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Abstract

In representation theory, Lusztig’s conjecture is one of the important conjectures
still standing. It easily extends to a more general character formula, for which
several exceptions are already known in small characteristic. The aim of this
thesis is to study the exceptions to this generalized character formula in some
special cases, and to suggest patterns in these exceptions, and rules which may
apply, where the formula fails.

Introduction

This thesis concerns the characters of G-modules for an reductive algebraic group
G over an algebraically closed field of finite characteristic p. The primary goal is
to investigate Lusztig’s character formula, which describes the simple characters
chL (M) by the characters x (u) of the Weyl modules:

chL (w.\g) = Z Pz wew (1) X (7.20)

z<w

where )\ is an initial weight, w € W is an element of the affine Weyl group and
Pyozwow 18 the Kazhdan-Lusztig-polynomial.

It was first conjectured by G. Lusztig in 1979 that the character formula holds
under certain conditions, see Conjecture [3.2.1] The formula is known to hold for
large enough p, but for small p there are exceptions. My thesis investigates these
exceptions, finding them in for certain affine Weyl groups, and then trying to
describe and explain their presence. We focus primarily on the root systems of
type A, since the calculations and formulas are somewhat simpler in this case.

This thesis is structured as follows. Chapter 1 introduces the necessary theory
of Weyl modules, simple modules, and their characters. In Chapter 2 we develop all
the tools needed to actually calculate these characters, most importantly Jantzen’s
sum formula and a method for finding the dimension of the weight spaces L (A) ,.
Chapter 3 is devoted to Lusztig’s conjecture, and the submodule structure of the
Weyl modules. In Chapter 4 we use the theory of sheaves on moment graphs to
attack the problem from a more combinatorial approach. And in Chapter 5 we
study the connections to the representation theory of restricted Lie algebras.

My results represent a thorough investigation of the exceptions to Lusztig’s
character formula for the root systems A,, A3 and Ay for the primes p € {2,3}.
We use computer calculations to find the exceptions, check existing conjectures
and on this basis pose new questions and conjectures. Calculation results can be
found in the appendices. Our investigation is carried out in three directions (in
Chapter 3, 4 and 5, respectively).

First we analyze the submodule structure of the Weyl modules V() in the
form of diagrams which contain all submodules and the corresponding quotients,
expressed in terms of the simple G-modules L(u). It is known that, for the reg-
ular weights for which Lusztig’s character formula holds, the dimension of the
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Ext-groups are given by a coefficient of the Kazhdan-Lusztig polynomials (see
proposition [3.7.1)). This can be generalizes to a dimension formula for Ext-groups
for non-regular weights in a natural way. It seems that this generalized formula
also holds whenever the weights satisty Lusztig’s character formula. That is; based
on our calculations, we observe

In every calculated case: Each exception to the generalized Ext dimen-
sion formula is also an exception to Lusztig’s character formula.

The second direction of investigation is more combinatorial, namely we consider
the Braden MacPherson sheaf on a moment graph of an affine Weyl group. Firstly,
we have a concrete calculation of Braden-MacPherson sheaves for Ay, A; and A, for
the primes p € {2,3}. To perform the calculation we use an algorithm developed
by T. Braden, and to apply it, it is necessary for the moment graph to be what
we call nice (certain modules of sections must be graded free). This turns out to
hold in all the calculated cases. Thus, a natural question is

Is every moment graph of an affine Weyl group nice (possibly just for
root systems of type A,)7

The vertex modules of the Braden-MacPherson sheaf are graded free, so they can
be written as a sum of shifted copies of the underlying ring. Thus, they define a
polynomial using the shifts as exponents. This polynomial is known to coincide
with the Kazhdan-Lusztig polynomial P, ,, (¢) in characteristic zero, and for large
p, and thus we call it the modular Kazhdan-Lusztig polynomial, P?  (g). Our
first idea was to substitute P?, (q) for P, (¢q) in Lusztig’s character formula, thus
obtaining a “modular character formula”, and compare the results. Sadly, we find
more exceptions to the modular character formula; in fact,

In every calculated case: Each exception to Lusztig’s character formula
is also an exception to the modular character formula.

It should be noted, though, that in the case of exceptions the two formulas give
different (wrong) results. This may indicate that the exceptions to Lusztig’s char-
acter formula and to P, ., (q) = P, (q) are connected.

The third direction of investigation is concerned with the representation theory
of restricted Lie algebras. Here we investigate the composition coefficients of the
baby Verma modules Z (\). It is known that these composition coefficients are
given by the Kazhdan-Lusztig polynomials

ACBOED? (w.)\o)] = Py (1)

for p large enough, under certain conditions on x,w and A\g. One hopes that p > h
(the Coxeter number) is large enough (see conjecture [5.2.2)).

For small p this does not hold. However, the exceptions seem to align perfectly
with the exceptions to P?,, = P, ,, and the data suggests that

Z(xNo): L (w.)\o)] — P, (1)
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for all initial weights Ao, and z,w € W such that w.\g € X, — pp and .\ €
— Xt —p.

To carry out these calculations, we have developed several algorithms. All the
algorithms described in this thesis (and several more) have been implemented into
the java project ReAlGriDPC (Representations of Algebraic Groups in Defining
Prime Characteristic), which can be found on my homepage

http://home.imf.au.dk/jb.
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I 1979 kom G. Lusztig med en formodning som beskrev karaktererne for simple
moduler, med en reguler hgjeste vaegt, for en reduktiv algebraisk gruppe G i
karakteristik p > 0 ved hjeelp af Kazhdan-Lusztig polynomier. Den dertilhgrende
karakterformel kan pa naturlig made generaliseres sa den ogsa kan klare vaegte
som ikke er regulaere. Hvis p er stor nok til at der findes regulaere vaegte (p > h,
hvor h er Coxetertallet for den underliggende affine Weylgruppe), sa folger den
generaliserede karakterformel fra formlen for regulaere vaegte.

Lusztigs formodning er blevet bevist hvis karakteristikken af det bagvedliggende
legeme p er stor nok (meget stor!), men star stadig ubesvaret for sma p, det vil
selvfglgelig ogsa sige at man ikke har fundet nogle undtagelser til den. Den gen-
eraliserede karakterformel, pa den anden side, har man fundet mange undtagelser
til.

Malet med denne afhandling er at undersgge disse undtagelser ved at prgve at
finde mgnstre for hvornar de opstar, og finde andre regler, som sa geaelder i det
generaliserede tilfaelde.

Reslutaterne i denne athandling er gennem undersggelse af modulerne for de
algebraiske grupper SL, (k) med n € {3,4,5} og k et algebraisk lukket legeme
med karakteristik p € {2,3}, at finde nogle mulige mgnstre (se afsnit og
og finde en mulig mere generel regel (se question [5.2.6).

Meget af det bagvedliggende data kan findes i appendiks [A] [B] og [C| og algo-
ritmerne til at udregne data kan findes implementeret i Java pa min hjemmeside:
http://home.imf.au.dk/jb.
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Chapter 1

Preliminaries

1.1 Root systems, affine Weyl groups and actions

Throughout this thesis we will use a lot of repeated notation. In this section we
will briefly define this notation. Most of the results of this section can either be
found or easily derived from [Hum90].

First we need an algebraic group. Let G be a simple, connected, simply con-
nected algebraic group over an algebraically closed field k of finite characteristic
char (k) =p > 0. Let T C G be a maximal torus, and n be its order, i.e. T = (k*)".

1.1.1 Roots, weights and the corresponding geometry

Let R* D ® D &t D A ={ay,as,...,a,} be the root system corresponding to G,
a set of positive roots and a basis.

On R" we have the usual euclidean inner product (-, -). This leads to the form
(-,-) defined by: (8, a) = (B, a"), where a¥ = ﬁa. Recall that (-,-) : ®x® — Z.

Let A = ) .o Za be the root lattice, and AT = 3~
part of the root lattice (N = {0,1,2,...}).

We define the partial relation < on the vectors of R" by x <y <= y—x € A™.
Let & be the unique greatest (according to the order <) of the short (according to
(+,+)) roots (exists because G is simple, and thus ® irreducible).

The set X = X (T') = Homygyg.grp. (T, k*) of characters for 7' can be seen as an
intermediate set A C X C R” with a Z-basis: Aj, A, ..., \, satisfying: (\;, a;) =
d;; (because G is simply connected). Also X has the following property: X =
{z e R"|(z,a) € Z for all a € O}.

For V a G-module, and A € X we define the weight space V) of V for the
weight A:

acao+ Na be the positive

Vw={veVi]jtv=A({t)vforalteT}

If V) # 0 we say A is a weight of V', and the vectors of V) will be called weight
vectors. For modules of algebraic groups we have the following theorem (see [Ste74]
section 3.3):
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Theorem 1.1.1. If V' is a G-module, then V 1is a direct sum of its weight spaces:

V=W

AeX

In general we will refer to X as the weight lattice, and the elements of X as
weights. Notice that addition when thinking of X as a lattice becomes multiplica-
tion when thinking of X as the set of homomorphisms from 7T to k*.

Like we did with the root lattice, we will define the dominant weights: X+ =
> v NX;. The dominant weights have the following properties:

Xt ={z eR"|{(z,a) €N, forall a« € d*}

and for all dominant weights A € Xt and all positive roots a € ®*: (A, a) < (A, &).
The most important weight p € X+ we define p = %Za€@+ a. It is easily
proved that p = >"" A
We will also be needing some affine hyperplanes. For o € &, m € Z we define

Hym = {2 € R"|(z,a) = mp}
Hym = Hopo — p={z—p e R"|(z,a) = mp}
= {z e R"[(z + p,a) = mp}

We denote the set of these hyperplanes H = {]:Iam ‘ aedme Z} and 77 =

{Hom|a € ®,m € Z}.

Another set of great importance is the set of alcoves A, which is defined to
be the set of connected components of R™ \ | J,.,, H. The initial alcove Ay € A
defined by:

Ay={zeR"|0< (z+p,a) <pforal aecd}
={zeR"|(z+p,a;) >0,(x+p,a) <pforall<i<n}

It is obvious that the alcoves can each be defined as the set of points bounded by
some finite set of affine hyperplanes in 2 (it will namely always be enough to
have 2 hyperplanes H, ,,,, Ho m+1 for each root o). For an alcove A € A we define
A (A) C A to be the minimal set of bounding hyperplanes defining A. We call
H (A) the walls of A.

1.1.2 The affine Weyl group and its actions

Let W = (s1,82,...,5,) be the Weyl group corresponding to the root system &,
where s; = s,, is the reflection in the hyperplane ﬁai = ﬁai,(] orthogonal to «;.

In general we define s, ,,, to be the reflection in ﬁa,m. Let 5o = s54,1. We now
define the affine Weyl group W = (s, $1, S2, ... Sn). Let S = {s¢, $1,...,5n}, then
(W, S) is a Coxeter system.
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Both on the affine Weyl group and on the Weyl group we have the standard
length map [ : W — N, [ : W — N where the latter is just the restriction of the
former.

W acts in a natural way on both R™, X, A. We now define the dot-action of W
on R". Let w € W,z € R", then:

wx=w(x+p) —p
Now we have the following proposition:

Proposition 1.1.2. The dot-action of VW has the following properties:

1. If a € ®,m € Z then the dot-action of s, on R" is the reflection in the
affine hyperplan H, ,.

2. The closure of the initial alcove Ay is a fundamental domain for the dot-
action of W on R".

3. The dot-action permutes the alcoves A simply transitively.

4. The dot-action permutes the affine hyperplanes F€ .

5. If A=w.Ay for an alcove A € A, then the walls 7 (A) of A are F (A) =

6. The dot-action is also an action on the weight lattice.

1.2 The Weyl modules

1.2.1 Definition

Let gc be the complex Lie algebra with the root system isomorphic to ®. Then
clearly the weights of the maximal toral subalgebra of gc (corresponding to the
root system of gc) correspond to X by the same isomorphism.

Choose a Chevalley basis {e, |a € ®} U {h,|a € A} for gc. Let Uc = U (gc¢)

be the enveloping algebra of gc. Define el = %eg and let Uy be the Z-subalgebra
of Uc generated by {eg) ‘ acdre N}. Uy is called the Kostant form of Uec.

For A € X, let V (\) be the unique simple gc-module with the highest weight
A, called the complex Weyl module. Recall that V' ()\). is generated by any non-
zero weight vector vy € V' (A)¢, in the one dimensional weight space V' ()¢ ;.

Let vy € V' (A)¢, be a non-zero weight vector in V' (A) of weight A. Now define
V (N), = Uzvy CV (XN)e. Notice that V (X), is up to isomorphism independent of
the choice of vy.

V' (A) is a lattice in V' (A)¢, and more generally the weight spaces V' (A), , =
V. (A)z NV (A, are lattices in V (A)¢ ,, and thus we have V (A\), =D,V (A,
by thm. 27.1 [Hum?72].
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Now let V' (X) = V (\), ®z k, this we will call a Weyl module. Likewise let
U, = Uz Rz k.

The Weyl module V (\) is clearly a finite dimensional k-vector space, seeing
that the Z-basis of V' ()), becomes a basis for V' () when you tensor it with 1 € k.

We now have that V (A) =P,V (), where V. (), =V (A); , ®z k. V (}), is
the weight spaces of V' (\) for the weight p € X.

With a slight abuse of notation we define vy = vy ® 1 € V (A),, and we define
the action of Uy, on V (), by letting u ® z € Uy, act by letting u € Uy act on the
V' (X\),-part, and x € k act (multiplicatively) on the k-part of V' (\), ®z k.

Notice that ¥/ sends V/ (A), to V- (A) and if £ = egll) o ~egl) then E maps

ptro?
V(A), to V(A with v (E) = 22:1 riffi € A, we call v (F) the total weight
of E.

Inherited from Uc we have the following proposition about the relations in U
and its action on V' (A):

pt(E)

Proposition 1.2.1 (The Standard Relations).
{egea + Nygéarp fora# —f
€a€p =

egeq + hq fora=—-4
h egzegh —|—<ﬁ Oé>€[3
h UM <H7 >

where Ny g is some integer satisfying Nog =0 if a+ 3 ¢ ®, and v, € V (A), is
any weight vector for the weight jn. Furthermore,

ey =0

if € ®F is a positive root.

1.2.2 The Weyl module as a G-module
The reason for calling V' (\) the Weyl module is of course that it is a G-module:

Theorem 1.2.2. Let A € X, then V (\) is a G-module. Furthermore a subspace
M CV (X) is a G-submodule of V (X) if and only if M is an Uy-submodule.

We will sketch the proof of this theorem:

Sketch of proof. To shorten the notation define V=V (\). For a € ® and t € k
we define:

Tay ( Ztr ") € End (V)

r>0

Notice that the sum is finite (and thus makes sense) because there are only finitely
many weights of V| and eg), el map a weight vector to different weight spaces for

r # s (recall V' is a direct sum of its weight spaces).
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For a given a € ®, and t,u € k we observe:

Tay (t) Zay (u) = Z telr) Z uelr)

r>0 s>0
_ Z s (r + s) o(r+)
T
r,s>0
‘ l
_ ) r, l—r
SeoS v ()
>0 r=0
=N e (t+u) = zay (t+u)
>0

which follows directly from the binomial formula.

Because x,, (0) is the identity on V' we get that x, v (t) € GL(V), and the
set {zqv (t) |t € k} (for constant o € @) is a group isomorphic to (k, +).

Now let Gy = (zqv (1) |a € &,t € k) C GL(V). It can now be proved that
Gy is a connected and simple algebraic group with root system ®, which by the
classification theorem 32.1 of [Hum95|, gives us a representation G — Gy —
GL (V (X)), which makes V (\) a G-module.

To see the second part of the theorem, we start by noticing that the above
shows that M is a G-module if and only if M is a Gy-module. This is the same
as To,v (1) M = M for all @ € ® and all £ € k. So what it all boils down to is to
prove that for each o € ® we have:

Viek:zov () M =M — ‘V’TEO:eg)MQM

The direction < is trivial since eg)M C M for all » > 0 gives us both that
Toy ()M C M and zqy (t)™' M = 24y (—t) M C M which together gives us the
left side.

=) Let N € N be a value such that e) =0 € End (V) for all r > N. Now
choose N different values t1,...,ty € k (this is possible, since k is algebraically
closed, and thus infinite). Since the ¢;’s are all different, we get that the Vander-
monde matrix A = (tg_l)lgi,jgN is invertible, so let B = A™' € GL (k") be the
inverse.

T
If we look at the vector u = (6&0)7 e&l), e 7€&N_1)> we immediately see that

(Au), = x4y (t;), and thus (for 0 < r < N):

N
G(O[T)M = Z Br—&-l,jxa,v (t])M Q M

j=1
This concludes the sketch of the proof. O

Because of the above theorem, we will now refer to both G-submodules and
U-submodules of V' (\) simply as submodules of V ().
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Notice that the V' (\) we have constructed here coincides with the V' (\) defined
(differently) in [Jan03| (see 11.8.3(3) in [Jan03]).

Furthermore we notice that in the first part of the proof the image of 7" in Gy
is a torus Ty and that the “weight space” for u € X of V' () from the definition of
V' (A) (derived from the weight space of V' (\).) corresponds to the weight space
of uy € Xy = Homalg.grp (Ty, k*), from the definition of weight space, where py
comes from p € X under the isomorphism X = Xy,. Thus we have that the two
definitions of weight spaces are equivalent. And our abuse of notation is justified.

1.2.3 The case A

In this thesis we will especially focus on the case where the root system ® is of
type A, that is to say that G = SL, (k) and gc = sl (C).

So let V be k"t with the standard basis €, ..., €,.1, and identify ® C V by
a; = € — €;41. Notice that then A = {¢; — ;11 |1 <i<n}, dT ={¢ —¢;]i < j}
and ® ={¢; —¢;|i # j}.

Now we identify e.,_., with the matrix F;; € sl (C) with 1 on the 7, j'th
entry and 0 on all other entries.

It is easily proved that SL, (k) is generated by transvections (matrices of the
type I +tE;; with ¢t € k), and thus it is enough to define the action of these on
the module V' (A). So a matrix [ +tE;; € G = SL(V) acts by 2, vy (t) =

> om0 tre™ _on V (N).

€i—€j
One of the reasons for working in the case A is that the values N, s (from the
standard relations) are very easy to calculate in this case:

Lemma 1.2.3. Let ¢;—¢j, e, —€; € @ be different roots, then Ne, ¢, ¢, ¢, = 0j1— 04

Proof. The lemma follows trivially from the following calculation:

[Eij, Exi) = Ei jEw — Ep By = 0;1Ei 1 — 01 B

1.2.4 More and less complex calculations in V ()

We would like to do calculations in V' ()), and thus in V (\) without always
consulting V' (X).. To do that we set up a series of rules for calculation in Uz, Uj
and V (\),,V (N\):
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Theorem 1.2.4. We have the following rules

eNel®) = (T i S) elrts) (1.1)
r
hae(g) = eg)ha +r (B, ) EJ) (1.2)
hoEvy = (A 47 (E), a) Evy (1.3)
eae”) =M eq + e Vhy — (r— 1)V (1.4)
min(r,s)

(16 ppy — A+ (E),a) +7 =5\ (i) =) g 15
€q € lvUx ; ( i €_ o €y U ( . )

where E is a product of elements of Uy, of the type el (the generating elements of
Uz).

Proof. We will prove that the equalities holds in V' (). and Uc and thus holds in
V(A)y,V (X)) and Uz, U

1. We prove this part by straight forward calculation:

1 !
e(r)e(s) _ _er—l—s _ (T + S) e(r+s) _ (T + 8) e(r—i—s)

o« rlsl @ plg! r @

done!

2. We prove this by induction. Notice that the induction start (r = 1) follows
directly from the standard relation. Assume the statement to be true for
r—1:

m_ 1, -

— i (egh e(r b + (8, >€ﬁ€5 1)>
= (8,a) e}’ +:,€B <h ey U)
= (B, >€(ﬂ)+1€ﬁ (eﬂ h + (r—1) (B, >eg71))

= (B,a) e + eFha + (r— 1) (3,a) €
—e(ﬁr)h + 17 (B, a) eg)

Which was what we wanted.

3. Let F = eg?) e 6(67) be any product of the generators of Uz. We do induction
in [. For [ = 0 it follows from the standard relation. Assume it to be ok for
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[—1.

(r1) (T2) (1)
h a€p g, - 651 Ux

— é;”h . e(ﬁ Yoy + 71 (B, @) 661 )e(ﬁr;) . egl)v)\

<)\ + Z i3, a> 651 e(ﬁf ) .egl)w + (r151, @) egl)e(ﬂf) . egl)v,\

</\+Z7’ZBZ, >€,(8Tll)e/(522 . .egl)v,\

= A+ (E), o) Buy

4. Again we go forward by induction. And again we notice that the induction
start follows directly from the standard relation. Assume the statement to
be true for r — 1:

T 1 r—
B R
T

1 rT— rT—
= (e_aea (r=1) + hqe ( b )
’

We now use both the induction hypothesis and part 2 of the theorem:

T 1 T— T—
eae(ﬂl = - (e_aeaega Uy hae(,a 1)>
T

1 r— r— r—
= “e_, <e(_ Yeo + e 2)ha —(r—2) el 2))
T

1
(r 1) - _ (r—1)
+r< h +(r—=1)(—a,a)e’, )

1 N (r—=2)
e 172 e(fa l)ha — (r=D(r )e(,a 2
r r

which again was what we wanted.

5. We use induction in r. For r = 0 it is trivial, so assume it to be true for
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r — 1. For a shorter notation let <>= (A + v (F),a):

eg”e(fLEw
. min(rz—l,S) (<> 4r—1— 3> (s=1) (r—1—3) 5
1. ' €_ o €, v
T . L )\
=0
- mm(r‘zlys) r—i/<>—+r—1—s (s i) ( )EU
B =0 " Z B >\

min(r—1 s)

+ Z < +T S)e(al )haeg" =9 By

min(r— 1 _ <> _1_ i 4

Z +1 S ( —|—7’. S) 6(_a 1 )egflfz)EU/\
0 1

mln(r—

1,s)
_ T—Z(<>+T—1—S>€(S Dol 7y,

—

i—0 T 7
min(r—1,s)+1 .
n Z A+ (E)+(r—j)a,q) (<> +_7“—1—5> D r=0) By,
= r Jg—1
min(r—1,s)+1 .
j_S <>—i—7’—1—$ (Sj)( )
TE
+ JZI . ( i1 )e_a V)

using the conventlon that eS™ = 0. We now calculate the values of the
coefficient ¢; of e, ”el ™ Evy for 1 <i < min (r — 1, s) (using the notation
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2], =z(x—1)--- (z —i+1)):

(r—i)[<>4+r—1-s],

Ci = -
ri!
N (A+vE)+(r—t)a,a)+i—s)[<>+r—1—3], ,
r(i—1)!
(<> Ar—s—i)(r—i)[<>+r— 1],
B !
i(<>+2r—s—i)[<>4+r—1-13],
ri!
(<> dr=s—i)(r—i) +i(<>+2r—s—i)) [<>+r —1—3s],_,
B 7!
(r<> s —irdir) [<> 4 — 18],
B ril
(<> Ar=s)[<>4r—1-s],
B ri!
[<>+r —s];

2!

B (<> +r—s>
7

So we have the correct coefficients for 1 < i < min(r — 1,s). We now look
at the coeflicient ¢y for e(_s,)leg)Ev,\

r—0/<>+r—1-—s 1 <>4r-—s:s
Co = — —=
0 r 0 0

So also here we have the correct coefficient. Now we have to divide into
two different possibilities: 1) min (r,s) # r and 2) min (r,s) = r. Luckily
we have already handled case 1) if we just notice that this case leads to
min (r —1,s) = min(r,s) = s, which means that the last summand for
j=min(r—1,s)+1= s+ 1 yields 0 because ¢, "™ = 0. So we only
need to calculate cpin(rs) in case 2. In this case we have that 7 = min (r,s)
and r — 1 = min (r — 1, s).

Cmin(r,s) = Cr

_ (AN+~v(E)+ (r—r)a,a)) + (r— ) (<> +r—1—s>

r r—1
<>+4r—35 <>4r—1-—s (<> HFr =5
n T r—1 N T

which was exactly what we wanted, so we have obtained the correct formula.

]
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1.3 An algorithm for the cases A, D and F

In the preceding section we described the Weyl modules and some rules for calcu-
lating with their elements. Now we want to be able to put any element of V' ()
into a standard form. To do this the rules of the last section are not enough, we
also need some rules involving el efg) where o # £(. These rules will involve
N, g which are very dependent on which type of root system we are working in.
In this section we will make a concrete algorithm for converting an element of

V (A) to a standard form when working in root systems of type A, D or E.

1.3.1 A few extra rules of calculation

We need some more rules of calculation:

Theorem 1.3.1. If our root system is of type A, D or E and o # £ we have:

eae(ﬁs) = e(ﬁs)ea + N, Be(ﬁs_l)eaw (1.6)
Z Nz,ﬁ 58 i) a—i—,Be(T i) (17)

Proof. Let us start by assuming that (a, ) < 0, since otherwise o + 3 ¢ ® and
then e, and eg commutes, making the two statements trivial.

Now when in type A, D or E this only leaves one possibility, namely that
(a, B) = —1. By [HumT72| Proposition 8.4(e) this eliminates the possibility that

a—+206 or 2a+ [ is a root, and thus we have that both eg) and eg) commutes with

S)HJ’ This is the fact we will be using to prove the two identities.

In this proof we will, like in the proof of Theorem do the calculations in
Uc and then transfer them into Uy and U,,.

6. When s = 1 the statement follows from the standard relations. Notice that
if we use the convention e(({l) = 0 it also holds for s = 0. We proceed by
induction in s, so assume it to hold for s — 1, then:

) _ 1 (s—1)
1 (s—1) (s—1)
= <66€a65 + Na7ﬁ€a+ﬁeﬁ >
1 (s—1) (5—2) (s—1)
=3 (egeﬁ €a + Nageses ~€atp+ Napeatpes >

s s—1 1 o
= eé)ea + ( + g) Na,geg l)ea+5

S
(s) (s

-1
=€y €a + Naﬁeﬁ )ea+5

Which is what we wanted.
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7. When r = 0 the statement is trivial. So we proceed by induction and assume
that it is true for r — 1:

1
e(r)e(ﬁs) = —e(r_l)eaeés)

«

eg_ ) (e(; €a + N Beﬂ s=1)

1
; ea—i—ﬁ)
1 min(r—1,s) i) ()

) S$—1 ? r—1—1
- N ges e H),e( eq
=0

~

min(r—

(r—1,s—1)
+ Z Niﬁe(ﬁs—l—z)eglﬁe(r - Z)€a+5

1=0
min(r—1,s) — - ( )
— — i 5—1 (r—i)
- r s CatpCa
1=0
min(r,s) ] ( _
s=7) .U r—
+ Z TN] a+ﬁ€( &
j=1

It is now clear that all the coefficients ¢; of ea+5eg ) are the correct values

ci = foﬁ for 0 <i < min(r —1,s) < min(r,s), so now we only need to take
care of the coefficient cyin(r,s) in the case where min (r, s) # min (r — 1, s). In
this case we must have that min (r,s) = 7 and thus cpin(rs) = ¢ = ;N 8=
N, 5, which indeed is the value desired.

a,

We hereby conclude the proof. O

1.3.2 The algorithm

Firstly we will have to decide on a standard form. This is done by choosing an
ordering 31 < fs < -++ < B, of the negative roots &~ = {f,...,Bn}. Now our

standard form of ertlng the elements of V' () is as a linear combination of terms
1) (rm)

of the form e(ﬁTl -ep " vy, where 1y, .. 1, € N,

We can now easily describe our algorithm. The elements of V' (\) are repre-
sented by a linear combination of monomials of e’s and h((f)’s, applied to v,.

The algorithm then works through each monomial individually (possibly mak-
ing more monomials in the process), using the rules , , and
plus the fact that eg)w\ = 0 for any positive root o € ®* and any positive integer
r > 0.

More concretely we can start by eliminatm% the h,’s from the right by using
. having done that we can eliminate the ey’ with @ € ®T positive by using
and (L.7) to move it further to the right and finally eliminating them if they
reach the right end of the string, see the standard relations proposition [1.2.1]

Having done that, what remains is a linear combination of strings of ey’ with
a € O~ negative, so all we need to do is get the correct order of the elements.
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This is done easily by using by using and on any pair not in the correct
order. Here, however it is not so obvious that this process will terminate seeing
that might add an extra element to some of the strings. This problem is
solved by Lemma 26.3C in [HumT72|, which makes sure that the terms with the
extra elements do not give any problems.

It is possible to make some more complicated but roughly similar rules for the
rest of the types of root systems, and also make a similar algorithm, observe for
example Kostant’s theorem (Theorem 26.4 in [Hum?72|). Notice that this yields
that there must be some finite subset of the monomials on the standard form that
forms a basis for V (\). Sadly the question of which subsets makes a basis is
difficult. This question we will return to later.

1.4 The simple modules

The Weyl modules are, though they derive from simple modules of g¢, in general
not simple. But they are however related to some simple modules.

Proposition 1.4.1. V (\) has a unique maximal proper submodule V ()

max”

Proof. Let M C V (X\) be a proper submodule of V (\). By Theorem have
that M is the direct sum of its weight spaces M, = M NV (}),.
Since M # V (A), dim (V (X),) = 1 and V (A) = Uyvy, we get that My = 0.

That is to say:
Mc v,

H=A
Now let:
VA = M
MCV(X) submodule
Then clearly V' (X),.. € V (XA) is a submodule of V' (\) and it is proper because
V (MNmaxr = V Ny NV (A), = 0. Furthermore V' (A) . contains all proper
submodules of V' (), and thus it is a unique maximal proper submodule of V ().
O
Since V' (A),.. & V (A) is the unique maximal submodule we can define the

simple module L (\):
L) =V )V (M max
We have that L (\) = @,<y L (A), is a direct sum of weight spaces L(\), =

VNV )
conclude from Theorem 31.3 of [Hum95|:

This also gives us that dim (L (A),) = 1. And now we can

Theorem 1.4.2. Let L be a simple G-module, then there exists a A € X+ such
that L = L (\).
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1.5 Characters

Since the characters of the modules are very central in this thesis we start by
defining them. Let {e(\)|A € X} C Z[X] be a basis for the group ring Z [X]
where e (A\) e (p) = e (A + p).

Definition 1.5.1. The formal character (or just the character) of a G-module M
(and thus a representation) is the element ch (M) € Z [X] given by:

ch (M) =3 dim (M) e (1)

neX
Some well known facts about characters are:

Proposition 1.5.2. Let M, N,V be G-modules then:
If0 - M -V — N — 0 is exact, then ch (V) = ch (M) + ch (N). In particular
ch(M & N) =ch(M)+ch(N). Also ch(M ® N) = ch (M) ch(N).

Proposition 1.5.3. Let M be a finite dimensional G-module, then the character of
M is a sum of simple characters (= characters of simple G-modules). Furthermore
the simple characters are linearly independent.

Proof. Let M = M° > M' D --- D M™ = 0 be a composition series of M with
M1 C M' a maximal submodule.

If m = 1 then M must already be simple, so in that case we are done. Proceed
by induction in m, and assume it to be true for m — 1. We start by using the
induction on M1 to write ch (M!) as a sum of characters of simple modules.

Since M! C M is a submodule we have a short exact sequence: 0 — M! —
M — M/M' — 0. Now by Proposition ch (M) = c¢h (M) + ch (M/M?").
This proves the statement, since M! is maximal in M° = M and thus M/M!
must be simple.

Now to prove that the simple characters are linearly independent, we observe
that by Theorem the simple characters are just ch (L (\)) for A € X*. So let
(cx)yex+ € Z (we could just as well take Q, R or C) with almost all ¢y = 0, such
that:

> each (L(A) =0

AeX+

assume that not all ¢y are 0, and choose A € X a maximal element in the <-order
such that ¢y # 0. Since \ is the highest weight of L (A) we get that the coefficient
of e () on the left side of the above identity is ¢y # 0 where on the right side it is
clearly 0. So clearly all ¢y = 0 and we have linear independence. O]

The above proposition tells us every character is a unique sum of simple char-
acters, thus we can define:
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Definition 1.5.4. Let M be a G-module. We define the composition coefficients
[M: L(\)] €N for A € X such that:

ch(M)= Y [M:L(\)]ch(L())
AeX+
That is to say if M = M° D M' D ... is a composition series with M ! maximal
in M?, then
(M L(N)] = |{i| M'/M*' = LN}

If [M : L(\)] # 0 we say that L ()\) is a composition factor of M.
The composition length of M is the sum:

> ML)

If M =MD M!'2D ... 2> M™ =0 is a composition series like the one in the
above proposition, then the composition length is m.

1.5.1 The characters of the Weyl modules and x ()\)
For A € X we define:

> wew (=1 e (w(r + p))

e (— e (wp)
This makes sense because Z [X] is an integral domain, so we can think of y (\)
as an element of the fraction field — notice that the denominator is different from

0 since all the wp are different (p is in the interior of the Weyl chamber). Now
according to Weyl’s formula, Theorem 24.3 in [Hum72|, we have for A € X that

X (A) = ch (V ().
Lemma 1.5.5. Let A€ X and u e W. Then:

X () = (=)™ x (w.)

x(\) =

Proof.
Ywew DM e (w (A + p))
P wew (1) e (wp)
_ Swew GV e (ww (A +p) = p+p))
Muwew (=1 e (wp)
e () e (wu (A 4 p)
P wew (1) e (wp)

S (Ve

T S () @e(wy)
where the second-to-last equality comes from the fact that Wu = W (W being a
group). O

(1)) (w.A) =
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Lemma 1.5.6. Let A\ € (X" —p)\ Xt =X N ((C—p)\C), where
C={zeR"|{(z,a) >0 fora € A}
is the closure of the Weyl chamber. Then x (A\) = 0.

Proof. Let A € (XT —p)\ X, and let Ay = {a € A|{(\+ p,a) =0}. Our first
alm is to prove that A, is non-empty. Assume otherwise, then since

C—p={r—peR"|(zx,a) >0forac A}
={zeR"|(z+p,a) >0forac A}

we must have A € {x € R"|(x + p,a) > 1 for a € A} since (A + p,a) € Z is an
integer. Now write A = Y | a;\; we now get:

a; = (N a) = A+ p,a) —1>0

which yields A € X which is a contradiction. Thus we can conclude that there is
an o; € Ay, and thus A = s;.\. This gives, by Lemma [1.5.5] that x (A\) = —x (),
so x (A) =0. O

Lemma 1.5.7. Let p € X. Then there exists a dominant weight A € Xt and a
constant ¢ € {—1,0,1} such that x (u) =c- x (A) =c-ch(V (N)).

Proof. We start by noticing that C' — p is a fundamental domain of the dot-action
of W on R™. This follows from the fact that C is a fundamental domain for the
action of W on R™, in particular if z € R"™ then there existsay € C and aw € W
such that # +p=wy. Theny —p € C —pand 2 =wy — p =w. (y — p).

Now let A € Xt — p be a weight in the same dot-orbit as . The lemma then
follows from Lemma if A € X and from Lemma with x (1) = 0 =
0-x(0)if X ¢ XT. O

Notice that this last lemma also proves that y (\) € Z [X] for every A € X.
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Calculating characters

2.1 The approach

Now to find the characters for L (A) we start out by the now well known characters
X (A) = chV (A).

Our first aim is to write chV (\) as a sum of characters of some of the simple
modules (this is possible by Proposition [L.5.3]).

We know that the weights p of V' (A) (with non-zero weight space V' (1)) all
satisfy u < A, and thus we get:

X(N) =D [V (N : L()]chL () (2.1)

H=A

where [V (A) : L (u)] € N are the non-negative composition coefficients, yp € X+
are dominant weights. Notice that we get from the construction of L ()\) (section
that [V (\) : L(\)] = 1.

Seeing that the set of dominant weights is bounded below, we always get a
finite sum and, we also see that ([V (u): L(§)]), <, forms an upper triangular
matrix with 1 on the diagonal. This matrix we can now easily invert over the
integers to get the matrix ([L (1) : V (€)]) <, (again upper triangular with ones
in the diagonal) which will finally give us a formula for the character chL (\):

chL(N) =xN)+ Y [LO):V ()] x(n) (2.2)

H=A

where we have [L (\) : V (u)] € Z (but not necessarily non-negative).

Thus we have now reduced our problem to finding the [V () : L (u)].

First we want to cut down the number of u € X for which [V (\) : L (u)] might
be non-zero:

Proposition 2.1.1. If u € X for which [V (X) : L ()] # 0 then u < X and there
exists a w € W such that p = w.\.

This proposition is a consequence of the linkage principle (see section I1.6 in
[Jan03]).

17
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2.2 Steinberg’s tensor product theorem

So far calculating the characters of all the simple modules seems like an impossible
task, since there is a different one for each A € X*. This problem we will solve in
this section.

2.2.1 Do the Frobenius twist

Let ¢ : k — k be the Frobenius map ¢ () = 2P. For r € Nlet ¢, : k — k be
the composition of  Frobenius maps ¢, (z) = zF". By freshman’s dream ¢, is a
field homomorphism, which is clearly injective, and since k is algebraically closed
2P" = a has a solution for all a € k, and thus ¢, is also surjective. All in all we
conclude that ¢, is a field automorphism and denote the inverse: 2P = ¢! ().

Let M be a finite dimensional G-module. For r» € N we define M to be M
as an abelian group, but as a vector space scalar multiplication - in MU is defined
by: a-v=a? "vforalla € kand v e M. The G action on M is defined to be
the same as in M: g-v = gv for all g € G and v € M.

Proposition 2.2.1. MU is a G-module with the actions described above.

Proof. Since ¢, and thus also ;! is a field automorphism, M is a k-vector space.
Let vy,...,v, be a basis of M. Since M is a G-module there exists functions
fij : G — k, such that f;; € k[G] and for g € G-

qu; = Z Jii (9) Uj
j=1

with this we get:

m

vi = gu; = wa (£ (g

Jj=1

And since f;; € k[G] then also ff; € k[G]. Thus M is a G-module. O
Definition 2.2.2. If M is a G-module we call M the 7’th Frobenius twist of M.

Proposition 2.2.3. Let M be a finite dimensional G-module, let v € N. Then:

(M) =" dim (M, 1) € Z[X]

pneX

Proof. We prove that for A € X we have M, = (M[T])p,,,/\. Let ve MyandteT
then:

r

t-v=to=X)v=XE)" o=\ ([#) - v
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since the addition in X is defined to be the multiplication of the functions the
elements represent. Thus we have M, C (M[T])pr/\.

Now since M is a G-module, it is a direct sum of its weight spaces. So as a
vector space,

P (M), =M =M =P M,
A w

which gives us that M, = (M m)p,,,)\ (since we already have the one inclusion).

Also we clearly get that if A ¢ p"X then (MM)/\ = 0. Now by the definition of a
formal character we get the proposition. O

2.2.2 Steinberg’s tensor product theorem and characters

Any natural number m € N can be written in base p (called the p-adic expansion of
m), that is to say, there are unique values my, mqy,...,my) € {0,1,...,p — 1},
with 7 € N the maximal number such that p” < m, such that m =3, m(i)pi.
This procedure can also be done for a vector v = 22:1 a;x;,a; € N in a grid,
Zizl spang {x1,...,x;} by letting v = 22:1 Qi ()%

Definition 2.2.4. We define the fundamental box X,,:
X, ={ e X|0<(\a;) <pforl<i<n}

=1

Now we see that if A € X there exists unique Ay, Aqy,..., Ay € X, (for
some r € N), such that A =" A\;)p".

We can now state Steinberg’s tensor product theorem (for a proof see [Jan03|
subsections 11.3.16-11.3.17).

Ogai<pfor1§i§n}

Theorem 2.2.5 (Steinberg’s tensor product theorem). Let A € X be a dominant
weight and let Aoy, A1), - -, Ay € X such that A\ =30, p")\(i). Then:

L= L(Ao)®L (M) @@L (A"

Now from Proposition [2.2.3{we know how to calculate ch (L (M) just knowing
153)

how ch (L (\)) looks in Z [X]. So now we can (using Proposition calculate
the character ch (L (A)) of L () for any A € X, just knowing the characters of
L (X) for A € X, which is a finite set! Thus we have greatly reduced the problem
of finding all characters of the simple finite G-modules.

2.3 Translation functors

This section mostly follows section I1.7 of [Jan03].
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2.3.1 Facets and stabilizers

In this subsection we will introduce a lot of geometry, that we will use to facilitate
the process of finding the [V (\) : L (u)].

Definition 2.3.1. A facet is defined by a division of the positive roots ®* into
a disjoint union & = ®FUPT, and a tuple of integers (na),cp+ indexed by the
positive roots. The facet ' C R"™ corresponding to these parameters is defined to
be:

F={zeR"(z+p a)=n.p for a € O,
(o — 1) p < (z+ p,a) < nap for a € ¢} }

The name facet is natural because they are geometrically speaking facets of
the alcoves A.

It is easily seen, that the entire space R™ is a disjoint union of all the facets,
and thus we can define for A € R"™ the facet F) the unique facet containing .

Notice also that just because we are given the some values n,, and some par-
tition of the positive roots @+ = ®FW®], then it does not mean that the cor-
responding facet is non-empty. As an example if &7 = & and n,, = 1 for all
1 <@ < n, and ng = 1 then clearly F' C A, this leaves only one possible value ng,
for the each of the rest of the roots 3, for which F # ().

One may also notice that the extreme cases ™ = & and & = & correspond
to (if F' is non-empty) a point and an alcove.

If F is a facet (with parameters n,, @1, ®]) we also want to define the upper
closure F of F:

ﬁ:{xER”‘(w—l—p,a):napforaefba“,
(na — 1) p < (z+ p,a) < nap for a € ¢}

In the same way that R"™ is a disjoint union of all the facets, it is also a disjoint
union of the upper closure of the alcoves:
R"=|JA
AcA
For A € R" we define the set J4 = {H € 7|\ € H} of all the affine hy-
perplanes containing A. Then a € <I>3r for F\ if and only if H,,, € J4 if

and only if s,,,.A = A. Thus there is a clear connection between F), .74 and
Wy ={weW|w=A\}

Definition 2.3.2. Let 11 € X, and let A € Aj be the unique element in A, also in
the dot-orbit of . Then we call A\ the initial representative of p.

Define stab, = {s € S|s.A = A} the stabilizer of u (or of the dot-orbit of p),
where A is the initial representative of .

If stab, = 0 for a € X we say that p is a regular weight.

Notice that a weight p is regular if and only if it is in (the interior of) an alcove.
Notice furthermore that for A\, u € Ay we have u € F' if and only if stab, C
stab,,.



2.3. TRANSLATION FUNCTORS 21

2.3.2 The translation functors

So what is the use of defining all this extra geometry in the last subsection? The
simple answer is the translation functor.

Let C be the category of all finite dimensional G-modules. For A € A; N X
let Cy be the subcategory of C of all finite dimensional G-modules with all its
composition factors on the form L (w.\) for w € W.

Since Ay is a fundamental domain for the dot-action of W we get by Proposition
that for u € X+ with A\ € Ay N X the initial representative of u, V (1) € Cy.

It can be proved that C = @, 5nx Cx (see sections IL.7.1-11.7.2 in [Jan03]).
That is to say that if M € C then M = @, x-nx My with M) € Cy. And we
have a projection functor Py : C — C, defined by Py (M) = M.

Definition 2.3.3. Let A\, N € 4, N X, and let w € W be the element such that
w (N —A\) € XT. We now define the translation functor T{ from A to ' by:
TY - Cy — Cy
TY (M) =Py (M®L(w\N —\))
By Lemma I1.7.6 in [Jan03] the translation functor is exact. That is to say
if0 > My - M — My — 0 is a short exact sequence of modules in C,, then

0 — T (M) — T (M) — TY (M) — 0 is a short exact sequence of mod-
ules in Cy. This gives us that if ch (M) = 3, ¢ich (M;) then ch (T} (M)) =

Zz’ CiCh (T)\, (Mz)) .
However as long as we do not know how 73" (V (X)) and T3 (L (\)) look, it will
not help us. Luckily we have:

Theorem 2.3.4. Let \, N € AgN X, with X' € Fy, let w € W then we have:
V(wXN) ifwNeXT

0 otherwise

L(wN) ifwNeXtNE,y,

0 otherwise

7Y (V () = {

T (L (w.))) = {

For a proof see [Jan03| Proposition I1.7.11 (combined with 11.4.2(10)) for the
first identity and Proposition I1.7.15 for the second. Now some easy corollaries
follow:

Corollary 2.3.5. Let A € AgNX be a reqular weight, let i € AgN X, w € W such
that w.u € w.Ag then we have, that if

ch (L (w.A) =) ayuch(V (0 N)

wl

then
ch (L (wN)) =" ayuwch(V (W' X))

w/
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Notice that some of the V' (w'.\") may be equal for different values of w' € W
while all the V (w’.\) are different, since A\ is regular.

Corollary 2.3.6. Let \, N € AgNX, with N € F\, let w,w' € W with w )\, w'.\ €
X then we have:
[V (wA): L(w' \N)] =[V(w)\N): L{w.\)
Seeing that the proofs of the two statements are very similar, we only prove

the latter.

Proof. Since A\, X' are in the same facet, we have u.A € X if and only if u.\' € X,
thus the equality makes sense. We have

ch (V(wA)= > [V(wA):L(uA)]ch(L(ur))

We now get by the theorem (since if N € F) then u.\ € F,, C F\u.x, for any
u € W) that

ch (V (w.\)) = ch (T;/ (v (w.)\))>
= Y [V(wA): L(u)]ch (TA' (L (m)))

UASW.A
— Z [V (w.A) : L(u\)]ch (L (u.N))

This gives us the equality. O

The latter corollary implies that when calculating the [V (\) : L (u)] we can get
them all by calculating the composition coefficients for the dot-orbit of just one A
for each facet Fy in Ay. In other words, one for each stabilizer stab, C S.

Still this does not actually calculate the values [V (\) : L (u)], it only pairs
them in groups. To calculate the values we need a lot of tools.

2.4 The sum formula and dimension arguments

2.4.1 Messing with the sum formula

The first tool we will be using is the sum formula. This will enable us to put some
bounds on the coefficients.

Theorem 2.4.1 (Jantzen’s Sum Formula). Let V' = V (\) be a Weyl module.
Then there exists a filtration of submodules: V. = V°® D V1 D ... such that,
V/VO 2 L(\) and:

L ()\+p,o¢)7lj

Zch (V') = Z Z vy (mp) X (Sam-\)

>0 acdt m=1

Where v, (m) = max {i € N|p'|m}.
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For a proof see [Jan03] Proposition II 8.19. The filtration from the sum formula
is called the Jantzen filtration.

So how can we use this to bound the coefficients? The point is that we are
dealing with a finite partially ordered set M) = {u € Xt |u <\ pue WA} of
weights p, for which [V (X\) : L ()] potentially is different from 0. And the smaller
(in the <-order) the weight A, the smaller the set M), that is the fewer coefficients
to calculate.

Seeing that if My = {A} then V (A\) = L()), we can start from the bottom,
and then work our way inductively upwards.

So from now on we assume we have found the value of [V (u) : L (£)] for all
p € My\{A} and all £ € M,,. Having found these we can now replace the x (1) by
a linear combination of ch (L (£)) (possibly using Lemma and thus we get:

D ch (V) = eapuch (L ()

>0 B=A

Because we know that V/V! 2 L (\), we have:

ch (V1) =D [V : L(w)]ch(L(n) = x(A) —ch (L)

H=A

we must clearly have that [V (\) : L (x)] > 0 if and only if ¢, > 0. Furthermore
we have that [V (\) : L (n)] < ¢ry. And thus we have our initial bounds on the
coefficients.

In some simple cases these bounds may be enough, namely if all ¢, , € {0,1}
then we know that [V (A) : L (p)] = ¢y

Example 2.4.2. In our examples [a1, ..., a,] = a1\ + - - - + a, A\, will represent a
weight in X, and (aq,...,a,) = ajaq + - - - + a,, will represent an element in the
root lattice (typically a root).

Let ® be of type A3 and p = 3. We want to find the [V (\): L (u)] for A =
[1,2,1], and p € M, = {[1,2,1],[0,2,0],[0,0,0]}.

We assume that we have already calculated that

X ([07070}) = ch (L ([07070])>
X ([07270]) = ch (L ([07 270])) + ch (L ([07070]>>

We now use the sum formula on [1,2,1]. Notice that A+ p = [2,3,2], and that
there are only 3 roots a € {(1,1,0),(0,1,1),(1,1,1)} such that ([2,3,2],a) > p,
namely we get ([2,3,2],(1,1,0)) = ([2,3,2],(0,1,1)) =5, and ([2,3,2],(1,1,1)) =
7. Thus only these roots contribute to the sum formula.

Now

5(1,1,0),1- [17 27 1] = [_17 07 3] € (XJF - p) \X+
5(0,1,1),1- [17 27 1] = [37 07 _1] S <X+ - p) \X+
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and thus by Lemma [1.5.6) we get that they do not contribute to the sum formula.
So we look at the next summand, with the weight s¢1 1,1)1.A = [=3,2, —3], and
get [0,0,0] = (s28381).[—3,2, —3], and thus this summand by Lemma yields

—x ([0,0,0]).
The final summand is the one with the weight s(11.1y2.[1,2,1] = [0,2,0] so here
we get the right weight at first try, and we can conclude that:

D ch (V) = x((0,2,0)) — x ([0,0,0)
For V.=V ([1,2,1]). We plug in the (as assumed) already known values of the x:
Zch (V') = ch (L (]0,2,0])) = 1-ch (L ([0,2,0])) +0-ch (L ([0,0,0]))

so we see that the cpio1y020 = 1,cnzip00 = 0 € {0,1}, and thus by the
discussion of the sum formula we get:

[V([LQv 1}) . L([07270]>] =

1
[V ([1,2,1]) : L([0,0,0])] =0

Thus we have used the sum formula to find all the coefficients for character for
V([1,2,1]).

2.4.2 Dimensional arguments

It is a fairly trivial task calculating the dimension of the modules V (\) using
Weyl’s character formula (cor 24.3 [Hum?72|). This knowledge can be used to find
the precise values of [V (A): L (u)]. Again let us assume that we have already
dealt with the cases < A.

We are now able to calculate the dimensions of the L (u) by simply plugging
the identity into our formula ([2.2):

dim (L (1)) = S () 2 V ()] dim (V () (2.3)

E3p

We can of course also plug the identity into our formula ([2.1)) getting:

dim (V (X)) = Y [V (A) : L ()] dim (L () (2.4)

H=A

If we can somehow also calculate the dimension of L (\), then this yields an equa-
tion with [V (X) : L (¢)] as unknown variables. Combining this equation with the
bounds from the sum formula often leaves only one possible solution, thus giving
us all the rest of the coefficients [V (X\) : L (u)].

So when can we calculate dim (L ()\)) without knowing the coefficients for
ch (L (X))? One situation is when A ¢ X, then we can use the Steinberg’s tensor
product theorem [2.2.5
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Example 2.4.3. Let ® be of type Ay, and let p = 3. Let A = [2,3,0,0] =
[2,0,0,0] + p[0,1,0,0]. For the weights i < A in the dot-orbit of A\ we assume
that we already know the coefficients, so we can use to find dim (L (u)) (first
using Weyl’s character formula to calculate dim (V' (u))).

We apply the sum formula to get:

Z ch (V') =ch(L([3,1,1,0])) + 2ch (L ([1,2,1,0]))

>0

For V =V ([2,3,0,0]).

We notice that both V ([2,0,0,0]) and V ([0,1,0,0]) are simple (so we don’t
have to calculate for other weights in those dot-orbits). We gather all the necessary
calculated values in a table:

[ dim (V' (p)) | dim (L (p))
2,30, 0] 1260 ?
3,1,1,0] 1440 255
[1,2,1,0] 1050 855
2,0,0, 0] 15 15
[0,1,0,0] 10 10

Now we use Steinbergs tensor product theorem to calculate dim (L ([2, 3,0, 0])):

dim (L ([2,3,0,0])) = dim (L ([2,0,0,0])) dim (L (o, 1,0,0])“])

= dim (L ([2,0,0,0])) dim (L ([0, 1,0,0]))
=15-10 = 150.

Now let = = [V ([2,3,0,0]) : L([1,2,1,0])] be the unknown coefficient. From ({2.4)
we get following equation:

1260 = 1-150 + 1 - 255 + 2855

We now see that x = 1 so in this case we don’t even need the information that
x < 2, from the sum formula.

Sadly we are not able to use this method very often. We may however refine
this approach to achieve a fool-proof way of finding the coefficients.

2.5 The foolproof method

This section builds on [GS88§]|, in which it is stated that dim (L ()‘)u) = rank (M) ,)

for a certain matrix M) ,.
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2.5.1 The approach

By definition of the formal characters the coefficient of e (1) € Z [X] in ch (L (X))
and ch (V ()\)) are respectively dim (Ch (L ()‘))u> and dim <Ch (V O‘))u> Seeing
that {e (\) | A € X} is a basis of Z[X], we get that the coefficient of e (§) is the
same on either side of (2.1), giving us:

dim (v (A)g) =Y V(N : L ()] dim (L W&)

H=A

Now we can use the fact that y is the highest weight of L (u) and thus L (1), = 0

for ¢ A p. Furthermore we use dim <L (§)§> = 1, and thus rewrite the identity
above:

V) LE©] =dim (V) = 3 VO):Lw)dim (L) (23)
E<p=A
If we choose £ to be the highest weight for which [V () : L ()] is still unknown,
we can calculate [V (\) : L (&)] by calculating dim (V ()\)£> and all dim (L (,u)g)
for § < p <A
As usual the Weyl module case is the easiest, since they derive from the complex
Weyl module V (\), and thus have dim (v ()\)u) — dim (V (A)w)

For finding the value of dim <V ()\)C’ u) we have several possibilities, for example

using Freudenthal’s formula (Theorem 22.3 [Hum?72|) or Kostant’s multiplicity
formula (Theorem 24.2 [Hum72]|).

So the only part missing before we can find the coefficient [V (X) : L (£)], is to
find dim <L (,u)€>, which is not an easy task. That is why the whole of the rest of
this section is about just this task.

2.5.2 The Verma modules M ()
Let A € X* be a dominant weight. We define the Uc-module M () by

M (N)¢ :%/(Z Uceo + Y Uc (h— A<h>>>

acedt heb

where § is the sub-k-algebra generated by {h, |« € @} (the part that comes from
the maximal toral subalgebra of gc). This module we call the complex Verma
module.

If we define vy = [1] € M (\)c to be the class containing 1, then clearly the
standard relations (Proposition , and the rules of calculation (Theorem m
and for type A, D or E Theorem hold in M (X). also.
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M (M) however is not the same as V' (A)g, because M ()) is infinite dimen-
sional. Still one can prove (using many of the arguments from subsection
that the set of elements on the standard form, for some total ordering, forms a
basis of M ().

As usual we also have Evy € M (A)¢, (g, When E is a monomial in Uc,
because M (A)¢ , is defined to be exactly the elements of v € M ()).. satisfying
that hv = p (h)v for all h € b.

As in the Weyl module case we define: M (X), = Uzvy and M (A) = M (N\), @z
k. The last one we call the Verma module.

Clearly the dimension of M (X), = M (\),, ®z k is the number of ways to
write A — u € AT as a sum of positive roots, seeing that each way yields exactly
one element on the standard form. Thereby we get

M (X), = span, {Evy € M (A) [ (E) = p— A}

We have M (\) = D ,<, M (A),,-

We get a natural surjective Uc-module-homomorphism from M (A). to V (A,
sending Evy € M (\) to Evy € V (A)e. This homomorphism restricts to a
Uz-homomorphisms M (X), — V ()A),, and further induces a Uy-homomorphism
M (A) — V (A). The last of these homomorphisms we want to compose with the
projection of V' (A) onto L (\) to get the surjective homomorphism

ox:M(A) = V(A = LN

This homomorphism we will return to in a while.

2.5.3 A bilinear form on M ()\)

According to [HumO8| subsections 3.14, 3.15, there exists a symmetric bilinear
form (-,-) on M (\); satisfying:

(U,\,U)\) =1
(eqv, V") = (v,e_4v") for all v,v" € M (\)g, and a € ®

We have following result:

Lemma 2.5.1. When restricted to M (\),, the form maps into the integers:

(g, xaren, - M (M) x M (A)z = Z

Proof. 1t is enough to prove it for that every pair of basis vectors of M (\), is
mapped into Z, that is (Evy, E'vy) € Z, where E,E' € Uy are strings on the
standard form.

Seeing that F has standard form, we may write £ as £ = egll) ---eg::‘) €

U;. We now define: E = e(fg) ) ¢ Uyz. We clearly get: (Evy, E'vy) =

m 1

(U/\, EE’U,\). Now we can rewrite F'E'vy as a Z-linear combination of strings on
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the standard form, which proves that it is enough to prove for that (vy, Fvy) € Z
for any string F' € Uy on the standard form.
But now if F' is different from the empty string we can just say:

(U}UFU}\) = (FU)\,U)\) = (O,U)\) =0€Z

where the second to last = comes from F being a string F' = e};ll) - e(ﬁs’”) where

the f3;’s are negative roots (and not all s; = 0), and thus F = e(_sg;z e e(_s/];i where

the —f3;’s are positive roots. The case where F' = 1 we just get (vy,v)) =1 € Z.
This concludes the proof. O

In the proof you may notice that (Fvy, F'vy) # 0 only if v (E) = v (E’), from
this we can directly conclude:

Lemma 2.5.2. The weight spaces M (\)
(-2) when i €.

Now we want to induce the form to a symmetric bilinear form (-,-) : M (\) X
M (X\) — k; this is simply done by setting

2+ M (N)g ¢ are orthogonal in the form

ve1,v®1)=(v,v)
and extending linearly. This form also have the properties of the former form:

(U)\,’UA) =1
(equ, V") = (v,e_n0") for all v,0" € M (N\), and o € @
M ()\)”J_M ()\)5 for p #£ &

2.5.4 The kernel of the homomorphism )

Recall from subsection that we have a natural surjective homomorphism
©x: M (X)) = L(\). This we will use to describe L (A).

We start by noticing that ¢,, being a homomorphism, maps weight spaces to
weight spaces of the same weight.

Proposition 2.5.3. The kernel of py can be described by the form (-,-) as follows:
ker (pa) = {v € M (A) | (v, M (A)) = 0}

Proof. Notice first that both M (\) and L () is a direct sum of their weight spaces,
(x maps weight spaces to weight spaces of the same weight, and M (A), LM (A),.
These three properties imply that it is enough to prove that for any v € M (/\)u:

v € ker (p)) <= (v, M (\)) =0

So let v € M (A), for some weight p. Since L (A) is simple we must have that
@ (Uyw) is either 0 or all of L (\).
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We define the Uj-submodule N = Uv of M (\). Using that oy (vy) = vy # 0,
we get that v € ker (¢, ) if and only if vy ¢ N. Now N being a k-vector space, and
M (X), being 1-dimensional, this (vy ¢ N) is the same as N N M (), = 0.

Now because v € M ()‘)u we get that NV is generated by Ev for all terms F € U,
on the standard form. The Ev are then all weight vectors (in N¢ for & = pu+~ (E))
and thus N = P, N¢ where Ng = N N M (). Keeping that in mind we get that
NNM(A), =0ifand only if N C P, _, M (\), which by the orthogonality of the
weight spaces of M () is clearly the same as (the first “="):

0= (v, N) = (v, Upv) = (Urvyr,v) = (v, M (X))

Which concludes our proof. O]

2.5.5 The matrix M, ,

We are now ready to define the matrix M), , and prove the main theorem of this
section. Let Fy,..., E; € Uy be all the different monomials on the standard form,
with v (E;) = p — A, that is to say Fivy,..., B, forms a basis for M ()‘)u‘ Now
define:

M)\,;L - ((Eﬂ))\, Ejv)\))lgi,jgl
And now to the main theorem of this section.

Theorem 2.5.4. Let A € X+ and p € X such that p < X\. Then

dim (L (A)M> = rank (M, ,,)

Proof. Define ¢ : M (\), — (M (/\)“>*, by ¢ (v) () = (v,z). Let vq,...,v be a
basis for M (A), such that v,,1,...,v; is a basis of ker (¢) and ¢ (v1),...,¢ (v;)
is a basis of ¢ <M ()‘)u>'

Now extend the basis ¢ (v1),..., ¢ (v,) of ¢ (M ()‘)u> to a basis uq, ..., u; of
(M ()‘)u>*’ such that uy = ¢ (v1),...,u, = ¥ (v,). Let wy, ..., w; be a dual basis

of uy,...,w. That is to say u; (w;) = d; j, which gives us:
0;j ,fori<r
Vi, W;) = ’ ,
(v, ;) {0 yfori >
Seeing that v,,1,...,v; is a basis for ker (1)) we get:

span, {v; |i >r} = {v e M ()N

(v,M(/\)M> — 0}

(v, M (1)) = 0} = ker (pxnrcn, )

“w

:{UGM(A)

I
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Here the second equality follows from the orthogonality of the weight spaces, and
the last equality follows from Proposition 2.5.3] From the above results and the
rank-nullity theorem we get that:

dim (L ()\)u) = dim (w (M (A)M>)

=1 —dim (ker (@A\M(A)u»

=r
= rank (((vi,wj))1§i7j§l>
Now in general if by,...,b,,, ¢1,...,¢m, di,...,d,, and eq,..., e, are bases of a

vector space with a bilinear symmetric form (-, -), then the matrices ((b;, cj))1<2.j<l
and ((d;, €;)),; ;<; have the same rank. This is easily seen by using change of
basis matrices (which are invertible), and the fact that multiplication by invertible
matrices do not change the rank. Thus we get:

1§z',j§l>

— rank ((@Z-, ;)11 Sl)

— dim (L (A)#)

This concludes the proof. O

rank (M, ,) = rank (((Eivk, E;vy))

2.5.6 The algorithm

We can now easily make an algorithm that finds dim (L ()‘)u>' The algorithm

starts by finding all the strings Fy, ..., E; on standard form with v (E;) = p — A.
Next it uses an algorithm like the one in subsection to calculate EEJ-UA €
M (X\), which is an integer c;; times vy (M (A), is 1-dimensional). Now use
simple Gaussian reduction to calculate the rank of the M) , which has the entries
[ci;], € Fp C k, and now by Theorem we have found the dimension of the
weight space L O‘)u' By this algorithm we now have a way of finding the characters
of L(A).

Example 2.5.5. Let ® be of type A, and let p=3. Let A =[2,1,1,2] € Xt and
£=1[1,1,1,1] € X*.

We will try to find [V (A) : L (£)] using the method described in this section and
in subsection So let us assume that we have already calculated [V () : L ()]
(they are all 1) for all £ < g < X with g in the dot-orbit of A (and of &).

Now we need to calculate dim (V (A)§> (which we will not go into details with),

and dim (L (,u)g) for all the before mentioned p’s. In general this can take some

time if you do it by hand. But in this case the only matrix we get that is bigger
that 1 x 1 is the 8 x 8-matrix M. So let us look at that one.
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First we need to see in how many ways we can write A\ — pu = [1,0,0,1] =
(1,1,1,1) as a sum of positive roots. This is where the number 8 enters, for that

is exactly how many ways it can be done:

1:(1,1,1,1),

2:(0,0,1,1) + (1,1,0,0),
3:(1,0,0,0) + (0,1,1,1),
4:(0,1,0,0) + (1,0,0,0) + (0,0,1,1),
5:(0,0,0,1) + (1,1,1,0),
6:(0,0,0,1) + (1,0,0,0) + (0,1,1,0),
7:(0,0,0,1) + (0,0,1,0) + (1,1,0,0),
8:(0,0,0,1) + (0,0,1,0) + (0,1,0,0) + (1,0,0,0)

Now each of these ways represents a monomial F; (for 1 < i < 8) on the standard
form for example: 3 :(1,0,0,0)+(0,1,1, 1) represents E3 = €_(1,0,0,0)€—(0,1,1,1) and
6:(0,0,0,1) 4 (1,0,0,0) + (0,1,1,0) represents Eg = e_(0,0,0,1)€—(1,0,0,0)€—(0,1,1,0)-
Now the next step is to calculate EZ—EJ-UA for all pairs 1 <7 < j < 8. we will
demonstrate this using the algorithm in subsection in the fairly simple case

ElEg’U)\Z

6(1717171)67(1707070)67(0717171)?})\

- 6_(1707070)6(1717171)6_(0717171)/0)‘ - 6(0717171)6_(0117171)1]A

= 67(1707070)67(0’17171)6(1’171’1)’UA + 67(1’07070)6(1’070’0)’UA

— €-(0,1,1,1)€(0,1,1,1) Ux — <)\> (07 L1, 1)> )
= —41})\

This means that entry 1,3 (and 3,1) in My is —4 = 2 in k.

matrix looks like this:

=N O~ NN OO
— = O N O O OO
— O N ONF—ONIN
O OO ODNONN
— N R OO N
—_ O = = O N OO
— R O NN O RN
ORr R R OR KRR
O OO OO oo
O OO OO O oo
O OO OO NN
OO OO = ==
O OO, ONNO
SO O ROk OO

The whole of the

SO NN HFH = =O

OO N ON N

So we see that rank (M) ¢) = 6. Data needed can be seen in the following table:

7 2,1,1,2] [ [3,0,0,3] | [3,0,1,1] | [1,1,0,3]

rank (M), ¢) 6 0 0 0
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Furthermore dim (V' ())), = 8. And now we can find the coefficient using (2.5)):

V) L(©) =dim (V) = D V(N : L(w)]dim (L (u))

E<p=<A

=8-1-0-1-0-1-0-1-6=2

And thus we have calculated the coefficient [V (\) : L (§)].



Chapter 3

Lusztig’s conjecture

For a mathematician it is of course not enough to be able to calculate something;
we want to find a pattern. Such a pattern for the characters for the simple modules
L (M) is described in Lusztig’s conjecture.

3.1 Prerequisite theory

Before we are able to understand Lusztig’s conjecture, we need some general theory
about Hecke algebras and Kazhdan-Lusztig polynomials, and about the Coxeter
number.

3.1.1 Kazhdan-Lusztig polynomials

The constructions in this subsection will depend only on the affine Weyl group W
(actually it can be done for any Coxeter group).

Definition 3.1.1. The Hecke algebra H is a Z[q, ¢~ ']-algebra spanned by the set
{T, |w € W}, with product defined by:

T T for [ (s;w) > [ (w)
Y (g =1 Ty + T, for I (s;w) < 1 (w)

where w € W is any element of W, and s; is one of the simple generators.

To see that this actually is an algebra, see [Hum90]. Notice that the product
of any two generators T,, T, (and thus any two elements of /) can be calculated
by the above identity since if z = s;,s;, - -+ s5;, is a reduced expression for x, then
T, = TSiITSiQ . -Tsil. Since T} acts neutrally on all of H, so it makes sense to define
1 =T, € H. And seeing that we now have an identity element we can also notice
that all the generators have an inverse element in H, in particular:

T '=q¢'T,—(1—¢ )T

33



34 CHAPTER 3. LUSZTIG’S CONJECTURE

Writing the inverse element of T,, in the T,-basis we get:

T1;1 = (_1)l(w) q(l(w)) Z (_1)l(z) Rx,w (Q) Tz

r<w

where < is the Bruhat ordering, and R,, € Z][q] is a polynomial (called the
R-polynomial) of degree [ (w) — [ (z) with Ry, (¢) = 1, see Proposition 7.4 in
[Hum90]. These R-polynomials play an important role in calculating the Kazhdan-
Lusztig polynomials. On how to calculate the R-polynomials, see [Hum90| sub-
section 7.5.

To define the Kazhdan-Lusztig polynomials we first need to introduce an invo-
lution “: H — H on H:

= x forx € Z

= qil
T, = Tq;,ll forwe W

2 S

Now it can be proved (Theorem 7.9 in [Hum90]) that there exists a unique basis
{Cyp|weW} of H (if we view H as an Z [q%,q_%]—algebra) such that C, =

Cyp and C,, — Ty, € span{T, |z < w}. We can now define the Kazhdan-Lusztig
polynomials:

Definition 3.1.2. When we write C, in the T,-basis we get:

Cw = (_1)Z(W) q§l(w) Z (_1)l(90) q_l(I)Px,w (q) Tx

r<w
and the polynomials P, ,, (q) are called the Kazhdan-Lusztig polynomials.

The Kazhdan-Lusztig polynomials are polynomials in ¢, of degree less that or
equal to 3 (I (w) —l(z) — 1) if z < w, Py =1.

To get a method of calculating the Kazhdan-Lusztig polynomials, see [Hum90|
7.10.

3.1.2 The Coxeter number

In this subsection we will be working in the Weyl group W. (W, 5’) is a Coxeter
system with S" = {s1, s9,...,8,}. We define:

Definition 3.1.3. A Cozeter element ¢ € W is a product of one of each of the
generators S’ in any order. The order h € N of a Coxeter element is called the
Cozeter number.

It is not obvious that the Coxeter number is a well defined number, but one
can prove (Proposition 3.16 in [Hum90|) that all Coxeter elements are conjugate
in W, and thus have the same order.

When & is of type A, the Weyl group W = §,, ;1 is the symmetric group where
the simple generators s; = (i ¢+ 1) are the simple transpositions. We easily see
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that a Coxeter element here is a (n + 1)-cycle, and thus the Coxeter number is
h=n+1.
Some properties of the Coxeter number are:

Proposition 3.1.4. The Cozeter number h satisfies:

ohz'%l

o h=(p,a)+1

See Proposition 3.18 in [Hum90] for the first part, and Proposition 31 in [Bou68|
chap. VI, §1 for the second part. Because of the last property one can easily prove
that Ag N X is non-empty if and only if 0 € Ay N X if and only if p > h.

3.2 The conjecture and questions

We start by defining the Jantzen region J:
J={ e X | (A+pa)<p(p—h+2) forall « € P}
={deX"|(A+pa)<plp—h+2)}
We are now ready to state Lusztig’s conjecture:

Conjecture 3.2.1 (Lusztig’s conjecture). Let A € AgN X, and w € W such that
w. A € J, then:

ChL (UJ)\) - Z (_1)l(yW) Pwoy,wow (1> X (y>\)

y<w
yAeXt
Here wy € W C W is the unique longest element in W, and P,y w,w is the
Kazhdan-Lusztig polynomial, and y < w is in the Bruhat order.

The identity in the conjecture we will call Lusztig’s character formula.
In [AJS94] it was proved that the conjecture holds at least for big enough values
of p. More precisely:

Theorem 3.2.2. There exists a constant m (®) € N dependent only on the root
system ® of G, such that if char (k) = p > m (®) then Lusztig’s conjecture holds.

One might notice that A is required to be in Ay, that is to say be a regular
weight. This problem can however be solved by the translation functor. Seeing
that R™ is the disjoint union of the upper closure of the alcoves, we know that any
N € X1 is in the upper closure of some alcove A. Now since the dot-action of
VW permutes the alcoves simply transitively, there is a unique w € W such that
w.Ag = A. Then we can apply corollary to any regular weight A € Ay N X,
and w and X, to get chL (w.\).

Because the right side in Lusztig’s character formula doesn’t really depend on
p, it is necessary with the bound that w.\ € J which depends on p. To overcome
this we can use Steinberg’s tensor product Theorem it X, C J.

These two observations lead to another similar question:
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Question 3.2.3. Let A € AyNX, and w € W such that w.\ € X, and w.\ € Qm.
Does Lusztig’s character formula

chL (U))\) = Z (_1)l(yw) Pwoy,wow (1) X (y)‘)

y<w
yAEXT

hold in this case?

The hope is that the answer is yes if p > h (that is if there exists regular
weights), even if X, ¢ J (X, CJ < p>2h—3).

In the general case however, the answer is no. In the data in appendix [A] one
can find two places (but only these two places) where the actual characters do not
match the ones from Lusztig’s character formula:

In type A4 with p = 2 we have that

ch (L ([0,1,1,0])) = x ([0, 1,1,0]) = x ([0,0,0,0])
whereas Lusztig’s character formula claims that it is
ch (L ([0,1,1,0])) = x (0,1, 1,0])
In type A4 with p = 3 we have that
ch (L (1,2,2,1))) = x ([1,2,2, 1)) = x ([0,2,2,0)
whereas Lusztig’s character formula claims that it is
ch (L ([1,2,2,1])) = x ([1,2,2,1]) = x ([0,2,2,0]) + x ([0, 1, 1,0]) = x ([1,0,0,1})
We are still left with the following two natural questions:
1. How big need p be for Lusztig’s character formula to be correct?

2. Can we find another pattern that holds more generally, or at least in the
small p cases (p < h)?

To the first question some progress has been made in [Fie09], in which a concrete
way of calculating an upper bound for m (®) is described. These upper bounds,
however are far greater than the value hoped for (namely h).

It is question number two that we will be looking into primarily. One way to
attack this problem is to actually do some calculations for some small values of p,
and compare the results to Lusztig’s character formula.

In appendix [A| can be seen the inverse composition factors [L (A) : V (u)] for
each A € X, and g € X with o < X and g = w.\ for some w € W. These
numbers are then compared to what the numbers would be according to Lusztig’s
character formula. These calculations are made for root systems ® of type A,,
As and Ay for p € {2,3} (Except the case Ay, p = 2 where V (A) = L () for all
AeX,).
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3.3 Homomorphisms between Weyl modules

To better be able to describe the simple modules, we try to describe the Weyl
modules. One way of describing V' ()\) is to find homomorphisms from V (u) to
V' (A) for some p. Now since V' () is generated (over Uy) by v, it is enough to know
the image of v,, to know the whole homomorphism. And since a homomorphism
must send weight spaces to weight spaces of the same weight we get the following
result:

Proposition 3.3.1. Let ¢ : V (u) — V (\) be a non-zero homomorphism, then
p=A and ¢ (v,) = 22:1 a;E;vy where a; € k and the E;’s are monomials on the
standard form in Uy, with v (F;) = p— A.

Notice that we use that ¢ is a G-homomorphism between Weyl modules if and
only if ¢ is a Ui-homomorphism between Weyl modules — a fact that is easily
proved (see the closely related last part of Theorem [1.2.2)).

This however in most cases leaves a lot of choices for ¢, not all of which are
actual homomorphisms. This problem we solve by the following theorem:

Theorem 3.3.2. Let up = A, and let £ = 22:1 a;E;, with a; € k and the E;’s
monomials on the standard form in Uy with v (E;) = p— X = > ¢ rio;. Then
there exists a homomorphism ¢ : V (i) = V (X) sending v, to Evy, if and only if
forall1 <i<n and for all 1 < s <r;, we have e&S)Ev)\ =0eV(N).

7

The theorem follows from Lemma I1.2.13.a in [Jan03].
Now to actually find the homomorphism we need be able to write any element
of V' (\) on a unique standard form. More precisely we need a basis of V ().

3.4 The structure of V ()\) in type A

3.4.1 The basis of V (\)

Finding a basis for V (\) in general in not an easy task. First we need some
extra structure on V' (A). This can be found in [Hum72| chapter 21. In particular
Theorem 21.4:

Theorem 3.4.1. Let A € X with A = > m;\;. Then
VNe = M) /TN
where J () is the M (X)q-submodule generated by e(lzifl) for1<i<n.

It may be outside the scope of this thesis to find a general basis for the Weyl
module, but we need one to find the homomorphisms mentioned in the previous
subsection.
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In [Jan73] is a description of a basis of V' (\), when ® is of type A,. To explain
it as a subset of the monomials on the standard form, we use the ordering < of
the negative roots given by (for 1 <j<i<n+1,1<I<k<n-+1):

€ —€ e —€ < j>lor (j=landi>k)

now it can be concluded from page 85 (just below formula (9) in the bottom half
of the page) of [Jan73| that:

Theorem 3.4.2. Let ® be a root system of type A, (basis €; — €;41 for 1 <i <mn).
Let X\ € X with A\ = Y"1 m;\i. The set of monomials on the standard form
according to the ordering J, where the exponent r;; € N of e, for 1 < j <i <
n+ 1 satisfies

-1
0<r; <m;_1+ Z (ric1g —riyg)
=1

forms a basis of V (X\). That is to say the basis vectors are on the form:

(rn+1,n) (Tn+17n71) (Tn,nfl) (T'n+1,n72) . ‘6(7"3,2) (Tn+171) (Tn,l) . (TZ,I)

€En+l1—€n €Entl—€En—1 €En—€n—1 €Entl—€Ep—2 €3—€2 T€nt1—€1 En—€]1 62*51,0)‘

where the r; j satisfy the above constraints.

3.4.2 Yet another rule of calculation

Now to transform an element in V' () to a linear combination of the basis vectors
described in Theorem we need one more rule of calculation:

Proposition 3.4.3. Let ® be of type A, D or E. If a, B, a+ 5 € ®, and t,r,s € N
with t +r > s, then:

(r) o) NS (ST I i) ()
et et gy Nﬁ,aZNiﬁ( )% Degipelt™

7 . (3.1)
. S 1 i
. —1i (t+z) (r—i) (s+1i)
Z Nﬁ,a ( i ) €a "€atp €
=1

Proof. We calculate in Uc.
As usual for these rules we use induction, and this time in s. To see the
induction start (s = 0) we use (1.7):

(r+t ZNZ r+t Ve () eg_i)
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We now extract the last summand (for i = r):

r—1
6 () ar—r (1) (et i (t4r—d) (i) (r—)
e&)ea—f—ﬁ - Nﬁ@eﬁ ef(l = Z Nﬁaa ef(l )ea+ﬂeﬁ
i=0
= Nﬁ_’;eg)eg“) — Ngieg”)e&w)e(ﬁj)
j=1

Which is clearly what it should be. So now assume the proposition to be ok for
s—1,andlett+7r>s>s—1.

t) (1) (s)
(()z) a+565

_ Lo o 5= 1)
s gu) €at8¢8 €s

fr s—1
-1 _ o lare ) (d .
/3, Z < +r J) e(ﬁ 1+ j)eglﬁegﬂ ])66

1+Z D) (r—i) (s—1+i
——zzva( )eg+>eg+;e; ey

N7£81 8—1+T_] s+r—
N T
=0

— s—

)yt pifs—1+r—j )G :
5.0 , j1(S =0 (s=14r=j) (+D) (r+t—j—1)
_ B E 1) N,
+ s (J+1) N ( , )66 €ats Ca

d s+i1fs—1+1 N (r—i ;
—i (t44) (r—1) (s+i)

Here the second equality is by the induction hypothesis, and the third equality is
just (L.7) used on the terms in the first sum and (1.1)) used to merge factors with
the same root. We now substitute £ = 7 + 1 in the second sum:

Ay C(s—1+r—] »
=—"’“Z<s+r—j>Niﬁ(8 . ]>6(5+”‘”€Slﬁ o

s 4 T
Jj=0
NI & s+r—k _
B, k (s+r—Fk) (k) _(r+t—k)
— kN
+ S kg 1 aﬁ< . >65 €ot5Ca

t+i) (r—i) (s+1)
-3 ("] el

We notice that the coefficients of el ™" eg; g)egﬂ) are the correct ones for all 4, so we



40 CHAPTER 3. LUSZTIG’S CONJECTURE

now need to examine the coefficients c; of eésﬂ*j )eg}r BegH*j ). First let 0 < g <s:

N;"N? L(s=14+r—3\ [(s+r—j
N A )

_ NN (s+r—j)(s—1+r—j)!+j(s—|—7"—j)!
Pa”laf srl(s —1—j)! srl(s —7)!

Ny i) (s =)

- Baaf srl (s —j)!

e [(STT—T

- ()

which fits the theorem. Now lets look at cq:

0

“ﬂ(s+r—0)<
s+rf{s+r—1 s+r sS+r
:Nf'r :NfT :NfT‘

which is the correct value. Now we just need the last coefficient c,:

c:NB_’g‘s s [(s+r—s _ N s+r—s
s =g Sasl gatVapl

And we hereby conclude the proof. m

_ Mo

s—1+7’—0)
Co

Notice that if ® is of type A we get from Lemma that the Ny g, Ngo €
{=1,1} so, it does not matter that we raise them to a negative power. That is to
say that in case A the proposition holds in Uy, and thus in U;.

3.4.3 An algorithm in type A

We are now ready to sketch how to write the elements of V' () as linear combina-
tions of the basis vectors described in Theorem B.4.2

Theorem 3.4.4. Let @ be of type Ay, let X\ =>" ,m;\ € XT, and let E € Uy,
be a monomial on the standard form (according to the < order) — that is to say
E = EnEn—l s E1 with

_ (rnt1,0) (rny) (rit1,1)
E; = een++11—ei €n—€; " €i+t1_€i
Then E can be written as a sum of a linear combination of monomials on the
standard form satisfying the constraints of [3.4.4 and an element belonging to
Dot Do, uz—eﬁfil_q, where U, C Uy is the subalgebra generated by el for
a€ed,reN,
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Proof. We will prove this by induction both in n and in the total weight ~ (E;) of
El.

Notice first that F,FE,,_1 - -- E5 can be seen as an element of Uz with ® of type
A,,_1 (since if you remove all the roots not orthogonal to €; in ® you are left with a
root system of type A, _1). Thusif v(E;) =0 then £y =1and E = E,E, 1 --- Fy
and we are done by induction in n. So assume E; # 1 (that is v (E;) < 0), and
assume the theorem to holds for all £/ = E! - -- E] with v (E]) > v (FE}), and that
the theorem holds for all £ when & is of type A, for r < n.

First we see what we can do if there is an 2 <1i < n + 1 such that r;; > m,_;.
If i = 2 then E ends with ...622_’16)1 with ro; > my, and we are already done. So
assume that ¢ > 2.

Now we use on el Trim ey get:

€i—1—€1 €;—€i—1

6(7’1',1) (ri—1,1)
€;—€1 "€ —1—€1

ri1—1
o -7l (re,i+ric1,1) (ri1) m (rij—m) (m) (ré,1+ri—1,1—m)
- <_1) <€Ei_1—61 eei—ei_l - (_1) eei—si_l eei—qeq_l—q

m=0

Where the (—1) comes from N,_,_, ¢—,_, = —1 by Lemma[1.2.3] This expression
we use inside F; to rewrite E as a linear combination of new monomials. In the
first monomial in this linear combination (the one coming from elrtrimLy) plri) )

€;—1—€1 €i—€i—1
we see that every factor to the right of eg"fﬁzf | commutes with egﬁiL |, SO we can
move eﬁji_*g_l all the way to the right end, thus getting something on the form

U; e with ri1 > m;_1, so this term is on one of the correct forms. For the

7 ~€i—€i—1
rest of the monomials we can commute eﬁjﬁg_’? to the left into its rightful place

in E;_; # E to achieve a monomial £’ = E/ --- E] with

Y(EY) =5 (Ey) = (rij —m) (6 — €i1)
Y (E1) + (rij —m) (61 — &) = v (£1)

which by induction can be put on the right form.
Now we are left with the case where all the r; ; satisfy r;; < m;_;. We use the
induction hypothesis on F, --- Es and the weight

N = Z (mi + 71— Tig11) N
i=2

to rewrite F as a sum of monomials on the standard form, with the correct expo-
nents, plus a linear combination of monomials on the form

E=F --E _E

€i+1—€;

with r > m; + Ti1 — Tit1,1-
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We notice that egil,ei commutes with all the factors of E; except eﬁ’"jjl So

with the monomials of the last type we rewrite

B —F ... E/e(T‘n-H,l) R e(Ti+1,1)e(Ti,1) o 6(7‘2,1)

2%en+1—e1 6511+1_€i €i41—€1 €;—€1 €2—€1

Here we can apply (3.1)) to the underlined factors above, since r > m; +r;1 — 7411
and thus r + Tit1,1 Z Ti1-
Now the first sum on the right hand side of (3.1) (when the underlined is

plugged into the left hand side) consists of monomials ending on egjlritj’l_j) for

0 <j < 7i1. In the monomials that comes from these terms we can commute
gjfitj*“” to the very right, and since r+7;111—7 > m;+r1—rig11+rip11— i1 =
m; we get monomials on the correct form.

In the second sum on the right hand side of (3.1) we get monomials on the
form egjﬁqegfll;lefj)egﬁgj ) for j > 0. The leftmost factor here can now be

commuted out of E; to the left giving us a new monomial £E” on the standard
form E” = E ... EY with:

Y (Ei/) =7 (1) —j (i1 — &)
= (EL) +j (& — €ip1) = v (E1)

We use induction on these terms, and have now transformed the monomial to a
linear combination of the monomials on the desired form. O

This proof together with the algorithm for putting elements on the standard
form described in subsection and Theorem gives us an algorithm for
how to write an element of V' (\) as a linear combination of the basis vectors from

Theorem when @ is of type A,,.
Notice also that (by Weyl’s character formula) if one proves that there are

Z <)\+p,C(>

C!E‘l>+ <p7 0()

different vectors on the form described in Theorem then the above theorem
can be extended to a proof of Theorem [3.4.2]

3.5 Radicals and Ext groups

To further explore the Weyl modules and the simple modules we need some more
tools.

3.5.1 The radical of a module

Definition 3.5.1. The radical rad (V') of a module V' is the intersection of all the
maximal proper submodules:

rad (V) = N M

Mmcv maximal submodule



3.5. RADICALS AND EXT GROUPS 43

The i’th radical rad’ (V) of a module is defined inductively by:

rad’ (V)
rad™ (V)

(V)
(rad’ (V)

rad
rad

The filtration M D rad® (M) D rad® (M) D ... of M is called the radical filtration.
A module M is said to be semisimple if it is a direct sum of simple submodules.

Notice that for any G-module M of finite composition length, we have that
M /rad (M) is semisimple. Furthermore M is semisimple if and only if rad (M) = 0.
That is rad (M) is the smallest submodule such that M /rad (M) is semisimple.

3.5.2 The Ext group

For later use we now define the Ext groups.

Definition 3.5.2. Let N, M be G-modules. On the class of short exact sequences
of G-module homomorphisms of the form

0O—+N—=L—-+M-=—=0
we have an equivalence relation ~ given by:

O—=>N—-=L—->M-—0
~0—=>N=L—->M-=0

if and only if

O — N — L — M — 0
Jid 4 Jid

0O — N — L — M — 0

commutes for some map for L — L'

Let Extg, (M, N) be the set of equivalence classes of ~. Extg, (M, N) is equipped
with an addition operator (called the Baer sum) making Ext, (M, N) an abelian
group with O-element

O—-N—->NOM-—->M-—0

where the two middle maps are z ~ (2,0) and (z,y) + y. Extj (N, M) is
also equipped with a scalar multiplication, making Ext}; (N, M) a k-vector space.
Extg (N, M) is called the Ext group.

If a short exact sequence is 0 in the Ext group we say that it is a split short
exact sequence.
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Notice that by the 5-lemma gives us that if

O—-N—-=L—-M-—=0
~0—>N-—=>L—-M-=0

for two G-modules L, L', then L = L.
Now we want to find the Ext group Exty (L (M), L (1)) between two simple
modules L (\), L (u). We have the following nice results:

Proposition 3.5.3. Let \,u € X, then
Extg (L (M), L (1) == Exte (L (1), L (N))
Furthermore if X A u, then
Exte (L (A), L (1)) = Homg (rad (V (X)), L (1))

For a proof see 11.2.12(4) and Proposition I1.2.14 in [Jan03].

So to investigate the Ext groups we want to study Homg (rad (V (X)), L (1))-
Notice first that if ¢ : rad (V (\)) — L (u) is a non-zero G-homomorphism then
¢ must be surjective and ker (¢) is a maximal proper submodule of rad (V' ()\)).
Thereby rad® (V (\)) = rad (rad (V (\))) 2 ker(¢). Which gives us that ¢ =
¢’ o7 for some G-homomorphism ¢’ : rad (V (\)) /rad® (V ()\)) — L (u), where
7 rad (V (A\)) — rad (V (X)) /rad® (V ()\)) is the standard projection map. We
can conclude

Homg (rad (V (X)), L (1)) = Homg (rad (V () /rad® (V (N)), L (1))

Now since rad (V' (\)) /rad® (V (\)) is semisimple we have
rad (V (X)) /rad® (V (\) 2 P L (v)"™"

and thus by Schur’s lemma we get the following result (using the convention
m(v) =0 forv A \):
m (v) = dim (Homg (rad (V (X)) /rad* (V (X)), L (v)))

= dim (Extg (L (v), L () (3.2

This gives us the following result (notice that for any A, u € X then either A\ £ u
or A N):

Proposition 3.5.4. Let \, i € X+ such that Exty (L (\), L (1)) # 0 then either
A=< porp =<\ Furthermore if p < X, then:

[rad (V (\)) /rad® (V (X)) : L (p)] = dim (Extg (L (A), L (1))
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3.6 The submodule structure of V' (1))

By the previous section we see that to find the dimension of the Ext group be-
tween two simple modules, we just need to find the composition coefficients m (v)
of rad (V (X)) /rad® (V (\)). These composition coefficients are of course closely
related to the composition coefficients of V' (\), namely m (v) < [V (A): L (v)].
But also to the submodule structure of V' (A). This subsection builds mostly on
[AIpg0].

3.6.1 Preliminary lemmas

We want to describe the submodule structure of V' (\) by the composition factors.
This can be done very elegantly using diagrams. First we need some lemmas:

Lemma 3.6.1. Let M be a G-module, and let E a simple G-module satisfying
(M : E|=1. If My, My C M are submodules with E as a composition factor, then
[MlﬂMQ:E] =1.

Proof. Assume otherwise that [M;NM,: E] = 0. Then we must have that
[My/ (M; N M,) : E] > 0, since E is a composition factor of M; but not of M;NMs.
Now since (M + Ms) /My = M,/ (My N Msy) we get that [(My + Ms) /M, : E] > 0.
Since F is a composition factor of M, this gives us that [M; + M, : E] > 1, but
that contradicts the fact that [M : E] = 1, since My + My C M is a submodule of
M. ]

Lemma 3.6.2. Let M be a finite dimensional G-module, and let E a simple G-
module with [M : E] = 1. Define the submodule ty (M) C M to be

tp (M) = N M
M'CM submodule
[M':E]#£0

Then E = tg (M) /rad (tg (M)).

Proof. We start by noticing that [tg (M) : E] = 1. This follows from the above
lemma, together with the fact that since M is finite dimensional we can see the
intersection defining ¢ (M) as a finite intersection. This observation also gives us
that tg (M) # 0.

Let N C tg (M) be a maximal proper submodule of ¢ (M), then [N : E] =0
since otherwise we would have tz (M) C N by the definition of ¢tz (M). Thereby
we get that tg (M) /N =2 E. Now since tg (M) /rad (tg (M)) 2 E, & --- & E,, for
some simple modules Ey, ..., E,,, we get by the above (since N was any maximal
submodule of tg (M))

E; = tg(M)/N;,~E

for some maximal proper submodule N; of tg (M). So tg (M) /rad (tg (M)) = E™,
with 0 <m < [tg (M) : E] = 1, which concludes our proof. O
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We need some properties of this ¢t (M).

Lemma 3.6.3. Let M be a finite dimensional G-module, and let E be a simple
G-module with [M : E] = 1. Let U C M be a submodule such that U/rad (U) = E,
then U =tg (M).

Proof. Since [U : E] > 0 we have tg (M) C U. Assume now that tg (M) # U,
that is tg (M) € U. Since U/rad (U) is simple we must have that rad (U) C
U is a unique maximal submodule of U. Every proper submodule is contained
in a maximal submodule, thus tg (M) C rad (U). Thereby [U/tg (M): E] >
[U/rad (U) : E] = 1, but this gives us [U : E] > 1, which contradicts that [M : F]
1.

o

Since the only simple G-modules are the L (\) we will use the notation ¢, (M) =
troy (M) for any G-module M with [M : L (\)] = 1.
We now apply the above lemma on the Weyl modules.

Proposition 3.6.4. Let A\ € X, then t, (V (X)) = V(N\). Furthermore if M
is a G-module with [M : L (\)] = 1, and there exists a non-zero homomorphism
0 : V(A = M, then ty (M) = ¢ (V (N)).

Proof. That t\ (V (X)) = V (\) follows directly from the above lemma, since
V (A) /rad (V (X)) = L (\) by Proposition [1.4.1]

And now to the second part of the proposition. Claim: rad (¢ (V (X)) =
@ (rad (V (X))). We prove the more general statement: if M, N are G-modules
with finite composition length, and there is a surjective map ¢ : M — N, then
rad (V) = ¢ (rad (M)).

O We start by noticing that a proper submodule of N is maximal if and only if
it is the kernel of a (non-zero) homomorphism from N to a simple module.
That gives us:

rad(N)= (] ker(f)
feHomg (N,S)
S simple

Now clearly if f € Homg (N, .S) where S is simple, then fop € Homg (M, S).
This gives us

rad (M) C ker (f o ¢)

which implies that
p (rad (M)) C ker (f)

And since this holds for any f € Homg (N, S) where S is simple, we get
 (1ad (M)) C rad (N)

which was what we wanted.
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C We start by considering the surjective homomorphism

M5 N = N/ (rad (M))

Then the kernel of the above homomorphism is rad (M) + ker (¢). We recall
that since M is of finite composition length, M /rad (M) is semisimple. We
also have a homomorphism

M/rad (M) — M/ (rad (M) + ker (p)) = N/¢ (rad (M))

Since the image of a homomorphism from a semisimple module is semisimple
we get that N/ (rad (M)) is semisimple. And thus we get the claim by the
fact that the radical of N is the smallest submodule such that N/rad (N) is
semisimple.

And now back to the proof. Observe the surjective homomorphism
© ™
PV (A) = e (V(A) =@ (V (X)) /rad (¢ (V (X))
where 7 is the projection map. We now calculate the kernel of 1:
V(A) 2ker (¢) = ¢~ (rad (9 (V (1)) = 7" (¢ (rad (V))) 2 rad (V (1))

Now by the two inclusions, the latter must be an equality, that is ker (¢)) =
rad (V (A)). And thus by the isomorphism theorem (on ) we get:

p (V- (N) /rad (¢ (V- (N))) 2V (A) /rad (V (X)) = L ()

This gives us that ¢\ (M) = ¢ (V) by the lemma. O

3.6.2 Diagrams for multiplicity free modules

Definition 3.6.5. A G-module M is called multiplicity free if [M : L (\)] <1 for
all A € X*. Let M be a multiplicity free G-module, we define:

comp (M) ={X e XT|[M : L(\)]#0}

Proposition 3.6.6. Let M be a multiplicity free G-module. Let A\, p € comp (M),
then the following statements are equivalent:

L. [rad (6 (M) frad® (ty (M) : L ()] #0.

2. Homg (rad (1 (M), L (1)) # 0.

3. There exists submodules V- C U C M such that
0—=L(p) —-U/V—=LAN—0

18 a non-split exact sequence.



48

CHAPTER 3. LUSZTIG’S CONJECTURE

Proof. In all of this proof we use the notation ¢, = t, (M).

1= 2: Assume [rad (t)) /rad® (t,) : L ()] # 0. We recall that for any G-module

N: rad (N) /rad® (N) is semisimple. Thus rad (t5) /rad® (t,) = L (u) © N,
for some submodule N. Thus we have a non-zero homomorphism

¢ :rad (1)) — (rad (ty) /rad® (t\)) /N = L (p)

2= 8: Let ¢ : rad(t,) — L () be a non-zero homomorphism. Let U = ¢, and let

S=1:

V =ker(p) C rad(ty) €ty = U C M. Now by the isomorphism theorem
(L (u) is simple so ¢ must be surjective) we get L (1) = rad (¢,) /V which can
be included in U/V. U/V on the other hand projects onto U/rad (U) = L ()),
with kernel rad (¢) /V by Lemmal[3.6.2] We now have a short exact sequence:

0—L(u) —U/V—=LA)—0
which is clearly non-split since V' C rad (U) = rad (¢,).
Let V C U C M be submodules such that

0 L(WB3U/WVELON >0

is exact and non-split. Let W be the kernel of the map U — U/V — L ().
Then V. CW C U, and U/W = L (). Furthermore

L(p) = di (L (p) = ker (dz) = W/V

Since comp (U/V') = {\, u} and the exact sequence is non-split we get that
W is the only strictly intermediate module of V, U (only module satisfying
VCwcuv).

Clearly [U: L (\)] #0, s0ty CU. And clearly [W : L(\)] =0, s0ty, € W.
These giveus V C V +t, CU with V +t\, # W. Thereby U =V + ¢, and
thus:

UV =V+t)/V=t/(trNV)

Now comp (t5/ (tx NV)) = {A, u}. Since t) has a unique maximal submodule
we have £, NV Crad (ty). We have rad (¢y) / (tx NV) = L (u), making t,NV
a maximal submodule of rad (), which gives us that rad® (£,) C t,NV, and
thereby

[rad (t)) /rad® () : L ()] > [rad (tx) /(6N V) : L ()] =1

This concludes our proof. O

We are now ready to define the diagram of a finite multiplicity free G-module.
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Definition 3.6.7. Let M be a finite dimensional multiplicity free G-module. We
define the diagram D (M) of M to be the directed graph with vertices comp (M),
and with an arc from A € comp (M) to p € comp (M) if and only if A, u satisfy
the equivalent conditions 1, 2, 8 of the above proposition.

Let C' C comp (M), then we call C' arrow closed or a bottom diagram if it
satisfies that if A € C and there is an arc from A\ to p € comp (M), then also
peC.

Let O C comp (M) then we call O arrow open or a top diagram if it satisfies
that if A € C' and there is an arc from p € comp (M) to A, then also p € C.

To give an idea of what a diagram looks like, here is an example of a typical
diagram, namely of V' ([3,0, 1, 1]), which we will later calculate in detail.

Notice that the set of arrow closed subsets and arrow open subsets of comp (M)

makes comp (M) a topological space. That is they are closed under N and U, all of

the diagram and the empty diagram are both both arrow open and arrow closed,

and the arrow open subdiagrams are exactly those with arrow closed complement.
And now for the great correspondence (see Theorem 1 of [AIp80]):

Theorem 3.6.8. Let M be a finite dimensional multiplicity free G-module. Then
the map comp from the set of G-submodules of M to the set of subsets of comp (M)
is injective and has image equal to the set of arrow closed subsets of comp (M).
That is comp describes a one-to-one correspondence between the G-submodules of
M and the arrow closed subsets of comp (M).

3.6.3 Finding the diagrams

Now we want to calculate how exactly the diagrams should look. To do this we
have some efficient tools:

Proposition 3.6.9. Let M be a finite dimensional multiplicity free G-module and
let N C M be a G-submodule. Then the diagram of N is just the arrow closed subdi-
agram of M of all the vertices comp (N). And the diagram of M /N is just the arrow
open subdiagram of M of all the vertices comp (M/N) = comp (M) \comp (N).

The first statement follows immediately from Theorem [3.6.8] and the second
follows from Theorem 3.(4) of [AIp80].
To get the next rule, we need some more insight into the sum formula.
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Lemma 3.6.10. Let A € X such that V (\) is multiplicity free. Let V (\) = VY D
VD V2D ... be the Jantzen filtration. For each i there erists a non-degenerate
symmetric bilinear form

(o) s (VH/VE) e (VH/VE) = &
satisfying:
(eqv,v"); = (v,e_a0"); for all v,v" € VIV and o € ®
(Viyvet), L (Vv for p# €

This can be proved by following the proof of a similar result for Verma modules
in [Jan79|, Satz 5.3.

Lemma 3.6.11. Assume M is a multiplicity free finite dimensional G-module
(and thus Uy-module) with a non-degenerate symmetric bilinear form

() MxM—=k
satisfying:

(equ, V") = (v,e_g0") for all v,v" € M, and o € ®
M;LJ—ME fOT’ 2 7£ f

Then M is semisimple.

Proof. We prove this by induction in dim (M). If M is simple we are done. Oth-
erwise let £ C M be a simple submodule.
Claim: E+ C M is a non-trivial submodule. This follows easily from (for

r € E1):
(Upz, E) = (z,UxE) = (2, E) =0

and non-triviality follows from non-degeneracy. By induction E+ is now semisim-
ple, so all we need to proveis M = E @ E+.

Claim: dim (M)) = dim (E)) + dim ((EL)A) for any weight A € X. To prove
this claim we notice that when (-,-) is non-degenerate we have that the map
@ : M — M* given by ¢ (z) = (z,-) in an injective linear map, and thus a vector
space isomorphism (since dim (M) = dim (M*)). Now since the weight spaces of
M are orthogonal we get that the restriction of ¢ to M) maps isomorphically to
M. By the injectivity of ¢ we get dim (¢ (E))) = dim (E)) = dim (£%). And now
we have

((BY),)" = M/ (By) = M;/E;

And thus we have the claim.

The claim now gives us that ch (M) = ch(E) + ch (E*'), and thereby that
ch (M/E*) = ch(E). Since we assumed M to be multiplicity free, this gives us
that [EL : E} =0, and thus EN E+ = 0 (since EN E+ C F is a submodule of
the simple module E). By the claim dim (M) = dim (E) + dim (E*) so since E
and E+ intersects trivially we get M = F @& E+ and we conclude our proof. O
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Lemma 3.6.12. Let M be a finite dimensional multiplicity free G-module. Then
M is semisimple if and only if there are no arcs in D (M).

Proof. We prove each direction separately.

= Let M be semisimple, and let \, u € comp (M) with A # p. We prove that

there is no arc from A to p. Since A € comp (M) and M is semisimple, then
L(\) C M is a submodule. And thus ¢\ (M) = L (\) so:

[ta (M) Jrad (ix (M) : L ()] = [L(A) : L ()] =0
since pu # A, and thus there is no arc from A\ to pu.

< Let M be such that there are no arcs in D (M). We prove the result by
induction in the composition length of M (|comp (M)|). Let N C M be a
maximal submodule. By induction it is enough to prove that M =2 NGM/N,
since M /N is simple, and comp (V) C comp (M ). Since M/N is simple there
is a A € comp (M), such that comp (M/N) = {A}. And since there are no
arcs in D (M) the set {\} is arrow closed, and thus we can see L ()\) as a
subset of M. Now when M is multiplicity free and {\} = comp (M/N) =
comp (M) \ comp (N), we must have that NNL(A) =0,s0 M =N & L (),
since comp (M) = comp (N) U {\}.

This concludes our proof. O

Proposition 3.6.13. Let A € Xt such that V (\) is multiplicity free. Let V (\) =
VoD VI D V2D .. be the Jantzen filtration. Then in the diagram D (V ()\)) of
V (A\) there is no arc from u € comp (V') to & € comp (V (\) /ViTL). Moreover
there is an arc from X to p for all u € comp (V1/V?).

Proof. By the three just proved lemmas we clearly get that there are no arcs
between p € comp (V//V*) and & € comp (V/V**). Let u € comp (V?)
and £ € comp (V (\) /VP1) by the above argument we may assume that p ¢
comp (V/Vi1) or € ¢ comp (V*/V*). Assume without loss of generality that

¢ € comp (V (A) /V**) \ comp (V*/V**)
= comp ((V (X) /VFh) /(VI/VTHh)
= comp (V (A) /V7)
= comp (V' (X)) \ comp (V*)

in particular ¢ ¢ comp (V?). Since V7 is a submodule comp (V*) must be arrow
closed, and thus there can be no arc from A € V¥ to & ¢ V.

And now for the second part of the proof. We know from Proposition [I.4.]]
that V! = rad (V (\)) since V' (A\) /V! = L()\). Now since V'!/V? is semisimple
we must have that rad® (V (\)) = rad (V') € V2 Thereby comp (V!/V?) C
comp (rad (V' (A)) /rad® (V' (A))). This proves that there is an arc from A to all of
comp (V!/V?) by 2 of the definition of the arcs (Proposition [3.6.6) and Proposition
B.6.4 O
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To better understand the process of finding the diagram for V' (\) we do an
example.

Example 3.6.14. As an example we will construct the diagram for the module
V ([3,0,1,1]), when & is of type A4 and p = 3. Much of the needed data can be
found in the appendices. We start by noticing that V' ([3,0,1,1]) is multiplicity
free, and that comp (V' ([3,0, 1,1])) is the following set:

{[3,0,1,1],[3,1,0,0],[1,1,1,1],[1,2,0,0], [2,0,0,2], [0,0,0,0]}

Using Theorem we find out for which p € comp (V (X)) \ {\} there is a non-
zero homomorphism ¢ : V' (u) — V (A). This is the case for [3,1,0,0], [1,1,1, 1],
[1,2,0,0] and [2,0,0,2]. Now assume we have found the diagram for all Weyl
modules of each of these weights (see appendix. Knowing a basis for each of the
Weyl modules (Theorem [3.4.2)), we can convert the homomorphisms to matrices,
and calculate the rank, that is the dimension of the image. The needed data can
be seen in the following table, where ¢ : V (u) — V (A) is a (non-zero if possible)
homomorphism:

p | dim (V (p)) | dim (L (p)) | dim (o (V (1))
3,0,1,1] 1050 150 1050
3,1,0,0] 224 50 224
[1,1,1,1] 1024 476 849
[1,2,0,0] 175 174 174
2,0,0,2] 200 199 199
[0,0,0,0] 1 1 0

We now want to find the arrow open subdiagrams of D (V (u)) corresponding

~Y

to V (u) /ker (¢) = ¢ (V (u)), corresponding to an arrow closed subdiagram of
D(V())). By the data in the above table we calculate that there is only one
possible arrow open subdiagram D (V (u)) giving the correct dimension for each
of the . The subdiagrams are the followmg

b e @

Now we calculate the sum formula for V (A

> “ch (V') =2¢hL([1,2,0,0]) + 2¢hL ([2,0,0,2])

+¢chL([3,1,0,0]) + chL ([1,1,1,1]) + chL ([0, 0,0,0])
Since V' (X) is multiplicity free this gives us:

comp (V'/V?) ={[3,1,0,0],[1,1,1,1],[0,0,0,0]}
comp (V?/V?) ={[1,2,0,0],[2,0,0,2]}
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and V3 = 0.

We now merge the known subdiagrams, and add the information given by the
V*?s (Proposition [3.6.13)) putting dotted arrows where we still don’t know if there
is an arc:

Now this leaves four possible diagrams, but since there is no non-zero homomor-
phism from V' ([0,0,0,0]) to V ([3,0, 1, 1]), we immediately rule out the possibility
that none of the arcs are there.

The theorem used for finding homomorphisms from V' (u) to V (A) (Theorem
B.3.2), can actually be generalized so it can be used to find homomorphisms from
V() to M for any G-module M (see Lemma I1.2.13.a in [Jan03]). This can be
used to find out which arcs are there.

If there is a non-zero homomorphism from V ([0, 0,0, 0]) to the quotient mod-
ule V' ([3,0,1,1]) /L([1,2,0,0]), then the set {[0,0,0,0]} corresponds to a sub-
module in V (3,0,1,1]) /L ([1,2,0,0]) (since V (]0,0,0,0]) = L ([0,0,0,0])), and
thus {[0, 0,0, 0]} is arrow closed in D (V ([3,0,1,1]) /L ([1,2,0,0])). Thereby there
cannot be an arc from [0, 0,0, 0] to [2,0,0,2].

Likewise if there is a non-zero homomorphism from V ([0, 0,0, 0]) to the quo-
tient module V' ([3,0,1,1]) /L ([2,0,0,2]), then the set {[0,0,0,0]} corresponds to
a submodule in V ([3,0,1,1]) /L ([2,0,0,2]), and thus {[0,0,0,0]} is arrow closed
in D(V([3,0,1,1]) /L ([2,0,0,2])). Thus there cannot be an arc from [0, 0,0, 0] to
2,0,0,2].

If however 0 is the only homomorphism from V (]0,0,0,0]) to any of the two
quotient modules, then {[0,0,0,0]} isn’t arrow closed in any of the two aforemen-
tioned subdiagrams, that is both arcs must be there.

Doing the calculations we find out that it is the latter case which happens, so
we finally can conclude that the diagram for V' ([3,0, 1, 1]) looks like:
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In appendix [B|can be seen the diagrams all the Weyl modules for which we cal-
culated the simple characters in appendix , except those V' (\) with composition
length |comp (V' (A))| < 2, in which cases there are only one possible diagram ({\}
is always the only arrow open singleton set by Proposition . Notice that this
excludes all of A, for p = 3 and As for p = 2.

3.6.4 The diagram of a module

It is of course not enough to be able to describe the submodule structure of the
multiplicity free modules. Luckily it is possible generalize the concept of the dia-
gram of a finite dimensional G-module.

Definition 3.6.15. Let D be directed graph with no directed loops and no mul-
tiple arcs between the same pair of vertices. If for any chain of at least three
connected vertices z1 — x3 — ... = x,, for m > 3 (z; — =; denotes that there is
an arc from z; to z;), there is no arc from z; to z,,, (1 - x,,), then we call D a
module diagram.

For a module diagram we can define arrow closed and arrow open just like in
the previous subsections.

The radical of a module diagram is the intersection of all the maximal (proper)
arrow closed subdiagrams.

Let M be a finite dimensional G-module, and let D be a module diagram.
Then we call D a diagram of M if the number of vertices of D is equal to the
composition length of M, and there is a function ¢ from the set of arrow closed
subdiagrams of D to the submodules of M, such that ¢ sends unions to sums, and
preserves both intersection and radicals.

Notice that the diagrams defined for multiplicity free modules are also diagrams
of the modules in this sense.

In Theorem 3 of [AIp80] is a list of properties of the diagrams of modules,
summarized in the following proposition.

Proposition 3.6.16. If M is a G-module and D is a diagram of G with ¢ the
assoctated map, and with vertex set V', then:

e §(0)=0.
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e 0 preserves inclusions.

0 is injective.

If U CV is an arrow closed subset of the vertices, then the induced subdia-
gram with vertices U and map 0 restricted to the arrow closed subsets of U
is a diagram of the module § (U) C M.

If U CV is an arrow closed subset of the vertices, then the induced subdia-
gram with vertices V/U and map 0 restricted to the arrow closed subsets of
V/U is a diagram of the module M /6 (U).

e There exists a labeling X\ : V — X of the vertices, such that if v € V is a
vertex, and v € U C V is an arrow closed subset of the vertices such that

U\ {v} also is arrow closed, then § (U) /6 (U \ {v}) = L (A (v)).
It is easily seen that the labeling A must satisfy
(M L ()] = {v e VIA(v) = puj

Furthermore we see that we can use a method similar to the one from the previous
subsection to find a diagram of any G-module M, as long as we are extra careful
around the A € X+ with [M : L (\)] > 1.

In my calculations there is only one Weyl module V' ([2,1,1,2]) (in type Ay,
p = 3) that is not multiplicity free. The diagram of this module can also be found

in appendix

3.7 Ext groups and Kazhdan-Lusztig polynomials

We recall from Proposition that if © < A, then
dim (Extl (L (\), L (1) = [rad (V () frad® (V (V) : L ()]

and dim (Extg (L (A), L (1)) = 0 in all other cases. If we now combine Proposi-
tion with 2 of Proposition [3.6.6] we see that, in the case where p < A and
V ()\) is multiplicity free, the dimension of Extg, (L ()\), L (¢)) is 1 if and only if
there is an arc from A to p in D (V (N)).

In general it can easily be seen that if 4 < A then dim (Extg (L (A), L (p))) is
equal to the number of arcs from the vertex labeled A\ to vertices labeled p i the
diagram of V' ().

So why are we interested in the dimension of these Ext groups? For one thing
they have a connection to Lusztigs conjecture. Namely Proposition 11.C.2 of
[Jan03] (combined with Proposition I1.C.10 also from [Jan03]) gives us the fol-
lowing result:

Proposition 3.7.1. Let A € Ay N X be a reqular weight, and let w,w' € W such
that w A, w' A € X with w'. X\ < w.\. If the character of L (z.)\) is given by
Lusztig’s character formula for all x < w. Then:
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o Ifl(w) —1(w') is even then Exty (L (w.)\), L (w'.\)) = 0.
o Ifl(w)—1(w) is odd then we get

dim (EthG (L (w)\) y L (’LUI)\>>) = [Pwow/,wow (C])] (l(w)—L(u;/)—l)

2

where Pyyw wow (¢) 15 the Kazhdan-Lusztig polynomial, wy € W is the longest
element, and [P (q)],, means the coefficient of ¢™ in the polynomial P (q).

It is now natural to see if we can generalize this to any weight A € 4N X and
not just the regular weights, just like we asked for Lusztig’s conjecture.

Question 3.7.2. Let A € A;N X, and let w,w’ € W such that w.\, w'. X € XT,
wAelm,w’/\Gw/A\o,w’)\—<MA

When is there the above connection between the parlty of [ (w) — 1 (w'), the
Kazhdan-Lusztig-polynomials and the dimension of Extg, (L (w.\), L (w'.\))?

To answer the question we have (as usual) calculated the actual values in the
usual cases (A,, n € {2,3,4}, p € {2,3}). And the data suggests that there is a
clear connection.

The result we got was that when L (w.\) was given by Lusztig’s character
formula, then the connection from Proposition did indeed hold. While in the
two exceptions the connections did not hold at all:

Let ® be of type A, with p =2, and A =[0,—1,—1,0] € AyNX. Forw € W
such that w.A =[0,1,1,0], and w.\ € m, we have that

dim (Extg (L ([0,1,1,0]), L ([0,0,0,0]))) =1

even though [ (w) — [ (w') = 6 is even, when w’ € W such that w'.A = [0,0,0, 0]
and w' .\ € m.

Let ® be of type Ay with p =3, and A =1[0,—1,—1,0] € AgN X. For w € W
such that w.A = [1,2,2,1], and w.\ € @, we have that

dim (Extg (L ([1,2,2,1]), L ([0,2,2,0]))) =0
even though [ (w) — I (w') = 1 is odd and [Puyw wow <q>](l(w)—12(w’)—1> = 1, when
w" € W such that w’.A =1[0,0,0,0] and w'.\ € w'.Ay. Furthermore we have that
dim (Exte (L ([1,2,2,1]), L([0,1,1,0]))) =

even though [ (w) — [ (w’) = 6 is even, when w' € W such that w'.A = [0,1,1,0]
and w’.\ € w’.Ay. Finally we have that

dim (Extg (L ([1,2,2,1]), L([1,0,0,1]))) =0



3.7. EXT GROUPS AND KAZHDAN-LUSZTIG POLYNOMIALS o7

which fits the fact that [ (w) —1 (w’) = 7 is odd and [Pyyw wew ()] (“w)fl(w,)fl) =0,
2
when w' € W such that w'.A = [1,0,0,1] and w'.\ € w'. Ay,

A closer inspection of these exceptions shows that if the characters of L (z.))
were all given by Lusztig’s character formula (for all x.A € X such that x.\ <
w.)\), then we would indeed have that the dimensions of the Ext groups were
given by the parity of [ (w) — [ (w'), and the Kazhdan-Lusztig polynomials like in
Proposition [3.7.1]

So it seems that there is a strong connection between when Lusztig’s charac-
ter formula holds, and when we have the aforementioned connection between the
dimension of the Ext groups, and the parity of [ (w) — [ (w’) and the coefficients of
the Kazhdan-Lustig Polynomials.



Chapter 4

Braden MacPherson sheaves

4.1 Moment graphs and sheaves

The representation theory of algebraic groups is closely tied to the theory of sheaves
on moment graphs. In this section we will primarily give the definitions needed to
use this approach.

Definition 4.1.1. Let V be a vector space. A V-moment graph (or simple moment
graph) G is a 4-tuple: G = (V, &, <, 1), where:

e (V&) is a simple graph, with vertices VV and edges £.

e < is a partial ordering of V), satisfying that u,v € }V are comparable by < if
{u,v} € €.

o 7:& — P (V) is alabeling of the edges by 1-dimensional subspaces of V.

For now let’s fix a finite dimensional vector space V', later we will worry about
which vector space to choose.

Let S = S (V) denote the symmetric algebra of V. We equip S with the usual
grading, that is to say the elements of V' C S are the elements of degree 1.

It is in general not required of a moment graph to be a finite graph, however
the ones we will be needing are all finite, so to make things easier we from now on
require moment graphs to be finite.

An important type of moment graphs is the Goresky-Kottwitz-MacPherson-
graph or the GKM-graph:

Definition 4.1.2. Let G = (V,&,<,7) be a moment graph. We say that G is a
GKM-graph if for any pair of edges E, F' € £ meeting in exactly one vertex we
have: 7 (E) # 7 (F).

We can now define a sheaf on a moment graph.

Definition 4.1.3. Let G = (V,£,<,7) be a moment graph. A 3-tuple M =
(Ma)yey » ME) peg » (Po,E) yepey) s called a G-sheaf, if:

o8
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o M, are graded S-modules for each z € V,

e Mg are graded S-modules satisfying 7 (F) Mg = 0 (under the natural in-
clusion 7 (F) CV C S) for each F € &,

® p. 5 M, = Mg are graded S-module homomorphisms, for eachz € E € £.

The basic example of a sheaf on a moment graph is that of the structure sheaf:

Example 4.1.4. Let G = (V,£,<,7) be a moment graph. The structure sheaf
A= A(G) is the G-sheaf with

e A, =S forall x €V,
o Ap =S/t (E)Sforall E €€,

e p.p:S— S/T(E)S are the quotient homomorphisms for all z € E € €.
When we have a G-sheaf we can define the modules of sections:

Definition 4.1.5. Let G = (V,&,<,7) be a moment graph, and let M be a
G-sheaf. For U CV we define the module of local sections M (U):

MU) = {(mr>meu cPM.

zeld

pei (M) = py.p (my) for each {z,y} =F € glu}

where &y = {{z,y} € €|,y € U}.
Furthermore if i =V, we call I' (M) = M (V) the set of global sections.

Notice these are called modules since they are S-modules.
For U; C Uy C 'V we define the projection:

ngi@MU—)@MU

vEU2 veEUy

Lemma 4.1.6. Let G be a moment graph, and let M be a sheaf on G. Let
Uy CTUy; C U3 CV be sets of vertices. Then we have

WZ; (M (Us)) € WZf (M (Uy))
In particular we have if Uy = U, that the restriction of the map
Tl T M (Us) — M (Uy)
is well defined (that is, maps into M (Uy)).
The proof follows trivially from the fact that:
{Eel|ECUs} D{E €| EClUy}

and thus the coordinates of an element of M (U3) has at least as many constraints
as the coordinates of an element of M (Uy).

From now on (if nothing else is said), ﬂf, with A C B C V will be assumed to
be the projection

8 M(B) = M (A)

for whatever sheaf M we are working with.
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4.2 Braden MacPherson sheaves

In this section we will define a very important sheaf, namely the Braden MacPher-
son sheaf.

4.2.1 Constructing Braden MacPherson sheaves

In this subsection fix a moment graph G = (V, &, <, 7).

Before we can construct a Braden MacPherson sheaf, we need look at the
ordering < of the vertices )V of our moment graph. We start by giving the edges a
direction. If £ = {z,y} € £ is an edge in G, then by the definition of a moment
graph, either z < y of y < x. Assume x < y, then we call x the lower vertex
of E and y the upper vertex of E. Likewise we say that F is an upper edge (or
up-edge) of x (since it points to a vertex greater than =) and F is a lower edge (or
down-edge) of y (since it points to a vertex smaller than y). We define the set U,
of up-edges of =, and D, of down-edges of x, that is:

Upr = {{z,y} € €]z <y}
Dy = {{z,y} € ]y <z}

We now need to look at restrictions of G. Let x € V. We define the moment graph
G>x = (V>$7 g>$7 S>$7 7—>x>; Whel’ei

o V., ={veV|z<uv}

o &, ={{a,b} € &z <a,x < b},
® o= SVeuxVeus

® Top = T,

The Braden MacPherson sheaf B (z) is parametrized by a vertex z € V, the con-
struction goes as follows:

Start by setting B (z), = 0 for all x £ z, and setting B(z), = S. The rest
of the sheaf is constructed inductively. Let z < z, and assume that we have
already constructed B (z),, B(z), and p,p for all y € E € &.,. Now for each
y € U, we define B(z),, , = B(2), /7 ({z,y}) B(2),, and py oy = B(2), —
B(z), /T ({z,y}) B(2), as the quotient homomorphism.

Write T (B (2).,) = B(2) (Vss). Notice that this module of sections can be
calculated from what we already know.

Definition 4.2.1. The map p{ : T (B (2).,) = @pey, B(2) is given by
T @
Pl T (B(2).,) > B B(2),= P B(2)y
{wy}eU, BeU,

where the first map is the projection, and the second map is the direct sum of the
maps py. (s for all {z,y} € U,. The image of p! we denote by B (z),, = im (pY).
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With this definition, we now set B(z), to be the projective (free) cover of

B (Z)8x
Finally we can define p, 44y for {z,y} € U,:

Pafayt = Tay} © Pay (4.1)

where ¢, : B(z), — B(z),, is the cover map, and 7,y is the projection of

B(2)y, € Drev, B(2)p on B(2), -
Now we have constructed the Braden MacPherson sheaf.

4.2.2 Towards calculating the Braden MacPherson sheaf

Now we have a construction of the Braden MacPherson sheaf, we can in theory
calculate it. However the calculation is very(!) time consuming, namely the step
of calculating the module of sections I (B (Z>>m) seems to make the calculation
impossible. To avoid this problem we want to make a total ordering out of the
ordering of the vertices, and then add one vertex at the time - that is one coordinate
at the time - to the module of sections, and in that way calculate ' (B (z).,) in
small (or at least smaller) inductive steps from what we have already calculated.

It is now practical to change the notation slightly. So fix a moment graph
G = (V,& =X,7) and a vertex z € V. Since the Braden MacPherson sheaf B (z)
does not depend on elements y € V with y £ z, we assume that V satisfies that
y < z for all y € V. We now rename the vertices so that V = {0,1,...,n — 1} (with
n the number of vertices), such that if there is a relation i < j for two vertices,
then i > j as integers. That way we must have z =0, and V., C{0,1,...,2 — 1}.
Because of this we now short the notation down to B = B(0) = B(z). This way
we will start the construction at 0 and work our way one step at the time up to
n — 1. Because we will be working inductively like that, we introduce some more
projections.

Definition 4.2.2. For 0 < j <7 < n we define the projection 7r§-
m:B({0,1,...,i}) = B;

3 7 — {07177Z}
Notice that T =T .

Now, sadly, we need some extra assumptions for our moment graph:

Definition 4.2.3. A moment graph G = (V ={0,1,...,n—1},&, <X, 7) is said
to be nice if the module of sections B ({0, 1,...,4}) is a graded free S-module for
all 0 <i<n.

We will later return to this condition, to see when it applies.
We are now ready to prove an important technical proposition:

Proposition 4.2.4. Let G = (V ={0,1,...,n—1},&,=X,7) be a nice moment
graph. Then for any 0 <1 < n we have:
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. There exists a homomorphism & : B({0,1,...,i—1}) — B;, such that if

reB{0,1,...,i—1}), then (z,& (x)) € B({0,1,...,i}).

. We have an isomorphism:

b BU0,1,... i — 1)) @ ker (o) 3B ({0,1,...,4})

. The kernels of the cover maps ker (@;) are graded free S-modules.

. The projections 7T§» :B({0,1,2,...,i}) = B; for j <i are under the identifi-

cation v; given by:
(@) =& (@) +y,
i (vy) = (x), for j <i

where x € B({0,1,...,i—1}) and y € ker (p;).

Proof. We do the proof by induction in i. So assume to be true for all values
smaller than a given 1.

1. To construct this homomorphism &; we start by noticing that the homo-

morphisms p{ and ¢; by definition have the same images By;. By niceness
of G we have that B({0,1,...,i —1}) is graded free, so we can choose a
homogeneous basis ey, ..., e, of B({0,1,...,i—1}). We can now choose
fr € 07 (PY (7 (ex))) € B; homogeneous an of same degree as ey, where
is the projection:

7T:7T1{}0>’i1 """ Z'_1}:l’)’({O,l,...,i—l}) — B (V)

(see lemmal4.1.6). We now use the universal property of a graded free module
to construct the unique homomorphism:

satisfying &; (ex) = fx for all 1 < k < m. Notice that since the e;’s form a
basis, we get:

pio&=pj o (4.2)

Let (my),.; € B({0,1,...,i— 1}), and set m; = & ((my),.;). We now want
to prove that (my),., € B({0,1,...,7}). To prove this we need to prove
that for any edge {j, k} € € with j, k < i we have p; ;1 (m;) = pr(ix (M)
Now since (mg),.; € B({0,1,...,7—1}), this is clear whenever j k < i. So
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let {i,j} = E € &€ be an edge. Notice that since j < i we have that FE € U,.
We now calculate:

pie (M;) = g 0 @; (m;)
=509 0 & ((M)<;)
=7pop om ((mk)k<z)
= PjE° 7T§‘ (7))
= pj.e (m;)
where the equal signs follow from (in that order) (4.1), the definition of m;,

[.2), the definition of p!" and finally the definition of the projection m}. Thus
&; satisfies our requirements.

2. Now to prove that

v B({0,1,...,i—1}) @& ker (¢;) >B({0,1,...,i})

is a well defined isomorphism. To show that it is well defined we have to
prove that it actually maps into B ({0,1,...,i}). Notice first that since
pig = T o @; for any E € U;, we have

ker (¢;) = ﬂ ker (pig)
EeU;

So an element (0,0,...,0,m) € B({0,1,...,4}) ifand only if p; g (m) = 0 for
all E € U;. This is the case if and only if m € (g, ker (pip) = ker (o;). If
r e B{0,1,...,i—1}),and y € ker (¢;), then (z,& ((x))) € B({0,1,...,i})
and (0,y) € B({0,1,...,i}) and thereby (z,& (z) +y) € B({0,1,...,i}),
since B({0,1,...,7}) is a module. So the homomorphism is well defined.
Now to prove that it is an isomorphism.

Surjective Let (I;),., € B({0,1,...,i}). Let 2 = (l;),, € B({0,1,...,i—1}),
then we have (z,& (z)) € B({0,1,...,i}), since B({0,1,...,i}) is a
module we have (0,1; — & (x)) € B({0,1,...,i}), and thereby y = [; —
&i () € ker (), so ¥; (x,y) = (I;);,;, and we have surjectivity.

Injective Let x € B({0,1,...,i —1}) and y € ker (¢;), such that ¢; (z,y) = 0.
By the definition of v; we must then have x =0, and y = y + & (0) =
y+ & (x) =0, so we have injectivity.

Thus ); is an isomorphism.

3. Now we wish to prove that ker (¢;) is a graded free S-module. By |2/ we have
that ker (¢;) is a direct summand of the graded free module B ({0,1,...,i}),
and thereby it is a graded projective S-module. Now by corollary 4.7 of
[Lam78| we have that ker (p;) is a graded free S-module.
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4. The identification of the projection maps 7717 is clear from part
m

Notice that the property of ker (¢;) being a graded free S-module for all 0 <
i < mis equivalent to G being nice, since B ({0}) = S is always graded free, and the
isomorphisms ¢; : B ({0,1,...,i — 1})®ker (p;) =B ({0,1,...,i}) then inductively
yields the niceness. Later on we will use this definition of a nice moment graph in
the algorithm to calculate the Braden-MacPherson sheaf.

The final obstacle before devising an algorithm for calculating the Braden-
MacPherson sheaf, is that we want to define B; from I'.; = B({0,...,i —1}),
whereas B; is in the construction defined from 'y ; = B({j € {0,...,n —1}|j = i}).
This obstacle is overcome by the following lemma:

Lemma 4.2.5. Let G be nice. Let 0 < i <n, and let U C {0,...,i— 1} satisfy
that if j € U and k € {0,...,i— 1} with k = j, then k € U. Then the projection

o 7@{{0 ..... -1} . g ({0,...,i—1}) = B(U) is surjective.

Proof. All the projections we will be working with in this proof will be well defined
by lemma We proceed to prove the lemma by induction in the size of
D ={0,...,i— 1} \U. Naturally if D = (), then 7 is the identity on I'.; and thus
surjective.

Assume the lemma to hold for all D of size m — 1, and let & C {0,...,i — 1}
satisfy the conditions in the lemma, and that D = {0,...,i — 1} \ U has size
m. Choose j € D minimal in the usual ordering (<) of the integers. That is
{0,...,7 =1} CU,but j ¢ U. Let U’ =U U {j}, then U’ satisfies the conditions
of the lemma (since if k& > j the k < j and then k € U’). So by induction the
projection 7’ : B ({0,...,i — 1}) — B (U’) is surjective, since [{0,...,i — 1} \U'| =
m — 1. Thus all we need to prove is that the projection WZLJ{, is surjective. Let
my = (My) o, € B (U). Define

where &; is the homomorphism defined in proposition part [II We have now
defined myy = (my),q, and want to prove that it is an element of B (U’). Let
x,y € U', such that {z,y} € €. lf x,y # j, then x,y € U, and thus p, (5,3 (M,) =
Py {zy} (My). If however one of the vertices is j, let’s say y = j, then 2 € U and
thus we cannot have j > z (since that would mean j € U), so = > j, and thus
x < 7, and we have by proposition “ part I 1, that pg (251 (Ma) = pj a1 (M),
and thereby we have my, € B (U'), making 74 surjective, and thus concluding the
proof. O

4.2.3 An algorithm for calculating the Braden MacPherson
sheaf

With the proofs of proposition and lemma [4.2.5] we can now attack the
problem of calculating the Braden MacPherson sheaf of a nice moment graph. The
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following algorithm is based on the algorithm found on Tom Bradens homepage:
http://www.math.umass.edu/ braden/MG/index.html

Proposition 4.2.6. Let G = (V ={0,1,...,n— 1} ,E,=,7) be a moment graph
(with vertices ordered such that if i < j then i > j). Let S be the symmetric
algebra over the vector space of G. If the algorithm below does not err, then G s
nice, and the final datum B;, T, m; (for 0 < i < n) describes the vertez-modules,

the module of global sections and the projection maps m; : I' — B; for the Braden
MacPherson sheaf of G.

1: By =S
2:1'=8
3: 7T0:id5

4: fori=1ton—1do

5. upVerter ={j €{0,...,i—1}|{j,i} € &}
6: BZU = @]Eup\/ertea: Bj /T ({]7 Z}) Bj
7: w:I' = BY w= @jeupvertm Pj i} © Tj > pjia 18 the quotient map
8: generatorsd = () > This set will contain the generators of By,
9: for e € I'.generators do

10: generatorsd = generatorsd U {w (e)}

11: end for

12: minGen = GetMinimalGenerators (generatorsd)

13: B, =0

14: for gen € minGen do

15: B; = B; @ S (deg (gen))

16: end for

17: w; : Bi = BY, p; (ex) = minGeny, for k € {1,... rank (B;)}
18: for k=1 torank (I') do

19: fx = ChooseElementInPreimage (¢;,w (e)) > fr € 0" (w(ep))
20: end for

21: &I = B, & (ex) = fr for ke {1,... ,rank (I')}

22: ker = ker (¢;)

23: of not IsFree(ker) then

24: error: “G 1s not nice”

25: end if

26: I'=T® ker

27: T ZF—>BZ', Wizfi@idke,«

28: for j=0toi—1 do

29: T = T; D Oger
30: end for
31: end for

The proof follows from proposition and the definition of the Braden-
MacPherson sheaf, if you also notice that since the map w in the algorithm is
pY o W}}Oﬁi” 1) and since WFOH i1} is surjective by lemma [4.2.5] we have that the

images of w and pY are the same By;.

-----
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Still a lot of the methods are not explained properly. The most important thing
to notice before handling these methods is that S is really a polynomial F-algebra,
that is S = F [:El, To, ... ,xdim(v)] (the ¢'th basis vector of V is identified with x;).
Since we are working over a polynomial ring, all the unexplained methods can be
translated into some problems regarding Grobner bases. For details on how to solve
these problems regarding Grobner bases see [KR00|, or see my implementation of
the above algorithm in the ReAlGriDPC-project found on my web page http:
//home.imf.au.dk/jb.

4.3 The connection

We are now finally ready to connect the theory of sheaves on moment graphs with
the representation theory of algebraic groups.

4.3.1 The moment graph of an affine Weyl group

In this section we want to tie the concept of a moment graph to the main theme
of representations of algebraic groups. To do this we construct the moment graph
for the affine Weyl group. Recall that (W, {so, ..., s,}) is our affine Weyl group
(to avoid confusion, in this section S will only denote the symmetric algebra S (V)
and NOT the set of simple reflections {so, ..., sn}).

Definition 4.3.1. Let OV, {so, ..., s,}) be an affine Weyl group, let F' be a field
and let V' = F™ an F-vector space. The V-moment graph Gy, = (W, Ew, <, 1)
for the affine Weyl group is defined by:

e The vertices WV are the elements of the affine Weyl group,
e The edges are &y = {{z,y} C W]|ay ! is a reflection},
e The ordering < is the Bruhat order,

e The labeling 7y : &y — F"M!is given by 7y ({2, y}) = (a1, a9, ... a,,m) €
F' when 2y~ = s4.m, and a = ajoq + asas + -+ - + a, .

Notice that this is not a finite moment graph, however whenever we choose an
element z € W, we get that G)y<, is finite, and it is this moment graph, we will
be using to make Braden-MacPherson-sheaves. Notice further that since B (w),
only depends on the vertices in the Bruhat interval [z;w], the actual graphs we
will be doing our calculations over are usually much smaller than Gyy<,. So from
now on when we B (w) will denote the Braden-MacPherson-sheaf of Gy,
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4.3.2 Moment graphs and Kazhdan-Lusztig polynomials

By definition of the Braden MacPherson sheaf, the vertex modules are graded free
modules; that is for any pair of vertices z,w € V in a moment graph, we can write

B(w), = P Sdi
i=0
where S [d;] is the symmetric algebra shifted to the degree d;, that is the 1-element

of S[d;] has degree d;.

Definition 4.3.2. Let G be a moment graph, and let w, z be vertices of M. We
define:

T

P(G)m,w = Z qdi €Z [Q]

=0

where

and for G = Gy we set
P? =P (Gw),.
where p is the characteristic of F'.

Form [Fiel(] theorem 4.5 we get the following result (tying the theories to-
gether):

Theorem 4.3.3. Let x,w € W satisfy x < w then
Pxo,w - Pz’,w

where P, ., is the Kazhdan-Lusztig-polynomial. Further more if p is big enough
(depending on W), then also

J 2B
Px,w_anw

Because of the above theorem, it seems fair to call the polynomials P?,,, with
p > 0 the modular Kazhdan-Lusztig-polynomials.

In figure can be seen the moment graph G,<w<wgsgsisss, 10X YV of type
Az with p = 2, in the vertices can be seen the polynomials corresponding to the
vertex modules of the Braden-MacPherson sheaf of this graph.

Having defined these modular Kazhdan-Lusztig-polynomials, an obvious idea
would be to check if the generalized Lusztig’s Conjecture (Question [3.2.3) may hold
if the Kazhdan-Lusztig-polynomials are replaced by these. Recall from section
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the cases where the Lusztig’s conjecture predicts a wrong answer. In the case Ay
with p = 2 we have that

ch (L ([0,1,1,0])) = x ([0,1,1,0]) = x ([0,0,0,0])
whereas Lusztig’s character formula predicted it to be
ch (L ([0,1,1,0])) = x ([0,1,1,0])
If we take the polynomials P;w instead, then we would get,
ch (L ([0,1,1,0])) = x ([0,1,1,0]) + x ([0, 0,0,0])
which again is not correct. And in the case A4 with p = 3 we have that
ch (L ([1,2,2,1])) = x ([1,2,2,1]) = x ([0,2,2,0])
whereas Lusztig’s character formula claims that it is
ch (L ([1,2,2,1])) = x ([1,2,2,1]) = x([0,2,2,0]) + x ([0, 1,1, 0]) — x ({1, 0,0, 1])
If we take the polynomials Piw instead, then we would get,
ch (L ([1,2,2,1])) = x([1,2,2,1]) — x ([0,2,2,0]) + 2x ([0, 1,1,0]) — 4x ([1,0,0,1])

which like in the case p = 2 again is not correct.

In appendix [A] we have compared the values of the simple characters chL (\) to
characters given by Lusztig’s character formula, both with the Kazhdan-Lusztig-
polynomials, and with the modular Kazhdan-Lusztig-polynomials for all A € X,,.
From these values, it can be seen that there are a few cases (namely the inverse com-
position coefficients [L ([1,2,1,2]):V ([1,0,0,0))], [L(]2,1,1,2]):V (]0,0,0,0])],
[L([2,1,2,1]) : V (]0,0,0,1])], all in type Ay with p = 3) where Lusztig’s char-
acter formula predicts the correct characters but the formula using the modular
Kazhdan-Lusztig polynomials predicts a wrong result. However it can also be seen
that whenever the formula using the modular Kazhdan-Lusztig polynomials pre-
dicts the correct result, then so does Lusztig’s character formula. This indicates
that the failure of Lusztig’s conjecture may be related to when P # PP, but sadly
not in a simple way.

4.3.3 When is (Gyy nice?

When we look at the Braden-MacPherson sheaves and the modular Kazhdan-
Lusztig polynomials, then the values that we are interested in are of the type
PP . wow> for that reason we have calculated the Braden-MacPherson-sheaf of the
moment graph G, <yw<wyew With the Bruhat interval [wo; wow] as vertices, or more

precisely we are interested in the pairs:

Caleyy™" = { (wow, wow) € W x W3 € Ag s wdo € X, Nw.Ag, S w, f .00 € X*
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For these pairs, in type Ay, Az, A4 with F of characteristic 2 and 3, we have used the
algorithm described in the above subsection and we have found the corresponding
moment graph G z<w<w,w t0 be nice. That is except in the graph where the
upper bound on the vertices was wgSyS15254535250515480 € W, with W of type
Ay and p = 3; in that graph, I have only checked the niceness until I got to the
elements of length [ (wy) + 2, a which point the algorithm (running on a state of
the art private computer) was trying to find out whether the kernel of one of the
maps ; was free, and crashed the computer after about 20 days of calculating.
So sadly we have to leave the question, whether the graphs G, .<w<w,w are nice
for all (wox, wow) € Calcf(jsmg open. So, for the rest of this thesis we will assume
that the graphs Gu,e<wuyew are nice for (woz, wow) € Caley™" and hope that it
is so.
The interesting question to ask is however:

Question 4.3.4. Is G,<)y<, nice for any z < w € W in any affine Weyl group
w?

It seems fair to conjecture it to be true, at least in type A, when (z,w) €
C’alc% 5219 since all the places where I actually got to determining whether ker (¢;)
was free, it was. A proof of the above question would do wonders for the algorithm,
since the checking whether ker (¢;) is free could be removed, and the running time
could be dramatically decreased.



Chapter 5

Representations of restricted Lie
algebras

5.1 Restricted Lie algebras

In this section we will introduce restricted Lie algebras, and their representations,
so that we in the next section can relate it to the problems at hand.

5.1.1 The basic definitions

Definition 5.1.1. Let g be a k-Lie algebra. We say g is a restricted Lie algebra
if there exists a p-power map g — g, = — P!, satisfying:

o 27 — zlPl is central in U (g) for any z € g,
o (z+y)f—(v+ y)[p] = 2P — zlPl 4 y? — ylP! for any pair z,y € g and
e (az)? = aPz for any a € k and z € g.

From now on let g denote g = Lie (G) the Lie algebra of our algebraic group
G, furthermore let & = U (g) be the universal enveloping algebra of g.

Proposition 5.1.2. The Lie algebra g over any algebraic group of finite charac-
teristic is an restricted Lie algebra. And the p-power map sends e, to 6[5] =0 for
all o € .

For the first claim see [Jan03] 1.7.10, for the second claim see [Jan9§| 6.1.

Let I C U be the two-sided ideal generated by a7 — zlP) 2 € g. We call
U = U/I the restricted universal enveloping algebra. Let h = Lie(7'), then
h is a maximal toral subalgebra of g. Since U is generated by {e,|a € ®} U
{ho | @ € A} we get that U™ is generated by the image under the quotient map.
The generators of U™ we will also denote {e, |a € P} U{h,|a € A} (abusing the
notation slightly). The differential gives us a map = : X = Hom (T, k*) — X =
Hom (b, k). We are interested in a certain category C of U>-modules.
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Definition 5.1.3. We say that an &/***-module is in C if:
e M is finitely generated,
o M =@, . M, for some k-vector spaces M},
o ¢, My C My, for all roots o and all weights \,

e hx = X\ (h)x, whenever h € h and x € M), for some A € X.

Notice that the category C can be identified to the category of GyT-modules
of [Jan03].

Definition 5.1.4. Let M € C, the formal character ch (M) of M is defined as
follows:

ch (M) = dim (My) e ())
rex
5.1.2 The modules and characters of CA

There are two types of modules in C that we are interested in, the first type is the
Baby Verma Modules:

Definition 5.1.5. For A € X we define the baby Verma module Z (A) as follows:
Z(/\) _ Ures/(z uresea + Zures (h —X(h))>
aed+ heh

Notice the similarities with the definition of the Verma module (subsection
2.5.2). The analogue to the PBW theorem for U™ (see Prop 2.8 in [Jan03])
implies that we have a basis of Z (\) consisting of

{ I <

aedt

0§r(a)<p}

One may now see that Z (A) is in C if we equip it with the X-grading such that

Z(A)M:spank{ H ") Z r(a)a:)\—u}

acdt acdt

We now conclude the following proposition:

Proposition 5.1.6. Let Par, : X — N be the partition function given by:

Par, (A) = ‘ {(7’ (@))acar

0<r(a)<p, Z r(a)a:)\}‘

acdt
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Then the character ch (2 ()\)) of Z (\) is given by:

b (Z() =3 Par, (A= e n)

pneXx

Notice that Par,(A\) = 0 if A ¢ N&®* or if any of the coordinates of A,
when written in the A-basis, are greater than the corresponding coordinate of
Y wco+ (P — 1)« in the A-basis.

Notice further that

h(Z() =D Par, (A= me ()

pneX
= Z Par, (§) e (A — &)
tex
A) Z Par, ({) e (—
gex

=e(A)ch <2 (O)>

for any A € X. This gives us that for any pair A\, ux € X we have
ch (2 (A)) —e(\—p)ch (2 (u)) (5.1)

The other type of modules in C that have our interest are of course the simple
modules. They can be constructed from the baby Verma modules much like we
constructed the snnple G-modules from the Weyl-modules. By fitting the proof
of pr0p051t10n 1] to this setting we can prove that 7 (A) has a unique maximal
submodule Z (A)max, and define the simple modules L (\) = Z (\) /Z (A) yay for all
A € X (not just the ones in X ).

We have the following proposition (see proposition 11.9.6 of [Jan03]):

Proposition 5.1.7. If A € X and let \g € X}, and N\, € X such that X\ = X\g+pA,,
then

ch (z (A)) = ¢ (pAy) ch (L (Xo))

5.1.3 The composition coefficients of the baby Verma mod-
ules

As with the Weyl modules and the simple GG-modules, we would like to investigate
the composition coefficients of the baby Verma modules. One reason for wanting to
investigate that is that if we know the composition coefficients of the baby Verma
modules, then we can find the characters of the simple G-modules: We have (like

in (2.1)) that:
wZ(N) =Y [2 (\):L (u)] chL ()
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and thus

dmZ (N, = > [2@) : E(M)] dim I (1),

E3p=A

and thereby

dmL (V) =dimZ V), — 3 [2(/\) : Z(M)} dim I (1),

E3u=A

It is easy to calculate dim Z (A) using Par, (A — &), but for the other dim L (1) are
a bit more difficult. We can however use the above equality recursively, and notice
that for each step, the new sum will have will have fewer and fewer summands
since there by £ < u < A clearly are fewer weights in the <-interval [{; p] than in
[€; A], and there by, if we keep on replacing the dim L (u)5 by new sums using the

above formula, we will at some point have no dim L (1) ¢'s left, and we can calculate

dim L (A)¢ just from the composition coefficients of the baby Verma modules, and
the characters of the baby Verma modules. To calculate the character of the
simple U"*-modules, we now just need to notice that L () is a homomorphic
image of Z (\), and thus dim L (A), < dim Z (A),, and we now have only finitely
many weights to check. Using proposition [5.1.7] we can use this knowledge to
find all the characters of the simple G-modules chL (\) with A € X,,, and from
these characters we can calculate all the characters of the simple G-modules using
Steinberg’s tensor product theorem

To simplify the task of finding the composition coefficients of the baby Verma
modules, we need the following proposition

Proposition 5.1.8. Let A\, u, & € X, then the composition coefficients satisfy:
Z(u+p): DO+ pO)| = |Z(0): L]

The proposition follows from (5.1)) and proposition [5.1.7}
Another nice result about the composition coefficients of the Verma modules
is from [Jan03] 11.9.16(4) (with » =1 and 1y = —p):

Proposition 5.1.9. Let \g € Ay and w,z € W, such that w.\y € X, — pp. Let
v €W (the Weyl group), then

~ ~

[z (z.X) : E(w.AO)} - [z (vaXo) : L (w. o)

Notice that the above two propositions give us that to know all the composition

~

Z () : L)

it is enough to know them for A € X, —pp and p € =X+ — p, since — X+ —pisa
fundamental domain for the dot-orbit of the Weyl group W on the weights X.
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We still have no smart way of finding the composition coeflicients (we will
return to that later), we do, however, have a not very smart way of finding the
composition coefficients. What we can do is calculate the characters of the simple
G-modules, use these to calculate the characters of the simple modules in C, then
we can use the function Par, to calculate the characters of the baby Verma modules,
and then we can finally decompose these characters in a sum of the characters of
the simple modules in C, and like that we can calculate the composition coefficients
of the baby Verma modules.

We have actually used the above method to find the all the composition coef-

ficients [2 () : L (/\)} with A € X, —pp and pp € —X* — p for root systems of

type A, with n € {2,3,4} in characteristic 2 and 3. In appendix |C|can be found
a comprehensive list of all these composition coefficients.

5.2 Connected conjectures

5.2.1 The conjectures

In the article |[Fiel0] three conjectures that are very relevant to this thesis are
mentioned. In the terminology of this thesis they say:

Conjecture 5.2.1. Lusztig’s Conjecture+ (Conjecture 2.4 of [Fiel0]) Let p =
char (k) > h (the Coxeter number). Let w € W, such that w.0 € X, then

ch (L (w.0)) = > (=17 Py gu (1) x (2.0)

r<w

Conjecture 5.2.2. The generic multiplicity conjecture (Conjecture 3.4 of [Fiel(])
Let p = char (k) > h. For x,w € W, such that w.0 € X, —pp

[2 (2.0): L (w.())] =P, (1)

Conjecture 5.2.3. (Conjecture 4.4 of [Fiel0]) Let p = char (k) # 2, let w € W,
such that Gyy<,, is a GKM-graph. Then
Px,w =P?

T,w
for all z < w.

Notice that the requirements of the conjectures are related; more precisely, if
p > h, then Gyy<,,,, is GKM for any w € W such that w.0 € X,.

And now for the connection between the conjectures (see theorem 3.5 and
theorem 5.2 of [Fiel(]):

Theorem 5.2.4. The conjectures|5.2.1] and [5.2.2 are equivalent, and follow from
conjecture [5.2.5
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5.2.2 The modified conjectures

It is very striking that the Kazhdan-Lusztig polynomials appear both in a formula
for the characters of a simple G-module and as composition coefficients of baby
Verma modules. The above theorem goes part of the way of explaining the relation.
It says nothing, however, about small primes p, and it is not at all clear that we
should have any such correspondence in the small p case.

We have already seen in subsection that the modular Kazhdan-Lusztig
polynomials do not fit into conjecture (which corresponds to question m
with p > h). Since the modular Kazhdan-Lusztig polynomials coincide with the
Kazhdan-Lusztig polynomials for p large enough, but differ for small p, and con-
jectures [5.2.1] and [5.2.2] are equivalent, the obvious question is now whether the
modular Kazhdan-Lusztig polynomials fit into conjecture 5.2.2| regarding the com-
position coefficients of baby Verma modules, for small p.

First, however, we need to generalize conjecture a bit. In section we
saw that we can use corollary to generalize Lusztig’s character formula from
any regular dominant weight — like 0 when p > h — to any dominant weight. A
very similar trick can be used in the restricted Lie algebra case; from 11.9.22 of
[Jan03] we get (recall the definition of the facets F) in subsection [2.3.1)

Proposition 5.2.5. Let A\, p € X with p € F\, and let x,w € W such that
w.p € Fy ., then

[2 (2.p1) : Z(w.,u)] - [2 (x.\) : E(m)}

This proposition gives us a natural way of generalizing conjecture [5.2.2] namely
using that if p > h, Ay € Ay and w.)\g € w.Ay, then

~

[z (z.X) : E(w./\o)} - [2 (2.0) : E(w.())]

Our aim is to substitute P?  for P,, in this generalized version of conjecture
5.2.2) so we need to extend our area of calculation by the set of (x,w) relevant for
this conjecture, which is

C’alcg\, = {(x,w) EWXWI w>x>wy,INg € Ay : w. g € mﬂXp—pp,x.)\o e —-X*t —p}
and the extended area of calculation becomes
Caleyy = C’alc%mig U Cald),

We have calculated P?,, for all (z,w) € Caleyy with W of type A, for n € {2,3,4}

and p € {2, 3}, with the possible exception of the cases from C’alcf,\qfsmg where we

have not checked if the moment graph is nice. It turns out that all the moment
graphs G,<yy<, with (z,w) € Calc, are nice.

Table is a list of all exceptions to P, ,, = PZ,, within the calculated area. An
extremely interesting entry in table is the last entry, because Gyy<ugsgs; sasasss



5.2. CONNECTED CONJECTURES 7

is actually a GKM-graph, so this particular example actually disproves conjecture
5.2.3] So the GKM property of the moment graph is no guarantee for P, ,, = P?,,.

We now make a precise modified version of conjecture with the modular
Kazhdan-Lusztig polynomials:

Question 5.2.6. Let A € A;NX, and let w € W such that w.\ € mﬂ(Xp —pp),
and let x € W such that x.A € —X* — p. Are the composition coefficients then
given by

ACRED? (w.A)} — Pr, (1)?

Note that this question is asked for all primes p not only the primes p > h. If
p > h, then the answer to the question is “yes” assuming conjecture holds (in
these cases); this follows from theorem and 11.9.22 of [Jan03].

We will answer this question when W is of type A, with n € {2,3,4} and
with p € {2,3}, by calculating the composition coefficients. We have calculated

[2 (z.Xo) : L (w.)\o)} , and found it to be equal to P? (1), for each (z,w) € C’alc(gV

and for each initial weight Ay € Ay fitting the definition of C’alcgv.
Moreover in type Ay with p = 2, for (z,w) = (wySo, WoS0515254535250) € Calcs,,
for initial weight [0, —1, —1,0] we have

~

[Z ([~2,~1,—1,-2]) : L (-2, —2, 2, —2])} —6="P2, (1) #5 =Py, (1)

and for (z,w) = (wg, WoS0S15254535280) € Calc(gv for initial weight [0, —1, —1, 0] we
have

[2 ([~2,~1,-1,-2]): L (-2, -2, 2, —2])} —6="P2, (1) #5 =Py, (1)

and in type Ay with p = 3, for (z,w) = (wq, wWeseS152845352) € C’alcgv for initial
weight [0, —1, —1, 0] we have

[2 ([~2,~1,-1,-2]): L([-3, —2, -2, —3])} —5="P3, (1) #4="P,, (1)

For all the rest of the pairs (z,w) € Calc§), we have P,,, = P?.

We see that we answer question [5.2.6)in the affirmative in every calculated case.
Moreover, there are several exceptions in the calculated area to the corresponding
formula with the usual Kazhdan-Lusztig polynomials from conjecture [5.2.2]

~

7 (x.)) - f(w.)\o)] — P, (1)

Consequently, there is reason to believe that the correct version of the formula
should include the modular Kazhdan-Lusztig polynomials, and we conjecture that
the answer to question is yes.
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Type | p T w Prgazwow (9) PP ow (9) Difference
\w% 2 S05154 505152545352505154 WQN + %Q +1 Qm + @Qm + %Q +1 Qw + MQN
Ay | 2] 50518254 | 505152548352505154 > +3q+1 2¢> + 3¢ + 1 ¢
Ay | 2] 50515483 | S05152545352505154 ¢ +3q¢+1 2¢° +3q+ 1 q*

Ay [2]  so S0515254535250 2¢° +2q+1 ¢ +2¢%+2q+1 7

Ay |2 1 5051525483595 2¢° +2q+ 1 ¢ +2¢° +2q+1 q°

Ay |3 5051 50515254535250515450 2¢° +5¢° + 5q + 1 3¢° + 2¢* +3¢% + 5¢* + 5q + 1 3¢° +2¢* + ¢°
Ay | 3| 808184 | S0S15254535250515450 3¢ +5q+1 2¢* +¢* +3¢° +5q + 1 2¢* + ¢*
Ay | 3| 808184 | S0S15254535250515450 3¢+ 5g+1 2¢* +¢* +3¢° + 59+ 1 2¢* + ¢*
Ay | 3] 80815450 | S0S15254535250515450 3¢ +5g+1 ¢ +3¢°+5q+1 7

Ay |3 50 S0515254535280515480 | 2¢* +6¢° + T7¢* +5q + 1| ¢° +6¢° +4¢* +7¢° + T¢* + 5q + 1 | ¢° + 6¢° + 2¢* + ¢*
Ay 13| s0S1 | S0S15254535250515450 2¢° +5¢* + 5q + 1 3¢° +2¢* +3¢° +5¢*> +5q¢+ 1 3¢° + 2¢* + ¢°
Ay |3 5054 50515254535250515450 2¢° +5¢° +5q + 1 3¢° + 2¢* +3¢° + 5¢%> +5q + 1 3¢° +2¢* + ¢*
Ay | 3| 808184 | S0S15254535250515450 3¢ +5q+1 2¢* + ¢ +3¢°> +5q¢ + 1 2¢* + ¢*
Ay 3] s0ss | 50515254535250515450 2¢° +5¢° +5q + 1 3¢° +2¢* +3¢° +5¢° + 5q + 1 3¢° +2¢* + ¢*
Ay | 3| S0S184 | S0S15254535250515450 3¢ +5g+1 2¢* + ¢ +3¢° + 59+ 1 2¢ + ¢*
Ay |3 1 505152545352 2¢° +q+1 ¢ +2¢° +q+1 ¢

Table 5.1: The exceptions to P, ,,

= PP, within Caley




Bibliography

|ATS04]

[Alp80)]

[Bou68]

[Fie09)]

[Fiel0]

|GSss|

[Hum72]

[Hum90)|

[Hum95]

[Humo08|

H. H. Andersen, J. C. Jantzen, and W. Soergel. Representations of
quantum groups at a pth root of unity and of semisimple groups in char-
acteristic p: independence of p. Astérisque, (220):321, 1994.

J. L. Alperin. Diagrams for modules. J. Pure Appl. Algebra, 16(2):111-
119, 1980,

Nicolas Bourbaki. Eléments de mathématique. Fasc. XXXIV. Groupes
et algébres de Lie. Chapitre IV: Groupes de Coxeter et systémes de Tits.
Chapitre V: Groupes engendrés par des réflexions. Chapitre VI: systémes
de racines. Actualités Scientifiques et Industrielles, No. 1337. Hermann,
Paris, 1968.

Peter Fiebig. An upper bound on the exceptional characteristics for
Lusztig’s character formula. Preprint: larXiv:0811.1674v2, 2009.

Peter Fiebig. Lusztig’s conjecture as a moment graph problem. Bull.
Lond. Math. Soc., 42(6):957-972, 2010.

Peter B. Gilkey and Gary M. Seitz. Some reprensentations of exceptional
lie algebras. Geometriae Dedicata, pages 407-416, 1988.

James E. Humphreys. Introduction to Lie algebras and representation
theory, volume 9 of Graduate Texts in Mathematics. Springer-Verlag,
New York, 1972.

James E. Humphreys. Reflection groups and Cozeter groups, volume 29
of Cambridge Studies in Advanced Mathematics. Cambridge University
Press, Cambridge, UK, 1990.

James E. Humphreys. Linear algebraic groups, volume 21 of Graduate
Texts in Mathematics. Springer-Verlag, New York, 1995.

James E. Humphreys. Representations of Lie algebras in the BGG cate-

gory O, volume 94 of Graduate Studies in Mathematics. American Math-
ematical Society, Providence, Rhode Island, 2008.

79


http://arxiv.org/abs/0811.1674v2

80

[Jan73|

[Jan79|

[Jan9s)

[Jan03|

[KROO]

[Lam78]

|Ste74|

BIBLIOGRAPHY

Jens Carsten Jantzen. Darstellungen halbeinfacher algebraischer Grup-
pen und zugeordnete kontravariante Formen. Bonn. Math. Schr.,
(67):v+124, 1973.

Jens Carsten Jantzen. Moduln mit einem héchsten Gewicht, volume 750
of Lecture Notes in Mathematics. Springer, Berlin, 1979.

Jens Carsten Jantzen. Representations of Lie algebras in prime char-
acteristic. In Representation theories and algebraic geometry (Montreal,
PQ, 1997), volume 514 of NATO Adv. Sci. Inst. Ser. C Math. Phys.
Sci., pages 185-235. Kluwer Acad. Publ., Dordrecht, 1998. Notes by Tain
Gordon.

Jens Carsten Jantzen. Representations of algebraic groups, volume 107 of
Mathematical Surveys and Monographs. American Mathematical Society,
Providence, RI, second edition, 2003.

Martin Kreuzer and Lorenzo Robbiano. Computational commutative al-
gebra. 1. Springer-Verlag, Berlin, 2000.

T.Y. Lam. Serre’s conjecture. Lecture Notes in Mathematics, Vol. 635.
Springer-Verlag, Berlin, 1978.

Robert Steinberg. Conjugacy Classes in Algebraic Groups, volume 366
of Lecture Notes in Mathematics. Springer-Verlag, Berlin - Heidelberg -
New York, 1974.



Appendix A

Calculated characters

Here is a list of all the values of [L () : V (u)] for all the weights A € X,,, these
values are compared to the values given by Lusztig’s character formula, and the
values given by Lusztig’s character formula using the modular Kazhdan-Lusztig-
polynomials in stead of the usual Kazhdan-Lusztig-polynomials. The dot-orbits
with no more than one element in the fundamental box X, are omitted.

Note that the weights are represented as:

(a1, ag,...,a,) = a1y + agha + -+ + ap\,

In the matrices we have underlined the coefficients where the actual value differs
from that predicted by Lusztig’s conjecture.

81
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A.1 Type Ay, p=3

Stabilizer (), initial weight [0, 0]

The simple characters are:

(e b ) -0 )

Lusztig’s conjecture predicts:

(ar b ) -0 )

The character formula using the modular Kazhdan-Lusztig polynomials predicts:

(arla)=Co ) (ks
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A.2 Type As, p=2

Stabilizer {sy, s3}, initial weight [—1,0, —1]

The simple characters are:

(atoo )=(o 3 ) (X

Lusztig’s conjecture predicts:
_ I -1 X ([17 07 1])
S \0 1 x ([0,0,0])

( chL ({1,0,1])
The character formula using the modular Kazhdan-Lusztig polynomials predicts:

1,0,1
chL ([0,0,0))
(arioa)=Co ) (o)
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A.3 Type A3, p=3

Stabilizer {s(}, initial weight [0, 0, 0]

The simple characters are:

chL ([1,2,1)
chL ({0,2,0])
0,0,0
The character formula using the modular Kazhdan-Lusztig polynomials predicts:
ez ((0.2.0) | =0 1 -1 | x(o.2.0)
chL ({0,0,0]) 0 0 1 x ([0,0,0])

Stabilizer {s;}, initial weight [—1,0, 0]

The simple characters are:

R
elNeRNe)
e
N~~~
A~~~
\.O\‘H\_[\D
S =
= e
S— N N
~_
I
~/
O O =
Ool
—_
O = O
—_
— =
~_

chL ([2,1,1])
( chL ([1,1,0])
0,0,1

ch (|

~_
I
~
o O =
Ool
—_
O = O
— |
—_
~_
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Stabilizer {s,}, initial weight [0, —1, 0]

The simple characters are:

chZ ([1,1,1])
( chL ([2,0,0])
0,0,2

chL ([1,1,1]) 1 -1 -1 x ([1,1,1])
chL([2,0,0]) | =0 1 0 x ([2,0,0])
(mum,o,zn) (o 0 1)(“[0,0@)

The character formula using the modular Kazhdan-Lusztig polynomials predicts:

chL ([1,1,1]) 1 -1 -1 x ([1,1,1])
(chL([2,0,0]))(O 1 0 ) (X([z,o,()]))
chL ([0,0,2]) 0 0 1 x ([0,0,2])

Stabilizer {ss}, initial weight [0,0, —1]

The simple characters are:

chL ([1,1,2 1 -1 0 -1 x((1,1,2])

()= (5 0 =)

chL ([1,0,0]) 0 0 0 1 w([1.0.0)
Lusztig’s conjecture predicts:

chL ([1,1,2]) 1 -1 0 -1 x([1,1,2])

(i) (3 1) (1

chL ([1,0,0]) 0 0 0 1 Y ([1.0.0)

chL ([1,1,2)) 1 -1 0 X([L,1,2])
<chL([0,1,1]) ) - (o 0 1 %g?ﬂ;
chL ([1,0,0]) 0 0 O X(H:O:O])
Stabilizer {s1, s3}, initial weight [—1,0, —1
The simple characters are:
chL ([2,0,2)) \ (1 -1 x ([2,0,2])
( chL ([1,0,1]) ) - ( 0 1 ) ( x ([1,0,1]) )
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Lusztig’s conjecture predicts:

(acom)=(o 1) (XEai))

The character formula using the modular Kazhdan-Lusztig polynomials predicts:
chL([2,0,2]) \ _ (1 -1 x (2,0,2])
ehr([1,0.1)) ) = \o 1) x(,0,1])

Stabilizer {s1, s3}, initial weight [—1,1, —1]

“\o 1 x ([0,1,0
Lusztig’s conjecture predicts:

(i) o () ()

The character formula using the modular Kazhdan-Lusztig polynomials predicts:

(arer) =0 ) )

The simple characters are:

( ohL (|

2,1,2])
chL ([0, 1,

2
0])
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A4 Type Ay, p=2

Stabilizer {s, s1, s3}, initial weight [—1,0, —1, 0]

The simple characters are:
chL([0,1,0,1]) \ _ (1 -1 x ([0,1,0,1])
ChL([17070a0]) - 0 1 X([1a07070])
Lusztig’s conjecture predicts:
chL([0,1,0,1]) \ _ (1 -1 x ([0,1,0,1])
chr ([1,0,0,0) ) = Lo 1)\ x([1,0,0,0)
The character formula using the modular Kazhdan-Lusztig polynomials predicts:
chL([0,1,0,1]) \ _ (1 -1 x ([0,1,0,1])
i (11,0,0,0) ) =\ o 1) x([.0,0,0)
Stabilizer {s, s2, s3}, initial weight [0, —1, —1, 0]

The simple characters are:
chL([0,1,1,0]) \ (1 -1 x ([0,1,1,0
chL ([0,0,0,0]) )\ 0 1 x ([0,0,0,0
Lusztig’s conjecture predicts:
chL([0,1,1,0]) \ _ (1 0 ( x([0,1,1,0])
i (0,0,0,0) ) =0 1)\ x([0,0,0,0)
The character formula using the modular Kazhdan-Lusztig polynomials predicts:
chL([0,1,1,0]) \ _ (1 1\ ( x([0,1,1,0])
chL ([0,0,0,0]) )\ 0 1 x ([0,0,0,0])
Stabilizer {s, s2, s4}, initial weight [0, —1,0, —1]

The simple characters are:

(aztooot )=(o 3 ) (Koo

Lusztig’s conjecture predicts:
chL([1,0,1,0]) \ (1 -1 x ([1,0,1
chL([0,0,0,1]) /— \ 0 1 x ([0,0,0

The character formula using the modular Kazhdan-Lusztig polynomials predicts:

(atoot )=(o 3 ) (Koo
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Stabilizer {s, s9, 54}, initial weight [—1,—1,0, —1]

The simple characters are:
(chL([l,O,l,l]))_(l 1 0) ig%g’é;
chL ([0,0,1,0]) 0 0 1 2 ([0.0.1.0

Lusztig’s conjecture predicts:

¢hL ([1,0,1,1]) 1 -1 0 [ XULOLIY
(i) -G 3 D (e

hL(L0,1,1)\ (1 —1 oY [ XULOLI]
(chL([0,0,l,O])>_<O 0 1> %88(1)38

Stabilizer {s, s3, s4}, initial weight [—1,0, —1, —1]

REBIE

The simple characters are:

( chL ([1,1,0,1))
chL (]0,1,0,0))

Lusztig’s conjecture predicts:

hL(1,1,0,1)\ (1 -1 oY [ XULLOI
(i) (0 ) (s

¢hL ([1,1,0,1]) 1 -1 0 [ XULLO1]
(i) (3 D ()
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NN N N N N N N N

NN N N N N N N

s predicts:

rabvelreslamulr-el o oo h e e e e e e e e e e e e e e e e

—

—

3

A.5 Type Ay, p

A.5. TYPE A,, P

3

Stabilizer {s, s1}, initial weight [—1,0,0, 0]

The simple characters are:

Lusztig’s conjecture predicts:

The character formula using the modular Kazhdan-Lusztig polynomia

[ i i S DY

Stabilizer {s, s2}, initial weight [0, —1,0, 0]

The simple characters are:

— — — — — —

Lusztig’s conjecture predicts:

-
1010‘|_.1
—
T = | = <
i
— ,OOOO

P e L e T

— — — — — —
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NN N N N N N N N

— N e

The character formula using the modular Kazhdan-Lusztig polynomials predicts:

e e e T

— — — — — —

Stabilizer {s, s3}, initial weight [0,0, —1, 0]

The simple characters are:

e e e e T L e e

— e e

—
110041
Ll Ll
YT =T
i
10_000
—
10_100

—
__OOOO
Al

NN N N S

— — — — — —

Lusztig’s conjecture predicts:

NN N N N N N N N

— N

e e e T

— — — — — —

NN N N N N N N N

— e e

—
11001_.1
i Ll
—
10_000
Ll
10_100

—
_70000

e L e e T

— — —

The character formula using the modular Kazhdan-Lusztig polynomials predicts:
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3

A.5. TYPE A,, P

Stabilizer {s, s4}, initial weight [0,0,0, —1]

The simple characters are:

NN N N N
—— e —

[ i S St}
— —

Lusztig’s conjecture predicts:

e e N N
——— — —

[ R i (T W St}
— N N N

1
0
0

The character formula using the modular Kazhdan-Lusztig polynomials predicts:

e e R R e
—— e — —

[ S St}
— — '

0
0
0

Stabilizer {s, s2}, initial weight [—1,—1,0, 0]

The simple characters are:

o~~~
———r— — ——

[ B i S ST St

-1 0 -1

1
0 0 0 O
0 0 0 O

1
0

Lusztig’s conjecture predicts:

o~~~
—r——— —— ——

[ S S S ST i D
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The character formula using the modular Kazhdan-Lusztig polynomials predicts:

.
<
— N o oo = oo N o oo = oo bt N o oo = oo
e W W e W 17071.;17071707072707 170717170717070.;2707 m 17071717071707072707
NN - <o o IS I S e e S e S e B S e Y NN S S S " NN A S
N NSNS A8 S NS SN S 2o SRS ASNSH B ~ASSsSASaS A
- - - - - - e N e e e e e e e e N e e e e e e e . — e e e e e e e e e
o oo Qe R A P P PP R A P P PP g R A e P P P
—o.o = =
S N N N N y
o R < — — = —
— — p —
N— — =TT — T e = T =
o0
— = g
AN~ AN~ N AN~
— — h [ e e F e e n Fp e =<
— — — =
— — I —
— () =
o _ — O = 1%
— — O O O OO — O O O OO = — o O O OO
N
_I_AOOO _ — oA 00O — o0 0o wa - —H O OO
~— — — —
S
o)) =
— or= — — = —
| © oo aWp | oo ococo | oo ococo S | oo ococo
—_ o oo ﬂa O —-H O O OO O —H O O OO ® OoO—H O O OO
N— " o pi — — Um —
I g= g 2
a .. 5] =i
o] <] — O O O OO = —\ O O O OO g —N O O O OO
—— = = n
et = 2 I I = I
N = oo & z ° =
NS - m — 5 — m —
- n > > NN N N N N +~ NN N N N N NN N N N N
- e e NG~ Noo oo g Neo =% 2 Neo =S
— O = N y m —_— - NS = —_— - NS ﬂ —_— - NS
/L.\L( L(U\ ) ° AN A SS S o AN~ SS S T AN A SS S
= &8 = = N 7 IR =) © O AN S < O AN S
SIS IS S) H NN AN AN AN n T M T
o = m o L <Y NSNS = o L
N~—— o) 7 =g .99 .9 = =g 9999 >} <l S S =<
o O O o O O ~N o O O o O O o O O o O O
2] > 2 @
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A.5. TYPE A,, P

Stabilizer {s1, ss}, initial weight [—1,0,0, —1]

The simple characters are:

NN N N N N N N N

—_— — — — — — — — —

P

Lusztig’s conjecture predicts:

NN N N N N N N N

—_— — — — — — — — —

Py

— — — — — —

The character formula using the modular Kazhdan-Lusztig polynomials predicts:

NN N N N N N N

— — — — — — — — —

PR

— — — — — —

Stabilizer {s, s3}, initial weight [0, —1,—1, 0]

The simple characters are:

Lusztig’s conjecture predicts:
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The character formula using the modular Kazhdan-Lusztig polynomials predicts:

Stabilizer {ss, s4}, initial weight [0, —1,0, —1]

The simple characters are:

NN N N N N N N N

— N N e

—
—

—

[N I

_,_100

NN N N N N

~— — —

chL
chlL
chL
chL
chL
chL

Lusztig’s conjecture predicts:

NN N N N N N N N N

— —

—
—
—
A~
,__100

NN N N N N

— — — — — —

NN N N N N N N N N

~— N N e

—
—
4,21_ |
—
A~ -
_,_100

NN N N N N

~— — —

The character formula using the modular Kazhdan-Lusztig polynomials predicts:
chlL
chL
chlL
chL
chlL
chlL
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3

Stabilizer {ss, s;}, initial weight [0,0, —1, —1]

The simple characters are:

A.5. TYPE A, P

.
it}
O
. —
O
e e e N e N e e N N N m NN N N N
oo = =N oo = =N ” oo = =N
e N e M e T R M e i T e e e e
- - - - - - - - - - - - - p— - - - - - -
NN ANOANO NN ANONO m AN M ANO AN O
NN~ F S S NN AFS S, g NS Fo S
S N N N N S N N N N y S N N N N N
R U i PP R U i P P4 3 e U i P P4
[=10]
.—
~— VY - ~—
N
1111 1111 % 1111
_ _ _ _ i _ _
1
— — m —
=
— — nZ@ —
| © oo | © oo v | © oo
S
o~ oo o — oo K o~ oo
=
— — —
| © 0o | © 0o 1% | © © o
— o oo — o oo © — o oo
~ . ~ = ~
n =0
Il k3] Il = Il
- p— - —
2 E
/ S ~/ ~—
e e e T m e e e < e e e
— O = ™ ° — o =™ = — O = ™
—_— oS M —_— oS m —_— oS
NNNoS = NNNOoS RS NNNoS
N =SS 5 N =SS = NS S
NN S NN = NN
e R R P 0 e R B & e R e
SIS IS . S C C © 5 S C C ©
o0 <
N~ i N~ S N~
» ©
= =
— !

The character formula using the modular Kazhdan-Lusztig polynomials predicts:

Stabilizer {s, s1, s3}, initial weight [—1,0, —1, 1]

The simple characters are:
Lusztig’s conjecture predicts:
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Stabilizer {s, s1, s3}, initial weight [—1,1, —1,0]

(1 -1 x ([1,2,0,2
SN0 1 x ([2,1,0,1
Lusztig’s conjecture predicts:

(azteron )= 1) (xEred)

The character formula using the modular Kazhdan-Lusztig polynomials predicts:
ChL([1727072]) _ I -1 X([1727072])
ehr(12,1,0,1)) ) Lo 1) (2 1,0,1)

Stabilizer {s, s2, s3}, initial weight [0, —1, —1, 1]

The simple characters are:

(ChL([,

1,2,
chL ([2,1

Y

0,2])
0,1])

Y

The simple characters are:

(actrora)=(o 1) (Mot )

Lusztig’s conjecture predicts:
_ (10 x ([0,2,2,1])
S\ 01 x ([1,0,1,0])

chL ([0,
1
The character formula using the modular Kazhdan-Lusztig polynomials predicts:
chL([0,2.2,1)) ) _ (1 0 ( x([0,2.2,1])
1,0,1,0) / \ 0 1 x ([1,0,1,0])

chL ([1,
Stabilizer {s, s2, s3}, initial weight [1, —1, —1,0]

)= (o 0) (X

2,
0,

The simple characters are:

( chL ([1,2,2,0])
chL ([0,1,0,1])

Lusztig’s conjecture predicts:
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Stabilizer {s, s2, s4}, initial weight [1,—1,0, —1]
The simple characters are:
ChL([27172a0]) _ I -1 X([2a17270])
iz (10.1,0,2) ) =\ o 1)\ x(l0.1.0,2)
Lusztig’s conjecture predicts:
chL([2,1,2,0) \ _ (1 =1 ( x(21.2
chL([0,1,0,2]) /) \ 0 1 x ([0,1,0
The character formula using the modular Kazhdan-Lusztig polynomials predicts:
ChL<[2717270]) _ I -1 X([2717270]>
chL([0,1,0,2]) /) \ 0 1 x ([0, 1,0,2])
Stabilizer {s, s2, s4}, initial weight [0, —1,1, —1]
The simple characters are:
chL ([2,0,2,1]) \ (1 -1 x ([2,0,2,1])
enr (1,0,1,2) ) = Lo 1 ) x(mo2)
Lusztig’s conjecture predicts:
chL([2,0,21]) \ _ (1 =1 ( x([2.0,2,1)
chr ([1,0,1,2)) ) = Lo 1) (i o.1,2)
The character formula using the modular Kazhdan-Lusztig polynomials predicts:
ChL<[2707271]) — I -1 X([2707271]>
hr ([1,0,1,2)) ) Lo 1) (i o,1,2)
Stabilizer {s1, s9, 54}, initial weight [—1,—1,0, —1]

The simple characters are:

( chL (|

2,1,
chL ([0,1

sa)\ (1 1oy [ X122
,2,0]>)‘<0 0 1)();&8}838

Lusztig’s conjecture predicts:

¢hL ([2,1,2,2)) 1 —1 0 [ XUB122)
() -G 3 D (R

The character formula using the modular Kazhdan-Lusztig polynomials predicts:

¢hL (2,1,2,2)) 1o o0 [ X 1L22)
(3a)-G o (gl
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Stabilizer {s, s9, 54}, initial weight [—1,—1,1, —1]

The simple characters are:

(Befsd)-( o D (3

Lusztig’s conjecture predicts:

ChL([2,0,2,2]> 1 =1 0 X([2707272D
( ChL([l,O,Q,l]) ) B ( 0 0 1 > ( iEH’g’;i’B

The character formula using the modular Kazhdan-Lusztig polynomials predicts:

chL ([2,0,2,2]) 1 -1 0 x ([2,0,2,2))
( ChL([1707271]) ) B ( 0 0 1 > ( igﬁ’g’;ﬂ;

)

Stabilizer {s, s3, s4}, initial weight [—1,0, —1, —1]

The simple characters are:
(chL([2,2,1,2]) ) B ( 1 -1 0 > ( igﬁgigg )
chL (]0,2,1,0 ~\0 0 1 T
(10,2,1,0) x((0.2,1,0)
Lusztig’s conjecture predicts:
(chL([2,2,1,2]) ) B < 1 -1 0 > ( );842131(2)8 )
chL (]0,2,1,0 ~\0 0 1 T
(10,2, 1,0) ¥ (0.2.1,0)
The character formula using the modular Kazhdan-Lusztig polynomials predicts:
<chL([2,2,1,2]) ) B < 1 -1 0 ) ( igﬁgiag )
chL (]0,2,1,0 L0 0 1 T
(10,2, 1,0) ¥ (0.2.1,0)

Stabilizer {s, s3, s4}, initial weight [—1,1, —1, —1]

The simple characters are:

chL ([2,2,0,2]) 1 -1 0 x([2,2,0,2
()= G (e
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Lusztig’s conjecture predicts:

hL(2,2,0,2) ) (1 -1 oY [ X(2202)
(efidsd)- G D ki

chL (12,2,0,2]) 1 —1 0 x([2,2,0,2
(th([1,2,o,1]) ) - ( 0 0 1 ) )92([5;%;,8,1])



Appendix B

Submodule diagrams

In this appendix we list the module diagrams for those of the Weyl modules seen
in appendix A with composition length > 3.
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B.1 Diagrams for A3, p = 3:

Stabilizer {s;} As representative for this stabilizer we choose the dot-orbit that
has initial representative [—1, 0, 0].
Diagram for V' ([2,1, 1]):

Stabilizer {s2} As representative for this stabilizer we choose the dot-orbit that
has initial representative [0, —1,0].
Diagram for V' ([1,1, 1]):

Stabilizer {s3} As representative for this stabilizer we choose the dot-orbit that
has initial representative [0, 0, —1].
Diagram for V' ([1, 1, 2]):
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B.2 Diagrams for Ay, p = 2:

Stabilizer {si, 52,54} Asrepresentative for this stabilizer we choose the dot-orbit
that has initial representative [—1,—1,0, —1].
Diagram for V' ([1,0,1,1]):

Stabilizer {si, s3,s4} Asrepresentative for this stabilizer we choose the dot-orbit
that has initial representative [—1,0, —1, —1].
Diagram for V' ([1,1,0,1]):
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B.3 Diagrams for Ay, p = 3:

Stabilizer {sg,s1} As representative for this stabilizer we choose the dot-orbit
that has initial representative [—1,0, 0, 0].
Diagram for V' ([1,1,1,2]):

Stabilizer {sg,s2} As representative for this stabilizer we choose the dot-orbit
that has initial representative [0, —1,0, 0].
Diagram for V' ([1,0,1,1]):

Diagram for V' ([0, 1, 1, 2]):

Diagram for V' (]2,0,2,0]):
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Diagram for V' ([1, 1,2, 1]):

@Q:;i:}@

Stabilizer {sg,s3} As representative for this stabilizer we choose the dot-orbit
that has initial representative [0,0, —1,0].

Diagram for V' ([1,1,0,1]):

Diagram for V' ([0,2,0,2]):
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Diagram for V' ([2,1,1,0]):

Diagram for V' ([1,2,1,1]):

@4:;,3;?@

Stabilizer {sg,s4} As representative for this stabilizer we choose the dot-orbit
that has initial representative [0, 0,0, —1].

Diagram for V' ([2,1,1,1]):
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Stabilizer {s1,s2} As representative for this stabilizer we choose the dot-orbit
that has initial representative [—1,—1,0,0].
Diagram for V' ([0,1,1,3]):

Diagram for V' ([0,0, 3, 2]):

Diagram for V' ([1,1,2,2]):



B.3. DIAGRAMS FOR Ay, P =3: 107

Coton

Stabilizer {s1,s3} As representative for this stabilizer we choose the dot-orbit
that has initial representative [—1,0, —1, 0].
Diagram for V' ([1,1,1,0]):

Diagram for V' ([3,0,1,0]):

Diagram for V' ([0, 2,1, 1]):
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Diagram for V ([0, 2,0, 3]):

g
G

i

Diagram for V' ([1,2,1,2]):

i

Stabilizer {s;,s4} As representative for this stabilizer we choose the dot-orbit
that has initial representative [—1,0,0, —1].
Diagram for V' ([1,1,1,1]):
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Diagram for V' ([1, 1,0, 3]):

Diagram for V' ([3,0,1, 1]):

Diagram for V' ([3,0,0, 3]):
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Diagram for V' ([2,1,1,2]):

[0,0.0,01 [0.0.0.01

Stabilizer {ss,s3} As representative for this stabilizer we choose the dot-orbit
that has initial representative [0, —1, —1,0].

Diagram for V' ([1,2,2,1]):
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Stabilizer {ss,s4} As representative for this stabilizer we choose the dot-orbit
that has initial representative [0, —1,0, —1].
Diagram for V ([0, 1,1, 1]):

Diagram for V' ([0, 1,0, 3]):

Diagram for V' ([1,1,2,0]):
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Ry eSS
g

Diagram for V' ([3,0,2,0]):

led
g

Diagram for V' ([2, 1,2, 1]):

i

Stabilizer {s3,ss} As representative for this stabilizer we choose the dot-orbit
that has initial representative [0,0, —1, —1].
Diagram for V' ([3,1,1,0]):
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Diagram for V' (]2, 3,0,0]):

Diagram for V' ([2,2, 1, 1]):

Stabilizer {si, 52,54} As representative for this stabilizer we choose the dot-orbit
that has initial representative [—1,—1,0, —1].
Diagram for V' ([2,1,2,2]):
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Stabilizer {si, s3,5,} Asrepresentative for this stabilizer we choose the dot-orbit
that has initial representative [—1,0, —1, —1].
Diagram for V' ([2,2,1,2]):



Appendix C

Composition coefficients of baby
Verma modules

In this appendix we list all the composition coefficients [2 (\): L (u)} of the baby

Verma modules with © € X, — pp and A € =X+ — p. The rows in the matrices
corresponds to the baby Verma modules Z (\) and the columns correspond to the

-~

simple U *-modules L ().
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C.1 Type Ay, p=2

Stabilizer {s(}, initial weight [0, 0]

The composition coefficients are:
(Z@-2-2)): (Z(-2-2p)]=(1)

Stabilizer {s;}, initial weight [—1,0]

The composition coefficients are:
(Z(-2-1):(L(-2-1)]=(1)

Stabilizer {s,}, initial weight [0, —1]

The composition coefficients are:
(Zq-1-2)): (Z(-1-2) )] =(1)

Stabilizer {s1, s2}, initial weight [—1, —1]

The composition coefficients are:

(Z@=1-1) ) (Eq=1-1) )] = (1)
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C.2 Type A, p=3

Stabilizer (), initial weight [0, 0]

The composition coefficients are:

Z(-2-2) \ ( L(-2-2) ::<1 1)
Z [_37 _3]) L ([_37 _3]) 01

Stabilizer {s}, initial weight [0, 1]

—~

The composition coefficients are:
[( Z([-3,-2)) ) : ( L(-3,-2) )} ~(1)

Stabilizer {s(}, initial weight [1,0]

The composition coefficients are:
(Z@=2-3) ) (Eq=2-3) )] = (1)

Stabilizer {s;}, initial weight [—1,0]

The composition coefficients are:
(Z@-2-w):(Zq-2-m)]=(1)

Stabilizer {s;}, initial weight [—1, 1]

The composition coefficients are:
(Z(@-3-1) ) (Z(-3.-1m) )] =(1)

Stabilizer {s,}, initial weight [0, —1]

The composition coefficients are:
(Z@-1-2)): (Zq-v1-2))]=(1)

Stabilizer {s,}, initial weight [1, —1]

The composition coefficients are:

(Z(q-1-3) ): (Z(-1-3) )] =(1)
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Stabilizer {s1, s2}, initial weight [—1, —1]

The composition coefficients are:

(Z@=1-1) ) (E@=1-1) )] = (1)
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C.3 Type A3, p=2

Stabilizer {s, s;}, initial weight [—1,0, 0]

The composition coefficients are:
(Z(-2-2-1)): (L(-2-2-1) )] =(1)

Stabilizer {s, s2}, initial weight [0, —1, 0]

The composition coefficients are:
(Z(-2-1-2) ): (Z(-2-1-2) )] = (1)

Stabilizer {s, s3}, initial weight [0,0, —1]

The composition coefficients are:
(Zq-1-2-2) ) (Z(-1-2-2) )] = (1)

Stabilizer {sy, s2}, initial weight [—1, —1, 0]

The composition coefficients are:
(Z(-2-1-1)): (Z(-2-1.-1) )] = (1)

Stabilizer {s1, s3}, initial weight [—1,0, —1]

The composition coefficients are:

Z(-1,-2,-1) \ ([ L(-1,—-2,—-1)) \| (1 2
Z(-2,-2,-2)) ) "\ L(-2-2,-2]) _<0 1)

Stabilizer {s, s3}, initial weight [0, —1, —1]

The composition coefficients are:
[( Z(-1,-1,-2)) ) : ( L(-1,-1,-2)) )} (1)

Stabilizer {si, s9, s3}, initial weight [—1, —1, —1]

The composition coefficients are:

[( Z(~1,-1,-1)) ) : ( L(-1,-1,-1]) )} (1)
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C.4 Type A3, p=3

Stabilizer {s(}, initial weight [0, 0, 0]
The composition coefficients are:

Z([-2,-2,-2]) (-2, -2, —2)) 111
Z([-1,-3,-3) | : (-1,-3,=3]) || = ( 010 )
2([_37_37_1]) ([_3’ _37_1]) 001

Stabilizer {s;}, initial weight [—1,0,0]
The composition coefficients are:

Z([-2,-2,-1)) ([-2,-2,-1]) 11 2
Z([=3,-2,=2)) [+ L(=3,-2-2) || = ( )
Z ([-2,-3,-3)) ([-2,-3,-3)) 001

Stabilizer {s,}, initial weight [0, —1,0]

) ) &)
—_

) ) &)
@]
—_
—_

The composition coefficients are:

Z([-2,-1,-2])

1 1 3

Z([-3,-1,-3]) L([-2,—1,-2)) 01 2

7 ([-2, 2, —4)) L([-3,—-1,-3)) =100 1
Z([-4,-2,-2)) L([-3,-3,-3)) 001
|\ Z([-3,-3,-3]) ] 001

Stabilizer {s3}, initial weight [0,0, —1]

The composition coefficients are:
([-1,-2,-2]) 112
([_2a _2a _3]) = 1
([-3,-3,-2]) 001

Z([ 1,-2,-2))
Z([~2,-2,-3) |
Z([-3,-3,-2])

Stabilizer {s, s;}, initial weight [—1,0, 1]

) )
)
—_

The composition coefficients are:
(Z@-s-2-0) ) (Z@-s-2-1 )] =(1)

Stabilizer {sg, s1}, initial weight [—1, 1, 0]

The composition coefficients are:

(Z(-2-3-1)): (L(-2-3-1) )] =(1)
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Stabilizer {s, s2}, initial weight [0, —1, 1]

The composition coefficients are:
(Z(-3-1.-2) ): (L(-3.-1.-2) )] = (1)

Stabilizer {s, s2}, initial weight [1, —1, 0]

The composition coefficients are:
(Z(-2-1.-3) ): (L(-2-1.-3) )] = (1)

Stabilizer {s, s3}, initial weight [1,0, —1]

The composition coefficients are:
[( 7 ([-1,-2,-3)) ) : ( L(-1,-2,-3) )} (1)

Stabilizer {s, s3}, initial weight [0, 1, —1]

The composition coefficients are:
(Z(-1-3.-2) ): (Z(-1-3.-2) )] = (1)

Stabilizer {s1, s2}, initial weight [—1, —1, 0]

The composition coefficients are:
(Z(-2-1-1)): (Z(-2-1-1) )] = (1)

Stabilizer {s1, s2}, initial weight [—1, —1, 1]

The composition coefficients are:
(Z(q-3-1.-1)): (Z(=3-1-1) )] = (1)

Stabilizer {sy, s3}, initial weight [—1,0, —1]

The composition coefficients are:

Z([_l’ _27 _1]) . E([_L _27 _1])
Z(-3,-2,-3)) ) "\ L([-3,-2,-3])

I
VR
O =
— N
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Stabilizer {s1, s3}, initial weight [—1,1, —1]

The composition coefficients are:

< Z(-1,-3,-1]) ) | ( L(-1,-3,-1)) )] _ ( 12 )
Z([-2,-3,-2]) ] \ L([-2,-3,-2]) 01

Stabilizer {s, s3}, initial weight [0, —1, —1]

The composition coefficients are:
[( Z(-1,-1,-2)) ) : ( L(-1,-1,-2]) )] (1)

Stabilizer {s, s3}, initial weight [1, —1, —1]

The composition coefficients are:
[( Z(~1,-1,-3)) ) : ( L(-1,-1,-3]) )] (1)

Stabilizer {si, s9, s3}, initial weight [—1, —1, —1]

The composition coefficients are:

[( Z(~1,-1,-1)) ) : ( L(-1,-1,-1]) )] (1)
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C.5 Type Ay, p=2

Stabilizer {s, s1, s2}, initial weight [—1,—1,0, 0]

The composition coefficients are:
(Z(-2-2-1-1) ): (L(-2-2-1.-1)) )] = (1)

Stabilizer {s, s1, s3}, initial weight [—1,0, —1, 0]

The composition coefficients are:
Z([-2,-1,-2,-1) \ [ L(-2,-1,-2,-1]) \| _ ( 1 2 )
Z(-1,-2,-2,-2)) ) "\ L(-1,-2,-2,-2)) J| \ 0 1

Stabilizer {s, s1, s4}, initial weight [—1,0,0, —1]

The composition coefficients are:
(Z(-1-2-2-1) ): (E(-1-2-2-1) )] = (1)

Stabilizer {s, s2, s3}, initial weight [0, —1, —1,0]

The composition coefficients are:

Z([—2,—1,—1,—2]) R 1 6
Z(-1,-2,-1,-3) | (L(~2-1,-1,-2) \| [ o0 2
Z([-3,-1,-2,—1)) | < L([-2,—2,—2,—2)) ) I
Z([-2,-2,-2,-2)) 01

Stabilizer {s, s2, s4}, initial weight [0, —1,0, —1]

The composition coefficients are:
Z(-1,-2,-1,-2) \ [ L(-1,-2,-1,-2)) \| _ ( 1
Z([-2,-2,-2,-1)) ) "\ L(-2,—-2,—2,-1]) /| \ O

Stabilizer {s, s3, s4}, initial weight [0,0, —1, —1]

— N
N—

The composition coefficients are:

[( Z([~1,-1,-2,-2)) ) : ( L(-1,-1,-2,-2]) )} (1)
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Stabilizer {s, s9, s3}, initial weight [—1,—1,—1,0]

The composition coefficients are:
(Z(-2-1-1-1) ): (L2 -1-1-1) )] = (1)

Stabilizer {s1, s9, 54}, initial weight [—1,—1,0, —1]

The composition coefficients are:

Z(-1,-2,-1,-1)) \ [ L(~-1,-2,-1,-1)) \| [ 1
Z(~2,-2,-1,-2) ) "\ L(~2-2,-1,-2]) _<0

Stabilizer {s, s3, s4}, initial weight [—1,0, —1, —1]

— N
N—

The composition coefficients are:

Z(-1,-1,-2,-1) \ [ L(-1,-1,-2,-1)) \| [ 1
Z(-2,-1,-2,-2) ) "\ L(~2 -1,-2,-2)) —<0

Stabilizer {so, s3, s4}, initial weight [0, —1, —1, —1]

— DN
N—

The composition coefficients are:
(Z(-1-1-1-2) ) (L(-1-L-1-2) )] = (1)

Stabilizer {si, s, s3, S4}, initial weight [—1, -1, —1, —1]

The composition coefficients are:

[( Z(~1,-1,-1,-1)) ) : ( L(-1,-1,-1,-1]) )] (1)
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Stabilizer {s, s1}, initial weight [—1,0,0, 0]

C.6 Type Ay, p=3

C.6. TYPE Ay, P
The composition coefficients are:

~— —
N o~ N O~
O AN AN AN AN O AN AN AN AN~
—\ O — O — O — O
HFTANNO A A A D T ANNO A A O
— - O O — - O O
AN~ OO OO AN —ANO O~ OO
—\ O O O — O O O
— o —H OO o OO — o - OO o oo
/ll\ /ll\
— —_ o O OO o oo —_ o OO oo oo —
\J \J
— =N ™ N~
L — —_— L
27172737 N N N N S N N N SN N 27373727
] TTTATT TTTAAT L
T TRt DR T
RN e T TIAT
Nl N = AN s N —H A e es Nl
(CNRCNECNREN LIV I I U I LTI I I I (CNRCNECNREN
N~—— (R (= (] (R (] (= (= (] N~
. ~ - ~ - .

S~~~ o~ o~ o~ o~ o~

S~~~ o~ o~ o~ o~ o~

— — — — — — — —

—_— — — — — — — —

NN NN NN NI

Stabilizer {s, s3}, initial weight [0,0, —1, 0]
Stabilizer {s, s4}, initial weight [0,0,0, —1]

Stabilizer {s, s2}, initial weight [0, —1,0, 0]

The composition coefficients are:
The composition coefficients are:
The composition coefficients are:
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Stabilizer {sy, s2}, initial weight [—1,—1,0,0]

The composition coefficients are:

Y
10 M AN —~ — —
DOMM AN N~ — ComrtFmomma NN N~ A~
AN - — O OO
FANA OO 00O N OO A0 DDDODODDODDO OO
— - O O O O
NNO HO H O o oo HrH O OO0 OO
— O O O OO
N . N—HO O OO0 0o oo I I M e e M e M ool oo B o B e i e Sl e Wi oo B o B )
I O o000 oo oo N1 OO
p , I e HO OO0 OO
T O —
TNTT | _ 2 ! _
- - - —
— = = < oo o oo < SoooSos
S — TATATT — TATTAT
NN ™ e A T s
FT L FNNF T % FTFFFTT
27 37 2.; 17 m — - N e o m NN - s
A a0 S o0 L
~— — ~— ~— o AaNM AN~ M A o —_ A A — s
(R (=Q (¢ v L I B B e Qv LT
S o= 2 oo
N~ .. QRN . (Y (Y (Y (] (Y (Y
(\
o < .. o o
A S A A A A a =1 - =
] S g TAANTTNTIAT - g TR TERYYTIRTTAT
R s ~ g ~~
T TG & L O T O 5 L NN AN A F NS A NN oS
[ Sw____f__,__ Sm_,_______f__f__
NN M A<M o = l‘l_.nﬁnﬁﬂ.?_uoﬂ?f.%a_u b o NN AN d A NN AN < oD
[ R O_ aaaaaaaaaa S A A T O B
NS A A - - . m Jﬂq_uA_inﬁnﬁ_l_kq_qu?_Hnﬂ . m S NN A MmN AN N e
TINNIT g g LLLILLILLL g TITTINTINTINTIT
— N o ININ NN NN N NI N BN NN N N (N (N N (NN N N (N (N (N
ASESESESEES = g = g
o pu @) o o
b < : ! b QO L 1
L ] a [<b) a [<P]
+ O += O
»n H= n =
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C.6. TYPE Ay, P

Stabilizer {s, s3}, initial weight [0, —1, —1, 0]

The composition coefficients are:

Y

N R

A M AN
Lo
71777
_

e N N N N N
— — — —— —— ——

S S S W
~— T — —

Stabilizer {s, s4}, initial weight [0, —1,0, —1]

The composition coefficients are:

SO M N AN

AN~ o~

AN NO OO~ O OO

TN =4 OO0 OO

N— OO OO oo o

— O O OO OO OO

Lo Il ee e B e R e R e B e B e B e e}

N N N /S /S

—_— — — — — —

i
i
|z
|z
P
i

P

— — — — — — — — — —

Stabilizer {ss, s;}, initial weight [0,0, —1, —1]

The composition coefficients are:

e N N N N N
— — o — —— —

T S S W
~— N N

Stabilizer {s, s1, s2}, initial weight [—1,—1,0, 1]

The composition coefficients are:

(-3.-2.-1,-1) )| = (1)

(=

[( Z([-3,-2,—1,-1)) ) : (
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Stabilizer {s, s1, s2}, initial weight [—1,—1,1, 0]
The composition coefficients are:

(Z(-2-3-1-1) ) (L(-2-3-1-1) )] = (1)

Stabilizer {s, s1, s3}, initial weight [—1,0, —1, 1]

Y

The composition coefficients are:
Z([-3,-1,-2,-1)) \ [ L(]-3,—1,-2,—1))
Z([-1,-3,-2,-3])) ] \ L([-1,-3,-2,-3])

Stabilizer {s, s1, s3}, initial weight [—1,1, —1, 0]

I
VR
(el
— N
~_

The composition coefficients are:
Z([-2,-1,-3,-1) \ [ L(~2,-1,-3,-1]) \| _ < 12 )
Z(-1,-2,-3,-2) )\ I(-1,-2-3,-2) )| ~\o 1

Stabilizer {s, s1, s4}, initial weight [—1,0,1, —1]

The composition coefficients are:
[( Z([~1,-3,-2,—1)) ) : ( T(~1,-3,-2,~1]) )] —(1)

Stabilizer {s, s1, s4}, initial weight [—1,1,0, —1]

The composition coefficients are:
(Z(-1-2-3-1) ) (L(-1,-2-3,-1) )] = (1)

Stabilizer {s, s2, s3}, initial weight [0, —1, —1, 1]

The composition coefficients are:

Z([-3,-1,-1,-2]) R 15
Z(~4,-1,-2,-1) | [ L(-3-1,-1,-2) \| [ 0 2
Z(~1,-3,—1,—4)) | ( L([-2,-3,-2,-3]) > I
Z([-2,-3,-2,-3)) 01
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Stabilizer {s, s2, s3}, initial weight [1, -1, —1,0]

The composition coefficients are:

Z([-2,-1,-1,-3)) ~ 15
Z(-1,-2,-1,-4) | [ Z(-2-1,—1,=3)) \| [ 0 2
Z([-4,-1,-3,-1)) |~ <E([—3,—2,—3,—2]) ) 10 2
Z([-3,-2,-3,-2)) 01

Stabilizer {s, s2, s4}, initial weight [1,—1,0, —1]

The composition coefficients are:
( Z(-1,-2,-1,-3)) ) . ( L([-1,-2,-1,-3)) )] _ ( 12 >
Z(-3,-2,-3,-1]) ) "\ L([-3,-2,-3,-1]) 0 1

Stabilizer {s, 2, 54}, initial weight [0, —1,1, —1]

The composition coefficients are:
Z(-1,-3,-1,-2) \ [ L(-1,-3,-1,-2]) \| _ ( 1 2 )
Z(-2,-3,-2,-1]) | '\ L(-2-3,-2-1) /| Lo 1

Stabilizer {s, s3, s4}, initial weight [1,0, —1, —1]

The composition coefficients are:
(Z(-r-1-2-3) ) (L1 -L-2-3) )] = (1)

Stabilizer {s, s3, s4}, initial weight [0,1, —1, —1]

The composition coefficients are:
(Z(-1-1-3-2) ) (L(-1.-1-3.-2) )] = (1)

Stabilizer {s, s9, s3}, initial weight [—1,—1,—1,0]

The composition coefficients are:
[( Z(~2,~1,-1,-1]) ) : ( L(-2-1,-1,-1)) )} (1)

Stabilizer {s, s9, s3}, initial weight [—1,—1,—1,1]

The composition coefficients are:

(Z(-3-1-1-1) ): (L(-3.-1L-1,-1)) )] = (1)
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Stabilizer {s, s9, s4}, initial weight [—1,—1,0,

The composition coefficients are:

Z(-1,-2,-1,-1)) \ ( L([-1,
Z(-3,-2,-1,-3)) | "\ L([-3,

Stabilizer {sy, s9, 54}, initial weight [—1,—1,1

The composition coefficients are:

2([_17_37_17_1]) . Z([_L
2([_27_37_17_2]) ' E([_27

-2, —
-2, —

-3, —
—3 —

?

1,-1))
1,-3))

Y Y

1,—1))
1,-2))

_1]

)

:((1)

N
N—

_1]

)

:<é

— N
N—

Stabilizer {s, s3, s4}, initial weight [—1,0, —1, —1]

The composition coefficients are:

2([_17_17_27_1]) . E([_L
2([_37_17_27_3]) ' E([—?),

1, —
1, —

2,—1])
2,-3])

)

:<(1)

— N
N—

Stabilizer {s, s3, s4}, initial weight [—1,1, —1, —1]

The composition coefficients are:

Z(-1,-1,-3,-1) \ . ( L(-1,
Z(-2,-1,-3,-2)) ) "\ L(-2

-1, —
-1,—

3,—1])
3,—2])

)

:((1]

N
N—

Stabilizer {so, s3, s4}, initial weight [0, —1, —1, —1]

The composition coefficients are:

(Z(-1-1-1-2) ) (L(-1-1-1-2) )] = (1)

Stabilizer {so, s3, s4}, initial weight [1,—1, —1, —1]

The composition coefficients are:

(Z(-1-1-1-3) ) (Z(-1,-1-1,-3) )| = (1)

Stabilizer {si, s, s3, $4}, initial weight [—1, -1, -1, —1]

The composition coefficients are:

(Z(-1-1-1-1) ) (Z(-1,-1-1,-1) )] = (1)
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