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Abstract
In the present paper, we propose a Palm likelihood approach as a general

estimating principle for stationary point processes in Rd for which the density
of the second-order factorial moment measure is available in closed form. Ex-
amples of such point processes include the Neyman-Scott processes and the log
Gaussian Cox processes. The computations involved in determining the Palm
likelihood estimator are simple. Conditions are provided under which the Palm
likelihood estimator is consistent and asymptotically normally distributed.
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1 Introduction
Estimation of parametric models for spatial point processes has been a very active
research area in the last few years. Motivated by the need of analyzing always larger
and more complicated data sets in reasonably short time, several simulation-free
estimation methods based on composite likelihood and/or estimating equations have
been developed as alternatives to the computationally more demanding likelihood
and Bayesian methods, see [20] for a recent overview.

In the present paper we will focus on point process models for which the densities
of the first and second order moment measures (and/or quantities derived from them
– like the pair-correlation function g or the K-function) are available in closed form.
In particular, we will consider stationary cluster processes, Cox processes and related
models.

One of the estimation methods that was first suggested for such processes is the
minimum contrast method based either on the K-function or the g-function, see [6],
[18], [19] and references therein. In addition to stationarity, this method requires
that the point process X is isotropic. A parameter θ is estimated by minimizing the
discrepancy measure

∫ R

0

[K̂c(u)−Kc(u; θ)]2du or
∫ R

0

[ĝc(u)− gc(u; θ)]2du
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between the estimate K̂ or ĝ and its theoretical value K(·; θ) or g(·; θ), respectively.
The user specified constants c and R are used to control the sampling fluctuations
in the estimates of K and g. These constants are usually chosen in some adhoc
manner. Asymptotic properties of these estimates have been derived in [9] and [14].

In [1], [8] and [20], different variants of a composite likelihood approach have
been suggested. They are all based on adding together individual log-likelihoods
for single points or pairs of points of the point process to form a composite log-
likelihood ([17]). In [1], the focus is on Gibbs point processes with exponential family
likelihoods. The Papangelou conditional intensity is here used in combination with
a Poisson likelihood. In [8], the density λ(2) of the second-order factorial moment
measure of the point process X observed on a window W are used to form partial
likelihood functions for pairs of points

λ(2)(x, y; θ)∫∫
W×W λ(2)(u, v; θ)dudv

, (1.1)

yielding the following (log-)composite likelihood

logCL(θ) =
∑

x 6=y∈X∩W
|x−y|<R

log
λ(2)(x, y; θ)∫∫

W×W I(|u− v| < R)λ(2)(u, v; θ)dudv
.

Here only pairs of points with distance at most R are considered and R is again a
tuning constant. The estimate of θ is obtained as the maximizer of logCL(θ). Note
that since all the partial likelihoods (1.1) are normalized, CL(θ) does not depend
on the intensity λ of the point process X. Thus the method effectively enables to
estimate the part of the vector parameter θ which parametrizes the pair-correlation
function g(x, y) = λ(2)(x,y)

λ2
. Asymptotic properties of the CL-estimator have been

studied in [8]. Yet, another type of composite likelihood was introduced in [20, (48)].
Very recently, an estimating procedure based on maximization of the so-called

Palm likelihood has been introduced in [26] for stationary cluster processes, including
Neyman-Scott processes and related models. Again the process of the differences
between pairs of points of X observed in a window W is considered. In contrast
to the procedure in [8] which is directly based on a normalized version of λ(2) and
does not involve any point process theory, an analysis of the “difference process” is
performed in [26] where it is shown that the difference process is inhomogeneous
with intensity determined by the density λ0 of the second-order reduced factorial
moment measure of the process X. For further details, see Section 3 below. Since λ0

is equal to the intensity function of the Palm distribution of the original process X,
λ0 was called the Palm intensity in the paper [26]. By approximating the process
of differences by a nonstationary Poisson process with intensity proportional to λ0,
the authors arrive at the so-called Palm (log-)likelihood function defined by

logLP (θ) =
∑

x 6=y∈X∩W
|x−y|<R

log (|X ∩W |λ0(x− y; θ))

− |X ∩W |
∫

Rd

I(|u| < R)λ0(u; θ)du. (1.2)
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Here, |X ∩W | is the number of points in X ∩W and R is again a tuning constant.
The estimate of θ is obtained as the maximizer of logLP (θ).

In the original paper [26], it was assumed that the point process X is an isotropic
point process in R2. The defining formula (1.2) of the Palm likelihood can, however,
be applied to any simple stationary point process inRd with a Palm intensity λ0(·; θ)
in closed form. Note also that the Palm likelihood estimation method belongs to
the second order moment estimation methods, since

λ(2)(x, y) = λλ0(y − x), x, y ∈ Rd.

The Palm likelihood estimation method is closely related to the composite likelihood
method suggested in [20]. In fact, if we in [20, (48)] replace λ by |X ∩W |/|W | we
arrive at the estimating equation resulting from (1.2). When we compare the Palm
likelihood method to the composite likelihood method in [8] we see that the Palm
likelihood method is expected to be numerically simpler because of the simpler form
of the normalization term – see Section 6 for an example.

Concerning the asymptotic properties it was argued in [26] that, for the consid-
ered cluster point processes, the process of differences

{x− y : x 6= y ∈ X ∩W}

is well approximated by a nonstationary Poisson point process with intensity
|X ∩W |λ0 because the process of differences can be regarded as a superposition
of |X ∩W | (almost independent) realizations of a point process with the distribu-
tion equal to the Palm distribution of the original process X – that means with
the intensity λ0. By a superposition theorem for |X ∩ W | → ∞ a convergence
of the suitably normalized difference process to a Poisson process can be obtained
(see [21] for the argument) which would imply the consistency of the obtained Palm
likelihood estimates. A formal proof of consistency was, however, not provided.

The present paper fills this gap. We provide a proof of consistency and asymp-
totic normality of the maximum Palm likelihood estimator. Consistency is proved
under the assumption of ergodicity of the point process X. The proof of asymp-
totic normality is provided under the additional assumptions that the process X is
strongly mixing and the strong mixing coefficient decays sufficiently fast. Moreover
for cluster processes we derive some simple methods of checking sufficient conditions
for the desired fast decay of the strong mixing coefficients.

The paper is organized as follows. We give the necessary notation and back-
ground information in Section 2 and introduce the Palm likelihood estimation pro-
cedure in detail in Section 3. In Sections 4 and 5, the main results of the paper
are presented - the consistency and the asymptotic normality of the Palm likelihood
estimator. The obtained results are further exemplified in Section 6 and discussed
in Section 7. Proofs are deferred to an appendix.

2 Background
Let X denote a simple strictly stationary point process on Rd. In the sequel, Bd is
the Borel σ-algebra on Rd, |A| is the volume of the set A ∈ Bd, ∂A its boundary
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and |∂A| the (d− 1)-dimensional surface measure of ∂A, when it exists. The origin
in Rd will be denoted by o, B(x,R) is the ball centered at x ∈ Rd with radius
R > 0 and ⊕, 	 will denote Minkowski addition and substraction, respectively,
with the convention that A⊕R = A⊕B(o,R) and A	R = A	B(o,R) for R > 0.
The Euclidean norm of the vector x is denoted by |x|, for matrices we use also the
Euclidean norm |M | = (trace (MTM))

1
2 and I is the indicator function.

The k-th order factorial moment measure α(k) of the point process X is defined
by the following equation

∫

(Rd)k
f(u1, . . . , uk) α

(k)(d(u1, . . . , uk)) = E

( 6=∑

u1,...,uk∈X
f(u1, . . . , uk)

)
(2.1)

for any non–negative, Borel measurable function f on (Rd)k , where the sum
6=∑

runs
over k–tuples of distinct points of X. The kth-order factorial cumulant measure γ(k)

of X is a locally finite signed measure on [(Rd)k,Bdk] which is formally connected
with the measures α(1), . . . , α(k) by

γ(k)(×ki=1Ai) =
k∑

j=1

(−1)j−1(j − 1)!
∑

K1∪···∪Kj={1,...,k}

j∏

i=1

α(#Ki)
(×
ki∈Ki

Aki

)

for bounded A1, . . . , Ak ∈ Bd , where the inner sum is taken over all partitions of the
set {1, . . . , k} in disjoint non–empty subsets K1, . . . , Kj . In particular, α(1)(A) =
γ(1)(A) = λ |A| = E|X ∩ A| for A ∈ Bd where λ is called the intensity of X.
For k ≥ 2, we will assume in the sequel that the factorial moment measures have
densities with respect to the Lebesgue measure on Rdk which are denoted by λ(k)

and called the k-th order product densities of X (or sometimes k-th order intensity
functions of X).

Since, for any k ≥ 2 , α(k) is invariant under diagonal shifts there exists a cor-
responding reduced kth-order factorial moment measure α(k)

red on [(Rd)k−1,Bd(k−1)]
which is uniquely determined by the disintegration formula

∫

(Rd)k
f(u1, . . . , uk)α

(k)(d(u1, . . . , uk)) (2.2)

= λ

∫

Rd

∫

(Rd)k−1

f(u1, u2 + u1, . . . , uk + u1)α
(k)
red(d(u2, . . . , uk)) du1,

where f is as in (2.1). Similarly we may define the reduced kth-order factorial
cumulant measure γ(k)

red which turns out to be a signed measure on [(Rd)k−1,Bd(k−1)].
For k = 2, the disintegration (2.2) implies that

λ(2)(x, y) = λλ0(y − x), x, y ∈ Rd, (2.3)

where the function λ0 is the density of α(2)
red. The function λ0 is also called the

conditional intensity or Palm intensity in the literature since λ0 is in fact the intensity
function of the Palm distribution P0 of the original point process X. For a detailed
introduction to these notions and their properties, we refer the reader to [4].
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Two popular point process characteristics can be defined from λ0, viz. the pair
correlation function

g(x, y) = g(y − x) = λ0(y − x)/λ, x, y ∈ Rd, (2.4)

and the K-function defined by

λK(R) =

∫

B(o,R)

λ0(u)du = E [|X ∩B(o,R)\{o}| |X ∩ {o} 6= ∅ ]. (2.5)

Note that λK(R) can be interpreted as the mean number of further points from X
in B(x,R) centered at a typical point x of the point process X.

The Neyman-Scott process considered in [26] can be constructed as follows. Let
C be a stationary Poisson point process of intensity µ. This process is called the
mother process. Each mother point c ∈ C produces a random numberM of daughter
points with mean ν. The daughters around c are i.i.d. with density k(c, ·) = h(·−c).
The set of daughters associated with the mother c is denoted Xc. The Neyman-Scott
process is then the union of the daughter clusters X = ∪c∈CXc. The intensity of X
is µν. The Palm intensity of the Neyman-Scott process becomes

λ0(z) = µν + ν

∫

Rd

h(u)h(z + u)du, z ∈ Rd. (2.6)

If h is a Gaussian density, then (2.6) is in closed form. Other examples are given
in [26].

Another class of point processes for which the Palm intensity can be obtained in
closed form is the log Gaussian Cox processes ([18]). Here,

λ0(z) = exp(m+ c(0)/2 + c(z)), z ∈ Rd,

where m and c are the mean and covariance function of the underlying stationary
Gaussian random field, respectively.

3 Palm likelihood for stationary point processes
Let us assume that the parameter of interest of our point process model is the
(vector) parameter θ and that the Palm intensity λ0(·; θ) is parametrized by θ. In
the following, we will suppress θ in the notation if the dependence on θ is not
important in the respective context.

In this section, we will review the Palm likelihood method that was introduced
in [26] for stationary isotropic Neyman-Scott processes and related models. In [26],
the Palm log-likelihood function was defined by

logLP (θ) =
∑

x 6=y∈X∩W
|x−y|<R

log (|X ∩W |λ0(x− y; θ))

− |X ∩W |
∫

Rd

I(|u| < R)λ0(u; θ)du, (3.1)
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where R is a chosen positive constant. The maximum Palm likelihood (MPL) esti-
mator is obtained by maximizing LP (θ). In the remaining part of the paper, we will
consider the equivalent version of LP (θ)

logLP (θ) =
∑

x 6=y∈X∩W
|x−y|<R

log λ0(x− y; θ)

− |X ∩W |
∫

Rd

I(|u| < R)λ0(u; θ)du. (3.2)

Under the assumption that LP (θ) is differentiable with respect to θ, the MPL-
estimate is the solution to the following estimation equation

d logLP (θ)

dθ
= 0. (3.3)

The idea behind this estimation procedure is to use, instead of the original pro-
cess X observed in the window W , the process of differences Y = {x− y : x 6= y ∈
X ∩ W} and note that the data used in the Palm likelihood are really only the
difference process Y and the number of observed points |X ∩W |. If we for any fixed
x ∈ X let

Yx = {y − x : x 6= y ∈ X}, (3.4)

then the Palm log-likelihood in (3.2) is a sum (over x ∈ X ∩ W ) of Poisson log-
likelihoods for the processes Yx ∩B(o,R), all assumed to have intensity function λ0.
Using the Poisson log-likelihoods implies that the higher order interactions of the
processes of differences are ignored. Furthermore, since the Poisson log-likelihoods
are summed, the dependence among Yx, x ∈ X ∩W , are ignored by treating them
as independent replications.

An alternative way of arriving at the Palm log-likelihood (3.1) goes as follows.
Let

Y (R) = {y − x : x 6= y ∈ X ∩W, |y − x| < R}.
Evidently, Y (R) is a point process contained in B(o,R). The intensity function of
this point process can be derived as follows. Let A be a Borel subset of B(o,R).
Then,

E(|Y (R) ∩ A|) =

∫

W

∫

W

I(y − x ∈ A)λλ0(y − x)dxdy =

∫

A

γW (u)λλ0(u)du,

where γW (u) = |W ∩ (W + u)| is the set covariance of the window W , see [25] for
further details. The point process Y (R) has thus an intensity function concentrated
on B(o,R) of the form

λR(u) = γW (u)λλ0(u), u ∈ B(o,R).

The Palm log-likelihood (3.1) can now be obtained by treating Y (R) as an inhomo-
geneous Poisson process, replacing the intensity λ of the original point process X by
the observed intensity |X∩W |/|W | and approximating γW (u), u ∈ B(o,R), by |W |.
This is a reasonable approximation for R substantially smaller than the size of the
observation window W .
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We can define a modified version of the Palm likelihood in which we consider
only those points x ∈ X for which B(x,R) ⊆ W , thus employing the inner region
edge correction

logLPU(θ) =
∑

x∈X∩(W	R)
x 6=y∈X

(y−x)∈B(o,R)

log λ0(y − x; θ)− |X ∩ (W 	R)|
∫

B(o,R)

λ0(u; θ)du. (3.5)

Then the estimating (vector) equation d logLPU
dθ

= 0 is an unbiased estimating equa-
tion since

Eθ0

(
d logLPU(θ)

dθ

∣∣∣∣
θ=θ0

)
= 0, (3.6)

where Eθ0 denotes the mean value with respect to the distribution with the correct
parameter value θ0. Since the difference between (3.2) and (3.5) is only in the
employed edge correction (inner region or none edge correction) – i.e. only in the way
the points x ∈ W\(W	R) are handled, for windowsW big enough with respect to R
the difference in the two estimates will be negligible. Under the assumptions on the
sequences of observation windows introduced in Section 4 the correctly normalized
estimating equation 1

|W |
d logLP (θ)

dθ
= 0 will be an asymptotically unbiased estimating

equation.
We would like to end this paragraph by stressing that the assumption of isotropy,

adopted in the original paper [26] for computational reasons, is not necessary for the
formulation or validity of the MPL estimation method. Furthermore, the method is
not restricted to Neyman-Scott processes and the other cluster processes discussed
in [26]. The method can be used for estimation in any parametric model with a closed
form of the Palm intensity λ0(·; θ). One very important class of such processes not
considered in [26] is the log Gaussian Cox processes (see [18]).

4 Consistency of MPLE
We will assume in the sequel that the point process model is parametrized by θ ∈ Θ,
where Θ ⊂ Rq is compact. The true vector parameter θ0 is assumed to be an interior
point of Θ.

The asymptotics will be studied under an increasing domain setting assuming
that we have a convex averaging sequence of windows {Wn}n∈N – i.e. that all the
windows Wn are bounded convex sets, Wn ⊆ Wn+1 for all n and the inradii

ρ(Wn) = sup{ρ : Wn contains a ball of radius ρ} (4.1)

converge to ∞ as n → ∞, see [4, Chapter 10] for further details. We will assume
that |Wn| = O(ρ(Wn)d). This implies for the convex sets {Wn} that |∂Wn| =
O(ρ(Wn)d−1) since according to [28] we have

|∂W |
|W | ≤

d

ρ(W )
,

if W ⊂ Rd is a convex set.
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We will start by showing the consistency of the unbiased version of the log Palm
likelihood LPU . Let us write here in detail the score function U(θ) = 1

|W	R|
d logLPU (θ)

dθ

of the Palm likelihood

U(θ) =
1

|W 	R|
∑

x∈X∩(W	R)
x 6=y∈X

(y−x)∈B(o,R)

dλ0(y − x; θ)

dθ

1

λ0(y − x; θ)

− |X ∩ (W 	R)|
|W 	R|

∫

B(o,R)

dλ0(u; θ)

dθ
du. (4.2)

(The score function computed from observations in the window Wn will be denoted
by Un(θ).) We can compute the mean value for the stationary point process X

Eθ0

( ∑

x∈X∩(W	R)
x 6=y∈X

(y−x)∈B(o,R)

dλ0(y − x; θ)

dθ

1

λ0(y − x; θ)

)

=

∫

W	R
λ

∫

B(o,R)

dλ0(u; θ)

dθ

1

λ0(u; θ)
λ0(u; θ0)dudx, (4.3)

where Eθ0 denotes the mean value with respect to the distribution of the point
process with θ = θ0. We see that Eθ0U(θ0) = 0 for the true parameter value θ0.
Thus, the estimating equation Un(θ) = 0 is indeed unbiased. The Palm likelihood
estimate obtained from this equation will be denoted by θ̂n.

In the theorem below, the result on consistency of θ̂n is formulated. The proof
of the theorem may be found in the appendix.

Theorem 4.1. Let X be a stationary ergodic point process observed in a convex av-
eraging sequence {Wn}n∈N of windows for which |Wn| = O(ρ(Wn)d) holds. Assume
that |Eθ0Un(θ)| = 0 only when θ = θ0 and that dλ0(u;θ)

dθ
1

λ0(u;θ)
and

d(
∫
B(o,R) λ0(u;θ)du)

dθ
are

bounded and continuous (with respect to u and θ, and θ respectively). Then θ̂n is a
strongly consistent estimate of θ0, i.e. θ̂n → θ0 Pθ0-a.s.

Let us now discuss the original Palm log-likelihood (3.2) without any included
edge correction. The associated score function Ũ(θ) = 1

|W |
d logLP (θ)

dθ
takes the form

Ũ(θ) =
1

|W |
∑

x 6=y∈X∩W
|x−y|<R

dλ0(y − x; θ)

dθ

1

λ0(y − x; θ)
− |X ∩W ||W |

∫

B(o,R)

dλ0(u; θ)

dθ
du.

(4.4)

Let θ̃n denote the estimate obtained from the estimating equation Ũn(θ) = 0.
For θ = θ0 we have

Eθ0
1

|W |
( ∑

x 6=y∈X∩W
|x−y|<R

dλ0(y − x; θ)

dθ

1

λ0(y − x; θ)

)
= λ

∫

B(o,R)

γW (u)

|W |
dλ0(u; θ)

dθ

∣∣∣∣
θ=θ0

du.

(4.5)
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As a consequence we do not have Eθ0Ũn(θ0) = 0. Nevertheless since

sup
z∈B(o,R)

∣∣∣∣
γWn(z)

|Wn|
− 1

∣∣∣∣ ≤
R|∂Wn|
|Wn|

≤ dR

ρ(Wn)
, (4.6)

γWn (u)

|Wn| converges uniformly to 1 on the compact setB(o,R) and thereforeEθ0Ũn(θ0)→
Eθ0Un(θ0) = 0 as n→∞. Therefore the proof of the consistency of θ̃n is analogous
to that of θ̂n.

Theorem 4.2. Under the same assumptions as in Theorem 4.1, θ̃n is a strongly
consistent estimate of θ0.

The proof of Theorem 4.2 may be found in the appendix.

5 Asymptotic normality of MPLE
We will now show the asymptotic normality of the MPLE under the assumption
that the point process X is strongly mixing. Recall that for two σ-algebras F1, F2

defined on the same probability space the strong mixing coefficient is defined by

α(F1,F2) = sup{|P (A1 ∩ A2)− P (A1)P (A2)| : A1 ∈ F1, A2 ∈ F2}. (5.1)

For a stationary point process X the strong mixing coefficient α(p; k) quantifies the
dependence between the behaviour of the point process on sets of volume at most
p separated by a distance larger than or equal to k. Thus for a point process we
define

α(p; k) = sup{α(FX(A),FX(B)) : d(A,B) ≥ k, |A| ≤ p, |B| ≤ p}, p > 0

= sup{α(FX(A),FX(B)) : d(A,B) ≥ k, |A| = |B| = 0}, p = 0,
(5.2)

where FX(A) denotes the σ-algebra generated by X ∩A and the supremum is taken
over all measurable subsets A, B in Bd.

We will assume that

sup
p≥0

α(p; k)

max(p, 1)
= O(k−ε) for some ε > d. (5.3)

The condition (5.3) is satisfied e.g. by the log Gaussian Cox processes ([18]) if the
correlation function of the underlying Gaussian field decays at a polynomial rate
faster then d + ε and has a spectral density which is bounded below. This follows
from [7, Corollary 2]. One concrete example of such correlation functions often used
in practice is the class of Matérn correlation functions (including also the exponential
correlation function), see e.g. [24, Section 2.7].

Concerning the Neyman-Scott processes, (5.3) is obviously satisfied for Neyman-
Scott processes with a kernel density k(c, ·) with bounded support (e.g. the Matérn
cluster process). In the following lemma we show that (5.3) is also satisfied if the
density has polynomially decaying tails of order d+ ε.
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Lemma 5.1. Let X be a Neyman-Scott process with mother intensity µ and mean
number ν of daughter points in a cluster. Let the daughter points around a mother
point in c be distributed according to the kernel density k(c, ·). If there exists a
function h such that k(c, x) = h(x − c) and h(v) = O(|v|−ε−d) as |v| → ∞, then
α(p;k)

max(p,1)
≤ O(k−ε).

The proof of the lemma can be found in the appendix.

Remark. In the literature on point processes, see e.g. [8], [12], [22], an alternative
weaker version of the strong mixing coefficient is sometimes used

α(p; k) = sup{α(FX(A),FX(B)) : A = B + x, d(A,B) ≥ k, |A| = |B| ≤ p},

p > 0, where the supremum is taken over all compact, convex sets A and all x ∈ Rd.
This version of the strong mixing coefficient has been inspired by the strong mixing
coefficient used in the classical paper by Rosenblat ([23]) from 1956. In the proof of
the asymptotic normality below, we follow the methods of [8] (described in detail in
[10]), based on the blocking technique presented in Ibragimov and Linnik [15]. In
our proof, we need to use the mixing coefficient for two sets A,B where A is a union
of disjoint cubes (see the proof in the appendix) and as such definitely not convex.
Furthermore it is not possible to find an x such that B ⊆ A + x and the distance
between the sets A and A+x is larger than the desired value. Thus the more general
version (5.2) of the strong mixing coefficient must be used. This problem was not
fully acknowledged in the papers [8] and [10].

The Neyman-Scott processes and log Gaussian Cox processes with suitably mix-
ing driving field obey (5.3) for either definition of the mixing coefficient α(p; k).
Thus, from a practical point of view, the definition (5.2) is not restrictive.

For the asymptotic normality of the MPL estimate we will further assume a mild
moment condition on Un(θ0):

sup
n∈N

Eθ0(|
√
|Wn 	R||Un(θ0)|q) < Cq <∞ for some q > 2. (5.4)

This condition is slightly stronger than the existence of the standardized asymptotic
variances of Un(θ), see also [8, p. 1505]. It is satisfied for example for the processes
which have the first six reduced cumulant moment measures of finite total variation
provided dλ0(x;θ)

dθ
1

λ0(x;θ)
is bounded for x ∈ B(o,R) and θ ∈ Θ. In particular, the

class of Brillinger-mixing processes (i.e. processes for which the reduced cumulant
moment measures of all orders have finite total variation) obviously fulfill this condi-
tion. The Brillinger-mixing processes include among others Neyman-Scott processes
for which the distribution of the size (i.e. number of points) of the cluster has finite
moments of all orders. For further examples and discussions of Brillinger-mixing,
see [13].

Below, we present the theorem concerning asymptotic normality of the Palm
likelihood estimator. The proof of the theorem can be found in the appendix.
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Theorem 5.2. Assume that the conditions of Theorem 4.1 are satisfied and more-
over that (5.3) and (5.4) hold, the reduced factorial cumulant measures of X up to
fourth order have finite total variation and that

sup
u∈B(o,R)
|θ1−θ2|<δ

∣∣∣∣∣
d

dθ

(
dλ0(u; θ)

dθ

1

λ0(u; θ)

)∣∣∣∣
θ=θ1

− d

dθ

(
dλ0(u; θ)

dθ

1

λ0(u; θ)

)∣∣∣∣
θ=θ2

∣∣∣∣∣

→ 0 as δ → 0 (5.5)

and

sup
|θ1−θ2|<δ

∣∣∣∣∣
d2

dθ2

(∫

B(o,R)

λ0(u; θ)du

)∣∣∣∣
θ=θ1

− d2

dθ2

(∫

B(o,R)

λ0(u; θ)du

)∣∣∣∣
θ=θ2

∣∣∣∣∣
→ 0 as δ → 0, (5.6)

hold.
Then limn→∞ |Wn 	 R|Varθ0(Un(θ)) = Σ(θ) exists and does not depend on the

convex averaging sequence Wn and
√
|Wn 	R|(θ̂n − θ0) converges to a normal dis-

tribution with zero mean vector and covariance matrix M−1Σ(θ0)M−1 where

M = λ

∫

B(o,R)

d

dθ

(
dλ0(u; θ)

dθ

1

λ0(u; θ)

)∣∣∣∣
θ=θ0

λ0(u; θ0)du

− λ
d2

dθ2

(∫

B(o,R)

λ0(u; θ)du

)∣∣∣∣
θ=θ0

. (5.7)

Remark. The matrix Σ(θ) can be expressed as a sum of mixed integrals of
dλ0(u;θ)

dθ
1

λ0(u;θ)
and IB(o,R)(u) with respect to the reduced factorial cumulant mea-

sures γ(k)
red, k = 2, 3, 4 and the Lebesgue measure. The expression for these integrals

seems, however, to be too complicated to be of any practical use.

Let us finish this section with a short discussion of the original log Palm likeli-
hood (3.2) without any included edge correction. The estimate θ̃n is derived from
the estimating equation Ũ(θ) = 1

|W |
d logLP (θ)

dθ
= 0. It follows from the proof of The-

orem 5.2 that if
√
|Wn| Ũn(θ0) converges in distribution to N(a(θ0), Q(θ0)), then√

|Wn|(θ̃n − θ0) converges to

N(M−1a(θ0),M−1Q(θ0)M−1)

with the same M as in Theorem 5.2.
By repeating the proof of Theorem 5.2 step by step it moreover follows that

Q(θ0) = Σ(θ0), i.e. the asymptotic variance of
√
|Wn 	R|Un(θ0) and

√
|Wn| Ũn(θ0)

is the same and that
√
|Wn|(Ũn(θ̃n) − Eθ0Ũn(θ̃n)) converges in distribution to

N(0,Σ(θ0)).
However, it follows from the discussion at the end of Section 4 that the bias of

Ũn(θ0) is of order O(∂Wn

|Wn|) = O(ρ−1
n ) which is too large for convergence to 0 when

multiplied by the normalization term
√
|Wn| = O(ρ

d/2
n ). Thus, we cannot establish

a result for θ̃n of the type presented in Theorem 5.2.
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6 Example
In this section we will discuss the estimation procedure and the required assumptions
for a classical point process model – the modified Thomas process [27] in R2.

The modified Thomas process belongs to the class of Neyman-Scott processes.
The intensity of the mother process is µ. The number of points in each cluster is
Poisson distributed with mean value equal to ν and each of the points is distributed
according to the bivariate zero mean Gaussian density fσ2 with independent com-
ponents and the same variance σ2, i.e. fσ2(u) = 1

2πσ2 exp(− |u|2
2σ2 ), u ∈ R2. Thus the

parameter vector is θ = {µ, ν, σ2} ∈ (0,∞)3.
The modified Thomas process is obviously stationary and isotropic. The intensity

is λ = µν, the Palm intensity is

λ0(u; θ) = µν +
ν

4πσ2
exp

(
−|u|

2

4σ2

)
, (6.1)

and its integral over B(o,R) is equal to

K(R) = πR2 +
1

µ

(
1− exp

(
− R

2

4σ2

))
. (6.2)

The corresponding Palm log likelihood function is thus

logLPU(θ) =
∑

x∈X∩(W	R)
x 6=y∈X

(y−x)∈B(o,R)

log

(
µν +

ν

4πσ2
exp

(
−|x− y|

2

4σ2

))

− |X ∩ (W 	R)|ν
(
µπR2 + 1− exp

(
− R

2

4σ2

))
. (6.3)

Its differentiation leads to the following estimating equations

∑(
µ+

1

4πσ2
exp

(
−|x− y|

2

4σ2

))−1

= νπR2|X ∩ (W 	R)|, (6.4)

∑ 1

ν
=

(
µπR2 + 1− exp

(
− R

2

4σ2

))
|X ∩ (W 	R)|, (6.5)

∑ 1
π

(
1− |x−y|2

4σ2

)
exp

(
− |x−y|2

4σ2

)

µ+ 1
4πσ2 exp

(
− |x−y|2

4σ2

) = νR2 exp

(
− R

2

4σ2

)
|X ∩ (W 	R)|, (6.6)

where all the sums on the left-hand sides are over x ∈ X ∩ (W 	 R), x 6= y ∈ X,
(y − x) ∈ B(o,R).

If we define the parameter space Θ as [a1, b1]× [a2, b2]× [a3, b3] for some 0 < ai <
bi <∞, i = 1, 2, 3, then it is compact and the continuity and boundedness assump-
tions of Theorem 4.1 are fulfilled. From a practical point of view, the restriction
of the parameter space to the compact set Θ is not a problem since we can always
choose small and large enough ai and bi so that Θ covers all values of the parameters
which are reasonable for a particular application.
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Concerning the solution of the estimating equations we get from the second one

ν̂ =
N(

µπR2 + 1− exp
(
− R2

4σ2

))
|X ∩ (W 	R)|

, (6.7)

where N is the number of terms in the sum of the left-hand sides of (6.4) – (6.6).
Thus we only need to maximize over (µ, σ2). The uniqueness of the joint argument
of maxima {µ̂, σ̂2} is, however, not clear generally.

When we turn to the assumptions of Theorem 5.2 we see that log λ0(u; θ) is
continuous as a function of θ ∈ Θ and is C∞ as a function of u for any value of
θ ∈ Θ. This implies that the uniform continuity conditions (5.5) and (5.6) are
fulfilled.

The process is moreover Brillinger mixing because the Poisson distribution of
the number of points in the cluster have finite moments of any order. Thus all
the reduced factorial cumulant measures are finite and the assumption (5.4) is also
satisfied. The mixing assumption (5.3) is satisfied with O(k−ε) for any ε > d. This
follows from Lemma 5.1 since fσ2(u) = O(|u|−ε−d) for any ε > d. Thus all the
additional assumptions of Theorem 5.2 are fulfilled.

For comparison let us also have a look on the estimating equations derived by
differentiation of the log-composite likelihood ([8])

logCL(θ) =
∑

x∈X∩(W	R)
x 6=y∈X

(y−x)∈B(o,R)

log

(
µν +

ν

4πσ2
exp

(
−|x− y|

2

4σ2

))

−N log

[
µν|W 	R|

(
µνπR2 + ν

(
1− exp

(
− R

2

4σ2

)))]
. (6.8)

Here we get

∑ 2µ+ 1
4πσ2 exp

(
− |x−y|2

4σ2

)

µ+ 1
4πσ2 exp

(
− |x−y|2

4σ2

) =
N
(

2µ+ 1− exp
(
− R2

4σ2

))

πR2µ+ 1− exp
(
− R2

4σ2

) , (6.9)

2

ν
N =

2

ν
N, (6.10)

∑ 1
π

(
1− |x−y|2

4σ2

)
exp

(
− |x−y|2

4σ2

)

µ+ 1
4πσ2 exp

(
− |x−y|2

4σ2

) =
NR2 exp

(
− R2

4σ2

)

πµR2 + 1− exp
(
− R2

4σ2

) . (6.11)

Thus we see that the parameter ν cannot be identified by the composite likelihood
estimation and we have to estimate it from the intensity λ by

ν̂ =
λ̂

µ
=
|X ∩W |
µ|W | .

The third estimating equation is the same for the composite likelihood and Palm
likelihood estimation (when we plug ν̂ into (6.6) for the Palm likelihood case) and
the first estimating equation (6.9) is a more complicated reweighted version of (6.4).
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Finaly let us remark here that there is a similarity between the estimate (6.7) of
ν̂ for the Palm likelihood case and the estimate for the composite likelihood case.
Namely (6.7) also uses the theoretical and the estimated value of an intensity (i.e.
mean number of) but now it is not the intensity of the points of X in W but the
intensity of the pairs of points of X in W .

7 Discussion
In the present paper we have considered parameter estimation in stationary point
process models by means of Palm likelihood. We have proved consistency and
asymptotic normality of the maximum Palm likelihood estimator.

For the proof of asymptotic normality we have imposed strong mixing conditions.
These may be difficult to verify in practice. However, for the important class of
Neyman-Scott processes we have derived a sufficient condition which is easy to
verify, see Lemma 5.1. For the class of log Gaussian Cox processes, the mixing
conditions for the point process are implied by the mixing conditions for the driving
Gaussian field, which have been treated in the literature (see [7]).

An alternative proof of asymptotic normality could be based on the central limit
theorem of Bolthausen [2] for stationary α-mixing random fields. The required
mixing assumptions would be more restrictive in this case.

For evaluating the efficiency of the estimator θ̂n, an estimate of the variance
matrix Σ(θ0) is needed. Since Σ(θ0) is equal to a complicated expression involving
integrals with respect to the measures γ(3)

red and γ(4)
red, which are typically not avail-

able in a feasible form, an approximation of Σ(θ0) needs to be determined. This
can be done by means of simulation. We can produce independent realizations
Xl, l ∈ {1, . . . , N} from the fitted model and approximate Σ(θ0) by the sample vari-
ance matrix of the score functions Un(θ̂n) computed for each of the replications Xl.
Or if the original data are large enough we can use subsampling methods for the
estimation of Σ(θ0) ( see e.g. [12], [22] for further information).

Appendix
For ε > 0, let Rε = {|θ − θ0| < ε} and let

ωn(δ) = sup
|θ1−θ2|<δ

{|Un(θ1)− Eθ0Un(θ1)− Un(θ2) + Eθ0Un(θ2)|} (A.1)

be the modulus of continuity of Un(θ)− Eθ0Un(θ).
For the proof of Theorem 4.1 we need a stronger version of [3, Theorem 3.1]. Let

us state it here as a lemma.
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Lemma A.1. Let Θ be compact. Suppose that the following conditions are satisfied
for any ε > 0

inf
Θ\Rε
|Eθ0Un(θ)| ≥ Cε for some Cε > 0 and all n > N for some fixed N > 0, (A.2)

sup
Θ
|Un(θ)− Eθ0Un(θ)| → 0 Pθ0 − a.s., (A.3)

then θ̂n → θ0 Pθ0-a.s.

Proof. It suffices to show that for all ε > 0

Pθ0 (∃n0 ∀n ≥ n0 : {θ ∈ Θ : Un(θ) = 0} ⊆ Rε) = 1.

Let
Smn = {θ ∈ Θ : |Eθ0Un(θ)| ≤ m},

where m > 0. From (A.2) we find for m < Cε and n > N that Smn ⊆ Rε. Let us
choose such an m < Cε. It therefore suffices to show that for all ε > 0

Pθ0 (∃n0 ∀n ≥ n0 : {θ ∈ Θ : Un(θ) = 0} ⊆ Smn) = 1. (A.4)

For θ with Un(θ) = 0, we have

|Eθ0Un(θ)| ≤ |Eθ0Un(θ)− Un(θ)|+ Un(θ) ≤ sup
Θ
|Un(θ)− Eθ0Un(θ)|.

Using (A.3), (A.4) follows.

Moreover for checking the assumption (A.3) we derive a stronger version of
[3, Lemma 3.2].

Lemma A.2. Let Θ be compact and assume that

|Un(θ)− Eθ0Un(θ)| → 0 Pθ0 − a.s. for any θ ∈ Θ, (A.5)

there exists a sequence {εk}k∈N, εk −−−→
k→0

0, such that

Pθ0
(

lim sup
n→∞

ωn( 1
k
) ≥ εk

)
= 0 for each k ∈ N.

(A.6)

Then supΘ |Un(θ)− Eθ0Un(θ)| → 0 Pθ0-a.s.

Proof. We want to show that for all δ > 0

Pθ0

(
∃n0 ∀n ≥ n0 : sup

Θ
|Un(θ)− Eθ0Un(θ)| < δ

)
= 1.

The proof is by a standard covering argument (see e.g. [11]). For a fixed δ > 0 we
choose k such that δ > 2εk and cover the compact space Θ with N balls B(θi,

1
k
), i =

1, . . . , N . Let D = {lim supn→∞ ωn( 1
k
) < εk}. Then, by (A.6), Pθ0(D) = 1. In other

words, Pθ0-a.s. there exists n0 such that for n ≥ n01,

ωn
(

1
k

)
< εk <

δ
2
.
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Furthermore for θ ∈ B(θi,
1
k
) we have

|Un(θ)− Eθ0Un(θ)| ≤ |Un(θ)− Eθ0Un(θ)− Un(θi) + Eθ0Un(θi)|
+ |Un(θi)− Eθ0Un(θi)|

≤ ωn
(

1
k

)
+ max

i=1,...,N
{|Un(θi)− Eθ0Un(θi)|}.

It follows that

sup
Θ
|Un(θ)− Eθ0Un(θ)| ≤ ωn

(
1
k

)
+ max

i=1,...,N
{|Un(θi)− Eθ0Un(θi)|}.

Using (A.5), Pθ0-a.s. there exists n02 such that for n ≥ n02

max
i=1,...,N

{|Un(θi)− Eθ0Un(θi)|} < δ
2
.

The result of the lemma now follows by choosing n0 = max{n01, n02}.
Proof of Theorem 4.1. It suffices to show that the conditions of Lemma A.1 are
satisfied. First notice that

Eθ0Un(θ) = λ
(∫

B(o,R)

dλ0(u; θ)

dθ

1

λ0(u; θ)
λ0(u; θ0)du−

d
∫
B(o,R)

λ0(u; θ)du

dθ

)

is bounded and continuous (even uniformly continuous on the compact set Θ) with
respect to θ from the assumptions and it does not depend on the observation win-
dow Wn. Thus from the assumptions that Θ is compact and |Eθ0Un(θ)| = 0 only for
θ0 we get that (A.2) holds, in fact for all n.

To show (A.3) we will use Lemma A.2. From the ergodicity of the point process
X and the form of Un(θ) (being just a sum over pairs of points closer than R of some
continuous, bounded function over the convex averaging sequence of {Wn}), it fol-
lows that Un(θ)→ Eθ0Un(θ) almost surely for any fixed θ (see e.g. [4, pp. 335–338]).
Thus (A.5) holds true.

For (A.6) we observe, that for any ε > 0 there exists δ > 0 such that

sup
u∈B(o,R)
|θ1−θ2|<δ

∣∣∣∣
dλ0(u; θ1)

dθ

1

λ0(u; θ1)
− dλ0(u; θ2)

dθ

1

λ0(u; θ2)

∣∣∣∣ <
ε

6λ2K(R; θ0)
, (A.7)

where K(R; θ0) = 1
λ

∫
B(o,R)

λ0(u; θ0)du is the K-function, and

sup
|θ1−θ2|<δ

∣∣∣∣∣
d
∫
B(o,R)

λ0(u; θ1)du

dθ
−

d
∫
B(o,R)

λ0(u; θ2)du

dθ

∣∣∣∣∣ <
ε

6λ
, (A.8)

due to the continuity assumptions on dλ0(u;θ)
dθ

1
λ0(u;θ)

and
d(

∫
B(o,R) λ0(u;θ)du)

dθ
. It follows

that we can construct a sequence {εk} such that (A.7) and (A.8) hold for every
k ∈ N when we take δ = 1

k
and ε = εk. Moreover since Eθ0Un(θ) is uniformly

continuous on Θ we can modify the sequence {εk} in such a way that

sup
|θ1−θ2|< 1

k

∣∣Eθ0Un(θ1)− Eθ0Un(θ2)
∣∣ < εk

3
, (A.9)
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holds true for all k (and any n).
Let

An =
1

|Wn 	R|
∑

x∈X∩(Wn	R)
x 6=y∈X

(y−x)∈B(o,R)

1.

Then,

sup
|θ1−θ2|< 1

k

∣∣Un(θ1)− Eθ0Un(θ1)− Un(θ2) + Eθ0Un(θ2)
∣∣

<
εk

6λ2K(R; θ0)
An +

εk
6λ

|X ∩ (Wn 	R)|
|Wn 	R|

+ sup
|θ1−θ2|< 1

k

∣∣Eθ0Un(θ1)− Eθ0Un(θ2)
∣∣

holds for every k and n. Thus, for any k, we have

Pθ0 lim sup
n→∞

(
ωn( 1

k
) ≥ εk

)

≤ Pθ0

(
lim sup
n→∞

An > 2λ2K(R, θ0)
)

+ Pθ0

(
lim sup
n→∞

|X ∩ (Wn 	R)|
|Wn 	R|

> 2λ
)

+ Pθ0

(
lim sup
n→∞

sup
|θ1−θ2|< 1

k

|Eθ0Un(θ1)− Eθ0Un(θ2)| > εk
3

)
= 0.

The first two terms are equal to 0 because |X∩(W	R)|
|W	R| converges to λ and An converges

to λ2K(R; θ0) almost surely from the ergodicity of the process X. The third term is
equal to 0 from (A.9). Thus (A.6) holds true and from Lemma A.2 we obtain (A.3)
which completes the proof.

Proof of Theorem 4.2. The proof is analogous to the proof of Theorem 4.1. We need
to show that the conditions (A.2) and (A.3) are fulfilled for Ũn(θ) instead of Un(θ).

First observe that
∣∣Eθ0Un(θ)− Eθ0Ũn(θ)

∣∣ (A.10)

≤ λ

∫

B(o,R)

∣∣∣∣
γWn(u)

|Wn|
− 1

∣∣∣∣
∣∣∣∣
dλ0(u; θ)

dθ

1

λ0(u; θ)

∣∣∣∣λ0(u; θ0)du

≤ λK(R; θ0) max
u∈B(o,R),θ∈Θ

∣∣∣∣
dλ0(u; θ)

dθ

1

λ0(u; θ)

∣∣∣∣ sup
z∈B(o,R)

∣∣∣∣
γWn(z)

|Wn|
− 1

∣∣∣∣

< Cε/2,

for all n larger than some N > 0 from the continuity assumptions and from (4.6),
where Cε is the constant from (A.2) in proof of Theorem 4.1. Now combining (A.2)
in the proof of Theorem 4.1 with (A.10) we get that (A.2) holds also for Ũn(θ) for
C̃ε = Cε/2.

The validity of (A.3) follows in exactly the same way as the validity of (A.3) in
the proof in Theorem 4.1.
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Proof of Lemma 5.1. Let us consider two sets A and B with d(A,B) ≥ k and |A|,
|B| ≤ p. Let us rewrite the cluster process X as X =

⋃
c∈C Xc, where Xc is the

cluster centered around a mother point located at c and C is the stationary Poisson
process of mothers.

We denote X1 =
⋃
c∈A⊕ k

2
Xc and X2 = X\X1. Then X1 and X2 are independent

processes and X = X1 ∪ X2. Let G1, G2 be sets of point configurations and C1 =
{X ∩ A ∈ G1}, C2 = {X ∩B ∈ G2} be arbitrary fixed events from FX(A),FX(B),
respectively. Moreover we let D1 = {X1 ∩ B = ∅}, D2 = {X2 ∩ A = ∅} and
D = D1 ∩D2.

Then P (C1 ∩ C2) = P (C1 ∩ C2 ∩D) + P (C1 ∩ C2 ∩DC) and P (C1 ∩ C2 ∩D) =
P (X1 ∩ A ∈ G1, X1 ∩B = ∅)P (X2 ∩B ∈ G2, X2 ∩ A = ∅). Similarly

P (C1)P (C2)

= P (X1 ∩ A ∈ G1, X1 ∩B = ∅)P (X2 ∩B ∈ G2, X2 ∩ A = ∅)P (D)

+ P (C1 ∩D)P (C2 ∩DC) + P (C1 ∩DC)P (C2 ∩D)

+ P (C1 ∩DC)P (C2 ∩DC).

Thus
|P (C1 ∩ C2)− P (C1)P (C2)| ≤ 4P (DC) ≤ 4P (DC

1 ) + 4P (DC
2 ),

and

P (DC
1 ) ≤ E|X1 ∩B| = µν

∫

A⊕ k
2

∫

B

k(c, u)dudc ≤ µν|B|
∫

Rd\B(o, k
2

)

h(v)dv,

since the distance of c ∈ A⊕ k
2
and x ∈ B is always larger or equal to k

2
. Similarly

P (DC
2 ) ≤ µν|A|

∫

Rd\B(o, k
2

)

h(v)dv.

Thus

α(p; k)

max(p, 1)
≤ µν

(
p

p
+
p

p

)∫

Rd\B(o, k
2

)

h(v)dv = O
(∫ ∞

k
2

vd−1−d−εdv
)

= O(k−ε),

where we at the second equality have used change into polar coordinates. This
concludes the proof.

Proof of Theorem 5.2. To show the existence of

lim
n→∞

|Wn 	R|Varθ0 Un(θ),
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let us write in detail that

|Wn 	R|Varθ0 Un(θ)

=
1

|Wn 	R|
Varθ0

( 6=∑

x,y∈X
IWn	R(x)IB(o,R)(x− y)

dλ0(y − x; θ)

dθ

1

λ0(y − x; θ)

)

−
(2
∫
B(o,R)

dλ0(u;θ)
dθ

du)T

|Wn 	R|

× Covθ0

( 6=∑

x,y∈X
IWn	R(x)IB(o,R)(x− y)

dλ0(y − x; θ)

dθ

1

λ0(y − x; θ)
,
∑

z∈X
IWn	R(z)

)

+
Varθ0(X ∩ |Wn 	R|)

|Wn 	R|
(∫

B(o,R)

dλ0(u; θ)

dθ
du
)T(∫

B(o,R)

dλ0(u; θ)

dθ
du
)
.

The last term converges to

λ(1 + γ
(2)
red(Rd))

(∫

B(o,R)

dλ0(u; θ)

dθ
du

)T (∫

B(o,R)

dλ0(u; θ)

dθ
du

)
.

The variance and covariance in the first and second term can be expressed as inte-
grals with respect to the factorial moment measures. Using the relations between
the moment and cumulant measures and disintegration of γ(k) for stationary pro-
cesses, the terms can be further reexpressed as a combination of mixed integrals with
respect to the reduced factorial cumulant measures up to fourth order. Examining
them one by one, it can be shown that under the assumptions of boundedness and
continuity of dλ0(x;θ)

dθ
1

λ0(x;θ)
and the finiteness of the total variation of γ(k)

red, k = 2, 3, 4,
the normalization by 1/|Wn 	R| is the correct one to make them all converge.

To prove the asymptotic normality of the MPL estimate let us denote by U ′n(θ)

the derivative dUn(θ)
dθ

. From the mean value theorem we have that

Un(θ̂n) = Un(θ0) + U ′n(θ∗n)(θ̂n − θ0) = 0, (A.11)

for some θ∗n = θ0 +Q(θ̂n− θ0), where Q is a diagonal matrix with diagonal elements
between 0 and 1. Thus for proving the asymptotic normality of θ̂n it is by Slutsky’s
lemma enough to prove:

U ′n(θ∗n)→M in probability, (A.12)
√
|Wn 	R|Un(θ0) converges in distribution to N(0,Σ(θ0)). (A.13)

To show (A.12) we observe that

|U ′n(θ∗n)−M | ≤ |U ′n(θ∗n)− U ′n(θ0)|+ |U ′n(θ0)−M |. (A.14)

Now |U ′n(θ0) − M | converges to 0 almost surely from the ergodicity of X since
M = Eθ0U

′
n(θ0).

To show that |U ′n(θ∗n) − U ′n(θ0)| converges to 0 in probability, let us denote by
mf (δ) the supremum from the formula (5.5) taken over |θ1 − θ2| < δ and by mh(δ)
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the supremum from the formula (5.6) taken again over |θ1 − θ2| < δ. Since both of
the mf (δ) and mh(δ) converge to 0 as δ → 0 we can find for a given ε > 0 a ∆ > 0
so that

mf (δ) <
ε

4

1

λ2K(R; θ0)
and mh(δ) <

ε

4

1

λ
(A.15)

holds for all δ < ∆. Then similarly like in the end of the proof of Theorem 4.1 we
have that

sup
|θ1−θ0|<∆

|U ′n(θ1)− U ′n(θ0)| < ε

4

1

λ2K(R; θ0)
An +

ε

4

1

λ

|X ∩ (Wn 	R)|
|Wn 	R|

, (A.16)

and thus from the ergodicity of X for a given η > 0 we can find an N1 large enough
so that

Pθ0 (|U ′n(θ1)− U ′n(θ0)| > ε) < η
2
, (A.17)

for all n > N1 and θ1 closer than ∆ to θ0.
Now we have to remember that since θ̂n converges to θ0 almost surely and thus

also in probability from Theorem 4.1, so does θ∗n. And thus for a given η > 0 we
can find an N2 such that

Pθ0(|θ∗n − θ0| > ∆) < η
2

for all n > N2, (A.18)

which together with (A.17) gives that for a given ε > 0 and η > 0

Pθ0 (|U ′n(θ∗n)− U ′n(θ0)| > ε) < η for all n > max(N1, N2). (A.19)

Thus |U ′n(θ∗n) − U ′n(θ0)| converges in probability to 0 which completes the proof
of (A.12).

To prove (A.13) we will use a blocking method similar to the one used in [10].
Let α and η be positive constants such that 2d/(d + ε) < η < α < 1, let

ρn = ρ(Wn), ln = ραn and mn = ραn − ρηn.
For a fixed n let us cover Rd by the union of disjoint d-dimensional cubes {Kj

n}
of sidelength ln. Let Cj

n ⊂ Kj
n be the closed cube with the same center as Kj

n but
with sidelength mn. In the sequel we will consider the collection {Cj

n, j ∈ Jn} of all
cubes contained in Wn. Note that the distance between any two distinct cubes Cj

n,
Cj′
n is at least ρηn which goes to infinity as n increases. Thus by the strong mixing,

X∩Cj
n and X∩Cj′

n become asymptotically independent and furthermore the volume
(and thus the observed information available in these sets) of Wn and

⋃
j∈Jn C

j
n are

of the same order. This is the main idea of the blocking method. For the formal
development of the argument we need some more notation.

Let Un(θ0)i denote the i-th component of the score function Un(θ0) and let

Sn =
√
|Wn 	R|Un(θ0)i,

sjn =

√
|Cj

n 	R|U(θ0;Cj
n)i,

sn =

(∑

j∈Jn
sjn

)/√
kn,

s′n =

(∑

j∈Jn
s′jn

)/√
kn
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where U(θ0;Cj
n)i is the i-th component of the score function Un(θ0) withWn replaced

by Cj
n, kn is the number of elements in Jn and {s′jn , j ∈ Jn} is a collection of

independent identically distributed random variables with the same distribution
as sjn.

To prove that
√
|Wn 	R|Un(θ0)i converges in distribution to N(0, σi(θ0)), where

σi(θ0) = (Σ(θ0))i,i, it is enough to show the following three facts:

(Sn − sn)→ 0 in probability, (A.20)
(φn(t)− φ′n(t))→ 0 for all t ∈ R, (A.21)
s′n → N(0, σi(θ0)) in distribution, (A.22)

where φn denotes the characteristic function of sn and φ′n of s′n, respectively.
Since Eθ0Sn = Eθ0sn = 0, it is enough to show that Varθ0(Sn− sn)→ 0 to prove

(A.20). Obviously
|Wn 	R| ≥ kn|Cj

n 	R|,
and Wn 	R ⊆ Wn ⊆ (∂Wn ⊕

√
dln) ∪ (∪j∈JnKj

n), thus

|Wn 	R| ≤ |∂Wn ⊕ (
√
d ln)|+ kn|Kj

n|.

Since |∂Wn ⊕ (
√
d ln))| = O((ρn)(d−1)+α) and kn ≤ |Wn ⊕ (

√
d ln))|/ldn = O(ρ

d(1−α)
n )

we have

lim
n→∞

|∂Wn ⊕ (
√
d ln))|

kn|Cj
n 	R|

≤ lim
n→∞

O(ρd−1+α
n )

O(ρ
d(1−α)
n md

n)
= lim

n→∞
O(ρα−1

n ) = 0,

and

lim
n→∞

kn|Kj
n|

kn|Cj
n 	R|

= lim
n→∞

ldn
md
n

= 1.

Thus
lim
n→∞

|Wn 	R|
kn|Cj

n 	R|
= 1. (A.23)

Thus, in order to show that Varθ0(Sn − sn)→ 0, it is enough to show that

Varθ0

( ∑

x∈X∩(Wn	R)
x 6=y∈X

(y−x)∈B(o,R)

(
dλ0(y−x;θ)

dθ
1

λ0(y−x;θ)

∣∣∣
θ=θ0

)
i√

|Wn 	R|
(A.24)

−
kn∑

j=1

∑

x∈X∩(Cjn	R)
x 6=y∈X

(y−x)∈B(o,R)

(
dλ0(y−x;θ)

dθ
1

λ0(y−x;θ)

∣∣∣
θ=θ0

)
i√

|Wn 	R|

)
→ 0,

and

Varθ0

(
|X ∩ (Wn 	R)| −∑kn

j=1 |X ∩ (Cj
n 	R)|

√
|Wn 	R|

(
d
∫
B(o,R)

λ0(r; θ)dr

dθ

∣∣∣∣∣
θ=θ0

)

i

)
→ 0.

(A.25)
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Let us denote by Vn the set (Wn	R)\(⋃kn
j=1(Cj

n	R)). Then from the bounded-
ness assumptions of Theorem 4.1 the variance from (A.25) is bounded from above
by

const
λ|Vn|
|Wn 	R|

(1 + γ
(2)
red(Vn)) ≤ const′

λ|Vn|
|Wn 	R|

, (A.26)

when γ(2)
red has finite total variation. Similarly but with a substantialy larger amount

of algebra it is possible to derive an upper bound for the variance from (A.24) of the
same form const λ|An|

|Wn	R| where the constant is a combination of the total variations

of γ(2)
red, γ

(3)
red and γ(4)

red.
The proof of (A.20) is complete by observing that

|Vn|
|Wn 	R|

=
|Wn 	R| − kn|Cj

n 	R|
|Wn 	R|

→ 0, as n→∞, (A.27)

according to (A.23).
To show (A.21) we will use the mixing assumptions. Let us define

Vj = exp

(
ιt
sjn√
kn

)
, (A.28)

where ι denotes the imaginary unit. Then,

φn(t) = E
( ∏

j∈Jn
Vj

)
, φ′n(t) =

∏

j∈Jn
EVj, (A.29)

and

|φn(t)− φ′n(t)| ≤
kn−1∑

j=1

∣∣∣∣E
( j+1∏

s=1

Vs

)
− E

( j∏

s=1

Vs

)
EVj+1

∣∣∣∣. (A.30)

If we denote Zj =
∏j

s=1 Vs and Yj = Vj, then obviously Zj ∈ FX(∪js=1C
s
n), Yj ∈

FX(Cj+1
n ), |∪js=1C

s
n| = j(mn)d, |Cj+1

n | = (mn)d. Recall that d(∪js=1C
s
n, C

j+1
n ) ≥ (ρn)η.

Since both random variables Zj and Yj are bounded in absolute value by 1, we obtain
the following bound on their covariance by means of the strong mixing coefficient
(see e.g. Lemma 1.2.1 in [29])

Cov(Zj, Yj) ≤ 4α(j(mn)d, (ρn)η) ≤ O(j(ραn − ρηn)d(ρn)−ηε) = O(j(ρn)αd−ηε). (A.31)

Finally from the obvious observation kn ≤ |Wn|/(ρn)αd = O((ρn)d−αd) and from
(A.30) we find

|φn(t)− φ′n(t)| ≤ knO(kn(ρn)αd−ηε) ≤ O((ρn)2d−αd−ηε), (A.32)

which under the assumptions we made about α and η goes to 0 as ρn →∞ and (A.21)
is proved.

(A.22) is just an application of the Lyapunov central limit theorem.
Finally since the convergence of

√
|Wn 	R| c · Un(θ0) → N(0, cΣ(θ0)cT ) in dis-

tribution for any c ∈ Rq follows the same type of derivations as above, the proof of
the asymptotic normality of the vector

√
|Wn 	R|Un(θ0) follows directly from the

Cramér-Wold device.
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