
11

THIELE CENTRE
for applied mathematics in natural science

THIELE CENTRE
for applied mathematics in natural science

Markov Bridges, Bisection and Variance Reduction

Søren Asmussen and Asger Hobolth
www.thiele.au.dk

The T.N. Thiele Centre
Department of Mathematical Sciences
University of Aarhus

Ny Munkegade 118, Bldg. 1530
8000 Aarhus C
Denmark

Phone +45 89 42 35 15
Fax +45 86 13 17 69
Email thiele@imf.au.dk Research Report No. 01 January 2011

Markov Bridges, Bisection and Variance Reduction

Søren Asmussen* and Asger Hobolth**

*Department of Mathematical Sciences, Aarhus University, asmus@imf.au.dk
**Bioinformatics Research Center, Aarhus University, asger@birc.au.dk

Abstract

Time-continuous Markov jump processes is a popular modelling tool in
disciplines ranging from computational finance and operations research to hu-
man genetics and genomics. The data is often sampled at discrete points in
time, and it can be useful to simulate sample paths between the datapoints.
In this paper we firstly consider the problem of generating sample paths from
a continuous-time Markov chain conditioned on the endpoints using a new
algorithm based on the idea of bisection. Secondly we study the potential of
the bisection algorithm for variance reduction. In particular, examples are
presented where the methods of stratification, importance sampling and quasi
Monte Carlo are investigated.

1 Introduction
Let X = {X(t) : t ≥ 0} be a Markov process in continuous time with discrete or
general state space E. A Markov bridge with parameters T, a, b is then a stochastic
process with time parameter t ∈ [0, T] and having the distribution of {X(t) : 0 ≤
t ≤ T} conditioned on X(0) = a, X(T) = b.

Markov bridges occur in a number of disciplines ranging from computational
finance and operations research to human genetics and genomics. In many appli-
cations, it is of relevance to simulate sample paths of such bridges. In particular,
the case of diffusions has received extensive attention. An early reference is [27]
and later selected ones [5, 6], and [8]. Also some special Lévy processes have been
considered, see [3, 25, 26], and [20]. A more theoretical discussion of Markov bridges
is in [15].

The present paper is concerned with the CTMC (continuous time Markov chain)
case where the state space E of X is finite. This case is of course much simpler than
diffusions or Lévy processes, but nevertheless, it occurs in some important applica-
tions. With E finite, there is a simple description of the process in terms of the rate
(intensity) matrix Q = (qij)i,j∈E: a jump i→ j 6= i occurs at rate qij. Equivalently,
state i has an exponential holding time with mean 1/qi where qi = −qii =

∑
j 6=i qij,

and upon exit, the new state equals j 6= i with probability θij = qij/qi.
We focus here on a bisection algorithm first presented in [2]. The details are

surveyed in Section 4, but the key is two fundamental observations. Firstly, if the

1

endpoints are the same and the process does not experience any jumps, the sample
path generation is finished. Secondly, if the endpoints are different and the process
experiences exactly one jump, sample path generation is easy; we must basically
simulate a waiting time before the jump from a truncated exponential distribution.
These two fundamental observations are described in more detail in Section 4.1, but
once they are in place they immediately suggest a recursive procedure for sample
path generation: continue splitting the large time interval into smaller time intervals,
and keep splitting until all intervals contain either zero or one jump only.

Previous algorithms for bridge sampling from CTMCs include rejection sampling,
uniformization and direct simulation and are briefly surveyed in Section 3 (also
Markov chain Monte Carlo methods have been used, e.g. [27] and [5], but we do
not discuss this aspect here). Comparisons of these algorithms are in [17], and
comparisons with the bisection algorithm in [2]. The overall picture is that no
algorithm is universally superior in terms of fast generation of sample paths. In
particular, we do not insist that the bisection idea is a major jump forward in this
respect. Rather, the point of view of the present paper is to advocate its potential for
variance reduction by identifying some ‘most important’ random variables on which
to concentrate variance reduction ideas. This idea is familiar from the Brownian
bridge, see for example [9, 23, 10] and [1, p. 277–280]. Here the ‘most important’
r.v.’s are firstX(0), X(T), nextX(T/2), thenX(T/4), X(3T/4) and so on. However,
in our implementation of CTMC bridges a new aspect occurs since also the number
of jumps in [0, T], [0, T/2], [T/2, T] and so on play a role. The variance reduction
techniques we study are stratification, importance sampling and quasi Monte Carlo.

2 Examples

2.1 Statistical inference in finite state CTMC models

For statistical purposes, the relevant parameters to estimate are often the elements
qij of the rate matrix Q, or, equivalently, the qi and the θij = qij/qi, j 6= i. In the case
of complete observations in [0, T] (that is, the whole trajectory {X(t) : 0 ≤ t ≤ T}
is observed), there is a simple solution: the maximum likelihood estimators q̂i, θ̂ij
of qi and the θij = qij/qi are just the empirical counterparts. That is, the sufficient
statistics are

Ti = time in state i =

∫ T

0

I
(
X(t) = i

)
dt ,

Nij = # (jumps i→ j) =
∑

0≤t≤T
I
(
X(t−) = i, X(t) = j

)
,

Ni =
∑

j 6=i
Nij ,

and the maximum likelihood estimators are

q̂i =
Ni

Ti
, θ̂ij =

Nij

Ni

. (1)

2

In many applications of continuous time Markov chains, the stochastic process
{X(t) : t ≥ 0} is, however, sampled at equidistant discrete points

t0 = 0 < t1 = h < t2 = 2h < · · · < tn−1 = (n− 1)h < tn = nh = T

in time, while the process itself is a continuous-time process. This situation is a
missing data problem, for which the EM (Expectation-Maximization) algorithm is
a classical tool. This algorithm is iterative, i.e. in step k it has a trial q(k)i , θ

(k)
ij

for the parameters. To update to k + 1, one then in (1) replaces the sufficient
statistics by their conditional expectation with parameters q(k)i , θ

(k)
ij given the data

X0, Xh, . . . , X(n−1)h, X(T). That is,

q̂
(k+1)
i =

N
(k)
i

T
(k)
i

, θ̂
(k+1)
ij =

N
(k)
ij

N
(k)
i

, (2)

where

T
(k)
i = E

q
(k)
i , θ

(k)
ij

[∫ T

0

I
(
X(t) = i

)
dt
∣∣∣X0, Xh, . . . , X(n−1)h, X(T)

]
,

N
(k)
ij = E

q
(k)
i , θ

(k)
ij

[∑

t≤T
I
(
X(t−) = i, X(t) = j

) ∣∣∣X0, Xh, . . . , X(n−1)h, X(T)
]
,

N
(k)
i =

∑

j 6=i
N

(k)
ij ,

The computation of these conditional expectations is the E-step of the algorithm,
whereas (2) is the M-step. The E-step is the computationally demanding one. As a
consequence of the Markov assumption, knowledge of the data partitions the problem
into n = T/h independent problems. For example,

T
(k)
i =

n∑

m=1

E
q
(k)
i , θ

(k)
ij

[∫ mh

(m−1)h
I
(
X(t) = i

)
dt
∣∣∣X
(
(m− 1)h

)
, X(mh)

]
.

The computations are in principle feasible via deterministic numerical analysis, but
the implementation is somewhat tedious, so it is popular to use simulation instead.
Then independent sample paths {X(t) : (m − 1)h ≤ t < mh} must be generated
between the timepoints (m−1)h andmh, conditional on the datapointsX

(
(m−1)h

)

and X(mh). This is how the problem of simulating Markov bridges arises in the
statistical context.

For more information on rate matrix estimation in partially observed finite state
CTMC models we refer to the paper by [21] and references therein.

2.2 Applications in genetics

A DNA string is a word from the alphabet A, G, C, T. When observing two closely
related species like e.g. human and mouse, letters are equal at most sites (more than
80%), but differ at a few as in Figure 1 where the two strings are identical except
at the third site. The lines in the figure are ancestral lineages back to the common

3

······
······
······
······
······
······
······
······
··

······
······
······
······
······
······
······
······
··

· · · AACGTG · · · · · · AATGTG · · ·

Figure 1: Related sites of DNA from human and mouse are identical at most positions.
The possible states are from the DNA alphabet {A, G, C, T}.

ancestor. At each site, mutations occur, changing for example an A to a G. One is
often interested in the (unobservable) complete history along the ancestral lines.

For a fixed single site, the common model assumes Markovian mutations at
known exponential holding rates qA, qC , qG, qT and known transition probabilities
(e.g. θAG = qAG/qA for A→ G). One further assumes time reversibility and that the
ancestral lines are so long that stationarity has been reached. One can then reverse
time along one of the ancestral lines, say the one starting from the human, to get
a Markov process running from e.g. human to mouse and having known endpoints,
see Figure 2.

human ancestor mouse
C A C G

Figure 2: Example of evolution from human to mouse at a specific position. Time is
reversed at the human lineage when compared to the previous figure.

An early popular model is that of [19] where the Q-matrix takes the form

A G C T

A −α− 2β α β β
G α −α− 2β β β
C β β −α− 2β α
T β β α −α− 2β

One readily computes the stationary distribution π = (1, 1, 1, 1)/4 and checks the
conditions of detailed balance (πGqGT = πT qTG etc.) so that the model is indeed
time reversible. Plugging in specific values of α, β, T one can then simulate the
Markov bridge from human to mouse to obtain information on the ancestral history.
One possible application is to put a prior on the length T/2 of the ancestral lines
and use the simulations to compute a posterior.

Endpoint conditioned CTMC’s are thus a crucial modelling tool for the evolution
of DNA sequences. At the nucleotide level the states for the DNA substitution
process state space is 4 as described above. At the amino acid level the state space

4

size is 20 and at the codon level the size is 61. The ancestry is usually represented
by a binary tree where a node corresponds to two DNA sequences finding a common
ancestor.

For a given set of DNA sequences observed at the leaves of a given tree we can
determine the probabilities of the states in the inner nodes using Felsenstein’s tree
peeling algorithm [13], and therefore the basic setup is very similar to and endpoint
conditioned CTMC. For more information on the use of CTMC methodology in
evolutionary models of DNA sequences we refer to [11, Chapter 13 and 14], [14,
Chapter 13 and 14] and references therein.

Single site analysis is not completely satisfactory because there is dependence
among neighboring sites. A simple and popular model assumes that the Q-matrix
at site j only depends on the states at sites j − 1 and j + 1 as in Figure 3.

QCA QTA QTG QTC

j + 1 A ···
···
···

G ···
···
···

C

j − 1 C ·········

T

j C A C T

Figure 3: Illustration of neighbour dependence. The Q-matrix at site j depends on the
states at the neighbouring sites. In the figure the neighbouring states at site (j − 1, j + 1)
are (C,A); (T,A); (T,G) and (T,C). When simulating site j condition on the endpoints
one must take the states of the neighbouring sites into account.

Simulation of multiple sites can then be performed by Gibbs sampling, where
one site at a time is updated. For updating of site j, one first simulates X at change
points, i.e. times of state change of either site j − 1 or j + 1. These values form
an inhomogeneous end-point conditioned discrete time Markov chain with easily
computed transition probabilities. Once they are known, the evolution between
change points are Markov bridges.

3 Previous algorithms
Reference [17] describe and analyse 3 previously suggested algorithms for end-point
conditional simulation from continuous time Markov chains. The algorithms are
called rejection sampling, uniformization and direct simulation. We will only briefly
describe the algorithms here. For a detailed description of the algorithms we refer
to [17].

Recall that our aim is to simulate a sample path {X(t) : 0 ≤ t ≤ T} from a con-
tinuous time Markov chain conditional on the end-points X(0) = a and X(T) = b.
In rejection sampling, a sample path is simulated forward in time from X(T) = a,
and the path is accepted if X(T) = b. Reference [24] describe an improvement of
the naive rejection sampling approach where it is taken into account that if a 6= b,
at least one jump must occur. Nielsens improvement is particularly important when
the time interval is short and the beginning and ending states are different. Rejection
sampling is inefficient if it is unlikely to end up in the desired ending state.

5

In uniformization (e.g. [12]), the number of state changes within an interval
is Poisson distributed. The state changes themselves constitute a Markov chain.
The price for the simple description of the number of state transitions is that vir-
tual state changes (in which the state does not change) are permitted. Sampling
from this related process is equivalent to sampling from the target continuous time
Markov chain when the virtual changes are ignored. When simulating an endpoint
conditioned sample path using uniformization, the number of state transitions is
firstly simulated. This number follows a slightly modified Poisson distribution (the
modification comes from the conditioning on the endpoints). When the number of
jumps is simulated, the Markovian structure of the state transitions is utilized to
simulate the types of changes that occur. Uniformization is usually very efficient,
but can be slow if many virtual state changes are needed in the simulation procedure.

Finally, direct simulation [16] is based on analytical expressions for simulating the
next state and the waiting time before the state change occurs. The expression for
the waiting time distribution and corresponding cumulative distribution function are
analytically available, but unfortunately not very tractable. Therefore the recursive
steps of simulating the new state and corresponding waiting time is a rather time-
consuming process.

4 Bisection Algorithm

The algorithm involves an initialization step and a recursive step. The recursive
step is easy once the initialization step is explained. We divide the discussion of the
initialization into two parts. In the first part, the end-points are the same, and in
the second part the end-points are different.

4.1 The basic idea

The bisection algorithm is based on two fundamental observations:

1. IfX(0) = X(T) = a and there are no jumps we are done: X(t) = a, 0 ≤ t ≤ T .

2. If X(0) = a and X(T) = b 6= a and there is precisely one jump we are basically
done: X(t) = a, 0 ≤ t < τ , and X(t) = b, τ ≤ t ≤ T .

In 2, the jump time τ is determined by the Lemma and corresponding Remark
below.

The basic idea of the bisection algorithm is to formulate a recursive procedure
where we finish off intervals with zero or one jumps according to the two fundamental
observations above, and keep bisecting intervals with two or more jumps. The
recursion ends when no intervals with two or more jumps are present. The following
Lemma and Remark shows that intervals with precisely one jump are easy to handle.

We recall the notation Q = {qab} for the instantaneous rate matrix with off-
diagonal entries qab ≥ 0 and diagonal entries qaa = −∑b 6=a qab = −qa < 0. We
make the standard assumption that the process is irreducible and recurrent. The
algorithm (as well as uniformization and direct simulation, cf. Section 3) require the
transition probabilities Pab(t), i.e. the elements of the transition matrix P (t) = eQt.

6

These can easily be computed, for example, if Q can be written in diagonal form
UDU−1 with D = diag(λi); then P (t) = U diag(eλit)U−1. For different methods,
see the classical paper [22].

Lemma 4.1. Consider an interval of length T with X(0) = a, and let b 6= a. The
probability that X(t) = b and there is only one single jump (necessarily from a to b)
in the interval is given by

Rab(T) = qab

e−qaT − e−qbT

qb − qa
qa 6= qb

T e−qaT qa = qb.

(3)

The density of the time of state change is

fab(t;T) =
qabe

−qbT

Rab(T)
e−(qa−qb)t, 0 ≤ t ≤ T.

Furthermore, the probability that X(T) = b and there are at least two jumps in the
interval is Pab(T)−Rab(T).

Proof. Let N(T) denote the number of jumps in the interval [0, T]. The first two
parts of the Lemma follow from

Rab(T) = P
(
X(T) = j,N(T) = 1

∣∣X(0) = a
)

=

∫ T

0

qae
−qat qab

qa
e−qb(T−t) dt = qabe

−qbT
∫ T

0

e−(qa−qb)t dt, a 6= b.

The last part is clear since the case of zero jumps is excluded by a 6= b.

Remark 4.2. If qa = qb, the single state change is uniformly distributed in the
interval [0, T]. If qa > qb, the time of the state change is an exponentially distributed
random variable truncated to [0, T]. Such a random variable V is easily simulated by
inversion (e.g. [1, p. 39]. If qa < qb, we have by symmetry that fab(t) is the density of
the random variable T−V , where V is an exponentially distributed random variable
with rate qb− qa truncated to [0, T]. Finally, if qa = qb, the time of the state change
is simply uniform on [0, T].

4.2 Initialization when the endpoints are equal

Consider the case X(0) = X(T) = a. We may write

Paa(T) = Paa(T/2)Paa(T/2) +
∑

c 6=a
Pac(T/2)Pca(T/2). (4)

The first term can be further dissected into

Paa(T/2) = P(X(T/2) = a|X(0) = a)

= P(X(T/2) = a,N(T/2) = 0|X(0) = a)

+ P(X(T/2) = a,N(T/2) ≥ 2|X(0) = a)

= e−qaT/2 + [Paa(T/2)− e−qaT/2], (5)

7

and similarly the second term can be written as

Pac(T/2) = Rac(T/2) + [Pac(T/2)−Rac(T/2)]. (6)

With the abbreviation ea = e−qaT/2, rab = Rab(T/2), pab = Pab(T/2) we obtain
Table 1 when substituting (5) and (6) into (4).

Table 1: Possible scenarios when the endpoints X(0) = a and X(T) = a are the same.

number of jumps number of jumps (unconditional)
case in first interval in second interval probability notation

1 0 0 eaea α1

2 0 ≥ 2 ea(paa − ea) α2

3 ≥ 2 0 (paa − ea)ea α3

4 ≥ 2 ≥ 2 (paa − ea)(paa − ea) α4

5 1 1 racrba α5,c

6 1 ≥ 2 rac(pca − rca) α6,c

7 ≥ 2 1 (pac − rac)rca α7,c

8 ≥ 2 ≥ 2 (pac − rac)(pca − rca) α8,c

Note that in case 1-4 we have X(T/2) = a, and in case 5-8 we have X(T/2) =
c 6= a. Of course we have

Paa(T) =
4∑

i=1

αi +
8∑

i=5

∑

c 6=a
αi,c.

In the initialization step, we select one of the cases with probabilities proportional
to the corresponding α-value. In case the algorithm enters case 1 we are done. In
case the algorithm enters case 5 we are almost done; we just need to simulate two
waiting times according to Remark 4.2: one waiting time in the interval [0, T/2]
with beginning state a and ending state c, and another in the interval [T/2, T] with
beginning state c and ending state a.

In case the algorithm enters one or more intervals where the number of jumps
are ≥ 2, further simulation is needed (case 2, 3, 4, 6, 7, 8), and we move on to
the recursion step explained below. However, we only need to pass intervals to the
next level of the algorithm if the number of jumps are larger or equal to two. If the
selected case is case 2, for example, we only need to pass the second interval [T/2, T]
and the endpoints X(T/2) = a and X(T) = a. Similarly, if the selected case is case
6 we use Remark 4.2 to simulate the waiting time to state c in the first interval (and
keep the type and time of the state change in the memory), but we only pass on
the second interval [T/2, T] and the endpoints X(T/2) = c and X(T) = a to the
next level.

8

4.3 Initialization when the endpoints are different

Now consider the case when the end-points X(0) = a and X(T) = b 6= a are
different. This time we get

Pab(T) = Paa(T/2)Pab(T/2) + Pab(T/2)Pbb(T/2) +
∑

c 6=(a,b)

Pac(T/2)Pcb(T/2).

Using the same notation as previously, we get the 12 cases in Table 2.

Table 2: Possible scenarios when the endpoints X(0) = a and X(T) = b 6= a are different.

number of jumps number of jumps (unconditional)
case in first interval in second interval probability notation

1 0 1 earab β1
2 0 ≥ 2 ea(pab − rab) β2
3 ≥ 2 1 (paa − ea)rab β3
4 ≥ 2 ≥ 2 (paa − ea)(pab − rab) β4

5 1 0 rabeb β5
6 1 ≥ 2 rab(pbb − eb) β6
7 ≥ 2 0 (pab − rab)eb β7
8 ≥ 2 ≥ 2 (pab − rab)(pbb − eb) β8

9 1 1 racrcb β9,c
10 1 ≥ 2 rac(pcb − rcb) β10,c
11 ≥ 2 1 (pac − rac)rcb β11,c
12 ≥ 2 ≥ 2 (pac − rac)(pcb − rcb) β12,c

Note that we can merge case 1 and case 5 (corresponding to one jump):

earab + rabeb = Rab(T).

It clearly holds that

Pab(T) =
8∑

i=1

βi +
12∑

i=9

∑

c 6=(a,b)

βi,c.

In case 1–4 we have X(T/2) = a, in case 5–8 we have X(T/2) = b 6= a, and in case
9–12 we have X(T/2) = c 6= (a, b).

In the initialization step, we select one of the cases with probabilities proportional
to the corresponding β-value. If the algorithm enters one or more intervals where
the number of jumps are larger than two, further simulation is needed (case 2, 3, 4,
6, 7, 8, 10, 11, 12). If the algorithm enters a case where the number of jumps is less
than one in both intervals (case 1, 5, 9), we are essentially done.

Entering an interval with ≥ 2 jumps means that further simulation is needed.
In the next subsection, we discuss this recursive part of the bisection algorithm.

9

4.4 Recursion and termination

When an interval with ≥ 2 jumps is entered, further simulation is needed. However,
it is straightforward to calculate the probabilities for the various scenarios; the
(unconditional) probabilities are given by Table 1 with case 1 removed if the end-
points of the interval are the same, and by Table 2 with case 1 and 5 removed if the
end-points of the interval are different. (The values entering in Table 1 and Table 2
should also be calculated for half as long a time interval). The algorithm terminates
when no intervals with ≥ 2 jumps are present.

4.5 Implementation

In the bisection algorithm, we simulate state changes every time we have an interval
with precisely one jump. Thus we organize the program such that at every level
of the recursion we simulate (and record) the time and type of state change when
an interval with one jump is present, and pass the time-points and end-points of
intervals with ≥ 2 state changes to the next level.

5 Numerical examples

This is a collection of the results from three experiments where bisection ideas are
used for variance reduction in time-continuous Markov jump processes. The three
experiments are (i) Stratification, (ii) Importance sampling and (iii) Quasi Monte
Carlo. We consider a N ×N rate matrix Q where the rates are given by Q1,2 = λ,
Qn,n+1 = µ, n = 2, . . . , N − 1, QN,1 = µ, and all other rates are zero, cf. Fig. 4. We
took µ = N .

1 -λ 2 -µ 3 -µ 4 -µ · · · -µ N−1 -µ N
?

µ

Figure 4: Transition diagram for the cyclic example

Our target is to determine the probability pλ of exactly one cycle in the time
interval [0, 1] conditioned on the initial state X(0) = 1 and final state X(1) = 1. We
stress that neither the model nor the problem of estimating pλ are chosen because
of their intrinsic interest but in order to investigate the potential of the bisection
algorithm for variance reduction in a simple example. Indeed, the value of pλ is
the probability of making exactly N jumps conditional on the end-points X(0) =
X(1) = 1. This probability can be calculated using the algorithm of [28] which
for convenience is reproduced in the Appendix. In Table 3 we provide the exact
probabilities of pλ in our experiments.

One possibility of estimating pλ is of course the crude Monte Carlo method, to
just generate sample paths {X(t) : 0 ≤ t ≤ 1} conditional onX(0) = 1 andX(1) = 1
(we have previously discussed several algorithms, including bisection, for obtaining
such samples). Let Zr, r = 1, . . . , R indicate if exactly one cycle is obtained in the

10

Table 3: Exact probability pλ for one cycle for various state space sizes N and various
ratios λ/N .

N λ/N

0.10 0.45 0.80 1.00 1.20 3.10 5.00

4 0.138405 0.567199 0.766990 0.800363 0.803456 0.639064 0.562409
7 0.191982 0.818845 0.946474 0.948949 0.941157 0.857991 0.818518
10 0.253733 0.940944 0.987026 0.984950 0.981193 0.950914 0.935423
15 0.373870 0.992560 0.998395 0.997843 0.997230 0.992588 0.990111
20 0.506338 0.999121 0.999775 0.999687 0.999597 0.998920 0.998555
30 0.745579 0.999988 0.999995 0.999993 0.999992 0.999977 0.999970

R sample paths where R is the number of replications. Clearly Zr ∼ Bin(1, pλ) and
so the crude Monte Carlo estimator is Z̄ =

∑R
r=1 Zr/R with variance

σ2 = Var(Z̄) =
pλ(1− pλ)

R
.

5.1 Stratification

First consider a proportional stratification procedure [1, V.7] where the R replicates
are allocated according to the probability of the midpoint s, s = 1, . . . , N of the
process. More precisely, let ps = P(X(1/2) = s|X(0) = 1, X(1) = 1) be the
probability of the midpoint being s and allocate Rs = Rps replicates to this stratum.
We use

∑N
s=1 psZ̄s as an estimator of pλ, where Z̄s =

∑Rs

i=1 Zs,i/Rs and Zs,i indicates
if the ith sample in the sth stratum contains exactly one cycle.

Letting

pλ,s = P
(
exactly one cycle

∣∣X(0) = 1, X(1/2) = s,X(1) = 0
)
,

we obtain the stratum variance

σ2
Str =

N∑

s=1

p2s
pλ,s(1− pλ,s)

Rs

.

We now see that the ratio between the two variances is given by

σ2
Str

σ2
=

N∑

s=1

ps
pλ,s(1− pλ,s)
pλ(1− pλ)

,

where we have used Rs = Rps.
In Figure 5 left we show (using exact calculations) the values of the ratio between

the two variances for several values of λ and size of state space N . We see that when
λ � N we obtain a major reduction in the variance when stratification is applied.
In the cases λ ∼ N and λ � N, a variance reduction is mainly obtained for large
state spaces.

11

0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

lambda/(size of state space)

va
ria

nc
e

ra
tio

4
7
10
15
20
30

0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

lambda/(size of state space)

va
ria

nc
e

ra
tio

4
7
10
15
20
30

Figure 5: Variance reduction using stratification strategies. Left: Variance ratio between
naive sampling and stratification according to midpoint. The variance reduction is large
when λ is small and otherwise the variance reduction is moderate. Right: Variance ratio
between stratification according to midpoint and stratification according to midpoint and
information on number of jumps (0, 1 or ≥ 2). Again the variance reduction is large when
λ is small.

Instead of only stratifying according to the midpoint, we can include informa-
tion about the number of jumps according to Table 1. We thus include not only
the midpoint but also if 0,1 or at least 2 jumps are present. We again apply a pro-
portional stratification procedure. The variance ratio between the two stratification
procedures are shown in Figure 5 right. We see that a major variance reduction is
obtained for small values of λ and small state spaces.

5.2 Importance sampling

Another variance reduction mechanism is importance sampling. We choose to do
importance sampling on the midpoint and include information that (a) the chain can
only jump from n to (n + 1) (modulo N) and (b) one cycle corresponds to exactly
N jumps. Having sampled the midpoint and number of jumps in the two intervals,
we proceed according to the bisection algorithm.

The N jumps are distributed in the two intervals according to a multinomial
distribution with probability vector (1/2, 1/2) and number of trials N , i.e. the
number of jumps in the first interval follows a binomial distribution Bin(N, 1/2)
with parameter 1/2 and N trials. We have outlined the proposal mechanism in
Table 4 (compare with Table 1).

In Figure 6 we show the ratio between the importance sampling variance and
the ’naive’ sampling scheme. Even though the importance sampling scheme takes
information about the type of CTMC into account it appears that we only obtain a
variance reduction when the state space is smaller than 15, and even so it is modest.

12

Table 4: Possible number of jumps in the two intervals in the importance sampling scheme.
In case 8, the last case, the value of the number of jumps k is between 2 and N − 2.

number of jumps number of jumps sampling
case in first interval in second interval probability

1 0 0 0
2 0 ≥ 2 Bin(0;N, 1/2)
3 ≥ 2 0 Bin(n;N, 1/2)
4 ≥ 2 ≥ 2 0

5 1 1 0
6 1 ≥ 2 Bin(1;N, 1/2)
7 ≥ 2 1 Bin(n− 1;M, 1/2)
8 ≥ 2 ≥ 2 Bin(k;N, 1/2)

0 1 2 3 4 5

0.
05

0.
10

0.
20

0.
50

1.
00

2.
00

5.
00

10
.0

0
20

.0
0

lambda/(size of state space)

va
ria

nc
e

ra
tio

4
7
10
15

Figure 6: Variance reduction using importance sampling. The variance ratio is the ratio
between the variance from importance sampling and the variance from bisection.

5.3 Quasi Monte Carlo

We finally consider a quasi Monte Carlo approach. We only draw a pseudo-random
number to choose midpoint and the number of jumps in the two intervals. The
remaining part of the bisection algorithm is as before. In Figure 7 we compare the
two sampling schemes. It is quite clear that QMC is a very efficient strategy to
improve the convergence rate for the algorithm.

13

0 200 400 600 800 1000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Replication

P
ro

ba
bi

lit
y

Quasi MC
Bisection
True

0 200 400 600 800 1000

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Replication

R
el

at
iv

e
er

ro
r

Quasi MC
Bisection
Quasi MC
Bisection

Figure 7: Quasi Monte Carlo. Right: Raw estimation of the probability for one cycle.
Left: Relative error (defined as (true-obs)/true).

6 Conclusions and extensions
1. As mentioned in the Introduction, we do not believe that bisection in itself

is a major improvement of existing methods for simulating CTMC bridges,
but that the justification of the method rather is its potential for variance
reduction. We find this potential well illustrated via the numerical examples,
stressing that these are rather crude by only using variance reduction methods
for the midpoint T/2. A substantial improvement is to be expected if in
addition one incorporates T/4, 3T/4 and so on. For stratification, this is
unfeasible for even moderate state spaces, since the order of strata increases
from 4N to (4N)3 by just going from T/2 to T/2, T/4, 3T/4. However, the
situation is much better for importance sampling and quasi Monte Carlo, and
in particular, such an extension could well dramatically change the somewhat
disappointing behavior of importance sampling.

2. Another extension not implemented here is hybrid algorithms where the bi-
section is only used to generate say X(T/2), X(1/4), X(3T/4) (and possibly
the number of jumps in each of the 4 intervals), to apply variance reduction
techniques ideas to these r.v.’s only and generate the rest of the sample path
by some other algorithm, say rejection sampling which is superior when the
endpoint conditioning is not rare.

3. A phase-type distribution is the distribution of the absorption time τ of a
Markov process X∗ on {0, 1, . . . ,M}, where 0 is absorbing and the states
in 1, . . . ,M non-absorbing, and having some specified initial probabilities ξa,
a = 1, . . . ,M . In simulation-based statistical estimation, one needs to generate
a sample path of X∗ conditioned on τ = T . An algorithm is suggested in [7]
and uses Gibbs sampling.

The problem can, however, be translated to endpoint conditioned simula-
tion. To this end, one simply computes the probability ηb that X∗(τ−) = b

14

(this reduces to simple matrix algebra but we omit the details). One then
draws a, b ccording to the ξa and ηb, and simulates X∗ conditioned to have
endpoints a, b and no transitions to state 0 in [0, T].

4. Another potential application of the bisection algorithm is in combination with
the uniformization algorithm. To this end, one first notes that since it is not
essential to split intervals into two of exactly equal size, our algorithm applies
with minor changes to discrete time Markov chains, in this case the chain at
Poisson times. Doing so has the potential advantage that a segment of length
K where the Markov chain is constant can be simulated in a single step instead
of K steps. This is appealing in situations where the qi are of different orders
of magnitudes, since then segments with large K are likely to show up in the
sample path.

7 Appendix

Consider a CTMC {X(t) : 0 ≤ t ≤ T} with rate matrix Q and endpoints X(0) =
a and X(T) = b. In this Appendix we provide a recursion for the number of
substitutions using the approach suggested by [28].

Consider a uniformization of the process. Let

R = I + 1
µ
Q,

where µ = maxcQc. Furthermore, let J denote the (stochastic) number of jumps
(including virtual) and N the (stochastic) number of substitutions (excluding the
virtual jumps). Siepel, Pollard and Haussler’s formula for the number of substitu-
tions is based on the following fundamental observation

P (n, b|a, T) = P (N(T) = n,X(T) = a|X(0) = a)

=
∞∑

j=n

P (N(T) = n,X(T) = b, J(T) = j|X(0) = a)

=
∞∑

j=n

P (N(T) = n,X(T) = b|J(T) = j,X(0) = a)P (J(T) = j|X(0) = a)

=
∞∑

j=n

P (n, b|j, a) Pois(j|µT). (7)

Here Pois(·|µT) is the Poisson distribution with rate µT . Note that P (n, b|j, a)
does not depend on the time interval. Also note that we can find the transition
probabilities from

Pab(T) = P (b|a, T) =
∞∑

n=0

P (n, b|a, T).

This formula provides a way of calculating the transition probability without using
a diagonalization of the rate matrix.

15

Having calculated P (n, b|a, T) we can easily find the distribution for the number
of endpoint-conditioned substitutions

P (N(T) = n|X(0) = a,X(T) = b) =
P (n, b|a, T)

P (b|a, T)
.

The crucial step for (7) to be useful is a fast way of calculating the quantities
P (n, b|j, a), and [28] provide a recursion for accomplishing this task.

First note that P (n, b|j, a) = 0 if n > j.
For j = 0 we have

P (n, b|j = 0, a) =

{
1 if a = b and n = 0

0 otherwise.
(8)

This provides the basis of the recursion.
For j ≥ 1 we find P (n, b|j, a) for 0 ≤ n ≤ j using the recursion

P (n, b|j, a) = P (N = n, Y (j) = b|J = j, Y (0) = a)

= P (N = n, Y (j) = b, Y (j − 1) = b|J = j, Y (0) = a)

+
∑

c 6=b
P (N = n, Y (j) = b, Y (j − 1) = c|J = j, Y (0) = a)

= RbbP (n, b|j − 1, a) +RcbP (n− 1, c|j − 1, a), (9)

where Y is the uniformized (auxiliary) process that includes the virtual jumps.
The actual implementation of the recursion is described in the following algo-

rithm:

1. Initialization. Fix a to the desired value and calculate basis of recursion
using (8). Set j = 1.

2. Recursion. Define matrix Mj(b, n) with number of rows equal to the size of
the state space and (j + 1) columns. Calculate entries Mj(b, n) = P (n, b|a, j)
using (9).

3. Stopping Criteria. If
∑

n,bMj(b, n) = 1 to machine precision, then stop.
Otherwise set j = j + 1 and go to 2.

References
[1] Asmussen, S. and Glynn, P.W. (2007). Stochastic Simulation. Algorithms and

Analysis Springer-Verlag.

[2] Asmussen, S. and Hobolth, A. (2008). Bisection ideas in end-point conditioned
Markov process simulation. In Proceedings of the 7th International Workshop
on Rare Event Simulation (G. Rubino and B. Tuffin, eds.), 121–130. Rennes,
France.

[3] Avramidis, A.N., L’Ecuyer, P. and Tremblay, P.-A. (2003) Efficient simulation
of gamma and variance-gamma processes. In Proceedings of the 2003 Winter
Simulation Conference (S. Chick et al., eds.).

16

[4] Beskos, A., Papaspiliopoulos,O. and Roberts, G.O. (2006) Retrospective ex-
act simulation of diffusion sample paths with applications. Bernoulli 12,
1077–1098.

[5] Beskos, A., Papaspiliopoulos, O., Roberts, G. O. (2008a). A factorisation of dif-
fusion measure and finite sample path constructions. Methodol. Comput. Appl.
Probab. 10, 85–104

[6] Beskos, A., Roberts, G.O., Stuart, A. and Voss, J. (2008b) MCMC methods
for diffusion bridges. Stoch. Dyn. 8, 319–350.

[7] Bladt, M., Gonzales, A. and Lauritzen, S.L. (2003). The estimation of phase-
type related functionals using Markov chain Monte Carlo. Scand. Act. J. 4,
280–300.

[8] Bladt, M. and Sørensen, M. (2009) Simple simulation of diffusion bridges
with application to likelihood inference for diffusions. http://www.math.ku.
dk/~michael/diffusionbridge0809.pdf

[9] Caflish, R.E. and Moskowitz, B. (1995) Modified Monte Carlo methods using
quasi-random sequences. In Monte Carlo and Quasi-Monte Carlo Methods in
Scientific Computing (H. Niederreiter and P.J.-S. Shine, eds.). Lecture Notes
in Statistics 106, 1–16. Springer-Verlag

[10] Caflish, R.E., Morokoff, W. and Owen, A.B. (1997) Valuation of mortgage-
backed securities using Brownian bridges to reduce effective dimension. J. Com-
put. Finance 1, 27–46.

[11] Ewens, W.J. and Grant, G.R. (2001). Statistical methods in Bioinformatics.
Springer-Verlag.

[12] Fearnhead, P. and Sherlock, C. (2006). An exact Gibbs sampler for the Markov-
modulated Poisson process. J.R. Statist. Soc. B 68, 767–784.

[13] Felsenstein, J. (1981). Evolutionary trees from DNA sequences: a maximum
likelihood approach. J. Mol. Evol. 17, 368–376.

[14] Felsenstein, J. (2004). Inferring Phylogenies. Sinauer Associates, Inc.

[15] Fitzsimmons, P., Pitman, J. and Yor, M. (1992) Markovian bridges: construc-
tion, Palm interpretation and splicing. In Seminar on Stochastic Processes.
Progress in Probability 32, 101–134.

[16] Hobolth, A. (2008) A Markov chain Monte Carlo expectation maximization
algorithm for statistical analysis of DNA sequence evolution with neighbour-
dependent substitution rates. Journal of Computational and Graphical Statis-
tics 17, 138–164.

[17] Hobolth, A. and Stone, E.A. (2009). Efficient simulation from finite-state,
continuous-time Markov chains with incomplete observations. Ann. Appl.
Statist. 3, 1204–1231.

17

[18] Leobacher, G. (2006) Stratified sampling and quasi-Monte Carlo simulation of
Lévy processes. Monte Carlo Methods and Applications 12, 231–238

[19] Kimura, M. (1980). A simple method for estimating evolutionary rates of base
substitutions through comparative studies of nucleotide sequences. J. Mol. Evol.
16, 111–120.

[20] Leobacher, G. (2006). Stratified sampling and quasi-Monte Carlo simulation
of Levy processes. Monte-Carlo methods and applications (12), Nr. 3-4, pp.
231–238.

[21] Metzner, P., Dittmer, E., Jahnkea, T. and Schüttea, C. (2007). Generator es-
timation of Markov jump processes. Journal of Computational Physics 227,
353–375.

[22] Moler, C. and Van Loan, C. (2003). Nineteen dubious ways to compute the
exponential of a matrix, twenty-five years later. SIAM Review 45, 3–49.

[23] Moskowitz, B. and Caflish, R.E. (1996) Smoothness and dimension reduction in
quasi-Monte Carlo methods. Journal of Mathematical and Computer Modeling
23, 37–54.

[24] Nielsen, R. (2002). Mapping mutations on phylogenies. Syst. Biol., 51, 729–739.

[25] Ribeiro, C. and Webber, N. (2003) Valuing path-dependent options in the
variance-gamma model by Monte Carlo with a gamma bridge. J. Comput. Fi-
nance 7, 81–100.

[26] Ribeiro, C. and Webber, N. (2006) Correction for simulation bias in Monte
Carlo methods to value exotic options in models driven by Lévy processes.
Appl. Math. Finance 13, 333–352.

[27] Roberts, G.O. and Stramer, O. (2001) On inference for partially observed non-
linear diffusion processes using Metropolis-Hastings algorithms. Biometrika 88,
603–621.

[28] Siepel, A., Pollard, K.S. and Haussler, D. (2006). New methods for detecting
lineage-specific selection. Proceedings of the 10th International Conference on
Research in Computational Molecular Biology (RECOMB), 190–205.

18

