
CENTRE FOR STOCHASTIC GEOMETRY
AND ADVANCED BIOIMAGING

www.csgb.dk

RESEARCH REPORT

2010
Jesper Møller and Kasper K. Berthelsen

Transforming Spatial Point Processes into Poisson Processes
using Random Superposition

No. 07, August 2010



TRANSFORMING SPATIAL POINT PROCESSES INTO
POISSON PROCESSES USING RANDOM

SUPERPOSITION
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Most finite spatial point process models specified by a density
are locally stable, implying that the Papangelou intensity is bounded
by some integrable function β defined on the space for the points of
the process. It is possible to superpose a locally stable spatial point
process X with a complementary spatial point process Y to obtain a
Poisson process X ∪Y with intensity function β. Underlying this is a
bivariate spatial birth-death process (Xt, Yt) which converges towards
the distribution of (X,Y ). We study the joint distribution of X and
Y , and their marginal and conditional distributions. In particular,
we introduce a fast and easy simulation procedure for Y conditional
on X. This may be used for model checking: given a model for the
Papangelou intensity of the original spatial point process, this model
is used to generate the complementary process, and the resulting su-
perposition is a Poisson process with intensity function β if and only
if the true Papangelou intensity is used. Whether the superposition
is actually such a Poisson process can easily be examined using well
known results and fast simulation procedures for Poisson processes.
We illustrate this approach to model checking in the case of a Strauss
process.

1. Introduction. A spatial birth-death process is a continuous time
jump process where each jump consists in either adding or removing a
point from a finite spatial point pattern. Preston (1977) provided a de-
tailed mathematical study of such processes, and showed among other things
that under suitable conditions, (approximate) realisations of a finite spatial
point process can be obtained by running a spatial birth-death process for
a long enough time; this point was also taken by Kelly and Ripley (1976)
and Ripley (1977), and in connection to perfect simulation algorithms by
Kendall (1998), Kendall and Møller (2000), and Fernández, Ferrari and Gar-
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cia (2002). Spatial birth-death processes have also been used as statistical
models for geological data (Fiksel, 1984; Stoyan, Kendall and Mecke, 1995)
and sand dunes (Møller and Sørensen, 1994), and for Bayesian analysis of
mixture models with an unknown number of components (Stephens, 2000).

Preston (1977) established the existence of a spatial birth-death pro-
cess through a coupling to a non-explosive birth-death process on the non-
negative integers, which can be extended to a ‘dominating’ spatial birth-
death process. This coupling is particular useful in connection with locally
stable point processes, which is a property satisfied by most spatial point
process models specified by a density; this condition and other background
material are presented in Section 2. Briefly, local stability implies that the
Papangelou conditional intensity λ(x, u) is bounded from above by an inte-
grable function β(u) defined on S, where S denotes the state space of the
points, x is any finite point pattern (i.e. a finite subset of S), and u ∈ S \ x
is any point. To describe the coupling construction consider a (dominating)
birth-death process Dt with birth rate β(u) and death rate one so that its
equilibrium distribution is a Poisson process on S with intensity function
β. It is possible by a dependent thinning of Dt to obtain a (target) birth-
death process Xt with birth rate λ(x, u) and death rate one such that its
distribution converges towards that of X as time t tends to infinity: the
dependent thinning is such that if X0 ⊆ D0 then Xt ⊆ Dt for all t > 0
(explaining what is meant by ‘dominating’). Further details are given in
Section 2.2. This coupling construction also plays a key role in connection
with the perfect simulation algorithms of locally stable point processes given
by the dominating coupling from the past algorithm (Kendall, 1998; Kendall
and Møller, 2000) and the method of clans of ancestors (Fernández, Ferrari
and Garcia, 2002).

In this paper we study the birth-death process Yt = Dt\Xt, i.e. the points
in the dominating process Dt that are not included in the target birth-death
process Xt. We refer to Yt as the complementary birth-death process (to the
target birth-death process Xt). Section 2.2 defines the bivariate birth-death
process (Xt, Yt), and Section 3 establishes that (Xt, Yt) converges towards
a bivariate point process (X,Y ), where we call Y the complementary point
process (to the target point process X). In general it seems difficult to say
anything detailed about this equilibrium distribution except in special cases
considered in Section 3 and in Appendix A.

Although the distribution of Y conditional on X = x seems complicated
in general, it turns out to be simple to simulate from this conditional dis-
tribution. Section 4.1 presents an algorithm which is both fast and easily
implemented. Section 4.2 studies the speed of the algorithm which, unlike
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dominating CFTP, depends only on β, i.e. it does not depend on any (in-
teraction or monotonicity) properties of λ expect on its upper bound β.

The algorithm may be used for model checking: given data x (a finite
point pattern in S) and a model for the Papangelou intensity of the under-
lying spatial point process X, this model is used for generating a realisation
y from the complementary process conditional on X = x. Section 5.1 es-
tablishes that the resulting superposition x ∪ y is a Poisson process with
intensity function β if and only if the true Papangelou intensity is used.
Whether the superposition is actually such a Poisson process can easily
be examined using theoretical results for (functional) summary statistics of
Poisson processes, where quantiles of the summary statistics can be quickly
simulated. Section 5.2 illustrates this approach to model checking in the case
of a Strauss process (Strauss, 1975; Kelly and Ripley, 1976).

The above model checking procedure of superimposing the complemen-
tary point pattern on the data pattern and checking if the resulting point
pattern is Poisson has some similarities to the approach considered by Møller
and Schoenberg (2010). Their procedure is based on dependent thinning of
the data pattern x obtaining a realisation of a Poisson process if the as-
sumed model for X is correct. This construction relies on an assumption of
a positive lower bound on the Papangelou intensity on S which is typically
not available for most point process of interest.

2. Preliminaries.

2.1. Assumptions. For simplicity and specificity we consider a spatial
point process X defined on a Borel set S ⊂ Rk (k ∈ {1, 2, . . .}) of finite and
positive Lebesgue measure |S|, where with probability one, X is finite and
simple (i.e. has no multiple points). This means that X can be considered as
a random finite subset of S, so realizations of X are finite point configura-
tions x = {x1, . . . , xn} ⊂ S, with 0 ≤ n <∞ (for n = 0, x = ∅ is the empty
point configuration). For measure theoretical details, see e.g. Appendix B
in Møller and Waagepetersen (2004). The setting covers most cases of prac-
tical interest, but our methods can easily be extended to non-simple point
processes defined on a general state space and using an exponential state
space setting (Carter and Prenter, 1972; Preston, 1977; Ripley and Kelly,
1977). We refer to X as our target point process.

Let β be a non-negative Lebesgue integrable function β defined on S, de-
note Poisson(S, β) the distribution of the Poisson process on S with intensity
function β, and set ν = Poisson(S, 1) (the distribution of the homogeneous
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Poisson process on S with intensity one). Note that
(1)∫

h(x) dν(x) = e−|S|h(∅) +
∞∑

n=1

e−|S|

n!

∫

S
· · ·
∫

S
h({x1, . . . , xn}) dx1 · · · dxn

for any non-negative measurable function h defined on the space of all finite
subsets of S.

We assume that X is absolutely continuous with respect to ν and denotes
its density f . We also assume that f is locally stable with respect to β, i.e.
for any finite point configuration x ⊂ S and any point u ∈ S \ x,

(2) f(x ∪ {u}) ≤ β(u)f(x).

This condition is satisfied for most point process models specified by a den-
sity (where of course the choice of β depends on the density), see Geyer
(1999) and Møller and Waagepetersen (2004). Clearly (2) implies that the
Papangelou conditional intensity defined for any finite x ⊂ S and any
u ∈ S \ x by

(3) λ(x, u) = f(x ∪ {u})/f(x) (taking 0/0 = 0)

is bounded by β(u). In fact local stability also implies that many desirable
properties for simulation algorithms are satisfied, cf. Møller andWaagepetersen
(2004) and the references therein. Note that

b :=

∫

S
β(u) du

is finite and equal to the mean number of points under Poisson(S, β). Hence-
forth, to avoid the trivial case where f(x) = 0 whenever x 6= ∅, we assume
that b > 0.

2.2. Coupled spatial birth-death processes. We shall exploit that (3) en-
sures a coupling of a continuous time spatial birth-death process {Xt : t ≥ 0}
with a dominating spatial birth-death process {Dt : t ≥ 0} such that
Xt ⊆ Dt for all times t ≥ 0, where the Xt process has birth rate λ(x, u)
and death rate one, and the Dt process has birth rate β(u) and death
rate one. Both processes are time reversible, Xt has equilibrium density f ,
and the equilibrium distribution of Dt is Poisson(S, β). See Preston (1977),
Kendall (1998), Kendall and Møller (2000), and Appendix G in Møller and
Waagepetersen (2004). However, in general, as shown in Section 3, the cou-
pled process (Xt, Dt) is not time reversible.
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For later use, we now recall the details of the coupling construction, where
we let the initial states be arbitrary except that it is assumed that X0 ⊆ D0.

First, we generate the dominating birth-death process {Dt : t ≥ 0} as
follows. We start by generating a pure birth process on S with birth rate
β(u). Viewed as a space-time point process, this is simply a Poisson process
on S × [0,∞) with intensity function ρ(u, t) = β(u). To each space-time
point (u, t) in this Poisson process, we generate a lifetime τ(u) which is
exponentially distributed with mean one; these lifetimes are independent
of the birth process, and the lifetimes are mutually independent. In the
dominating birth-death process, the point u is then included for the time
period starting at the birth time t and ending at the death time t + τ(u)
(where u is excluded).

Second, the Xt process is obtained from the Dt process by a dependent
thinning. Write Dt− and Xt− for the states of the processes just before
time t. If a birth happens in the dominating spatial birth-death process at
time t > 0 so that Dt = Dt− ∪ {u}, then conditional on this knowledge
and what previously has happened in the two processes, with probability
λ(Xt−, u)/β(u) set Xt = Xt−∪{u}, and otherwise do nothing, i.e. Xt = Xt−
is unchanged. Moreover, if a death happens in the dominating spatial birth-
death process at time t > 0 so that Dt = Dt− \ {u} where u ∈ Dt−, then
Xt = Xt−\{u} (of course Xt = Xt− is unchanged if u is not in Xt−). Finally,
as a transition in the Xt process can only happens if a similar transition
happens in the Dt process, it follows that Xt ⊆ Dt for all t ≥ 0.

We call Yt = Dt \ Xt, t ≥ 0, the complementary spatial birth-death
process. Note that {(Xt, Yt) : t ≥ 0} is a bivariate jump process such that a
transition from a given state (x, y) = ({x1, . . . , xm}, {y1, . . . , yn}) ⊂ S × S
of the process (with x = ∅ if m = 0, and y = ∅ if n = 0) can be of one of
four types (i)-(iv), where the rate of the transition is

(i) λ(x, u) if (x∪{u}, y) is the new state, i.e. when a birth of a point u ∈ S
happens in the Xt process;

(ii) β(u) − λ(x, u) if (x, y ∪ {u}) is the new state, i.e. when a birth of a
point u ∈ S happens in the Yt process;

(iii) one if (x \ {xi}, y) is the new state, i.e. when the ith point in the Xt

process dies (i ∈ {1, . . . ,m} and provided m > 0),
(iv) one if (x, y \ {yj}) is the new state, i.e. when the jth point in the Xt

process dies (j ∈ {1, . . . , n} and provided n > 0).

3. The equilibrium distribution of the bivariate jump process.
The (Xt, Yt) process converges in distribution towards a unique equilibrium
distribution Π; in fact the process converges geometrically fast towards Π as
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seen by combining results in Møller (1989) with Appendix G in Møller and
Waagepetersen (2004). Henceforth, assume that (X,Y ) follows Π. We call
Y the complementary point process (to the target point process X). Note
that D = X ∪ Y follows Poisson(S, β), but what else can we say about Π?
The following Propositions 1-3 are verified in Appendix A.

Proposition 1. The equilibrium distribution Π is absolutely continuous
with respect to the product measure ν × ν.

We need some further notation. Let π(x, y) denote the density of Π with
respect to ν × ν. For any finite x ⊂ S, let n(x) denote the cardinality of x.
If n(x) = 0, set

∑
u∈x q(x, u) = 0 for any real function q(x, u).

Proposition 2. Apart from a ν×ν-nullset, the equilibrium density π is the
unique density satisfying the equation

[b+n(x) + n(y)]π(x, y)

=
∑

u∈x
λ(x \ {u}, u)π(x \ {u}, y) +

∑

u∈y
[β(u)− λ(x, u)]π(x, y \ {u})

+

∫

S
π(x ∪ {u}, y) du+

∫

S
π(x, y ∪ {u}) du(4)

for all finite x, y ⊂ S.

We have not been able to solve (4) without imposing rather restrictive
conditions, such as in the following Proposition 3 or as in the examples
discussed in Appendix A.

One attempt at solving (4) is given by solving the detailed balance con-
dition

(5) π(x, y)λ(x, u) = π(x ∪ {u}, y), π(x, y)(β(u)− λ(x, u))π(x, y ∪ {u}),

which is equivalent to time reversibility of the (Xt, Yt) process. This is,
however, only satisfied in the following simple case.

Proposition 3. The equilibrium density π(·, ·) satisfies the detailed balance
condition (5) if and only if λ(x, u) = λ(u) does not depend on x, in which case
X and Y are independent Poisson processes on S with intensity functions
λ(u) and β(u)− λ(u), respectively.

As noticed in Remark 1 (Section 5.1) and in Appendix A, apart from
the case where the detailed balance condition (5) holds, the conditional
distribution of Y given X = x is in general a complicated distribution—
nevertheless we can easily simulate from this conditional distribution as
shown in Section 4.1. So in general it seems difficult to explicitly evaluate
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the joint density of X and Y . Also the density of Y seems in general to be
very complicated as discussed in Appendix A.

4. Conditional simulation of the complimentary point process.

4.1. Simulation procedure. The following algorithm provides an easy way
to make a conditional simulation Y (x) of the complimentary point process
given that x is a realization from the target point process X.

Algorithm 1.

(a) Set Y (x) = ∅ and generate Z from Poisson(S, β). If Z = ∅, then set
T = 0 and go to (e).

(b) For each point u ∈ Z, generate an exponentially distributed lifetime
Tu with mean one, and a uniformly distributed “mark” Mu on [0, 1],
assuming that all these times and marks are mutually independent.
Set T = max{Tu : u ∈ Z}.

(c) Set X0 = x and generate the spatial birth-death process Xt with birth
rate λ and death rate one, stopping the generation at time T , assuming
this generation conditional on T is independently of everything else in
(a)-(b).

(d) For each u ∈ Z, if Mu > λ(XTu , u)/β(u), add u to Y (x), i.e. Y (x) ←
Y (x) ∪ {u}.

(e) Return Y (x).

Theorem 1. The output Y (x) in Algorithm 1 is a realization from the
conditional distribution of the complimentary point process Y given that
X = x is a realization from the target point process.

Proof. Intuitively, this follows by

• imaging that we have extended the (Xt, Yt) process to all times t ∈ R
such that it is in equilibrium; this is easily done, since the (Xt, Dt)
process regenerates each time Dt = ∅, see e.g. Appendix G in Møller
and Waagepetersen (2004);
• observing that by (i)-(iv) in Section 2.2, conditional on {Xt : t ∈ R},
the births in {Yt : t ∈ R} form a space-time Poisson process B on S×R
with intensity function µ(u, t) = β(u) − λ(Xt, u), the corresponding
lifetimes are mutually independent and independent of B, and each
lifetime is exponentially distributed with mean one;
• noting that B can be obtained by an independent thinning from a
space-time Poisson process on S × R with intensity function ρ(u, t) =
β(u), where the retention probability for a space-time point (u, t) is
µ(u, t)/ρ(u, t) = 1− λ(Xt, u)/β(u).
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For a formal proof, it is convenient to reverse time, and to imagine that we
have generated more than is actually needed, as described in the following.

Let {D∗
t : t ≤ 0} be an independent copy of the dominating spatial birth-

death process {Dt : t ≤ 0} considered backwards in time, where D∗
0 = Z.

We use this notation, since (as discussed at the beginning of Section 4.2)
the Dt process may instead be used when generating the Xt process. In step
(b), T is the largest lifetime of the points in Z; correspondingly, let T̃ be the
first time before time 0 where a point in D∗

0 was born when the D∗
t process

is considered forwards in time, setting T̃ = 0 if D∗
0 = ∅; so −T̃ is distributed

as T . Moreover, suppose that we have generated the Xt process backwards
in time t ≤ 0, independently of the D∗

t process and anything else associated
to this process as considered below, and with X0 = X.

By time reversibility, the generation of these processes is just like running
them forwards it time. To each birth time t in D∗

t (considered forwards in
time) we attach a mark given by a uniformly distributed random variable
Mt on [0, 1]. All these marks are assumed to be mutually independent and
independent of {(Xt, D

∗
t ) : t ≤ 0}.

Moreover, suppose that for any time s < 0, we have generated a com-
plimentary spatial birth-death process Y s

t forwards in time t ∈ [s, 0] in the
following way. Initially, Y s

s = ∅. Further, a birth in the Y s
t process can

only happen if it also happens in the D∗
t process: if D∗

t = D∗
t− ∪ {u}, then

Y s
t = Y s

t− ∪ {u} if Mt > λ(Xt, u)/β(u), and Y s
t = Y s

t− otherwise. Further-
more, a death in the Y s

t process can only happen if it also happens in the
D∗

t process: if a death happens so that D∗
t = D∗

t− \ {u} (where u ∈ D∗
t−),

then Y s
t = Y s

t− \ {u}. Hence {(Xt, Y
s
t ) : s ≤ t ≤ 0} is seen to be a jump

process with transition rates as given in (i)-(iv) in Section 2. Consequently,
{(Xt, Y

s
t ) : s ≤ t ≤ 0} is distributed as {(Xt, Yt) : 0 ≤ t ≤ −s} with X0 in

equilibrium and Y0 = ∅.
Note that Y s

0 ⊆ D∗
0 and whether or not a birth happens in the compli-

mentary spatial birth-death process does not depend on the history in this
process. Hence to generate Y s

0 , if s ≤ T̃ , we need only to consider the death
times of the points in D∗

0 (when D∗
t is viewed backwards in time) and to use

the states of the Xt process at these death times. So in our simulation pro-
cedure we need only the steps (a)-(e), and (X,Y (X)) is distributed as the
limiting distribution of (X−s, Y−s) as −s→∞. Therefore (X,Y (X)) follows
Π, and so Y (X) is distributed as Y conditional on X. Thereby Theorem 1
is verified.

Remark 1. It follows from the proof of Theorem 1 that the conditional dis-
tribution of Y given {Xt : t ≥ 0} is a Poisson process on S with intensity
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function

(6) β(u)−
∞∑

i=0

(
e−τi − e−τi+1

)
λ(Xτi , u), u ∈ S,

where τ0 = 0 and τ1 < τ2 < . . . denote the transition (or jump) times of
{Xt : t ≥ 0}, and where e−τi − e−τi+1 is the probability that an exponen-
tially distributed lifetime with mean one is falling in the interval from τi to
τi+1 (within this interval Xt is constant). Now, Y conditional on X = x is
distributed as Y conditional on X0 = x, and the latter distribution may in
principle be obtained by considering the Poisson process on S with intensity
function (6) and integrating over all possible paths of {Xt : t > 0} when
X0 = x. However, apart from the special case where λ(x, u) = λ(u) does
not depend on x, this calculation appears to be very complicated, indicating
that the conditional distribution of Y given X is in general a complicated
distribution.

Remark 2. A comparison of Algorithm 1 with perfect simulation algorithms
seems in order, since the proof of Theorem 1 has some similarity to argu-
ments used when establishing the correctness of the CFTP (coupling from
the past) algorithm in Propp and Wilson (1996), the dominating CFTP al-
gorithm in Kendall (1998) and Kendall and Møller (2000), and the method
of clans of ancestors in Fernández, Ferrari and Garcia (2002). The latter two
algorithms are used for perfect simulation of a locally stable point process,
using spatial birth-death processes in different ways. As argued below, Al-
gorithm 1 is much simpler to implement and much faster than these perfect
simulation algorithms.

The speed of the dominating CFTP algorithm depends much on mono-
tonicity properties of λ(x, u) (used for generating a sequence of so-called
lower and upper processes) and how strong the interaction is between u and
neighbouring points in x (a point v ∈ x is said to be a neighbour to u if
λ(x, u) depends on v). In fact, in cases where λ(x, u) can be much smaller
than β(u), the dominating CFTP algorithm can be very slow (Berthelsen
and Møller, 2002). Moreover, a doubling scheme is used in the dominating
CFTP algorithm (this doubling scheme is for the abovementioned sequence
of lower and upper processes), where Berthelsen and Møller (2002) recom-
mends that the first time in the doubling scheme should be random and
distributed as T (more precisely, this is the case if the waiting times for
transitions are included; in fact one needs only to consider the jump chain in
the dominating CFTP algorithm, so this partly reduces the computations).
Furthermore, the method of clans of ancestors depends on how λ(x, u) spec-
ifies which points are neighbours (but not on how strong the interaction
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is), and this method can be very slow, in fact even slower than dominating
CFTP (Kendall and Møller, 2000; Berthelsen and Møller, 2002).

In contrast, Algorithm 1 depends neither on any monotonicity property
of λ(x, u), or on how strong the interaction is, or on how λ(x, u) specifies
which points are neighbours. The speed of our simulation procedure (a)-(e)
depends only on b, as further discussed in Section 4.2.

Remark 3. Algorithm 1 is useful when verifying Theorem 1. In practice it is
easier to use the following algorithm, where we avoid simulating the lifetimes
but the output is still a conditional simulation of Y given X = x.

Algorithm 2.

(a) Set Y (x) = ∅ and w = x. Generate M from a Poisson distribution
with mean b.

(b) While M > 0 repeat steps (c) to (f):

(c) Set n = n(w) and m = M . Generate a uniformly distributed
variable v on [0, 1].

(d) If v < m
m+n+b perform steps (d.1) to (d.3):

(d.1) reduce M by one, i.e. M ←M − 1;

(d.2) generate a point u on S with density β(·)/b;
(d.3) with probability 1−λ(w, u)/β(u), add u to Y (x), i.e. Y (x)←

Y (x) ∪ {u}.
(e) If v ∈ [ m

m+n+b ,
m+n

m+n+b ] then

(e.1) remove a point u from w chosen uniformly at random, i.e.
w ← w \ {u}.

(f) If v > m+n
m+n+b then perform steps (f.1) and (f.2):

(f.1) generate a point u on S with density β(·)/b;
(f.2) with probability λ(w, u)/β(u), add u to w, i.e. w ← w∪{u}.

(g) Return Y (x).

4.2. The speed of the algorithm. In this section we consider the compu-
tational load of using Algorithm 2. Inspecting Algorithm 2 we notice that
essentially it only involves two computational aspects, one is generating a
point on S with density β(·)/b and the other is evaluating λ(w, u)/β(u).
Typically the complexity of the latter is (much) higher than the former.
This leads us to quantify the computational load of Algorithm 2 in terms
of the number of times λ(w, u)/β(u) is evaluated. Algorithm 2 evaluates
λ(w, u)/β(u) only in step (d.3), which happens M times, and in step (f.2).
Letting N denote the number of times (f.2) is evaluated, the computational
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load is C = M+N . Step (f) corresponds to a birth in the dominating process
Dt. Hence, N corresponds to the number of births in the dominating process
in a time interval of random length T , where T is defined as in Algorithm 1.

Proposition 4. The mean computational load is

(7) E(C) = b
(
1− e−b

)
+ bE(T ),

where

E(T ) =
(
1− e−b

) [(
1− e−b

)
ln(b)−

∫ b

0
ln(s)e−s ds

]
(8)

≤
(
1− e−b

) [(
1− e−b

)
ln(b) + a

]
,(9)

where a = − ∫ 10 ln(s)e−s ds ≈ 0.7966.

Proof. Conditional on T , M and N are independent and Poisson distributed,
with mean b and bT , respectively. Hence, as exp(−b) is the probability that
T = 0, we obtain (7). Furthermore, conditional on M > 0, T has density

g(t) =
∞∑

n=1

bn

n!
e−bne−t

(
1− e−t

)n−1
= be−t exp

(
−be−t

)
, t > 0,

and so

E(T ) =
(
1− e−b

) ∫ ∞

0
tg(t) dt =

(
1− e−b

) ∫ b

0
ln(b/s)e−s ds,

where we have made a change of variable to s = be−t. This reduces to (8),
and (9) is easily obtained.

The integral in (8) can easily be evaluated by numerical integration, and
in most applications, the term exp(−b) appearing in both (7), (8), and (9)
will be effectively zero. It follows that

E(C) ≤ b+ b(ln(b) + a),

where in most applications, ≤ can be replaced by ≈.

5. Model checking.
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5.1. The random superposition procedure. Suppose that a realization x
from a spatial point process X∗ with “true” density f∗ is observed, and we
want to check the goodness of fit for a fitted model with density f , where
both f∗ and f are locally stable. By Theorem 1, the random superposition
procedure X ∪ Y (X) is a realization of Poisson(S, β) if f = f∗. Conversely,
the following theorem establishes that if f and f∗ are not specifying the
same model, then the superposition

D∗ = X∗ ∪ Y (X∗)

is not following Poisson(S, β).

Theorem 2. D∗ follows Poisson(S, β) if and only if f and f∗ agree except
on a ν-nullset.

Proof. We already noticed that the “if”-part holds. The following equation
(10) becomes useful when verifying the “only if”-part. Using (1) it is straight-
forwardly verified that for any non-negative measurable function h(x, y),

∫ ∑

x⊆z

h(x, z \ x) dν(z) = e|S|
∫ ∫

h(x, y) dν(x) dν(y).

This immediately implies that if X1 and X2 are spatial point processes on
S such that X1 has density π1 and X2 conditional on X1 = x has density
π2(·|x), then X1 ∪X2 has density

(10) π(z) = e−|S|∑

x⊆z

π1(x)π2(z \ x|x).

Let
q(z) = e|S|−b

∏

u∈z
β(u)

denote the density of Poisson(S, β). By (a)-(c) in Algorithm 1, Y (x) has a
density g(·|x); specifically

g(y|x) =
∫

q(y ∪ w)h(x, y, w) dν(w),

where

h(x, y, w) = E






∏

u∈y

(
1− λ(XTu , u)

β(u)

)


{∏

u∈w

λ(XTu , u)

β(u)

}
 ,

with the expectation calculated conditional on that X0 = x. In particular,

g(∅|x) ≥ P(Z = ∅) = e−b > 0.
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Moreover, by Theorem 1 and (10), for ν almost all z,

(11) q(z) = e−|S|∑

x⊆z

f(x)g(z \ x|x).

This means that for ν almost all z, f(z) is determined by q and g, since first

(12) f(∅) = e|S|q(∅)/g(∅|∅),

and second by induction f(z) is given in terms of those f(x) with x strictly
contained in z, using that

(13) f(z) = e|S|
(
q(z)−

∑

x⊂z

f(x)g(z \ x|x)
)
/g(∅|z).

Similarly, if D∗ follows Poisson(S, β), then for ν almost all z, we also obtain
(11) but with f replaced by f∗, and hence (12)-(13) but with f replaced by
f∗. Hence the “only if”-part is verified.

Remark 4. In Møller and Schoenberg (2010) model checking is based on
a random thinning method—where it is assumed that λ(x, u) ≥ β(u), a
condition which is rarely satisfied for point process models as discussed in
Møller and Schoenberg (2010)— and where the method of clans of ancestors
(discussed in Remark 2) is playing a key role. This seems a less appeal-
ing procedure than our random superposition procedure, since the latter is
faster, simpler, and general applicable.

5.2. Example: the Strauss process. In this section we consider an example
of how to utilise Theorem 2 for model checking. The basic idea is as follows.
Given data x we generate a realisation y of Y (x) where f has been estimated
in some way based on data. According to Theorem 2 the union x ∪ y is a
realisation of a Poisson process on S with intensity function β if and only
if f and f∗ specify the same model, provided f and f∗ are locally stable.
The model check consists in testing the hypothesis that x ∪ y is in fact a
realisation of a Poisson process on S with intensity function β.

There exist numerous ways of testing if a given point pattern is a realisa-
tion of a Poisson point process. In the sequel we assume that β is constant
and restrict attention to methods based on Besag’s L function which is a
useful transformation of Ripley’s K function (Besag, 1977). Informally, L(r)
is a non-negative functional point process summary which indicates to what
extend a given stationary point process exhibits clustering or repulsion at
inter-point distance r > 0. In the present context the most important prop-
erty of the L function is that for a Poisson process L(r) = r. Further, for
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a point process with L(r) < r, the expected number of points within a
distance r from a ‘typical point’ is lower than what is expected under a
Poisson process, indicating repulsion between the points if r is small. Simi-
larly, L(r) > r implies that more points are expected within distance r from
a typical point when compared to a Poisson process, indication clustering
between the points if r is small. For more details, including extensions to
the case where β is not constant, see Møller and Waagepetersen (2004) and
the references therein.

We let L̂(r) = L̂(r; z) denote an estimate of L based on a point pattern
z obtained by observing a stationary point process within S, see e.g. Møller
and Waagepetersen (2004) and Illian et al. (2008). Usually this estimate
involves first estimating the intensity of the process; below, unless otherwise
stated, we make use of the fact that the intensity is given by β which is
assumed known. If z is a realisation of a Poisson process, we expect that
L̂(r; z) − r ≈ 0 for all r > 0. Accordingly, if L̂(x ∪ y; r) − r deviates too
much from zero we have an indication that the model specified by f is
not (close to) the true model. To get an handle on the ‘too much’ part we
need to take into account the variation in L̂. Let L(r) − r and L(r) − r
denote estimated 2.5% and 97.5% quantiles for L̂(r;W )− r when W follows
Poisson(S, β). These estimates are based on independent simulations from
Poisson(S, β); unless otherwise stated, we use k = 239 such simulations
W (1), . . . ,W (k) so that L(r) is the 5th smallest and L(r) the 5th largest
among L̂(W (1); r), . . . , L̂(W (k); r). We refer to the pair of functions L(r)− r
and L(r)−r as the (pointwise) estimated 95% Poisson envelopes. If L̂(r;x∪
y) − r deviates too much outside these envelopes, we reject the assumed
model. For more details on this (informal) test procedure, see e.g. Illian
et al. (2008).

We illustrate the test procedure in the case of a planar Strauss process,
with density

f(x) ∝ βn(x)γsR(x),

where β > 0, γ ∈ [0, 1], and R > 0 are parameters, and where SR(x) is
the number of point pairs {u, v} ⊆ x (with u 6= v) separated by a distance
less than R (Strauss, 1975; Kelly and Ripley, 1976). The Strauss process is
locally stable, since

λ(x, u) = βγSR(x,u) ≤ β,

where SR(x, u) is the number of points in x within a distance R from u. Thus
β is the intensity of the dominating Poisson process, while γ is an interaction
parameters and R determines the range of interaction in the Strauss process.

The top left panel in Figure 1 shows a realisation x of a Strauss process
on the unit square S = [0, 1]2 with β = 250, γ = 0.1, and R = 0.05. In
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Fig 1. Top left: realisation x of a Strauss process on the unit square and with (β, γ,R) =
(250, 0.1, 0.05). Top right: union of x and a realisation y of the complementary process
Y (x). Bottom left: L(r;x) − r corresponding to top left panel (thin line). Bottom right:
L(r;x∪y)−r corresponding to top right panel (thin line). The thick lines in the two lower
panels are estimated 95% Poisson envelopes.

the following we will refer to this model as the true model. Here n(x) = 87
and x is a perfect simulation obtained by the dominating CFTP algorithm
described in Berthelsen and Møller (2002). The bottom left panel shows a
plot of L̂(r;x)−r compared to estimated 95% Poisson envelopes where L and
L are estimated assuming β = n(x)/|S| (the maximum likelihood estimate
under the stationary Poisson process. As L̂(r;x)− r is well outside the 95%
envelopes, this correctly indicates that x is not a realisation of a Poisson
process. In fact, the dip in L̂(r;x) − r around r = R indicates a repulsive
point process.

As outlined above, our model checking consists in checking if x ∪ y is a
realisation of a Poisson process, where y is a realisation of Y (x). The top
right panel in Figure 1 shows x∪y where y is a realisation of Y (x) under the
true model with x as in the top left panel of Figure 1; here n(x∪y) = 235. The
bottom right panel in Figure 1 shows L̂(r;x∪y)−r together with estimated
95% Poisson envelopes. As L̂(r;x) − r is well within these envelopes we
cannot dismiss that x ∪ y is a realisation of a Poisson process. In turn this
implies, correctly, that we cannot reject that the assumed model is the true
model.
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Fig 2. Left panel shows L̂(r;x∪Y (x))−r for ten independent realisations of Y (x) assuming
the true model. Right panel shows estimated 95% envelopes for L̂(r;x ∪ Y (x)) − r (thin
lines) together with an estimate of E[L̂(r;x∪Y (x))−r] (dotted line). The thick lines in the
two panels are estimated 95% Poisson envelopes for L̂(r;W )− r when W ∼ Poisson(S, β)
(they are identical to those in the right lower panel of Figure 1).

Before we investigate the power of out test procedure, we notice that even
with x fixed there is some variation in L̂(r;x ∪ y) − r due to the variation
in y coming from Y (x). The left panel in Figure 2 shows L̂(r;x ∪ y)− r for
ten realisations of y from Y (x), and estimated 95% Poisson envelopes. The
right panel in Figure 2 shows estimated 95% envelopes for L̂(r;x∪Y (x))−r
together with an estimate of E[L̂(r;x∪Y (x))−r] and 95% Poisson envelopes.
Notice that the the two sets of envelopes are a close match. This is in general
not to be expected even if the estimated model equals the true model since,
for a given x, x ∪ Y (x) is in general not distributed as Poisson(S, β).

To investigate the power of our test procedure we consider two misspec-
ifications of the model. In model A we assume that x is a realisation of a
Strauss process with β = 150, γ = 0.5, and R = 0.05 (i.e. incorrect β and
γ but correct R), and in model B we assume that x is a realisation of a
Strauss process with β = 125, γ = 0.1, and R = 0.025 (i.e. incorrect β
and R but correct γ). Under both the true model and the two misspecified
models the expected number of points in the point processes are roughly the
same (confirmed by simulations).

The results obtained under model A are summarised in Figure 3. Com-
pared to Figure 2 the realisations of L̂(r;x∪Y (x))− r are no longer centred
around zero and the two pairs of envelopes in the right panel do not match.
Since most of the L̂(r;x ∪ Y (x)) − r curves in the left panel of Figure 3
are within the 95% Poisson envelopes and keeping in mind that x ∪ Y (x) is
not distributed as Poison(S, β), Figure 3 is not a strong indication that the
model specified in model A is wrong.

For model B the conclusions based on Figure 4 are much clearer. The
fact that both the estimated mean and estimated 2.5% envelope for L(r;x∪
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Fig 3. As in Figure 2 but assuming β = 150, γ = 0.5, and R = 0.05 when generating
Y (x) and W ∼ Poisson(S, β).
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Fig 4. As in Figure 2 but assuming β = 125, γ = 0.1, and R = 0.025 when generating
Y (x) and W ∼ Poisson(S, β).

Y (x)) − r are well outside the Poisson envelopes for r ≈ 0.05 gives clear
indications of a misspecified model. Further, the distinct V-shaped deviation
from zero in the curves in the left panel of Figure 4 are unlikely under
Poisson.

To further assess the power of our test procedure we consider two test-
statistics for testing the hypothesis that a point pattern z is a realisation of
a Poisson process with intensity β on S. The two test statistics are T1(z) =∫ r̃1
0 (L(r; z)− r)2dr and T2(z) = maxr∈(0,r̃2] d(r; z)−minr∈(0,r̃] d(r; z), where

d(r; z) = (L̂(r; z)− r)/(L(r)−L(r)) and r̃i is a user-specified parameter,i =
1, 2. Note that T1 captures the overall deviation from zero expected if the
model is correct, and T2 should capture large V-shaped deviations as seen in
Figure 4 while taking into account that the variance of L̂(r;W )−r varies with
r, where W ∼ Poisson(S, β). Based on 1000 realisation from Poisson(S, β)
we obtain for each test statistic Ti an estimate T̂i,c of the critical value at
the 5% significance level. For each of the misspecified models A and B we
have generated 1000 independent realisations x(1), . . . , x(1000) of X, and for
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each of realisation x(j) we have generated a realisation y(j) from Y (x(j)).
For each test statistic Ti, the estimated power is given by the fraction of the
1000 realisations where the value of Ti(x

(j) ∪ y(j)) is larger than T̂i,c.
For both models A and B and for both T1 and T2 we have used r̃1 =

r̃2 = 0.15. For model A the estimated power is very low: 3.7% and 7.9%,
respectively, for T1 and T2. This is in agreement with the conclusion above
based on a visual inspection of Figure 3. For model B the estimated power
is 11.4% and 47.7%, respectively, for the two test statistics. Here T2 has a
reasonable level of power, which is in accordance with the conclusion based
on a visual inspection of Figure 4. We expect that it is in general difficult to
find a good test statistic which captures the type of deviations in Figure 4
which we noticed above.

Remark 5. One inherent limitation of our proposed testing procedure stems
from the fact that we compare x ∪ y to a homogeneous Poisson process
with intensity β, where b = β|S| can be far from the maximum likelihood
estimate n(x) under this Poisson process. Consider the case where b ≫
n(x), which is the case for point processes with strong interaction and dense
packing, e.g. a Strauss process with γ ≈ 0 and R > 0 combined with a
high value of β. Assuming b ≫ n(x) implies that E[n(Y (x))] ≈ b ≫ n(x),
i.e. in the union x ∪ y we expect the points of the complimentary point
process to vastly outnumber the data points—essentially the data “drowns”
in the complementary point process. Consequently the distribution of Y (x)
is very similar to Poisson(S, β) no matter what the true model is. Hence,
the probability of rejecting a wrong model effectively equals the significance
level.

Remark 6. A by-product of Algorithm 2 is that when generating i.i.d. real-
isations of Y (x), we obtain i.i.d. realisations of XT conditional on X0 = x.
If the model is correct any summary of x is expected not to be extreme
compared to the same summary for realisations of XT . A simple summary
would be the number of points.

Remark 7. The conventional way to use the L function for model checking
is to compare L̂(r;x)− r to estimated 95% envelopes for L̂(r;X)− r when
X is distributed according to the assumed model. Obtaining the envelopes
typically involves either generating i.i.d. realisations of X or subsampling
from a long Markov chain converging towards the assumed model. In gen-
eral both methods are computationally more expensive than generating both
Y (x) and Poisson(S, β) used in our test. Hence, our approach has a compu-
tational advantage compared to the more conventional approach for model
checking.
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Appendix A. For n = 0, 1, . . ., define Ωn = {x ⊂ S : n(x) = n},
recalling that n(x) is the cardinality of x. So for any event Fn ⊆ Ωn, if
n ≥ 1,

(14) ν(Fn) =
e−|S|

n!

∫

S
· · ·
∫

S
1[{x1, . . . , xn} ∈ Fn] dx1 · · · dxn

where 1[·] is the indicator function. Moreover, ν(F0) = 1[∅ ∈ F0] if F0 ⊆ Ω0,
i.e. when either F0 is empty or it is the set consisting of the empty point
configuration ∅.
Proof of Proposition 1. By assumption X is absolutely continuous with re-
spect to ν, so it suffices to verify that for any point configuration x ∈ Ωm,
event Fn ⊆ Ωn, and non-negative integers m and n, P(Y ∈ Fn|X = x) = 0
if ν(Fn) = 0. This follows immediately from (14) and Theorem 1.

Proof of Proposition 2. For any events Fm ⊆ Ωm and Fn ⊆ Ωn, with m,n =
0, 1, . . ., the total rate of moving away from any state in Fm×Fn is b+m+n;
the mean of the total rate of moving into Fm×Fn by a birth in theXt process
is

G1(Fm × Fn)

=

∫

S
· · ·
∫

S

m∑

i=1

1[{x1, . . . , xm} ∈ Fm, {y1, . . . , yn} ∈ Fn]

λ({x1, . . . , xi−1, xi+1, . . . , xm}, xi)π({x1, . . . , xi−1, xi+1, . . . , xm}, {y1, . . . , yn})
e−2|S|

m!n!
dx1 · · · dxm dy1 · · · dyn

(setting G1(Fm × Fn) = 0 if m = 0); the mean of the total rate of moving
into Fm × Fn by a birth in the Yt process is

G2(Fm × Fn)

=

∫

S
· · ·
∫

S

n∑

i=1

1[{x1, . . . , xm} ∈ Fm, {y1, . . . , yn} ∈ Fn]

[β(yi)− λ({x1, . . . , xm}, xi)]

π({x1, . . . , xm}, {y1, . . . , yi−1, yi+1, . . . , yn})
e−2|S|

m!n!
dx1 · · · dxm dy1 · · · dyn
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(setting G2(Fm × Fn) = 0 if n = 0); the mean of the total rate of moving
into Fm × Fn by a death in the Xt process is

G3(Fm × Fn)

=

∫

S
· · ·
∫

S

m+1∑

i=1

1[{x1, . . . , xi−1, xi+1, . . . , xm+1} ∈ Fm, {y1, . . . , yn} ∈ Fn]

π({x1, . . . , xm+1}, {y1, . . . , yn})
e−2|S|

(m+ 1)!n!
dx1 · · · dxm+1 dy1 · · · dyn;

and the mean of the total rate of moving into Fm ×Fn by a death in the Yt
process is

G4(Fm × Fn)

=

∫

S
· · ·
∫

S

n+1∑

i=1

1[{x1, · · · , xm} ∈ Fm, {y1, . . . , yi−1, yi+1, . . . , yn+1} ∈ Fn]

π({x1, . . . , xm}, {y1, . . . , yn+1})
e−2|S|

m!(n+ 1)!
dx1 · · · dxm dy1 · · · dyn+1.

Consequently, by Proposition 8.1 in Preston (1977), the equilibrium distri-
bution Π is the unique distribution satisfying

(b+m+n)Π(Fm×Fn) = G1(Fm×Fn)+G2(Fm×Fn)+G3(Fm×Fn)+G4(Fm×Fn)

for all events Fm ⊆ Ωm and Fn ⊆ Ωn, with m,n = 0, 1, . . .. This is seen to
be equivalent to the statement in Proposition 2, since

Π(Fm × Fn) =

∫

S
· · ·
∫

S
1[{x1, . . . , xm} ∈ Fm, {y1, . . . , yn} ∈ Fn]

π({x1, . . . , xm}, {y1, . . . , yn})
e−2|S|

m!n!
dx1 · · · dxm dy1 · · · dyn.

Proof of Proposition 3. The “if”-part is easily verified, since then

f(x) = exp

(
−
∫

S
λ(u) du

) ∏

u∈x
λ(u)

is the density of X, and

g(y) = exp

(
b−

∫

S
λ(u) du

)∏

u∈y
(β(u)− λ(u))

is the density of Y . So suppose that (5) holds. The first equation in (5)
implies that f(x)λ(x, u) = f(x ∪ {u}), which is clearly satisfied and just
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means that X has density f . Thus g(y|x) = π(x, y)/f(x) is the conditional
density of Y given X = x (when f(x) > 0), and the first equation in (5)
gives that

g(y|x) = g(y|x ∪ {u}) whenever f(x ∪ {u}) > 0,

meaning that X and Y are independent and g(y|x) = g(y) does not depend
on x. The second equation in (5) is then equivalent to

g(y)(β(u)− λ(x, u)) = g(y ∪ {u}),

so λ(x, u) = λ(u) does not depend on x. Consequently, by induction,

f(x) ∝
∏

u∈x
λ(u), g(y) ∝

∏

u∈y
(β(u)− λ(u)),

whereby also the “only-if”-part is verified.

Example 1. Consider the very simple case with λ(∅, u) = β > 0 and λ(x, u) =
0 whenever n(x) > 0, that is,

f(∅) = e|S|/(1+b), f({u}) = βe|S|/(1+b), f(x) = 0 whenever n(x) > 1,

meaning that n(X) ≤ 1 and with probability b/(1 + b), n(X) = 1, in which
case X consists of a uniformly distributed point in S. Note that b = β|S|,
and by Algorithm 1 and Theorem 1, conditional on X = x, the points in
Y (x) are independent and uniformly distributed in S. Thus conditional on
(n(X), n(Y )) = (m,n), the m + n points in X and Y are independent and
uniformly distributed in S. So the joint distribution of X and Y is effectively
given by the distribution of (n(X), n(Y )). Defining

πm,n = P(n(X) = m,n(Y ) = n), m, n ∈ {0, 1, . . .},

we have for any (x, y) with (n(x), n(y)) = (m,n),

πm,n =
|S|m+ne−2|S|

m!n!
π(x, y)

and πm,n = 0 if m ≥ 2. Hence (4) is seen to be equivalent to

π0,0 = e−b, π1,n =
bn+1

(n+ 1)!
e−b−π0,n+1, (b+n)π0,n = π1,n+(n+1)π0,n+1,

where the two first equations follow from the fact that n(X)+n(Y ) is Poisson
distributed with parameter b, and the last equation follows since (4) gives

(b+ n)
0!n!

|S|ne2|S|π0,n = 0 + 0 + |S| 1!n!

|S|n+1e2|S|
π1,n + |S| 0!(n+ 1)!

|S|n+1e2|S|
π0,n+1.
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Consequently, the πm,n are determined by π0,1, since π1,n is determined by
π0,n+1 for n = 0, 1, . . ., and π0,n+1 is determined by π0,1 for n = 1, 2, . . .,
since

(15) π0,n+1 =
1

n

[
(b+ n)π0,n −

bn+1

(n+ 1)!
e−b

]
, n = 1, 2, . . . .

Using induction, it follows easily from (15) that
(16)

π0,n+1 =

[
n∏

i=1

b+ i

i

]
π0,1 − e−b

n+1∑

i=2

b

i(i− 1)

i−1∏

j=1

b

b+ j


 , n = 1, 2, . . . .

which can be rewritten as

(17)

π0,n+1 =
Γ(b+ n+ 1)

Γ(n+ 1)Γ(b+ 1)

[
π0,1−b−b

(
Γ(b+ 1, b)− Γ(b+ n+ 1, b)Γ(b+ 1)

Γ(b+ n+ 1)

)

− e−bb

(
1− bnΓ(b+ 1)

(n+ 1)Γ(b+ n+ 1)

)]
, n = 1, 2, . . . ,

where Γ(a, x) =
∫∞
x ta−1e−t dt is the incomplete gamma function which has

the property that Γ(a, x) = (a− 1)Γ(a− 1, x) + xa−1e−x.
As n→∞ we have that π0,n+1 → 0. Since

∏n
i=1(b+ i)/i→∞ as n→∞

equation (16) implies that

π0,1 = e−b
∞∑

i=2

bi

i(i− 1)

Γ(b+ 1)

Γ(b+ i)
.

Using similar argument but taking (17) as the starting point we obtain

π0,1 = b−b(Γ(b+ 1, b)− Γ(b+ 1)) + e−bb.

Inserting this in equation (17) and noting that P(n(Y ) = n) = π0,n+π1,n =

π0,n + bn+1

(n+1)!e
−b − π0,n+1 we find that the marginal distribution of n(Y ) is

given by

P(n(Y ) = n) =
b1−b (Γ(b+ n)− Γ(b+ n, b))

Γ(n+ 1)
, n = 1, 2, . . . .

Example 2. The case above extends to when λ(x, u) = µn(x) depends only
on the number of points in x, where for n = 0, 1, . . ., 0 ≤ µn ≤ β and if
µn = 0 then µn+1 = 0. Again, conditional on (n(X), n(Y )) = (m,n), the
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m + n points in X and Y are independent and uniformly distributed in S,
and solving (4) becomes equivalent to solve

(b+m+n)πm,n = λm−1πm−1,n+(b−λm)πm,n−1+(m+1)πm+1,n+(n+1)πm,n+1

for m,n = 1, 2, . . ., where λm = |S|µm, π−1,n = 0, and πm,−1 = 0. It
follows by induction that the π0,n, n = 0, 1, . . ., determine all the πm,n,
m,n = 1, 2, . . .. We know that π0,0 = e−b but in general, for n ≥ 1, we do
not have a simple recursion for the π0,n; this is in contrast to (15). So finding
an expression for the π0,n seems now to be a much harder problem.

In conclusion, apart from the rather trivial case where X and Y are in-
dependent Poisson processes (see Proposition 3), the joint distribution of
X and Y seem to be complicated. Furthermore, apart from simple cases
(such as Example 1) the marginal distribution of Y seem also to be very
complicated.
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