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METRICAL RESULTS ON
SYSTEMS OF SMALL LINEAR FORMS

M. HUSSAIN AND S. KRISTENSEN

Abstract. In this paper the metric theory of Diophantine approximation associ-
ated with the small linear forms is investigated. Khintchine–Groshev theorems are
established along with Hausdorff measure generalization without the monotonic
assumption on the approximating function.

1. Introduction

Let ψ : N → R+ be a function tending to 0 at infinity referred to as an ap-
proximation function. An m × n matrix X = (xij) ∈ Imn := [0, 1]mn is said to be
ψ–approximable if the system of inequalities

|q1x1i + q2x2i + · · ·+ qmxmi| ≤ ψ(|q|) for (1 ≤ i ≤ n),

is satisfied for infinitely many q ∈ Zm \ {0}. Here and throughout, the system
q1x1i + · · · + qmxmi of n linear forms in m variables will be written more concisely
as qX, where the matrix X is regarded as a point in Imn and |q| denotes the
supremum norm of the integer vector q. The set of ψ–approximable points in Imn
will be denoted by W0(m,n;ψ);

W0(m,n;ψ) := {X ∈ Imn : |qX| < ψ(|q|) for i.m. q ∈ Zm \ {0}},
where ‘i.m.’ means ‘infinitely many’. For a monotonic approximating function, the
metric theory has been established for the set W0(m,n;ψ) in [17] (the dimension
of this set was obtained in [10]) and it’s generalization to mixed case in [8]. The
aim of this paper is to discuss the metric theory for the set W0(m,n;ψ) without the
monotonicity assumption on the approximating function.

It is worth relating the above to the set of ψ–approximable matrices as is often
studied in classical Diophantine approximation. In such a setting studying the metric
structure of the lim sup-set

W (m,n;ψ) = {X ∈ Imn : ‖qX‖ < ψ(|q|) for i.m. q ∈ Zm \ {0}},
where ‖x‖ denotes the distance of x to the nearest integer vector, is a central problem
and the theory is well established, see for example [1, 2, 6, 12, 22]. In the case
that the approximating function is monotonic, the main result in this setting is the
Khintchine-Groshev theorem which gives an elegant answer to the question of the
size of the setW (m,n;ψ). The result links the measure of the set to the convergence
or otherwise of a series that depends only on the approximating function and is the
template for many results in the field of metric number theory. The following is an
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2 M. HUSSAIN AND S. KRISTENSEN

improved modern version of this fundamental result – see [2] and references within.
Given a set X, |X |k denotes k-dimensional Lebesgue measure of X.

Theorem(Khintchine-Groshev). Let ψ be an approximating function. Then

|W (m,n;ψ) |mn =





0 if
∞∑
r=1

rm−1ψ(r)n <∞,

1 if
∑∞

r=1 rm−1ψ(r)n =∞ and ψ is monotonic.

The convergence part is reasonably straightforward to establish from the Borel–
Cantelli Lemma and is free from any assumption on ψ. The divergence part con-
stitutes the main substance of the Khintchine–Groshev theorem and involves the
monotonicity assumption on the approximating function. It is worth mentioning
that in the original statement of the theorem [15, 19, 20] the stronger hypothesis
that qmψ(q)n is monotonic was assumed. In the one-dimensional case (m = n = 1), it
is well known that the monotonicity hypothesis in the Khintchine-Groshev theorem
is absolutely crucial. Indeed, Duffin and Schaeffer [11] constructed a non-monotonic
function for which

∑∞
q=1 ψ(q) diverges but |W (1, 1;ψ)| = 0. In other words the

Khintchine-Groshev theorem is false without the monotonicity hypothesis and the
conjectures of Catlin [7] and Duffin and Schaeffer [11] provide appropriate alternative
statements, see [1] for the details and generalizations of Duffin-Schaeffer and Catlin
conjectures to the linear forms. Beyond the one-dimensional case the monotonicity
assumption on the approximating function is completely removed. The proof is
attributed to various authors for different values of m. For m = 1, Khintchine–
Groshev theorem without the monotonicity of ψ was proved by Gallagher [14]. For
m = 2, this was recently proved by Beresenevich and Velani in [4]. For m ≥ 3 it can
be derived from Schmidt [21, Theorem 2] or Sprindzǔk’s [22, §1.5, Theorem 15].

It is readily verified thatW0(1, n;ψ) = {0} as any x = (x1, x2, . . . , xn) ∈ W0(1, n;ψ)
must satisfy the inequality |qxj| < ψ(q) infinitely often. As ψ(q)→ 0 as q →∞ this
is only possible if xj = 0 for all j = 1, 2, . . . , n. Thus when m = 1 the set W0(1, n;ψ)
is a singleton and must have both zero measure and dimension. We will therefore
assume that m ≥ 2.

Notation. To simplify notation the Vinogradov symbols � and � will be used to
indicate an inequality with an unspecified positive multiplicative constant depending
only on m and n. If a � b and a � b we write a � b, and say that the quantities
a and b are comparable. A dimension function is an increasing continuous function
f : R+ → R+ such that f(r)→ 0 as r → 0. Throughout the paper, Hf denotes the
f–dimensional Hausdorff measure which will be fully defined in section 3.1. Finally,
for convenience, for a given approximating function ψ, define the function

Ψ(r) :=
ψ(r)

r
.

2. Statement of the Results

The main results below depend critically on assumptions on m and n. In order to
get beyond the Duffin–Schaeffer counterexample (see below), we will always assume
that m + n > 3. However, an additional phenomenon occurs when the number
of forms is greater than or equal to to the number of variables (m ≤ n), and we
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will have to treat each case separately. Our first result concerns the case when the
number of variables exceeds the number of forms.

Theorem 2.1. Let m > n, m+ n > 3 and ψ be an approximating function. Let f ,
r−n

2
f(r) and r−(m−n−1)nf(r) be dimension functions such that r−mnf(r) is mono-

tonic. Then

Hf (W0 (m,n;ψ)) =





0 if
∞∑
r=1

f(Ψ(r))Ψ(r)−(m−1)nrm−1 <∞,

Hf (Imn) if
∞∑
r=1

f(Ψ(r))Ψ(r)−(m−1)nrm−1 =∞.

As in most of the statements the convergence part is reasonably straightforward to
establish and is free from any assumptions on m,n and the approximating function.
This fact was already established in [17, Theorem 4]. It is the divergence statement
which constitutes the main substance and this is where conditions come into play.

The requirement that r−mnf(r) be monotonic is a natural and not particularly re-
strictive condition. Note that if the dimension function f is such that r−mnf(r)→∞
as r → 0 then Hf (Imn) =∞ and Theorem 2.1 is the analogue of the classical result
of Jarník (see [9, 18]). In the case when f(r) := rmn the Hausdorff measure Hf is
proportional to the standardmn–Lebesgue measure supported on Imn and the result
is the natural analogue of the Khintchine–Groshev theorem for W0 (m,n;ψ).

Corollary 2.2. Let m > n and m + n > 3. Let ψ be an approximating function,
then

|W0 (m,n;ψ) |mn =





0 if
∞∑
r=1

ψ(r)nrm−n−1 <∞,

1 if
∞∑
r=1

ψ(r)nrm−n−1 =∞.

In the results above, the condition m+ n > 3 is absolutely necessary. For m = 1
the set W0(1, n;ψ) is singleton as already remarked. For m = 2, n = 1, the Duffin–
Schaeffer counter example can be exploited to show that there exists a function ψ
such that ∞∑

r=1

ψ(r) =∞ but |W0(2, 1;ψ)|2 = 0.

Indeed, the Duffin–Schaeffer counter example provides us with a function ψ, such
that the set

DS = {y ∈ R : |qy − p| < ψ(q) for infinitely many p, q ∈ Z}
is Lebesgue null, while the sum

∑
ψ(r) = ∞. Using this function as a ψ in the

definition of W0(2, 1;ψ) and assuming the measure of the latter set to be positive,
using the ideas below in the proof of Theorem 2.1, this will imply that DS has
positive Lebesgue measure.

For m ≤ n the conditions on the dimension function in Theorem 2.1 change.
This change is due to the fact that if X ∈ W0(m,n;ψ) and m ≤ n then a linear
system of equations given by X is over-determined and the set of solutions lies
in a subset of strictly lower dimension than mn. Hence, the corresponding set of
ψ-approximable systems of forms will concentrate on a lower dimensional surface.
This is proved in [17] where it is shown that for m ≤ n the set W0 (m,n;ψ) lie on
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a (m − 1)(n + 1)–dimensional hypersurface Γ. Therefore, naturally, we expect the
analogue of Theorem 2.1 holds on Γ.

Theorem 2.3. Let 2 < m ≤ n and ψ be an approximating function. Let f ,
r−n

2
f(r), r−(m−n−1)nf(r) and r−(n−m+1)(m−1)f(r) be dimension functions such that

r−(m−1)(n+1)f(r) is monotonic. Then

Hf (W0(m,n;ψ)) = 0 if
∞∑

r=1

f(Ψ(r))Ψ(r)−(m−1)nrm−1 <∞.

On the other hand, if
∞∑

r=1

f(Ψ(r))Ψ(r)−(m−1)nrm−1 =∞,

then

Hf (W0(m,n;ψ)) =





∞ if r−(m−1)(n+1)f(r)→∞ as r → 0,

K if r−(m−1)(n+1)f(r)→ C as r → 0,

for some fixed constant 0 ≤ C <∞, where 0 < K <∞.

Note that for a dimension function f which satisfies r−(m−1)(n+1)f(r) → C > 0
as r → 0 the measure Hf is comparable to standard (m − 1)(n + 1)-dimensional
Lebesgue measure and in the case when f(r) = r(m−1)(n+1), we obtain the following
analogue of the Khintchine-Groshev theorem.

Corollary 2.4. Suppose 2 < m ≤ n and assume that the conditions of Theorem 2.3
hold for the dimension function f(r) := r(m−1)(n+1). Then

|W0(m,n;ψ)|(m−1)(n+1) =





0 if
∑∞

r=1 ψ(r)m−1 <∞,

K if
∑∞

r=1 ψ(r)m−1 =∞,
where 0 < K <∞.

3. Machinery

The machinery required for the proofs of both the theorems is the Mass Transfer-
ence Principle along with ‘slicing’ technique. We merely state the results and refer
the reader to [3] for further details.

3.1. Hausdorff Measure and Dimension. Below is a brief introduction to Haus-
dorff f–measure and dimension. For further details see [5, 12]. Let F ⊂ Rn. For
any ρ > 0 a countable collection {Bi} of balls in Rn with diameters diam(Bi) ≤ ρ
such that F ⊂ ⋃iBi is called a ρ–cover of F . Define

Hf
ρ(F ) = inf

∑

i

f(diam(Bi)),

where the infimum is taken over all possible ρ–covers of F . The Hausdorff f–measure
of F is

Hf (F ) = lim
ρ→0
Hf
ρ(F ).
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In the particular case when f(r) = rs with s > 0, we writeHs forHf and the measure
is referred to as s–dimensional Hausdorff measure. The Hausdorff dimension of F
is denoted by dimF and is defined as

dimF := inf{s ∈ R+ : Hs(F ) = 0}.
3.2. Slicing. We now state a result which is the key ingredient in the proof of The-
orems 2.1 and 2.3. The result was used in [3] to prove the Hausdorff measure version
of the W. M. Schmidt’s inhomogeneous linear forms theorem in metric number the-
ory. The authors refer to the technique as ‘slicing’. Before we state the result it is
necessary to introduce a little notation.

Suppose that V is a linear subspace of Rk, V ⊥ will be used to denote the linear
subspace of Rk orthogonal to V . Further V + a := {v + a : v ∈ V } for a ∈ V ⊥.

Lemma 3.1. Let l, k ∈ N be such that l ≤ k and let f and g : r → r−lf(r) be
dimension functions. Let B ⊂ Ik be a Borel set and let V be a (k − l)–dimensional
linear subspace of Rk. If for a subset S of V ⊥ of positive Hl measure

Hg (B ∩ (V + b)) =∞ ∀ b ∈ S,
then Hf (B) =∞.
3.3. A Hausdorff measure version of Khintchine–Groshev theorem. As an
application of the mass transference principle for system of linear forms developed
in [3] the Hausdorff measure version of the Khintchine–Groshev theorem is estab-
lished without the monotonic assumption on the approximating function in [1, The-
orem 15]. The additional assumption that ψ is monotonic was assumed in [1] for
the case m = 2, but subsequently removed in [4].

Theorem 3.2. Let ψ be an approximating function and m + n > 2. Let f and
r−(m−1)nf(r) be dimension functions such that r−mnf(r) is monotonic. Then,

Hf (W (m,n;ψ)) =





0 if
∞∑
r=1

f(Ψ(r))Ψ(r)−(m−1)nrm+n−1 <∞

Hf (Imn) if
∞∑
r=1

f(Ψ(r))Ψ(r)−(m−1)nrm+n−1 =∞ .

Theorem 3.2 along with Lemma 3.1 will be used to prove the infinite measure case
of Theorem 2.1.

4. Proof of Theorem 2.1

As stated earlier the condition r−mnf(r) is not a restrictive condition. The state-
ment of the Theorem essentially reduces to two cases, finite measure case, i.e., when
r−mnf(r)→ C > 0 as r → 0 and to the infinite measure case which corresponds to
r−mnf(r)→∞ as r → 0. Therefore, we split the proof of the Theorem 2.1 into two
parts, the finite measure case and the infinite measure case.

Before proceeding, we will need the following key lemma, which will make our
proofs work.

Lemma 4.1. Let S ⊆ Mat(m−n)×n(R) of full Lebesgue measure. Let A ⊆ GLn×n(R)
be a set of positive Lebesgue measure. Then, the set

Λ =

{(
X
XY

)
∈ Matm×n(R) : X ∈ A, Y ∈ S

}
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has full Lebesgue measure inside A× S.
Proof. Without loss of generality, we will assume that |A|n2 <∞. If this is not the
case, we will take a subset of A. Suppose now for a contradiction that |(A×S)\Λ| > 0
and let Z be a point of metric density for this set. We will show that the existence
of such a point violates the condition that S is full.

Fix an ε > 0. There is a δ > 0 such that
|Λ ∩B(Z, δ)|
|B(Z, δ)| <

ε

2mn+1
,

where B(Z, δ) denotes the ball centred at Z of radius δ. By definition of the Lebesgue
measure, we may take a cover C of Λ ∩B(Z, δ) by hypercubes in Rmn such that

∑

C∈C
diam(C)mn <

ε

2mn
|B(Z, δ)| = εδmn.

The latter equality follows as we are working in the supremum norm, so that a ball
of radius δ is in fact a hypercube of side length 2δ. We let A0 ⊆ A be the set of
those X ∈ A for which there is a Y ∈ S such that

(
X
XY

)
∈ B(Z, δ). Note that by

Fubini’s Theorem A0 has positive Lebesgue measure. In fact, the measure is equal
to 2n

2
δn

2 .
For any X ∈ A0 we define the set

B(X) =

{(
X
XY

)
∈ B(Z, δ) : Y ∈ S

}
.

Note that

C(X) =

{((
X

Mat(m−n)×n(R)

)
∩ C

)
∈ Matm×n(R) : C ∈ C

}
.

is a cover of B(X) by (m− n)n-dimensional hypercubes.
As in [16], we define for each C ∈ C a function,

λC(X) =





1 if

((
X

Mat(m−n)×n(R)

)
∩ C

)
6= ∅

0 otherwise.

It is easily seen that ∫

A0

λC(X)dX ≤ diam(C)n
2

,

where the integral is with respect to the n×n-dimensional Lebesgue measure. Also,
∑

C∈C(X)

diam(C)(m−n)n =
∑

C∈C
λC(X) diam(C)(m−n)n.

We integrate the latter expression with respect to X to obtain
∫

A0

∑

C∈C(X)

diam(C)(m−n)ndX =
∑

C∈C

∫

A0

λC(X)dX diam(C)(m−n)n

≤
∑

C∈C
diam(C)mn < ε|B(Z, δ)|.
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Since the right hand side is an integral of a non-negative function over a set of
positive measure, there must be an X0 ∈ A0 with

∑

C∈C(X0)

diam(C)(m−n)n <
ε|B(Z, δ)|
µ(A0)

=
εδmn

2n2δn2 =
ε

2n2 δ
n(m−n). (1)

Indeed, otherwise
∫

A

∑

C∈C(X)

diam(C)(m−n)ndX ≥
∫

A

ε|B(Z, δ)|
µ(A)

dX = ε.

We may now estimate the (m−n)n-dimensional measure of B(X0) from above by
this sum. This gives an upper estimate on the measure of B(In), as X0 is invertible.
Furthermore, this estimate can be made arbitrarily small. But B(In) is a cylinder
set over S, so this is a clear contradiction since S was assumed to be full. �

In applications, we will apply Lemma 4.1 with the set S being W (m− n, n, ;ψ).
This set is however a subset of I(m−n)n, and so not full within Mat(m−n)×n(R). It
is however invariant under tranlation by integer vectors, so this causes no loss of
generality.

4.1. Finite measure. In order to proceed, we will make some restrictions. Let
ε > 0 and N > 0 be fixed but arbitrary. It is to be understood that ε will be
small eventually and N large. We will define a set Aε,N of m× n-matrices which is
smaller than the whole, but which tends to the whole set as ε→ 0. As ε and N are
arbitrary, if we can prove that the divergence assumption implies that W0(m,n;ψ)
is full inside Aε,N , this will give the full result.

For an m×n-matrix X, let X̃ denote the n×n-matrix formed by the first n rows.
We will be considering a set for which X̃ is invertible. Evidently, the exceptional
set is of measure zero within Rmn. However, to make things work, we will need to
work with the set

Aε,N =
{
X ∈ Matm×n(R) : ε < det(X̃) < ε−1, max

1≤i,j≤n
|xij| ≤ N

}

The set is of positive measure for ε small enough and N large enough, and as ε
decreases and N increases, the set fills up Matm×n(R) with the exception of the
null-set of matrices X such that X̃ is singular.

We will translate the statement about small linear forms to one about usual
Diophantine approximation. This will allow us to conclude from a Khintchine–
Groshev theorem. We may rewrite the X as

X =

(
X̃
X ′

)
=

(
In
X̂

)
X̃,

where X ′ denotes the matrix consisting of the last m−n rows of the original matrix
and X̂ denotes the matrix X ′X̃−1.

Consider the set of n linear forms in m − n variables defined by the matrix X̂.
Suppose furthermore that these linear forms satisfy the inequalities

‖rX̂‖i ≤
ψ(|r|)
nN

, 1 ≤ i ≤ n, (2)

for infinitely many r ∈ Zm−n \ {0}, where ‖x‖i denotes the distance from the i’th
coordinate of x to the nearest integer. A special case of Khintchine–Groshev states,
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that the divergence condition of our theorem implies that the set of such linear forms
X̂ is full inside the set of (m− n)× n-matrices, and hence in particular also in the
image of Aε,N under the map sending X to X̂.

Now, suppose that X ∈ Aε,N is such that X̂ is in the set defined by (2). We
claim that X is in W0(m,n : ψ). Indeed, let rk be an infinite sequence such that
the inequalities (2) are satisfied for each k, and let pk be the nearest integer vector
to rkX̂. Now define qk = (pk, rk). The inequalities defining W0(m,n, ψ) will be
satisfied for these values of qk, since

|qkX| = |qk
(
In
X̂

)
X̃| = |(±‖rkX̂‖1, . . . ,±‖rkX̂‖n)X̃|.

The i’th coordinate of the first vector is at most ψ(|q|)/nN , so carrying out the
matrix multiplication, using the triangle inequality and the fact that |xij| ≤ N for
1 ≤ i, j ≤ n shows that

|qkX|i < ψ(|qk|).
Applying Lemma 4.1, the divergence part of Theorem 2.1 follows in the case of
Lebesgue measure.

4.2. Infinite measure. The infinite measure case of the Theorem 2.1 can be easily
deduced from the following lemma.

Lemma 4.2. Let ψ be an approximating function and let f and g : r → r−n
2
f(r)

be dimension functions with r−mnf(r) → ∞ as r → 0. Further, let r−(m−n−1)ng(r)
be a dimension function and r−(m−n)ng(r) be monotonic. If

∞∑

r=1

f(Ψ(r))Ψ(r)−(m−1)nrm−1 =∞,

then
Hf (W0(m,n;ψ)) =∞.

Proof. We define a Lipschitz map to transform our problem to a classical one. As
in the finite measure case, we fix ε > 0, N ≥ 1 and let

Aε,N =
{
X ∈ Matm×n(R) : ε < det(X̃) < ε−1, max

1≤i,j≤n
|xij| ≤ N

}
,

where X̃ denotes the n × n-matrix formed by the first n rows. We also define the
set

Ãε,N =
{
X̃ ∈ GLn(R) : ε < det(X̃) < ε−1, max

1≤i,j≤n
|xij| ≤ N

}
.

For an appropriately chosen constant c > 0 depending only on m,n, ε and N , we
find that the map

η : W (m− n, n, cψ)× Ãε,N → W0(m,n, ψ), (Y,X) 7→
(
X
YX

)
, (3)

is a Lipschitz embedding. Indeed, it is evidently injective as X is invertible for
all elements of the domain. The Lipschitz condition follows as we have restricted
the determinant to being positive. That the image is in W0(m,n, ψ) follows by
considering the system of inequalities as above and choosing c > 0 accordingly as
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above in the finite measure case. Consequently, the map η is bi-Lipschitz onto its
image. We have,

Hf (W0(m,n;ψ)) ≥ Hf
(
η
(
W (m− n, n;ψ)× Ãε,N

))

� Hf
(
W (m− n, n;ψ)× Ãε,N

)
.

The main idea of the proof is now to apply slicing, refer to Lemma 3.1, to a
tranlate of the Borel set B := W (m − n, n;ψ) × Ãε,N ⊆ Imn. Initially, we fix an
arbitrary point X0 ∈ Ãe,N . Let σ : Rn2 → Rn2 be the translation map sending X0

to the origin, i.e., σ(X) = X − X0. Let σ̃ : Rmn → Rmn be the map which leaves
the upper (m − n) × n matrix untouched but applies σ to the lower n × n matrix.
We apply these maps to all sets above. This leaves Hausdorff measure invariant, so
by abuse of notation we will denote the translated sets by the same letters as the
original ones.

Let V be the space
I(m−n)n × {0}n2

.

Let
S = V ⊥ := {0}(m−n)n × In2

and further it has positive Hn2-measure. Now for each b ∈ S
Hg (B ∩ (V + b)) = Hg

(
(W (m− n, n;ψ)× Ãε,N) ∩ (V + b)

)

= Hg
((
W (m− n, n;ψ)× {0}n2)

+ b
)

� Hg(W (m− n, n;ψ))

=∞ if
∞∑

r=1

g(Ψ(r))Ψ(r)−(m−n−1)nrm−1 =∞.

The slicing lemma yields that

Hf
(
W (m− n, n;ψ)× Ãε,N

)
=∞ if

∞∑

r=1

g(Ψ(r))Ψ(r)−(m−n−1)nrm−1 =∞.

Since, g : r → r−n
2
f(r), we have

Hf (W0(m,n;ψ)) =∞ if
∞∑

r=1

f(Ψ(r))Ψ(r)−(m−1)nrm−1 =∞.

�

5. Proof of Theorem 2.3

The method of proof of Theorem 2.3 is similar to Theorem 2 of [17] which relies
mainly on Theorem 2.1 and the slicing technique. To be brief, one first shows that
for m ≤ n, the set W0(m,n;ψ) must be contained in a hypersurface of dimension at
most (m− 1)(n + 1) < mn. This follows by proving that if X ∈ W0(m,n;ψ), then
the columns of X must be linearly dependent.

This required linear dependence can be removed from the problem by introducing
another bi-Lipschitz map to a non-degenerate setting. The above methods applied
for the case m > n can then be applied to the non-degenerate setting in both the
case of finite and infinite measure. The details are essentially the same as those
in [17], and are left to the interested reader.
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6. Concluding remarks

In this paper we have made no effort to remove monotonic assumption on the ap-
proximating function to prove the analogue of Khintchine–Groshev theorem for the
absolute value setup. However there are still some open territories not investigated
in this paper. To conclude the paper we discuss them here.

Theorem 2.1 provides a beautiful ‘zero–full’ criterion under certain divergent sum
conditions but on the other hand Theorem 2.3 provides ‘zero–positive’ criterion. The
later theorem relies on taking the linear combinations of the independent vectors
from the former but the combinations does not span the full space. It is natural to
conjecture that a ‘zero–full’ law for Theorem 2.3 does indeed hold.

In the current paper settings the approximating function ψ is dependent on the
supremum norm of the integer vector q. Clearly, a natural generalization is to
consider multivariable approximating function, Ψ : Zm → R+ and their associated
set W0(m,n; Ψ).

Another natural generalisation is the case of different rates of approximation for
each coordinate, i.e., when we consider inequalities

|q1x1i + q2x2i + · · ·+ qmxmi| ≤ ψi(|q|) for (1 ≤ i ≤ n),

where the ψi are potentially different error functions. In this case, it is shown
in [13] that the analogue Corollary 2.2 holds with ψ(r)n in the series replaced by
ψ1(r) · · ·ψn(r).
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