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Summary

The nucleator is a well-established manual stereological method of estimating mean
cell volume from observations on random cell sections through reference points of
the cells. In this paper, we present an automated version of the nucleator that uses
automatic segmentation of the boundaries of the cell sections. An expert supervises
the process. If the segmentation is judged to be satisfactory, an estimate of the
cell volume is calculated automatically on the basis of the whole cell section. In
the remaining cases, the expert intervenes and uses the classical nucleator. The
resulting estimator is called the semi-automatic nucleator. In the present paper,
we study the statistical properties of the semi-automatic nucleator. Formulae for
the bias and mean square error are derived. The semi-automatic nucleator may
have a small bias but will still in most cases be more efficient than the classical
nucleator. Procedures for estimating bias and mean square error (MSE) from a pilot
study are provided. The application of the semi-automatic nucleator is illustrated
in a study of somatostatin positive inhibitory interneurons which were genetically
labeled with green fluorescent protein (GFP). It is found in this study that the
number of cells needed for obtaining, for instance, a 5 % precision of the estimate of
mean cell volume is 150 and 189 for the semi-automatic and the classical nucleator,
respectively. Taking into account that the time spent analyzing one cell is shorter
for the semi-automatic nucleator than for the classical nucleator, the semi-automatic
nucleator is superior to the classical nucleator.

Key words: computerized image analysis, local stereology, nucleator, volume.

1 Introduction

By means of local stereology, it is possible to determine the size of an object from
random sections through a reference point ([11]). Local stereological techniques can
be applied without specific assumptions about the shape of the object, which is an
important advantage compared to earlier methods, depending on shape assumptions
such as spherical, ellipsoidal or some other simplistic shape ([3, 4, 15, 16]). The
local stereological methods do not have these severe shape restrictions, but local
stereological estimators may have a high variability if the object is far from being
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spherical and/or the reference point is not centrally positioned within the object.
In case the reference point is very far from being centrally positioned, the recent
pivotal estimators based on the invariator principle are to be preferred, see [5] and
the accompagnying papers [6] and [7].

The nucleator in its original form (the ‘classical’ nucleator, see [10]) is used for
estimating cell volumes from observations in thick transparent sections. Cells are
sampled when their reference point comes into focus. In the case of isotropic sections,
two perpendicular lines are normally used in the section through a sampled cell and
the expert indicates by the computer mouse the four (or perhaps more) intersection
points between the lines and the cell boundary, see the lower right illustration of
Figure 1. It is the expert that decides the position of the intersection points.

If it is possible by automatic image analysis to identify the boundaries of the
cell sections through the reference points, it is more powerful to use the information
available in the whole cell section than the information from two lines. There exists
such an estimator of cell volume that uses the whole cell section. The theory of this
estimator has been known for quite long, see [12] and references therein, but the
estimator has not been in common use because automatic identication of the cell
boundaries has not earlier appeared to be a realistic possibility. It can be shown
that if the classical nucleator estimate is calculated on the basis of an increasing
number of lines, then the estimate will come closer and closer to the value obtained
when the whole cell section is used directly. A natural name for the estimator that
uses the whole cell section is, therefore, the integrated nucleator.

It is important to know how much more precise the integrated nucleator is com-
pared to the classical nucleator based on measurements along two lines. In fact, the
classical nucleator is already quite precise if the reference point is centrally posi-
tioned because of the antithetic effect of the two perpendicular lines. The gain in
precision by using the integrated nucleator depends on the shape of the cells. If the
cells are of perfect spherical shape with the centres as reference points, there is no
gain. A simulation study in [12] showed that if the cells are prolate ellipsoids with
centres as reference points and ratio between major and minor axis equal to 2, then
the CE of the integrated nucleator will be 83 % of that of the classical nucleator. If
the cells are prolate ellipsoids with ratio equal to 4, then the percent will be 64. Fur-
thermore, using the integrated nucleator, it is not needed to spend time indicating
the position of the intersection points between the lines and the cell boundary. All
this is under the assumption that the automatic identification of the cell boundaries
is correct.

In the present paper, we study the performance of an intermediate option be-
tween the classical and the integrated nucleator: the semi-automatic nucleator where
the expert supervises the process, see Figure 1. The first step of the semi-automatic
nucleator is an automatic identification of the cell boundary but it is not a require-
ment that the identification is correct. If the expert judges that the identification
of the cell boundary is satisfactory, then the integrated nucleator based on the au-
tomatically segmented cell section is used. If instead the identification of the cell
boundary is judged unsatisfactory, the expert intervenes and indicates by the mouse
the four (or more) intersection points between the lines and the real cell boundary.
The semi-automatic nucleator may have a small bias due to non perfect identifica-
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Figure 1: Illustration of the semi-automatic nucleator. The true cell section is
shown as the green set while the segmented cell section is delineated by the red
broken curve. The integrated nucleator is used if the segmentation is judged to be
satisfactory, otherwise the classical nucleator is used.

tion of cell boundaries. As we shall see in a concrete example, this small bias may
not be important due to an important gain in precision.

In Section 2 we introduce the various estimators of volume mentioned above. As
not all estimators are guaranteed unbiased we discuss mean square error as well as
variance relations. In Section 3 we compare the various estimators in a study of
somatostatin positive inhibitory interneurons from mice hippocampi, observed by
optical fluorescent microscopy. Further aspects are discussed in Section 4. Some
mathematical derivations are deferred to an Appendix.

2 Theoretical background

In the following we describe various procedures for estimating mean particle volume.
They all consist of a sampling step followed by a measurement step and use a
reference point associated with each particle in the sample.

Throughout this paper, Y will denote a random particle with the origin O as
reference point, i.e. Y is a compact subset of R3 containing O. The aim is to
estimate the mean particle volume µ = EV (Y ). The estimators to be considered
use an isotropic plane L2 through O. The normal vector of such a random plane is
uniformly distributed on a unit half-sphere. Furthermore, we will let L1 be a line in
L2 through O. Every such line can be uniquely determined by the angle θ ∈ [0, π)
it generates with a fixed axis within L2. When we need to be specific this line is
denoted L1(θ).
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2.1 The estimators

2.1.1 The classical nucleator

The classical nucleator mcl1 uses measurements along one isotropic line L1 in L2 and
the unbiased estimator is given by, see e.g. [11],

mcl1 = mcl1(Y ∩ L1) = 2π

∫

Y∩L1

d(y,O)2 dy.

Here, d(·, ·) is the Euclidean distance. If Y ∩ L1 consists of a single line segment
[y−, y+], then mcl1 takes the simple form

mcl1 =
2π

3

(
d(y−, O)3 + d(y+, O)3

)
. (1)

If Y ∩L1 is a union of such line segments, mcl1 involves the measurements of distances
from O to the endpoints of all line segments. In practice, usually an expert decides
where the intersection points between the line and the boundary of Y are positioned.

In [10] it was suggested to use measurements along more than one line to in-
crease the efficiency of the estimator. The resulting estimator mcl2 is based on
measurements along two perpendicular lines. This unbiased estimator is given by

mcl2 = 1
2

(
mcl1(Y ∩ L1(Θ)) +mcl1(Y ∩ L1(Θ + π/2))

)
,

where Θ is uniform on [0, π/2). Introducing a perpendicular line usually implies a
significant reduction in estimator variance because of the antithetic effect and mcl2

is much used in practice today. Recent references are [1] and [13].

2.1.2 The integrated nucleator

The integrated nucleator is an unbiased estimator of particle volume based on the
whole section Y ∩ L2, see e.g. [11] and references therein. The estimator takes the
following form

mint = mint(Y ∩ L2) = 2

∫

Y ∩L2

d(y,O) dy2.

Here, dy2 denotes the element of the area measure on L2. This estimator has not
been in common use in the study of biological cell populations because accurate
recognition of Y ∩ L2 has not appeared to be a realistic possibility. Today, due
to improved labelling techniques, automatic identification of Y ∩ L2 is no longer
unrealistic.

Using polar decomposition in L2, we find that

mint = 2

∫ π

0

∫

Y ∩L1(θ)

d(y,O)2 dy1 dθ

=

∫ π

0

mcl1(Y ∩ L1(θ))
dθ

π
. (2)

It follows that

E (mcl1|Y, L2) = E (mcl2|Y, L2) = mint(Y ∩ L2). (3)

Equation (2) also shows that the integrated nucleator can be regarded as a classical
nucleator based on an infinite number of lines.
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2.1.3 The automatic nucleator

If it is possible by automatic image analysis to recognize the particle section Y ∩L2, it
appears natural to use this information in connection with the integrated nucleator.
Let Ỹ2 be the readily available estimate of the cell section Y ∩ L2 obtained using
computerized image analysis and assume that Ỹ2 contain O. Furthermore, let

maut = mint(Ỹ2).

If the segmentation is perfect, i.e. Ỹ2 = Y ∩ L2, then the automatic nucleator maut

provides an unbiased estimator of the volume of Y . If, on the other hand, the
segmentation is of poor quality, then maut may be heavily biased.

2.1.4 The semi-automatic nucleator

As mentioned above, the advantages of the automatic nucleator depend on a satis-
factory automatic identification of the cell boundaries. Below we present an interme-
diate possibility between the classical nucleator and the automatic nucleator where
the expert supervises the measurement process performed using the automatic nucle-
ator and only interferes if the recognition of the cell boundaries is not satisfactory.
In such cases, the expert will perform the measurements needed for the classical
nucleator. We will refer to this estimator as the semi-automatic nucleator msemi.

If the segmentation is judged satisfactory, then msemi = maut, other-
wise msemi = mcl2 . In contrast to the classical and integrated nucleator, the semi-
automatic nucleator may have a small bias. Let A be the event that the segmentation
is accepted, i.e. judged satisfactory. It can be shown, see the Appendix, that

bias(msemi) := E (msemi)− µ = pE (maut −mint|A),

where p = P (A) is the probability that the segmentation is accepted and
E (maut −mint|A) is the mean difference between the automatic and integrated nu-
cleator among cells for which the segmentation is accepted. The bias will be small
because maut −mint is small for a cell section with accepted segmentation.

2.2 Variance and mean square error relations

If m denotes either mcl1 or mcl2 , then we have the following equation and lower
bound for the variance of the estimator

Var(m) = Var(E (m|Y, L2)) + E Var(m|Y, L2)

= Var(mint) + E Var(m|Y, L2)

≥ Var(mint). (4)

At the second equality sign, we have used (3).
To compare estimators that are not necessarily unbiased the mean square error

(MSE) is a more appropriate measure of variability. The MSE of an estimator m of
µ is given by, see e.g. [2],

MSE(m) = E (m− µ)2

= Var(m) + bias(m)2.
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As mint is unbiased we have that

bias(m) = Em− Emint.

If m is unbiased then MSE(m) = Var(m). Therefore the variance relations in (4)
also holds for the corresponding MSEs, when m is unbiased.

For msemi, we find, cf. the Appendix,

MSE(msemi) = pMSE(maut|A) + (1− p) MSE(mcl2|Ac), (5)

where MSE(maut|A) is the mean square error of the automatic nucleator among cells
for which a satisfactory segmentation is obtained. Likewise, MSE(mcl2 |Ac) is the
mean square error of mcl2 among cells for which the segmentation is not satisfactory.
The semi-automatic nucleator msemi will be more precise than the classical nucleator
mcl2 if

MSE(msemi) ≤ Var(mcl2) = MSE(mcl2). (6)

Using (5), it follows that (6) is equivalent to

MSE(maut|A) ≤ MSE(mcl2|A). (7)

The inequality (7) is satisfied if maut is replaced by mint, cf. the Appendix, and is
therefore likely to hold since MSE(maut|A) is calculated for cells with satisfactory
segmentation. The magnitude of the gain in efficiency by using msemi instead of mcl2

will depend on the shapes of the cells and, for a given cell population, on how large
the fraction p of cells with satisfactory segmentation is. Note also that the workload
associated with determining msemi will not be larger than that associated with mcl2 .

2.3 Estimation of bias and MSE

In order to determine which one of the estimators will be the most efficient one in
an actual study, it is advisable to perform a pilot study.

Let Y1, . . . , YM denote the sample of cells in such a study. For all estimators m
except msemi, we imagine that we perform N replicated determinations mi1, . . . ,miN

of the estimator for each cell Yi, i = 1, . . . ,M . The MSE of m can then be estimated
by

M̂SE(m) =
1

MN

M∑

i=1

N∑

j=1

(mij − µ̂)2. (8)

In (8) and the following, we use µ̂ = m̄int·, but an estimate of µ based on one of the
other unbiased estimators might be used as well.

Since mint and maut depend on the planar section as a whole, we will typically
have N = 1 for these estimators. For mcl1 and mcl2 , we may be interested in
estimating the within section variance due to the random positioning of the lines
inside the sections and in this case N > 1. The within section variance can be
estimated by

1

M(N − 1)

M∑

i=1

N∑

j=1

(mij − m̄i·)
2
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For msemi, we let I (#I) denote the (number of cells in the) subpopulation of the
sampled cells that are judged to have a satisfactory segmentation. The probability
of a satisfactory segmentation is estimated by p̂ = #I/M . Then, an estimate of
MSE(msemi) is, cf. (5),

M̂SE(msemi)

= p̂ M̂SE(maut|A) + (1− p̂) M̂SE(mcl2 |Ac)

=
#I

M

1

#I

∑

i∈I
(maut,i − µ̂)2 +

(
1− #I

M

)
1

(M −#I)N

∑

i/∈I

N∑

j=1

(mcl2,ij − µ̂)2

=
1

M

(∑

i∈I
(maut,i − µ̂)2 +

1

N

∑

i/∈I

N∑

j=1

(mcl2,ij − µ̂)2
)
.

Among the estimators considered, only maut and msemi may be biased. For
m = maut, the bias is estimated by

b̂ias (maut) = m̄aut· − µ̂,
while the bias of msemi can be estimated by

b̂ias (msemi) =
1

M

∑

i∈I
(maut,i −mint,i).

2.4 Discrimination between estimators

A yardstick for the precision of an estimator of the mean cell volume µ is the number
n of cells needed for obtaining a given precision. The estimator

m̂ =
1

n

n∑

i=1

m(Yi)

of mean cell volume has MSE of the form

MSE(m̂) = 1
n

Var(m) + bias(m)2. (9)

It is seen that in order to obtain a relative error ρ =
√

MSE(m̂)/µ of the estimate
m̂ of mean cell volume, we need to sample

n =
MSE(m)− bias(m)2

ρ2µ2 − bias(m)2
(10)

cells. If we let
Relative bias (m) = bias(m)/µ

and
Relative error (m) =

√
MSE(m)/µ,

then (10) reduces to

n =
Relative error2(m)− Relative bias2(m)

ρ2 − Relative bias2(m)
. (11)

Estimates of µ, bias(m) and MSE(m) are available from the pilot study, cf.
Section 2.3.
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3 A comparative study

In this section we will compare the described estimators in a study of somatostatin
positive inhibitory interneurons from transgenic GFP-GAD (FVB-TgN (GadGFP)
45704Swn) mice hippocampi, observed by optical fluorescent microscopy.

3.1 Materials and preparation methods

The animal study was approved by the Danish Animal Experiments Inspectorate.
Two GFP-GAD (FVB-TgN (GadGFP) 45704Swn) mice were anesthetized by sodium
pentobarbital (50 mg/kg i.p.) and transcardially perfused with phosphate-buffered
4 % paraformaldehyde. Following post-fixation in 4 % paraformaldehyde overnight
at 4 ◦C, the brains were removed, and the hippocampi were cut out and embedded
in 5 % agar in the isector ([14]) to generate isotropic sections. Using a Vibratome
(Vibratome, St. Louis, USA), the brains were sectioned exhaustively at 65 µm. Ev-
ery sixth section was selected for sampling. For counterstaining, these sections were
transferred into DAPI (Sigma, St. Louis, USA) solution. Each section was wet
mounted on a super frost slide and was dried at room temperature for only 10 min.
An aqueous mounting media was used to adhere the coverglass and care was taken to
remove the excess mounting media. Z - stacks were recorded at a confocal microscope
(Zeiss LSM 510 META system) using a 40× NA 1.2 C-Apochromat objective and
systematic sampling. The laser line used was 488 nm, image size 225 µm× 225 µm
and voxel size 0.44 µm× 0.44 µm× 0.44 µm (undersampling in the XY plane wrt.
the optimum resolution which is 0.1 µm× 0.1 µm at this wavelength and NA).

3.2 Sampling and segmentation

Figure 2 shows examples of somatostatin positive inhibitory interneurons (green) in
an optical section of tissue as seen under a confocal microscope. A characteristic of
these cells is the dendrites/axons which are also visible in Figure 2. The dendrites
will not be regarded as part of the actual cell body and, accordingly, they do not
contribute to the cell volume.

A total of 91 cells were sampled using an optical disector within an isotropic
thick section and an unbiased counting frame. For each sampled cell a segmentation
of the boundary of the central cell section was performed using the max-vol function
in Visiomorph (Visiopharm, Hørsholm, Denmark). The segmentation results in a set
of xy-coordinates on the segmentation boundary. These 91 sets of xy-coordinates
constitute the data to be used in the following analysis.

3.3 Constructing the true cell section

In order to study the performance of the different types of estimators, we fitted for
each sampled cell section a spline to those xy-coordinates not originating from the
dendrites or from other cells visible from other layers of the thick section. Subse-
quently, the spline curve representing Y ∩ L2 was approved by an expert and used
in the following as the true cell section.
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Figure 2: Somatostatin positive inhibitory interneurons in mice hippocampi have
been genetically labelled with green fluorescent protein (GFP) and observed under a
confocal microscope. The optical disector with the unbiased counting frame is used
to sample the interneurons.

Figure 3 shows an example of a sampled cell (green) as seen under the confocal
laser microscope. The observed xy-coordinates (red crosses) are superimposed along
with the calculated spline (blue line) and the centre of mass of the spline (white dot).
As these nerve cells do not have a natural reference point we will use the centre of
mass for this purpose. This centre of mass in the central section of the cell may be
regarded as an approximation to the centre of mass in 3D.

Figure 4 shows for each cell the true cell section (green) and the boundary of the
segmented cell (red broken line). The dot indicates the centre of mass according to
the true cell section. The cell sections above the horizontal line of Figure 4 have
satisfactory segmentation while for those below the segmentated cell sections are
too large, either because parts of the dendrites are included or neighbouring cells
interfer.

3.4 Comparison of estimators

These visual observations are reflected in the histograms in Figure 5 displaying mint

(left) and maut (right), respectively. Furthermore, the histograms indicate a right
skewed distribution, especially for maut, with means E (mint) and E (maut) estimated
by 1446 µm3 and 1904 µm3, respectively. Furthermore, the estimates of Var(mint)
and Var(maut) are 706 620 µm6 and 1 944 011 µm6, respectively. The estimate of the
bias of maut is 458 µm3 resulting in an estimated MSE of maut of 2 132 314 µm6. The
estimated relative bias of maut is quite large, i.e. (m̄aut·− µ̂)/µ̂ = 0.32. It is therefore
not advisable to use the automatic nucleator in this study.

For the implementation of the semi-automatic nucleator, we used a distance in
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Figure 3: A somatostatin positive inhibitory interneuron as observed under the con-
focal laser microscope. The observed xy-coordinates on the segmentation boundary
are shown (red crosses) along with the calculated spline (blue line) and the centre
of mass relative to the spline (white dot).

the judgement of the discrepancy between the true cell section Y ∩L2 and the auto-
matically segmented cell section called Ỹ2. The segmentation was judged satisfactory
if

d(Y ∩ L2, Ỹ2) < ε

where ε ≥ 0 and d denotes a distance on the set of subsets of L2. Two examples of
distances were considered

d1(B1, B2) =
|A(B1)− A(B2)|

A(B1)
and d2(B1, B2) =

|mint(B1)−mint(B2)|
mint(B1)

.

Here, A denotes area and B1, B2 ⊂ L2. In practice, the distance d1 seems straight-
forward for an expert to evaluate since the distance only involves differences in area
between the true cell section and the segmented cell. But as it is the difference
in estimated volume that is important d2 seems more appropriate. Figure 6 shows
d2(Y ∩L2, Ỹ2) plotted against d1(Y ∩L2, Ỹ2) in a double logarithmic scale along with
an estimated regression line y = 0.91x+ 0.38. It is seen from this plot, that the two
distances provide quite similar results.

In the analysis below we used d2 and ε = 0.15. A total of 66 cells had a sat-
isfactory segmentation according to this criterion. They are shown above the hor-
izontal line of Figure 4. The probability p is estimated by 66/91 = 0.73. Using
the empirical relationship between d1 and d2, d2(Y ∩ L2, Ỹ2) = 0.15 corresponds to
d1(Y ∩ L2, Ỹ2) = 0.08.

For each sampled cell, Figure 7 shows the volume estimates maut, mcl1 , mcl2 and
msemi plotted against mint, respectively. The scale is ln(µm3). The plots confirm
that maut is quite heavily biased while mint, mcl1 and mcl2 are unbiased. Also, msemi

appears virtually unbiased and somewhat more precise than mcl2 which again is
more precise than mcl1 .

Table 1 shows, for each estimator considered, the relative bias and the relative
error of the estimated cell volume, when analyzing one cell. For mcl1 and mcl2 , we
also estimated the within section variance which was found to constitute 89 % and
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Figure 4: The ‘true’ cell section (green) and the boundary of the segmented cell (red
broken line) for each of the 91 sampled somatostatin positive inhibitory interneu-
rons. The dot indicates the reference point of the cell. The cell sections above the
horizontal line have satisfactory segmentation.
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Figure 5: Histograms of the estimated volumes (µm3) based on the integrated nu-
cleator (left) and the automatic nucleator (right).
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Figure 7: Volume estimates m̂aut, m̂cl1 , m̂cl2 and m̂semi plotted against m̂int in a
double logarithmic scale. The scale is ln(µm3).
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29 % of the total variance, respectively. Still msemi is more precise than mcl2 , see
Table 1.

mint maut mcl1 mcl2 msemi

Relative bias — 0.32 — — 0.004
Relative error 0.58 1.01 1.79 0.69 0.61

Table 1: For each of the estimators considered, the relative bias and the relative
error of the estimated cell volume, when analyzing one cell, are shown. Note that
msemi is virtually unbiased.

Using (11) and the results shown in Table 1, we can estimate the number of cells
needed to analyze in order to obtain a given relative error ρ of the estimated mean
cell volume. Figure 8 shows the number of cells needed to be analyzed for mint (full),
msemi (dashed) and mcl2 (dotted), respectively, to obtain a given relative error of the
estimated mean cell volume between 0.02 and 0.10. For a given relative error in this
interval it is seen that we always need to include less cells for msemi than for mcl2 . As
an example, in order to obtain a relative error of the estimate of mean cell volume
of 0.05, it is needed to sample and analyze 134, 150 and 189 cells using the integrated
nucleator, semi-automatic nucleator and classical nucleator, respectively. The use
of mint is not feasible in this study because it requires the correct segmentation of
all cells. The semi-automatic nucleator is more efficient than the classical nucleator,
since the same precision can be obtained by sampling fewer cells in the case of the
semi-automatic nucleator and in addition the time spent analyzing a cell is shorter.

0.02 0.04 0.06 0.08 0.10

0

400

800

1200

Figure 8: The number of cells needed to be analyzed for mint (full), msemi (dashed)
and mcl2 (dotted), respectively, as a function of the relative error of the estimate of
the mean cell volume.
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4 Discussion

In the present paper, we have proposed a new method of estimating mean cell
volume, the semi-automatic nucleator. The method uses sections through reference
points of the cells. Automatic segmentation of the cell sections is an integral part of
the method. A gain in efficiency compared to the classical nucleator can generally
be expected. The magnitude of the gain in efficiency increases with the fraction of
analyzed cell sections with satisfactory segmentation.

An expert supervises the process and interferes if the segmentation of a particular
cell section is judged unsatisfactory. It is important that the expert is trained in
using an appropriate threshold for deciding whether a segmentation is satisfactory.

The efficiency of nucleator type estimators depends on the positioning of the
reference point inside the cell. If the reference point is very far from being centrally
positioned, we advice to use the pivotal estimators suggested in [5, 6, 7] instead.

Recently, weighted sampling has been introduced in stereology under the name of
the proportionator, as a successful method of reducing variance in the stereological
estimation of number ([8, 9]). During the research work reported in the present
paper, we also considered to reduce the within section variance of the classical
nucleator by changing the distribution of the lines in the section from uniform to a
weighted orientation distribution, using the information available in the segmentated
cell section Ỹ2.

More specifically, we considered lines L1 = L1(θ) with the following orientation
density distribution p, depending on the shape of Ỹ2,

p(θ) ∝
∫

Ỹ2∩L1(θ)

d(y,O)2 dy,

for θ ∈ [0, π). This density favors lines with a large intersection with the cell. The
following estimator

mcl1(Y ∩ L1(Θ))

π p(Θ)
, (12)

where Θ has density p, is an unbiased estimator of V (Y ). In the case of a perfect
segmentation, i.e. Ỹ2 = Y ∩ L2, the values of this estimator will not depend on Θ
and therefore its within section variability will be zero.

When comparing the estimator in (12) to the classical nucleator estimators, using
the data analyzed in Section 3, we found that the estimator in (12) had smaller
variance than mcl1 but larger variance than mcl2 . Two reasons that the estimator
(12) failed to outperform mcl2 might be: i) the estimator mcl2 has already a small
within section variability due to the antithetic effect of the two perpendicuclar lines
and ii) the observed cell sections are not very irregular in shape and the variance
reducing effect of weighted sampling cannot compensate for the effect that some
extra within section variability is introduced when (12) is used in case of non-perfect
segmentation.

If a rough voxel image of a sampled cell is available, it might instead be worth-
while to use a distribution of the orientation of the section plane L2 that depends
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on this rough voxel image. Implementation of weighted sampling in this connec-
tion might lead to a further reduction in estimator variance that will affect all the
estimators presented in this paper.
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Appendix

In this Appendix, we will derive the results on bias and MSE of msemi presented in
Section 2.1.4 and Section 2.2 of the main text.

Let Aε = {d(Y ∩ L2, Ỹ2) < ε}. Then, the semi-automatic nucleator is given by

msemi = 1Aεmaut + 1Ac
ε
mcl2 ,

where 1A is the indicator function of A. Given Y and L2, the distribution of mcl2

depends only on the lines L1(Θ) and L1(Θ +π/2) where Θ is uniform on [0, π/2). It
follows that mcl2 and Aε are conditional independent given Y and L2 and we find,
using (3),

E (msemi|Y, L2) = E (1Aεmaut|Y, L2) + E (1Ac
ε
|Y, L2)E (mcl2|Y, L2)

= E (1Aεmaut|Y, L2) + E (1Ac
ε
|Y, L2)mint

= E (1Aεmaut + 1Ac
ε
mint|Y, L2).

Thereby,

E (msemi) = E (1Aεmaut + 1Ac
ε
mint).

It follows that

bias(msemi) = E (msemi)− E (mint)

= E (1Aεmaut + 1Ac
ε
mint)− E (1Aεmint + 1Ac

ε
mint)

= E (1Aε(maut −mint))

= pE (maut −mint|Aε).

Using the distance d2, we have the following inequality between estimators

1Aε(1− ε)mint < 1Aεmaut < 1Aε(1 + ε)mint. (13)
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Therefore,

E (msemi) < (1 + ε)E (1Aεmint) + E (1Ac
ε
mint)

= εE (1Aεmint) + E (mint)

= ε pE (mint|Aε) + µ.

Likewise, E (msemi) > −ε pE (mint|Aε) + µ and we get a bound for the relative bias

|E (msemi)− µ|
µ

≤ ε p
E (mint|Aε)

µ
.

The results on the MSE of msemi is derived as follows

MSE(msemi) = E (1Aε [maut − µ]2 + 1Ac
ε
[mcl2 − µ]2)

= pMSE(maut|Aε) + (1− p) MSE(mcl2|Acε).

Finally, we show that (7) is satisfied when maut is replaced by mint, i.e.

MSE(mint|Aε) ≤ MSE(mcl2|Aε).

Utilizing that mcl2 and Aε are conditionally independent given Y and L2, we find

E (mcl2 |Aε) = E (E (mcl2|Aε, Y, L2)|Aε) = E (mint|Aε)

and

E (m2
cl2
|Aε) = Var(mcl2|Aε) + (E (mcl2|Aε))2

≥ Var(E (mcl2|Aε, Y, L2)|Aε) + (E (mint|Aε))2
= Var(mint|Aε) + (E (mint|Aε))2
= E (m2

int|Aε).

Therefore,

MSE(mcl2|Aε) = E ((mcl2 − µ)2|Aε)
= E (m2

cl2
|Aε)− 2µE (mcl2|Aε) + µ2

≥ E (m2
int|Aε)− 2µE (mint|Aε) + µ2

= MSE(mint|Aε).
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