{O}}{=}\left\{Y_{t}: t \in S\right\}$ if the finite dimensional marginals are the same. We say that $\left\{X_{t}: t \in S\right\}$ is a modification of $\left\{Y_{t}: t \in S\right\}$ if $X_{t}=Y_{t}$ a.s. for all $t \in S$. Let $\widehat{\mu}$ denote the characteristic function of a distribution μ on \mathbb{R}^{d}, $\widehat{\mu}(z)=\int_{\mathbb{R}^{d}} e^{\mathrm{i}\langle z, x\rangle} \mu(\mathrm{d} x)$ for $z \in \mathbb{R}^{d}$. Let $\operatorname{ID}\left(\mathbb{R}^{d}\right)$ denote the class of d-dimensional infinitely divisible distributions. Recall that a distribution μ on \mathbb{R}^{d} is in $\operatorname{ID}\left(\mathbb{R}^{d}\right)$ if and only if $\widehat{\mu}$ is given by $\widehat{\mu}(z)=\exp \left[-\frac{1}{2} z \Sigma z^{\top}+\mathrm{i}\langle\gamma, z\rangle+\int_{\mathbb{R}^{d}} g(z, x) \nu(\mathrm{d} x)\right], z \in \mathbb{R}^{d}$, where $g(z, x)=e^{\mathrm{i}\{z, x\rangle}-1-\mathrm{i}\langle z, x\rangle 1_{D}(x)$, \top denotes the transpose, and (Σ, ν, γ) is the characteristic triplet of μ; that is, Σ is a $d \times d$ non-negative definite matrix, ν is a Lévy measure on \mathbb{R}^{d} and $\gamma \in \mathbb{R}^{d}$. Denote the entries of Σ by $\Sigma^{i j}$ and the coordinates of γ by γ^{j} for $i, j=1, \ldots, d$. For $t \geq 0$ and $\mu \in \operatorname{ID}\left(\mathbb{R}^{d}\right), \mu^{t}$ denotes the distribution in $\operatorname{ID}\left(\mathbb{R}^{d}\right)$ with $\widehat{\mu^{t}}=\widehat{\mu}^{t}$.

For $a=\left(a^{1}, \ldots, a^{k}\right) \in \mathbb{R}_{+}^{k}$ and $b=\left(b^{1}, \ldots, b^{k}\right) \in \mathbb{R}_{+}^{k}$ write $a \leq b$ if $a^{j} \leq b^{j}$ for all j and $a<b$ if $a^{j}<b^{j}$ for all j, and define the half-open interval $\left.] a, b\right]$ as $] a, b]=\left\{t \in \mathbb{R}_{+}^{k}: a<t \leq b\right\}$. Let $[a, b]=\left\{t \in \mathbb{R}_{+}^{k}: a \leq t \leq b\right\}$.

For $F=\left\{F_{t}: t \in \mathbb{R}_{+}^{k}\right\}$ with $F_{t} \in \mathbb{R}^{d}$ and $a \leq b$ define the increment of F
over $] a, b], \Delta_{a}^{b} F$, as

$$
\Delta_{a}^{b} F=\sum_{\epsilon_{1}=0}^{1} \cdots \sum_{\epsilon_{k}=0}^{1}(-1)^{k-\left(\epsilon_{1}+\cdots+\epsilon_{k}\right)} F_{\left(c^{1}\left(\epsilon_{1}\right), \ldots, c^{k}\left(\epsilon_{k}\right)\right)}
$$

where $c^{j}(1)=b^{j}$ and $c^{j}(0)=a^{j}$. For example, if $k=1$ we have $\Delta_{a}^{b} F=F_{b}-F_{a}$ and when $k=2$ then $\Delta_{a}^{b} F=F_{\left(b^{1}, b^{2}\right)}+F_{\left(a^{1}, a^{2}\right)}-F_{\left(a^{1}, b^{2}\right)}-F_{\left(b^{1}, a^{2}\right)}$. Let $\mathcal{A}=\left\{t \in \mathbb{R}_{+}^{k}\right.$: $k t^{j}=0$ for some $\left.j\right\}$. For $\mathcal{R}=\left(R_{1}, \ldots, R_{k}\right)$ where R_{j} is either \leq or $>$ write $a \mathcal{R} b$ if $a^{j} R_{j} b^{j}$ for all j.

We say that $F=\left\{F_{t}: t \in \mathbb{R}_{+}^{k}\right\}$ is lamp if the following three conditions are satisfied: (i) for $t \in \mathbb{R}_{+}^{k}$ the limit $F(t, \mathcal{R})=\lim _{u \rightarrow t, t \mathcal{R} u} F_{u}$ exists for each of the 2^{k} relations $\mathcal{R}=\left(R_{1}, \ldots, R_{k}\right)$ where R_{j} is either \leq or $>$; here we let $F(t, \mathcal{R})=F_{t}$ if there is no u with $t \mathcal{R} u$. (ii) $F_{t}=F(t, \mathcal{R})$ for $\mathcal{R}=(\leq, \ldots, \leq)$. (iii) $F_{t}=0$ for $t \in \mathcal{A}$. Here lamp stands for limits along monotone paths. This is the multiparameter analogue of being càdlàg. See Adler et al. [1] for references to the literature on lamp trajectories. When F is lamp and $t \in \mathbb{R}_{+}^{k} \backslash \mathcal{A}$ define $\Delta_{t} F=\lim _{n \rightarrow \infty} \Delta_{t_{n}}^{t} F$ where t_{n} is any sequence with $t_{n} \rightarrow t$ and $t_{n}<t$. If F is continuous at the point t then $\Delta_{t} F=0$ but the converse is not true, that is, we can have $\Delta_{t} F=0$ without F being continuous at t.

Definition 2.1. Let $X=\left\{X_{t}: t \in \mathbb{R}_{+}^{k}\right\}$ be a family of random vectors in \mathbb{R}^{d}. We say that X has independent increments if $X_{t}=0$ for all $t \in \mathcal{A}$ a.s. and $\Delta_{a_{1}}^{b_{1}} X, \ldots, \Delta_{a_{n}}^{b_{n}} X$ are independent whenever $n \geq 2$ and $\left.\left.\left.] a_{1}, b_{1}\right], \ldots,\right] a_{n}, b_{n}\right]$ are disjoint; if in addition X is continuous in probability and $\Delta_{t+a}^{t+b} X \xlongequal{\mathscr{D}} \Delta_{a}^{b} X$ for all $a, b, t \in \mathbb{R}_{+}^{k}$ with $a \leq b$, then X is called an \mathbb{R}^{d}-valued homogeneous Lévy sheet in law on \mathbb{R}_{+}^{k}, and if also almost all sample paths are lamp then X is called an \mathbb{R}^{d}-valued homogeneous Lévy sheet on \mathbb{R}_{+}^{k}.

A homogeneous Lévy sheet is a special case of the additive processes considered by Adler et al. [1], p. 5, and of the Lévy sheets considered by Dalang and Walsh [5] (in the case $k=2$). In fact, a process satisfying all the above conditions except the homogeneity condition $\Delta_{t+a}^{t+b} X \stackrel{\mathscr{D}}{=} \Delta_{a}^{b} X$ would be called a Lévy sheet by Dalang and Walsh. It follows e.g. from [1], Proposition 4.1, that any homogeneous Lévy sheet in law has a modification which is a homogeneous Lévy sheet. It is easily seen that if $X=\left\{X_{t}: t \in \mathbb{R}_{+}^{k}\right\}$ is a homogeneous Lévy sheet in law then $X_{t}=\Delta_{0}^{t} X$ a.s. for all $t \in \mathbb{R}_{+}^{k}$; moreover $\mathcal{L}\left(\Delta_{a}^{b} X\right) \in \operatorname{ID}\left(\mathbb{R}^{d}\right)$ for all $a, b \in \mathbb{R}_{+}^{k}$ with $a \leq b$ and there is a $\mu \in \operatorname{ID}\left(\mathbb{R}^{d}\right)$ such that $\mathcal{L}\left(\Delta_{a}^{b} X\right)=\mu^{\operatorname{Leb}(] a, b])}$ for all such a and b, where Leb denotes Lebesgue measure on \mathbb{R}^{k}. We say that X is associated with μ or with the characteristic triplet of μ.

Definition 2.2. Let $\Lambda=\left\{\Lambda(A): A \in \mathcal{B}_{b}\left(\mathbb{R}_{+}^{k}\right)\right\}$, where $\mathcal{B}_{b}\left(\mathbb{R}_{+}^{k}\right)$ is the set of bounded Borel sets in \mathbb{R}_{+}^{k}, denote a family of random vectors in \mathbb{R}^{d}. We call Λ an $\mathbb{R}^{d_{-}}$ valued homogeneous Lévy basis on \mathbb{R}_{+}^{k} if the following conditions are satisfied: (i) $\Lambda\left(A_{1}\right), \ldots, \Lambda\left(A_{n}\right)$ are independent whenever $A_{1}, \ldots, A_{n} \in \mathcal{B}_{b}\left(\mathbb{R}_{+}^{k}\right)$ are disjoint. (ii) $\Lambda\left(\cup_{n=1}^{\infty} A_{n}\right)=\sum_{n=1}^{\infty} \Lambda\left(A_{n}\right)$ a.s. whenever $A_{1}, A_{2}, \ldots \in \mathcal{B}_{b}\left(\mathbb{R}_{+}^{k}\right)$ are disjoint with $\cup_{n=1}^{\infty} A_{n} \in \mathcal{B}_{b}\left(\mathbb{R}_{+}^{k}\right)$. Here the series converges almost surely. (iii) For all $t \in \mathbb{R}_{+}^{k}$ and $A \in \mathcal{B}\left(\mathbb{R}_{+}^{k}\right)$ we have $\Lambda(A) \stackrel{\mathscr{D}}{=} \Lambda(t+A)$.

If Λ is a homogeneous Lévy basis basis then $\mathcal{L}(\Lambda(A)) \in \operatorname{ID}\left(\mathbb{R}^{d}\right)$ for all $A \in$ $\mathcal{B}_{b}\left(\mathbb{R}_{+}^{k}\right)$. Moreover, there is a $\mu \in \operatorname{ID}\left(\mathbb{R}^{d}\right)$ such that $\mathcal{L}(\Lambda(A))=\mu^{\operatorname{Leb}(A)}$ for all $A \in \mathcal{B}_{b}\left(\mathbb{R}_{+}^{k}\right)$. We say that the homogeneous Lévy basis is associated with μ or its characteristic triplet. Finally, recall that Rajput and Rosiński [9] call $\Lambda=\{\Lambda(A)$: $\left.\left.A \in \mathcal{B}_{b}\left(\mathbb{R}_{+}^{k}\right)\right)\right\}$ an independently scattered ID random measure if it satisfies (i) and (ii) of Definition 2.2 and $\mathcal{L}(\Lambda(A)) \in \operatorname{ID}\left(\mathbb{R}^{d}\right)$ for all $A \in \mathcal{B}_{b}\left(\mathbb{R}_{+}^{k}\right)$. For simplicity we refer to this as a Lévy basis.

The following shows that, not surprisingly, there is a one-to-one correspondence between homogeneous Lévy sheets (in law) and homogeneous Lévy bases.

Theorem 2.3. Let $X=\left\{X_{t}: t \in \mathbb{R}_{+}^{k}\right\}$ be a homogeneous Lévy sheet associated with $\mu \in \operatorname{ID}\left(\mathbb{R}^{d}\right)$ with characteristic triplet (Σ, ν, γ). Let

$$
J(C)=\#\left\{\left(t, \Delta_{t} X\right): t \in \mathbb{R}_{+}^{k} \backslash \mathcal{A},\left(t, \Delta_{t} X\right) \in C \text { and } \Delta_{t} X \neq 0\right\}
$$

for $C \in \mathcal{B}\left(\mathbb{R}_{+}^{k} \times \mathbb{R}^{d}\right)$.
Then we have the following.
(1) $J=\left\{J(C): C \in \mathcal{B}\left(\mathbb{R}_{+}^{k} \times \mathbb{R}^{d}\right)\right\}$ is a Poisson random measure with intensity measure Leb $\times \nu$.
(2) Let $\nu^{1}(B)=\nu(B \cap D)$ and $\nu^{2}(B)=\nu\left(B \cap D^{c}\right)$ for $B \in \mathcal{B}\left(\mathbb{R}^{d}\right)$. Define

$$
\begin{aligned}
X_{t}^{1} & =\int_{[0, t] \times \mathbb{R}^{d}} y 1_{D}(y)(J-\operatorname{Leb} \times \nu)(\mathrm{d}(s, y)) \\
X_{t}^{2} & =\int_{[0, t] \times \mathbb{R}^{d}} y 1_{D^{c}}(y) J(\mathrm{~d}(s, y))
\end{aligned}
$$

We then have that $X_{t}=X_{t}^{1}+X_{t}^{2}+X_{t}^{\mathrm{g}}+t \gamma$, where $\left\{X_{t}^{\mathrm{g}}: t \in \mathbb{R}_{+}^{k}\right\},\left\{X_{t}^{1}\right.$: $\left.t \in \mathbb{R}_{+}^{k}\right\}$ and $\left\{X_{t}^{2}: t \in \mathbb{R}_{+}^{k}\right\}$ are independent, $\left\{X_{t}^{\mathrm{g}}: t \in \mathbb{R}_{+}^{k}\right\}$ is a homogeneous Lévy sheet associated with $(\Sigma, 0,0)$ and $\left\{X_{t}^{i}: t \in \mathbb{R}_{+}^{k}\right\}$ is a homogeneous Lévy sheet associated with $\left(0, \nu^{i}, 0\right)$ for $i=1,2$.
(3) There exists one and up to modification only one homogeneous Lévy basis $\Lambda=$ $\left\{\Lambda(A): A \in \mathcal{B}_{b}\left(\mathbb{R}_{+}^{k}\right)\right\}$ satisfying $\Lambda([0, t])=X_{t}$ a.s. for $t \in \mathbb{R}_{+}^{k}$. In addition, Λ is given by

$$
\begin{align*}
\Lambda(A)= & \int_{A \times \mathbb{R}^{d}} y 1_{D}(y)(J-\operatorname{Leb} \times \nu)(\mathrm{d}(t, y)) \tag{2.1}\\
& +\int_{A \times \mathbb{R}^{d}} y 1_{D^{c}}(y) J(\mathrm{~d}(t, y))+\int_{A} \mathrm{~d} X_{t}^{\mathrm{g}}+\gamma \operatorname{Leb}(A) \quad \text { a.s. }
\end{align*}
$$

for $A \in \mathcal{B}_{b}\left(\mathbb{R}_{+}^{k}\right)$.
Theorem 2.3(1)-(2) are essentially contained in [1], Theorem 4.6. The only difference is that J above is a Poisson random measure on $\mathbb{R}_{+}^{k} \times \mathbb{R}^{d}$ while Theorem 4.6 of [1] is formulated in terms of Poisson random measures on \mathbb{R}^{d}. The proofs are essentially the same and hence we omit the proof of Theorem 2.3(1)-(2). See also [5] in the case $k=2$.

For $A \in \mathcal{B}_{b}\left(\mathbb{R}_{+}^{k}\right)$ define $\int_{A} \mathrm{~d} X_{t}^{\mathrm{g}}=\int 1_{A}(t) \mathrm{d} X_{t}^{\mathrm{g}}$ where we recall that $\int f(t) \mathrm{d} X_{t}^{\mathrm{g}}$ (a random vector in \mathbb{R}^{d}) is definable by approximation by step functions in the usual way for all measurable $f: \mathbb{R}_{+}^{k} \rightarrow \mathbb{R}$ satisfying $\int(f(t))^{2} \mathrm{~d} t<\infty$. Moreover, we have $\mathcal{L}\left(\int f(t) \mathrm{d} X_{t}^{\mathrm{g}}\right)=N_{d}(0, \Sigma(f))$, where $\Sigma^{i j}(f)=\Sigma^{i j} \int(f(t))^{2} \mathrm{~d} t$. The result in Theorem 2.3(3) is immediate from fundamental properties of integrals with respect to (compensated) Poisson random measures cf. e.g. [6]. In the case $k=2$, Theorem 2.3(3) can also be found in [5], Theorem 2.6.

We call the process $X^{\mathrm{g}}=\left\{X_{t}^{\mathrm{g}}: t \in \mathbb{R}_{+}^{k}\right\}$ above the Gaussian part of X and the measure J the jump measure of X. We also denote it by J_{X}. Finally, we call Λ above the homogeneous Lévy basis induced by X, also to be denoted by Λ_{X}.

Proposition 2.4. Let $\Lambda=\left\{\Lambda(A): A \in \mathcal{B}_{b}\left(\mathbb{R}_{+}^{k}\right)\right\}$ be a homogeneous Lévy basis. Let $\widetilde{X}_{t}=\Lambda([0, t])$. We then have the following results: For $\left.\left.a \leq b, \Delta_{a}^{b} \widetilde{X}=\Lambda(] a, b\right]\right)$ a.s. In particular $\widetilde{X}=\left\{\widetilde{X}_{t}: t \in \mathbb{R}_{+}^{k}\right\}$ is a homogeneous Lévy sheet in law. Let $X=\left\{X_{t}: t \in \mathbb{R}_{+}^{k}\right\}$ be a homogeneous Lévy sheet which is a modification of \widetilde{X}. Then for $A \in \mathcal{B}_{b}\left(\mathbb{R}_{+}^{k}\right)$ we have $\Lambda(A)=\Lambda_{X}(A)$ a.s., where Λ_{X} is the Lévy basis generated by X.

Proof. It is easily seen that $\left.\left.\Delta_{a}^{b} \widetilde{X}=\Lambda(] a, b\right]\right)$ a.s. The uniqueness part of Theorem 2.3(3) implies $\Lambda=\Lambda_{X}$.

Remark 2.5. (1) Theorem 2.3(3) shows that a homogeneous Lévy sheet generates a homogeneous Lévy basis by (2.1) and Proposition 2.4 shows conversely that any homogeneous Lévy basis is generated in this way. We call (2.1) the Lévy-Itô decomposition of Λ and call J in that equation the jump measure of Λ. We refer to [5] (for the case $k=2$) and [7] for the Lévy-Itô decomposition of non-homogeneous Lévy bases.
(2) Let Λ be an \mathbb{R}^{d}-valued homogeneous Lévy basis on \mathbb{R}_{+}^{k} associated with the characteristic triplet (Σ, ν, γ). Assume that $\int_{\mathbb{R}^{d}}(1 \wedge|x|) \nu(\mathrm{d} x)<\infty$. Then for $A \in \mathcal{B}_{b}\left(\mathbb{R}_{+}^{k}\right)$ the representation (2.1) simplifies to

$$
\Lambda(A)=\int_{A \times \mathbb{R}^{d}} y J(\mathrm{~d}(t, y))+\int_{A} \mathrm{~d} X_{t}^{\mathrm{g}}+\gamma_{0} \operatorname{Leb}(A) \quad \text { a.s. }
$$

where the first integral is defined pointwise almost surely and where $\gamma_{0}=\gamma-$ $\int_{A} y 1_{D}(y) \nu(\mathrm{d} y)$. Here pointwise almost surely signifies that, for almost all ω, the integral $\int_{A \times \mathbb{R}^{d}} y J(\mathrm{~d}(t, y))(\omega)$ is a usual Lebesgue integral. Thus if in addition $\nu\left(\mathbb{R}^{d} \backslash \mathbb{R}_{+}^{d}\right)=0, \Sigma=0$ and $\gamma_{0} \in \mathbb{R}_{+}^{d}$ then we can extend Λ such that $\Lambda(A)$ is defined for all A in $\mathcal{B}\left(\mathbb{R}_{+}^{k}\right)$ rather than $\mathcal{B}_{b}\left(\mathbb{R}_{+}^{k}\right)$; however, some of the coordinates of $\Lambda(A)$ may be equal to ∞. In addition, almost surely all coordinates of Λ are non-negative measures.

3 Meta-times

The purpose of this section is to state a result showing that any measure m on \mathbb{R}_{+}^{k} which is finite on compacts is the image measure of Leb under some mapping ϕ. This result is essentially well known, at least when m is finite, so in the next lemma we simply state a version of it which suits our purposes well.

Lemma 3.1. Let $m=\left\{m(A): A \in \mathcal{B}\left(\mathbb{R}_{+}^{k}\right)\right\}$ be a non-negative measure on \mathbb{R}_{+}^{k} satisfying $m(\mathcal{A})=0$ and $m(A)<\infty$ for all $A \in \mathcal{B}_{b}\left(\mathbb{R}_{+}^{k}\right)$. Then there exists a measurable mapping $\phi: \mathbb{R}_{+}^{k} \rightarrow \mathbb{R}^{k}$ such that

$$
\begin{equation*}
m(A)=\operatorname{Leb}\left(\phi^{-1}(A)\right) \quad \text { for all } A \in \mathcal{B}\left(\mathbb{R}_{+}^{k}\right) \tag{3.1}
\end{equation*}
$$

and $\phi^{-1}(A)$ is a bounded set for all $A \in \mathcal{B}_{b}\left(\mathbb{R}_{+}^{k}\right)$.
Remark 3.2. We refer to the inverse image ϕ^{-1} as a meta-time associated with m and we often denote it by \mathbf{T}. By the above lemma and properties of inverse images we can regard \mathbf{T} as a mapping $\mathbf{T}: \mathcal{B}_{b}\left(\mathbb{R}_{+}^{k}\right) \rightarrow \mathcal{B}_{b}\left(\mathbb{R}_{+}^{k}\right)$ satisfying: (i) $\mathbf{T}(A)$ and $\mathbf{T}(B)$ are disjoint whenever $A, B \in \mathcal{B}_{b}\left(\mathbb{R}_{+}^{k}\right)$ are disjoint. (ii) $\mathbf{T}\left(\cup_{n=1}^{\infty} A_{n}\right)=\cup_{n=1}^{\infty} \mathbf{T}\left(A_{n}\right)$ whenever A_{1}, A_{2}, \ldots are in $\mathcal{B}_{b}\left(\mathbb{R}_{+}^{k}\right)$ and $\cup_{n=1}^{\infty} A_{n}$ is in $\mathcal{B}_{b}\left(\mathbb{R}_{+}^{k}\right)$. (iii) $m(A)=\operatorname{Leb}(\mathbf{T}(A))$ for all $A \in \mathcal{B}_{b}\left(\mathbb{R}_{+}^{k}\right)$.

Proof. Let $u \in \mathbb{R}^{k} \backslash \mathbb{R}_{+}^{k}$ be arbitrary.
(1) First assume that $m\left(\mathbb{R}_{+}^{k}\right)<\infty$. Take an interval $[a, b]$ in \mathbb{R}_{+}^{k} with $\operatorname{Leb}([a, b])=$ $m\left(\mathbb{R}_{+}^{k}\right)$. Then m is the image measure of Lebesgue measure on $[a, b]$ under some mapping $\psi:[a, b] \rightarrow \mathbb{R}_{+}^{k}$. That is, $m(A)=\operatorname{Leb}\left(\psi^{-1}(A)\right)$ for all $A \in \mathcal{B}\left(\mathbb{R}_{+}^{k}\right)$. Indeed, this is essentially the well known result (cf. e.g. [10]) that any distribution on \mathbb{R}_{+}^{k} can be generated from k independent and uniformly distributed random variables. Letting

$$
\phi(t)= \begin{cases}\psi(t) & t \in[a, b] \\ u & t \in \mathbb{R}_{+}^{k} \backslash[a, b]\end{cases}
$$

one sees that ϕ has the required properties.
(2) If instead $m\left(\mathbb{R}_{+}^{k}\right)=\infty$ we can take a sequence $A_{n}, n=1,2, \ldots$, of disjoint bounded Borel sets in \mathbb{R}_{+}^{k} covering \mathbb{R}_{+}^{k} and satisfying that for all $t \in \mathbb{R}_{+}^{k}$ the interval $[0, t]$ is contained in the finite union of some of the A_{n} 's. Define, for all $n \geq 1$, $m_{n}=m\left(\cdot \cap A_{n}\right)$. Since the m_{n} 's are finite measures there is a sequence of disjoint intervals $\left[a_{1}, b_{1}\right],\left[a_{2}, b_{2}\right], \ldots$ in \mathbb{R}_{+}^{k} and measurable mappings $\psi_{n}:\left[a_{n}, b_{n}\right] \rightarrow A_{n}$ such that $m_{n}(A)=\operatorname{Leb}\left(\psi_{n}^{-1}(A)\right)$ for all $A \in \mathcal{B}\left(A_{n}\right)$. Since $m=\sum_{n \geq 1} m_{n}$ we can define

$$
\phi(t)= \begin{cases}\psi_{n}(t) & t \in\left[a_{n}, b_{n}\right] \text { for some } n \\ u & t \in \mathbb{R}_{+}^{k} \backslash\left(\cup_{n=1}^{\infty}\left[a_{n}, b_{n}\right]\right) .\end{cases}
$$

Clearly, since for any $t \in \mathbb{R}_{+}^{k}$ the interval $[0, t]$ is contained in the union of a finite number of A_{n} 's it follows that $\phi^{-1}([0, t])$ is contained in the union of a finite number of intervals $\left[a_{n}, b_{n}\right]$.

Example 3.3. Let m be as in the lemma above. In many cases of interest, the mapping ϕ in the lemma has a very simple expression, as the following shows.
(1) Assume m is concentrated on a set $\mathcal{T}=\left\{t_{n}\right\}_{n=1}^{\infty} \subseteq \mathbb{R}_{+}^{k} \backslash \mathcal{A}$. Take a disjoint sequence R_{1}, R_{2}, \ldots of bounded Borel sets in \mathbb{R}_{+}^{k} such that $\operatorname{Leb}\left(R_{n}\right)=m\left(\left\{t_{n}\right\}\right)$ for all n. Define $\phi(t)=t_{n}$ when $t \in R_{n}$ for some n and let $\phi(t)=u$ for $t \in \mathbb{R}_{+}^{k} \backslash\left(\cup_{n=1}^{\infty} R_{n}\right)$, where $u \in \mathbb{R}^{k} \backslash \mathbb{R}_{+}^{k}$ is arbitrary. The sets R_{n} can be chosen arbitrarily, showing in particular that ϕ is not at all uniquely determined.
(2) If $m=\mathrm{Leb} / c$ for some $c>0$ we can use $\phi(t)=c t$.
(3) The case when $m=m_{1}+m_{2}$ where $m_{1}=\mathrm{Leb} / c$ and m_{2} is concentrated on $\left\{t_{n}\right\}_{n=1}^{\infty} \subseteq \mathbb{R}_{+}^{k} \backslash \mathcal{A}$ can be handled as follows. Let the sets R_{n} above be subsets of

$$
\left\{s=\left(s^{1}, \ldots, s^{k}\right) \in \mathbb{R}_{+}^{k}: 0 \leq s^{j} \leq 1 \text { for all } j=1, \ldots, k\right\}
$$

Let $e=(1, \ldots, 1) \in \mathbb{R}_{+}^{k}$ be the vector of ones. By defining ϕ as

$$
\phi(t)= \begin{cases}t_{n} & \text { if } t \in R_{n} \text { for some } n \\ u & \text { if } t \in\left\{s=\left(s^{1}, \ldots, s^{k}\right) \in \mathbb{R}_{+}^{k}: s^{j} \in[0,1]\right\} \backslash\left(\cup_{n=1}^{\infty} R_{n}\right) \\ c(t-e) & \text { if } t \in\left\{s=\left(s^{1}, \ldots, s^{k}\right) \in \mathbb{R}_{+}^{k}: s^{j}>1\right\},\end{cases}
$$

equation (3.1) is easily verified.
(4) Assume $k=1$ and let $T_{t}=m([0, t])$ for all $t \geq 0$. Define $\phi: \mathbb{R}_{+} \rightarrow \mathbb{R}$ as

$$
\phi(y)=\inf \{t \geq 0: T(t) \geq y\} .
$$

where $\inf \emptyset=u \in \mathbb{R} \backslash \mathbb{R}_{+}$. Then

$$
\begin{equation*}
\left[0, T_{t}\right]=\mathbf{T}([0, t]) \quad \text { for all } t \geq 0 \tag{3.2}
\end{equation*}
$$

and hence $m(A)=\operatorname{Leb}(\mathbf{T}(A))$ for all $A \in \mathcal{B}\left(\mathbb{R}_{+}\right)$.

4 Meta-time changes

In the one-dimensional case $k=1$ one uses increasing functions to model a time change as in (4.3) below. The purpose of the present section is to show that in the case $k \geq 2$ certain meta-time changes give similar results. In fact, we show that the appropriate generalization of the process Y in (4.3) is the random measure M in (4.1) where in the latter equation \mathbf{T} is a meta-time as defined in Section 3.

Let $X=\left\{X_{t}: t \in \mathbb{R}_{+}^{k}\right\}$ be an \mathbb{R}^{d}-valued homogeneous Lévy sheet on \mathbb{R}_{+}^{k} associated with $\mu \in \operatorname{ID}\left(\mathbb{R}^{d}\right)$. Denote the corresponding homogeneous Lévy basis by Λ_{X}. Let $m=\left\{m(A): A \in \mathcal{B}\left(\mathbb{R}_{+}^{k}\right)\right\}$ be a non-negative measure on \mathbb{R}_{+}^{k} satisfying $m(\mathcal{A})=0$ and $m(A)<\infty$ for all $A \in \mathcal{B}_{b}\left(\mathbb{R}_{+}^{k}\right)$. Set $T_{t}=m([0, t])$ for all $t \in \mathbb{R}_{+}^{k}$ and let $\phi: \mathbb{R}_{+}^{k} \rightarrow \mathbb{R}^{k}$ be given as in Lemma 3.1. Let $\mathbf{T}=\phi^{-1}$ be the corresponding meta-time associated with m.

Define $M=\left\{M(A): A \in \mathcal{B}_{b}\left(\mathbb{R}_{+}^{k}\right)\right\}$ as

$$
\begin{equation*}
M(A)=\Lambda_{X}(\mathbf{T}(A)) \quad \text { for } A \in \mathcal{B}_{b}\left(\mathbb{R}_{+}^{k}\right) . \tag{4.1}
\end{equation*}
$$

Using the properties of \mathbf{T} in Remark 3.2 one sees that M is a (non-homogeneous) Lévy basis. Since in addition Λ_{X} is a homogeneous Lévy basis associated with μ it follows that

$$
\begin{equation*}
\mathcal{L}(M(A))=\mu^{m(A)} \quad \text { for } A \in \mathcal{B}_{b}\left(\mathbb{R}_{+}^{k}\right) . \tag{4.2}
\end{equation*}
$$

In particular, for $t \in \mathbb{R}_{+}^{k}, M((0, t])$ has characteristic triplet $T_{t}(\Sigma, \nu, \gamma)$ where (Σ, ν, γ) is the characteristic triplet of μ. We say that M is defined from Λ_{X} by meta-time change with \mathbf{T}.

Remark 4.1. Let $k=1$ and let us show that in this case the above definition generalizes the usual concept of a time change in a natural way. For this purpose, define a process $Y=\left\{Y_{t}: t \geq 0\right\}$ by time changing X with T :

$$
\begin{equation*}
Y_{t}=X_{T_{t}} . \tag{4.3}
\end{equation*}
$$

Hence, Y is a càdlàg process with independent increments and it is an additive process (i.e. also continuous in probability) if T is continuous. The distribution of an increment is given as

$$
\begin{equation*}
\mathcal{L}\left(Y_{t}-Y_{s}\right)=\mu^{T_{t}-T_{s}} \quad \text { for } 0 \leq s<t \tag{4.4}
\end{equation*}
$$

Let ϕ be given as in Example 3.3(4). Using (3.2) rewrite Y_{t} in terms of the Lévy basis Λ_{X} as

$$
\begin{equation*}
Y_{t}=\Lambda_{X}\left(\left[0, T_{t}\right]\right)=\Lambda_{X}(\mathbf{T}([0, t])) \quad \text { for } t \geq 0 \tag{4.5}
\end{equation*}
$$

This shows that (4.1) provides a natural generalization of (4.3) and (4.5) since we simply replace $[0, t]$ by an arbitrary bounded Borel set; in return we get a measure M instead of a process Y. Similarly, (4.4) is generalized by (4.2).

Remark 4.2. There are many alternative representations of M and in the following we consider some of them. Let $\left\{L_{t}: t \geq 0\right\}$ denote an \mathbb{R}^{d}-valued Lévy process with $\mu=\mathcal{L}\left(L_{1}\right)$. Thus, in the language of [2], $\left\{L_{t}: t \geq 0\right\}$ is a Lévy seed associated with μ.
(1) If A_{1}, \ldots, A_{r} are disjoint bounded Borel sets then

$$
\left(M\left(A_{1}\right), \ldots, M\left(A_{r}\right)\right) \stackrel{\mathscr{Z}}{=}\left(L_{m\left(A_{1}\right)}^{A_{1}}, \ldots, L_{m\left(A_{r}\right)}^{A_{r}}\right)
$$

where $\left\{L_{t}^{A_{j}}: t \geq 0\right\}$, for $j=1, \ldots, r$, are independent copies of $\left\{L_{t}: t \geq 0\right\}$. This follows since $\mathcal{L}\left(L_{m\left(A_{j}\right)}^{A_{j}}\right)=\mu^{m\left(A_{j}\right)}$. If instead $A_{1} \subseteq A_{2} \subseteq \cdots \subseteq A_{r}$ then

$$
\left(M\left(A_{1}\right), \ldots, M\left(A_{r}\right)\right) \stackrel{\mathscr{Q}}{=}\left(L_{m\left(A_{1}\right)}, \ldots, L_{m\left(A_{r}\right)}\right) .
$$

(2) Consider the case where m is given as in Example 3.3(1); that is, m is concentrated on $\mathcal{T}=\left\{t_{n}\right\}_{n=1}^{\infty} \subseteq \mathbb{R}_{+}^{k} \backslash \mathcal{A}$. For $A \in \mathcal{B}_{b}\left(\mathbb{R}_{+}^{k}\right)$ we then have

$$
\begin{align*}
M(A) & =\Lambda_{X}\left(\mathbf{T}\left(A \cap \mathcal{T}^{c}\right)\right)+\Lambda_{X}(\mathbf{T}(A \cap \mathcal{T})) \tag{4.6}\\
& =\Lambda_{X}(\mathbf{T}(A \cap \mathcal{T}))=\sum_{n: t_{n} \in A} \Lambda_{X}\left(\mathbf{T}\left(\left\{t_{n}\right\}\right)\right) \quad \text { a.s. }
\end{align*}
$$

where the series converges almost surely and the first term on the right-hand side of (4.6) vanishes since $\operatorname{Leb}\left(\mathbf{T}\left(A \cap \mathcal{T}^{c}\right)\right)=0$ by (3.1). Since, by the same equation, $\operatorname{Leb}\left(\mathbf{T}\left(\left\{t_{n}\right\}\right)\right)=m\left(\left\{t_{n}\right\}\right)$ we have $\Lambda_{X}\left(\mathbf{T}\left(\left\{t_{n}\right\}\right)\right) \stackrel{\mathscr{\theta}}{=} L_{m\left(\left\{t_{n}\right\}\right)}$. Taking a sequence $\left\{L_{t}^{n}: t \geq 0\right\}, n=1,2, \ldots$, of independent copies of $\left\{L_{t}: t \geq 0\right\}$ we thus have for all $r \geq 1$ and $A_{1}, \ldots, A_{r} \in \mathcal{B}_{b}\left(\mathbb{R}_{+}^{k}\right)$ that

$$
\begin{equation*}
\left(M\left(A_{1}\right), \ldots, M\left(A_{r}\right)\right) \stackrel{\mathscr{Q}}{=}\left(\sum_{n: t_{n} \in A_{1}} L_{m\left(\left\{t_{n}\right\}\right)}^{n}, \ldots, \sum_{n: t_{n} \in A_{r}} L_{m\left(\left\{t_{n}\right\}\right)}^{n}\right) . \tag{4.7}
\end{equation*}
$$

If $\mu=N_{d}(\gamma, I)$ (where I is the $d \times d$ identity matrix) this simplifies as follows. Let $\epsilon_{1}, \epsilon_{2}, \ldots$ denote a sequence of independent and identically distributed random vectors with law $N_{d}(0, I)$. Then (4.7) is equivalent to

$$
\begin{aligned}
& \left(M\left(A_{1}\right), \ldots, M\left(A_{r}\right)\right) \\
& \quad \stackrel{\mathscr{O}}{=}\left(\sum_{n: t_{n} \in A_{1}} \gamma m\left(\left\{t_{n}\right\}\right)+\left[m\left(\left\{t_{n}\right\}\right)\right]^{1 / 2} \epsilon_{n}, \ldots, \sum_{n: t_{n} \in A_{r}} \gamma m\left(\left\{t_{n}\right\}\right)+\left[m\left(\left\{t_{n}\right\}\right)\right]^{1 / 2} \epsilon_{n}\right) .
\end{aligned}
$$

(3) Finally consider the case $m=m_{1}+m_{2}$ as in Example 3.3(3) where $m_{1}=$ Leb $/ c$ and m_{2} is concentrated on \mathcal{T}. Then $M=M_{1}+M_{2}$ where $M_{i}=\left\{M_{i}(A):\right.$ $\left.A \in \mathcal{B}_{b}\left(\mathbb{R}_{+}^{k}\right)\right\}$ for $i=1,2$ are independent and given by

$$
M_{1}(A)=\Lambda_{X}\left(\mathbf{T}\left(A \cap \mathcal{T}^{c}\right)\right) \quad \text { and } \quad M_{2}(A)=\Lambda_{X}(\mathbf{T}(A \cap \mathcal{T})) \quad \text { for } A \in \mathcal{B}_{b}\left(\mathbb{R}_{+}^{k}\right)
$$

The measure M_{1} is a homogeneous Lévy basis associated with $\mu^{1 / c}$ and M_{2} can be represented as M in (2).
Remark 4.3. From the Lévy-Itô decomposition (2.1) of Λ_{X} we have, a.s. for $A \in \mathcal{B}_{b}\left(\mathbb{R}_{+}^{k}\right)$,

$$
\begin{aligned}
M(A)= & \int_{\mathbf{T}(A) \times \mathbb{R}^{d}} y 1_{D}(y)\left(J_{X}-\operatorname{Leb} \times \nu\right)(\mathrm{d}(t, y))+\int_{\mathbf{T}(A) \times \mathbb{R}^{d}} y 1_{D^{c}}(y) J_{X}(\mathrm{~d}(t, y)) \\
& +\int_{\mathbf{T}(A)} \mathrm{d} X_{t}^{\mathrm{g}}+\gamma \operatorname{Leb}(\mathbf{T}(A)) .
\end{aligned}
$$

Applying the transformation rule on the first two integrals we get the following Lévy-Itô type representation of M :

$$
\begin{aligned}
M(A)= & \int_{A \times \mathbb{R}^{d}} y 1_{D}(y)\left(\widetilde{J}_{X}-m \times \nu\right)(\mathrm{d}(t, y))+\int_{A \times \mathbb{R}^{d}} y 1_{D^{c}}(y) \widetilde{J}_{X}(\mathrm{~d}(t, y)) \\
& +\int_{\mathbf{T}(A)} \mathrm{d} X_{t}^{\mathrm{g}}+\gamma m(A) \quad \text { a.s. } \quad \text { for } A \in \mathcal{B}_{b}\left(\mathbb{R}_{+}^{k}\right),
\end{aligned}
$$

where $\widetilde{J}_{X}=\left\{\widetilde{J}_{X}(C): C \in \mathcal{B}\left(\mathbb{R}_{+}^{k} \times \mathbb{R}^{d}\right)\right\}$ is the Poisson random measure given by $\widetilde{J}_{X}(A \times B)=J_{X}(\mathbf{T}(A) \times B)$ for all $A \in \mathcal{B}_{b}\left(\mathbb{R}_{+}^{k}\right)$ and $B \in \mathcal{B}_{b}\left(\mathbb{R}^{d}\right)$.

5 Extended subordination

Let $X=\left\{X_{t}: t \in \mathbb{R}_{+}^{k}\right\}, \Lambda_{X}=\left\{\Lambda_{X}(A): A \in \mathcal{B}_{b}\left(\mathbb{R}_{+}^{k}\right)\right\}, \mu$ and (Σ, ν, γ) be given as in the previous section. That is, X is an \mathbb{R}^{d}-valued homogeneous Lévy sheet on \mathbb{R}_{+}^{k} associated with μ, which has characteristic triplet (Σ, ν, γ), and Λ_{X} is the homogeneous Lévy basis induced by X. Let $T=\left\{T_{t}: t \in \mathbb{R}_{+}^{k}\right\}$ be an \mathbb{R}_{+}-valued homogeneous Lévy sheet associated with a distribution $\lambda \in \operatorname{ID}(\mathbb{R})$. Let λ have Lévy measure ρ and drift $\beta \in \mathbb{R}_{+}$; that is, $\rho\left(\mathbb{R}_{-}\right)=0, \int_{\mathbb{R}_{+}}(1 \wedge x) \rho(\mathrm{d} x)<\infty$ and

$$
\widehat{\lambda}(u)=\exp \left[\mathrm{i} \beta u+\int_{\mathbb{R}_{+}}\left(e^{\mathrm{i} u x}-1\right) \rho(\mathrm{d} x)\right] \quad \text { for } u \in \mathbb{R} .
$$

Let $\Lambda_{T}=\left\{\Lambda_{T}(A): A \in \mathcal{B}\left(\mathbb{R}_{+}^{k}\right)\right\}$ be the non-negative homogeneous Lévy basis induced by $T=\left\{T_{t}: t \in \mathbb{R}_{+}^{k}\right\}$. By removing a null set if necessary it follows from Remark 2.5(2) that Λ_{T} has the pointwise representation

$$
\begin{align*}
\Lambda_{T}(A)(\omega) & =\int_{A \times \mathbb{R}_{+}} y J_{T}(\mathrm{~d}(t, y))(\omega)+\beta \operatorname{Leb}_{1}(A) \\
& =\sum_{t \in A} \Lambda_{T}(\{t\})(\omega)+\beta \operatorname{Leb}_{1}(A) \quad \text { for } \omega \in \Omega \text { and } A \in \mathcal{B}\left(\mathbb{R}_{+}^{k}\right), \tag{5.1}
\end{align*}
$$

where Leb $_{1}$ denotes Lebesgue measure on \mathbb{R}_{+}and the series converges for all $A \in$ $\mathcal{B}_{b}\left(\mathbb{R}_{+}^{k}\right)$ and $\omega \in \Omega$. Let $\mathcal{F}^{T}=\sigma\left(\Lambda_{T}(A): A \in \mathcal{B}_{b}\left(\mathbb{R}_{+}^{k}\right)\right)$ be the sigma-field generated by Λ_{T}.

Pointwise the measure $A \rightarrow \Lambda_{T}(A)(\omega)$ is the sum of a discrete measure and a constant times Lebesgue measure. By the construction in Example 3.3(3) there is an $\left(\mathcal{F}^{T} \times \mathcal{B}\left(\mathbb{R}_{+}^{k}\right), \mathcal{B}\left(\mathbb{R}^{k}\right)\right)$-measurable mapping $\phi_{T}: \Omega \times \mathbb{R}_{+}^{k} \rightarrow \mathbb{R}^{k}$ such that for all $\omega \in \Omega$ and $A \in \mathcal{B}_{b}\left(\mathbb{R}_{+}^{k}\right)$ the set $\mathbf{T}(A)(\omega)$, given by $\mathbf{T}(A)(\omega)=\left\{x \in \mathbb{R}_{+}^{k}: \phi_{T}(\omega, x) \in A\right\}$, is bounded, and

$$
\begin{equation*}
\Lambda_{T}(A)(\omega)=\operatorname{Leb}(\mathbf{T}(A)(\omega)) \tag{5.2}
\end{equation*}
$$

That is, for each $\omega, \mathbf{T}(\cdot)(\omega)$ is a meta-time associated with $\Lambda_{T}(\cdot)(\omega)$.
Define $M=\left\{M(A): A \in \mathcal{B}_{b}\left(\mathbb{R}_{+}^{k}\right)\right\}$ as

$$
\begin{equation*}
M(A)=\Lambda_{X}(\mathbf{T}(A)) \quad \text { for } A \in \mathcal{B}_{b}\left(\mathbb{R}_{+}^{k}\right) \tag{5.3}
\end{equation*}
$$

where as usual we suppress ω on both sides. We say that M appears by extended subordination of Λ_{X} by Λ_{T} or of X by T; and we write $M=\Lambda_{X} \curlywedge \Lambda_{T}$ or $M=X \curlywedge T$.

In practice the meta-time \mathbf{T} can be hard to work with directly. Therefore it is important to note that if we condition on T then, by (5.1), the useful representations of M in Remark 4.2 apply. For example, if λ above is a Poisson or negative binomial distribution then almost surely Λ_{T} is concentrated on a finite number of points on compacts. If λ is a gamma or an inverse Gaussian distribution then almost surely Λ_{T} is concentrated on a dense subset of \mathbb{R}_{+}^{k}. In this case we can approximate Λ_{T} pointwise in ω by a random measure which is concentrated on a finite number of points, for instance by removing all jumps of magnitude less than ϵ for some small ϵ; this also gives a pointwise approximation to the meta-time \mathbf{T}.

The following corresponds to the theorem in Section 3.1 of [2].
Theorem 5.1. Assume $M=\Lambda_{X} \curlywedge \Lambda_{T}$ as above. Then $M=\left\{M(A): A \in \mathcal{B}_{b}\left(\mathbb{R}_{+}^{k}\right)\right\}$ is a homogeneous Lévy basis associated with the measure $\mu^{\#} \in \operatorname{ID}\left(\mathbb{R}^{d}\right)$ with characteristic triplet $\left(\Sigma^{\#}, \nu^{\#}, \gamma^{\#}\right)$, where

$$
\begin{aligned}
\Sigma^{\#} & =\beta \Sigma, \\
\nu^{\#}(B) & =\beta \nu(B)+\int_{0}^{\infty} \mu^{s}(B) \rho(\mathrm{d} s), \quad B \in \mathcal{B}\left(\mathbb{R}^{d} \backslash\{0\}\right), \\
\gamma^{\#} & =\beta \gamma+\int_{0}^{\infty} \int_{|x| \leq 1} x \mu^{s}(\mathrm{~d} x) \rho(\mathrm{d} s) .
\end{aligned}
$$

Proof. Conditional on \mathcal{F}^{T}, and hence also unconditionally, M satisfies the σ-additivity condition in Definition 2.2(ii).

Let $n \geq 1$, and $A_{1}, \ldots, A_{n} \in \mathcal{B}_{b}\left(\mathbb{R}_{+}^{k}\right)$ be disjoint. Conditional on \mathcal{F}^{T} we are in the setting of the previous section. That is, $M\left(A_{1}\right), \ldots, M\left(A_{n}\right)$ are independent conditional on \mathcal{F}^{T} and $\mathcal{L}\left(M\left(A_{j}\right) \mid \mathcal{F}^{T}\right)=\mu^{\Lambda_{T}\left(A_{j}\right)}$. Therefore, for arbitrary $z_{1}, \ldots, z_{n} \in \mathbb{R}^{d}$ we have

$$
E\left[\prod_{j=1}^{n} e^{\mathrm{i}\left\langle z_{j}, M\left(A_{j}\right)\right\rangle} \mid \mathcal{F}^{T}\right]=\prod_{j=1}^{n} \widehat{\mu}\left(z_{j}\right)^{\Lambda_{T}\left(A_{j}\right)}
$$

Since $\Lambda_{T}\left(A_{1}\right), \ldots, \Lambda_{T}\left(A_{n}\right)$ are independent it thus follows that

$$
E\left[\prod_{j=1}^{n} e^{\mathrm{i}\left\langle z_{j}, M\left(A_{j}\right)\right\rangle}\right]=\prod_{j=1}^{n} E\left[\widehat{\mu}\left(z_{j}\right)^{\Lambda_{T}\left(A_{j}\right)}\right]
$$

showing that $M\left(A_{1}\right), \ldots, M\left(A_{n}\right)$ are independent. Since moreover $\mathcal{L}\left(\Lambda_{T}(A)\right)=$ $\mathcal{L}\left(\Lambda_{T}(t+A)\right)$ for all $t \in \mathbb{R}_{+}^{k}$ and $A \in \mathcal{B}_{b}\left(\mathbb{R}_{+}^{k}\right)$ it follows that $\mathcal{L}(M(A))=\mathcal{L}(M(t+A))$. Thus, M is a homogeneous Lévy basis.

Choose an arbitrary set $A \in \mathcal{B}_{b}\left(\mathbb{R}_{+}^{k}\right)$ with $\operatorname{Leb}(A)=1$. Then $\mu^{\#}=\mathcal{L}(M(A))$ and by the above we have for $z \in \mathbb{R}^{d}$ that

$$
\widehat{\mu^{\#}}(z)=E\left[\widehat{\mu}(z)^{\Lambda_{T}(A)}\right] .
$$

Let $\left\{L_{t}: t \geq 0\right\}$ be a Lévy process with $\mathcal{L}\left(L_{1}\right)=\mu$ and $\left\{H_{t}: t \geq 0\right\}$ be a subordinator independent of L with $\mathcal{L}\left(H_{1}\right)=\lambda$. It is easily seen that

$$
E\left[e^{\mathrm{i}\left\langle z, L_{H_{1}}\right\rangle}\right]=E\left[\widehat{\mu}(z)^{H_{1}}\right]=\widehat{\mu^{\#}}(z) .
$$

In other words $\mathcal{L}\left(L_{H_{1}}\right)=\mu^{\#}$, which means that $\mu^{\#}$ appears as the law of a subordinated process in the usual sense. It is therefore well known, e.g. from [11], Theorem 30.1, that the characteristic triplet of $\mu^{\#}$ is as indicated.

Remark 5.2. Above we assumed that Λ_{T} is a non-negative homogeneous Lévy basis; however, it is possible to define $M=\Lambda_{X} \curlywedge \Lambda_{T}$ in a much more general context. For example, assume that $\Lambda_{T}=\left\{\Lambda_{T}(A): A \in \mathcal{B}_{b}\left(\mathbb{R}_{+}^{k}\right)\right\}$ is stationary in the sense that $\left\{\Lambda_{T}(A): A \in \mathcal{B}_{b}\left(\mathbb{R}_{+}^{k}\right)\right\} \stackrel{\mathscr{D}}{=}\left\{\Lambda_{T}(t+A): A \in \mathcal{B}_{b}\left(\mathbb{R}_{+}^{k}\right)\right\}$ for all $t \in \mathbb{R}_{+}^{k}$ and that for all $\omega A \mapsto \Lambda_{T}(A)(\omega)$ is a non-negative measure on \mathbb{R}_{+}^{k}. Assume Λ_{T} and Λ_{X} are independent and note that we do no longer assume that Λ_{T} is a Lévy basis. Using Lemma 3.1 define $\phi_{T}: \Omega \times \mathbb{R}_{+}^{k} \rightarrow \mathbb{R}^{k}$ such that we have (5.2) and let $M=$ $\left\{M(A): A \in \mathcal{B}_{b}\left(\mathbb{R}_{+}^{k}\right)\right\}$ be given as in (5.3). Then $M=\left\{M(A): A \in \mathcal{B}_{n}\left(\mathbb{R}_{+}^{k}\right)\right\}$ is a homogeneous random measure in the sense that for any disjoint sequence A_{1}, A_{2}, \ldots with $A=\cup_{n=1}^{\infty} A_{n} \in \mathcal{B}_{b}\left(\mathbb{R}_{+}^{k}\right)$ we have $M(A)=\sum_{n=1}^{\infty} M\left(A_{n}\right)$ a.s. Moreover, by a slight modification of the above proof it follows that M is stationary. In general M is no longer a Lévy basis. But conditionally on T it is.

References

[1] Adler, R. J., D. Monrad, R. H. Scissors, and R. Wilson (1983). Representations, decompositions and sample function continuity of random fields with independent increments. Stochastic Process. Appl. 15(1), 3-30.
[2] Barndorff-Nielsen, O. E. (2010). Lévy bases and extended subordination. Thiele Research Report 2010-12.
[3] Barndorff-Nielsen, O. E., J. Pedersen, and K. Sato (2001). Multivariate subordination, self-decomposability and stability. Adv. in Appl. Probab. 33(1), 160-187.
[4] Barndorff-Nielsen, O. E. and A. Shiryaev (2010). Change of Time and Change of Measure. Singapore: World Scientific.
[5] Dalang, R. C. and J. B. Walsh (1992). The sharp Markov property of Lévy sheets. Ann. Probab. 20(2), 591-626.
[6] Jacod, J. and A. N. Shiryaev (2003). Limit Theorems for Stochastic Processes (Second ed.), Volume 288 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Berlin: Springer-Verlag.
[7] Pedersen, J. (2003). The Lévy-Ito decomposition of an independently scattered random measure. MaPhySto Research Report 2003-2.
[8] Pedersen, J. and K. Sato (2004). Relations between cone-parameter Lévy processes and convolution semigroups. J. Math. Soc. Japan 56(2), 541-559.
[9] Rajput, B. S. and J. Rosiński (1989). Spectral representations of infinitely divisible processes. Probab. Theory Related Fields 82(3), 451-487.
[10] Rosenblatt, M. (1952). Remarks on a multivariate transformation. Ann. Math. Statistics 23, 470-472.
[11] Sato, K. (1999). Lévy Processes and Infinitely Divisible Distributions, Volume 68 of Cambridge Studies in Advanced Mathematics. Cambridge: Cambridge University Press. Translated from the 1990 Japanese original, Revised by the author.

