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This thesis addresses stochastic modelling of turbulence with applications to
wind energy in mind. The primary tool is ambit processes, a recently developed
class of computationally tractable stochastic processes based on integration
with respect to Lévy bases. The subject of ambit processes is still undergoing
rapid development. Turbulence and wind energy are vast and complicated
subjects. Turbulence has structures across a wide range of length and time
scales, structures which cannot be captured by a Gaussian process that re-
lies on only second order properties. Concerning wind energy, a wind turbine
operates in the turbulent atmospheric boundary layer. In this respect, three
regimes are of particular interest: modelling the turbulent wind before it in-
teracts with the wind turbine (e.g. to be used in load simulations), modelling
of the interaction of the wind with the wind turbine (e.g. to extract informa-
tion about a wind turbine’s production of power), and modelling the wake
generated by the wind turbine so that its influence on other wind turbines
further downstream in turn can be modelled (e.g. to be used in load simula-
tions). The thesis makes the contributions listed below.

A spatial stochastic turbulence model based on ambit processes is pro-
posed. It is shown how a prescribed isotropic covariance structure can be re-
produced. Non-Gaussian turbulence models are obtained through non-Gauss-
ian Lévy bases or through volatility modulation of Lévy bases. As opposed to
spectral models operating in the frequency domain, the ambit process is for-
mulated directly in the spatial domain. Anisotropy (e.g. in the atmospheric
boundary layer flow) and inhomogeneity (e.g. the wake generated by a wind
turbine) can therefore be modelled explicitly.

At the smallest scales the kinetic energy of the turbulent flow is dissipated
into heat due to the internal friction caused by viscosity. An existing stochas-
tic model, also expressed in terms of ambit processes, is extended and shown
to give a universal and parsimonious description of the turbulent energy dis-
sipation. The volatility modulation, referred to above, has previously been
shown to be closely connected to the energy dissipation. The incorporation
of the small scale dynamics into the spatial model opens the door to a fully
fledged stochastic model of turbulence.

Concerning the interaction of wind and wind turbine, a new method is
proposed to extract wind turbine power curves from low-frequency data. The
method improves over the current IEC 61400-12-1 industry standard by being
capable of incorporating the turbulence intensity into the estimation proce-
dure.

Finally, three existing simple wake models for the average flow inside a
wind farm are evaluated against measured wind power data at time scales
from 15s to 10 min. The wake models are shown to be incapable of capturing
the dynamics of wakes.

vii
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Denne afhandling behandler stokastisk modellering af turbulens med henblik
péd anvendelser inden for vindenergi. Hovedredskabet er ambitprocesser, en
nyligt udviklet klasse af beregningsmaessigt hdndterbare stokastiske proces-
ser baseret pd integration med hensyn til Lévy-baser. Emnet ambitprocesser er
til stadighed under rivende udvikling. Turbulens og vindenergi er begge om-
fattende og komplicerede emner. Turbulens har strukturer pd tveers af man-
ge leengde- og tidsskalaer, strukturer som ikke kan gengives af en gaussisk
proces, der kun afhanger af andenordensegenskaber. Vedrerende vindenergi
arbejder en vindmelle i det turbulente atmosfariske graenselag. I den forbin-
delse er tre omrader serligt interessante: modellering af den turbulente vind
inden den vekselvirker med vindmellen (f.eks. til brug inden for lastsimula-
tioner), modellering af vekselvirkningen mellem vind og vindmelle (f.eks. for
at uddrage information om vindmellens produktion af elektricitet) og endelig
modellering af slipstremmen bag en vindmelle sd dens indflydelse pa andre
moller kan modelleres (f.eks. til brug inden for lastsimulationer). Afhandlin-
gen yder folgende bidrag til disse omrader.

En stokastisk model baseret pa ambitprocesser foreslds til modellering af
rumlig turbulens. Det vises, hvorledes en pd forhdnd given isotropisk kova-
riansstruktur kan gengives. Ikke-gaussiske turbulensmodeller opnds gennem
brugen af ikke-gaussiske Lévy-baser eller gennem brugen af volatilitetsmo-
dulerede Lévy-baser. I modsatning til spektrale modeller, der er formuleret i
frekvensdomaenet, er ambitprocesserne formuleret direkte i det rumlige do-
meene. Anisotropi (som f.eks. i det atmosferiske greenselag) og inhomogenitet
(som f.eks. i slipstremmen bag en vindmelle) kan derfor modelleres eksplicit.

Pa de mindste skalaer omdannes den kinetiske energi i en turbulent strem
til varme som felge af den interne friktion fordrsaget af viskositeten. En ek-
sisterende stokastisk model, ogsd baseret pd ambitprocesser, udvides og viser
sig at give anledning til en universel og kortfattet beskrivelse af energidissi-
pationen. Volatilitetsmodulationen, der blev henvist til ovenfor, er tidligere
blevet vist at veere neert forbundet med energidissipationen. Sdledes dbnes
deren for en stokastisk turbulensmodel, der kan gengive strukturen pa bade
de sma og de store skalaer.

Vedrerende vekselvirkningen mellem vind og vindmelle beskrives en ny
metode til at estimere en vindmelles effektkurve ud fra lavfrekvente data.
Metoden er en forbedring af den eksisterende industristandard (IEC-61400-
12-1), idet metoden inddrager turbulensintensiteten i estimationen.

Til slut sammenlignes tre simple eksisterende slipstremsmodeller for den
gennemsnitlige luftstrem gennem en vindmellepark med produktionsdata pa
tidsskalaer fra 15s til 10 min. Modellerne viser sig at vere utilstreekkelige til
at beskrive dynamikken af slipstremmene.

ix
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Turbulence is a truly vast subject about which the published books and papers
are legion. A few pages of introduction cannot possibly do justice to such
a subject. Instead, the reader is referred to one of the many fine books, for
example the recent and excellent book by Tsinober (2009).

1.1 STYLISED FEATURES

Stochastic modelling of turbulence concerns the description of the turbu-
lent velocity vector field as a stochastic process. It should be contrasted with
the deterministic Navier-Stokes equations governing the motion of a fluid.
Stochastic modelling of turbulence is therefore not based on physical laws,
but rather attempts to construct stochastic processes that reproduce a certain
set of stylised features of turbulence. These stylised feastures may in turn be
derived from physical laws, from direct numerical simulations of the Navier-
Stokes equations, or from measurements of fluid flows.

Most well known stylised features of turbulence include the following.
The simplest, non-trivial structure of the turbulent velocity vector field is
the second order structure. Atmospheric boundary layer flow is, for exam-
ple, anisotropic and the spectral tensor of Mann (1998) captures some of this
anisotropy. Moving to intermediate length scales, where the flow informally
feels neither the influence of the large scales nor the smallest scales, we have
the Kolmogorov 2/3-law of the second order structure function (second mo-
ment of velocity increments as a function of separation), equivalent to the Kol-
mogorov 5/3-law of the spectrum (Kolmogorov, 1941a; Oboukhov, 1941a,b).
At the smallest scales, where the kinetic energy of the fluid dissipates into
heat due to the internal friction imposed by viscosity, we have approximately
exponential decay of the energy spectrum (Sirovich et al., 1994). Concerning
higher order structures, we have the Kolmogorov 4/5-law of the third order
structure function (Kolmogorov, 1941b). This is the only exact result derived
directly from the Navier-Stokes equations (Frisch, 1995). Another stylised fea-
ture concerns the distribution of the velocity increments themselves. The dis-
tribution is known to be highly non-Gaussian across a wide range of sepa-
rations with a distinctive shape well described by the normal inverse Gaus-
sian distributions (Barndorff-Nielsen et al., 2004). The fact that normal in-
verse Gaussian distributions fit the distribution of velocity increments well
is not a coincidence. Birnir (2012) shows, from a stochastic version of the
Navier-Stokes equations, that the law of the velocity increments is approxi-
mately generalised hyperbolic. Regarding the velocity derivatives, we have,
for example, the invariants of the velocity gradient tensor (Rosales and Men-
eveau, 2006) and the intermittent behaviour of the energy dissipation which,
since Kolmogorov (1962) and Oboukhov (1962), has recieved much attention,
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see Cleve et al. (2004), Schmiegel et al. (2004), Cleve et al. (2005), Schmiegel
(2005), Cleve et al. (2008), and the references therein. Recently, it has been
shown by multipower variation ratios that the turbulent velocity is a non-
semimartingale (Barndorff-Nielsen and Schmiegel, 2012).

The stochastic modelling of turbulence may either be implicity or explic-
itly. In the implicit case, the velocity field is sought as a solution to some
stochastic (differential or integral) equation. In the explicit case, the velocity
field is given explicitely, say, as an ambit process,

v(x, t) = f(x,t;9,5)A(dyds),
A(x,t)
where f, A, and A remain unspecified for the moment. The explicit modelling
has the advantage that no equations need to be solved in order to obtain a real-
isation of the velocity field. In Paper A and Paper B, we give examples of such
processes employed to model the turbulent velocity field and the turbulent
energy dissipation, respectively.

1.2 A MOTIVATION FROM WIND ENERGY

Stochastic modelling of turbulence has many potential applications to wind
energy. If wind energy is to gain widespread adoption, beyond what it has
already obtained, it must be reliable, efficient, and inexpensive. In order to
achieve these goals, wind turbines must be designed and verified accordingly.
The design and verification phases necessarily involve simulation of the wind
turbine’s response to the wind conditions imposed on it. It is too expensive
and too time-consuming to build and test every design proposal. In princi-
ple, the simulation problem is trivial: Just solve the Navier-Stokes equations
governing the motion of the air subject to the boundary conditions imposed
by the geometry of the environment and the wind turbine itself. In practice,
this is impossible: The Navier-Stokes equations are notorious for their diffi-
culty. The truly vast subject of computational fluid dynamics seeks to over-
come these problems in various ways, trying to find suitable compromises
between fidelity and computational burden. Yet, accurate simulation of the
behaviour of a whole wind turbine operating in the atmospheric boundary
layer requires tremendous computational resources. If one such simulation is
to be performed for, say, every iteration of an optimisation procedure seeking
to find the optimal wind turbine within a given design space, the problem im-
mediately becomes intractable. To complicate matters, the flow of air in the
atmospheric boundary layer is turbulent, exhibiting intricate structures across
a wide range of length scales and time scales, from kilometres and hours to
millimetres and milliseconds. There is a priori no reason to believe why some
length and time scales should not exert influence on a wind turbine.

Despite the deterministic nature of the Navier-Stokes equations, the tur-
bulent motion of air appears stochastic. The turbulent motion may therefore
be described as a stochastic process. Synthetic realisations of turbulent wind
fields can then be generated and applied to interaction models which describe
the behaviour of wind turbines operating in a given wind field. If the stochas-
tic description of the turbulent wind field and the interaction model are suffi-
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FIGURE 1.1. The scope of the thesis and its relation to wind energy. The wind blows from left to
right.

ciently realistic, and if they are sufficiently computationally inexpensive, then
we have obtained a useful tool for the design and verification of wind tur-
bines. The majority of the attention of this thesis is on the stochastic models
of turbulence, not on the interaction models.

The Gaussian stochastic processes are among the simplest to use. Gaus-
sian processes have the appealing property of being determined completely
by their first and second order structure, that is, their means and covariances.
In addition, it is fairly straightforward to simulate from Gaussian processes
(Kelley and Jonkman, 2012; Mann, 1998). Consequently, Gaussian stochas-
tic models of turbulence are widely applied in the wind energy industry. But
turbulence is not Gaussian. In fact, turbulence is highly non-Gaussian with
intermittent bursts of strong activity. Gaussian processes are not able to accu-
rately model turbulence. It is therefore important to investigate whether the
non-Gaussian nature of turbulence is important to wind turbines or whether
the Gaussian approximation is sufficient. It has been indicated that wind tur-
bines indeed are sensitive to the inermittency of turbulence (Hedevang et al.,
2010; Miicke et al., 2011; Wichter et al., 2012). However, Gaussian processes
may be adequate, especially in combination with sufficiently large safety mar-
gins in the design of the wind turbine. But the question still stands: Would
it be possible to design more reliable, more efficient, and less expensive wind
turbines, if more realistic stochastic turbulence models were employed in the
design and verification of wind turbines? This thesis does not answer that
question but rather addresses the more humble subject of providing a step-
ping stone towards a fully fledged stochastic model of the turbulent motion
of a fluid, for example, the air in the atmospheric boundary layer. The main
tool is the framework of ambit stochastics.

The relation of the four papers of this thesis to wind energy is sketched
in fig. 1.1. Along the vertical axis we have the length and time scales of tur-
bulence, from kilometres and hours to millimetres and milliseconds. Along
the horizontal axis we have three different regimes of interest: modelling of
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the wind before it interacts with the wind turbine, modelling of the response
of the wind turbine, and modelling of the wind after it has interacted with
the wind turbine, to describe its effect on other wind turbines further down-
stream of the flow. Each paper is represented by a shaded region which marks
what the paper addresses in terms of length and time scales of turbulence and
in terms of the regime of interest with respect to a wind turbine.

Firstly, Paper A discusses the spatial modelling of turbulence as an ambit
process. The focus is on the second order structure, but higher order struc-
tures such as intermittency can be included in a natural way through volatility
modulation. Futhermore, it is shown how the highly idealised case of isotropic
turbulence can be extended to more general scenarios, like, for example, at-
mospheric boundary layer flow.

Secondly, Paper B discusses the use of ambit processes to model the energy
dissipation in a turbulent flow. The energy dissipation is an important object
for modelling, especially since it is intimately related to the volatility modula-
tion that allows ambit processes to reproduce the intermittent characteristics
of turbulence. It is shown how the ambit process formulation gives rise to a
parsimonious and universial description of the energy dissipation. It is parsi-
monious in the sense that two-point statistics are determined from one-point
statistics, and universal in the sense that the description is apparently inde-
pendent of the Reynolds number.

Thirdly, in Paper C we consider modelling of the response of the wind tur-
bine in terms of power production. The goal is to infer the so-called power
curve from measured data of very low resolution, specifically, ten-minute av-
erages and standard deviations of wind speed and produced power which are
standard in the wind energy industry. The presented method improves over
the current industry standard by being able to account for some of the influ-
ence that turbulence has on wind power production.

Finally, in Paper D simple engineering wake models are applied to power
production data of a wind farm. The purpose is to investigate how well these
models and simple generalisations of them are able to describe the behavior
of intra farm wakes, in particular the influence of wakes on the production of
power. The need for more accurate models is demonstrated.
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The term ambit means scope, extent, or bounds of something. Informally, an
ambit process is a stochastic process where the scope of influence of random
events is explicitly defined. More formally, we say that a process X = (X(&))zez
on a set E is an ambit process, if X is of the form

X(&) =f F(EQ0 () AD), (2.1)
A(&)

where A is a Lévy basis (infinitely divisible, independently scattered random
measure) on a set Z, A() C Z is the ambit set, f is a deterministic function on
ExZ,and o is a process on Z which is independent of A and which provides
the volatility modulation of the Lévy basis. In sec. 2.1, we give a more rigorous
definition of the integral in (2.1). For now we also leave f, o, and A unspeci-
fied and require only that the product fo A is meaningful. For example, f, o,
and A could all be real-valued, or they could be matrix-valued, real-valued,
and vector-valued, respectively. The ambit set A(£), which may be all of Z,
determines the extent of the volatility modulated Lévy basis that is allowed
to contribute to the integral, hence the name. More general definitions exist,
where, for example, the Lévy basis is subordinated (Barndorff-Nielsen and
Pedersen, 2012), and where the process ¢ is not independent of the Lévy basis
(Basse-O’Connor et al., 2012).

Ambit processes are natural building blocks for the construction of causal
processes, for example processes modelling the development of some quantity
over time. Brownian semistationary processes (Barndorff-Nielsen and Schmie-
gel, 2009) are an important example. A Brownian semistationary process X =
(X(#))seR is of the form

t

X(t):y+£t g(t—s)cr(s)dB(s)+J q(t—s)a(s)ds,

oo —c0
where y € R, g,q: R — R are deterministic, non-negative functions, o and a
are cadlag processes, and B is Brownian motion. In this case, the ambit set
is A(t) = (oo, t] and prevents events from the future (s > t) to influence the
present. When o and a are stationary, then so is X, hence the name semistation-
ary. Brownian semistationary processes have been shown to reproduce many
stylised features of turbulence (Barndorff-Nielsen and Schmiegel, 2007a,b,
2008; Hedevang, 2011). The volatility process o can, under mild assumptions,
be determined from a suitably normalised version of the quadratic variation
of the process X (Barndorff-Nielsen et al., 2011b).

Ambit processes are also applied to construct spatio-temporal processes
(Barndorff-Nielsen and Schmiegel, 2004; Schmiegel, 2007; Schmiegel et al.,
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2004)

X(x,t)= f(x,t;9,5)0(y,s)A(dy ds).
A(x,t)

where (x,t) e R3 xR and A(x, ) C R3 X (—co, t]. Again, the definition of the am-
bit set ensures causality. The case A(x, t) = R3 x (—oo, t] corresponds to a causal
model with infinite speed of propagation of innovation (e.g. incompressible
fluid flow). If we choose the ambit set to be a cone with its apex at (x, t), we ob-
tain a model with finite speed of propagation of innovation (e.g., compressible
fluid flow). In Schmiegel et al. (2004), Schmiegel (2005), and Paper B, other
examples of causal, spatio-temporal ambit processes are given. In Paper A, a
purely spatial ambit process is constructed.

Other applications of ambit processes include tumour growth (Jénsdottir
et al., 2008; Schmiegel, 2006) and finance (Barndorff-Nielsen et al., 2011a,
2012). Consult the Ambit Stochastics webpage for further references.

After integration with respect to Lévy bases has been recalled in sec. 2.1,
we proceed to a spatial model for the turbulent velocity field in sec. 2.2, and
finally to the modelling of the surrogate energy dissipation in sec. 2.3.

2.1 INTEGRATION WITH RESPECT TO LEVY BASES

We denote by M,, ; the vector space of mxd matrices with real entries, by M; =
M, 4 the vector space of square matrices, and by M} the cone of symmetric
and non-negative definite square matrices. Let (—,—) denote the Euclidean
inner product on R? and ||-|| denote the derived norm and operator norm.
Let D = {x € R? | ||x]| < 1} denote the closed unit ball in R?. B(S) denotes the
o-algebra of Borel subsets of a given metric space S, and B;(S) denotes the set
of bounded Borel subsets. All random variables and processes are assumed to
be defined on a common probability space.

For any infinitely divisible IR”-valued random variable X, we let C(-1 X)
denote the cumulant function. By the Lévy-Khinchine representation (Sato,
1999, Thm. 8.1),

C(z1X)=1i(a,z)— %(2, bz) + L{d(e“z’x> —1—i{z,x)1p(x))c(dx)

where a € R?, b ¢ M;, and ¢ is a Lévy measure on RY. The triplet (a,b,¢)
is called the characteristic triplet and determines uniquely the distribution
of X.

In the following, Lévy bases and integration with respect to Lévy bases are
discussed and the results needed are stated. We refer to Rajput and Rosinski
(1989), Barndorff-Nielsen and Stelzer (2011), Pedersen (2003), and Schmiegel
(2007) for proofs and further details.

DEFINITION 2.1. Let S € B(IR") be non-empty. An B;(S)-indexed family A =
{A(A) | A € By(S)} of R¥-valued random variables is called a Lévy basis on S,
if A is an infinitely divisible and independently scattered random measure,
i.e., if the following three properties hold.

- For every A € B(S), A(A) is infinitely divisible.
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- For any disjoint A,,..., Ay € By(S), A(A;),...,A(Ay) are independent.

- For every sequence (A]')]?":’1 of disjoint elements in B;(S) with U}?‘z’lA €
By(S), we get that Z;; A(Aj) = A(U‘]?';1 A;) holds a.s.

A Lévy basis A in S induces three set functions a: B,(S) — RY, b: By(S) —
M;, c: By(S) x B(RY) — R by letting (a(A), b(A),c(A,—)) be the characteristic
triplet of A(A). It can be shown that a; is a signed measure, b; x is a measure for
j =k and a signed measure for j # k, ¢(—, B) is a measure for every B € B(R?),
and ¢(A,—) is a Lévy measure for every A € By(S). Given set functions a, b,
and ¢ having the above properties, there exists an R?-valued Lévy basis A on
S such that (a(A),b(A),c(A,-)) is the characteristic triplet of A(A). Therefore,
(a,b,c) will be called the characteristic triplet of the Lévy basis. Furthermore,
the set function A: By(S) — [0, o0] defined by

AA) = lal(A) +tr(b(A)) + J;Rd 1 A||x|? ¢(A, dx)

has a unique extension to a o-finite measure on B(S) which is called the con-
trol measure and also denoted by A. See also Pedersen (2003).

Let (a,b,c) denote the characteristic triplet of a Lévy basis A on S with
control measure A. Let a’ = da/d A and b’ = db/d A denote the Radon-Nikodym
derivatives. As in Rajput and Rosinski (1989, Lemma 2.3), the function ¢ may
be extended to a o-finite measure on B(S)® B(IRY), and there exists a function
¢’ S x B(R?) — [0, 0] such that ¢’(s,—) is a Lévy measure on B(IR?) for every
s€ S, ¢/(-, B) is measurable for every B € B(IR"I), and

Lx]Rd h(s,x)c(ds x dx) = J-S J;Rd h(s,x)c’(s,dx) A(ds)

for every measurable function h: S x RY — [0,00]. Therefore, we may infor-
mally think of ¢’ as dc/d A. Thus, for every s € S, (a’(s), b’(s), ¢’(s,—)) is the char-
acteristic triplet of an R?-valued random variable A’(s) which will be called
the spot variable at s. The spot variable and control measure determine the
distribution of the Lévy basis in the sense that

ClzA(A)) = LaziA’(s))A(ds)

for every A € By(S).

The definition of the integral over a set A € B(S) of a deterministic mea-
surable function f: S — M,, 4 with respect to an R?-valued Lévy basis on S
is

f dA = plim f] dA.
]—)OO
where (f; ;"’1 is a sequence of simple functions such that f; — f A-a.s., and
such that the sequence fAf] AN ] .
B(S). The A-integral is by construction infinitely divisible.

converges in probability for every A €

The following proposition expresses the distribution of the integral Is fdA
in terms of the function f, the spot variable A’ and the control measure A. It is
a straightforward generalisation of Rajput and Rosinski (1989, Prop. 2.6) and
also stated in Barndorff-Nielsen and Stelzer (2011). For necessary and suffi-
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cient conditions for A-integrability, see Barndorff-Nielsen and Stelzer (2011,
Prop. 2.3) and Rajput and Rosinski (1989, Thm. 2.7).

PROPOSITION 2.2. Let A denote a Lévy basis on S € B(R"), and let A" and A denote
the corresponding spot and control measure. If a measurable function f: S — M, 4
is A-integrable, then IS IC(f(s)Tz1 A’(s))| M(ds) < oo for all ze R™, and

C(zj;LfdA) - L C(F(s) 21 A(s)) A(ds)

for all ze R™.

On the one hand, the control measure and spot variables corresponding
to a Lévy basis are derived from the characteristic triplet of the Lévy basis.
On the other hand, when building stochastic processes using Lévy bases, it
it desirable to specify the Lévy basis in terms of random variables and an
accompanying measure. The following definition and lemma exemplify how
this may be accomplished. The proof of the lemma is straightforward.

DEFINITION 2.3. Let S € B(IR") denote a Borel subset and let A* = {A*(s) | s €
S} denote an S-indexed family of R?-valued independent infinitely divisible
random variables, and let A* denote a o-finite measure on 5(S). Then A* is
called a seed variable on S, 1* is called a seed measure on S, and the pair
(A", A*) is called a Lévy seed on S.

DEFINITION 2.4. A Lévy seed (A", A*) on S € B(IR") is called homogeneous, if
the distribution of A*(s) does not depend on s € S and if A* is the Lebesgue
measure on S.

LEMMA 2.5. Let (A", A*) denote a Lévy seed on S € B(IR") and let (a*(s), b*(s), c*(s, —))
denote the characteristic triplet of A*(s). Assume that the following holds,

a*: S — R? is measurable with IA [la*(s)|| A*(ds) < oo for all A € By(S),
- b*: S — M} is measurable with IA [[6*(s)|| A(ds) < oo for all A € By(S),

- ¢*(-,B): S — [0, 00] is measurable for each B € B(RY), and there exists a mea-
surable function K: S — R, such that L‘ s)A*(ds) < co for all A € By(S) and
such that I]Rd 1 A|x||? ¢*(s,dx) < K(s) forall s € S.

Then a(A IA s)A*(ds) defines a set function such that a; is a signed measure
on By(S); b(A IA b*(s) A*(ds) defines a set function such that bjx is a measure
on By(S) for j = k and a signed measure for j # k; and c(A, B) fA s,B) A*(ds)
defines a set function such that c(A,-) is a Lévy measure on le for all A € By(S)
and such that c(—, B) is a measure on By,(S) for all B € B(R?).

COROLLARY 2.6. Suppose the Lévy seed (A*, A*) on S € B(IR") satisfies the assump-
tions in lemma 2.5. Then there exists an R%-valued Lévy basis A on S with (a, b, c)
as characteristic triplet. Furthermore, the seed (A*, A*) is related to the spot variable
and control measure through the following relations,
a*(s)A*(ds) = a’(s)A(ds),
b*(s)A*(ds) = b’ (s)A(ds),
c*(s,dx)A*(ds) = (s, dx)A(ds).
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Note that a homogeneous Lévy seed always satisfies the assumptions of
lemma 2.5. Furthermore, for a homogeneous Lévy seed, the corresponding
control measure is proportional to the Lebesgue measure, since in this case
we have

A(A) = (||a*||1 +tr(b") +j AR c*(dx))Leb(A).

]Rd
It follows that a’, b’, and ¢’ are proportional to a*, b*, and ¢*, respectively. In
Paper A and Paper B, the Lévy bases are given in terms of homogeneous Lévy

seeds.

COROLLARY 2.7. Let (A", X*) be a Lévy seed such that the conditions of lemma 2.5
are satisfied, and let A denote the Lévy basis corresponding to the seed. Let f: S —
M, 4 denote an A-integrable function. Then

clet [ ran)= [ curemzsanria

for all ze R™.

For a process ¢ on S that is independent of the Lévy basis A, the integral
Is fodA is defined conditional on o, provided s — f(s)o(s) is almost surely
A-integrable. In this case, the cumulant function is given by

C(zi L fo dA) - logE[exp(L ((f(s)ols) =1 A*(s))/\*(ds))].

Progress is being made in the case where the process ¢ is not necessarily in-
dependent of the Lévy basis (Basse-O’Connor et al., 2012).

2.2 SPATIAL TURBULENCE

In Mann (1998), the atmospheric turbulent velocity vector field is modelled
at a fixed instant in time as a homogeneous Gaussian process. This model is
widely applied in the wind energy industry. However, turbulence is not Gaus-
sian, exhibiting velocity increments whose distributions have tails much heav-
ier than the Gaussian distribution (Barndorff-Nielsen et al., 2004). In Miicke
et al. (2011), Wichter et al. (2012), and Hedevang et al. (2010), it is shown
that the intermittent, non-Gaussian character of the atmospheric boundary
layer turbulence influences wind turbines in terms of loads and production
of electricity. A model based on a random time change of a nested Gaussian
drift-diffusion process is proposed in Miicke et al. (2011) and Wichter et al.
(2012) to model the turbulent velocity field as a non-Gaussian process. Some-
what related, Rosales and Meneveau (2006) and Biss (2009) propose to simu-
late non-Gaussian turbulent vector fields by modifying an existing Gaussian
realisation.

As a stepping stone towards a fully fledged spatio-temporal model for the
turbulent velocity vector field, we seek in Paper A to provide a purely spa-
tial non-Gaussian model describing the field at a fixed instant in time. While
the volatility modulation in (2.1) is of central importance (Barndorff-Nielsen
and Schmiegel, 2007b, 2008, 2009), it remains unspecified in Paper A and the
focus is mostly on the second order structure, i.e., the correlation structure.
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For functions f,g: R, — R, we define the g-transform of f by g[f](z) =
Jooof(r)g(rz)dr, provided the integrals exist. For a vector x € R3 we define

o X3 X,
sk(x)=]-x; o x
X, —X; O

as the skew-symmetric matrix generated by x. Furthermore, we let £ = x/||x]|
when x # o0, and £ = o when x = 0. We let sincx = (sinx)/x for x = o and
sinco = 1. Then sinc is bounded and smooth and likewise are the derivatives
sinc’ and sinc”.

2.2.1 A LEVY BASED MODEL FOR SPATIAL TURBULENCE

Let (A", Leb) denote an R3-valued homogeneous Lévy seed on IR3 whose corre-
sponding Lévy basis is denoted by A. Let 0 denote an R-valued homogeneous
process on R3. Assume that 0 and A are independent. Let f: R3 — M, de-
note a matrix-valued deterministic function such that for all x € R3 we have
that y — f(x—vp)o(y) is almost surely A-integrable. We define the R3-valued
process X on IR3 by

X(x) = mf(x—y)cr(y)A(dy). (2.2)

The function f is called the kernel. For the sake of simplicity we also assume
that E[A*] = o and E[0?] = 1. Then it can be shown that the covariance ten-

sor R of the process X is given by

R = (heyenC) * (MeyenC) T = (hoad C) * (hoada C) T, (2.3)

where f = foven + fodd 1 the decomposition of the kernel into its even and odd
part, and C is a matrix square root of cov(A*) in the sense that CCT = cov(A*).
From (2.3) we see that if we want to find a kernel f that reproduces a given
covariance tensor R, then we may assume that cov(A*) = I and that f is either
even or odd. Under these assumptions, (2.3) may be solved by Fourier meth-
ods since a matrix-version of the convolution theorem yields the following
proposition.

PROPOSITION 2.8. Let R: R — M,, denote a covariance tensor.

If Quyen is an even root of the spectral tensor F,[R], i.e. F,[R] = Qeven QL s
and if Qgyen is integrable, then foyp, = (210) "2 F;* [Qeyen ] defines a real, even, and
matrix-valued function that satisfies

R = feven *.sz;En’ Fn [R] = (27()’11:1’1[](67/@11]1:?1 [feven]T'

If Qoaq is an odd root of the spectral tensor F,[R], i.e. F,;[R] = QodonTdd, and
if Qpaq is integrable, then fgy = —i(21)">F,;*[Q,44] defines a real, odd, and
matrix-valued function that satisfies

R= _fodd *f;)gdl Fn[R] = _(Zn)nFn[fodd]Fn[fodd]T'

In general, the Fourier transforms may be cumbersome to evaluate, but
under the assumption of isotropy and incompressibility it follows (Batchelor,
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FIGURE 2.1. The longitudinal one-dimensional spectral density measured in the atmospheric boundary layer. Circles de-
note the estimated spectral density using Welsh’s overlapping segment averages with a Hanning taper, a segment length
of 4 million, and a segment overlap of 50%. The black solid and dashed curves denote the fitted Shkarofsky and Matérn
spectral densities, respectively. The vertical lines mark the estimated values of x and 1/A for the Shkarofsky spectral
density.

1959; Robertson, 1940) that the spectral tensor can conveniently be expressed
in terms of a single function, the energy spectrum E: R — IR, specifically

E
F,[R]() = %(—W ),

where the energy spectrum in turn is related to the longitudinal correlation
function p, through
d(1d
S e Jhatll il
E(z)=0"z dZ(Z dZF1[PI](Z))- (2.4)

By exploiting the much simpler form of the isotropic, incompressible spectral
tensor we obtain, as shown in Paper A, expressions for even and odd kernels
in terms of fairly simple integral transforms involving the energy spectrum.

PROPOSITION 2.9. Let E denote the energy spectrum of an isotropic and incompress-
ible stochastic vector field on R3. Assume that r > E(r)"/>r is integrable. Then

feven(x) = ——((sinc + 3sinc”)[E(r)">r](||x[)) %"
23/25
+ (sinc — sinc”)[E(r)1/2r](||x||)1),
fodd(%) = —— sinc'[E(r)"r](llxll sk (%)
2 TC

. . _ T _ T
satzsﬁey R= ﬁzven * feven = _fodd * fgdd'
2.2.2 AN EXAMPLE FROM ATMOSPHERIC BOUNDARY LAYER FLOW
For illustration, we consider a data set consisting of 20 million one-point mea-

surements of the longitudinal component of the wind velocity in the atmo-
spheric boundary layer (Dhruva, 2000, data set no. 3). The Taylor frozen flow
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FIGURE 2.2. The scalar functions f; (solid), f, (dotted), and f; (dashed) determining the even and odd kernels feyen(x) =
f1 (||x||)3€)€T + £ (lIx)I and foqq(x) = f5(IIx[)) sk(%) of the isotropic and incompressible three-dimensional model. The kernels
will reproduce a correlation structure whose longitudinal correlation is the Shkarofsky correlation fitted to the atmo-
spheric boundary layer data set. The functions f; and f; are non-negative whereas f,(r) is non-negative for r < r, and
negative for r > r, where 7, is slightly larger than 1/x. The inset shows the local slope of the scalar functions f,|f,|, f; in
the double logarithmic representation.

hypothesis (Taylor, 1938) is invoked to interpret the time series as longitu-
dinal spatial measurements. In Paper A, we apply (2.4) to relate the energy
spectrum to the longitudinal one-dimensional spectral density F,[p,] from
the data set, see fig 2.1. It must be emphasized that atmospheric boundary
layer turbulence is not homogeneous and isotropic. Our example is therefore
more of an idealised character. We shall later see ways to introduce inhomo-
geneity and anisotropy into the ambit stochastics framework.

We see that the Shkarofsky correlation (Shkarofsky, 1968),

(< VIlxlP> + A2)" K, (1 V|x[]> + A2)

pShkarofsky(x) = (KA)'K, (k1) ,
v
A (kA -v-1/
F, [pShkarofsky](z) = \/T_TC%(A V2 + Zz) o 2K—v—1/2(/\ VK2 + z2 ),
v

fit the data very well. The Shkarofsky correlation is a generalisation of the
Matérn correlation (Guttorp and Gneiting, 2006) which in turn is a general-
isation of the von Karman correlation (von Kdrmén, 1948). The parameters
& >oand A > o are scale parameters that, in the case of turbulence, determine
the extent of the inertial range, and the parameter v > o is a shape parameter
determining the decay of the spectral density in the inertial range. The value
v = 1/3 yields the 5/3-law of Kolmogorov.

Under the assumptions of isotropy and incompressibility, the even kernel
feven and odd kernel f 4q are given by proposition 2.9. While the kernels
are matrix-valued, they are given in terms of three scalar-valued functions
firfor f3: Ry —> R, specifically

feven(®) = fi(Ix1)22T + £ (%I, Joad(x) = f(Ilxl)) sk ().
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Figure 2.2 shows the functions f,, f,, f; calculated numerically from the Shka-
rofsky energy spectrum (2.4) with the parameters estimated from the atmo-
spheric boundary layer data set, see fig. 2.1. Within the dissipation range and
the inertial range, the even and odd kernels display similar behaviour, but in
the energy range (large length scales) the odd kernel decays rapidly whereas
the even kernel decays only algebraically.

2.2.3 SIMULATION

Simulating from the three-dimensional model is challenging if the structures
are to be reproduced across all length scales from approximately 1073 to 104,
i.e., across seven orders of magnitude. As detailed in appendix a of Paper A,
the kernels may through the use of a partition of unity be decomposed into
“smaller” kernels each of which yields a computationally tractable simulation
problem.

2.2.4 VOLATILITY MODULATION

The kernel f has been derived from the covariance tensor R under the as-
sumption that E[A*] = o and E[0?] = 1. These assumptions conveniently en-
sured that the covariance tensor does not depend on the volatility modula-
tion provided by o. The volatility modulation is necessary if the ambit pro-
cess (2.2) is to reproduce any turbulent structure beyond the correlation struc-
ture. Indeed, it is shown in Paper A that the behaviour of distributions of
velocity increments at all lags and the two-point correlator of the surrogate
energy dissipation cannot be reproduced without volatility-modulation. How-
ever, using a normal inverse Gaussian Lévy basis, it is shown that it is possible
to reproduce the distribution of the velocity increments at a single lag, but not
all lags simultaneously. Note that the use of a normal inverse Gaussian Lévy
basis yields discontinuous samples paths of the velocity which is physically
unrealistic.

The crucial observation that the volatility o in the case of Brownian semis-
tationary processes can be estimated from a suitably normalised version of
the quadratic variation links o to the physical notion of energy dissipation.
For a velocity field (of a fluid) denoted by v, the energy disspation € is defined
by

€=2v i(% + @ )2

= dx;  dx;)’
where v is the viscosity of the fluid. Under the assumption of isotropy, the sur-
rogate energy dissipation € = 15v(dv,/dx,)? is a proxy for the energy dissipa-
tion. Thus, if we approximate the surrogate energy dissipation with squared
velocity increments, we have essentially the volatility process o (up to appro-
priate normalisation). Schmiegel et al. (2004), Schmiegel (2005), and Paper B
demonstrate how the energy dissipation may be modelled as the exponential
of an ambit processs. It remains to be investigated how the energy dissipation
relates, under the three-dimensional model, to the volatility modulation of
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the Lévy basis.
2.2.5 BREAKING ISOTROPY AND HOMOGENEITY

From the point of view of the wind energy industry, the isotropic three-dimen-
sional model is far too idealised, as the atmospheric boundary layer turbu-
lence is anisotropic since, in general, we have R(0),, > R(0),, > R(0);5 (Panof-
sky and Dutton, 1984). Proposition 2.8 can be applied to the “sheared” spec-
tral tensor of Mann (1998) to produce a kernel yielding the desired anisotropy.
However, the presented Lévy based framework allows for anisotropy to be in-
troduced in other ways. If we consider the process X = foyen * 0 dA where
foven(x) = fi(IIxIN£2T + £, (|Ix]|)I is the even kernel from earlier, then the covari-
ance tensor R is given by R(x) = f]m feven(x — 1) COV(A®) foven(v) dy. We get that

R(0) = acov(A*) + btr(cov(A™)I (2.5)

where
a=ar [ (ZA0P+3AMA0N L0 dn
b=4mn JOO %fz(r)zr2 dr.

Therefore, by specifying cov(A*) appropriately according to (2.5), any covari-
ance matrix R(o) can be achieved. Some anisotropy can therefore be modelled
through the Lévy basis.

Since the derived kernels contain most of their mass near zero, see fig. 2.2,
the outcome of the Lévy basis near a given point contributes most to the value
of the process X = f * o dA at that given point. Therefore, inhomogeneity and
anisotropy of the process may be encoded in the Lévy basis. This has some po-
tential applications to wind energy. Firstly, the passage of a wind front, where
the variance of the wind speed increases, say, can conveniently be modelled
by letting the variance of the Lévy basis increase in the direction of the mo-
tion of the wind front (Nielsen et al., 2007). Secondly, properties like wind
shear and veer (the dependency of magnitude and direction on height above
ground) may likewise be encoded in the Lévy basis. Finally, the wake behind
a wind turbine causes the wind field, experienced by a downstream wind tur-
bine, to be greatly inhomogeneous. An appropriately constructed Lévy basis
could ensure that the model reproduces the dynamics of the wake as well as
the lower mean wind speed and higher turbulence intensity" inside the wake.
In turn, this can be applied to load and performance calculations of wind tur-
bines within wind farms.

2.3 ENERGY DISSIPATION
Given the close connection between the energy disspation and the volatil-

ity modulation, an accurate model of the former serves a double purpose: to
model an important physical phenomenon and to provide an important in-

1 - The turbulence intensity is defined as the ratio of the standard deviation of the wind speed to
the mean wind speed.
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gredient in the model for the velocity. In this section we will consider the
modelling of the energy dissipation from Paper B.

Since the pioneering work of Kolmogorov (1962) and Oboukhov (1962), the
small-scale intermittency of the energy dissipation in turbulence has received
much attention (Frisch, 1995; Sreenivasan and Antonia, 1997). The small scale
intermittency is primarily expressed in terms of multifractal and universal
scaling of inertial range statistics, such as structure functions, extended self-
similarity (Benzi et al., 1993), scaling and self-scaling of correlators (Schmie-
gel, 2005), and breakdown coefficients (Cleve et al., 2008).

Discrete and continuous random cascade processes have proved useful in
describing phenomenologically the small-scale behaviour of the turbulent en-
ergy dissipation (Benzi et al., 1984; Cleve and Greiner, 2000; Frisch et al.,
1978; Jouault et al., 1999, 2000; Mandelbrot, 1974; Meneveau and Sreeni-
vasan, 1991; Schertzer and Lovejoy, 1987). In Cleve et al. (2005), the surro-
gate energy dissipation is modelled as a discrete random multiplicative cas-
cade process. Choosing the law of the cascade generators to be log-normal
yields the Kolmogorov-Oboukhov model. A continuous analogue to the dis-
crete multiplicative cascade processes is formulated in terms of integrals with
respect to Lévy bases and has been shown (Barndorff-Nielsen and Schmiegel,
2004; Schmiegel, 2005; Schmiegel et al., 2004) to be computationally tractable
and to accurately describe the two- and three-point statistics of the energy
dissipation.

In the cited works, focus is on the modelling of n-point statistics of the
energy dissipation, not on the distribution of the energy dissipation itself.
Indeed, Schmiegel (2005) concludes with a remark that the law of the Lévy
basis driving the cascade model should be inferred and its dependency on the
Reynolds number should be investigated.

Both discrete and continuous multiplicative cascade processes suggest that
the law of the logarithm of the energy dissipation should be infinitely divis-
ible. Among the infinitely divisible distributions are the normal, stable, and
normal inverse Gaussian distributions. The three classes of distributions each
have their own tail behaviour.

The use of stable Lévy bases for modelling of the energy dissipation has
been investigated in Cleve et al. (2008) and it is concluded, by analysing the
breakdown coefficients, that “except for the log-normal limit, this leaves no
room for the log-stable modelling of the turbulent energy cascade.” Paper B
investigates the alternative of using a normal inverse Gaussian Lévy basis to
model the energy dissipation and, in particular, addresses the one-point dis-
tributions and two-point statistics.

The use of normal inverse Gaussian distributions in turbulence modelling
is not new. In Cleve et al. (2005), the parameters of the normal inverse Gaus-
sian cascade generator are estimated from scaling exponents and cumulants,
both of which are moment estimates which are notorious for their sensitiv-
ity to outliers. Indeed, estimation of the normal inverse Gaussian parameters
(and those of other distributions) may not be feasible from sample moments.
In Paper B, we apply maximum likelihood methods instead, as these methods
suffer no such deficiencies.



16 CHAPTER TWO * AMBIT STOCHASTICS

log pdf

L oa S R SR S |

-30 -20 -10 0

log e

FIGURE 2.3. Distribution of the logarithm of the surrogate energy dissipation represented through
the logarithm of the probability density function from a helium jet experiment: data (circles),
normal fit (long dashes), stable fit (short dashes), normal inverse Gaussian fit (dots and dashes),
and normal inverse Gaussian fit constrained to possess finite exponential moments of order four
(black curve).

In Schmiegel (2005), the surrogate energy dissipation € is modelled as a
(1 + 1)-dimensional stochastic process (one dimension in space and one in
time) given as the exponential of an integral with respect to a Lévy basis Z
on IR?,

e(x,t) = exp(L(x’t)Z(dx'dt')), (2.6)

where A(x,t) C R* is the ambit set. We assume that the Lévy basis Z is given

in terms of a homogeneous Lévy seed (Z*,Leb), and that the ambit sets are

defined by A(x,t) = A+ (x,t) for some bounded Borel set A C R*>. Thus, we

ensure that € is stationary in space x and time t. The model (2.6) is an example

of a random multiplicative cascade process in continuous space and time.
The distribution of loge is given by

K(sfloge(t)) = K(st Z7)|A], (2.7)

where K(s1 X) = log E[exp(sX)]. By (2.7), the distribution of the surrogate en-
ergy dissipation is, under the model (2.6), determined by the distribution of
the Lévy seed Z*. In Paper B, it is shown (see fig. 2.3) that the empirical distri-
bution of the logarithm of the surrogate energy dissipation is well described
by the normal inverse Gaussian distribution. For comparison, normal and sta-
ble fits are provided as well. In Paper B, it is also shown that the shape of the
distributions is universal, i.e. the shape parameters are apparently indepen-
dent on the Reynolds number, at least for the thirteen data sets considered in
the paper. The normal inverse Gaussian distribution is superior to the normal
distribution and the stable distribution in terms of describing the distribu-
tion of the energy dissipation, and the normal inverse Gaussian distribution
is superior to the normal distribution and competitive with the stable distri-
bution in terms of reproducing the scaling and self-scaling exponents of the
two-point correlators (see below).

An observable that embodies the intermittency of the energy dissipation is
the two-point correlator. The two-point correlator ¢, 4 of order (p, q) is defined
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by
Cp,q(tv t,) = Ele(t,)’e(t,))/(E[e(t,)P]E[e(t,)")).

The sum p+gq is the total order of the correlator ¢, ;. Data analysis (Cleve et al.,
2004; Schmiegel et al., 2004) reveals that, at least for p + g < 3, the two-point
correlators exhibit scaling,

Cp,g(At) :=cp4(t, t+At) o At~TPA)

in a range of At comparable to the inertial range of the velocity structure
functions. For (p,q) = (1,1), the exponent 7(1,1) is known as the intermittency
exponent. It can be shown that, under the model (2.6),

Cp,q(tll t,) = exp(K(p,q)lA(o, ;) N A(o, 1,)) (2.8)

where

K(p,q)=K(p+qtZ')-K(ptZ')-K(q1Z). (2.9)

The exponent in (2.8) is expressed as a product where the first factor depends
only on the Lévy basis and the order of the correlator, and the second factor
depends only on the overlap of the ambit sets. This provides a way of mod-
elling a wide range of correlators, since the shape of the ambit set, under suit-
able assumptions, can be determined from the correlator. In Paper B, a flexible
class of parameterized ambit sets is used to fit the estimated correlators.

In Schmiegel (2005), it is shown that the two-point correlators also have
the property of self-scaling,

_ T( 1:41:P2» 2)
Cp, 0, (AL) = Cp, g, (A)T PP

for an even wider range of At, much like the scaling range of extended self-
similarity (Benzi et al., 1993) of the structure functions is wider than the scal-
ing range of the pure structure functions. Here the exponent 7(p,,q;p.,4,) =
T(p,,9,)/T(p1, 9, ) is the self-scaling exponent. By (2.8) we immediately obtain
self-scaling of the correlators under the model (2.6),

= K(p1,91;p2
CP»%(At)—Cpl,ql(At) (P1,41:P> ‘72),

where

K(p1,91:P>,9-) = K(p»,4,)/K(py, 1)

is the self-scaling exponent. The self-scaling property is independent of the
shape of the ambit set and thus scaling of the correlators is not necessary for
self-scaling of the correlators. The Lévy seed Z* determines though (2.7) the
distribution of the surrogate energy dissipation and through (2.9) the self-
scaling exponents. In Paper B, it is shown that the self-scaling exponents es-
timated from data are, to good approximation, predicted by the shape pa-
rameters of the one-point distribution of the energy dissipation. The model is
therefore parsimonious, since the structure of a more complicated object (the
two-point correlator) is predicted by the structure of a simpler object (the one-
point distribution). Furthermore, since the correlators are moment estimates,
they are sensitive to outliers. The parameters of the one-point distributions of



18 CHAPTER TWO * AMBIT STOCHASTICS

the energy dissipation can be estimated using maximum likelihood methods
which are less sensitive to outliers.



THREE
«~®» WIND TURBINE POWER CURVES &v¢

We now change perspective and consider turbulence from the point of view of
a wind turbine. More precisely, how turbulence affects the power production
of a wind turbine. In contrast to Paper A and Paper B, where the structure
of turbulence across all length and time scales was discussed, Paper C only
considers the so-called ten-minute statistics. In particular, this implies that
the inertial and dissipation ranges are not resolved.

The subject of power curves addresses the problem of describing, verify-
ing, and predicting the performance of a wind turbine under given wind con-
ditions. Informally, the power curve expresses the produced power as a func-
tion of wind speed. Since the wind turbine extracts power from a large region
of space, the power must be a function of the entire wind field surrounding
the wind turbine. Furthermore, the power must be a function of the current
state of the wind turbine (the pitch angle of the blades, the amount of soil
accumulated on the blades, just to name a few). The current state is in turn a
function of the history of the wind turbine, which includes the wind field at
past times. Ignoring air density for the moment, we therefore assume that the
power p(t) at time ¢ is a function f of the wind field v(x,s) for all s <t and x
in a suitable region R of space around the wind turbine,

p(t) = F((v(x,9))s<txer ) (3.1)

The function f in turn depends in particular on the complicated aerodynam-
ics governing the flow through the wind turbine rotor. We call it the power
curve. Empirical determination of the power curve in (3.1) is impossible since
the entire wind field surrounding the wind turbine cannot be measured. A
much coarser approach is therefore taken. The power curve is in the IEC
61400-12-1 standard defined as the mean power P as a function of the mean
hub height wind speed U measured 2—4 rotor diametres upstream of the wind
turbine,

P=f(U) (3-2)

The mean wind speed U must not be measured near the wind turbine, since
the wind turbine disturbes the flow. It is recognised that the mean power de-
pends on the air density as well, but this dependency can be incorporated
through a suitable correction of the mean wind speed. In addition to the air
density, it is realised in numerous papers and reports that the mean power de-
pends on many more parameters, in particular the wind speed profile (shear),
inflow angle, wind direction (veer), turbulence intensity, turbulent kinetic en-
ergy, and the dynamic response of the wind turbine to the wind, see Chris-
tensen and Dragt (1986), Elliott and Cadogan (1990), Sheinman and Rosen
(1992), Rosen and Sheinman (1994, 1996), Frandsen et al. (2000), Kaiser et al.
(2003), Langreder et al. (2004), Pedersen (2004), Rauh and Peinke (2004), van

19



20 CHAPTER THREE * WIND TURBINE POWER CURVES
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FIGURE 3.1. An informal sketch of the concepts of upstream wind u, virtual wind v, and driving wind w. The upstream
wind is not disturbed by the wind turbine. The virtual wind is the fictive wind field at the location of the wind turbine
if the wind turbine was not there to disturb the wind field. The driving wind is the fictive wind field that is strictly
homogeneous across the rotor and causes the same power production as the virtual wind field.

Radecke (2004), Eecen et al. (2006), Gottschall et al. (2006), Sumner and Mas-
son (2006), Albers et al. (2007), Kaiser et al. (2007), Gottschall and Peinke
(2007, 2008), Anahua et al. (2008), Tindal et al. (2008), Albers (2009), Wag-
ner et al. (2009, 2011), Wichter et al. (2011), and Wharton and Lundquist
(2012a,b) and references therein. While appealing due to its simplicity, the
model (3.2) is therefore far too unrealistic. In Paper C, it is demonstated how
a simple model allows the turbulence intensity to be incorporated into the

estimation of wind turbine power curves.
3.1 UPSTREAM, VIRTUAL, AND DRIVING WIND

Since the wind turbine disturbs the flow, any wind speed measured at the lo-
cation of the turbine cannot be used as a reference wind in a power curve mea-
surement. To acknowledge this, Christensen and Dragt (1986) introduce three
useful wind fields: the upstream wind u, the virtual wind v, and the driving
wind w. See fig. 3.1 for an informal sketch. The virtual wind v is defined to
be the fictive wind field at the location of the wind turbine as it would be if
the wind turbine was not there to disturb the flow. The virtual wind therefore
defines the wind energy resource at the location of the wind turbine.

Suitably far upstream of the wind turbine (assuming that it is not in the
wake of another wind turbine) the influence of the wind turbine is negligible.
The wind field here is called the upstream wind u. In the setting of Paper C,
only ten minute means and standard deviations of the upstream wind are
measured by cup anemometers at hub height and at the lowest tip height. It
will therefore be assumed that the mean and standard deviation of the virtual
wind speed at a given height are equal to those of the upstream wind speed at
the same height.

The virtual wind is not homogeneous over the rotor. It is therefore useful
to introduce the driving wind w as the fictive wind field that is strictly homo-
geneous across the rotor and causes the same power production as the virtual
wind. While the driving wind is often not mentioned explicitly, it is used im-
plicitly whenever the wind turbine power is considered as a function of a
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single wind speed. In the IEC 61400-12-1 standard, the mean driving wind is
implicitly taken to be the hub height upstream mean wind speed.

For any time—dependent quantity x(t), we denote by X the timewise average

= Tf s)ds where T is a given time interval. Thus, U, V, W denote the
mean upstream, virtual, and driving wind speeds; o, 0,, 0,, denote the cor-
responding standard deviations; and I, = 0,,/U, I, = 0,/V, I, = 0,,/W denote
the corresponding turbulence intensities. Similarly, p, P, o, are the instanta-
neous power, the mean power, and the standard deviation of power. The up-
stream wind will henceforth refer to the measured wind speed at hub height
at the meteorology mast, and not to the upstream wind field.

3.2 A QUASI STATIC MODEL

Under the quasi static model (Rosen and Sheinman, 1994), the instantaneous
power p(t) is assumed to be a function of the instantaneous driving wind
speed w(t),

p(t) = f(w(t)). (33)

As in Paper C, the mean power P over a given time interval T is then

:_f t)dt = — J-f dt-f P(x (3-4)

where ¢ denotes the probability density function of the driving wind speed
during the time interval under consideration. The function f may be inter-
preted as the zero-turbulence power curve. Given a data set {(¢;, P, 0p,;) | i =

.,N} of distributions of driving wind speeds and corresponding means
and standard deviations of power, the problem to solve is

find f such thatf f(x)pi(x)dx =P; foralli=1,...,N. (3-5)

This problem is ill-posed: a solution may not exist, if a solution exists it may
not be unique, and small changes to the input data may cause large changes
in the solution. This is especially important since the P,,..., Py are measure-
ments to which some error will always be connected, and since the distribu-
tion of the fictive driving wind speeds must be modeled in terms of other
measurements, and since the quasi static model is a very simplified model of
the wind turbine. Therefore, some kind of robustness to errors and misspeci-
fications is introduced by observing that the problem (3.5) informally has the
structure of a Fredholm equation of the first kind, though the variable i is
discrete instead of continuous. Tikhonov regularization (Tikhonov, 1963a,b)
is then applied in Paper C to solve (3.5).

3.3 MODELLING THE DRIVING WIND

The power in (3.3) and (3.4) is expressed in terms of the driving wind, so the
driving wind must be expressed in terms of the upstream wind, since only
the upstream wind can be measured. Here we describe the simple model em-
ployed in Paper C that represents the driving wind, on the level of statistical
quantities, in terms of the upstream wind. It must be emphasized that the
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FIGURE 3.2. The factor k in (3.6) as a function of the ratio R/L of the rotor radius R and the integral
length L.

simple model does not provide an exact representation.

We assume that only the longitudinal velocity component is relevant and
we let u and v denote the longitudinal component of the upstream and vir-
tual wind fields, respectively. Basic for the following are the assumptions
that the statistics of the virtual wind field are the same as those of the up-
stream wind field, that the upstream wind field is stationary and isotropic,
and that its correlation structure is that of von Karman with longitudinal in-
tegral length L. Inspired by Elliott and Cadogan (1990), we also assume that
the driving wind w is the spatial average of the virtual wind over the rotor
disk. It can then be shown that the mean driving wind speed W is equal to
the mean upstream wind speed U, and that the standard deviation o,, of the
driving wind is given by

1
Oy = k’O’u where k'= \/%J\ K(S)ptrans(ZRs) ds, (3.6)

where «(s) = sarccos(s) — s>V1 —s2. The factor k" in (3.6) depends, under the
simple model, only on the ratio R/L of the rotor radius R and the integral
length L.

Figure 3.2 (a) shows the factor k’ as a function of the ratio R/L. When the
size of the rotor is comparable to the integral length, which is the case for
modern wind turbines, the factor k’ is significantly smaller than 1. This im-
plies that a one-point measurement of the standard deviation of the upstream
wind speed must be appropriately scaled to represent the standard devia-
tion of the driving wind speed. The scaling factor k’ in (3.6) is derived un-
der the highly idealized model considered in this subsection. Nevertheless, as
shown in Paper C, the model does indicate the necessity of transforming the
measured upstream wind speed, if the standard deviation (or the turbulence
intensity) of the upstream wind is to be incorporated into the power curve
estimation.

3.4 A DYNAMIC MODEL

The quasi static model allow us to derive a simple expression of the mean
power of a wind turbine subject to a given distribution of wind speeds. Unfor-
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tunately, the quasi static model ignores the dynamic behavior of the wind tur-
bine. To overcome this drawback, a more sophisticated dynamic model based
on a stochastic differential equation is employed,

dpayn(t) = =P (payn(t) = f(w(t))) dit + B, dB(t). (3.7)

Here 1/B, (the characteristic response time) and f3, (the noise strength) are
constants, f (the zero-turbulence power curve) is a deterministic function, w
is the driving wind, and B is a standard Brownian motion independent of the
driving wind. In the limit f; — oo, the quasi static model is obtained. The
dynamic model (3.7) is a simplified version of a dynamic model presented
in Gottschall et al. (2006), Gottschall and Peinke (2007, 2008), Anahua et al.
(2008), and Wichter et al. (2011). After eliminating the initial condition from
the solution to (3.7), we can express the dynamic power as an ambit process,

Pdyn(t) = f Bre P U f(w(s))ds + % J_t re PV dB(s).  (3.8)

In case the driving wind is stationary, it follows immediately from (3.8) that
the mean power, under the dynamic model, is equal to the mean power under
the quasi static model. From the point of view of mean values, no large error
is committed in using the quasi static model. However, for the quasi static
model to match the predicted standard deviation of power with that of the
dynamic model, the standard deviation of the driving wind must be scaled
further, in addition to the scaling in (3.6), see Paper C for details.

3.5 THE NEW METHOD

We conclude from the above considerations that, in order to account for the
size of the rotor, the fluctuations (in terms of the standard deviation) of the
driving wind must be scaled down compared to those of the upstream wind;
and, in order to account for the lack of dynamic response in the quasi static
model, these fluctuations must be further scaled down. We summarize these
conclusions by

oy = koy,

for some parameter k which must be estimated from data in addition to the
zero-turbulence power curve f. We will assume that the mean driving wind W
can be represented by the mean upstream wind U. This is justifiable when the
mean wind speeds do not vary too much with height (low vertical shear). In
the presense of shear, the equivalent wind (Wagner et al., 2009, 2011) may be
used to provide a better representation of the mean driving wind speed.

The new method for power curve estimation, as described in Paper C, as-
sumes that the probability density function ¢, of the driving wind speed is
normal and determined by the mean and standard deviation. This is an ide-
alising assumption, but there are few alternatives when the turbulence is not
resolved below the scale of ten minutes. It follows that the predicted mean
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FIGURE 3.3. Two examples of conventional power curves derived from the estimated zero-turbulence power curve f when k

is chosen optimally (solid) and when k is held fixed at 1 (dashed) for turbulence intensities I;, = 0.07 (a) and I;, = 0.13 (b).

The thin curve denotes the IEC 61400-12-1 power curve calculated from the whole main data set. The gray dots denote

a subset of the data set with turbulence intensities as indicated in each subfigure. A magnified version of the rectangle is

shown in the lower right corner.

power is given as

p= [ rwptU ke )iy (3.9)

where ¢(—; y,0) denotes the probaility density function of a normal distribu-
tion with mean y and standard deviation o. Paper C describes in detail how f
and k can be estimated from data.

The relation (3.9) allows us to incorporate the turbulence intensity into the
power curve estimation. Indeed, suppose that f and k have been estimated.
Then the mean power at mean upstream wind speed U and turbulence inten-
sity I, is given by

P(U,IL,) = jmf(x)¢(x; U,kL,U)dx.

For fixed turbulence intensity I,,, P(—, I,,) is also called the conventional power
curve.

Figure 3.3 shows that the new method is able to account for some of the
influence of turbulence intensity on the mean power. If the size of the rotor
and the response of the wind turbine is ignored by letting k = 1, then the
impact of turbulence intensity is exaggerated.

As a further application of the method, it is shown in Paper C how the
performance of a wind turbine can be predicted for turbulence intensities that
are not measured. Furthermore, the power curve can still be estimated even
though the data set might contain missing data for certain wind speeds. These
applications are important as they allow for fast power curve measurements.

3.6 TOWARDS HIGH-FREQUENCY DATA

In Paper C, only data of very low temporal resolution (ten minutes) are used
to estimate the wind turbine power curve. In general, we may ask about es-
timating a power curve from high-frequency data. Gottschall et al. (2006),
Gottschall and Peinke (2007, 2008), and Anahua et al. (2008) discuss this
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problem. In this section, we indicate another approach. Part of this work is
in collaboration with Jan Pedersen from Aarhus University.

Again, the driving wind will be used to address the fact that the wind speed
and produced power are not measured in the same location. Consider the
dynamic model (3.7)

dp(t) = =B (p(t) = f(w(t)))dt + B, AW (1) (3.10)

for o <t < T and where g, and B, are constants. From the quadratic variation
of the power we may estimate 5, as demonstrated in appendix B of Paper C.
We will assume f; to be known in advance. The stochastic differential equa-
tion (3.10) represents the stochastic integral equation
t t
P
o) (pto)+ . [ fwdss [ pdcpiospwn). ()
where IP is some probability measure and W is a IP-Wiener process. Suppose p
is a solution to (3.11) for o < t < T. For any o(w)-adapted process ¢ we may
ask if there exists a probability measure IP¥ and a P¥-Wiener process W¥ such
that p is also a solution to
- t t
PN (plo)+ fu [ wdss [ perd-pio e fw¥n). a2
[} o
Relation (3.12) is true for ((t)) = (f(w(t))). Assume that (3.12) holds for a
given 1. Given any o(w)-adapted process ¢ we rewrite (3.12) as
PY
(p(t)) =

t
[¢)

(ptor+ . [ piords [ piorac-ps

+ﬁ2(W4’(t)—%Lt@(s)—yD(S))dS))-

2

We define the process N¥¢ by

vty =(8 [ o) -pinas)

and the probability measure P? by
P?(A) = j E(NVP)(T)dPY,
A

where £ denotes the Doléans-Dade exponential. Then, P? and P¥ are locally
equivalent, and by Girsanov’s and Lévy’s theorems we have that W® := W¥ —
[N¥®, W¥] defines a IP?-Wiener process. A short calculation shows that

wo ™ (Ww(t)_ﬂ

2

t
[ @er-pisnas),
and therefore p is also a solution to
t t
() (plo o | gts1ds [ plord(-pus)+ g W)

for o <t < T. Since p was assumed to be a solution to (3.11), it follows that
P¥ and WY, for any o(w)-adapted 1, can be constructed such that (3.12) also
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holds. By (3.12) we may express W? in terms of p and 1, and get

e 0 = expl B5{ L [ - dpts)

t
+£ (qb(s)—¢<s)>(p(s>—¢<s>)ds—;L (916) - (o) ds)).

Since we are only interested in the period o < t < T, the Radon-Nikodym
derivative dIP?/dIPY is given by dIP?/dIP¥ = £(N¥*?)(T). In particular, we have

W e ol 55 ﬂlf F(w(s)) dp(s) f F)(pls) - 1 wls))ds )
=r(f,w,p)

Given a realisation p of p, and given a model for the driving wind as a stochas-

tic process, we then obtain a likelihood functional for the zero-turbulence
power curve f,

L(f:ﬁ)=L (0, P) Py (dw) (3.13)

where the integral is with respect to the probability measure P4, of the
driving wind speed process. Hence, a maximum likelihood estimate of the
zero-turbulence power curve can be calculated, provided a model for the driv-
ing wind is at hand that allows efficient evaluation of L(f;p), for example by
Monte Carlo simulations.

A model for the driving wind (Gaussian or not) requires at least the auto-
covariance function to be specified. In Paper C, it is shown that the variance
of the driving wind is smaller than the variance of the upstream wind. If we
adopt the simple model that the driving wind speed is the spatial average over
the rotor disk of the longitudinal component of the (assumed isotropic) vir-
tual wind, then it can be shown that the autocovariance function cov,, of the
driving wind is given by

covy,(x) =0, ﬁ K(s)h(x,st)ds,
U o

where «(s) = sarccoss —s*(1 —5%)/? and h(x,y) = p,(2) + 2p;(2)y*/z with 2> =
x> + y>. Here o) is the variance of the virtual wind, p, is the longitudinal
autocorrelation function of the virtual wind, and R is the radius of the rotor.
Let S,(x) = E[(w(x) —w(0))?] denote the second order structure function of the
driving wind. Then it follows, after some approximations, that for x < R we
have

dlogS,(x) 6
Tgx 2= 5 (3.14)

Note that for a modern wind turbine, the radius of the rotor is comparable
to the integral length. Hence, x lies within the inertial range when x <« R.
Curiously, the result in (3.14) follows from purely geometric reasoning and
therefore holds independent of the longitudinal autocorrelation function p,.
We therefore tentatively conclude that, from the point of view of a wind tur-
bine, the Kolmogorov 2/3-law should be replaced by a 6/3-law. This should
be taken into consideration when modelling the driving wind in (3.13).
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We now change perspective once more and consider the wind after it has in-
teracted with a wind turbine and is to potentially interact with another wind
turbine further downstream. A wake behind a wind turbine is generated be-
cause the wind turbine extracts kinetic energy from the flow and reduces its
velocity. The wake rotates in the opposite direction of the wind turbine rotor.
The structure of the wake is complicated due to the shedding of tip vortices
from the blades and turbulence generated by the mechanical structure of the
wind turbine. The turbulence intensity is greater inside the wake than in the
surrounding flow. See Burton et al. (2001) and the references given in the in-
troduction of Paper D for further details. Understanding wakes in wind farms
is essential since most wind turbines in a modern wind farm will often operate
in the wake of one or more upstream wind turbines.

The simplest wake models concern average quantities, for example, the av-
erage wind speed at some distance downstream of the wind turbine generat-
ing the wake. By construction, they ignore any dynamic structure below the
length T of the averaging period. Probably the simplest wake model is the
Jensen model (Jensen, 1983) where the wake radius R, ,1e(X) is assumed to
expand linearly as a function of the downstream position x,

Ryake(x) = R+ kx.

Here R is the rotor radius and k is a parameter that determines the rate of
expansion of the wake. Two versions of the Frandsen model (Frandsen et al.,
2006) are also discussed in Paper D. A calculation based on balance of mo-
mentum shows that the wind speed u(x) experienced by a downstream wind
turbine in a full or partial wake is given by

R )2 onerlap )
Rwake ( x) '

where v, denotes the undisturbed upstream wind speed, Cr is the thrust co-

u(x) = vo(l - (1 —J1- CT(VO))(

Arotor

efficient, and Agyerlap/Arotor 18 the fraction of the rotor disc that is covered
by the wake. This ratio is determined by the wind direction 6. The wind di-
rection is assumed to be the same across the wind farm. If a wind turbine is
exposed to several wakes, the wakes are combined by adding the squared ve-
locity deficits, (1 — u(x)/v,)*> (Katic et al., 1987). Thus, the mean wind speed
experienced by a wind turbine in the wind farm (and hence the power P™od¢l)
is determined by three parameters: the upstream wind speed v,, the wake
expansion parameter k, and the common wind direction 6.

Given a data set {(P,,v,),...,(P,,v,)} consisting of the measured average
power P; and average yaw angle y; for each wind turbine in the wind farm,
the upstream wind speed v, is determined by inversion of power curves as
detailed in Paper D. Two cases are considered: homogeneous upstream wind
speed, where v, is assumed to be the same for all wind turbines, and hetero-
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geneous upstream wind speed, where v, is allowed to vary across the wind
farm. For each data set, the wake expansion parameter k and direction 0 are
determined by minimising the fit error

_LiL P - Bk, 0)

- Yi=i P '
Rather discouragingly, the typical fit is around 10 % to 20 % with significant
tails in the range 30 % to 50 %. As the averaging time T increases from 15s to
10 min the fit error decreases and appears to attain its limit when T = 10min.
This is interpreted as an intrinsic limitation of the wake model as 10min
seems to be enough to average out all fluctuations caused by dynamic effects
like wake meandering. A homogeneous upstream wind speed yields a larger
fit error than the use of a heterogeneous upstream wind speed.

Due to the size of a modern wind farm, it easily takes the wind 10 min to
propagate through the wind farm. Naively, the speed of propagation should
be less than the upstream wind speed, since the wind farm extracts kinetic
energy from the wind. However, a simple model that attempts to take this
propagation time into account suggests that the propagation speed is actually
greater than the upstream wind speed. Whether this is due to entrainment of
fast winds from above the wind farm (Calaf et al., 2010) is a subject for further
investigation. The correction for the propagation time causes a significant de-
crease in fit error only in situations where the upstream wind speed suddenly
changes.

Is is also shown in Paper D that the wake expansion parameter k depends
on the spacing of the wind turbines with larger values of k corresponding
to shorter spacing. This, of course, implies that the assumption of linear ex-
pansion is erroneous. (To a somewhat lesser extent, a similar behaviour is ob-
served for the Frandsen model). One can motivate that the wake expansion
should be sub-linear. Note that the wake in the Jensen model is the average
wake of the time period under consideration. The instantaneous wake is more
tubular with a radius slightly larger than the rotor radius. This tubular wake
is pertubed randomly as it moves downstream. A simple model for the posi-
tion of the centre of the wake is Brownian motion. The width of the average
wake at a distance x downstream of the wind turbine is then approximately
proportional to the standard deviation of the Brownian motion at x, i.e. pro-
portional to v/x. This yields essentially the Frandsen model.

Paper D demonstrates that the simple engineering wake models are insuffi-
cient for an adequate description of the behaviour of wakes inside wind farms.
For applications, such as wind farm layout and controller optimisation, more
sophisticated models are needed to capture the entrainment of air from the
surroundings and the dynamic meandering of the wakes.

Application of ambit processes to the modelling of wakes is still in its in-
fancy. We may, as suggested in subsec. 2.2.5, construct an inhomogeneous
Lévy basis from which a turbulent velocity field describing the wake can be
generated.
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In Paper A, integrals of deterministic functions with respect to volatility mod-
ulated Lévy bases were proposed to model spatial turbulence. It was shown
how the second order structure is determined by the so-called kernel and how
the kernel may be derived from a prescribed covariance tensor. In the case of
isotropic incompressible turbulence, the kernel was represented in terms of
simple integral transforms of the energy spectrum. An example was given
where the kernel was derived from the Shkarofsky energy spectrum whose
parameters were estimated from atmospheric boundary layer flow measure-
ments. The volatility modulation remained unspecified, yet it is necessary for
the model to reproduce other stylised features of turbulence.

In Paper B, an existing model for the turbulent energy dissipation, given
as the exponential of an ambit process, was used to study the relationship be-
tween the one-point distribution and the two-point correlators of the energy
dissipation. The normal inverse Gaussian distribution was found capable of
describing the distribution of (the logarithm of) the energy dissipation to very
good approximation. The shape of the distribution was shown to be universal,
that is, independent of the Reynolds number. Furthermore, the self-scaling
exponents of the two-point correlators were determined completely from the
shape of the distribution of the energy dissipation. Hence the model is pari-
monious.

In Paper C, the focus is on modelling of the power output of a wind turbine
as it operates in the turbulent wind field. A simple quasi static model was em-
ployed to express the measured ten-minute means and standard deviations of
power in terms of the so-called zero-turbulence power curve, statistics of the
measured upstream wind speed, and an auxiliary parameter which attempts
to account for the size of the rotor and the dynamic response of the wind tur-
bine. From these quantities, the conventional power curve at any desirable
turbulence intensity can be obtained. A method was derived to estimate the
zero-turbulence power curve from ten-minute statistics, and the method was
shown to improve over the existing industry standard for power curve esti-
mation.

In Paper D, three existing simple engineering wake models for the aver-
age flow within a wind farm were evaluated against measured power data
at time scales from 155 to 10min. The models and generalisations of them
were shown capable of capturing some of the average wake behaviour, but a
considerable residual fit error remained present at all time scales. More so-
phisticated wakes models are therefore necessary to accurately capture the
dynamics of wakes in wind farms and possibly entrainment of air from above.

Looking forward, consider fig. 5.1 which has been augmented compared to
fig. 1.1 to indicate areas of future research. As ambit processes have demon-
strated their capability to model many aspects of turbulence, the first goal
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FIGURE 5.1. Where to go from here. The solid boxes represent the work accomplished in the four
papers. The dashed curves extend the boxes to indicate areas of future research: estimation of
power curves from high-frequency data, modelling of wakes dynamics in wind farms, and appli-
cation of ambit stochastics to both subjects.

will be to properly specify a volatility modulation of the Lévy basis beneath
the spatial turbulence model such that the derived energy dissipation accu-
rately reproduces known stylised features. The application to wind turbine
load calculations is immediate. Ultimately, this endeavour should produce a
fully fledged spatio-temporal model of turbulence, capable of reproducing the
structures of turbulence across all relevant length and time scales, including
the anisotropy and inhomogeneity of atmospheric boundary layer flow.
Concerning power curves, it was indicated in sec. 3.6 how the analysis of
stochastic differential equations might be applied to estimate wind turbine
power curves from high-frequency data. This requires the modelling of the
small scales of the driving wind. Regarding wakes, it was suggested in sub-
sec. 2.2.5 that a suitable choice of an inhomogeneous Lévy basis has the po-
tential to model the presence of wakes in wind farms. In this way, we may
expand the regime of wake modelling towards smaller scales of turbulence.
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ABSTRACT

Using integration of deterministic, matrix-valued functions with respect to
vector-valued, volatility modulated Lévy bases, we construct random vector
fields on R". In the statistically homogeneous case, the vector field is given
as a convolution of a deterministic kernel with respect to a homogeneous,
volatility modulated Lévy basis. With applications to turbulence in mind, the
kernel is, in the isotropic and incompressible case, expressed in terms of the
energy spectrum. The theory is applied to atmospheric boundary layer tur-
bulence where, in particular, the Shkarofsky correlation family (a generali-
sation of the Matérn correlation family) is shown to fit the data well. Since
turbulence possesses structure across a wide range of length scales, simula-
tion is non-trivial. Using a smooth partition of unity, a simple algorithm is
derived to decompose the simulation problem into computationally tractable
subproblems. Applications within the wind energy industry are suggested.

39



40 PAPER A * A LEVY BASED APPROACH TO ISOTROPIC RANDOM. . .
A.1 INTRODUCTION

Ambit processes constitute a flexible framework for constructing spatio-tem-
poral stochastic processes. An ambit process X = {X(&) | & € E} on a set E is
defined as

X(€) =f (& Qo) AMD), (a1)
A(&)

where A is a Lévy basis on a set Z, A(E) C Z is the ambit set, f is a determin-
istic function on Z x Z, and o is a process on Z which is independent of A and
which provides the volatility modulation of the Lévy basis. More general def-
initions exist, where, for example, the Lévy basis is subordinated (Barndorff-
Nielsen and Pedersen, 2012), and where the process ¢ is not indendent of the
Lévy basis (Basse-O’Connor et al., 2012). Ambit processes have been applied
in different contexts, including turbulence (Barndorff-Nielsen and Schmiegel,
2004, 2009), tumour growth (Jénsdéttir et al., 2008; Schmiegel, 2006), and
finance (Barndorff-Nielsen et al., 2011, 2012). In particular, they have been
shown to be able to accurately model the intermittency of the turbulent en-
ergy dissipation (Hedevang and Schmiegel, 2012; Schmiegel, 2005; Schmiegel
et al., 2004), and the temporal behaviour of the one-point measurements of
the velocity in the atmospheric boundary layer (Hedevang, 2011).

In Mann (1998), the atmospheric turbulent velocity vector field is modelled
at a fixed instant in time as a homogeneous Gaussian process. This model is
widely applied in the wind energy industry. However, turbulence is not Gaus-
sian, exhibiting velocity increments whose distributions have tails much heav-
ier than the Gaussian distribution (Barndorff-Nielsen et al., 2004). In Mticke
et al. (2011) and Wichter et al. (2012), it is shown that the intermittent, non-
Gaussian character of the atmospheric boundary layer turbulence influences
wind turbines in terms of loads and production of electricity. A model based
on a random time change of a nested Gaussian drift-diffusion process is pro-
posed to model the turbulent velocity field as a non-Gaussian process. Some-
what related, Rosales and Meneveau (2006) and Biss (2009) propose to simu-
late non-Gaussian turbulent vector fields by modifying an existing Gaussian
realisation.

As a stepping stone towards a fully fledged spatio-temporal model for the
turbulent velocity vector field, we seek in this paper to provide a purely spa-
tial, inherent non-Gaussian model of the type (2.1) describing the field at a
fixed instant in time. The model will be specified to account for turbulent
dynamics. However, it is important to stress that the presented methods are
not restricted to turbulence and have potential application for a wide range
of spatial dynamics. While the volatility modulation in (2.1) is of central im-
portance (Barndorff-Nielsen and Schmiegel, 2008, 2009), in the present paper
it will remain unspecified and focus will mostly be on the second order struc-
ture, i.e. the correlation structure.

The paper is organised as follows. Section a.2 provides some background
on integration of deterministic functions with respect to Lévy bases, in addi-
tion to notation and some conventions. Section a.3 constructs random vector
fields using convolutions of deterministic matrix-valued functions (the ker-
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nels) with respect to vector-valued Lévy bases and demonstrates how the ker-
nel, under some mild assumptions, is determined from the covariance tensor
of the process. Section a.4 recalls the consequences of isotropy on the form of
the covariance tensor and spectral tensor of a random vector field and shows
how the additional assumption of incompressibility provides one further sim-
plification. The kernel of an isotropic and incompressible process is then ex-
pressed in terms of the energy spectrum. Section a.5 discusses the spatial cor-
relation structures of von Karman, Matérn, and Shkarofsky and provides the
results necessary to express the kernel in terms of the Shkarofsky correlation
structure. Section a.6 applies the theory to a data set consisting of measure-
ments of the turbulent velocities in the atmospheric boundary layer. Kernels
that reproduce the isotropic and incompressible Shkarofsky covariance tensor
are derived. Furthermore, to illuminate the importance of volatility modula-
tion of the Lévy basis, a one-dimensional model is used for simulations. Sec-
tion a.7 concludes the paper and provides an outlook on future work and ap-
plications within the wind energy industry. The two appendices elaborate on
aspects of simulation and contain some technical lemmas used in the deriva-
tion of the kernels, respectively.

A.2 BACKGROUND AND PRELIMINARIES

Let M,, ; denote the vector space of m x d matrices with real entries, let M, =
M, 4 denote the vector space of square matrices, and let M denote the cone
of symmetric and non-negative definite square matrices. Let (—, —) denote the
Euclidean inner product on IR? and ||-|| the derived norm and operator norm.
Let D = {x € R? | ||x|| < 1} denote the closed unit ball in R?. B(S) denotes the
o-algebra of Borel subsets of a given metric space S, and B;(S) denotes the
set of bounded Borel subsets. For functions f,g: R, — IR, we define the g-
transform of f by g[f](z) = I:of(r)g(rz)dr, provided the integrals exist. For a
vector x € R3 we define

0o X X,
sk(x)=|-x; o X,
X, —X; O

as the skew-symmetric matrix generated by x. Furthermore, we let £ = x/||x]|
when x # o, and £ = o when x = o. Throughout this paper, all random vari-
ables and processes are assumed to be defined on a common probability space
(Q,F,P).

A.2.1 NORMAL INVERSE GAUSSIAN DISTRIBUTIONS

For later reference, we briefly discuss the normal inverse Gaussian distribu-
tion NIG(e, 8, i, 6), whose probability density function is given by

daed” B K, (a0 + (x—p)?)

T 6%+ (x — )

’

pdinig(x) =
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FIGURE A.1. (a) The normal inverse Gaussian shape triangle. The black dots mark positions (x, &) in the shape triangle,
and the graphs nearby show the logarithm of the probability density function of the normal inverse Gaussian distribution
with the corresponding asymmetry x, steepness &, zero mean, and unit variance, plotted on the interval [-3,3]. (b) The
logarithm of the probability density function of a NIGY(0.999,0.09,0,1)-distribution (solid) and a Gaussian distribution
(dashed). Both distributions have zero mean and unit variance.

where y = (a? —[32)1/2. The alternative parametrisation NIGY(&, x, m,v) will be
used when convenient. Here &, x, m, and v denote the steepness, asymmetry,
mean, and variance, respectively. The two parameterizations are related by

E=(1+oy)? X =pé/a, m=p+6ply, v =2d6a>/y3.
In the second parametrisation, the domain of the parameters is
o<&<i, & <x<é, v >0, meR.

The shape parameters (x, &) therefore lie in the so-called normal inverse Gaus-
sian shape triangle, see fig. .1 (a) for examples of possible shapes. The normal
distribution is obtained in the limit & | o. Figure a.1 (b) shows another exam-
ple of a normal inverse Gaussian distribution compared to a normal distribu-
tion. These two distributions will be used in simulations in subsec. A.6.3. The
normal inverse Gaussian distributions form a subclass of the generalised hy-
perbolic distributions, see Barndorff-Nielsen (1978) and Bleesild (1981) and
the references therein. The generalised hyperbolic distributions have found
wide applications, in particular in finance (McNeil et al., 2005; Prause, 1999).
Also see Barndorff-Nielsen et al. (2004) for applications of the normal inverse
Gaussian distributions to turbulence.

A.2.2 CONVOLUTIONS AND FOURIER TRANSFORMS

For matrix valued functions g: R" — My 4 and h: R" — Mdz,d3 the convolu-
tion g+h: R" — My, 4 is defined by

(g = [ gle-plhiw)dy

where the integral is calculated entry-wise. It follows that (g )T = hT x gT.
Likewise, the matrix-valued Fourier transform F,[g] is also defined entry-
wise,

Rl = o | st
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and the corresponding inverse Fourier transform is given by

FSI = [ swevay,

It follows that F,[¢7] = F,[g]" and F,[g*h] = (27)"F,,[g]F.[h].
A.2.3 INTEGRATION WITH RESPECT TO LEVY BASES

For any infinitely divisible IR"-valued random variable X, we let C(- 1 X)
denote the cumulant function. By the Lévy-Khinchine representation (Sato,
1999, Thm. 8.1),

C(ztX)=i(a,z)— %(z, bz)+ Ld(e“w —1—i(z,x)1p(x))c(dx)

where a € R?, b € M, and c is a Lévy measure on RY. The triplet (a,b,c)
is called the characteristic triplet and determines uniquely the distribution
of X.

In the following, Lévy bases and integration with respect to Lévy bases are
discussed and the results needed for the rest of the paper are stated. We refer
to Rajput and Rosinski (1989), Barndorff-Nielsen and Stelzer (2011), Pedersen
(2003), and Schmiegel (2007) for proofs and further details.

DEFINITION A.1. Let S € B(IR"”) be non-empty. An Bj(S)-indexed family A =
{A(A) | A € By(S)} of R?-valued random variables is called a Lévy basis on S,
if A is an infinitely divisible and independently scattered random measure,
i.e., if the following three properties hold.

- For every A € B,(S), A(A) is infinitely divisible.
- For any disjoint A,,..., Ay € By(S), A(A,),...,A(Ay) are independent.

- For every sequence (Aj);il of disjoint elements in B;(S) with U;’Zl Aj €
By(S), we get that Z]f’il A(Aj) = A(U]f’i1 A;) holds a.s.

A Lévy basis A in S induces three set functions a: B,(S) — R?, b: B,(S) —
M andc: By(S)xB(RY) — R by letting (a(A), b(A), c(A,—)) be the characteristic
triplet of A(A). It can be shown that a; is a signed measure, b; x is a measure for
j =k and a signed measure for j # k, c(—, B) is a measure for every B € B(IR%),
and c(A,—) is a Lévy measure for every A € B5,(S). Given set functions a, b,
and ¢ having the above properties, there exists an R?-valued Lévy basis A on
S such that (a(A), b(A),c(A,-)) is the characteristic triplet of A(A). Therefore,
(a,b,c) will be called the characteristic triplet of the Lévy basis. Furthermore,
the set function A: B,(S) — [0, c0] defined by

AA) =lal|(A) + tr(b(A)) + Ld 1 A||x]1* ¢(A, dx)

has a unique extension to a o-finite measure on 3(S) which is called the con-
trol measure and is also denoted by A. See also Pedersen (2003).

Let (a,b,c) denote the characteristic triplet of a Lévy basis A on S with
control measure A. Let a’ = da/d A and b’ = db/d A denote the Radon-Nikodym
derivatives. As in Rajput and Rosinski (1989, Lemma 2.3) the function ¢ may
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be extended to a o-finite measure on B(S)®B(R?), and there exists a function
¢’: S x B(R?) — [0, 0] such that ¢’(s,~) is a Lévy measure on B(R?) for every
s €S, ¢’(-,B) is measurable for every B € B(R?), and

Lxmd h(s,x)c(ds x dx) = J; JIR”’ h(s,x)c’(s,dx) A(ds)

for every measurable function h: § x R? — [o,c0]. Therefore, we may infor-
mally think of ¢ as dc/d A. Thus, for every s € S, (a’(s), b’(s), ¢’(s,—)) is the char-
acteristic triplet of an R?-valued random variable A’(s) which will be called
the spot variable at s. The spot variable and control measure determine the
distribution of the Lévy basis in the sense that

Clzf A(A)) = LC(ZiA’(S))A(dS)

for every A € By(S).
The integral over a set A € B(S) of a deterministic measurable function
f:S — M,,, with respect to an R?-valued Lévy basis on S is defined as

f dA = plim f] dA.
]—)OO
where ( f]-)°°1 is a sequence of simple functions such that f; — f A-a.s., and
such that the sequence fAf] dA)2 ] .
B(S). The A-integral is by construction infinitely divisible.

converges in probability for every A €

The following proposition expresses the distribution of the integral IS fdA
in terms of the function f, the spot variable A’ and the control measure A. It is
a straightforward generalisation of Rajput and Rosinski (1989, Prop. 2.6) and
also stated in Barndorff-Nielsen and Stelzer (2011). For necessary and suffi-
cient conditions for A-integrability, see Barndorff-Nielsen and Stelzer (2011,
Prop. 2.3) and Rajput and Rosinski (1989, Thm. 2.7).

PROPOSITION A.2. Let A denote a Lévy basis on S € B(R"), and let A’ and A denote
the corresponding spot and control measure. If the measurable function f: S —
M, 4 is A-integrable, then Is IC(f(s)Tz3 A’(s))| A(ds) < oo for all z€ R™, and

C(ziLfdA) - J-S CUF(s)TzH A'(s)) A(ds)

forall ze R™.

On the one hand, the control measure and spot variables corresponding
to a Lévy basis are derived from the characteristic triplet of the Lévy basis.
On the other hand, when building stochastic processes using Lévy bases, it
is desirable to specify the Lévy basis in terms of random variables and an
accompanying measure. The following definition and lemma exemplify how
this may be accomplished. The proof of the lemma is straightforward.

DEFINITION A.3. Let S € B(IR") denote a Borel subset and let A* = {A*(s) | s €
S} denote an S-indexed family of R?-valued independent infinitely divisible
random variables, and let A* denote a o-finite measure on 5B(S). Then A* is
called a seed variable on S, 1* is called a seed measure on S, and the pair
(A", A*) is called a Lévy seed on S.
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DEFINITION A.4. A Lévy seed (A", A1*) on S € B(IR") is called homogeneous, if
the distribution of A*(s) does not depend on s € S and if A* is the Lebesgue
measure on S.

LEMMA A.5. Let (A*, A*) denote a Lévy seed on S € B(R") and let the characteristic
triplet of A*(s) be denoted by (a*(s), b*(s), c*(s,—)). Assume that

- a*: S — R? is measurable with IA lla*(s)|| A*(ds) < oo for all A € By(S),
- b*: S — M is measurable with [, ||b*(s)l| A(ds) < oo for all A € By(S),

- ¢*(-,B): S — [o,00] is measurable for each B € B(R?), and there exists a mea-
surable function K: S — R, with the properties that fAK(s)/\*(ds) < oo for all
A € By(S) and fle 1 A||x||? ¢*(s,dx) < K(s) forall s € S.

Then

a(A) = La*(s)x(ds), b(A) = Lb*(s)/\*(ds), (A, B) = LC*(S,B)A*(ds)

defines set functions such that a; is a signed measure on By(S), bjx is a measure
on By(S) for j = k and a signed measure for j =k, c(A,-) is a Lévy measure on RY
for all A € By(S), and c(—, B) is a measure on By(S) for all B € B(R?).

COROLLARY A.6. Suppose the Lévy seed (A*, A*) on S € B(R") satisfies the assump-
tions in lemma A.5. Then there exists an RY-valued Lévy basis A on S with (a,b,c)
as characteristic triplet. Furthermore, the seed (A*, \*) is related to the spot variable
and control measure by

a*(s)A*(ds) = a’(s)A(ds),
b*(s)A*(ds) = b’(s)A(ds),
c*(s,dx)A*(ds) = ¢’ (s,dx) A(d5s).

Note that a homogeneous Lévy seed always satisfies the assumptions of
lemma a.5. Furthermore, for a homogeneous Lévy seed, the corresponding
control measure is proportional to the Lebesgue measure, since in this case
we have

A(A) = (||a*||1 T tr(bY) +f AR c*(dx))Leb(A).
]Rd
It follows that a’, b’, and ¢’ are proportional to 4%, b*, and ¢*, respectively.

COROLLARY A.7. Let (A", A*) denote a Lévy seed such that the conditions of lemma A.5
are satisfied, and let A denote the Lévy basis corresponding to the seed. Let f: S —
M, 4 denote an A-integrable function. Then

cle [ ran)= [ cemzsanria

for all ze R™.

For a process 0 on S that is independent of the Lévy basis A, the integral
Js fodA is defined conditional on o, provided s — f(s)o(s) is almost surely
A-integrable. In this case, the cumulant function is given by

C(zi L fo dA) - 1ogE[exp(L ((f(s)ols) =1 A*(s))/\*(ds))].
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Basse-O’Connor et al. (2012) discuss the case where the process o is not inde-
pendent of the Lévy basis.

A.3 CONSTRUCTING RANDOM VECTOR FIELDS

In this section we will discuss random vector field based on integrals of de-
terministic matrix-valued functions with respect to vector-valued Lévy bases.
A homogeneous spatial model is constructed as a convolution of a determin-
istic kernel with respect to a volatility modulated Lévy basis, and the kernel
is expressed in terms of the covariance tensor, or, equivalently, the spectral
tensor.

Let E be any non-empty set. We wish to define an R"-valued stochastic
process X = {X(&) | £ € E} on E with a prescribed covariance structure. To
that end let S € B(IR") be given and let A denote an R%-valued Lévy basis
on S. We will assume that A is derived from a Lévy seed (A, 1*) as explained
in lemma A.5, but the results below may just as well be formulated in terms
of the Lévy spot variable and control measure. Let o be an R-valued process
on S that is independent of the Lévy basis, and let f: Z xS — M,, ; denote
a function such that s — f(&,s)o(s) is almost surely A-integrable for every
& € E. We define the process X by

= Lf(g,s)a(s)/\(ds). (a.2)

The finite dimensional marginal distributions of X are given by corollary a.7.
Specifically, let &,,...,&y € E be given. Then, for z = (z,,...,zy)T € RN, we
have

ClzF(X(&1)r., X(EnNT) (a.3)

zlogE[exp(f ( ]:if &s)7 ())/\*(ds))].

The following lemma follows easily by differentiation and is central to the
later applications.

LEMMA A.8. Let the process X be defined as in (a.2), and suppose that X, A*, and o
have finite second moments. Then

- Lf(E,S)E[A*(S)]E[o(S)] X (ds),
cov(X(£), X(')) = Lf(é,s)cov(A*(s))f(«f',s>TE[o~<s)2] X (ds)

% 7 *( NN\
« [ [ e @A)
~cov(o(s),o(s")) A*(ds) A*(ds’).

With applications to turbulence in mind, some special cases are of partic-
ular interest. The case m = 1 corresponds to the modelling of a single velocity
component, e.g., the stream-wise component or the magnitude (norm) of the
velocity. The case m = 3 corresponds to the modelling of all three velocity
components. The case m = 2 is not without interest, as it is perfectly conceiv-
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able to have measurements of only two of the three velocity components. The
set 2 will be some subset of space-time, £ C R3 x R. The case E C {x,} x R
corresponds to a purely temporal model where the velocity is modelled as a
function of time at a fixed point in space. Purely temporal models for tur-
bulence are studied in e.g. Barndorff-Nielsen and Schmiegel (2009) and Fer-
razzano and Klippelberg (2012). The case & C IR3 x {t,} corresponds, on the
other hand, to a purely spatial model where the velocity is modelled at a fixed
instant of time.

An R™-valued process on R¥pace x Réiime will be called (dspace * dtime, M)-
dimensional. By one- or three-dimensional processes, we will understand (1 +
0,1)- or (3 + 0, 3)-dimensional processes, respectively.

Through a series of simplifying assumptions we will obtain a homoge-
neous, purely spatial model with a prescribed covariance tensor. Assume that
Z =S = R" and that (A*,Leb) is a homogeneous R?-valued Lévy seed on R,
and let A denote the corresponding R¥-valued Lévy basis. Let ¢ denote an
R-valued stationary process on R” that is independent of A. Suppose that
f: R" - M,, 4 satisfies that fo is almost surely A-integrable. Then

X(&)=| f(&=s)o(s)A(ds) (a.4)

R
defines an IR™-valued stochastic process on R” which, by (a.3), is homoge-
neous. In short, we will occasionally write X = f *x 0 dA. In this setting, the
function f in the A-integral is called the kernel function. The convolution-
style formulation of (a.4) lays the foundation of efficient simulation methods,
see appendix A.A. Since the mean value of a homogeneous process is constant,
we may assume it to be zero. Assume therefore that A* has zero mean and
finite second moment, and that ¢ has finite second moment with E[0?] = 1.
By lemma A.8, we have that E[X] =0 and

R() = cov(X(&) X(0)= | f(- s)cov(A*)f(=s)" ds,

where R denotes the covariance tensor. Under these assumptions, the covari-
ance tensor does not depend on the volatility modulation of the Lévy basis,
and only on the kernel function and the covariance matrix of the seed.

Let C denote a matrix square root of cov(A*) such that CCT = cov(A*). We
decompose f as the sum f = foyen + fodd Of its even part and odd part. Let
h = fC. Then heyen = fevenC and hoqq = fo4aC, and so

T T T T
R = heyen * heven = hodd * hodd +hodd * Meyen — Peven * hodd'
Since R is symmetric, R = RT it follows that
T T
hodd * heven = Heven * hodd’
which implies that the covariance tensor is given by

R = heyen * hgven — hoda * hgdd
= (fevenc) * (fevenC)T - (foddc) * (foddC)T’
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and that the spectral tensor F,[R] is given by

Fn[R] = (2n>n(Fn[heven]Fn[heven]T - Fn[hodd]Fn[hodd]T)
= (277)”(1:11 [feven] COV(A*)FH [feven]T - Fn [fodd] COV(A*)FH [fodd]T)-

In order to find a kernel f that reproduces a given covariance tensor R, the
above shows that we may choose the Lévy seed such that cov(A*) =1 and C =
I. The following proposition provides a way to determine a kernel function
given a covariance tensor, or, equivalently, a spectral tensor. The proposition
follows easily from the properties of convolutions and Fourier transforms.

PROPOSITION A.9. Let R: IR" — M,, denote a covariance tensor.

If Quyen is an even root of the spectral tensor F,[R], i.e. F,[R] = Qeven QL s
and if Qgyen is integrable, then foye, = (270) "2 F;* [Qeyen] defines a real, even, and
matrix-valued function that satisfies

R = fepen *fe?)}znl F,[R]= (2m)"F, [feven]Fn [feven]T-

If foven is A-integrable, then the covariance tensor of the process X = foyen*d A is R.

If Qo4a is an odd root of the spectral tensor F,[R], i.e. F,[R] = QodngTdd; and
if Qpaq is integrable, then fgy = —i(21)">F;*[Q,44] defines a real, odd, and
matrix-valued function that satisfies

R= _fodd *f;,gdl Pn[R] = _(Zn)npn[fodd]Pn[fodd]T'

If foaa is A-integrable, then the covariance tensor of the process X = fy34 *d A is R.

Note that the even and odd kernels f.ye, and fy,qq both yield the same
covariance tensor R, and so will the linear combination f = (1 — @) foyen +
a'/?f 44 for any a € [o,1].

A.4 ISOTROPIC, INCOMPRESSIBLE VECTOR FIELDS

In the following we recall the implications of isotropy and incompressibility
and show how the kernel f in (a.4) under these assumptions can be expressed
concisely in terms of the so-called energy spectrum.

Robertson (1940) argued that the general form of the covariance tensor R of
a homogeneous and isotropic vector field X on R3 is R(x) = A(||x||)££T + B(||x|)I
where A and B are scalar functions. We may assume that A(o) = o, so that
R(o) = B(o)I. Likewise, isotropy implies that the spectral tensor is of the form
F,[R](y) = C(lvI99T + D(|lp|)I where C and D are scalar functions.

It is convenient to express the covariance tensor in terms of the longitudinal
and lateral correlation functions p, and p,, see fig. a.2. Following Batchelor

(1959), we have
_ Ry (Irl,o,0)  A(lr]) + B(Ir])
= "R~ Bo)
p,(r) = R,,(|r],0,0) _ B(|r])

R;,(0) N B(o) .

By isotropy, the three components of X have the same variance which we de-
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FIGURE A.2. Let r denote the distance between the points p and q. The longitudinal correlation
p1(r) is the correlation of the velocity components at p and g along the line between p and g, as
indicated by the solid arrows. Likewise, the transversal correlation p,(r) is the correlation of the
velocity components at p and q perpendicular to the line between p and g as indicated by the
dashed arrows.

note by 0. Then B(o) = 02, and

R(x) = 0((px (I1xll) = pa (IxID)£2T + p, (IlxI)T ).

In the context of turbulence, the velocity field is often assumed to be dif-
ferentiable and furthermore incompressible when the mean velocity is small
compared to the speed of sound in the fluid under consideration. The incom-
pressibility of X can be expressed in terms of the continuity equation,

X, X, Xy,
axl (x) + axz (x) + a_xa(x) =0, (AS)

which implies, see Batchelor (1959), that the lateral correlation function is
given in terms of the longitudinal correlation function,

P2(r) = pu(r) + 37p5 (7). (a.6)

For the spectral tensor F;[R], the additional assumption of incompressibility
implies that C = —D, in which case the spectral tensor is conveniently ex-
pressed in terms of the energy spectrum E,

_ Edyl) (—pgT
47t||yll?

where the energy spectrum in turn is related to the longitudinal correlation

F5[R](y) +1), (a.7)

function p, through

d(1d
—o2z3 ==
E(z)= 0?2 (2L Rlp.)) (x8)
To apply proposition a.g to calculate the kernel in (a.4), we need square roots
of the spectral tensor. These are provided by the following lemma.

= f;“i”l (=997 + 1) denote an isotropic and incompress-

ible spectral tensor with energy spectrum E. A real and even square 100t Qeyeyy Of

LEMMA A.10. Let F3[R](y)

F4[R] is given by

E(llyll)

_ooT

Qeven (3/) =

A real and odd square root Qu4q of F5[R] is given by

E(|lyll)
47|yl

Qoad(y) = sk(9). (a.10)
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PrOOF. The results follow easily from direct calculation. One may also observe
that the matrix I — 997 is a projection onto the plane orthogonal to y. From
this, (a.9) follows immediately. O

The odd root of the spectral tensor is also used in Mann (1998) to sim-
ulate a Gaussian three-dimensional process with a given energy spectrum.
This model is not restricted to isotropic turbulence and can also reproduce
the shear observed in atmospheric boundary layer turbulence. However, the
model of Mann (1998) does not account for the non-Gaussian densities of ve-
locity increments. The model (a.4) is, by definition, not restricted to Gaussian
densities.

By combining lemma a.10 with proposition A.9 and using the technical
lemmas of appendix a.B, we obtain the following result expressing the kernel
in (A.4) in terms of the energy spectrum.

PROPOSITION A.12. Let E denote the energy spectrum of an isotropic and incom-

1/2

pressible stochastic vector field on IR3. Assume that r — E(r)"/?r is integrable. The

even square root (a.9) of the corresponding spectral tensor F4[R] is integrable, and

feven (x) =

> ((Sinc +3sinc”)[E(r)/2r](|lx])££"

+ (sinc — sinc")[E(r)1/2r](||x||)1)

satisfies R = foyen * fuloy- The odd square root (a.10) of the corresponding spectral
tensor F5[R] is integrable, and

foaa(x) = —72—sine’[E(r)"*r]( [l sk(£)
satisfies R = —f* O’Sd'

The sinc-, sinc’-, and sinc”-transforms may all be expressed in terms of
sin-transforms. Furthermore, the two integral transforms that constitute the
even kernel may, under some mild assumptions, be expressed in terms of a
single integral transform. However, from the point of view of numerics, the
authors found no advantage in doing either. In our applications, the numerical
integration scheme of Levin (1996) can be applied to efficiently evaluate the
integral transforms.

A.5 VON KARMAN, MATERN, AND SHKAROFSKY CORRELATIONS

In von Kdrmaén (1948), it is argued that the energy spectrum of homogeneous,
isotropic turbulence at high Reynolds number should satisfy E(z) « z* for
small values of z and E(z) « z75/3 when z is in the so-called inertial range.
The behaviour E(z) o 2753 corresponds to Kolmogorov’s celebrated 5/3-law
(Kolmogorov, 1941). Von Kdrman (1948) suggests the interpolation E(z) «
z4(x>+2)7'7/% which displays the two scaling behaviours for z < « and z > «,
respectively. Furthermore, von Karman notes that the longitudinal correlation
function
_ 2*/3 1/3
pek(r) = o7 (MIr) Ko ) (a11)
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FIGURE A.3. The solid curve shows the Matérn correlation function with v = 1/3 (the von Karman
case) and « = 1. The dashed curve shows the Shkarofsky correlation function with v =1/3, x =1,
and A = 1/2. Note the cusp at zero for the Matérn correlation function.

yields the desired energy spectrum. The von Karmdn correlation structure is
a special case of the Matérn family of spatial correlation functions on IR",

1-v

PMat(X) = §(—v)<1<||x|w1<v<x||x||> (a.12)

where v > 0 is a shape parameter and « > o is a scale parameter. The von Kér-
man correlation function is obtained by setting v = 1/3. See Guttorp and
Gneiting (2006) for an excellent background on the Matérn correlation family.

The sample paths of a stochastic process need not be differentiable. If the
vector field is not differentiable, the concept of incompressibility in the sense
of (a.5) is meaningless. However, the expressions in (a.6) and (a.7) are still
well-defined, and we can avoid the problem of differentiability by requir-
ing that isotropic, incompressible vector fields have a spectral tensor given
by (a.7). A stationary stochastic process is differentiable in mean square if and
only if its correlation function is twice differentiable. The longitudinal corre-
lation function (A.11) does not yield a process which is differentiable in mean
square. Indeed, the Métern correlation function (a.12) is twice differentiable
if and only if v > 1.

The von Kdrmdn correlation structure gives an infinitely long inertial range
which is not realistic in the case of finite Reynolds number. At the smallest
scales, viscous forces become dominant and the kinetic energy of the flow
is dissipated into heat. Shkarofsky (1968) argues that the longitudinal cor-
relation function should not have a cusp at zero, but rather have zero first
derivative and negative, but finite, second derivative. Accordingly, Shkarof-
sky proposes the correlation function

(Vx> + 42)" K, (V]I + A?)

Pshk(x) = 7K, (k) , (a.13)

which has these properties, see fig. A.3. The parameter A > o is a second scale
parameter. In the limit A — o the Matérn correlation family is obtained.

PROPOSITION A.13. Suppose that the longitudinal correlation function p, is either
the Matérn correlation (a.12) or the Shkarofsky correlation (a.13). Then the cor-
responding longitudinal one-dimensional spectral density function F,[p,] is given
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as follows,
_T(v+1/2)
Fl[pMat](Z) - \/El‘(v)
A A)Y —v-1/2
F.lpsnkl(z) = \/T_T(%(AVKZ +z2) / K_V_l/z(AW@ +22). (a.15)

Furthermore, the energy spectrum (a.7) of the corresponding isotropic and incom-

2V(K2 + 22)—1/—1/2) (A.14)

pressible vector field is given by

_ 24F(V+5/2) 2y
EMat(z)—a \/EF(V) K

A5 A -v—5/2
Esnk(z) = 02\/?12?(13/,\)240\/% +z2) o/ K,V,S/z(/\VKZ +z2). (A.16)

Z4(k? +2°)7V75?,

PROOF. The first two identities follow from (Gradshteyn and Ryzhik, 2007, for-
mulas 6.699.12 and 6.726.4). The last two identities follow from (a.8) by dif-
ferentiation and use of the identity %ZVKV(Z) =-z"K,_,(2). |

The Shkarofsky energy spectrum satisfies fooo Espi(r)?rdr < co. Indeed,
the energy spectrum is bounded, and from the asymptotic property of the
Bessel functions, K,(z) ~ e"?z7'/> for large z, the integrability follows eas-
ily. Proposition aA.12 may therefore be applied to calculate a kernel f which
in (a.4) will yield the Shkarofsky energy spectrum. On the other hand, the
Matérn energy spectrum satisfies the corresponding integrability condition
if and only if v > 1/2. In the context of turbulence we have v = 1/3 (the
von Kirman case) in order to obtain the Kolmogorov 5/3-law in the iner-
tial range. Therefore, proposition A.12 cannot immediately be applied to the
von Kdrman case.

Note that the Shkarofsky spectral density (a.15) decreases exponentially
fast to zero as z — oo and does therefore not satisfy the Paley-Wiener condi-
tion,

jw log F, [pshi](2) p

—y Z> —c0. (a.17)

Consequently (Doob, 1953, Thm. XII.5.3), a Brownian semistationary process
(Barndorff-Nielsen and Schmiegel, 2009) cannot possess the Shkarofsky cor-
relation structure.

A.6 APPLICATION TO ATMOSPHERIC BOUNDARY LAYER FLOW

To illustrate the presented methods, we will study a data set consisting of
measurements of the longitudinal velocity component in atmospheric bound-
ary layer flow. We first demonstrate that the Shkarofsky correlation fits the
data very well. We then derive examples of kernels which will yield a three-
dimensional isotropic and incompressible random vector field whose longi-
tudinal correlation is that of Shkarofsky. Since atmospheric boundary layer
turbulence possesses structures across a wide range of length scales, simula-
tion under the three-dimensional model is non-trivial. We therefore consider
also a one-dimensional model for which simulation is simpler to perform. Us-
ing a normal inverse Gaussian Lévy basis we are able to reproduce some of
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the non-Gaussian behaviour of the velocity increments. However, the use of a
non-Gaussian Lévy basis yields discontinuous, i.e. physically unrealistic sam-
ple paths.

A.6.1 DESCRIPTION OF THE DATA

The data consist of 20 million one-point measurements of the longitudinal
component of the wind velocity in the atmospheric boundary layer, 35 m above
ground. The measurements were performed using a hot-wire anemometer and
sampled at 5 kHz. The time series can be assumed to be stationary, the mean
is U = 8.3m/s, and the standard deviation is 0 = 2.3m/s. We refer to Dhruva
(2000) for further details on the data set (the data set is called no. 3 therein).
The data are standardised to have zero mean and unit variance.

To interpret the data set in the spatial domain, we apply the Taylor frozen
flow hypothesis (Taylor, 1938), which states that the turbulent flow may be
considered as a frozen field which, in time, is convected with the mean flow
without relevant distortion, provided the velocity fluctuations are small com-
pared to the mean flow velocity. Thus, if u denotes the velocity component
in the mean flow direction, i.e., the longitudinal component, and if x denotes
the position along a line in the mean flow direction, then u as a function of
space x and time ¢ satisfies the relation

u(x, t)=u(x-Urt,t+ 1),

where T denotes some offset in time. The Taylor frozen flow hypothesis is as-
sumed to be valid when ¢/U < 1. This is not the case for the present data
set, since 0/U = 0.28. In such cases various corrections exist to appropriately
express spatial statistics in terms of the measured temporal statistics. In par-
ticular, the Lumley correction, see e.g. Champagne (1978), may be applied to
the longitudinal one-dimensional spectral density F, [p, ]. The Lumley correc-
tion is noticeable at the smallest length scales (the dissipation range). How-
ever, the Shkarofsky spectral density fit the corrected spectral density equally
well, and the application of the correction has no influence on the conclu-
sions of the present paper. We will therefore, for the sake of convenience and
simplicity, apply only the Taylor frozen flow hypothesis and not any further
corrections. The sampling frequency 5kHz and U = 8.3m/s imply a spatial
resolution of 1.66 mm. In what follows, all spatial length scales refer to the
unit meter.

The longitudinal one-point spectral density F,[p,] is estimated from data
using Welsh’s overlapping segment averages with a Hanning taper, a segment
length of 4 million, and a segment overlap of 50%. See Percival and Walden
(1993) for details on the method. The parameters of the Shkarofsky spectral
density (a.15) are estimated using a least squares method in the double loga-
rithmic representation of the spectral density. The fitted parameters and the
corresponding spectral density are shown in fig a.4 together with the mea-
sured spectral density. The agreement between data and fit is excellent. We see
that v = 1/3 which agrees with Kolmogorov’s 5/3-law for the inertial range.
For comparison, the Matérn spectral density (a.14) is also shown, with the
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FIGURE A.4. The longitudinal one-dimensional spectral density measured in the atmospheric boundary layer. Circles de-
note the estimated spectral density using Welsh’s overlapping segment averages with a Hanning taper, a segment length
of 4 million, and a segment overlap of 50%. The black solid and dashed curves denote the fitted Shkarofsky and Matérn
spectral densities, respectively. The vertical lines mark the estimated values of x and 1/A for the Shkarofsky spectral
density.

same setting of the parameters v and « as for the Shkarofsky spectral density.
It is evident from the figure that the Matérn spectral density cannot reproduce
the behaviour of the data at high wave numbers (small length scales).

The Shkarofsky energy spectrum may seem like a convenient expression
which happens to fit the data well due to its flexibility. However, it is close to
a more rigorously derived result for the behaviour of the energy in the inertial
and dissipation ranges of fully developed isotropic turbulence. Sirovich et al.
(1994) show that

(/\2)7/6K17/6(/\z) + (/\2)13/6K23/6(/\z) z> K,

E(z) « é .18
(Z) ((,\2)2/3+%(/\Z)5/3)€_/\Z 7 0o, (Al )

The corresponding results for the Shkarofsky energy spectrum are

()\2)7/6K17/6(/\z) zZ> K,

Eghk(2) o
(Az)*/3e 72 Z — oo,

It is possible to modify the Shkarofsky energy spectrum such that (a.18) is
obtained while the expressions for the spectrum and correlation function re-
main simple. This is outside of the scope of the present paper. Note that the
spectrum (A.18) decays exponentially fast to zero as z — oo and therefore does
not satisfy the Paley-Wiener condition (a.17).

A.6.2 THE THREE-DIMENSIONAL MODEL
Under the assumptions of isotropy and incompressibility, the even kernel foyen

and odd kernel f 44 are given by proposition a.12. The matrix-valued kernels
can be expressed in terms of three scalar-valued functions f, f,, f;: R, = R,
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FIGURE A.5. The scalar functions f; (solid), f, (dotted), and f; (dashed) determining the even and odd kernels feven(x) =
f1 (IxIn££T +£(lIxI)I and foqq(x) = f5(IIx])) sk(%) of the isotropic and incompressible three-dimensional model. The kernels
will reproduce a correlation structure whose longitudinal correlation is the Shkarofsky correlation fitted to the atmo-
spheric boundary layer data set. The functions f; and f; are non-negative whereas f,(r) is non-negative for r < r, and
negative for r > r, where 7, is slightly larger than 1/x. The inset shows the local slope of the scalar functions f;,|f,|, f; in
the double logarithmic representation.

specifically
feven(®) = fi(lIxI)22T + £ (IxII)1, Joaa(x) = f(IIxl) sk(%).

Figure a.5 shows the functions f,, f,, f; calculated numerically from the Shka-
rofsky energy spectrum (a.16) with the parameters estimated from the atmo-
spheric boundary layer data set, see fig. o.4. Within the dissipation range and
the inertial range, the even and odd kernels display similar behaviour, but in
the energy range (large length scales) the odd kernel decays rapidly whereas
the even kernel decays only algebraically.

It is not guaranteed that the derived kernels are integrable with respect to
an arbitrary Lévy basis. However, since the derived kernels are bounded, and
since we assume the homogeneous Lévy seed to have finite second moment, it
can be shown that a sufficient condition for A-integrability is that the operator
norm of the kernel is square integrable, if A* is Gaussian with zero mean, and
integrable and square integrable otherwise. Since the operator norms of ££7,
I, and sk(%) are equal to 1, and since f;, f,, and f, are bounded and decay not
slower than r™# as r — oo, according to the inset of fig. a.5, integrability of
both the even and odd kernel with respect to any Lévy basis derived from a
homogeneous seed with finite second moment is guaranteed.

Simulating from the three-dimensional model is challenging if the struc-
tures are to be reproduced across all length scales from approximately 1073
to 104, i.e., across seven orders of magnitude. As detailed in appendix a.a,
the kernels may through the use of a partition of unity be decomposed into
“smaller” kernels each of which yields a computationally tractable simulation
problem. The details of the three-dimensional model will be studied through
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FIGURE A.6. Even kernel feyen (solid) and odd kernel f,qq (dashed) under the one-dimensional model. The kernels will
reproduce a correlation structure whose longitudinal correlation is the Shkarofsky correlation fitted to the atmospheric
boundary layer data set. The inset shows the local slope of the kernels in the double logarithmic representation.

simulations in a forthcoming paper.
A.6.3 THE ONE-DIMENSIONAL MODEL

Under the one-dimensional model we seek to model the longitudinal velocity
component along a line in the direction of the mean flow. The one-dimensional
model is considerably simpler than the three-dimensional model as the co-
variance tensor reduces to the auto-covariance function R: R — IR. So far we
have focused on reproducing the correlation structure. In this subsection we
will use the one-dimensional model to provide a few simulated examples to
compare the model to the measured data set in terms of higher order statis-
tics. The simulations show that the absense of volatility modulation implies
that the model is capable of reproducing only part of the observed features of
the measured data. The simulation procedure is described in appendix a.A.

The even and odd roots of the longitudinal one-dimensional spectral den-
sity F,[R] are given as

Qeven(¥) = 1 [R] ()2, Qodd () = sign(y)F, [R](y)"/>.

From proposition a.g it follows that the corresponding kernels are
feven(%) = V2/1cos[Fy [RI2](x),  foaa(x) = V2/mesin[Fy[R]"?](x).

Figure a.6 shows the even and odd kernels calculated from the estimated
Shkarofsky longitudinal one-dimensional spectral density function (a.15). Com-
pared to the three-dimensional model, the behaviour of the even and odd ker-
nels has been reversed: The even kernel decays rapidly whereas the odd kernel
decays only as r™* as r — oo (see the inset of fig. a.6).

The conditions for A-integrability (with respect to a Lévy basis derived
from a homogeneous seed with finite second moment) of the three-dimensio-
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FIGURE A.7. An except of the measured data (top), a simulation using the odd kernel and a Gaussian homogeneous Lévy
basis with A* ~ N(o,1) (middle), and a simulation using the odd kernel and a normal inverse Gaussian homogeneous
Lévy basis with A* ~ NIGV(0.999,0.09,0,1) (bottom). The normal inverse Gaussian simulation appears continuous since
it is constructed as a linear interpolation of a simulated skeleton as described in appendix a.a.

nal kernels also apply for to one-dimensional kernels. Due to the rapid decay
of the even kernel, A-integrability is guaranteed. However, due to the slow
decay, the odd kernel is not integrable in general, only square integrable. It
will therefore only be integrable with respect to a Gaussian Lévy basis with
zero mean. In practice, the problem can easily be avoided by truncating the
kernel.

The kernels have been derived entirely from the auto-covariance function
and therefore determine only the second order structure of the process. Higher
order properties, for example distribution of increments, are determined by
the choice of the Lévy basis. Figure A.7 compares an excerpt of the measured
data with two simulations using the odd kernel. One simulation uses a ho-
mogeneous seed with A* ~ N(o,1) and the second uses a homogeneous seed
with A* ~NIGY(0.999,0.09,0,1). See fig. a.1 for a comparison of the distribu-
tions of the seeds. The nature of the two simulations differ from the measured
data. Informally, the Gaussian simulation displays too many small increments
and too few large ones compared to the measured data, whereas the normal
inverse Gaussian simulation displays jumps of size comparable to the incre-
ments of the measured data set. The extreme steepness of the normal inverse
Gaussian seed is needed in the absense of volatility modulation to ensure that
the increments of the process at intermediate lags resemble those of the mea-
sured data, see below. The discontinuity of the normal inverse Gaussian sim-
ulation is a consequence of the use of a non-Gaussian Lévy basis. A suitably
volatility modulated Gaussian Lévy basis will yield a process that has contin-
uous sample paths and is capable of reproducing many stylised features of
turbulence (Barndorff-Nielsen and Schmiegel, 2009; Hedevang, 2011).
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FIGURE A.8. Distribution (log, ,(pdf) offset vertically for clarity) of increments of (a) the measured data set and (b) a
simulation using the odd kernel and a normal inverse Gaussian homogeneous Lévy basis with A* ~ NIGY(0.999,0.09,0, 1).
The increments are calculated over ten logarithmically spaced lags from 5 mm to 166 m, spanning approximately the
entire inertial range. The lag increases from bottom to top.
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FIGURE A.9. The skewness (a) and kurtosis (b) of the increments over various lags for the measured data set (circles), a
simulation using the odd kernel (dashed), and a simulation using the even kernel (solid). Both simulation used a normal
inverse Gaussian homogeneous Lévy basis with A* ~ NIGY(0.999,0.09,0,1)). The kurtosis is negative for a few of the
largest lags and therefore not shown in the double logarithmic representation.

The distribution of the increments Ajv(x) = v(x) — v(x —I) over some lag |
of the turbulent velocities is known to be highly non-Gaussian across a wide
range of lags and well described by normal inverse Gaussian distributions
(Barndorff-Nielsen et al., 2004). Figure A.8 compares the distributions of the
measured increments A;v(x) across various lags to the distributions of the in-
crements of the normal inverse Gaussian simulation using the odd kernel. The
increments of the normal inverse Gaussian simulation using the even kernel
are similar and not shown. As the lag increases, the distributions become less
steep and ultimately get close to normal. However, the transition towards nor-
mality appears to be faster for the simulation than for the measured data. This
is confirmed by fig. a.9 (b) which shows that the kurtosis of the simulated in-
crements decreases much faster as a function of the lag than the kurtosis of
the measured increments. This emphasizes the necessity of volatility modu-
lation. Figure a.9 (a) shows the skewness of the increments for the measured
data set and for the normal inverse Gaussian simulation using both the even
and the odd kernel. The skewness of the increments corresponding to the
odd kernel decreases much faster than the measured skewness. Not surpris-
ingly, the skewness is zero for the increments corresponding to the even ker-
nel. The skewness of the velocity increments of the measured data manifests
Kolmogorov’s 4/5-law. The particular choice of the normal inverse Gaussian
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FIGURE A.10. The two-point correlator ¢, , of order (1, 1) of the surrogate energy dissipation (ap-
proximated using squared increments over the smallest lag) of the measured data set (circles) and
a normal inverse Gaussian simulation using the odd kernel (solid) as a function of lag in double
logarithmic representation.

Lévy basis ensures that the skewness and kurtosis of the increments of the
simulation using the odd kernel agree reasonably well with the those of the
measured data when the lag is near 0.2 m (equally possible for any other lag).
We conclude that a highly peaked, slightly asymmetric normal inverse Gaus-
sian Lévy basis is able to reproduce some of the non-Gaussian behaviour of
the turbulent velocity increments at a fixed lag, but not for all lags simultane-
ously.

In addition to the heavy-tailed distribution of the velocity increments, the
large increments tend to occur in clusters, i.e., in rapid succession followed by
relative calm periods. Some of this behaviour is captured in the two-point cor-
relator of the surrogate energy dissipation (Cleve et al., 2004). The surrogate
energy dissipation is given as € = 15v(dv/dx)?, where v denotes the viscosity.
The two-point correlator (of order (1,1)) of the surrogate energy dissipation
is then defined by ¢, ,(I) = E[e(I)e(0)])/(E[e(])]E[e(0)]). Figure a.10 shows the
characteristic power law behaviour of c, ;, observed in most turbulent data
sets. Notice that this behaviour is not reproduced by the simulated data as
the correlator quickly drops to approximately 1 when the lag is near o.005,
corresponding to essentially uncorrelatedness of the surrogate energy dissi-
pation at greater lags. The observed behaviour is due to the lack of volatility-
modulation of the Lévy basis.

A.7 CONCLUSION AND OUTLOOK

A random vector field was defined as the convolution of a deterministic matrix-
valued function (the kernel) with respect to a vector-valued Lévy basis. Under
some mild assumptions, any covariance structure can be reproduced, and the
kernel can be expressed in terms of the covariance tensor to be modelled. In
case the random vector field is isotropic and incompressible, the kernel can
be expressed in terms of the energy spectrum.

With applications to turbulence in mind, a data set consisting of measure-
ments of the longitudinal velocity component at a single point in space was
analysed. The Shkarofsky correlation was shown to fit the data very well, from
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the largest length scales in the energy range across the inertial range and to
the smallest length scales in the dissipation range. Under the assumption of
incompressibility the corresponding even and odd kernels were derived, each
of them reproducing the Shkarofsky correlation.

Since turbulence possesses structure across a wide range of length scales,
simulation is non-trivial if all scales are to be resolved. The straightforward
approach is computationally intractable on an ordinary modern computer.
The simulation problem can be solved by partitioning the kernel into smaller
kernels using a smooth partition of unity.

While simulations from the three-dimensional model were not given, the
one-dimensional model was used as a proxy to demonstrate that the use of
a highly peaked and slightly skewed normal inverse Gaussian Lévy basis is
able to reproduce the distribution of increments for a fixed lag. The model
was not able to reproduce the intermittency of turbulence, the fingerprint of
which appears in the scaling of the two-point correlator of squared velocity
increments.

So far, a possible volatility modulation ¢ in (a.1) has not been used. Un-
der the purely temporal model considered by Barndorff-Nielsen and Schmie-
gel (2009) the o-process is, up to a normalisation constant, determined by the
quadratic variation of the process. This in turn essentially allows us to identify
the o-process with the surrogate energy dissipation, € = 15v(dv/dx)?. Cleve
et al. (2008) and Hedevang and Schmiegel (2012) demonstrate how the sur-
rogate energy dissipation may be modelled as the exponential of an ambit
process, specifically

e(x,t) = exp(L(x’t) dA) = exp(A(A(x, 1))

where the integrand is constant and equal to 1. For three-dimensional velocity
measurements, no surrogate is needed, and the energy dissipation is given as
3 Bvi 81}] 2
=y (2o
,]=1
It remains to be investigated how this expression relates to a volatility modu-
lation of the Lévy basis. In addition, the three-dimensional model should be
investigated in more detail and compared to full three-dimensional data (see
Rosales and Meneveau (2006) for a list of statistical features).

From the point of view of the wind energy industry, the isotropic three-
dimensional model is far too idealised, as the atmospheric boundary layer
turbulence is anisotropic since, in general, we have R(o),, > R(0),, > R(0)5,
(Panofsky and Dutton, 1984). Proposition a.g can be applied to the “sheared”
spectral tensor of Mann (1998) to produce a kernel yielding the desired anisotropy.
However, the presented Lévy based framework allows for anisotropy to be in-
troduced in other ways. If we consider the process X = feyen * 0 dA where
foven(%) = fi(IIxI)%£T + £,(||xI)I is the even kernel from earlier, then the co-
variance tensor R is given by R(x) = Jle feven(x — ) coV(A®) feven(v) dy. Some
calculations will then show that

R(0) = acov(A™) + btr(cov(A*)I (a.19)
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where
a=am [ (BAUP L HAOAO L) dr

— 1 2.2
b_47'(J; 15f2(r) r*dr.

Therefore, by specifying cov(A*) appropriately according to (A.19), any co-
variance matrix R(o) can be achieved. Thus, the anisotropy can be modelled
through the Lévy basis.

Since the derived kernels contain most of their mass near zero, see fig. .5,
the outcome of the Lévy basis near a given point contributes most to the value
of the process X = f o dA at that given point. Therefore, a possible inhomo-
geneity and anisotropy of the process may be encoded in the Lévy basis. This
has some potential applications to wind energy. Firstly, the passage of a wind
front, where the variance of the wind speed increases, say, can conveniently
be modelled by letting the variance of the Lévy basis increase in the direction
of the motion of the wind front (Nielsen et al., 2007). Secondly, properties like
wind shear and veer (the dependency of magnitude and direction on height
above ground) may likewise be encoded in the Lévy basis. Finally, the wake
behind a wind turbine causes the wind field, experienced by a downstream
wind turbine, to be strongly inhomogeneous. An appropriately constructed
Lévy basis could ensure that the model reproduces the rotation of the wake
as well as the lower mean wind speed and higher turbulence intensity" inside
the wake. In turn, this can be applied to load and performance calculations of
wind turbines within wind farms.

A.A ASPECTS OF SIMULATION

Simulation of the processes considered in this paper is in principle trivial
since efficient convolution algorithms can be applied. Unfortunately, since
atmospherical boundary layer turbulence possesses structure across a wide
range of scales, the straightforward approach obtained by discretising the ker-
nel in (a.4) easily yields a discrete convolution problem that is too large to
be computed on an ordinary modern computer, even in the one-dimensional
case. The purpose of this appendix is to elaborate on the problem and demon-
strate a way to solve it.

For the sake of simplicity of the exposition we will consider only scalar-
valued processes defined on R, i.e., the one-dimensional case, and we assume
no volatility modulation, i.e., 0 = 1. At the expense of some additional book-
keeping, the results of this appendix extend to the (n+ o, #n)-dimensional case.
Let X be defined as in (a.4),

X(x) = Lf(x—y)z\(dw,

where A is a Lévy basis given by a homogeneous seed (A*,Leb) and where
f: R — Ris A-integrable.

1 - The turbulence intensity is defined as the ratio of the standard deviation of the wind speed to
the mean wind speed.
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A.A.1 APPROXIMATING SKELETONS

Let & > o. By the d-skeleton X? of X we will understand the process on 6Z
obtained by evaluating X at integer multiples of o,

X°(5k) = X (k).

The 0-skeleton will through interpolation be extended to a process on IR, also
to be denoted by X?°. In this language, a simulation from X will constitute a
realisation of some d-skeleton at some finite subset of the integers.

We have that

XO(5k) = ZJ  f(ok-p)A(dy) as. (a.20)

The cumulant functions of the inner integrals are given by

S(k—j+1)
clit]  sek-paup)=[ oAy
(0(j-1),0f] o(k=j)
In the Gaussian case, where A* ~ N(a*, f*), the distribution of the o-skeleton

is given by

X0k ~ ) (af_;+(Bi_)*Nj(o,1))
]‘ —

=—00

where

o(j+1) o(j+1)
aj=a [ sy g=p | fowray
i )
and where the Nj(o, 1), j € Z, are independent. If the integrals in a; and ﬁ;’ can
be evaluated efficiently and if all but finitely many are negligible, we obtain
an efficient way of simulating any o-skeleton. In the three-dimensional case,
this would be equivalent to the Fourier space analogue employed in Mann
(1998).

In the non-Gaussian case, for example, if the distribution of the seed A* is
normal inverse Gaussian, the decomposition (a.20) does not necessarily yield
a sum of independent random variables whose distributions are normal in-
verse Gaussian. To proceed we will instead approximate the 6-skeleton by re-
placing the kernel function with a step function. Let 6 > o and n > o be given.
By a (9, n)-skeleton X®" of X we will understand a process on 6Z defined by

XOm(5k) = f (5K~ ) Aldy)
R

where

n

o) = Z 1(5(j—1),5j](}’)fjb’"
j=—n+1
and where fﬁ’" = f(x;) for some x; € (6(j—1),6j]. The function £ will also be
called a (9, n)-skeleton of f. A (9, n)-skeleton of X may through interpolation
be extended to a process on R.
We must now address how well the distribution of the marginals of the
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skeleton and the auto-covariance function of the skeleton approximate those
of the original process. The cumulants of the lowest orders provide a simple
measure of similarity of distributions. Let c,, denote the cumulant of m’th
order. Then

En(X(6) = (A ff " dy,

en(X*"(9K)) = €p(A") Z (F"s.

j=—n+1

Hence, the cumulants of the marginals of the skeleton X®" approximate those
of the original process X well, if
n
IJ fly)™d (fjé’n)m5| (a.21)
]——n+1
is small. Since the finite sum in (a.21) is a Riemann sum approximation to the
integral in (a.21), an approximation to any desired level of accuracy is always
possible, provided f™ is Riemann-integrable.
The auto-covariance function R of X is given by

R(x) = cov(X(x), X(0)) = var(A¥) Lf(lxl +v)f (v)dy

Likewise, the auto-covariance function R>" of the (6, n)-skeleton X®" is given
by
n—|k|
0, on pon
RO™(5k) =var(A) ) ft £,
j=—n+1
Furthermore, if we extend the (9, 1)-skeleton through interpolation to a pro-
cess on R,
L
XPM(x) = ) Iy(x)XO"(S(Lxl/6] + 1))
=1,

such that the extension agrees with the skeleton on integer multiples of 9, then
it follows that the auto-covariance function of the extended process is given
in terms of the auto-covariance function of the skeleton in a similar way,

I,
R(x)= ) ()R (3(LIxl/5]+ 1))
=1,

Zeroth order interpolation is obtained when I, = o, I; = 0, and h,(x) = 1. First
order (linear) interpolation is obtained when I, = o, I, = 1, hy(x) = 1—x+0|x/0],
and h,(x) = x— 9| x/d].

We summarise the above discussion in the following proposition which
provides some simple guidelines for how the (0,n)-skeleton can be used to
approximate the process X.

PROPOSITION A.15. Let X(x fIR x —y)A(dy) where A is given in terms of a
homogeneous Lévy seed (A* Leb). Let 6 > o and let n be a positive integer. Let
o™ be a (5,n)-skeleton of f, and let X°"(5k) = flbe” (0k —v) A(dy) denote the
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o,
fom o6 N | O W | A K
foven 1 0.0005 3x10° 1.64x1077
— 2 — — 1.52 X 1078
— 3 — — 1.10x 1078
— 4 — — 1.14 X 1078
fodd 2 0.0005 2x10% 2.57X1077

— 4 — — 1.17Xx10 '°

TABLE A.1. The absolute error (fifth column) relevant for the cumulants of orders m = 1,2,3,4
of the marginal distribution of the process f + dA obtained when replacing the kernel f by a
(5,n)-skeleton O with f]?'” = £(8(j - 1/2)).

corresponding (9, n)-skeleton of X. Provided the m’th cumulants of the marginals
of X and X°" exist, they satisfy
- n .
en(X(0) - cnX° (o) =enl ) [ FIdy= ) () (a22)
R j=—n+1

Furthermore, if the auto-covariance function R of X is approximated by an interpo-
lation of the auto-covariance function R>" of the skeleton, then the corresponding
interpolation of the skeleton provides, on the level of covariances, an approximation
of the process X.

Figure a.6 shows the even and odd kernels that each will yield the esti-
mated Shkarofsky correlation structure, see fig. A.4, under the one-dimen-
sional model. The kernels display structures across a wide range of scales, es-
pecially the odd kernel which decays only algebraically at small and large ar-
guments. Table a.1 shows the absolute error of the approximating sum in (a.22)
for cumulants of orders 1 to 4. For the odd kernel, the cumulants of odd order
are all zero. The values of 6 and n were chosen to ensure that the cumulants
are approximated to six significant digits, that the auto-covariance function is
well approximated by the skeleton, and that the spectral density function esti-
mated from simulations from the skeleton agrees with the Shkarofsky spectral
density function. The (5, n)-skeleton f®" was defined by fjé’” = f(6(j — 1/2)).
Since the resolution of the data set is 04,1, = 0.0017, we conclude that the res-
olution ¢ of the approximating skeleton should be 3 to 4 times smaller. Fig-
ure A.11 (a) shows excellent agreement between the estimated Shkarofsky cor-
relation and the approximation obtained from the (0.0005, 3 x 10°)-skeleton of
the even kernel.

Since the skeleton of the odd kernel requires n = 2 X 109 to obtain an ac-
curate approximation of the cumulants and of the auto-covariance function,
merely storing the kernel in memory is close to the limit of an ordinary mod-
ern computer. The additional storage needed for the realisation of the Lévy
basis and to perform the convolution is then beyond the limits of such a com-
puter. This motivates a decomposition of the problem into parts as explained
in the following subsections. Each part should be sufficiently small to be com-
putationally tractable. Note, however, that the even kernel decays much faster
at large scales and hence requires only # = 3 x 10® which is trivially manage-
able.
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FIGURE A.11. (a) The complementary auto-covariance functions 1 —R in double logarithmic representation. The solid curve
denotes the estimated Shkarofsky correlation, and the circles denote the approximation obtained from the (9, n)-skeleton
of the even kernel with 6 = 0.0005 and n =3 x 10°. (b) The function (x;L,,[,,k) from the smooth partition of unity (a.23)

plotted with L; = 0.1 and L, = 6 for k = 0,1, 2,3 (from left to right).

A.A.2 SMOOTH PARTITIONS OF UNITY

In this subsection we construct a smooth partition of unity. It is used to de-
compose the kernels into parts that each yield a computationally tractable
process. Consider the function ¢, : R — R defined by

_Jo x<o,
Palx)= e V/* x>o.
The function ¢, can be used as the fundamental building block in the con-
struction of smooth partitions of unity on the real line. Specifically, define ¢,

by
¢4 (x)
¢1(x)+ ¢y (1 -x)
Then ¢, is smooth, ¢,(x) = o for x <o, ¢,(x) = 1 for x > 1, and strictly increas-
ing on the interval (o, 1). Define for a <b < ¢ <d the function ¢, by

¢2(x) =

x—a d—x

botsabod == )0u(7C)
Then ¢3 is smooth, zero outside of the interval (a,d), and 1 on the interval
[b,c]. Define for L >0 and o < r <1 the function ¢, by

¢, Lr)=p5(x;~-L,~rL,rL,L).

Then ¢ 418 smooth, zero outside of the interval (~L,L), and 1 on the interval
[-rL,rL]. In the case r = o, ¢, has the simple expression,

1 X =0,

¢, (x;L,0)= (1 +exp((1 —(|xl/L))~" = (|x|/L)_1))_1 o< |x|<L,

o |x| > L.
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on c
f 1) n mameIRf(y)mdy—Z;?:_nﬂ(fj )mal
Jeven,o 0.0005 40400 2.02X10°%
feven,1 0.05 30000 5.86x1077
Jeven,> 5- 300 2.71x109
fodd,o 0.0005 40400 2.94%x10 '
fodd, 1 0.05 162800 4.11x10'°
fodd,» 5. 200000 1.11X10 '°
fodd,;  500. 2000 6.55%x10 '3

TABLE A.2. The maximal absolute error (fourth column) relevant to the approximation of the first
four cumulants of the marginal distributions of the processes feyen k *dA and foqq k *dA using a
(0,n)-skeleton of the partitioned kernels feyenk and foqq k. respectively.

Furthermore, lim,_,; ¢,(x;L,r) = 1(_,1)(x). Define for k = o,1,2,... the func-
tion ¢ by

¢s(L,r, k) = ¢ (|Ix| = kL(1 +1); L, 1)

4L, ) k=o,
- Gy(x—kL(1+7);L, 1)+ P, (x +kL(1 +7);L,r) k=o.

Then {qf)S(—; Lr,k)| k =o0,1,2,...} constitutes a smooth partition of unity on
the real line.

Informally, the structure of the estimated kernels is more naturally sepa-
rated into regions on a logarithmic scale than on a linear scale. Define there-
forefor L, >0,L, >0,and k = 0,1, 2,... the function ¢ by

P(x;Ly, Ly, k) = ¢ps(arcsinh(x/L,); L,, 0, k). (a.23)

Then {(—L,,L,, k) | k = 0,1,2,...} constitutes a smooth partition of unity on
the real line. Figure a.11 (b) shows (—;L,,L,,k) with L, = 0.1 and L, = 6 for
k=o,1,2,3.

A.A.3 PARTITIONS OF KERNELS

Let f: R — R denote a kernel and let {¢; | k = 0,1, 2,...} denote a non-negative
smooth partition of unity on R. Define f; = fp;. Then f*dA =} ;2 fi*dA. The
idea is to choose the partition of unity such that each summand can be approx-
imated sufficiently well using (9, n)-skeletons with each 1y small enough to
yield a computationally tractable discrete convolution. In practice, the infi-
nite sum must be truncated at some K. The truncation limit can, for example,
be chosen such that the cumulants of the marginals of Z}If:o fx *dA are suffi-
ciently close to those of the original process f *dA. It is important to note that
the process f *dA is decomposed into a sum of processes defined in terms of
the same Lévy basis.

We now partition the estimated even and odd kernels as follows. Let the
partition of unity be given by i(—;0.1,6,k). We define the partitioned kernel
functions by

f6ven,k(x) = feven(x)¢(xi O.1,6,k), k=o0,1,2;
fodd k(%) = fodd(X)¢(x;0.1,6,k), k=o0,1,2,3.
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FIGURE A.12. Double logarithmic representation of the partitioned kernel functions feyenk (solid) and foqqx (dashed)
given by feven/odd k(%) = feven/odd (¥)¥(x;0.1,6,k) for k = 0,1, 2 (the even case) and k = o, 1,2, 3 (the odd case). The original
kernel functions are shown in grey.
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FIGURE A.13. The solid curve shows the longitudinal one-dimensional Shkarofsky spectral density function estimated
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from the atmospheric boundary layer data. The circles show the spectral density function estimated from a simulation
of length 10® using the partitioned even kernel (a) and odd kernel (b), respectively, with resolutions and sizes of the
skeletons as shown in tab. a.2. The spectral density function was estimated using Welsh’s overlapping segment averages

with a Hanning taper, a segment length of 20 million, and a segment overlap of 50%.

Figure a.12 shows the partitioned kernels. Truncation limits of K = 2 and
K =3 were deemed sufficient in the even and odd case, respectively. Table a.2
shows that, by partitioning the kernels using a suitable partition of unity, the
resolution 0 of the skeleton can in most cases be increased by several orders
of magnitude when compared to the unpartitioned case (see tab. a.1). This
implies in turn that the the size n of the skeleton can be decreased by several
orders of magnitude.

The simulation of f *dA using partitioned kernels can be described as fol-
lows. Assume that the (9, 11)-skeleton f%"* +dA has been simulated and re-
fined to a 0,-skeleton through interpolation. Then simulate the (Og,, 7gy,)-
skeleton f%+"+ + dA by appropriately using the already simulated parts
of the Lévy basis. Refine the simulated (0,1, )-skeleton to a o,-skeleton
through interpolation. Repeat until all K + 1 skeletons have been simulated
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and refined to 6,-skeletons. Finally, calculate the sum of the K + 1 skeletons
to obtain a 0, -skeleton of f *dA.

Figure a.13 shows excellent agreement of the spectral density function
from which the kernels were derived and the spectral density function es-
timated from a long simulation using the partitioned kernels. The simulation

of a 0.0005-skeleton of fuyen * dA and of fogq * dA of size 108

using the ap-
proach of partitioned kernels took in both cases approximately a minute on

an ordinary laptop.
A.A.4 EXTENSION TO HIGHER DIMENSIONS

Let {¢y: R—> R|k=0,1,2,...} be a partition of unity on R. Let S be a set. For
any function g: S — R we obtain a partition of unity {1/)5 } on S by defining
1,!)5 = 1 o g. In particular a norm on R” induces a natural partition of unity
on R". We may therefore easily extend the procedure of partitioning the ker-
nel from the previous section to higher dimensions, though the bookkeeping
will be more involved. Application of this approach to the three-dimensional
model in sec. a.6.2 is beyond the scope of the present paper and will be stud-
ied in a forthcoming paper.

A.B INTEGRAL TRANSFORMS AND SPHERICAL SYMMETRIES

This appendix contains the results needed in proposition A.12 to express the
kernel in the three-dimensional isotropic and incompressible model in terms
of various integral transforms of the energy spectrum. All the results follow
from integration in spherical coordinates.

Any unit vector 7 € IR3 may be expressed in spherical coordinates,

#(a, B) = (cosa,sina cos B,sinasin p)7,
where « € [o,7t] and f € [0,27). The matrix Z(«, ) defined by
Z(a,p)=[i(a,p) Ha+Z,p) #Z,p+T)]
cosa —sina o}

=|sinacosf cosacosf —sinf
sinasinff cosasinff cosf

is then orthogonal and satisfies the relation
Z(@, )" (@, ) = (1,0,0) . (a.24)

LEMMA A.16. Let f: IR3 — IR be integrable. Let y € R3 with y = ||y||#(a, B). Then
the Fourier transform of f at v is given by

F3m(y):ﬁ£ J J F(rZ(a, B)F(O, d))e 910502 in g d gy do dr.

If vy = o we may choose @ = p = o so that Z(«, p) = 1. A similar identity holds for
the inverse Fourier-transform.

PrROOF. The identity follows from the transformation theorem using the or-
thogonality of Z(«, ), followed by application of (a.24), and then transfor-
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mation to spherical coordinates. O

LEMMA A.18. Let A: R, — R be a function such that r — A(r)r> is integrable.
Then the Fourier transform of the function R3 — R given by x — A(||x||) exists,
and

E5[A(IlxID)(v) = [A(r)r>]dIp).

proOOF. The existence of the Fourier transform is ensured by the assumption
of integrability. Let y € R3 be given and let y = ||y||#(a, ) be the spherical
representation of y. By lemma a.16 we get

EalIo) = s [ [T adrzia o, ge e

-r>sinOd¢pdOdr
(o) T .
-1 J A(r)rzf e~ irWllcosO sin 9 40 dr.
o o

(2m)?

The d9-integral is equal to 2sinc(r||y||) as can be seen by a change of integra-
tion variable. It follows that

Ey[A(Ix)](w) = f AP sinc(rlll) dr =

1

(r)r*1(lIylD)-

2712
This completes the proof. O

LEMMA A.20. Let A: R, — R be a function such that r — A(r)r>

is integrable.
Then the Fourier transform of the function R3 — M, given by x A(|x|) 2T

exists, and

FylA(RID#T)(p) = S (=3 sine = 2 sin”) (A2 by "

+ (5 sinc + %sinc")[A(r)7’2](||}1||)I)-

PROOF. The existence of the Fourier transform is ensured by the assumed inte-
grability. Let y € R3 be given and let v = ||y||#(, §) be the spherical represen-
tation of y. Write Z = Z(a, ) for brevity. By lemma a.16 we get

Fy[A(llxlD£T)(y (a.25)

(270)3 f f J #0,9) Tz e MWlIcos0r25ing dp do dr
= (2n)3ZJ A(r)rzj —zrllyllcos@sm@f2 H6,$)7(0, ) d(j)d@erT

The d¢-integral is

- cos> 6 cosfcospsin@  cosOsinOsin¢
cosOcospsin®  cos?psin® O cosPsin® Osin¢ |d¢
° |cosOsinfOsing cos¢sin®Osing  sin?Osin® ¢
27 cos> 0 o o
= o ntsin® 0 0
o 0 ntsin® 0

The dO-integral in (a.25) is therefore also a diagonal matrix whose entries
are determined by the following two integrals. The first integral follows by
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differentiation and change of variables, whereas the second integral follows
by change of variables and partial integration. For brevity we write z = r||y]|.
Then

e 4z T
27'(J; ¢717%59in O cos> 6 dO ——27'cﬁ e 739 5in0 do
= 47(-sinc’ (z)),
i Jn ¢ 1709 5inPsin> 6 dO = 47‘((% sinc(z) + isinc"(z)).
(o]
Let a, = —sinc”[A(r)r*](llyll) and a, = (5 sinc+3 sinc”)[A(r)r?]([|y]]). We then
get

YN 1 . 1 PN
EJA(D2T () = —— Z diag(a,,5,0,)2" = ——((a, = a,)99" +a,1)

( (-2 sinc — 2 sinc”)[A(r)r*](llvll)9

"o ﬁ
+ (£ sinc + 2 sinc”)| 21IvID )

It is easy to verify that the formula also holds in the case y = o with the con-
vention that 6 = o. This completes the proof. O

COROLLARY A.22. Let A: R, — Rsatisfy that r — A(r)r? is integrable. The Fourier

¢4T

transform of the function R3 — M, given by x > A(||x||)(=X%" +1) then exists, and

EyTAQ-55T + D](9) = 5 (2sine + 2sine AW ylhs”
+(+sinc - §sinc")[A(r)r21(||y||)1).

LEMMA A.23. Let A: R, — Rsatisfy that r — A(r)r? is integrable. Then the Fourier
transform of the function R3 — M, given by x — A(||x[|) sk(X) exists, and

E5[A(llxl) sk()](y) =

with the convention that 9 = o when y = o.

TA()2 (11l sk(p)

PROOF. The existence of the Fourier transform is ensured by the assumed in-
tegrability. Let y € IR3, y # o, be given and let y = ||y||7(a, ) be the spherical
representation of y. By lemma a.16 we get

F5[A(llxl) sk(£)](v)
—— roA(r)rzJne-”“yllcosesinefm K(Z(a, p)F(O, ) dp dO dr.

(27)3

It is straightforward to verify that the d¢-integral is equal to 27 cos 0 sk(7).
Then, substitution with u# = cos 8 followed by partial integration will shows
that the d6-integral is equal to 2i sinc’(r||y||) sk(9). It follows that

FARDS(]) = i 2 [ A0 sine eyl drskig)
= i— sinc/[A(")r Iyl sk(p).

If y = o, then F;[A(||x[|)sk(%)]() = o since x > A(||x]|) sk(x) is odd. |
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ABSTRACT

We discuss continuous cascade models and their potential for modelling the
energy dissipation in a turbulent flow. Continuous cascade processes, expres-
sed in terms of stochastic integrals with respect to Lévy bases, are examples
of ambit processes. These models are known to reproduce the scaling and
self-scaling of correlators, two experimentally observed properties of turbu-
lence. We compare three models: a normal model, a normal inverse Gaussian
model and a stable model. We show that the normal inverse Gaussian model
is superior to both, the normal and the stable model, in terms of reproducing
the distribution of the energy dissipation; and that the normal inverse Gaus-
sian model is superior to the normal model and competitive with the stable
model in terms of reproducing the self-scaling exponents of two-point corre-
lators. Furthermore, we show that the presented analysis is parsimonious in
the sense that the self-scaling exponents of the two-point correlators are pre-
dicted from the one-point distribution of the energy dissipation, and that the
shape of these distributions is independent of the Reynolds number.
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B.1 INTRODUCTION

Since the pioneering work of Kolmogorov (1962) and Oboukhov (1962), where
the turbulent energy dissipation is assumed to be log-normally distributed,
the small-scale intermittency of the energy dissipation in turbulence has re-
ceived much attention (Frisch, 1995; Sreenivasan and Antonia, 1997). The
small scale intermittency is primarily expressed in terms of multifractal and
universal scaling of inertial range statistics, including extended self-similarity
(Benzi et al., 1993), scaling and self-scaling of correlators (Schmiegel, 2005),
and the statistics of breakdown coefficients (Cleve et al., 2008).

Discrete and continuous random cascade processes have proved useful in
describing phenomenologically the small-scale behaviour of the turbulent en-
ergy dissipation (Benzi et al., 1984; Cleve and Greiner, 2000; Frisch et al.,,
1978; Jouault et al., 1999, 2000; Mandelbrot, 1974; Meneveau and Sreeni-
vasan, 1991; Schertzer and Lovejoy, 1987). In Cleve et al. (2005), the surro-
gate energy dissipation is modelled as a discrete random multiplicative cas-
cade process. Choosing the law of the cascade generators to be log-normal
yields the Kolmogorov-Oboukhov model. A continuous analogue to the dis-
crete multiplicative cascade processes is formulated in terms of integrals with
respect to Lévy bases and has been shown (Barndorff-Nielsen and Schmiegel,
2004; Schmiegel, 2005; Schmiegel et al., 2004) to be computationally tractable
and to accurately describe the two- and three-point statistics of the energy
dissipation.

In the cited works, focus is on the modelling of n-point statistics of the en-
ergy dissipation, not the distribution of the energy dissipation itself. Indeed,
Schmiegel (2005) concludes with a remark that the law of the Lévy basis driv-
ing the cascade model should be inferred and its dependency on the Reynolds
number should be investigated.

Both, discrete and continuous multiplicative cascade processes, suggest that
the law of the logarithm of the energy dissipation should be infinitely divisi-
ble. Among the infinitely divisible distributions are the normal, stable, and
normal inverse Gaussian distributions. These three classes of distributions
each have their own tail behaviour.

The use of stable Lévy bases for modelling of the energy dissipation has
been investigated in Cleve et al. (2008) and it is concluded by analysing the
breakdown coefficients that “except for the log-normal limit, this leaves no
room for the log-stable modelling of the turbulent energy cascade.” The pre-
sent paper investigates the alternative of using a normal inverse Gaussian
Lévy basis to model the energy dissipation and in particular addresses the
one-point distributions and two-point statistics.

The use of normal inverse Gaussian distributions in turbulence modelling
is not new. In Cleve et al. (2005), the parameters of the normal inverse Gaus-
sian distribution cascade generator are estimated from scaling exponents and
cumulants, which are moment estimates, notorious for their sensitivity to
outliers. Indeed, estimation of the normal inverse Gaussian parameters (and
those of other distributions) may not be feasible from sample moments. In this
paper we will apply maximum likelihood methods instead, as these methods
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normal inverse Gaussian stable
dataset Re;, a B He Oc a He 0 dis. Axeg/n rms;
1 8 223 -1.77 202 271 1.61 -1.80 130 3 3.60 5.1%
2 89 2.23 -1.77 2.09 285 1.63 -1.83 1.32 3 3.15 3.2%
3 124 2.23 -1.77 2.09 286 1.63 -1.83 1.32 3 2.94 2.9%
4 208 2.25 -1.75 236 3.35 1.67 -1.97 1.42 2 3.50 1.1%
5 209 2.23 -1.77 205 281 1.62 -1.81 1.31 3 2.91 12.8%
6 283 224 -1.76 2022 308 1.65 -1.89 1.37 4 — 0.3%
7 352 2.25 -1.75 2.35 3.34 1.67 -1.95 1.41 2 4.50 0.4%
8 463 225 -1.75 231 3.26 1.66 -1.93 1.40 3 5.79 2.7%
9 703 2.24 -1.76 218 3.03 1.65 -1.88 1.36 3 — 2.0%
10 885 2.25 -1.75 223 314 1.66 -1.89 1.37 2 6.90 0.6%
11 929 2.25 -1.75 2.22 3.12 1.65 -1.89 1.37 2 7.34 2.9%
12 985 2.24 -1.76 221 308 1.65 -1.89 1.37 2 9.66 0.2%
13 1181 2.24 -1.76 2.10 2.90 1.63 -1.83 1.33 2 9.94 1.1%

TABLE B.1. Summary of the thirteen data sets. The Taylor micro-scale Reynolds numbers are from Chanal et al. (2000).
The normal inverse Gaussian parameters (constrained to yield finite exponential moment of order 4 according to (B.11))
and the stable parameters are estimated from the distribution (8.10) of loge using maximum likelihood methods. The
factor with which each data set was downsampled is denoted by “d.s.”, and Ax.g denotes the effective resolution after
downsampling in units of the Kolmogorov length 7. Finally, rms; denotes the root mean square of the relative error in
the consistency check of the estimated scaling exponents (.16).

suffer no such deficiencies.

The paper is organised as follows. Section B.2 provides some background
on the data analysed in this paper. Section B.3 recalls the construction of con-
tinuous cascade processes in terms of integrals with respect to Lévy bases.
Section B.4 applies the theory to the data and shows how the distribution of
the surrogate energy dissipation determines the scaling and self-scaling expo-
nents of the two-point correlators. Section B.5 concludes. The two appendices
provide necessary background on the normal inverse Gaussian distribution
and integration with respect to Lévy bases.

B.2 BACKGROUND ON THE DATA

We analyse thirteen data sets consisting of one-point time records of the ve-
locity component in the mean stream direction in helium gas jet flow (Chanal
et al., 2000). The time series can be assumed to be stationary. In Cleve et al.
(2004), eleven of the thirteen data sets are used in an analysis of the inter-
mittency exponent of the turbulent energy cascade. In particular, Cleve et al.
(2004, table I) summarises useful information about the data sets. Data set
nos. 6 and g are not considered in Cleve et al. (2004). For the present paper
it suffices to note that each time series consists of sixteen million samples,
the resolution scale (mean velocity times sampling time) is 1—5 times the Kol-
mogorov length, and the Taylor-microscale based Reynolds number Re varies
from 85 to 1181. Table 8.1 lists Re in addition to parameters that will be ex-
plained later. Data set no. 7 is representative for the general features of all the
data sets and will throughout the paper be used as the example data set. All
figures for the other data sets are available upon request.
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logy(sdf)

log, (frequency)

FIGURE B.1. The spectral density function for data set no. 7. The vertical line indicates the cut-off
induced by the downsampling. The slope of the dashed line is —5/3.

The spectral density of the velocity component in the mean stream direc-
tion is estimated using Welsh’s overlapping segment averages with a Hanning
taper, a block length of 500000 and an overlap of 50%, see e.g. Percival and
Walden (1993) for details about the method. Figure B.1 shows the spectral
density for data set no. 7. The inertial range is found at frequencies from ap-
proximately 10 Hz to 1000 Hz after which the transition to the dissipation
range occurs. The slope in the inertial range is approximately —5/3, obeying
Kolmogorov’s 5/3-law. At the highest frequencies, the spectral density func-
tion changes behaviour and attains an almost constant value. Whether this is
due to measurement noise will not be addressed here. We downsample the
data by a factor specified in tab. B.1 to eliminate the spectral content at the
highest frequencies. The vertical line in fig. B.1 indicates the cut-off induced
by downsampling data set no. 7 by a factor of 2. A time step of 1 corresponds
to the smallest time step of the downsampled data. Table B.1 shows the effec-
tive resolution Ax.g (mean velocity times sampling time after downsamling)
in units of the Kolmogorov length #.

Let u denote the velocity component in the mean stream direction, and
let U denote the mean stream velocity. Since the flow can be assumed to be
homogeneous and isotropic, we use the surrogate energy dissipation e(x) =
15v(du/dx)* as a proxy for the energy dissipation. Here x denotes the posi-
tion along the mean stream direction, and v denotes the viscosity. We apply
the Taylor frozen flow hypothesis to express the surrogate energy dissipation
in terms of the measured time series. We do not invoke an “instantaneous
Taylor correction” (Chanal et al., 2000) since it introduces spurious effects in
correlators of the surrogate energy dissipation. Since any change of the sur-
rogate energy dissipation by a multiplicative constant is inconsequential for
the conclusions, we scale the surrogate energy dissipation to have unit mean.
Finally, the derivative du/dt is calculated from the discrete samples using in-
terpolation with third-order splines.

To assess the existence of moments, we consider, for a given time series
Y ={V1,---» YN, > the relative absolute sample moment Mf,(y) of order p and
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FIGURE B.2. Relative absolute sample moment of order 6 (top) and 8 (bottom) of log € (black curve)
and du/dt (dashed) as a function of the sample size N for data set no. 7.

sample size N defined by
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Figure B.2 shows M;(au/(?t) and Mi,(log €)forp=6,p=8and Ny, =8 x10°

6 are confirmed to be due to

for data set no. 7. The jumps near N = 5.5 X 10
outliers. We conclude that the 6th order moments of du/dt and loge can be
estimated from the sample moments. We will not use moment estimates of

order higher than 6.
B.3 A LEVY BASED CONTINUOUS MULTIPLICATIVE CASCADE MODEL

In this section we present the model for the surrogate energy dissipation
which we will later apply to the data. The model provides a link between the
distribution and the two-point correlators of the surrogate energy dissipation.

In Schmiegel (2005) the surrogate energy dissipation e is modelled as a
(1 + 1)-dimensional stochastic process (one dimension in space and one in
time) given as the exponential of an integral with respect to a Lévy basis Z on
R,

e(x,t) = exp(J;(x’t) Z(dx'dt')), (B.1)

where A(x,t) C R is called the ambit set. We will assume that the Lévy ba-
sis is homogeneous (see appendix B.B), and that the ambit sets are defined by
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A(x,t) = (x,t) + A for some bounded Borel set A C R*>. Thus we ensure that €
is stationary in space and time. The model (8.1) is an example of a random
multiplicative cascade process in continuous space and time. Since only one-
point time series are available for our analysis, we will ignore the spatial de-
pendency and consider the surrogate energy dissipation as a function of time
alone and at a fixed position in space. However, it must be emphasised that
the model is equally capable of modelling the spatial behaviour.

The distribution of loge is given by (8.22) or (B.23). Since the integrand
in (B.1) is constant, we have that

K(stloge(t) = K(s$ Z')|Al (5.2)

where K(s £ X) = log E[exp(sX)] denotes the logarithm of the Laplace trans-
form of the random variable X, Z’ denotes the Lévy seed corresponding to
the Lévy basis Z, and |-| denotes the Lebesgue measure whenever applied to
a set. We denote by E[-] the expectation in the probabilistic sense. By (.2),
the distribution of the surrogate energy dissipation is, under the model (8.1),
closely related to the distribution of the Lévy seed Z’.

B.3.1 TWO-POINT CORRELATORS

The two-point correlator ¢, , of order (p, g) of the surrogate energy dissipation
is defined as

Cpq(tists) = E[e(t,)Pe(t,)T]/(Efe(t, )P 1E[e(,)7]).

The sum p + q is the total order of the correlator ¢, ;. It is shown in Schmiegel
(2005) that

Cp,q(tv t,) = exp(K(p,q)lA(o,t,) N A(o, 1,)]) (8.3)

where

K(p,q)=K(p+9%Z")-K(ptZ')-K(q1Z'). (B.4)

We observe that the exponent in (8.3) is expressed as a product where the first
factor depends only on the Lévy basis and the order of the correlator, and the
second factor depends only on the overlap of the ambit sets. This provides
a way of modelling a wide range of correlators, since the shape of the ambit
set, under suitable assumptions, can be determined from the correlator, see
subsec. B.3.2 or Schmiegel (2005) for details.

Experiments (Cleve et al., 2004; Schmiegel et al., 2004) reveal that, at least
for p + q < 3, the two-point correlators exhibit scaling,

Cpg(AL) = cp o(t,t+ At) oc AP, (B.5)

in a range of At comparable to the inertial range of the velocity structure
functions. For (p,q) = (1,1), the exponent 7(1,1) is known as the intermittency
exponent. Furthermore, in Schmiegel (2005) it is shown that the two-point
correlators also enjoy the property of self-scaling,

Cpaga (D) = Cp, g, (A1) PrTP202),
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FIGURE B.3. The boundary of the ambit set (8.7) for the values 6 = 1 (solid), 8 = 2 (long dashes),
and O = 100 (short dashes). The other parametersare X =1, T =1,and L = 10.

for an even wider range of At, much like the scaling range of extended self-
similarity (Benzi et al., 1993) of the structure functions is wider than the scal-
ing range of the pure structure functions. Here ©(p,q,;p»,4,) = T(P2,49,)/T(P1,91)
is the self-scaling exponent.

By (8.3) we immediately obtain self-scaling of the correlators under the
model (B.1),

= K(p1,91;p2
CP»%(At)—Cpl,ql(At) (P1,91:P> ‘72),

where

K(p+,91:P2,95) = K(p>,4,)/K(p1,41)

is the self-scaling exponent. As noted in Schmiegel (2005), the self-scaling
property is independent of the shape of the ambit set and thus scaling of the
correlators is not necessary for self-scaling of the correlators. The Lévy seed Z’
determines though (s.2) the distribution of the surrogate energy dissipation
and through (B.4) the self-scaling exponents. Both, the distribution and the
self-scaling exponents, can be estimated from data and hence compared with
the model.

The correlators are moment estimates. Therefore they may not exist be-
yond a certain order. When they exist, they are sensitive to noise and outliers,
particularly at high orders. By Holder’s inequality we have

Ele(t,)Pe(t,)7) < E[e(t, )P * 1P/ PDE[e(t,PH9)# (P9,

It follows that the correlator ¢, ,; exists provided the velocity derivative du/dt
has finite moment of order 2(p + q). Under the model (5.1) it follows by (8.2)
that c, ,; exists if and only if the Lévy seed Z’ has exponential moment of order
p+¢. In the following we will assume that du/dt has moments of order 8. This
is equivalent to assuming that loge and Z’ have finite exponential moments
of order 4. This assumption is justified by the fact that the sample moments of
order 8 of du/dt are corrupted by just a few extreme values out of more than
eight million samples
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B.3.2 AMBIT SETS AND SCALING OF CORRELATORS

While the self-scaling of the correlators is independent of the shape of the
ambit set A, the scaling property (B.5) requires A to be specified appropriately
according to (B.3). We define for X >0, T >0, L > 1, and 6 > o the function g
by

0 1
X(LT))Q)/Q o<t<T. (.6)

8O =X\ T

In the limit 6 = co we have that

o X o<t<T/L,
9\ T/L<i<T

The ambit set A is given as
A={(xt)lo<t<T,l<g(t) (8.7)

Figure B.3 shows examples of the ambit set for three values of the parameter 6.
By (8.3),

T
Cpq(At) = exp(K(p,q)JA 2g(s)ds). (B.8)
t
It follows that
dlogc, 4(At) 2X
— x~-K —T, T/L T. .
dlog AT (p.9) T /L<t < (B.9)

Hence K(p,q)(2X/L)(T/L) is the scaling exponent of ¢, ;. In the limit 6 = co we
have perfect scaling,
dlogc, 4(At) 2X

=-K(p,q)=—T, T/L T.
dlog At (-4) L /b<t<

The parameter 0 is merely a tuning parameters to account for imperfect scal-
ing of the correlators. In view of (B.3), where the overlap of the ambit sets
determine the correlator, T and 2X may be interpreted as the decorrelation
time and decorrelation length, respectively. Furthermore, T/L and 2X/L are
time and length scales below which the scaling behaviour has terminated.
The model (B.1) is also able to reproduce empirical three-point correlators
(Schmiegel et al., 2004), but these are not considered in the present paper.

B.3.3 THREE LEVY BASES

We consider three distributions of the Lévy seed Z”:

N(p, 9) normal (N),
Z' ~{S(a, B, 4, 0) stable (S),
NIG(a, B, 4,0) normal inv. Gaussian (NIG).
The normal Lévy seed yields a log-normal model for the surrogate energy

dissipation, consistent with the Kolmogorov-Oboukhov theory (Oboukhov,
1962). The stable Lévy seed is included to enable comparison with Cleve et al.
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(2008). The use of a normal inverse Gaussian Lévy seed can be motivated in
several ways. The normal inverse Gaussian distribution is computationally
tractable and allows a wide range of distributions (see fig. 8.10). Furthermore,
the representation (B.21) shows that the normal inverse Gaussian distribu-
tions form a natural generalisation of the normal distributions by allowing
the variance of the normal distribution to be random. Since the variance is
positive, and if there is a “typical variance”, it is natural to model the variance
using an unimodal distribution on the positive real line. A flexible distribu-
tion of this type is the inverse Gaussian law as shown in fig. B.11.

Other infinitely distributions could be considered as well. However, the
three classes of distributions above exhaust a wide range of unimodal distri-
butions with a specific tail behaviour: The normal distributions have “light
tails”, the stable distributions have “heavy tails”, decaying algebraically, and
the normal inverse Gaussian distributions have “semi-heavy tails”, decaying
exponentially, see (B.17).

The common symbols for the parameters («, 8, 4, ) have been chosen due to
the similarity of their interpretations. In all three cases, y is a location param-
eter, 0 is a scale parameter, a and f§ are shape parameters, and p determines
the asymmetry of the distribution. The domain of the parameters is y € R and
0> o1in all three cases; o < @ <2 and —1 < < 1 in the stable case; and |f| < &
in the normal inverse Gaussian case. The parametrisation of the stable dis-
tribution is chosen to follow Samorodnitsky and Taqqu (1994, eq. (1.1.6)), so
that the log-characteristic function is given by

s — 5Ll (1 — i B si ) , ,
log E[exp(isS(a, f, 1, )] = ips |s|*(1 —ifsign(s)tan(ra/2)), a=1
ips—ols|(1 —ip 2 sign(s)log|sl), a=1.
It follows from (B.22) or (B.23) that the distribution of loge in each of the
three cases is

N(|A|p, 1Al6) Z' ~N,
loge ~S(a, B,|AIp, |A[/46)  Z"~S, (B.10)
NIG(a, B,|Alp, |Al)  Z" ~NIG.

We see that the shape parameters of the distribution of loge are, in all three
cases, identical to the shape parameters of the distribution of the Lévy seed Z’,
and that the location and scale parameters of log e are multiplied with a factor
determined by the size of the ambit set, |A| = 2f0T g(s)ds.

The normal distribution has exponential moments of all orders. Provided
B = —1, the stable distribution has exponential moments of all non-negative
orders. We will therefore assume that § = —1 in the stable case. The normal
inverse Gaussian distribution has exponential moment of order s, if the shape
parameters satisfy

—a<B<a-s. (B.11)
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In these cases the log-Laplace transform of the Lévy seed is given by

s + 265> Z'~N,
K(stZ')= Ius—(é“/cos(na/z))s“ §'~§, (B.12)
ps+0((a” = B2)> = (a® = (B+5))?)  Z'~NIG.

It follows that

; Z'~N,
K(p,q)=x(p,q (é”‘/cos (rea/2) ) Z' ~S, (B.13)
~ NIG,
where
r4 7’ ~N,
+ a _ a0 _ L0 Z/ ~ S,
k(pq) =P TA P 4 (5.14)

(@ =(B+p)>)"> +(a® = (B+9)*)"
(@ =B —(@® = (B +p+qP)'”

Note that k¥ depends only on the order (p,q) and the shape parameters. The

~NIG.

self-scaling exponents are given by

K(p1,91;P2,9>) = K(P2,95)/%(P1, 44 )- (B.15)

We conclude from (8.10), (B.14) and (B.15) that the self-scaling exponents are
uniquely determined by the orders of the correlators and the shape of the
marginal distribution of loge.

B.4 DATA ANALYSIS

In this section we apply the model from section 8.3 to the data. The marginal
distribution of the surrogate energy dissipation is used to predict the scaling
and self-scaling exponents of the two-point correlators.

B.4.1 DISTRIBUTION OF THE SURROGATE ENERGY DISSIPATION

Figure B.4 shows that the distribution of loge has a distinct, non-Gaussian,
asymmetric shape. A few outliers lie in the range —50 to —35 and are not
shown in the figure. Four parametric distributions are fitted to the data us-
ing maximum likelihood methods: normal, stable, normal inverse Gaussian,
and normal inverse Gaussian constrained to have finite exponential moment
of order 4 according to (B.11). Clearly, the normal inverse Gaussian distribu-
tion provides a very accurate fit. The left tail is overestimated by the stable
distribution. The unconstrained normal inverse Gaussian distribution is able
to accurately capture the left tail but slightly overestimates the right tail. The
constrained normal inverse Gaussian distribution is able to capture the steep
descent of the right tail while only slightly underestimating the left tail. In
what follows, any reference to the normal inverse Gaussian distribution will
imply the constrained version.

Table B.1 summarises the estimated parameters for each of the thirteen data
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FIGURE B.4. Distribution of the logarithm of the surrogate energy dissipation represented by the
logarithm of the probability density function for data set no. 7: data (circles), normal fit (long
dashes), stable fit (short dashes), normal inverse Gaussian fit (dots and dashes), and normal in-
verse Gaussian fit constrained to possess finite exponential moments of order four (black curve).
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FIGURE B.5. The two-point correlator ¢, ; as a function of lag At for data set no. 7 in double
logarithmic representation (circles). The solid curve shows the least squares fit of (8.8) in the
double logarithmic representation. The estimated scaling exponent 7(1,1), decorrelation time T,
and auxiliary parameter 6 are shown in the figure.

sets. Note that for both, the normal inverse Gaussian distribution and the sta-
ble distribution, the estimated shape parameters do not depend on the Taylor
micro-scale Reynolds number, while the location and scale parameters vary
only slightly. This is a clear indication of universality of the distribution of
the surrogate energy dissipation, at least within the thirteen data sets consid-
ered here.

B.4.2 SCALING AND SELF-SCALING OF CORRELATORS

Since the sample moments of the velocity derivative do not allow reliable es-
timation of correlators of order greater than 3, we consider the orders (p,q)
for which p and g are positive half-integers with p + q < 3. This leads to 36
non-trivial combinations in the analysis of self-scaling of the correlators. The
self-scaling exponents satisfy

UP1rq15P3:93) = T(P1,915P292)T(P2, 9253, 93)s

and it is therefore sufficient to consider eight combinations.
Figure B.5 shows that the correlator c, , for data set no. 7 exhibits scaling
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FIGURE B.6. The intermittency exponent 7(1,1) as a function of the Taylor micro-scale Reynolds
number Rej: estimates from two-point correlator (circles), prediction under the normal model
(long dashes), stable model (short dashes), and normal inverse Gaussian model (black curve).
The crosses mark the estimated intermittency exponent found in (Cleve et al., 2004, tab. I, col. p)
for eleven of the thirteen data sets.

for 10 < At < 200. The figure also shows that the correlator (8.8) determined
by (8.6) provides a very good fit to the data for lags At > 10. The parameter 6
determines the behaviour of the correlator for lags close to the decorrelation
time T. At lags At < 10, the correlators are corrupted by surrogacy effects
(Cleve et al., 2003). Lags At < 10 have therefore been excluded from the fit.
Similar results hold for the other data sets and other orders of the correlators.

Since only temporal data are available, the parameter X of the ambit set (.7)
cannot be identified and can be chosen arbitrarily, say, X = 1. The parameter L,
which determines the extend of the scaling range of the correlators, cannot be
identified either, since surrogacy effects corrupt the correlator at small lags.
We have chosen L = 107 as it yields no perceptible lower limit of the scaling
behaviour.

The scaling exponents, under model (8.1), follow from (8.9), (8.10), and (B.13),

15, 7'~N,
2XT —o0¢
=0 " z/.s,
©(p,q) LIA| ©(p.q) cos(mta/2) 5
Se 7’ ~NIG.

The scale parameter 0 of the Lévy seed Z’ is determined by the size |A| of the
ambit set and the estimated scale parameter . of the distribution (B.10) of
loge. The size of the ambit set is in turn dependent on the parameter L which
cannot be determined from the data and was therefore fixed somewhat arbi-
trarily at L = 107. Figure B.6 shows the scaling exponent (1, 1) for the thirteen
data sets. The normal inverse Gaussian model and the stable model agree rea-
sonably well and both are markedly different from the normal model. The
normal inverse Gaussian model displays the best agreement. By increasing L,
either the stable model or the normal model can be made to display the best
agreement instead, while the behaviour of the correlators for At > 10 will re-
main unchanged. The predicted intermittency exponents are almost indepen-
dent of Re,. This is a direct consequence of the fact that the shape parameters
of loge are independent of Re), see tab. B.1. Similar results hold for the other
orders of the correlators.
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FIGURE B.7. The estimated 7(n) for n = 0.5,1.5,2.0,2.5,3.0 (from bottom to top) as a function of
Rej.

The intermittency exponent 7(1,1) is, in fig. B.6, also compared to the in-
termittency exponent found in (Cleve et al., 2004, tab. I, col. ) and agrees
reasonably well with the findings therein. The differences are likely to be due
to the different estimation procedures. Note that the predicted intermittency
exponents are not based on moment estimates, but rather maximum likeli-
hood methods.

As a final consistency check, we note that it follows from (8.4) and (B.9) that
the scaling exponents satisfy the relation

t(p,q) =7(p+4q)—7(p) —(q). (B.16)

By (B.12), we may choose 7(1) = o. The other unknowns t(n) are found by
solving the linear least squares system corresponding to (B.16), see fig. B.7.
The root mean square rms, of the relative error (t(p+9)—7(p)—7(q9))/7(p,q)—1
is reported in tab. B.1. Except for data set no. 5, rms, is around a few percent,
confirming (B.16).

The self-scaling of the correlators is confirmed by fig. B.8. Under model (s.1),
the self-scaling exponent t(p,,q,;p»,q.) is given by the ratio x(p,, 4,)/x(p1, 4, )
It depends only on the shape parameters of the distribution of loge and on the
order of the involved correlators. In particular, the self-scaling exponents are
independent of the ambit set and the location and scale parameters of loge.
Therefore, the self-scaling exponents are predicted directly from the estimated
shape parameters listed in tab. B.1, and they inherit the Re)-independence
from loge.

Figure B.9 shows the estimated self-scaling exponents as a function of Re,.
For each displayed combination of orders, the variation of the self-scaling ex-
ponents is 10%-20%. The figure shows that the stable and normal inverse
Gaussian models are superior to the normal model, except for the case (1.0,1.5;
0.5,2.5) where all models fail to predict the observed self-scaling exponents
by approximately 10%. The stable model appears in a few cases to be slightly
better than the normal inverse Gaussian model, though both lie within the
variation of the data. At low Reynolds numbers, the self-scaling exponents
tend to deviate from the self-scaling exponents at higher Reynolds numbers.
At low Reynolds numbers the inertial range is shorter. Whether this affects
the estimation of the self-scaling exponents remains to be investigated.
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Further observations may be drawn from fig. B.9. Firstly, the predicted
self-scaling exponents are in all three cases almost independent of the Taylor
micro-scale Reynolds number. This is a consequence of the estimated shape
parameters of the distribution of loge displayed in tab. B.1. As noted previ-
ously, this hints at a universal character of the self-scaling exponents and the
distribution of loge. Secondly, the shape parameters are derived from one-
point statistics, while the self-scaling exponents are derived from two-point
statistics. The predictability of the latter from the former hints at a parsimo-
nious description of the surrogate energy dissipation as the exponential of an
integral with respect to a Lévy basis: Higher order statistics are reasonably
well predicted from lower order statistics.

B.5 CONCLUSION AND OUTLOOK

Thirteen time series of one-point measurements of the velocity component
in the mean stream direction in a helium jet are analysed from the point of
view of the (surrogate) energy dissipation. The distribution of the logarithm
of the surrogate energy dissipation is shown to be well approximated by nor-
mal inverse Gaussian distributions, a property possessed by neither the nor-
mal distribution nor the stable distribution. Furthermore, the shape of the
distribution is apparently universal, i.e., it does not depend on the Reynolds
number.

The two-point correlators of the surrogate energy dissipation show scaling
and self-scaling. By modelling the surrogate energy dissipation as the expo-
nential of an integral with respect to a Lévy basis, a connection is established
between the shape of the distribution of the logarithm of the surrogate energy
dissipation and the scaling and self-scaling exponents of the two-point corre-
lators. Thus the model is parsimonious: the two-point correlators are all, to
good accuracy, determined by the one-point distribution. The use of normal
inverse Gaussian distributions is compared to the use of stable distributions.
While the stable distributions are also capable of modelling the scaling and
self-scaling exponents, they are not capable of accurately modelling the dis-
tribution of the surrogate energy dissipation. In particular, the stable model
implies infinite variance of loge, yet the data suggest that log € has finite mo-
ments at least up to order 6. The use of normal inverse Gaussian distributions
allows accurate modelling of both the correlators and the distribution of the
surrogate energy dissipation.

The surrogate energy dissipation exhibits stylised features beyond the scal-
ing and self-scaling of the two-point correlators. In Cleve et al. (2008), break-
down coefficients and Kramers-Moyal coefficients are employed, in particular,
to evaluate the use of stable distributions in the modelling. A similar analysis
remains to be performed in the case of the normal inverse Gaussian distribu-
tions.
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B.A THE NORMAL INVERSE GAUSSIAN DISTRIBUTION

The normal inverse Gaussian distributions form a four-parameter family of
probability distributions on the real line. They are a special case of the gener-
alised hyperbolic distributions introduced in Barndorff-Nielsen (1977) to de-
scribe the law of the logarithm of the size of sand particles (see also Barndorff-
Nielsen and Halgreen (1977), Barndorff-Nielsen (1978), Barndorff-Nielsen and
Bleesild (1981), Bleesild (1990), and Eberlein and Hammerstein (2004)). The
generalised hyperbolic distributions are applied in many areas of science,
see e.g. Prause (1999) and Barndorff-Nielsen et al. (2004) and the references
therein.

The probability density function of a normal inverse Gaussian distribution
is given by

5 K, (oaq(=E
pdiIG(arﬂ’%é)(X) _ aiyeﬁ(x—ﬂ) (q(&)& ))
o

where y = >~ 2, q(x) = V1 + x2, and K, denotes the modified Bessel function
of the second kind with index 1. The real parameter y determines the location,
and the positive parameter 6 determines the scale. The parameters « and f are
shape parameters and lie within the shape cone: |B| < a.

From the asymptotic property K, (x) o« x /27 as x — oo it follows that the
NIG distribution has semi-heavy tails, specifically

PAfNIG(a,pp,0) (X) |x|732 exp(—ax| + px) (B.17)

as x — *oo. This illuminates the role of a and f in determining the tails of the
distribution.

The cumulant function K(t; «, B, 4, 6) = log E exp(tX) of a random variable X
with distribution NIG(«, B, y, 9) is given by

K(t;a,ﬂ,y,é):yt+6(7/—w/a2—(ﬁ+t)2), (B.18)

and the radius of convergence for the cumulant function is |a — B|.
By differentiating (B.18) we obtain the following expressions for the first
four cumulants,

: P 0 1
= b—’ =—=—,
TGy T e
) Y S 1+4p® (519)
K3=3— _ n2)5/2’ K4:3_3 _ 2\7/2’
a2 (1-p2)5 a3 (1-p2)7
where p = f/a. Hence, the standardised third and fourth cumulants are
X3 4 Ky 1+4p°
= = (B.20)

Kg/z 3(5&(1—92)1/2)1/2' K_§_36a(1—p2)1/2'

Equations (B.19) and (B.20) further illuminate the roles of the four parameters:
u and 6 determine location and scale, respectively; j is related to the skew-
ness, specifically the tail asymmetry (if § = o, the distribution is symmetric);
and « is related to the kurtosis.

It follows immediately from (8.18) that if X,,..., X, are independent nor-
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FIGURE B.10. The normal inverse Gaussian shape triangle. The black dots mark positions (x, &)
in the shape triangle, and the small graph nearby shows the logarithm of the probability density
function with the corresponding asymmetry x, steepness &, zero mean, and unit variance, plotted
on the interval [-3,3].

mal inverse Gaussian variables with common parameters a and f, but with
individual location and scale parameters y; and o; (i = 1,...,1n), then the dis-
tribution of the sum X, = X, +---+X,, is NIG(a, B, piy, 0,) where p, = p, +---+p,,
and 6, = 6, +---+0,,. Therefore, the normal inverse Gaussian distributions are
infinitely divisible, see also Barndorff-Nielsen and Halgreen (1977).

It is often desirable to describe the NIG distributions in terms of location-
scale invariant parameters. By letting @ = da and B = 5 we have that @ and j3
are invariant under change of location and scale. For the purpose of interpret-
ing the shape parameters it is sometimes advantageous to express the shape
in terms of the location-scale invariant steepness & and asymmetry x, defined
by

1 p

ész‘?' X =p&= 5

where ¥ = 0y = 0yJa?+ 2, and p = f/a = B/a is the alternative asymmetry.

These parameters are within the shape triangle, defined by

{(x.&)lo<&<1,-E<x <&}

Figure B.10 shows the shape of the normal inverse Gaussian distributions for
various values of the asymmetry x and steepness . A wide range of shapes
is possible. (See Blesild (1990) for details on the shape of the family of gener-
alised hyperbolic distributions).

If the variance is held constant, the normal distribution is obtained in the
limit of zero steepness. For details and examples of other limiting distribu-
tions, see Barndorff-Nielsen (1978) and Eberlein and Hammerstein (2004).

A useful property of the normal inverse Gaussian distribution is the rep-
resentation in terms of a mean-variance mixture of a normal distribution
with the mixing distribution being an inverse Gaussian distribution, hence
the name. Specifically, if X is normal with mean y+ o> and variance ¢, and
if 0? is endowed with an independent inverse Gaussian distribution with pa-
rameters ¥ and 0, then X follows a normal inverse Gaussian distribution with
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log pdf

FIGURE B.11. The logarithm of the probability density function of the inverse Gaussian distribu-
tion with parameters chosen to yield normal inverse Gaussian distributions with zero mean, unit
variance, zero asymmetry, and steepness & = 0.1 (black), £ = o.5 (long dashes), and & = 0.9 (short
dashes), see fig. B.10.

parameters (a, 3, 4, 0). In short we may write
X~p+po’+oU (B.21)

where U is a normal distribution with zero mean and unit variance. For ref-
erence, the probability density function of an inverse Gaussian distribution
with parameters y and o is
Se?? }
pdeG(y,é)(x) = \/T_nx_3/2 exp(—3(xy* +x7106%))

for x > o. Figure B.11 shows the logarithm of the probability density functions
of the inverse Gaussian distribution corresponding to the three symmetric
normal inverse Gaussian distributions in fig. B.10. As the steepness increases,
the probability that the random variance ¢ in (B.21) will attain large values
increases.

To estimate the normal inverse Gaussian parameters from data one may
apply maximum likelihood methods. The maximum likelihood estimation
is non-trivial since the likelihood function is very flat near the optimum.
The computer program “hyp” (Bleesild and Serensen, 1992) implements nu-
merical maximisation of the likelihood function, but, in general, non-linear
optimisation algorithms may also be applied. The approach of expectation-
maximisation developed in Karlis (2002) may be used in conjunction with
other optimisation algorithms.

B.B INTEGRATION WITH RESPECT TO LEVY BASES

The stochastic processes to be considered in the present paper are expressed
in terms of integrals of deterministic functions with respect to Lévy bases
on R*. A Lévy basis Z on R? is an infinitely divisible, independently scattered
random measure, i.e., to each bounded Borel subset A of R?, an infinitely di-
visible random variable Z(A) is associated, the random variables associated
to disjoint subsets are independent, and the random variable associated to a
disjoint union is almost surely equal to the sum of the random variables asso-
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ciated to each subset, provided the union is a bounded Borel subset. For more
details and mathematical rigour we refer to Rajput and Rosinski (1989).

The stochastic integral f f dZ of a deterministic function f: R*> — R with
respect to a Lévy basis Z is defined in three steps. Firstly, for an indicator
function 14 we define JIA dZ = Z(A). Secondly, by requiring that the integral
is linear in the integrand, the integral is extended to simple functions, i.e., lin-
ear combinations of indicator functions. Finally, since a measurable function
f: R*> - R may be approximated by a sequence of simple functions, the inte-
gral j f dZ is defined to be the limit in probability of the sequence of integrals
of the simple functions, provided this limit exists.

An important class of Lévy bases has the property that, informally, the dis-
tribution of the random variable associated to a subset does not depend on
the location of the subset. In this case, we have the following fundamental
representations of the Laplace transform and the characteristic function of
the integral of a deterministic function f with respect to a Lévy basis Z. Let
K(s1 X) =logE[exp(sX)] and C(s £ X) = logE[exp(isX)] denote the logarithm
of the Laplace transform and the characteristic function of the random vari-
able X, respectively. Then

K(s:l:Lf(a)Z(da)) - LK(sf(a):[:Z’)da, (5.22)
cfst [ s@ziaa)= | cer@za (5.23)

where Z’ is a random variable (called the Lévy seed) whose cumulant function
is related to the Lévy basis Z by
K(stZ(da))=K(stZ')da,
C(stZ(da))=C(stZ')da,
see Barndorff-Nielsen and Schmiegel (2004) for more details. It follows that

the distribution of the stochastic integral is determined by the function f and
the log-characteristic function of the Lévy seed Z’.
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ABSTRACT

The performance of a wind turbine in terms of power production (the power
curve) is important to the wind energy industry. The current IEC-61400-12-1
standard for power curve evaluation recognizes only the mean wind speed at
hub height and the air density as relevant to the power production. However,
numerous studies have shown that the power production depends on several
variables, in particular turbulence intensity. This paper presents a model and
a method that are computationally tractable and able to account for some
of the influence of turbulence intensity on the power production. The model
and method are parsimonious in the sense that only a single function (the
zero-turbulence power curve) and a single auxiliary parameter (the equiva-
lent turbulence factor) are needed to predict the mean power at any desired
turbulence intensity. The method requires only ten minute statistics but can
be applied to data of higher temporal resolution as well.
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C.1 INTRODUCTION

The performance of a wind turbine in terms of power production under given
wind conditions is a complex topic. Only the performance can be guaranteed,
not the presence of certain wind conditions. The knowledge of the perfor-
mance is important to both the design, verification, certification and subse-
quent monitoring of a wind turbine.

A wind turbine’s production of power depends in particular on the atmo-
spheric conditions. The current IEC 61400-12-1 standard recognizes that the
mean power (ten minute mean) depends on the mean wind speed at hub
height and the air density. The influence of the air density can be accounted
for through a correction factor as defined in the standard. In numerous pa-
pers and reports it has been demonstrated that the mean power depends on
other parameters in addition to mean hub height wind speed and air den-
sity, including wind speed profile (shear), inflow angle, wind direction pro-
file (veer), turbulence intensity, turbulent kinetic energy, and the dynamic
response of the wind turbine to the wind; see Christensen and Dragt (1986),
Elliott and Cadogan (1990), Sheinman and Rosen (1992), Rosen and Shein-
man (1994), Rosen and Sheinman (1996), Frandsen et al. (2000), Kaiser et al.
(2003), Langreder et al. (2004), Pedersen (2004), van Radecke (2004), Eecen
et al. (2006), Gottschall et al. (2006), Sumner and Masson (2006), Albers et al.
(2007), Gottschall and Peinke (2007), Kaiser et al. (2007), Anahua et al. (2008),
Gottschall and Peinke (2008), Tindal et al. (2008), Albers (2009), Wagner et al.
(2011), Wagner et al. (2009), Wichter et al. (2011), Wharton and Lundquist
(2012a), Wharton and Lundquist (2012b), Rauh and Peinke (2004), and refer-
ences therein. The mean power as a function of the mean wind speed is called
the power curve.

The contribution of this paper is a new method for power curve estima-
tion that is able to account for some of the influence of turbulence intensity
(i.e., the ratio of the standard deviation of the wind speed to the mean wind
speed). The method is parsimonious in the sense that only a single function
(the zero-turbulence power curve) and an auxiliary parameter (the equivalent
turbulence factor) need to be estimated. The method requires only ten minute
means and standard deviations of the wind speed and the turbine power but
can benefit from data sampled at a higher rate. The method is orthogonal to
the methods of shear correction presented in Wagner et al. (2009, 2011) in
the sense that the latter method can be used as a preprocessing step to the
method of this paper. The new method is similar in spirit to that of Albers
(2009) and Albers et al. (2007) but the optimization problem is different and
the conceptual differences between the upstream wind, the virtual wind, and
the driving wind (Christensen and Dragt, 1986) (see below) are handled ex-
plicitly through a single auxiliary parameter. This parameter also serves to
take into account some consequences of the dynamic response of the turbine
described in Rosen and Sheinman (1996), Rosen and Sheinman (1994), Shein-
man and Rosen (1992), and Rauh and Peinke (2004).

The paper is organized as follows. Section c.2 elaborates on the concepts
of upstream, virtual, and driving wind and summarizes various attempts at
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meteorology mast wind turbine

FIGURE C.1. An informal sketch of the concepts of upstream wind u, virtual wind v, and driving wind w. The upstream
wind is not disturbed by the wind turbine. The virtual wind is the fictive wind field at the location of the wind turbine
if the wind turbine was not there to disturb the wind field. The driving wind is the fictive wind field that is completely
homogeneous across the rotor and causes the same power production as the virtual wind field.

eliminating the influence of turbulence on the estimation of the power curve.
In sec. c.3 the measured data are presented. In sec. c.4 the modeling frame-
work is introduced and analyzed. The implementation details are given in
appendix c.a. In sec. c.5 the new method is applied to various situations and
the results are discussed. Section c.6 indicates some further applications and
directions for future work. Section c.7 concludes.

C.2 BACKGROUND
C.2.1 UPSTREAM, VIRTUAL, AND DRIVING WIND

Since the wind turbine disturbs the flow, any wind speed measured at the
location of the turbine cannot be used as a reference wind in a power curve
measurement. To acknowledge this, Christensen and Dragt (1986) introduces
three useful wind fields: the upstream wind u, the virtual wind v, and the
driving wind w. See fig. c.1 for an informal sketch. The virtual wind v is de-
fined to be the fictive wind field at the location of the wind turbine as it would
be if the wind turbine was not there to disturb the flow. The virtual wind
therefore defines the wind energy resource at the location of the wind tur-
bine.

Suitably far upstream of the wind turbine (assuming that it is not in the
wake of another wind turbine) the influence of the wind turbine is negligible.
The wind field here is called the upstream wind u. In the setting of this paper,
only ten minute means and standard deviations of the upstream wind are
measured by cup anemometers at hub height and at the lowest tip height. It
will therefore be assumed that the mean and standard deviation of the virtual
wind speed at a given height are equal to those of the upstream wind speed
at the same height. The measurement of the upstream wind is itself subject to
the atmospheric conditions, see e.g. Albers and Klug (2001) and Albers et al.
(2000).

The virtual wind is not homogeneous over the rotor. It is therefore useful
to introduce the driving wind w as the fictive wind field that is completely
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homogeneous across the rotor and causes the same power production as the
virtual wind. Since the driving wind is homogeneous, it is at each point in
time determined by a single value which will also be called the driving wind.
While the driving wind is often not mentioned explicitly, it is used implicitly
whenever the wind turbine power is considered as a function of a single wind
speed. In the IEC 61400-12-1 standard the mean driving wind is implicitly
taken to be the hub height upstream mean wind speed.

One application of the three concepts is to account for the effect of vertical
shear on the mean power. In Elliott and Cadogan (1990), the mean driving
wind speed is represented as the spatial average of the mean virtual wind
speed over the rotor disk. The mean virtual wind speed at a given height is in
turn taken to be the mean upstream wind speed at the same height. Alterna-
tively, in Wagner et al. (2011) the mean driving wind speed (termed equivalent
wind speed in the reference) is based on the total kinetic energy flux through
the rotor. Other representations are possible, see e.g. Wagner et al. (2009). In
all cases it is demonstrated that the dispersion of the mean power at a given
mean driving wind speed is less than the dispersion of the mean power at a
given mean hub height upstream wind speed.

For any time-dependent quantity x(¢), the capital letter X denotes the time-
wise average (x) = %L}T x(s)ds, where T denotes the length of the time inter-
val, e.g. ten minutes. The standard deviation o, of x(t) is defined by o7 =
(x*) —(x)*>. Thus, U, V, W denote the mean upstream, virtual, and driving
wind speeds; o, 0,, 0, denote the corresponding standard deviations; and
I, =0,/U,1I,=0,/V, I, = 0,/W denote the corresponding turbulence inten-
sities. Similarly, p, P, op denote the instantaneous power, the mean power,
and the standard deviation of power. The upstream wind will henceforth re-
fer to the measured wind speed at hub height at the meteorology mast, not
the whole upstream wind field. The descriptions of the models below are cast
in the language of driving wind, but in the cited references it is implicitly
assumed that the driving wind is equal to the upstream wind, i.e., W = U,
oy =0y,and [, = 1,,.

C.2.2 THE STATIC MODEL

The simplest model for the production of power as a function of the driv-
ing wind is the static model (Rosen and Sheinman, 1994). It assumes that the
instantaneous power pg(t) at time t is a function of only the mean driving
wind speed, i.e., ps(t) = fs(W). Therefore, the mean power P, is also a func-
tion of only the mean driving wind speed, B = f;(W). The function f;(W) is
the power curve and can be estimated by the method of binning as described in
the IEC 61400-12-1 standard. Hence the IEC 61400-12-1 standard essentially
assumes a static model which cannot take into account the turbulent nature
of the wind. In Sumner and Masson (2006) and Tindal et al. (2008), it is sug-
gested that the turbulence intensity should be accounted for by stratifying the
measured data by turbulence intensity. This increases the amount of data to
be gathered, since for each turbulence intensity bin, enough data has to be
gathered to satisfy the requirements of the IEC 61400-12-1 standard. In par-
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ticular, the time required to complete a power curve measurement campaign
can be expected to increase.

C.2.3 THE QUASI STATIC MODEL

A generalization of the static model is the quasi static model considered in
Christensen and Dragt (1986), Rosen and Sheinman (1996), Rosen and Shein-
man (1994), Sheinman and Rosen (1992), Albers (2009), and Albers et al.
(2007). It assumes that the instantaneous power py(t) at time # is a function
of the instantaneous driving wind w(t) alone,

pqs(t) = qu(w(t))-
A second order Taylor expansion of f4s around the mean driving wind speed
W yields
Pas(t) = fos (W) + f(W)@(t) = W) + EfLW)w(t) - WP (c)

2/gs

The mean power is then
Ps = fas(W) + 3 fs(W)og, = fas(W)(1 +3I50(W)) (c.2)

where (W) = 1 + WCL(W)/Cp(W) + ¢ W?C(W)/Cp(W) as shown in Chris-
tensen and Dragt (1986), and Cp denotes the power coefficient. If the turbu-
lence intensity [, is zero, then Pys = fqs(W), and so fys can be interpreted as the
zero-turbulence power curve. Equation (c.2) can be used to qualitatively explain
the observation that mean power tends to increase with increasing turbulence
intensity at low wind speeds where the power curve is approximately convex
( q’S’(W) is positive), and that the mean power tends to decrease around rated
power where the power curve is approximately concave (fy;(W) is negative).
See e.g. Christensen and Dragt (1986), Albers (2009), and Albers et al. (2007).

Equation (c.2) has been used as an inspiration to incorporate turbulence
intensity into the power curve estimation. Firstly, in Kaiser et al. (2007), Lan-
greder et al. (2004), Kaiser et al. (2003), and van Radecke (2004), data sets
consisting of W, o,,, P are partitioned into bins by W. For each bin the re-
gression coefficients P, and C are estimated from P = P, + Co;. Now P, as a
function of W is the zero-turbulence power curve, and C as a function of W
determines the influence of turbulence intensity. Somewhat related, Frandsen
et al. (2000) and Eecen et al. (2006) consider the mean power for each mean
wind speed bin as a linear combination of several parameters 7; (including
turbulence intensity, shear, flow inclination, wind direction), P = P, +} ; (;m;,
and estimate for each wind speed bin the coefficients P, and 7, 7,,... by re-
gression. In both cases the method requires a sufficient amount of data in each
mean wind speed bin.

Secondly, the relation P = JpAW3Cp(W) defining the power coefficient,
where p is the air density and A the rotor area, suggests the use of a corrected
mean wind speed W, = W(1 + 3125(W))*/3, so the power curve is the mean
power as a function of the corrected mean wind speed W.. However, the cor-
rection is useless since knowledge of the function ¢ is equivalent to knowledge
of the power curve itself. As noted in Christensen and Dragt (1986), the sim-
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plifying assumption that 6 ~ 1 is unrealistically crude and should not be used
to allow for the simpler correction W, = W (1 + 312)"/3.

Finally, one of the two methods presented in Albers (2009) and Albers et al.
(2007) considers the mean powers Pys(I;) and Pys(1,) at the two turbulence in-
tensities I, and I, with the common mean wind speed W. From (c.2) it follows
that Pys(L,) = Pys(I;) + 5 fqo(W)(IZ — I7). So given fy it is possible to transform
(renormalize in the words of the references) the mean power from one tur-
bulence intensity to another. From this a recursive scheme is suggested to
estimate f,. While it is not proved that the scheme converges to the desired
result, it is noted in the references that convergence is obtained after just one
iteration. Moreover, is it also demonstrated that the method only works well
when the source and target turbulence intensities are not too far apart. In gen-
eral, any correction for turbulence intensity based on (c.1) and (c.2) is likely
to fail for high turbulence intensities, since high turbulence intensity implies
large excursions of w(t) away from the mean W and hence the second or-
der Taylor approximation is unlikely to be valid, especially near the region of
transition to rated power.

In Albers (2009) and Albers et al. (2007), the quasi static model is used
to derive another method of incorporating the turbulence intensity into the
power curve estimation. That method does not suffer from the same draw-
backs as the approaches based on the second order Taylor expansion. By cal-
culating the timewise average directly, one obtains

T (o]
Pu= o= | Futwitndr= | fupudx  e3)

where ¢, denotes the probability density function of the driving wind speeds
w(t) in the time interval under consideration. In the case where the driving
wind speed is constant and equal to its mean, (c.3) reduces to Fys = fqs(W)
which reconfirms the interpretation of fy, as the zero-turbulence power curve.
When only ten minute means and standard deviations are available, ¢, can-
not be known exactly and some model for the distribution of driving wind
speeds must be employed. The Normal Distribution Model is obtained in the
cited references by assuming that the driving wind speeds follow a normal
distribution which is completely determined by its mean and standard devi-
ation.

Given a zero-turbulence power curve, (c.3) provides an explicit expression
for the mean power as a function of the wind speed statistics and therefore the
power curve at any desirable turbulence intensity. To obtain a power curve at
a given turbulence intensity, the cited references suggest a correction of the
measured mean power based on (c.3) followed by the method of binning. In
order to estimate the zero-turbulence power curve, these references suggest
various possible methods, including a recursive scheme based on corrections
of the measured mean power and one based on minimization of the total ab-
solute errors,

%me(x)(i)i(x)dx_Pi,meas ’

n
i=1

where P, ,c,s is the i’th measured mean power and ¢; is the probability den-
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sity function of the corresponding i’th driving wind speed distribution. In
Albers (2009) it is noted that this optimization problem is “complicated”
but that it can be solved using a “Newton solver”. However, it is not stated
wherein the complexity lies nor how the Newton solver should be imple-
mented. It will be shown in this paper, that by considering the total squared
error instead of the total absolute error, the optimization problem can be
solved efficiently using numerical linear algebra and an implementation is
outlined in appendix c.a. Furthermore, it will also be shown that the turbu-
lence intensity I,, of the driving wind should be smaller than the measured
turbulence intensity I, of the upstream wind.

C.2.4 THE CORRECTED, QUASI STATIC MODEL

The quasi static model is by construction incapable of taking the dynamic re-
sponse of the wind turbine to the wind into account. Sheinman and Rosen
(1992), Rosen and Sheinman (1994), and Rosen and Sheinman (1996) address
this and introduce the important concept of modified turbulence intensity. It
is shown that for wind speed fluctuations of low frequency, the quasi static
model is realistic, but as the frequency increases, the dynamic response of
the wind turbine becomes significant. Under this corrected model, the mean
power P is P = fos(W)(1 + 315, , 0(W)) where fy, is the zero-turbulence power
curve and I, ; is a modification of the turbulence intensity I, defined in terms
of the spectral density function S, of the wind and a function G, determining
the dynamic response of the wind turbine at the mean wind speed W. Shein-
man and Rosen (1992), Rosen and Sheinman (1994), and Rosen and Sheinman
(1996) demonstrate that the corrected model is more capable of explaining the
influence of turbulence in the power production than the quasi static model.
Unfortunately, determination of the function G, requires detailed knowledge
on the wind turbine which an independent third party cannot be expected
to have when performing power curve estimation. Hence this method is not
generally feasible for power curve estimation. Nevertheless, it is an impor-
tant observation that the turbulence intensity should be modified to take into
account the dynamic response of the wind turbine.

C.2.5 THE DYNAMIC MODEL

Another model for the dynamic response of the wind turbine is the stochastic
differential equation (here the Langevin equation)

dpayn(t) = =By (1) Payn(t) — fayn(w(t)) ) dt + B,(t) dB(2), (c.4)

as studied in Gottschall et al. (2006), Gottschall and Peinke (2007), Anahua
et al. (2008), Gottschall and Peinke (2008) and Waichter et al. (2011). The
first term is the relaxation term stating that the power pgy,(f) will tend to-
wards fgyn(w(t)). The factor ,(t) determines the speed of the change in that
1/B,(t) can be interpreted as a response time. The second term is the noise
term and models the random noise in the system, B is a standard Wiener pro-
cess (Brownian motion), and the factor f,(t) determines the strength of the
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noise. If the wind speed w(t) is constant and equal to its mean W, and if
there is no noise, i.e., f, = o, then the power will tend exponentially fast to
fayn(W). Hence the function fqy, can be interpreted as the zero-turbulence
power curve. The cited references consider the estimation of the function fyy,
from simultaneous, high-frequency measurements of wind and power. This
is not possible in the setting of this paper since only ten minute statistics are
available.

C.3 MEASUREMENTS

The data set used in the analysis consists of ten minute statistics from an
onshore wind turbine and accompanying meteorology mast. For reasons of
confidentiality, the exact details of the wind turbine cannot be given here.
The wind turbine is a horizontal axis, actively pitched, multi-megawatt wind
turbine. The wind and power data have been scaled so that all wind speeds
and powers are dimensionless and between o and 1. Therefore the scales on
the figures are all dimensionless unless explicitly stated otherwise. This is of
no consequence for the conclusions.

The onshore wind turbine is located in flat terrain. The meteorology mast is
located 2.5 rotor diameters away from the wind turbine, thus complying with
the IEC 61400-12-1 standard. Cup anemometers are mounted at hub height
and at the lowest tip height. The data have been filtered to include only ten
minute events where the following criteria are satisfied: The mean angle" be-
tween the wind direction and the line-of-sight between the wind turbine and
the meteorology mast was less than 30° the wind turbine operated without
any errors; the wind turbine was connected to the grid; no power reduction
was active. Furthermore, to reduce the influence of vertical shear of the wind
profile as much as possible, data is retained only from periods where the shear
is low and the turbulence intensity in general is high. Finally, the shear expo-
nent «a is estimated according to the power law

a
Uhub _( Zhub )
Ulowest tip

(c.5)

Zlowest tip

and only data with o < a < 0.1 is retained. Here Upyp and Ulgyest tip denote
the mean upstream wind speeds at hub height z,,, and at the lowest tip
height zjgyest tip, respectively. The filtered data set contains 2827 records.

The mean upstream wind speed U is corrected for air density according
to the IEC 61400-12-1 standard, U = Umeas(pmeas/po)l/3 where the measured
air density ppe,s is calculated from measured pressure and temperature at
the meteorology mast, the hub height, and the terrain elevation above sea
level; and where p, = 1.225kg/m3 is the reference air density. To leave the
turbulence intensity invariant under the correction for air density, the stan-
dard deviation of upstream wind speeds is corrected in a similar manner:
o, = ou,meas(pmeas/po)l/l This is in agreement with Albers (2009).

1 - Here the mean angle is the arithmetic average of K sampled directions dy during
ten minutes, ) ; di/K, not the directional average defined by the average wind direction,
(X cosdy/K,} jsindy/K), as would be more appropriate. However, the wind directions relevant
to the analysis are not close to 0°, so the error of using the arithmetic average is not large.
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FIGURE C.2. Distributions of (a) mean upstream wind speed U, (b) upstream turbulence intensity I, and (c) shear expo-

nent a.
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FIGURE C.3. Level curves (solid) of the joint probability density functions of (a) mean upstream wind speed U and upstream

turbulence intensity I,;; (b) mean upstream wind speed U and shear exponent «; and (c) shear exponent a and upstream
turbulence intensity I,,. The gray dots denote the individual data points. The thin, black lines mark the medians of the
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FIGURE C.4. (a) Mean power P as a function of mean upstream wind speeds U. Gray dots denote the 2827 data points of
the filtered data set. The black curve denotes the IEC 61400-12-1 power curve. (b) Solid and dashed curves denote the
differences P, — P, and P,, — P, , respectively. The gray curve denotes the difference P,, — P, in the case where the mean

upstream wind speed U has been shear-corrected according to Wagner et al. (2011).
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Figure c.2 shows histograms of mean upstream wind speed U, upstream
turbulence intensity I, and shear exponent « for the filtered data set. Rated
power is attained near U = 0.65, and the data set covers the whole relevant
wind speed range. The turbulence intensity is in general high with a median
equal to 0.126. The shear exponent is low by construction and approximately
evenly distributed around the median at 0.046. Figure c.3 shows the simul-
taneous distribution of combinations of the three ten-minute statistics from
fig. c.2. In the filtered data set, the correlation coefficient between the mean
anemometer wind speed U and the shear exponent « is low (0.17), and like-
wise the correlation coefficient between the turbulence intensity I, and the
shear exponent « is also low (0.024). Figure c.4 (a) shows the IEC power curve
for the filtered data set. To demonstrate the influence of turbulence inten-
sity and of shear on the mean power, four subsets of the filtered data set are
formed: I, and I, where the turbulence intensity less than and greater than the
median turbulence intensity (0.126), respectively; and «, and a, where the
shear exponent less than and greater than the median shear exponent (0.046),
respectively. For each data set the corresponding IEC power curve (denoted by
P, P, P, and Py, respectively) is calculated and the differences P -P, and
P, —P,, are plotted in fig. c.4 (b). Evidently, the mean power depends on both
turbulence intensity and shear exponent, in particular in the regions around
U = 0.65 and U ~ o.50. However, the turbulence intensity has the dominant
effect in the region around U = 0.65.

While the shear exponent in the filtered data set is low by construction, one
may consider the correction of mean wind speed as proposed in Wagner et al.
(2011) in the case of a vertical wind profile following the power law (c.5). The
gray curve in fig. c.4 (b) shows the difference P, — P,, after the shear correc-
tion has been performed. It is observed that the shear correction provides only
a slight decrease in the difference between the two power curves. A likely ex-
planation for the small reduction is that the shear correction is based on only
two measurements (at hub height and lowest tip height) over the lower half
of the rotor disk, wherefore the vertical wind profile is poorly resolved. In the
rest of this paper, no correction for shear is performed. It must be empha-
sized, however, that the methods presented in this paper can be applied to
shear corrected data as well.

C.4 MODEL AND METHOD

In this section, a method is derived to estimate the zero-turbulence power
curve from ten minute statistics of wind and power. In subsec. c.4.1, the
method is derived given distributions of the driving wind and ten minute
statistics of power. In order to bridge the gap between the measured upstream
wind and the driving wind used in the quasi static model, a simple model is in
subsec. c.4.2 employed to indicate how the statistics of the driving wind can
be represented in terms of the upstream wind. Since the quasi static model
does not include the wind turbine’s dynamic response, another simple model
is employed in subsec. c.4.3 to indicate how to compensate for this on the
level of ten minute statistics. Finally, subsec. c.4.4 connects the results of the
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three preceeding subsections and describes the new method. The concept of
modified turbulence intensity (see subsec. c.2.4) is implicit in the modeling
of the driving wind in terms of the upstream wind.

C.4.1 THE QUASI STATIC MODEL REVISITED

Recall that under the quasi static model, the instantaneous power p(t) at time ¢
is given by p(t) = f(w(t)) where w(t) denotes the instantaneous driving wind
speed at time t and f denotes the zero-turbulence power curve. The mean
power during some time interval of length T is now

P=<p>=%j ff nae= [ g

where ¢ denotes the probability density function of the driving wind speeds
during the time interval under consideration. Given a data set {(¢;, P}, 0,;) |
i =1,...,N} of distributions of driving wind speeds and corresponding means
and standard deviations of power, the problem to solve is

find f such that J- fx x)dx=P;, forall i=1,...,N. (c.6)

This problem is ill-posed: a solution may not exist, if a solution exists it may
not be unique, and small changes to the input data may cause large changes
in the solution. The last part is especially important since the P,,..., Py are
measurements to which some error will always be connected, since the distri-
bution of the fictive driving wind speeds must be modeled in terms of other
measurements, and since the quasi static model is a very simplified model of
the wind turbine. Therefore, some kind of robustness to errors and misspeci-
fications must be introduced. Informally, the problem (c.6) has the structure
of a Fredholm equation of the first kind, though the variable i is discrete in-
stead of continuous as in e.g. the formulation in Tikhonov (1963b). Tikhonov
regularization (Tikhonov, 1963a,b) will be employed to solve (c.6). Consider
the smoothing functional

S5(f,0) = MSEp(f) +OR(f) (c.7)

MSEp(f U F(x)pi(x)dx - P]2

is the mean squared errorfunctional;

- [ 2

=1

where

is the regularizing functional with non-negative weight functions K;; and 6 > o
is the regularization weight, a parameter which determines the importance of
the regularizing functional in (c.7). The regularized problem to solve is

minimize S(f,0) withrespectto f. (c.8)
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FIGURE C.5. (a) The black curves show the solution fy to (c.8) as a function of the instantaneous driving wind speed w for
0 = 10712 (short dashes), 6 = 1078 (solid), and 6 = 1074 (long dashes). The gray dots show the measured mean power P
as a function of the mean driving wind speed W. (b) The proxies for the goodness of fits, GOFp(fg) (solid) and GOng (fo)
(dashed), as a function of log, (0).

If 6 = o, the ill-posed problem (c.6) is obtained. If the regularization is not
employed, solutions to (c.6) or (c.8) will exhibit the same irregular, undesir-
able behaviour as illustrated in e.g. Phillips (1962). The specification of the
regularizing functional determines the character of the solution f to (c.8) by
penalizing undesirable behaviour of f. Therefore the regularizing functional
should be specified according to the problem under consideration. In the con-
text of power curves, and assuming that the zero-turbulence power curve will
resemble the conventional power curve, it is not reasonable to penalize large
values of f, since the value of f at high wind speeds is expected to be much
greater than the value of f at low wind speeds. Likewise, large values of the
first derivative f’ should not be penalized either, since the first derivative
is expected to be large below rated power compared to at rated power. The
following regularizing functional will be employed through the rest of the
present paper,

R(H= [ (700 d (9)

It penalizes large values of the second derivative f”, i.e., essentially the curva-
ture of the zero-turbulence power curve. In other words, it favours solutions
that locally are approximately linear. One may argue that the regularizing
functional should not penalize zero-turbulence power curves with non-zero
curvature near the cut-in wind speed and near the wind speed where rated
power is attained. The regularizing functional in (c.9) was chosen for its sim-
plicity. The study of more sophisticated regularizing functionals is left for
future work. It is shown in appendix c.a how (c.8) for fixed 6 may be solved
efficiently by the methods of numerical linear algebra.

The above discussion does not specify how to choose the regularization
weight 6 appropriately. Consider the data set from sec. c.3 and assume for
now that the driving wind speeds are normally distributed with means and
standard deviations equal to those of the upstream wind speeds. Let fy de-
note the solution to (c.8) for a given value of 6. Figure c.5 (a) shows how the
solution fy depends on 6 (it has appeared to be natural to consider the regular-
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izing weight 6 on a logarithmic scale). At 6 = 107'?, the solution shows large
oscillations. At 0 = 1074, the solution does not deviate much from a straight
line. In between, at 8 = 1078, the solution is both regular and, informally,
shaped like a conventional power curve. The unregularized solution f, is not
shown as it attains values that are several orders of magnitude greater than
the rated power. A measure of the goodness of fit of mean power of a solution fy
is the ratio
min{MSEp(fy-) |0 < 0}

MSEp(fo) '

GOFp(fg) =

A goodness of fit close to 1 implies that the mean squared error of the mean
power is close to the optimum which is attained for the unregularized solu-
tion. Likewise, a measure of the goodness of fit of the standard deviation of power
of a solution fy is the ratio

min{MSE fe* )| o< 6%}
MSE (fo) ’

GOF,, (fp) =

where

e S oo ([ o]

is the mean squared error of standard deviation of power. As proxies for the

goodness of fits, the range o < 0" is in this subsection replaced by 107*> <
0" < 1074. The case 8" = o is not included due to the ill-posedness of (c.8) in
the non-regularized case. The use of proxies does not pose a problem to the
applicability of the method.

Figure c.5 (b) shows how (the proxies for) GOFp(fy) and GOF, (f@) depend
on 0. As 0 increases, GOFp(fy) decreases first very slowly and then around
0 = 107 starts to decrease very quickly. Therefore, a near optimal goodness
of fit of the mean power is attainable in a wide range of values of 6. At 6 =
1078 the goodness of fit of the mean power is 0.996. The goodness of fit of
the standard deviation of power is low for the smallest and largest values
of O while somewhat constant for intermediate values of 6 around 1078 The
behaviour of GOF, (fg) can be explained. At small values of 0, the solution fy
possesses large 0sc1llat10ns, i.e., fo(w) will cover a wide range of values even
for small variations in w. Therefore, the standard deviation of power will in
general tend to be overestimated when 6 is too small. Similar arguments can
be applied when 6 is too large. In both cases, the mean squared error of the
standard deviation of power will be large, and hence the goodness of fit will
be low. This motivates the use of GOF, fg) to help determine an appropriate
value of 6.

Finally, it should be noted that the use of a mean squared error functional
makes the optimization problem sensitive to outliers compared to the use of a
mean absolute error functional. However, this problem can easily be avoided
through an iterative approach like in robust regression. Outliers have not been
found to pose a problem in the analysis in this paper.
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C.4.2 THE UPSTREAM, VIRTUAL, AND DRIVING WIND REVISITED

While the fictive driving wind is a convenient concept, it must be represented
in terms of the upstream wind, since only the upstream wind can be mea-
sured. The present subsection elaborates on a very simple model of the driv-
ing wind in order to indicate how the driving wind on the level of statistical
quantities can be represented in terms of the upstream wind. It must be em-
phasized that this simple model is not intended to provide an exact specifica-
tion of this representation.

Recall that the virtual wind field is the fictive wind field at the location of
the wind turbine if the wind turbine was not there to disturb the wind. As-
sume that only the longitudinal velocity component is relevant and let u and v
denote the longitudinal component of the upstream and virtual wind fields,
respectively. Assume that the statistics (means, correlations, etc.) of the vir-
tual wind field are the same as those of the upstream wind field. Assume that
the upstream wind field is stationary and isotropic, and assume that its corre-
lation structure is that of von Karman®. The transversal correlation function
is then given by

22/3X1/3

Ptrans(7) = P[%V] where p(x) = W(Kl/3(x) _Z

“Kapy ()

where y = VrI'(5/6)/T(1/3) ~ 0.747, K,, is the modified Bessel function of the
second kind with index v, and where L denotes the (longitudinal) integral
length3. The driving wind speed w is the common wind speed of a wind field
that is completely homogeneous across the rotor disk and that yields the same
power production as the virtual wind field. Inspired by Elliott and Cadogan
(1990), the following rotor disk average of the virtual wind is used as a model
for the driving wind speed,

1

w= v(7)dr, (c.10)

rotor

where R denotes the rotor radius. A less idealized model would be to consider
the average kinetic energy flux like in Wagner et al. (2011). While the conclu-
sion is essentially the same, the calculations are more involved, so only the
model in (c.10) will be considered here. It can now be shown that the mean
driving wind speed W is equal to the mean upstream wind speed U, and that
the standard deviation o,, of the driving wind is given by

1
oy =k'oc, where k'= \/%J- K(S)p(%z)/s)ds (c.11)

and where «(s) = sarccos(s) — s>V1 — s2. The factor k’ in (c.11) depends under
the simple model only on the ratio R/L of the rotor radius R and the integral
length L.

Figure c.6 (a) shows the factor k’ as a function of the ratio R/L. When the

2 - The von Kdrmdn correlation structure corresponds to a spectral density of the longitudinal
velocity component given by S(w) = 2Lo2 (1 +70.7 - L2w?)™5/6.

3 - The longitudinal integral length is defined as L = L:o Plong(r)dr where pjong is the longitudinal
autocorrelation function.
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FIGURE C.6. (a) The factor k” in (c.11) as a function of the ratio R/L of the rotor radius R to the integral length L. (b) The
factor k” in (c.15) as a function of the ratio f7*/7 of the characteristic response time ;! to the integral time 7 for mean
driving wind speeds W = 5m/s (solid), W = 1om/s (short dashes), and W = 15m/s (long dashes).

size of the rotor is comparable to the integral length, which is the case for
modern wind turbines, the factor k’ is significantly smaller than 1. This im-
plies that a one-point measurement of the standard deviation of the upstream
wind speed must be appropriately scaled down to represent the standard de-
viation of the driving wind speed. Scaling by the exact factor k” in (c.11) is of
course only true under the highly idealized model considered in this subsec-
tion. Nevertheless, the model does indicate the necessity of transforming the
measured upstream wind speed, if the standard deviation (or the turbulence
intensity) of the wind is to be incorporated into the power curve estimation.

C.4.3 THE DYNAMIC MODEL REVISITED

While the quasi static model provides a way of estimating the zero-turbulence
power curve, it has the undesirable property that it ignores the dynamic be-
havior of the wind turbine. Consider therefore the following dynamic model
for the power p(t) defined in terms of a stochastic differential equation (the
Langevin equation),

dpdyn(t) = _/51 (pdyn(t) _f(w(t)))dt + ﬁz dB(t)- (C-12)

Here 1/B, (the characteristic response time) and f3, (the noise strength) are
constants, f (the zero-turbulence power curve) is a deterministic function, w
is the driving wind, and B is a standard Brownian motion independent of the
driving wind. In the limit §; — oo, the quasi static model is obtained. The
model in (c.12) is an idealized version of the model in (c.4) in the sense that
the coefficients f; and 8, are here assumed to be constant. Equation (c.12)
with initial condition pgyn(0) = p, has the solution

t t
Payn(t) = poc ! +f Boe B9 F(w(s)) ds + ﬁ—f B,e P ) dBs).

The influence of the initial value p, decreases exponentially fast, so when
t > 1/B,, then p,e P! ~ o. By similar reasoning, extending the lower inte-
gration limit to —oco constitutes a negligible change. Hence the solution can be
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approximated by

pdynu):f ﬁleﬁ*”)f(w(s))m%f Bie P9 dB(s).  (c.13)

If the driving wind is stationary, it follows immediately from (c.13) that the
mean power (in the sense of the probabilistic expectation) is

t
Elpayn(t)] = j Bue P CIE[f(w(s))] ds = ELf (w(t)].

From the law of large numbers it follows that the mean power (in the sense of
the time-wise average) is

1 T
Pam =7 || paynls)ds = Elpapn(0)] = ELF(w(0)]

jf ds—J. $(x)f (x)dx = Py,

where ¢ again denotes the probability density function of the driving wind
speeds. Therefore, it has under mild assumptions been shown that the quasi
static model on the level of mean values is equivalent to the slightly more
sophisticated dynamic model in (c.12).

To compare the dynamic model with the quasi static model in terms of
the standard deviation of power, let wqy,(t) and wys(t) denote two stationary
driving wind speed time series with common mean W. Suppose that wgyn(t)
drives the dynamic model and that w,(t) drives the quasi static model. The
variance of power under the dynamic model is

5

var pdyn J ﬁ e has COV(f(wdyn( )) f(wdyn( )))d5+ 2[),2

00 (c.14)
< [ e con Flwagn(9). flwaynlod) s,

since $2/(2f,) = o as shown in appendix c.s. By a first order approximation,
fw) =~ f(W)+ f(W)(w— W), one obtains

o] o oo
_Pam k7 2 here k7 = \/J ﬂle*ﬁlspwdyn(s)ds <1. (c.15)

Up qs qus

Hence, in order for the quasi static model to match the standard deviation of
power of the dynamic model, the standard deviations of the respective driving
wind speeds should satisfy

oy . ~k'o
Wgs ~ Wdyn*

Suppose for the sake of the example that wgy,(f) has the von Kdrman corre-
lation structure#. Then fig. c.6 (b) shows the factor k” as a function of the ra-
tio B; '/t of the characteristic response time ;" to the integral time 7, where 7
is related to L through L = tW. It is seen from fig. c.6 (b) that, under the many
assumptions of the simple dynamic model, the standard deviation of driving

4 - This assumption only serves to simplify the computations behind fig. c.6 (b). The correlation
structure of the fictive driving wind will in general not be like the correlation structure of the
upstream wind. It can, for example, be shown that the famous 2/3-law of Kolmogorov must be
replaced by a 6/3-law under the simple model in (c.10).
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wind speed should be scaled down slightly in order to compensate for the
fact that the quasi static model by construction does not take the dynamic
response of the wind turbine into account.

C.4.4 THE NEW METHOD

In subsec. c.4.1 it was shown how the zero-turbulence power curve f may
be estimated given distributions of the driving wind and ten minute statis-
tics of the power. Given that only ten minute statistics of the upstream wind
are available, the driving wind speeds must be assumed to lie within some
class of parametric distributions. Like in the “Normal Distribution Model”
from Albers (2009) and Albers et al. (2007) it will here be assumed that the
driving wind speeds are normally distributed. This is a strong assumption
which unfortunately is impossible to verify or falsify from the quite coarse
ten minute statistics. The distribution of the driving wind speeds are there-
fore determined completely from their means and standard deviations.

Let {(Uj,04,i,P;,0p:) | i = 1,...,N} denote the measured data set. Since the
wind shear in the data set is low by construction, it will be assumed that the
mean driving wind speed W; is equal to the mean upstream wind speed U;
measured at hub height at the meteorology mast. Deviations from the as-
sumption W; = U; will later be used to explain some of the variation ob-
served in the fit residuals. If information about the wind profile is available,
the equvalent wind (Wagner et al., 2009, 2011) may be used to provide a better
representation of the mean driving wind speed.

In subsecs. c.4.2 and c.4.3 it was indicated that the standard deviation o, of
the upstream wind speed should be scaled down by some factor k’ to account
for the size of the rotor and then further by some factor k” to compensate
for the fact that the quasi static model is incapable of modeling the dynamic
response of the wind turbine. The models employed to derive these factors
are highly idealized and should therefore not be used directly to specify the
downscale factors. Instead, it will just be assumed that

w:kau

for some unknown factor k, the equivalent turbulence factor, which is to be
determined from the data. In this paper, k is assumed to be constant. The use
of the equivalent turbulence factor is consistent with the concept of modified
turbulence intensity from Sheinman and Rosen (1992), Rosen and Sheinman
(1994) and Rosen and Sheinman (1996).

With the assumptions above, the problem (c.8) replaced by

minimize S(f,0,k) withrespectto f, (c.16)

where S(f,0,k) = MSEp(f,k)+ OR(f) is the new smoothing functional,

N 2
MSEp(f,k) = Z[ B(x; Wi, 0 ) dx — P]

N 2
I%Z[ d(x; Uy, ko) dx - P]
1
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is the new mean squared error functional, and ¢(x; W, 0,,) denotes the prob-
ability density function of a normal distribution with mean W and standard
deviation o,,. Let fp , denote the solution to (c.16) for given values of 6 and k.
A measure of the goodness of fit of the mean power is the ratio

min{MSEp(fg+ x, k) |0 <k* < 1,0 < 6%}
MSEp(fo,k- k)

Likewise, a measure of the goodness of fit of the standard deviation of power

GOFp(fox) =

is the ratio
min{MSEUp(fg*,k*,k*) lo<k*<1,0<60%
MSEO'p (f@,kf k) ’

GOFUP (ff),k) =

where

) N o oo 2\1/2 2
MSE%(f’k):ﬁZ[U gt [ f<x)¢i<x>dx]] ~0n)

is the mean squared error of the standard deviation of power. Here 1;(x) =
¢(x;Uj, ko, ;) for brevity. Due to the ill-posedness of (c.16) when 6 = o, the
goodness of fits will be replaced by proxies defined similarly but where the
ranges of the parameters k* and 0" are 0.5 <k* <1 and 107" <0* < 1075. This
is in analogy with subsec. c.4.1.

Figure c.7 shows the level curves for (the proxies for) the goodness of fits
GOFp(fg ) and GOFUP (fo,x) in the (6,k)-plane. The level curves of the good-
ness of fit of the mean power shows that when k =~ o.77, the solutions fy
can attain the highest goodness of fit of the mean power. Furthermore, as k
approaches o.77 it is possible to increase the regularizing weight 6 while
maintaining the same goodness of fit. In other words, k ~ 0.77 allows for the
smoothest zero-turbulence power curves without compromizing the good-
ness of fit of the mean power. The value k = 0.77 should be compared with
fig. .6 (a). It corresponds loosely to a ratio R/L ~ 1 of the rotor radius to the
integral length. This is in agreement with the size of the rotor of the turbine
under consideration and the integral length of the turbulence at the location
of the wind turbine.

The goodness of fit of the standard deviation of power is maximized when
(0,k) ~ (10793,0.77). As the shape of the level curves show, this maximum is
located on a ridge parallel to the 0-axis and perpendicular to the k-axis. The
behaviour of the goodness of fit of the standard deviation of power can be
explained qualitatively. If k is large, then the width of the distribution of the
driving winds w will be large as well. Consequently, a wide range of powers
f(w) will be covered, and the quasi static model will predict a large stan-
dard deviation of power. Likewise, if k is small, then the standard deviation
of power will be small as well. Therefore, if k is not near a reasonable value,
the goodness of fit of the standard deviation of power will be small. The ex-
planation for the behaviour as a function of 6 is like in subsec. c.4.1. This
suggests that the optimal value of (6, k) may be determined from data as the
point which maximizes GOFGP (fox)

When the zero-turbulence power curve f and the equivalent turbulence
factor k have been estimated, the problem of incorporating the turbulence
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FIGURE c.7. Level curves of the proxies for the goodness of fit of the mean power (solid curves)
and of the standard deviation of power (dashed curves). For each level curve, the number to the
left of the small black dot at the end of the curve denotes the value of the goodness of fit along
the curve. Roman numbers correspond to the mean power and italic numbers correspond to the
standard deviation of power. The black dot at (—9.5,0.77) marks the position where the goodness
of fit of the standard deviation of power is maximized. The black dot at (-8.0,1) corresponds to
the zero-turbulence power curve found in subsec. c.4.1.

intensity into the estimation of power curves has been solved. Under the quasi
static model, the mean power P(W,I,) at mean driving wind speed W and
upstream turbulence intensity I,, is now given by

P(W,I,) = J-oof(x)(j)(x; W,kWI,)dx, (c.17)

where ¢(x, W, 0,,) denotes the probability density function of a normal distri-
bution with mean W and standard deviation o,,. Thus, P(W,I,) as a function
of W is the conventional power curve at turbulence intensity I,,.

C.5 RESULTS AND DISCUSSION

The new method is applied to different situations and the results are dis-
cussed. In subsec. c.5.1, the method is applied to estimate the zero-turbulence
power curve when the equivalent turbulence factor k is chosen according to
subsec. c.4.4 and when k = 1. The corresponding derived conventional power
curves are compared with data and it is demonstrated that choosing k ac-
cording to the method from subsec. c.4.4 is superior to letting k = 1. In sub-
sec. c.5.2 it is shown how the new method can be applied to predict the per-
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FIGURE C.8. (a) The estimated zero-turbulence power curves corresponding to fi (solid) and f; (dashed). (b)-(d) Three
examples of conventional power curves derived from f; and f; at turbulence intensities I;, = o0.07 (b), I;, = 0.13 (c), and
I,, =0.19 (d). The solid and dashed curves denote the conventional power curves derived from f; and f;, respectively, and
the thin curve denotes the IEC 61400-12-1 power curve calculated from the whole main data set. The gray dots denote a
subset of the main data set with turbulence intensities as indicated in each subfigure. A magnified version of the part in
the rectangle is shown in the lower right corner.

formance of a wind turbine under unmeasured turbulence intensities. In sub-
sec. c.5.3 it is shown how the new method can be applied to estimate the
power curves when a wide range of wind speeds are not measured. Finally, in
subsec. c.5.4 it is demonstrated how the new method is capable of estimating
power curves from very few data points.

C.5.1 THE ESTIMATED ZERO-TURBULENCE POWER CURVES AND DERIVED CONVEN-

TIONAL POWER CURVES

First, a zero-turbulence power curve f; is estimated according to the method
described in c.4.1 assuming k = 1 and choosing 6 = 1078 guided by GOFp
and GOF, , see fig. c.5 (b). Second, a zero-turbulence power curve f; is es-
timated according to the method described in subsec. c.4.4 where (0,k) =
(10793,0.77) is chosen to maximize GOF, , see fig. c.7. Figure c.8 shows that
fx and f, are similar, though f; displays some small oscillations whereas f,
has a small “bump” near w = 0.6. The small oscillations in f; disappear if 6 is
chosen to be as high as for f,. However, such a choice is not necessary since the
conventional power curve derived according to (c.17) is insensitive to small
oscillations in the zero-turbulence power curve. Moreover, manually choos-
ing the value of 0 introduces an undesirable subjectiveness and weakens the
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FIGURE C.9. The residual mean power corresponding to fi as a function of the mean driving wind speed. The residual
mean power corresponding to f; is similar and not shown here. (a) All turbulence intensities. The solid curve shows the
binwise standard deviation of the residual mean power. The dashed curve show the predicted binwise standard deviation
of the residual mean power according to (c.18). (b)-(d) Turbulence intensities in the ranges 0.07 +0.01 (b), 0.13 +0.01 (¢),
and o.19 +0.01 (d).

data-driven nature of the new method.

Figures c.8 (b), (c), and (d) show that the conventional power curves at tur-
bulence intensities 0.07 + 0.01, 0.13 + 0.01, and 0.19 + 0.01 derived from the
estimated zero-turbulence power curves f; and f; in most cases lie well within
the point cloud consising of the data points with the specified turbulence in-
tensities. However, a closer look at fig. c.8 (b) shows that around W = 0.65
the conventional power curve derived from f; appears to slightly overesti-
mate the mean power whereas the conventional power curve derived from f;
does not. Figure c.8 (c) shows that both derived conventional power curves
agree well with data for the dominant turbulence intensities of the data set.
Finally, fig. c.8 (d) shows that both derived conventional power curves appear
to slightly overestimate the mean power around W = o.3. Therefore, a careful
analysis of the residual mean power,

P(Uy 1)~ P, =f F ()b Uy ko ) dx — P,
o

is warranted. Figure c.9 (a) shows that the residuals corresponding to f; are
approximately evenly distributed around zero. The residuals corresponding
to f, are similar and not shown here. This is not surprising, since the zero-
turbulence power curve is found essentially by minimizing the sum of the
squared residuals. Figures c.9 (b), (c), and (d) reveal that the residuals also
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fi

I,] W— o02+01 04%01 06+01 08+0.1 02%01 0.4%*0.1 06%0.1 08=*o0.1
0.07 £0.01 +0.64 —0.37e +0.00e +0.06e +0.48 +0.06
0.09+0.01 —0.23® —0.45 —0.02e¢ —0.028 —0.72 —0.93 +0.21 +0.07
0.11+0.01 +0.13e¢ —0.22e¢ —0.08e¢ —0.10 —-0.19 —0.34 —-0.32 —0.06e
0.13+0.01 —0.40e —0.35¢ —0.056 —0.11 —0.55 —0.47 —0.41 —0.29
0.15+0.01 +0.01e +0.21e +0.67 —0.12 +0.33 —0.38e
0.17+0.01  +0.07 +0.27e —0.22e +0.040 +0.46 —1.50
0.19+0.01  +0.16 +0.54 +0.14e¢ +0.98

0.21+0.01 +0.13e +0.68e +0.22 +1.24

0.23+0.01  +0.31 —1.01e +0.23e —0.08

0.25+0.01 +0.16e +0.19

TABLE C.1. The median (times 100) of the residual mean power for each combination of mean wind driving speed intervals

and turbulence intensity intervals. The left group corresponds to f; and the right group corresponds to f;. A black dot

flags that the magnitude of the median residual is less than the magnitude of the corresponding median residual in the

other case. The empty entries correspond to combinations containing less than 10 data points.

appear to be approximately evenly distributed around zero when binned by
turbulence intensity.

To investigate whether bias occurs at certain combinations of mean wind
speeds and turbulence intensities, the residuals are divided into groups with
W =o0.2+0.1,...,8.0+0.1 and [, = 0.07+0.01,...,0.25 +0.01. The median of the
residual mean power is then calculated for each combination and the results
are shown in tab. c.1. The median is preferred over the mean since the median
is less sensitive to outliers. In the majority of the combinations, the magni-
tudes of the medians corresponding to f; are smaller than the magnitudes of
the medians corresponding to f;. This is further evidence in favor of the use
of the equivalent turbulence factor to represent the driving wind in terms of
the upstream wind. However, the sign of the medians reveal for both f; and f;
a small negative bias at low turbulence intensities (I,, < 0.14) and a small pos-
itive bias at high turbulence intensities (I, > 0.14). For f; the bias is typically
around +o0.002 whereas it for f, typically is around +o0.003. Since the bias is
so low across all turbulence intensities, it has been demonstrated that the new
method is capable of accounting for the influence of turbulence intensity on
the mean power production.

The variation in the residuals can be explained by the quasi static model.
It has been assumed that W = U and that o, = ko, in order to represent
the driving wind in terms of the measured upstream wind. The assumption
W =U is of course only an approximation, so in reality W = U + & where & is
some random variable with zero mean and standard deviation og. Under the
quasi static model, the real mean power is

wa(x)qb(x; U+¢&,0,)dx =~ Jmf(x +&)p(x; U, 0,,) dx.

With the assumption W = U the mean power is J:of(x)qﬁ(x; U,o0,)dx. Hence
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FIGURE C.10. Level curves of GOFp(fg i) (solid) and GOFGP (fo,k) (dashed) for subset 1 (a) and subset 2 (b). The black dots
mark the positions of the maximal goodness of fit of the standard deviation of power, (log,,(6),k) = (—7.3,0.79) for subset
1, and (log, ,(6),k) = (-8.1,0.71) for subset 2. For the dashed level curves, the levels are the same as in fig. c.7. For the
solid level curves, the levels are (from left to right) 0.999, 0.998, ..., 0.985.

the residual mean power r is approximately

r= j (f(x) = f(x+E)p(x; U, o) dx ~ J f/)(x=&)P(x;U, o) dx.

A simple calculation shows that the standard deviation o, of the residual
mean power is then

i
orxoc| [P0 dx
o
It is reasonable to suppose that o, to first order, is proportional to o, since
the error in the assumption W = U should increase with increasing wind
speed fluctuations. Assume therefore that oz = go, for some constant q. Let
0,(U) denote the binwise mean of the measured o, as a function of U. The
mean turbulence intensity of the whole data set is approximately o0.13. There-
fore the following approximate expression for o, as a function of U is ob-
tained,

o,(U) = qo,(U)

wa’(x)qf)(x; U,o0.77-U-0.13)dx|. (c.18)

For q = 0.25, fig. c.9 shows fine agreement between the observed binwise stan-
dard deviation of the residual mean power and the prediction (c.18). This
shows, qualitatively and under mild assumptions, that the variation in the
residual mean power can be explained by the quasi static model.



mean power difference

0.01

0.00

-0.01

-0.02

120 PAPER C * WIND TURBINE POWER CURVES INCORPORATING. ..

107 — ;
b B /\\ ] o8l A
7\ /\V/ \ [a .
AN NSRS A 5]
b Vo E g 04}
| II
g I ] € 02f
\\ ll
0.08 b D 0.0k st ‘ ‘ g
02 03 04 05 06 07 08 09 0.0 0.2 0.4 0.6 0.8 1.0

FIGURE c.11. (a) The differences P,

mean driving wind speed, W

mean driving wind speed, W
(a) (b)

—P,; (solid), P,, — P;, (short dashes), and P;EC - P}EC (long dashes) as a function

of the mean driving wind speed W. (b) The conventional power curve at turbulence intensity o0.13 derived from the
zero-turbulence power curve estimated from data excluding data points with 0.5 < W < 0.7 (solid), and from the zero-
turbulence power curve estimated from the whole data set (dashed). The two power curves are almost indistinguishable.
The gray dots denote data points with I, =0.13 £ 0.01.

C.5.2 FILLING IN THE BLANKS: PREDICTION OF PERFORMANCE UNDER UNMEASURED

TURBULENCE INTENSITIES

To demonstrate how the new method may be used to predict the wind tur-
bine performance under unmeasured turbulence intensities, two subsets of
the main data set are formed based on turbulence intensity:

subset 1: 0.099 <[, <0.126, median I, =0.113,

subset 2: 0.126 <[, <0.166, median I, =0.143.

For the two subsets, zero-turbulence power curves f; and f, are estimated
according to the new method. Figure c.10 shows the level curves of the two
goodness of fits, GOFp and GOF,,. The optimal choices of the equivalent tur-
bulence factor are k; = 0.79 and k, = 0.77, respectively. Denote by I; the me-
dian turbulence intensity for subset j, and by P;; the conventional power curve
at turbulence intensity I; derived from the zero-turbulence power curve f;,

Py = [ gt Wk W) d.

For the sake of comparison, let PiIEC denote the IEC 61400-12-1 power curve
calculated from subset i. Figure c.11 shows the differences P,, — P,,, P,, — P,,,
and PJEC - PIEC 1deally, P,j—P;j should be equal to zero. The difference PIEC
PIEC is not expected to be zero, but serves as a benchmark of the new method:
The new method is an improvement if the difference P,; — P;; is smaller in
magnitude than the difference PYEC—P[EC. At low wind speeds (0.2 < W < 0.4),
the magnitude of the difference P,; — P,; is approximately the same as that
of PIE¢ — PIEC; at medium wind speeds (0.4 < W < o0.7), the magnitude is
considerably smaller; at high wind speeds (0.7 < W), the magnitude is slightly
larger. Since the rated power is easily known with great accuracy and since it
does not appear to depend much on the turbulence intensity, the difference
PIEC _ PIEC will consequently be very small. However, the new method can
easily be extended to allow the rated power to be specified in advance, if this
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is desired; see appendix c.A.

The power curves may also be compared through the expected annual en-
ergy production (AEP). In this paper the AEP is defined as the integral of the
power curve with respect to a distribution of mean wind speeds, multiplied
by the number of hours per year.> Let ¢ denote the probability density func-
tion of a Weibull distribution with shape parameter 2 and the same mean as
the mean of the mean upstream wind speeds of the main data set. Let AEP;; =
8760 [ Pj(W)p(W)dW and AEPIEC = 8760 [~ PIEC(W)ih(W)dW denote the
AEP corresponding to each of the power curves considered above. Then

AEP,, —AEP,, = 7.9,
AEP,, - AEP,, =—9.9,
AEPIEC _ AEPIEC = _1g 5,

This shows that if the purpose is to predict the AEP under unmeasured tur-
bulence intensities, then the error under the new method is half of the error
under the IEC 61400-12-1 method.

C.5.3 BRIDGING THE GAP: WHEN SOME WIND SPEEDS ARE NOT OBSERVED

In the quasi static model, each data point contributes with information about
the performance of the wind turbine over a range of wind speeds as deter-
mined by the distribution of the driving wind speeds. Therefore, when the
turbulence intensity is around o.13, the data points with mean upstream wind
speed equal to o.5 or o.7 will provide information about the power curve at
wind speeds near 0.6. To illustrate this, a subset of the main data set is formed
by discarding data points with mean upstream wind speed in the interval o.5—
o0.7. From this subset a zero-turbulence power curve is estimated and the cor-
responding conventional power curve at turbulence intensity o0.13 is derived.
Figure c.11 shows that this conventional power curve is almost identical to
the conventional power curve derived from the zero-turbulence power curve
estimated from the main data set where no data points are discarded. This
shows that the new method allows estimation of power curves even when a
large range of mean wind speeds is not represented in the data set.

C.5.4 CONNECTING THE DOTS: A POWER CURVE FROM FEW DATA POINTS

The argument that data points under the quasi static model contribute with
extra information about the wind turbine performance through the distribu-
tion of driving wind speeds also motivates the use of the new method to at-
tempt to estimate power curves from few data points. As an example, a subset
of 144 random data point are formed from the main data set. The number 144
was chosen since 144 x tominutes is 24 hours. Figure c.12 (a) shows the con-
ventional power curve at turbulence intensity o.13 derived from this subset
using the new method and the IEC 61400-12-1 power curve calculated from

5 - This is not the definition used in the IEC 61400-12-1 standard, where the AEP is equal to
the integral of a piecewise constant function with respect to a Weibull distribution with shape
parameter 2, multiplied by the number of hours per year. See (IEC 61400-12-1 standard, sec. 8.3).
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FIGURE C.12. (a) Gray dots represent a subset consisting of 144 random samples from the main data set. The solid curve

represents the conventional power curve at turbulence intensity 0.13 derived from the zero-turbulence power curve esti-

mated from the 144 chosen data points. The dashed curve represents the IEC 61400-12-1 power curve estimated from the

same 144 data point. The conventional power curve derived using the whole data set is not shown as it is almost indistin-

guishable from the solid curve. (b) The upstream turbulence intensity estimated from the power data versus the measured

upstream turbulence intensity. (c) Percentile differences g59,(W)—g50% (W) (lower curves) and q¢59% (W) —g50% (W) (upper

curves) for the power curves derived using the new method (solid) and for the IEC 61400-12-1 power curves (dashed).

The size of each of the 1000 samples is 144. (d) The same as (c), but the size of the samples is 2827.

the same subset. Since the latter is defined through binwise averages, it ap-
pears jagged due to the small number of data points. The conventional power
curve derived from the small subset turns out to be almost indistinguishable
from the conventional power curve derived from the whole main data set (not
shown here), except at the two extremes W ~ 0.2 and W ~ 0.9.

Since the 144 data point were chosen at random, it should be investigated
whether it is a coincidence that the derived conventional power curve agrees
with the conventional power curve derived from the main data set. To do this,
1000 subsets are formed, each consisting of 144 data points drawn at random
(with replacement) from the main data set. For each subset, the new method is
applied to calculate a conventional power curve at turbulence intensity o.13.
In addition, an IEC 61400-12-1 power curve is calculated from each of those
1000 subsets. The randomly chosen subsets give for each mean driving wind
speed W rise to a set {P,(W),...,P,500(W)} of corresponding mean powers
where P; for the i’th subset denotes either the power curve derived using the
new method or the IEC 61400-12-1 power curve. A simple measure of the dis-
persion of the mean powers at the mean driving wind speed W is given by the



C.6 - FURTHER APPLICATIONS AND FUTURE WORK 123

percentile differences

‘15%(W)—q5o%(w) and q95%(w)_q5o%(w)r

where gq,0,(W) is short-hand for the x%-percentile of {P,(W),..., P50 (W)}. A
large percentile difference implies that the power curve at W is sensitive to
the choice of data points from which it was calculated, and vice versa. Fig-
ure c.12 (c) shows that the new method produces power curves with smaller
percentile differences than the IEC 61400-12-1 method when 0.2 < W < o.7.
At the smallest and highest wind speeds, the percentile differences of the
new method is larger than those of the IEC 61400-12-1 method. This can
be explained by the nature of the random sampling. Given the distribution
of the mean wind speeds as shown in fig. c.2 (a), some of the random sub-
sets will contain no data points at low or high wind speeds. Therefore, there
will be little guidance in the optimization problem (c.16) to determine the
zero-turbulence power curve at low or high wind speeds. Consequently, the
derived conventional power curve can attain almost arbitrary values for mean
wind speeds sufficiently far outside of the interval defined by the extrema of
the measured mean wind speeds. If the size of the 1000 samples is increased
from 144 to 2827 (the number of data points in the main data set), then the
percentile differences decrease by a factor of 5 as shown in fig. c.12 (d). More-
over, the percentile differences of the new method in the region 0.7 < W < 0.93
decrease to not exceed those of the IEC 61400-12-1 method. In summary, this
suggests that the new method may be used to estimate power curves from few
data points.

C.6 FURTHER APPLICATIONS AND FUTURE WORK

The wind turbine can be used as an anemometer, albeit a rather large one.
Since the mean and standard deviation of power are expressed as functions
of the mean and standard deviation of wind speed, one obtains a mapping
(W,04) — (P,0,) which for a large range of mean powers can be inverted.
Thus, for measured P and o, the corresponding W and o, can be calculated.
In turn, I, = (0,/W)/k yields an estimate for the upstream turbulence inten-
sity. Figure c.12 (b) shows that I,, can be estimated from the measured power
statistics with a correlation coefficient of o.72. The estimation of turbulence
intensity could find use in wake analyses as part of a wake detection scheme.
The nacelle anemometer only measures the wind near the center of the rotor
and its measurements are of course affected by the rotor and the nacelle. The
rotor on the other hand has a large spatial extension and can detect the wake
even in partial wake situations.

The wind speeds have been assumed to be normally distributed. This was
done out of necessity since only measured means and standard deviations
were available. As high-frequency measurements become more common, the
wind speed distributions may be measured and replace the assumption of
normality. Furthermore, it remains to be investigated how the new method
works with shear-corrected wind speed data. The method for shear-correction
proposed in Wagner et al. (2011) may be used as a preprocessing step for the
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method of this paper.

The power coefficient curve can be calculated from the power curve once
the latter has been estimated. Alternatively, one may formulate the quasi static
model in terms of the power coefficient, Pys = fooo 3 PAX3cgs(x)py(x)dx, and
hence derive a method that estimates the power coefficient curve ¢y directly
from measured power data.

Any given IEC power curve that is assumed to be valid at a certain turbu-
lence intensity can be used as input to the new method. From the obtained
zero-turbulence power curve, new power curves can be generated at any de-
sired turbulence intensity.

The new method should be tested on other data sets, including data sets
obtained from simulations of the interaction of the wind turbine with syn-
thetic wind fields, and it should be compared with all the methods mentioned
in sec. c.2. However, this is a major undertaking which is postponed to future
work.

C.7 CONCLUSION

The quasi static model and the more general, yet simple, dynamic model for
a wind turbine’s production of power as a function of wind speed are used to
derive a method to estimate the zero-turbulence power. The zero-turbulence
power curve is in turn used to calculate the conventional power curve at any
desired level of turbulence intensity. The model is shown to be able to account
for some of the influence of turbulence intensity on the mean power produc-
tion as well as the variation found in the data. The new method may be used
to predict the performance of a wind turbine, in particular the annual en-
ergy production, at unmeasured turbulence intensities. Furthermore, the new
method is insensitive to large gaps in the measured wind speeds and may
be used to estimate the power curve from few data points. The estimation
is essentially non-parametric and assumes no particular shape of the zero-
turbulence power curve. Moreover, the method is shown to be numerically
tractable and easy to implement. Several applications and possible directions
of future work are indicated. The concepts of upstream, virtual, and driv-
ing wind speeds have proved to be useful, and in particular the concept of
modified turbulence intensity has proved to be necessary to account for the
smoothing effects of the spatial extension of the rotor and the response of
the wind turbine. The modification of turbulence intensity is determined by
a single auxiliary parameter, the equivalent turbulence factor, that itself is
estimated from data as part of the estimation of the zero-turbulence power
curve.

C.A IMPLEMENTATION OF THE NEW METHOD
In the general case, where the driving wind speeds are not assumed to be

normally distributed, the problem is to minimize the smoothing functional
S(f,0) with respect to f when 60 is given and then determine the optimal 6
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according to some criterion. Recall that S(f,0) = MSEp(f) + OR(f) where

N oo 2 0
MSEP(”:%ZU f<x>¢z-<x)dx—1>i], and R(f)= [ (707

Here P,,..., Py denote the measured mean powers, and ¢,..., ¢y denote the
corresponding probability density functions of the driving wind speed. The
problem is first discretized. Let o < x, < --- < x,, denote a mesh and suppose
that the function f is piecewise linear,
n y . — y .
flx)= Zl(le,xjﬁx)[yj_l + xj_—x’

=1

(x_xj—l)]’ (C'19)
J-1
where 1(,;)(x) is equal to 1 if 2 < x < b and o otherwise, and where y,,...,y,
are coefficients to be determined. It is easy to show that the first moment of
the power under the quasi static model is given by

()
[ gt ax
(o]
o 1 n—1 . o —_ M .HO _dH1
~ x1q)i,1_q)i,1y . [xJﬂcDi,jﬂ Qi %P~y .
S _ ;
X, — X, Xipq —Xj Xi—Xi_
1 o =1 j+1 ] ] j—1
x"q)io,n_q)il,n -
-y =)
Xy — Xp—1 r /7]
]—O

where Cij = f;j x*¢;(x)dx denotes the truncated moment of order s of ¢;.
, i1

Note that the mean power is a linear combination of the coefficients y,,...,v,,.

The second moment of the power under the quasi static model is given by

fmf<x>2¢i<x)dx

1 o
QAT )2((xjyj—1 = Xja9)° PP + 2%y = X1 9) (Y — Vi1 ) P;
= X X

+ (9 = 9j-1) D7 )

Let v = (yo,...,v,)! denote the column vector of coefficients to be determined,
let C denote the N x (n + 1)-matrix whose (i,])'th entry is ¢; ;, and let P =
(P,,...,Py)T denote the column vector of meaured mean powers. Then the
mean squared error functional is given by

MSEp(f) = %(yTCTCy _2PTCy+ PTP).

The function f in (c.19) is not twice differentiable, so R(f) = Iooo(f”(x))2 dx is
meaningless. However, it is easy to see that a reasonable replacement defined
in terms of second order difference quotients is given by

2
Vi1 =¥ ¥Vi= Vi
n-1 X]'_H —Xj X]' —Xj_1 n-t y]_l

R(f)= Z v Z(yj—l v viw)Dj| ¥

j=1 j=1 yj+1
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where
2 -2 2
(% =xj—q ) (Xj41 = Xjy) (0 =xjo1 > (Xjer = Xj) (5 =X )(Xjpq = Xjoq )(Xjpq — %)
D = -2 2(Xj41 —Xj11) -2
] (xjijfl)z(xj+1’xj) (xj’xj—l)z(xj+1*xj)2 (X —Xj- 1)(x j+1 X])
2 -2 2
(j =xjog )(Xjpg =Xjog )(Xjpg = %j) (X = Xj_g ) (X1 —Xj)? (Xj41 = Xj)*(Xj41 = Xj—1)

Let Dj denote the block diagonal matrix of size (n+ 1) x (1 + 1) where the first
block is the zero matrix of size (j — 1) x (j — 1), the second block is D;, and the
third block is the zero matrix of size (n—1—j)x(n—1—7j). Let D = Z]";; 15]-.
Then R(f) = T Dy, and it follows that

S(f,6) = yT(%cTc N QD)y ~ 2 PTCy+PTP.

For a given 6, the vector y which minimizes S(f,0) is the solution to the fol-
lowing linear system,

1 7 _ 1,7
(Nc C+6D)y_NP C. (c.20)

Equation (c.20) is easily and efficiently solved using numerical linear algebra.

Next, the problem is specialized to the case where the driving wind speeds
are assumed to follow a normal distribution, i.e., ¢; is the probability density
function of a normal distribution with mean W; and standard deviation o, ;.
The statistics of the driving wind are assumed to be related to the statistics
of the upstream wind through W; = U; and o,,; = ko, ; where k denotes the
equivalent turbulence factor. In this case the truncated moments Q) CD1 CD2
are given by

o 1
(Dl-,]- = z(eff(zi,j) —erf(z; )),

kO’M,‘

1 1 ’
(Dl-’].:;Ui(erf(z,-,j)—erf(z,-,]-_l))— \/E(exp(—zf’) exp(~2 ]_1)),

D7, = %(UZ? + k2aj’i)(erf(zi,j) - erf(Zi,j-l))
ko,

- \/ﬁ((U +xj)exp(-z ) (Ui +xj_;)exp(-z 1] 1))

where z; ; = (x; - U;)/ (V2ko,, ;). The discretized version of the smoothing func-
tional S(f,0,k) from (c.16) is therefore

S(£,0,k) = yT(%C(k)TC(k) ; GD)y - 2 PTC(y+PTP,

where the matrix C(k) depends on the parameter k through the truncated
moments (DZ.‘?]. and q)i]..

If the coefficient vector p is supposed to satisfy y = Ay + b for a given ma-
trix A and vector b, then it is easy to show that the linear equation to solve
is

(%ATC(k)TC(k)AH?D)ﬁ L (P-cp)TCk)A

with respect to §. In particular, this allows a user to impose a predetermined
rated power on the estimation of the zero-turbulence power curve.
Figure c.13 outlines the algorithm used to estimate the zero-turbulence
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Let Ul-,au’,-,Pi,apJ fori =1,...,N be the mean and std. dev. of upstream wind speed and power.
Leto<x,<---<x, beamesh.
Let K be a set of k-values and let © be a set of O-values.
for all k e K do
Calculate the truncated moments @;j fori=1,...,N,j=1,...,n,and s=0,1,2.
Form the matrices C(k) and D.
for all 6 € © do
Let yg x be the solution to (ﬁC(k)TC(k) +6D)y = ﬁPTC(k) with respect to .
Let MSEp(fy ) be the corresponding mean squared error of mean power.
Let MSEgp(fgyk) be the corresponding mean squared error of std. dev. of power.
end for
end for
Calculate the proxies for the goodness of fits, GOFp(fy ;) and GOFUP (fo.x)-
Let 0 and k* be chosen to maximize GOFUP (fo.r)-
The zero-turb. power curve is now given by the mesh x, <--- < x,, and the coeff. vector yg- y+.
The equivalent turbulence factor is k*.

FIGURE C.13. Pseudo code for an algorithm to estimate the zero-turbulence power curve and the equivalent turbulence
factor from ten-minute means and standard deviations of upstream wind speed and power.
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FIGURE C.14. (a) The estimator of B, defined through the realized quadratic variation of power for the values 0 =
0.045,0.085,0.165,0.325 (from solid to loosely dashed). (b) The estimated noise strength f, as a function of normalized

mean power P/Prateqd-

power curve and equivalent turbulence factor according to the method de-
scribed in subsec. c.4.4. The mesh was 0.00 < 0.01 < --- € 0.99 < 1.00 < 2.00,
the set of k-values was K = {0.50,0.51,...,1.00}, and the set of O-values was
O ={10"|r=-11.0,-10.9,...,—5.0}. The author’s straight-forward implemen-
tation in Mathematica took two minutes to execute.

C.B QUADRATIC VARIATION OF POWER

A high-frequency data set is used in this appendix. It originates from another
wind turbine than the main data set employed in the remainder of this paper.
The high-frequency data set was not found to be suitable for a first exposi-
tion of the new method as the shear is not low and furthermore as the wind
profile is not adequately resolved to allow for correction for the shear. The
purpose of the high-frequency data set is only to demonstrate the validity of
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the approximation in (c.14).

Consider the dynamic model dp(t) = -, (p(t) — f (w(t)))dt + B, dB;. To eval-
uate the variance of power under the model, the noise strength parameter f3,
must be known, i.e., estimated from data. To that end, the concept of quadratic
variation from stochastic calculus can be applied, see e.g. lacus (2008). The
quadratic variation process QV(t) of the power p is, under the dynamic model,
given by QV(t) = f2t. The quadratic variation itself can be estimated from the
realized quadratic variation calculated from high-frequency data at a given lag
5, RQV(1,8) = Y1 (p(is) - p((i = 1)8)2, since RQV(t,6) — QV() as 6 — o.
Hence, if 6 can be chosen small enough, \/RQV(t, )/t is an estimate of f,. Fig-
ure c.14 (a) shows a typical example of \/Wt,b)/t as a function of time ¢
for a ten minute long time series sampled at 25 Hz. After a few minutes a sta-
ble level is attained and the estimate of 8, (normalized by the rated power)
has been found. To ensure convergence has been reached in terms of o, the
realized quadratic variation is calculated for four values of the lag variable:
0 =0.045,0.085,0.165,0.325. The lag 6 = 0.04 s is the smallest possible allowed
by the 25 Hz sampling rate of the high-frequency data set. From the figure it
is reasonable to conclude that convergence has been reached. For each ten
minute long time series of the high-frequency data set, f, is then calculated
and plotted in fig. c.14 (b) as a function of the mean power of the time series
(normalized by rated power). There is a clear, well-behaved functional depen-
dency of f, on the mean power, and it is seen that 0.005 < 8,/P,ateq < 0.010
holds almost always. Therefore, 32 <« S, when the characteristic response
time 1/, is of the order 1s.
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ABSTRACT

High-frequency wind farm data is used to discuss the parametrization of en-
gineering wind-farm wake models when applied to the average production
patterns in individual periods of duration between 15 seconds and 10 min-
utes. As the averaging time is increased, the models can be made to fit the data
better, but even with 10 minutes averaging a significant error remains indi-
cating a residual limitation of these models. The fitted wake parameters turn
out to be independent from the time resolution and are significantly smaller
than those values obtained from standard sector-averaged model fits. A previ-
ously reported speculation on a possible dependence of the wake parameters
on the turbine spacing is not confirmed and traced back to a specific mod-
eling of the multiple wake interactions. The inclusion of crosswind upwind
heterogeneity leads to a good improvement of the model fits. The additional
inclusion of streamwise non-stationarity, where the wake models are formu-
lated in a co-moving Lagrangian reference frame, only leads to a rather small
increase in mean fit quality; however, for some rare non-stationary events the
improvements are quite significant.
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D.1 INTRODUCTION

As wind farms are increasing in numbers, they are also becoming larger and
more complex. Their design and operation require a sound understanding
of the complex intra-farm wind flows, with various levels of sophistication
depending on the concrete objectives. For example, layout optimization and
resource analysis (Barthelmie and Jensen, 2010; Barthelmie et al., 2003, 2006,
2009, 2010; Gar, 2011; Mortensen et al., 2009; Vermeer et al., 2003) frequently
use simple engineering wake models (Frandsen et al., 2006; Jensen, 1983).
These models are intended to describe the mean wake-flow behaviour inside a
wind farm in a highly averaged manner with predictions of the annual energy
production as the important output. For other objectives, like the reduction
of turbine loads, models beyond the mean description are required (Ainslie,
1988; Knudsen et al., 2011; Larsen et al., 2011). Recent progress in computa-
tional fluid dynamics (Calaf et al., 2010; Troldborg et al., 2010, 2011; Wulow
et al., 2007) as well as in Lidar (Bingol et al., 2010; Trujillo et al., 2011) and
wind-tunnel experiments (Cal et al., 2010; Espafia et al., 2011; Sanderse et al.,
2011) reveal that the intra-farm wind flows are very dynamic. They are dom-
inated by wake meandering, wake interaction and the entrainment of kinetic
energy from the atmospheric layer above the wind-farm boundary layer. The
challenge with respect to the load objective is to formulate intra-farm wind
flow models which on the one hand take these dynamical effects into account,
but on the other hand are still simple and tractable enough to be used effi-
ciently in an optimization calculation.

Due to their simplicity the standard engineering wind-farm wake models
have also been employed for the design of control optimizations that max-
imize wind-farm power by making upwind turbines behave altruistically to
let more wind pass to the downwind turbines (Bjarnason and Sveinsson, 2010;
Machielse et al., 2007; Spudi¢ et al., 2010). However, first results from exper-
iments in wind-tunnels and on wind-farm test sites do not appear to fully
match the expectations obtained from such a model-based optimization. Since
the optimization can only be as good as the quality of the underlying models,
there is now a strong need to learn about the limitations of current engineer-
ing wake models when applied to dynamic wind-farm production patterns.
To analyse these limitations and to explore improvements to the models is the
main motivation for the work presented in this paper.

We analyze high-frequency intra-farm power generation data from the off-
shore wind farm Nysted and compare it to several variations of engineer-
ing wake models, which differ in the description of single wakes as well as
multiple wake interactions. Contrary to Cleve et al. (2009), where a smooth-
event filter has rejected about two-third of the events, this time all events
are treated, including those with crosswind upwind heterogeneity as well as
streamwise non-stationarity. Also, the respective event time windows are now
not restricted to only 10 min, but range down to 15 sec. All details about
the data, the wind-farm wake models and the fitting procedure are presented
in Sect. ».2. Sect. 0.3 discusses the fit results obtained with the wake mod-
els constrained to a constant upwind profile. The quality of the model fits
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FIGURE D.1. Left: The wind rose derived from the used data. The three blocks for each 15° sector
indicate on a linear scale the percentage of the data, for which the frontline turbine generation is

below 150 kW (blue), between 150 and 2150 kW (green), and above 2150 kW (red). Right: The
Nysted wind farm layout.

increases with decreasing event time resolution and saturate at a time reso-
lution around 10 min, indicating a residual limitation of these models. The
fitted wake parameters turn out to be independent from the time resolution
and significantly smaller than those values obtained from standard sector-
averaged model fits. A previously reported speculation (Cleve et al., 2009) on
a possible dependence of the wake parameters on the turbine spacing is not
confirmed and traced back to a specific modeling of the multiple wake inter-
actions. Sect. p.3.3 introduces crosswind upwind heterogeneity into the wake
models, which leads to a good improvement of the model fits. Streamwise
non-stationarity, where the wake models are formulated in a co-moving La-
grangian reference frame, is discussed in Sect. p.3.4. It leads to a rather small
increase in mean fit quality. However, for some rare non-stationary events the

improvements are quite significant. Sect. p.4 gives a summary and a short
outlook.

D.2 DATA, WAKE MODELS, AND FITTING OBJECTIVE

D.2.1 THE DATA

The used data set consists of three months (March-May 2009) of high-fre-
quency recordings from the 72 Siemens-Bonus 2.3 MW turbines comprising
the Nysted off-shore wind farm. The temporal resolution of the recordings,
including turbine power and yaw, is 1 second. Data from nearby meteorology
masts is not used. Figure p.1 illustrates the wind rose derived from the used
data. Compared to the typical wind rose (Barthelmie and Jensen, 2010), east-
erly winds are clearly over-represented. This, however, is of little consequence
for our investigations here.

The 3 month time span of the data is divided into disjoint 10 minutes pe-
riods. Only data where the frontline turbines produce more than 150 kW
and less than 2150 kW are considered. As can be seen from the wind rose
in Fig. p.1, this filter excludes about 20% of the data because of low wind
and another 20% because of high wind. The filter is applied because we want
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to be able to translate power to wind speed via the inverse power curve of
the Nysted turbines, which can only be done comfortably between cut-in and
rated power. The power and Cr curves of the Nysted turbines are shown in
Fig. 1 of Barthelmie and Jensen (2010). From the filtered 10 minutes periods
the first 15, 30, 60, 120, 300, and 600 seconds averaged data points are se-
lected. These form the ensemble of events to be fitted to the models. We have
not identified any periodes of down-regulation in this ensemble, but we can-
not completely exclude that some exist. Note that we do not need to exclude
periodes where some of the turbines are out of operation since we analyze
each event separately and can simply leave out the non-active turbines from
our modelling of farm as they do not produce (appreciable) wakes. This is
one advantage of our single-event method compared with sector-averaged ap-
proaches.

D.2.2 WAKE MODELS

A number of engineering wake models have been proposed in the literature.
We will be concerned with the Jensen model (Jensen, 1983; Katic et al., 1987)
and what we will refer to as the Frandsen model (Frandsen et al., 2006; Rath-
mann et al., 2006). As a function of the downwind distance x from a given
turbine, both models use a wake radius R(x) and a wake velocity u(x). Out-
side the wake the wind is undisturbed and has speed v,. Inside the wake the
wind speed is u(x).
The Jensen model uses the linear parametrisation

R]ensen(x) =R+kx

for the wake radius and the expression

R )2 onerlap
R]ensen (X)

for the down-wind speed. R is the rotor radius, and Cr is the thrust coeffi-

u]ensen(x) =V [1 N (1 VLT CT(VO))( Arotor

] (p.3)

cient. For the latter we employ the parametrization given in Barthelmie and
Jensen (2010). The adjustable wake parameter k determines how fast the wake
expands and hence how fast the wind speed recovers to v,. The last factor on
the right-hand-side of (p.3) represents the fraction of the downwind rotor disc
that falls inside the wake.

The Frandsen model uses the wake parametrization

ax
RErandsen(¥) = R\ , max {ﬂ; ﬁ}

with the adjustable expansion parameter « and the minimal expansion =
%(1 +4/1 - CT)/\/I - Cr, and a wake velocity

R ]2 onerlap

RFrandsen (x) Arotor

v
”Frandsen(x) = ;0 1+ \/1 - 2CT(VO)[

When a turbine faces more than one wake from two or more upwind tur-
bines, one has to decide on a combination of the multiple influences. We adopt
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two different approaches: the Katic procedure (Katic et al., 1987) and the
semi-linear procedure (Frandsen et al., 2006). The Katic procedure calculates
the effective velocity uy,yc at the turbine with the empirical rule that velocity
deficits should be added in square:

Vo — UKatic
Vo

with u; being the velocity calculated based on the influence from upwind tur-
bine j alone. We use this approach in combination with both the Jensen and
the Frandsen model. The semi-linear procedure is used only in combination
with the Frandsen model. It adds the thrusts of the upwind turbines:

R ]2 onerlap,j (D.9)

u Yoliy l1-2 ZC [

Cinear = —2 _ i
semiinear 2 7 ! RFrandsen(xj) Arotor
Note that in the expressions (p.7) and (p.9) the thrust coefficients of the up-
wind turbines j are determined with their respective effective velocities.

D.2.3 PARAMETRIZATION OF THE FREE WIND

Apart from the farm layout and the Ct curve of the turbines, the input vari-
ables into both the Jensen and the Frandsen model are the free wind speed v,
the wind direction 6, and the wake parameter k or a. We choose to extract the
free wind speed directly from the data in the following way: First an approx-
imate wind direction is determined by a simple average of the yaw readings
of all turbines with a whole-farm correction described in Cleve et al. (2009).
This determines which turbines on the farm perimeter that are not experienc-
ing wakes from other turbines. Because of the farm geometry there are always
(barring turbine outages) at least 8 such turbines: 8 when the wind is near the
South-North direction, g from when the wind is near the West-East symme-
try axis, and 16 for the directions inbetween that are more aligned with the
farm diagonals. We base our estimate of the free wind on the maximally 9
most upwind of these free wind turbines, both in order to work with approx-
imately the same number of turbines for all wind directions and to extract
the free wind near the “front end” of the farm. This approach is similar to
one used in Barthelmie and Jensen (2010). Once this choice of free wind tur-
bines has been made, we use the inverse power curve to estimate the wind
speed experienced by these turbines. We then either assume the free wind
speed to be homogeneous or allow it to be heterogenous in the crosswind direc-
tion. In the homogeneous case, the single v, is simply taken as the average
of the free wind estimates. In the heterogenous case, we still want a smooth,
few-parameter description and we choose a second order polynomial, i.e. we
express the free upwind as

v(l)letero (

y):“2y2+a1y+ao

where p is the crosswind position and a,, a4, and a, are estimated from the
most upwind turbines selected as described above. In this way we obtain a
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free wind profile which is then used in the wake models: We replace in the
expressions (p.3), (D.5)—(p.9) used to calculate the velocity ug,tic OF Usemi-linear

at a given downwind turbine, the homogeneous upwind velocity v, by the

hetero

heterogeneous upwind velocity v,

(v) evaluated at the crosswind position
of the most upwind turbine producing a wake at the considered downwind
turbine.! Other than this, all other calculational details remain the same as in

the homogeneous case.
D.2.4 TEMPORAL REFERENCE FRAME

Usually when working with wind farm data averaged over e.g. 10 minutes,
one uses a fixed, Eulerian temporal reference frame in the sense that a single
event consists of data from the same 10 minutes for all turbines. However, for
a typical wind speed of 10 m/s along the main West-East symmetry axis, the
wind takes about 1.5 min to propagate from one turbine row to the next one.
To propagate through the whole wind farm it then takes seven times as much,
which is about 10 min. By this time the first-in-row turbines might already
experience a different wind condition than the last-in-row turbines. Based on
this consideration, it is natural to try to capture as much of the propagation
effects as possible with a simple change from the fixed to a Lagrangian, co-
moving temporal frame of reference. In the latter, the downstream turbines
are polled with a delay corresponding to the expected propagation time. In
this way an event will change from being a snapshot to being the generation
pattern as a certain air-parcel is followed down through the wind farm.

A simple definition of a co-moving frame of reference uses time delays
according to a streamwise uniform propagation velocity, which is taken as the
heterogeneous free wind speed divided by some correction factor 7. The most
upwind turbine has a zero time delay. Another turbine, say j with downwind
distance Xj, then has a delay time

X;j
T]' = - .
‘l/O]'

Note, that we will use the heterogeneous upwind velocities v,; as described in
Sec. p.3.3. We will treat the correction factor # as an adjustable parameter.

D.2.5 FIT OBJECTIVE

We finally find the best wind direction and expansion parameter for describ-
ing each single event by considering the farm model a function of these with
free wind extracted as above. The fitting procedure minimizes the expression

L Lil-r
- Lk

1 - For wind directions along farm diagonals, extrapolation is needed for the turbines with the
most extreme crosswind positions. We truncate the polynomial fit at the value at the nearest data
point in order to avoid trends in the data to have an exaggerated influence at extreme crosswind
positions.
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FIGURE D.2. Fit-error probability density function for (a) the Jensen model with Katic wake in-
teraction, (b) the Frandsen model with Katic wake interaction, and (c) the Frandsen model with
the semi-linear wake interaction. All results assume homogeneous free wind and use an Eulerian
fixed temporal reference frame. Note that the area under the curve is normalized to unity.

which is the normalized sum of absolute differences between actual turbine
power production and model prediction. A steepest descent method is used
to find the minimum.

D.3 RESULTS
D.3.1 QUALITY OF FITS

The quality of the three wake models is determined by fits to the data. The
distributions of the fit-error (p.12) are shown in Fig. p.2 for three different
time averages. The shown results are for the homogeneous free wind and us-
ing a fixed temporal reference frame, but there is little qualitative change by
going to the heterogeneous or co-moving cases. The distributions are peaked
around € = 10-20%, with significant tails in the 30-50% range. The results are
quite similar for all three models, with the Jensen model slightly poorer than
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FIGURE D.3. Mean fit error of the Frandsen model with Katic wake interaction as a function of
the event averaging time T for the data. The curve with the * symbols assumes a homogeneous
upwind velocity, which is taken the same for all most upwind turbines. The curve with the o sym-
bols assumes heterogeneous upwind velocities, which differ for different most upwind turbines;
more details are described in Sec. p.3.3. The curve with the O symbols considers heterogeneous
upwind velocities in a co-moving reference frame with # = 0.8; see Sec. 0.3.4 for more details. The
lines are fits of the form a+bexp(-T/T,) with parameters (a,b, T,) = (0.126,0.040,260s) (homoge-
neous), (0.116,0.046,240s) (heterogeneous) and (0.115,0.043,200s) (heterogeneous co-moving),
respectively.

the two versions of the Frandsen model. The fits tend to get poorer with de-
creasing event averaging times. However, there is no dramatic change in the
shape of the error distributions when going from 600 via 120 to 30 seconds
averages. The peak and the tail at large ¢ are slightly moved to higher values.

The decrease in fit quality for short averaging times is to be expected. The
wakes can no longer assumed to be stationary. Turbulence, but also meander-
ing (Larsen et al., 2008) and vertical transport of momentum and kinetic en-
ergy across the wind-farm boundary layer (Cal et al., 2010; Calaf et al., 2010)
lead to increased fluctuations on the short time scales. Fig. p.3 illustrates the
mean fit error in the Frandsen model with Katic wake interaction as a func-
tion of the event averaging time for the data. The error increases smoothly
with shorter durations and is nicely described by an exponential of the form
a+ bexp(-T/T,). For homogeneous free wind and a fixed reference frame we
get an asymptotic offset @ = 0.126 and a charateristic time T, = 260 s. This
finding suggests that even for T > T, the fit quality of the engineering wake
models can not become better than the offset a. The offset can be interpreted
as a fundamental limitation of the engineering wake models ability to de-
scribe the wind-farm power-generation patterns, even when short-term fluc-
tutations are averaged out. In fact, the standard event averaging time of 10
min is well taken, as it averages out almost all short-term fluctuations and
produces fit qualities very close to the asymptotic offset. For shorter event
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FIGURE D.4. Probability density function for the fitted wake parameter k for the Jensen model
with Katic wake interaction with various event averaging times. The free wind is assumed homo-
geneous and a fixed temporal reference frame has been used.

averaging times the impact of the short-term fluctuations becomes visible.
However when compared to the 10 min event averaging time, even a very
short event averaging time T = 15 s leads to only a 30% increase of the fitting
errors.

D.3.2 MODEL PARAMETER DISTRIBUTIONS

The distribution of the fitted wake parameters k and « are plotted in Figs. p.4
and p.5. In both cases the homogeneous free wind asumptions has been ap-
plied and a fixed temporal reference frame used. The first thing to note is
that the distributions are quite broad. They are also independent of the event
averaging time. At first this appears to be a little bit surprising for the very
short event averaging times, but apparently the meandering of narrow wakes
is still not resolved. This could well be due to spatial averaging effects as we
impose a single wind direction for the whole farm. For the Jensen model the
mean wake parameter k = 0.025 turns out to be significantly smaller than the
standard value k = o0.04. This result is similar to the result found in Cleve
et al. (2009). The same holds true for the Frandsen model, where the Katic
and semi-linear wake interaction lead to a mean a = 0.16 and o0.21, respec-
tively. Both values are strikingly different to the literature values a = 0.5-0.7
(Bjarnason and Sveinsson, 2010; Rathmann et al., 2006). The main reason for
these differences is simple. It is the standard procedure to first average over
events belonging to a common wind-direction sector, and then to fit the sector-
averaged event to the wake model. As the sector-averaged event includes con-
tributions from many different close-by wind directions, the resulting wake
appears to be broadly smeared out. The single-event procedure, which we are
adopting, is sharp in wind direction. Consequently, the fitted wakes turn out
to be more narrow.

In the left column of Fig. 0.6 the dependence of the fitted wake parameters
on the estimated upwind speed is illustrated. For the Jensen model we observe
a weak decrease of k with v,. For the two versions of the Frandsen model, «
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FIGURE D.5. Probability density function for the wake parameter a for the Frandsen model with
(a) Katic and (b) semi-linear wake interaction with various event averaging times. The free wind
is assumed homogeneous and a fixed temporal reference frame has been used.

appears to be quite constant. Without showing we state that all three model
variants produce slightly better fits to events with a large upwind velocity
than to events with a low upwind velocity.

The dependence of the fitted wake parameters on the fitted wind direction
is plotted in the right column of Fig. p.6. The results for the two event aver-
aging times 15 and 600 seconds show little difference. The wake parameter
k of the Jensen model turns out to be larger along the symmetry axis of the
wind farm. The main symmetry axes of the Nysted wind farm are at © = 98°
(278°) and 178° (358°), which represent the East-West and the South-North
directions. Other symmetry directions are 44° (224°), 67° (247°), 124° (304°)
and 140° (320°). This result confirms the findings shown in Fig.g9 of Cleve
et al. (2009), where a different Nysted data set with only 10 min resolution
has been used. Also the results obtained with the two versions of the Frand-
sen model confirm this dependence, although it is not so pronounced for the
version with the semi-linear wake interaction. It is also interesting to note
that for the Jensen model the wake parameter k turns out to be significantly
larger for North-South wind directions than for the other directions. In Cleve
et al. (2009) the speculation has been put forward, that this might indicate an
additional dependence of the wake parameter on the turbine spacing of the
Nysted wind farm, which is about 5.9 rotor diameters in North-South direc-
tion and 10.5 rotor diameters in West-East direction. However, for the Frand-
sen model we do not see this effect so clearly. The wake parameter a along the
North-South wind directions is only slightly larger than for the other symme-
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FIGURE D.6. Wake parameters of the Jensen model (top row) and the Frandsen model with Katic wake interaction (middle
row) and semi-linear interaction (bottom row) as a function of the estimated up-wind speed (left column) and the fitted
wind direction (right column). The dots represent all events with respect to 15 s (magenta) and 600 s (grey) averaging
times. The lines are running averages based on a 0.1 m/s and 10° window width, respectively. The free wind is assumed
homogeneous and a fixed temporal reference frame has been used.



142 PAPER D * HIGH-FREQUENCY PARAMETRIZATION OF ENGINEERING...

0.18} - : DR : s — =305

— — —120s
017} - 1
—600s
0.6 oot
I—. ‘ ‘ e
N 0.15}-:- TR g iE T ,P
N N S L
014t F — wpig i ae — T
0.13} -
0.12¢
0.11f
0 0.5 1 1.5 2
n

FIGURE D.7. Mean fit error for the Frandsen model with Katic wake interaction and heterogeneous
upwind velocities as a function of the correction factor # defining the co-moving frame of refer-
ence. The event averaging times are 30 s (blue), 120 s (green) and 600 s (black). The error bars
represent the standard deviation around the mean fit error.

try axes. This indicates that the dependence on the turbine spacing might not
be as strong as has been speculated, but rather that the parametrization (p.4)
of the wake radius used in the Frandsen model might be more realistic than
the Jensen-model parametrization (p.1). When translated into the latter, the
former parametrization produces a larger wake parameter k for small turbine
spacings and a smaller k for large turbine spacings. For example, for Ct = 0.8
and a Frandsen wake parameter of a = 0.2, the Jensen k needs to be 0.046 to
match the Frandsen radius at x = 5.9R, but only 0.026 to match at 10.5R.

D.3.3 HETEROGENEOUS FREE WIND

As mentioned above, when introducing free wind heterogeneity, the resulting
fit error distributions qualitatively look very similar to the ones obtained in
Fig. p.2 assuming a homogeneous free upwind. However, there is a small, but
noticeable shift towards lower errors, which leads to reduced mean fit errors;
consult Fig. p.3. The relative decrease in mean error is approximately 3% for
the short event averaging time T = 15 s and approximately 9% for the longer
T = 600 s. Inbetween these two time scales the mean fit error behaves again
like the expression a + bexp(—T/T,), thus supporting its tentative interpre-
tation put forward in the previous section. Also all other conclusions drawn
in the previous section based on the homogeneous upwind assumption fully
carry over to the heterogeneous generalization.

D.3.4 CO-MOVING TEMPORAL FRAME OF REFERENCE

We now consider the Lagrangian, co-moving temporal frame of reference in-
troduced in Sec. p.2.4. Fig. p.7 illustrates the mean fit error for one of the wake
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FIGURE D.8. Change in fit error (Frandsen model with Katic wake interaction and 30 s averaging
time) when going from the fixed # = o to the co-moving 7 = 0.8 reference frame plotted versus
change in wind speed. The grey dots are a scatter plot of all events while the blue symbols indicate
binned averages (bins 0.25 m/s wide). The statistical uncertainty on this average is estimated
by the standard deviation divided by the square root of the number of events in each bin and
included as errorbars. Wind speed change is quantified by the difference in 10 min averaged
wind speed from one event to the next.

models in the co-moving frame of reference. More or less independent of the
event averaging time, it reaches a minimum at a delay correction factor [cf.
Eq. (p.11)] of about 5 = 0.8. This is somewhat surprising. Naively we would
have expected the minimum to be at a value larger than one. An optimal value
smaller than one indicates that the propagation velocity is larger than the es-
timated free upwind speed. In principle this can happen via processes like the
entrainment of faster velocities from the atmospheric layer above the wind-
farm boundary layer (Calaf et al., 2010). However, it should be emphasized
that the average fit error is by no means a direct indicator of the correct co-
moving frame of reference.

Compared to the mean fit error obtained in the fixed frame of reference at
1 = o, the minimum mean fit error at 7 = 0.8 is only slightly smaller. See also
again Fig. p.3, which clearly demonstrates that the introduction of upwind
heterogeneity has a much bigger impact on the reduction of the fit errors than
the additional introduction of a co-moving reference frame. One reason for
the very small average benefit of switching to a co-moving reference frame
is the fact that the majority of all events contained in the employed data set
have rather stationary wind conditions. This effect is illustrated in Fig. p.8
where we plot the change in fit error versus change in wind speed. The latter
is quantified by the change in average wind speed from one 10 min period to
the next — a measure that captures overall changes in the weather conditions
rather than short-time fluctuations. The first thing to notice is the large spread
in fit error changes: The change of frame is almost equally likely to give a
worse or better fit, and the typical magnitude of 0.04-0.07 is much larger than
the change in average fit error of 0.004 (difference between squares and circles
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FIGURE D.9. Production pattern caused by an event with increasing wind speed from East-
Southeast (gray arrow), as seen in the fixed (left) and the co-moving (right, with 1 = 0.8) ref-
erence frame. The averaging time is T = 30 sec. The filled green circles in the upper row illustrate
the power production of the turbines, while the unfilled black circles indicate the best fit of the
Frandsen model with Katic wake interaction. The small wind vanes indicate the yaw of each
active turbine. The lower row shows the differences between production and fit; red (blue) cir-
cles indicate that the actual production is above (below) the best model fit. The free wind speed

is about 8 m/s resulting in a maximal time-delay of about 760 sec when selecting data for the
Lagrange frame, cf. Eq. (p.11).

in Fig. 0.3 or between 11 = 0 and # = 0.8 for the blue symbols in Fig. b.7). This
is because a new frame constitutes a new sampling of the short-term random
fluctuations in production at each turbine. The second thing to notice is that
when we bin the data according to wind change, the fit error is indeed reduced
significantly more for the relatively rare, large wind speed changes than for
the much more common, steady wind conditions. There also seems to be an
asymmetry in the reductions so that increasing winds make the co-moving
frame more benificial than corresponding decreasing winds. The asymmetry
could have meteorological origins where the two signs of wind speed change
are accompanied by different other effects e.g. changes in wind direction, but
our normalization of the fit error to the total production [cf. Eq. (p.12)] may
also contribute.

Let us finally show in more detail a specific event where the wind speed
change can clearly be identified and there is a significant improvement when
going from fixed to co-moving reference frame. Fig. p.g illustrates an event
where an increased wind speed has arrived in the South-East corner of the
wind farm. At the same time the wind is changing to a more Easterly direc-
tion. In the fixed Eulerian reference frame, the model clearly has difficulties to
fit the production pattern in a satisfactory manner and the power production
of the downwind turbines is generally overestimated. This is both because the
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downwind turbines still experience the low wind speed and because the tur-
bines on the Southern perimeter are predicted to experience free wind while
they are in fact still wake affected. The fit error turns out to be egyeq = 0.24.
In the co-moving reference frame, on the other hand, the power productions
of the downwind turbines are evaluated with a time delay which means that
their production is much more consistent with the conditions at the upwind
turbines, i.e. the free wind speed is higher and the turbines on the Southern
perimeter are not wake affected. The resulting production pattern is much
better fitted, resulting in €. moving = 0-097, a major part of which stems from
an underestimation of the production in the South-Western corner of the farm
that seems to stem from a wind gust.

D.4 CONCLUSION

Existing engineering wake models have first been tested with high-frequency
wind farm data, and then various model generalizations have been intro-
duced. As expected the fit quality of the models decreases with increasing
time resolution. However, this increase is only about 35% when going from a
10 min down to a 15 sec time resolution. The saturation of the fit error at a
time resolution of around 10 min appears to indicate a residual limitation of
the engineering wake models. The fitted wake parameters turn out to be in-
dependent from the time resolution and are significantly smaller than those
values obtained from standard sector-averaged model fits. A previously re-
ported speculation (Cleve et al., 2009) on a possible dependence of the wake
parameters on the turbine spacing is not confirmed. It appears to be an arti-
fact of the Jensen wake model (Jensen, 1983) and is only weakly observed with
the Frandsen wake model (Frandsen et al., 2006), which describes the wakes
and their interaction in a different way. An important generalization of the
engineering wake models is the inclusion of heterogeneous crosswind wind
speed profiles. A large fraction of the short-term wind-farm patterns appear
to reveal this upwind heterogeneity. Its inclusion leads to a significant im-
provement of the model fits. A smaller fraction of the short-term wind-farm
patterns are also influenced by non-stationary wind conditions, where wind
fronts pass through and lead to a time-delayed temporal ramp-up or down
of the wind turbine powers. A respective model generalization, which intro-
duces a co-moving reference frame, leads to only a small further improve-
ment of the average fit quality. However, for some non-stationary events the
improvements can turn out to be quite significant.

The presented results obtained from the introduced generalizations of en-
gineering wake models are important findings in view of the control opti-
mization of wind farms, in particular for wind-farm power optimization as
well as for ultra-short wind-farm power forecasting. Since a model-based op-
timization and control of wind farms can only be as good as the underlying
models, there is need for further model generalizations. Dynamic effects like
wake meandering and the entrainment of fresh kinetic energy from the at-
mospheric layer above the wind-farm boundary layer also have to be taken
into account and formulated in such a way that the resulting models are still
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simple, but tractable enough to be used efficiently in an optimization calcu-
lation. We consider the single-event methodology presented here as a tool in
the development of such dynamics generalizations. Perhaps such generaliza-
tions could even indicate ways to achieve the a priori quite different goal of
better predictions of the annual energy production by revealing general rela-
tions between wake model parameters and wind condition characteristics or
by enabling a better uncertainty assessment.
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