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Abstract

In the present paper, we develop Lévy-based error prediction in circular sys-
tematic sampling. We use a model-based statistical setting as in Hobolth and
Jensen (2002), but relax the assumption that the measurement function is
Gaussian. The measurement function is represented as a periodic stationary
stochastic process X obtained by a kernel smoothing of a Lévy basis. The
process X may have an arbitrary covariance function. The distribution of the
error predictor, based on measurements in n systematic directions is derived.
Statistical inference is developed for the model parameters in the case where
the covariance function follows the celebrated p-order covariance model.

Keywords: Fourier series; Lévy basis; planar particles; saddlepoint approxima-
tion; stationary stochastic processes; stereology; systematic sampling

1 Introduction

A long-standing problem in stereology is variance estimation in systematic sampling.
One class of problems involves estimation of an integral of the form

Q =

∫ 2π

0

x(θ)dθ, (1)

where x(θ) is an integrable function on [0, 2π), called the measurement function. The
estimator typically considered is based on circular systematic sampling and takes
the form

Q̂n =
2π

n

n−1∑

i=0

x

(
Θ +

2πi

n

)
, (n ≥ 1),

where Θ is uniformly distributed in [0, 2π
n

). For instance, if Y is a bounded convex
planar set containing the origin O, examples of (1) are

x(θ) =

{
1
2
r(θ)2 if Q = area of Y ,
h(θ) if Q = boundary length of Y ,
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where r(θ) and h(θ) are the radial function and the support function in direction θ,
respectively. The geometric identity (1) is in these cases a consequence of polar
decomposition in the plane and an identity for mean width, cf. e.g. Schneider (1993,
(5.3.12)). If instead Y is a bounded convex spatial set containing O, the volume
and the surface area of Y may be estimated by a two-step procedure which involves
circular systematic sampling in a section through O and the use of the cubed radial
function or the squared support function, cf. Gundersen (1988) and Cruz-Orive
(2005). Yet another example is volume estimation by the so-called vertical rotator,
cf. Jensen and Gundersen (1993).

In Gual-Arnau and Cruz-Orive (2000), a design-based procedure of approximat-
ing the variance of Q̂n, based on modelling the covariogram of x(θ) by a polynomial
model, is developed. Hobolth and Jensen (2002) consider a model-based procedure,
where the measurement function is assumed to be a realization of a periodic station-
ary stochastic Gaussian process X = {X(θ) : θ ∈ [0, 2π)}. It is shown in Hobolth
and Jensen (2002) that the covariogram model considered in the paper by Gual-
Arnau and Cruz-Orive (2000) is a special case of a p-order covariance model for the
stochastic process X in the model-based set-up.

The p-order covariance model is given by

c(θ) = Cov(X(θ), X(0)) = λ0+
∞∑

s=2

λs cos(sθ), λ−1s = α+β(s2p−22p), s ≥ 2, (2)

where the model parameters satisfy p > 1/2, α, β > 0. In Hobolth et al. (2003),
this parametric covariance function has been used in the modelling of the radial
function of a random star-shaped planar particle. In this case, p determines the
smoothness of the particle boundary while α and β determine the ‘global’ and the
‘local’ shape of the particle, respectively. (Note that in (2) λ1 is set to zero which
ensures that the reference point of the particle is approximately the centre of mass.)
The model-based counterpart of the design-based methodology provided in Gual-
Arnau and Cruz-Orive (2000) was further developed in Jónsdóttir et al. (2006),
where the general form of the p-order covariance model (2) was used to obtain a
more accurate approximation of the prediction error E(Q̂n −Q)2.

In Hobolth and Jensen (2002) and Jónsdóttir et al. (2006), the process X is
assumed to be Gaussian. Motivated by the fact that powers of the radial function
and the support function are used in practice, we will in this paper consider non-
Gaussian models, obtained as a kernel smoothing of a so-called Lévy basis. As we
will show, it is possible under the Lévy-based model to derive the distribution of
the error predictor Q̂n −Q which may be markedly non-Gaussian for the moderate
sizes of n used in practice.

Lévy-based modelling has been popular in recent years, e.g. in the modelling of
turbulent flows, spatio-temporal growth, spatial point processes and random fields,
cf. Barndorff-Nielsen and Schmiegel (2004), Jónsdóttir et al. (2008), Hellmund et al.
(2008) and Jónsdóttir et al. (2011). More specifically, we will consider stochastic
processes on the form

X(θ) = µ+

∫ 2π

0

k(θ − φ)Z(dφ), θ ∈ [0, 2π),
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where Z is a homogeneous and factorizable Lévy basis on [0, 2π) and k is a deter-
ministic kernel function. In principle, any covariance model, including the p-order
covariance model, can be induced under this modelling framework, by assuming a
specific form of the kernel function, see Section 2 below. Under the p-order model, it
is easy to control the local and global fluctuations of the stochastic process X. The
Lévy-based models with p-order covariance thus constitute a flexible and tractable
model class. In particular, this model class has more structure than the non-Gaussian
models considered in Hobolth et al. (2003) and this allows us to derive distributional
results.

Section 2 gives a theoretical background for stationary periodic processes with
period 2π based on kernel smoothing of a Lévy basis. In Section 3, estimation of
E(Q̂n−Q)2 under the general Lévy-based model is discussed. In Section 4, we derive
the distribution of the error predictor Q̂n−Q under the Lévy-based model, and show
how to estimate this distribution. This section also provides an example of random
particles simulated from a Lévy-based model and the distribution of the n-point
area estimator of these particles. Finally, a discussion is provided in Section 5. Some
technical derivations are deferred to an appendix.

2 Lévy-based stochastic processes on the circle

This section provides an overview of stationary periodic processes on [0, 2π) based
on integration with respect to a Lévy basis. For further details on the general theory
on Lévy bases, in particular, the integration with respect to a Lévy basis, the reader
is referred to Barndorff-Nielsen and Schmiegel (2004) and Hellmund et al. (2008).

Let X = {X(θ) : θ ∈ [0, 2π)} be a 2π periodic stationary stochastic process on
[0, 2π), given by

X(θ) = µ+

∫ 2π

0

k(θ − φ)Z(dφ), θ ∈ [0, 2π), (3)

where Z is a homogeneous and factorizable Lévy basis on [0, 2π) and k is a periodic
kernel function with period 2π. Furthermore, we will assume that k is an even
function on [0, 2π) with a Fourier representation

k(θ) = ξ0 +
∞∑

s=1

ξs cos(sθ). (4)

A spatio-temporal version of (3) has previously been considered in Jónsdóttir et al.
(2008).

The Lévy basis Z is extended by Z(A + 2πm) = Z(A) for all m ∈ Z and all
Borel sets A ∈ B([0, 2π)). A Lévy basis has the property that Z(A1), . . . , Z(An)
are independent when A1, . . . , An ∈ B([0, 2π)) are disjoint and Z(A) is infinitely
divisible for any A ∈ B([0, 2π)). The assumption of homogeneity implies that all the
finite-dimensional distributions of Z are translation invariant.

If Z is Gaussian, the integral (3) exists if k is L2-integrable with respect to the
Lebesgue measure on [0, 2π). When Z is a so-called Lévy jump basis (e.g. Gamma or
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inverse Gaussian Lévy basis), the integral exists if k is integrable with respect to the
Lebesgue measure on [0, 2π) and if

∫
R|r|V (dr) < ∞, where V is the Lévy measure

associated with Z. These results follow from Hellmund et al. (2008, Lemma 1).
An important entity associated with a Lévy basis is its spot variable Z ′ which

is infinitely divisible. Without loss of generality we will in what follows assume that
the spot variable Z ′ is centered, Z ′ = W −E(W ), where W is an infinitely divisible
random variable.

The following theorem characterizes the distribution of the stochastic variableX(θ).

Theorem 1. The stochastic variable X(θ) has the following cumulant (generating)
function

KX(t) = logE(etX(θ)) = t(µ− 2πξ0E(W )) +

∫ 2π

0

KW (tk(φ))dφ, (5)

where KW (t) is the cumulant function of W . Moreover, the derivatives of KX(t) are
given by (when they exist)

K ′X(t) = µ− 2πξ0E(W ) +

∫ 2π

0

K ′W (tk(φ))k(φ)dφ,

K
(r)
X (t) =

∫ 2π

0

K
(r)
W (tk(φ))k(φ)rdφ, r ≥ 2,

(6)

where K(r)
W (t) denotes the r’th derivative of KW (t).

Proof. The result is obtained by using that the cumulant function of the integral
f•Z =

∫ 2π

0
f(θ)Z(dθ) of a function f with respect to a homogeneous and factorizable

Lévy basis Z is given by

Kf•Z(t) =

∫ 2π

0

KZ′(tf(θ))dθ, (7)

where Z ′ is the spot variable associated with Z, cf. Hellmund et al. (2008, (10)).

It follows that the cumulants of the stochastic variable X(θ) are given by

κ1(X(θ)) = µ, κr(X(θ)) = κr(W )

∫ 2π

0

k(φ)rdφ, r ≥ 2.

Possible choices of the distribution of W are the Gaussian, Gamma and inverse
Gaussian distributions. When the kernel function is proportional to an indicator
function, k(θ) = c1A(θ) for A ∈ B([0, 2π)), the marginal distribution of X(θ) will
be of the same type as that of W . Otherwise, the marginal distribution will not
be as simple, but the process X will inherent the name of the distribution of the
underlying spot variable, e.g. when W is Gamma distributed, X is called a Gamma
Lévy process, irrespectively of the choice of the kernel function. We will typically
assume that κ2(W ) = 1, i.e. the skewness and kurtosis of W are equal to the third
and fourth cumulant, respectively. In Table 1, we give the cumulant function, third
and fourth cumulants of W for the three distributions mentioned above. Note that
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Table 1: Examples of the distribution of W , together with the corresponding cumulant
function, and the third and fourth cumulants.

distribution Gaussian Gamma Inverse Gaussian

W N(0, 1) Γ(η,
√
η) IG(η3, η)

KW (t) −t2/2 −η log(1− t/√η) −η4(1−
√

1− 2t/η2)

κ3(W ) 0 2/
√
η 3/η2

κ4(W ) 0 6/η 15/η4

as W has unit variance, the Gamma and inverse Gaussian Lévy bases are only
determined by a single parameter η > 0. The Lévy measures V of the Gamma and
inverse Gaussian Lévy bases satisfy the condition

∫
R |r|V (dr) <∞ for the existence

of (3), cf. Hellmund et al. (2008, Example 3).

In principle, any covariance function can be modelled within this set-up. This
can be seen, using the theorem below.

Theorem 2. The stochastic process X has a mean value µ and a covariance function

c(θ) = λ0 +
∞∑

s=1

λs cos(sθ), θ ∈ [0, 2π).

where
λ0 = 2πξ20κ2(W ), λs = πξ2sκ2(W ), s ≥ 1. (8)

Proof. Using that

c(θ) = Cov(X(θ), X(0)) = κ2(W )

∫ 2π

0

k(θ − φ)k(−φ)dφ,

we easily obtain equation (8).

Using Theorem 2, we can construct the candidate kernel k that induces a given
covariance function c. For instance, if c follows the p-order model (2), then k is of
the form (4) with

ξ0 =

√
λ0

2πκ2(W )
, ξ1 = 0,

ξs =
1√

πκ2(W )[α + β(s2p − 22p)]
, s ≥ 2.

This choice of kernel will for a Gaussian Lévy basis give a well-defined integral (3) if
p > 1/2, while for a Gamma or an inverse Gaussian basis the integral is well-defined
if p > 1.
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3 Estimating E(Q̂n − Q)2 under the Lévy-based
model

In Hobolth and Jensen (2002), the focus was on the prediction error E(Q̂n−Q)2. If
the covariance function of X has the following Fourier expansion

c(θ) = λ0 +
∞∑

s=1

λs cos(sθ), θ ∈ [0, 2π),

then it was shown in Hobolth and Jensen (2002) that

E(Q̂n −Q)2 =
∞∑

k=1

λnk. (9)

Note that in Hobolth and Jensen (2002), circular systematic sampling on [0, 1) in-
stead of [0, 2π) is considered, so (9) represents an adjusted version of Hobolth and
Jensen (2002, (8)).

In Hobolth et al. (2003), a procedure for estimating the prediction error under
a Gaussian p-order model was developed, based on a Fourier expansion of X

X(θ) ∼ A0 +
∞∑

s=1

(As cos(sθ) +Bs sin(sθ)) , θ ∈ [0, 2π),

where

A0 =
1

2π

∫ 2π

0

X(θ)dθ,

As =
1

π

∫ 2π

0

X(θ) cos(sθ)dθ,

Bs =
1

π

∫ 2π

0

X(θ) sin(sθ)dθ.

When X is a periodic stationary Gaussian process, the Fourier coefficients of X
become independent and normally distributed, As ∼ Bs ∼ N(0, λs). As suggested
in Hobolth et al. (2003), the parameters α and β in the p-order model can then
be estimated using maximum likelihood estimation based on the first S Fourier
coefficients,

L0,S(α, β) =
S∏

s=2

1

2πλs(α, β)
exp

(
− (a2s + b2s)

2λs(α, β)

)
, (10)

where λs(α, β), s = 2, . . . , S, satisfy (2) and as and bs, s = 2, . . . , S, denote dis-
cretized Fourier coefficients of X.

In this section, we will show that this procedure can be used under the general
Lévy-based model. The following theorem gives the distribution of the Fourier co-
efficients and their relations under the general Lévy-based model. In the Gaussian
case, the theorem can be found e.g. in Dufour and Roy (1976).
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Theorem 3. The stationary Lévy-based stochastic process X can be written in terms
of its Fourier coefficients as

X(θ) = A0 +
∞∑

s=1

(As cos(sθ) +Bs sin(sθ)) , θ ∈ [0, 2π),

where A0 = µ+ ξ0Z([0, 2π)),

As = ξs

∫ 2π

0

cos(sφ)Z(dφ) and Bs = ξs

∫ 2π

0

sin(sφ)Z(dφ). (11)

Moreover, the Fourier coefficients are pairwise uncorrelated and the Fourier coeffi-
cients of order s have the same distribution which is characterized by the cumulant
function KAs(t) = KBs(t) = KU(tξs), where

KU(t) =

∫ 2π

0

KW (t cos(θ))dθ.

Proof. Writing the kernel function in terms of its Fourier representation and then
calculate the Fourier coefficients of X gives (11). The Fourier coefficients are uncor-
related as

Cov(As, Br) = κ2(W )

∫ 2π

0

cos(sφ) sin(rφ)dφ = 0, for all r, s ≥ 1

Cov(As, Ar) = κ2(W )

∫ 2π

0

cos(sφ) cos(rφ)dφ = 0, for all r, s ≥ 1, r 6= s

Cov(Bs, Br) = κ2(W )

∫ 2π

0

sin(sφ) sin(rφ)dφ = 0, for all r, s ≥ 1, r 6= s.

The cumulant function of As is given by

KAs(t) =

∫ 2π

0

KZ′(tξs cos(sφ))dφ =
1

s

∫ 2πs

0

KZ′(tξs cos(φ))dφ = KU(ξst),

and a similar argument shows that KBs(t) = KU(ξst).

The cumulant function of As and Bs yield simple expressions for their cumulants,
which are given by

κ1(A0) = µ, κr(A0) = 2πξ0κr(W ), r ≥ 2,

κr(As) = κr(Bs) = 2πξrs
(r − 1)!!

r!!
κr(W )1(r even), s ≥ 1, r ≥ 1,

where κr(W ) denotes the r-th cumulant of the stochastic variable W . This means
that As and Bs have mean, variance, skewness and kurtosis of the following form

κ1(As) = 0, κ2(As) = πξ2sκ2(W ), γ1(As) = 0, γ2(As) =
3

4π
γ2(W ),

where γ2(W ) is the kurtosis of W . Moreover, the normalized Fourier coefficients of
order s = 1, 2, . . ., obtained by Ãs = As/ξs and B̃s = Bs/ξs, will all have the same
distribution characterized by the cumulant function KU(t).
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From Theorems 2 and 3, it follows that for a non-Gaussian Lévy basis Z the
Fourier coefficients will be uncorrelated with variance λs(α, β). Furthermore, the
distribution of the Fourier coefficients in the non-Gaussian and Gaussian model only
differs in even cumulants of order four and higher. Therefore, (10) can be regarded
as a pseudo-likelihood function for (α, β) also in the non-Gaussian case.

Figure 1 shows the small difference in the saddlepoint densities of the normalized
Fourier coefficients and the Gaussian density for different values of η in the case of a
Gamma Lévy basis. Furthermore, a simulation study indicated that the estimates of
(α, β) are robust against deviations from Gaussianity in the underlying distribution,
but the mean square error of the estimates increases somewhat as η decreases.
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Figure 1: The saddlepoint density of the normalized Fourier coefficients for η = 2 (red
line), η = 4 (green line) and η = 16 (blue line). The density in a Gaussian model is shown
for comparison (black line).

4 The distribution of Q̂n − Q under the
Lévy-based model

In the previous section, we have seen that the method developed in Hobolth et al.
(2003) for estimating E(Q̂n − Q)2 based on a Gaussian process is robust against
departures from the distributional assumption. In this section, we will derive the
distribution of the error predictor Q̂n −Q which may be markedly non-Gaussian.

Theorem 4. Under the Lévy-based model, the error predictor is distributed as

Q̂n −Q ∼ 2π

∫ 2π

0

kn(φ)Z(dφ), (12)

where

kn(φ) =
∞∑

s=1

ξsn cos(snφ).
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The distribution of Q̂n −Q is characterized by its cumulant function

KQ̂n−Q(t) =

∫ 2π

0

KW (2tπkn(φ))dφ.

Proof. Recall that

Q̂n =
2π

n

n−1∑

i=0

X

(
Θ +

2πi

n

)
, (n ≥ 1),

where Θ is uniformly distributed in [0, 2π
n

). Without loss of generality we can assume
that Θ = 0 as the distribution of Q̂n does not depend on Θ. The result (12) is
obtained by observing that the mean of the kernel functions is given by

1

n

n−1∑

j=0

k

(
2πj

n
− φ
)

= ξ0 +
∞∑

s=1

ξsn cos(snφ).

The expression for the cumulant function of Q̂n −Q is a consequence of (7).

As the cumulant function of Q̂n −Q has a simple form, its cumulants are easily
available. In particular, it enables us to obtain a saddlepoint approximation of its
density. An alternative is to use Theorem 4 for simulating the distribution of Q̂n−Q.

Example 5. Let us consider a Lévy-based model (3) for X with a Gamma Lévy
basis Z and k chosen such that the covariance function of X follows a p-order model.
Under this model the Fourier coefficients As, and Bs, s ≥ 1, of X(θ) have mean,
variance, skewness and kurtosis,

κ1(As) = 0, κ2(As) = πξ2s = λs(α, β), γ1(As) = 0, γ2(As) =
9

2πη
.

This model may, for instance, be used to model the squared radial function of
random star-shaped planar particles containing the origin. Figure 2 shows examples
of particles simulated from such a model, using different values of η. The value of
p, α and β was p = 2, logα = 6 and log β = −3. We used η = 2, 4, 16; a low value
of η corresponds to an underlying distribution with a heavy tail. The value of η
controls the frequency and size of the irregularities of the boundary of the particles.
Small values of η will produce particles with few large fluctuations on the particle
boundary and less smaller fluctuations. Higher values of η will produce particles
with more frequently occurring moderate fluctuations across the boundary.

Figure 3 shows the corresponding saddlepoint densities of the estimated area of
the particles for two different values of n. �

In applications, it is needed to estimate the parameter η of the underlying Lévy
basis Z, i.e. the parameter of the distribution ofW . For a given kernel function k, we
have a simple expression for the cumulant function of X and its derivatives (when
they exist), cf. Theorem 1. We suggest estimating the parameter η determining the
Lévy basis by considering the saddlepoint approximation of the density of X(θ).
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η = 2 η = 4 η = 16

Figure 2: Realizations of particles obtained by assuming that the squared radial function
is given by a Gamma Lévy process with a p-order covariance function. The values of p, α
and β were p = 2, logα = 6 and log β = −3. Each column corresponds to realizations for
a fixed value of η (η = 2, 4, 16).

2.5 3.0 3.5 4.0

0
1

2
3

4

Figure 3: The saddlepoint density of the n-point area estimate for n = 5 (stippled) and
n = 10 (full line). The different colours represent densities for the three particles considered:
η = 2 (red lines), η = 4 (green lines) and η = 16 (blue lines). Densities for a Gaussian
model is shown for comparison (black lines).
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For more details on saddlepoint approximations, cf. Jensen (1995). The first order
saddlepoint approximation of the density is given by

f̃(x) =
1√

2πK ′′X(t̂(x))
eKX(t̂(x))−t̂(x)x,

where t̂(x) is the solution to the saddlepoint equation

K ′X(t) = x.

Note that the saddlepoint equation is non-linear when Z is non-Gaussian, but can
be solved numerically, using a Newton method for a given kernel function k. A better
approximation of the density of X(θ) is obtained by multiplying the density with
the correction factor

c(t̂(x)) = 1 +
K

(4)
X (t̂(x))

8K ′′X(t̂(x))2
− 5

24

(
K

(3)
X (t̂(x))

K ′′X(t̂(x))3/2

)2

.

Given an estimation of the kernel function k we can establish a pseudo-likelihood
function based on the observations of the stochastic process X given by

L(η) =
n∏

i=1

f̃(x(θi)).

Here, f̃(x(θi)) is calculated using the approximated kernel function

k̂S(θ) =
S∑

s=2

ξ̂s cos(sθ),

where ξ̂s =
√
λs(α̂, β̂)/π is obtained using the estimates of (α, β). Note that we need

to normalize the densities f̃(xi) for each value of η, when maximizing the likelihood
function L(η). If the estimated likelihood function is an increasing function of η, this
suggests that the underlying Lévy basis is Gaussian.

The cumulant function and its derivatives have a simple analytic expression,
when the underlying Lévy basis is a Gamma basis or Inverse Gaussian basis. For a
Gamma Lévy process the cumulant function of X(θ) and its derivatives are given
by

KX(t) = −η
∫ 2π

0

log

(
1− tk(φ)√

η

)
dφ,

K
(r)
X (t) = (r − 1)!η

∫ 2π

0

k(φ)r

(
√
η − tk(φ))r

dφ.

For an inverse Gaussian Lévy process the cumulant function of X(θ) and its deriva-
tives are given by

KX(t) = −η4
∫ 2π

0

(
1−

√
1− 2tk(φ)

η2

)
dφ,

K
(r)
X (t) = (2r − 3)!!η3

∫ 2π

0

k(φ)r

(η2 − 2tk(φ))r−
1
2

dφ.
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In both cases, the saddlepoint approximation of the density of X(θ) are easily ob-
tainable using numerical integration and a Newton algorithm for finding the sad-
dlepoint. Note that the saddlepoint approximation of the density function for an
arbitrary η can be written in terms of the saddlepoint approximation of the density,
the cumulant derivatives and saddlepoint solution for η = 1.

5 Discussion

We have developed a Lévy-based error prediction in circular systematic sampling.
In contrast to previous model-based methods, we consider a flexible class of non-
Gaussian measurement functions based on kernel smoothing of a homogeneous Lévy
basis. In particular, we have derived the distribution of the error predictor in circular
systematic sampling. The modelling framework allows us to consider in principle any
given covariance structure of the measurement function, in particular the popular
p-order covariance model which enables controlling the local and global fluctuations
of the measurement function.

Note that as the Lévy-based process X is strictly stationary, it can be shown
that X has a polar expansion of the form

X(θ) = µ+
√

2
∞∑

s=0

√
Cs cos(s(θ −Ds)),

where the random variables

Cs = 1
2
(A2

s +B2
s ) = λsZs, Ds ∼ U [0, 2π

s
], s ≥ 1,

are independent, cf. the Appendix, and E(Zs) = 1. Here, the variable Zs can be
expressed as

Zs =
1

2πκ2(W )

∫ 2π

0

∫ 2π

0

cos(s(θ − φ))Z(dθ)Z(dφ).

This shows that the Lévy-based models are closely related to the generalized p-
order models proposed in Hobolth et al. (2003), but the Lévy-based models have
more structure that allows for derivation of distributional results.

The model (3) can be used directly to model the shape of featureless two-
dimensional particles by assuming that a particle Y is a stochastic deformation
of a template particle Y0. If r0 is a radial function of a template particle, we let
the radial function of Y be of the form R(θ) = r0(θ) + X(θ), where X is a zero
mean Lévy-based stochastic process. The strength of this technique is two-folded.
Firstly, the global and local fluctuations of the Lévy-based stochastic process are
controlled by the variance of the Fourier coefficients which are determined by the
kernel function. Secondly, the underlying Lévy basis determines the frequency and
size of the irregularities of the process. Finally, the methodology presented can be ex-
tended to model the shape of three-dimensional featureless particles, by considering
Lévy-based processes on the unit sphere S2. Hansen et al. (2011) consider three-
dimensional Lévy particles using different covariance models. The focus is here on
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the Hausdorff dimension of the boundary of particles obtained using a Gaussian
basis.

The saddlepoint approximation was applied here to obtain an approximation of
the density of X(θ) in the Lévy-based stochastic model. As the cumulant function
is easily obtainable for stochastic convolutions of the type

X(ξ) =

∫
f(η − ξ)Z(dη), ξ ∈ Rn,

where f : Rn → R and Z is a homogeneous Lévy basis on Rn, the saddlepoint
approximation of the density is an attractive tool for studying Lévy-based convolu-
tion models in general. For the stochastic processes considered here, other types of
approximations of densities can also be considered based on approximating As and
Bs by differences of variables from the same family of distributions as W . As an
example one could consider approximating the density of the Fourier coefficients by
a type II McKay distribution (Holm and Alouini, 2004), when the underlying Lévy
basis is a Gamma Lévy basis.

Finally, it should be emphasized that assuming that the kernel function is even
does not affect the flexibility of the induced covariance model. When k is not nec-
essarily even,

k(θ) = ξ0 +
∞∑

s=1

(ξs,1 cos(sθ) + ξs,2 sin(sθ)) ,

the covariance function of X is given by

C(θ) = 2πξ20 + π
∞∑

s=1

(ξ2s,1 + ξ2s,2) cos(sθ), θ ∈ [0, 2π).

Moreover, the Fourier coefficients of the process X will still be uncorrelated and
have the same distribution described by the cumulant function

KAs(t) =

∫ 2π

0

KW (tξs,1 cosφ− tξs,2 sinφ)dφ,

and cumulants given by

κr(As) = κr(Bs) = 2π(ξ2s,1 + ξ2s,2)
r/2 (r − 1)!!

r!!
κr(W )1(r even).

Appendix

Consider a stationary process X = {X(θ) : θ ∈ [0, 2π)} with Fourier expansion

X(θ) = A0 +
∞∑

s=1

(As cos(sθ) +Bs sin(sθ)),

and Polar expansion

X(θ) = µ+
√

2
∞∑

s=0

√
Cs cos(s(θ −Ds)),
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where Cs = 1
2
(A2

s +B2
s ) and sDs = arctan(Bs/As), s ≥ 1. It is easily seen that

X(θ + h) = A0 +
∞∑

s=1

(As(h) cos(sθ) +Bs(h) sin(sθ)),

where (
As(h)
Bs(h)

)
=

(
cos(sh) sin(sh)
− sin(sh) cos(sh)

)(
As
Bs

)
= V

(
As
Bs

)
,

and V is a rotation matrix. As for each h ∈ [0, 2π), {X(θ) : θ ∈ [0, 2π)} and
{X(θ + h) : θ ∈ [0, 2π)} have the same distribution,

(
As
Bs

)
∼
(
As(h)
Bs(h)

)
= V

(
As
Bs

)
.

We now have that

Es :=

(
As/

√
A2
s +B2

s

Bs/
√
A2
s +B2

s

)
∼ V

(
As/

√
A2
s +B2

s

Bs/
√
A2
s +B2

s

)
= V Es,

and consequently Es is uniformly distributed on the unit circle, i.e. arctan(Bs/As)
is uniformly distributed on [0, 2π) and Ds is uniformly distributed on [0, 2π/s). Now
consider the conditional distribution of

√
2Cs =

√
A2
s +B2

s given Es. As
√

2Cs | Es = es ∼
√

2Cs | V Es = es,

the conditional distribution does not depend on es and hence
√

2Cs is independent
of Es and Ds.
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