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Abstract

We consider classification in the situation of two groups with normally dis-
tributed data in the ‘large p small n’ framework. To counterbalance the high
number of variables we consider the thresholded independence rule. An upper
bound on the classification error is established which is taylored to a mean
value of interest in biological applications.

1 Introduction

Many modern measurement devices are of the high throughput type, whether that
be chemometrics measurements (Savorani et al. (2010)), medical imaging prob-
lems (Garzon et al. (2011)) or microarray based techniques for cancer classification
(Dyrskjøt et al. (2003)). From a statistical point of view the challenge is to handle
situations where the number of variables p is much larger than the number of samples
n. In this paper we consider classification into two groups based on a p-dimensional
vector, and take our inspiration from a cancer setting where the two groups, as
an example, can be two subtypes of a cancer and where the measurement comes
from a microarray. In the classical setting, with p fixed and n → ∞, the solution
to the classification problem is well established, but when the number of variables
becomes large compared to the number of observations the situation is much less
straightforward.

When the parameters are known the optimal classifier is Bayes rule, see Mardia
et al. (1979). However, when p/n → ∞ Bickel and Levina (2004) prove that the
estimated version of Bayes rule, known as Fishers rule, asymptotically is no better
than a random guess. Intuitively, the estimation of an increasingly large number
of covariances makes the generalized inverse of the covariance matrix less and less
precise. Avoiding the estimation of the increasing number of covariances naturally
leads to the independence rule, also known as naive Bayes, where the covariance
matrix in Fishers rule is replaced by its diagonal. Bickel and Levina (2004) discuss
this rule and find an upper bound for the classification error when log(p)/n → 0
and with a restrictive setting for the mean values of the variables.
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In this paper we consider a setting, aimed at a microarray experiment, where
the number of variables carrying information for discrimination may be increasing
with n, although the majority of variables are irrelevant. To get rid of the irrelevant
variables the thresholded version of the independence rule is considered, that is, only
variables for which the t-statistic is significantly large are included. Fan and Fan
(2008) show that in a suitable setting for p and n tending to infinity the t-statistic
can, with a probability tending to one, separate the variables with a nonzero mean
difference between the two groups and those variables with a zero difference. This
points to the relevance of the thresholded independence rule.

We prove in this paper an upper bound for the classification error resembling
that of Bickel and Levina (2004), but allowing for a quite different set of conditions
on the mean values of the variables. Section 2 contains the setup of the paper and
states the main result. The proof is given in section 3 and an appendix collects all
the basic inequalities used in the proof.

2 Notation and main result

Based on n0 observations from group 0 and n1 observations from group 1 of a p-
dimensional vector x, we construct a classifier ξ that maps an observation x to
one of the two groups, ξ(x) ∈ {0, 1}. Let the training data be xij, i = 0, 1, j =
1, . . . , ni. Then for an observation x from group 0 the classification error isW (ξ, θ) =
Pθ(ξ(x) = 1|{xij}), where θ parametrize the distributions. Our aim is to control the
classification error W (ξ, θ) uniformly for θ in a chosen set (and at the same time
controlling the classification error for an observation from group 1). We consider
a setup where an observation x is p-variate normal with mean µi dependent on
the group i = 0, 1, and covariance matrix Σ. For the training set we assume that
κ1 ≤ n0/n1 ≤ κ2, for some positive constants κ1 and κ2.

First we introduce the notation used throughout the paper. The diagonal matrix
with variances σ2

k, k = 1, . . . , p, is denoted D, and the correlation matrix is Σ0 =
D−1/2ΣD−1/2. The difference between the means ∆k = µ1k − µ0k, k = 1, . . . , p, is
called the differential expression and δk = ∆k/σk the scaled differential expression.
The average of the kth variable in group i is x̄ik, and the observed differential
expression is dk = x̄1k − x̄0k. The pooled variance estimate for the kth variable is
s2
k ∼ σ2

kχ
2(n)/n, with n = n1 +n2− 2, and D̂ is the diagonal matrix with entries s2

k.
The theoretical optimal classifier when the parameters are known, Bayes rule, is

defined as

ξB(x) = 1(∆TΣ−1(x− 1
2
(µ0 + µ1)) with W (ξB, θ) = Φ(1

2
(∆TΣ−1∆)1/2).

Here Φ(x) = 1−Φ(x) is the tail of the standard normal distribution, andW (ξB, θ) is
known as Bayes risk. Replacing Σ by its diagonal we get the theoretical independence
rule

ξTI(x) = 1(∆TD−1(x− 1
2
(µ0 + µ1))

width
W (ξTI, θ) = Φ

(
1

2

( ∆TD−1∆

2(∆TD−1ΣD−1∆)1/2

))
,
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and where the independence rule ξI is obtained on replacing parameters by their
estimates. Bickel and Levina (2004) obtain the upper bound Φ(c

√
K0/(1 +K0)) for

EW (ξI , θ) over a subset of {∆,Σ : ∆TΣ−1∆ ≥ c} and where K0 is an upper bound
on λmax(Σ0)/λmin(Σ0) with λmax and λmin the largest and smallest eigenvalue of Σ0.

The classifier we consider is a thresholded version of the independence rule. For
this we define

tk =
dk√
s2
k/m

, m =
n0n1

n0 + n1

, and Ik = 1(|tk| >
√
mα),

∆̂k = dkIk, and µ̂ik =

{
x̄ik if Ik = 1,
n0

n0+n1
x̄0k + n1

n0+n1
x̄1k if Ik = 0.

The classifier is
ξ(x) = 1

(
∆̂TD̂−1(x− 1

2
(x̄1k + x̄0k)) > 0

)
. (2.1)

The threshold α that appears in the definition depends on n, α = αn, but for
notational convenience we hide this dependency.

The model is parametrized by θ = (µ1, µ2,Σ) and the parameter space we con-
sider is defined in two steps. The first step restricts the covariance matrix Σ and the
second step restrict the mean values µ0 and µ1. We define

Θ =
{
θ : ∀k cD1 ≤ σ2

k ≤ cD2 , λmax(Σ0) ≤ c2, θ ∈ B
}
, (2.2)

where cD1 , cD2 , c2 are positive constants, λmax is the maximal eigenvalue and B is a set
putting restrictions on the mean values. For the set B we consider two possibilities.
The first covers the case when the number of differentiable expressed variables,
with an expression above α/2, is of smaller order than n and at least one of the
differentiable expressions is not small,

B1 =
{
θ : #{k : |δk| ≥ α

2
} ≤ bnn, #{k : |δk| > c0} ≥ 1

}
, (2.3)

where c0 is a constant and bn → 0 as n→∞. In the second case we do not restrict
the number of differentiable expressed variables, instead we require that there is not
a disproportionally large number of expressed variables around the threshold α,

Kn = #{k : |δk| > 2α} ≥ 1

B2 =
{
θ : #{k : α

2
≤ |δk| ≤ 2α} ≤ c1Kn

}
, (2.4)

where c1 is a constant. Note that in the specification of the parameter space the
dependecy on n has been hidden. The important point is that the c-constants are
independent of n.

To formulate our main result we let PΘ−−→ denote uniform convergence in proba-
bility, that is Xn

PΘ−−→ 0 if for all ε1 > 0 and ε2 > 0 there exists n(ε1, ε2) such that
P (|Xn| > ε1) < ε2 for n > n(ε1, ε2) for all θ ∈ Θ. Similarly, P<−−→ denotes onesided
uniform convergence, that is |Xn| is replaced by Xn in the above statement.
Theorem 1. Let p tend to infinity with n in such a way that log(p)/n = τn → 0,
and let α ≥ cατ

1/2−γ
n where cα > 0 and 0 < γ < 1

2
. Consider the parameter space

given through (2.2) and either (2.3) or (2.4). Then

W (ξ, θ)− Φ

(
1

2
√
c2

√ ∑

k:|δk|>2α

δ2
k

)
P<−−→ 0.
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Remark 1. By exchanging the group labels it is clear that the upper bound of
Theorem 1 applies also to the classification error for a new observation from group 1.
Furthermore, the formulation of Theorem 1 allows for a triangular array where means
and variances depend on n.

Remark 2. The result in Theorem 1 differs in two ways from the result in Bickel
and Levina (2004). Firstly, we only use a restriction on the maximal eigenvalue of Σ0

whereas both the maximal and the minimal eigenvalue enters the bound of Bickel
and Levina (2004). Secondly, where we have the term

∑
k:|δk|>2α δ

2
k the situation

in Bickel and Levina (2004) (looking into their proof) is comparable to the sum∑
k δ

2
k. The difference comes from less assumptions on the mean values in our case,

achieved by using the thresholded version of the independence rule. Furthermore,
for the setup in Bickel and Levina (2004) we have for any sequence kn → ∞ that∑

k δ
2
k−
∑

k≤kn δ
2
k → 0, and since |∑k≤kn δ

2
k−
∑

k≤kn:|δk|>2α δ
2
k| ≤ 4knα

2 we can take
kn = 1/α so that when α→ 0 the two bounds are equivalent.

The proof of the theorem is given in the next section. We use a number of inequal-
ities for the normal distribution and for the t distribution that we have gathered in
an appendix.

3 Proof

We start by stating and proving a fundamental lemma. To this end we define for a
p-dimensional vector a and a symmetric p× p matrix M

ΨΣ(a,M) =
aTM−1a

2(aTM−1ΣM−1a)1/2
,

and let ω(D̂) = max{maxk s
2
k/σ

2
k, (mink s

2
k/σ

2
k)
−1}.

Lemma 2. Let the covariance matrix Σ satisfy the bounds stated explicitly in (2.2).
Then ω(D̂)

PΘ−−→ 1 and if
∑

k:∆̂k 6=0(µ̂0k − µ0k)
2/σ2

k∑
k:∆̂k 6=0 ∆̂2

k/σ
2
k

PΘ−−→ 0, (3.1)

we have
W (ξ, θ)− Φ(ΨΣ(∆̂, D̂))

PΘ−−→ 0. (3.2)

Furthermore, on Θ we have:

2ΨΣ(∆̂, D̂) ≥ 1

ω(D̂)
√
c2

|D−1/2∆̂|. (3.3)

Proof. From the multivariate normal distribution we find that

W (ξ, θ) = Φ

(
ΨΣ(∆̂, D̂) +

∆̂TD̂−1(µ̂0 − µ0)

2(∆̂TD̂−1ΣD̂−1∆̂)1/2

)

= Φ

(
ΨΣ(∆̂, D̂)

(
1 +

2∆̂TD̂−1(µ̂0 − µ0)

|D̂−1/2∆̂|2
))

.
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Using lemma 3 point (ii) we see that we need only show that the last term in the
inner parenthesis tends to zero uniformly. Using the Cauchy-Schwarz inequality we
find

|∆̂TD̂−1(µ̂0 − µ0)|
|D̂−1/2∆̂|2

=

∣∣∣
∑

k:∆̂k 6=0
∆̂k

sk

(µ̂0k−µ0k)
sk

∣∣∣
∑

k:∆̂k 6=0 ∆̂2
k/s

2
k

≤

√∑
k:∆̂k 6=0 ∆̂2

k/s
2
k

√∑
k:∆̂k 6=0(µ̂0k − µ0k)2/s2

k

∑
k:∆̂k 6=0 ∆̂2

k/s
2
k

≤ ω(D̂)

{∑
k:∆̂k 6=0(µ̂0k − µ0k)

2/σ2
k∑

k:∆̂k 6=0 ∆̂2
k/σ

2
k

}1/2

.

By assumption the expression within the curly parenthesis tends to zero uniformly.
For ω(D̂) we use that s2

k/σ
2
k ∼ χ2(n)/n. The Chernoff type bound given in lemma 3

point (iii) together with Boole’s inequality gives that

P
(

max
k

s2
k

σ2
k

> 1 + ε
)
≤

p∑

k=1

P
( s2

k

σ2
k

> 1 + ε
)
≤ e−

n
2

(ε−log(1+ε)−2τn),

with a similar bound for the minimum being less than 1− ε. Thus ω(D̂)
PΘ−−→ 1 and

(3.2) has been proven.
Finally, (3.3) follows from the inequalities

2ΨΣ(∆̂, D̂) =
∆̂TD̂−1∆̂

(∆̂TD̂−1ΣD̂−1∆̂)1/2
≥ 1√

c2

|D̂−1/2∆̂|2
|D1/2D̂−1∆̂|

≥ 1√
ω(D̂)c2

|D̂−1/2∆̂| ≥ 1

ω(D̂)
√
c2

|D−1/2∆̂|.

Proof of main theorem. We start by proving (3.1) and then obtain the result of the
theorem from (3.3). We use the bound m ≥ nκ1/(κ2 + 1/2) = nκ3 for n1 > 4 and
recall that log(p) = nτn.

To study the denominator of (3.1) we first note that P (Ik = 1,∀k : |δk| ≥ 2α)→
1 since the probability of the complement from lemma 3 point (vi) is bounded by

∑

k:|δk|≥2α

P (|tk| <
√
mα) ≤ pa1e

−mα2a2 ≤ a1e
−nτn(κ3a2c2ατ

−2γ
n −1) → 0. (3.4)

For case B1 of the parameter space we have from lemma 3 point (i) that

P (|dk|/σk > c0/2))→ 1 when |δk| > c0.

For the parameter space B2 we have P (|dk|/σk > α, ∀k : |δk| ≥ 2α) → 1 since the
probability of the complement from lemma 3 point (i) is bounded by

∑

k:|δk|≥2α

P (|dk|/σk < α) ≤ pe−mα
2/2 ≤ e−nτn(κ3c2ατ

−2γ
n /2−1) → 0.
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Thus, with a probability tending to one we have that the denominator in (3.1) is
bounded by

∑

k:∆̂k 6=0

∆̂2
k

σ2
k

≥
∑

k:|δk|>2α

Ik
d2
k

σ2
k

=
∑

k:|δk|>2α

d2
k

σ2
k

≥
{
c20
4

case B1,

α2Kn case B2.
(3.5)

For the numerator in (3.1) we introduce the notation x̄k = n0

n0+n1
x̄0k + n1

n0+n1
x̄1k,

µ̄k = n0

n
µ0k + n1

n
µ1k. Note that x̄k is independent of dk, Var(x̄k) = σ2

k/(n0 + n1) and
Var(dk) = σ2

k/m. Taking expectation and using lemma 3 point (iv) and (v) we get
for the nominator in (3.1)

E
[ ∑

k:∆̂k 6=0

(µ̂0k − µ0k)
2

σ2
k

]
= E

[ p∑

k=1

1(∆̂k 6= 0)
(x̄0k − µk)2

σ2
k

]

= E
[ p∑

k=1

1(∆̂k 6= 0)
(x̄k − µ̄k − n1

n0+n1
(dk −∆k))

2

σ2
k

]

=

p∑

k=1

{
E
[
1(∆̂k 6= 0)

1

n0 + n1

]
+

n2
1

(n0 + n1)2
E
[
1(∆̂k 6= 0)

(dk −∆k)
2

σ2
k

]}

≤
∑

k:|δk|<α
2

{
P (|tk| > α

√
m)

1

n0 + n1

+
n2

1

(n0 + n1)2
E
[
1(|tk| > α

√
m)

(dk −∆k)
2

σ2
k

]}

+
∑

k:|δk|>α
2

1

n0 + n1

+
n2

1

(n0 + n1)2
E
[(dk −∆k)

2

σ2
k

]

≤
{

2pa1e
−nα2a2 + bn(1 + n/m) case B1,

2pa1e
−nα2a2 + (c1 + 1)Kn

(
1

n0+n1
+ 1

m

)
case B2.

(3.6)

Dividing (3.6) by (3.5) we see immediately the convergence to zero for case B1. For
case B2 the second term of (3.6) is the dominating part and dividing this by (3.5)
we get

(c1 + 1)Kn
1+1/κ3

n

Knα2
=

(c1 + 1)(1 + 1/κ3)

nα2
≤ (c1 + 1)(1 + 1/κ3)

c2
αn

2γ log(p)1−2γ
→ 0.

This ends the proof of (3.1).
We next turn to the use of (3.3) to obtain the result of the theorem. We need to

show that |D−1/2∆̂|2 ≥ Sα(1 + Wn), where Sα =
∑

k:|δk|>2α δ
2
k and where Wn tends

to zero in probability. We write

|D−1/2∆̂|2 =
∑

k:|∆̂k|6=0

Ik
d2
k

σ2
k

≥
∑

k:|δk|>2α

Ik
d2
k

σ2
k

.

From the argument in (3.4) all the indicators Ik in this expression are one with
a probability tending to one. Thus, we remove Ik from the expression and write
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dk/σk = δk + Uk/
√
m, where the Uks are independent standard normal variables.

This gives

∑

k:|δk|>2α

d2
k

σ2
k

= Sα +
2
√
Sα√
m

U +
1

m
Vn = Sα

(
1 +

2√
mSα

U +
1

mSα
Vn

)
,

where U ∼ N(0, 1) and Vn ∼ χ2(Kn).
For case B1 notice that Sα ≥ c2

0, so that 1/
√
mSα → 0, and that Kn/(mSα) ≤

bnn/(mc0) → 0. For case B2 we get mSα ≥ 4mα2Kn → ∞ and Kn/(mSα) ≤
α2/(4κ3 log(p))→ 0. Thus in both cases we have that |D−1/2∆̂|2 = Sα(1 +Wn) with
Wn tending to zero in probability and the result of the theorem is obtained.

4 Discussion

Theorem 1 extends the result of Bickel and Levina (2004) to a more general struc-
ture for the mean values in the two groups by using a thresholded version of the
independence rule. A similar approach has been considered in Fan and Fan (2008).
In their Theorem 5 the case with a known covariance matrix Σ = I is considered,
where the thresholding is based on the estimated group differences. The bound given
by Fan and Fan (2008) can be compared to the bound in Theorem 1 on taking bn
and a of their paper equal to 2α and α/2, respectively. When the set of differential
expressed variables, {j : δj 6= 0}, is finite the two bounds agree. More generally,
for the cases considered in this paper the asymptotic upper bound by Fan and Fan
(2008) is larger than the bound from Theorem 1. It is possible to construct situations
where the upper bound of Fan and Fan (2008) tends to one, whereas the bound of
Theorem 1 is strictly less than one (for an example consider δ1 6= 0 fixed and all
remaining nonzero δjs between α/2 and α).

Looking at the proof of Theorem 1 we find that the assumption α ≥ cατ
1/2−γ
n

is used to make sure that the expected number of false positives tends to zero.
We can turn this upside down and let α be determined by specifying the expected
number of false positives. Thus let ωn = pP (|t| > α

√
m) be an upper bound on

the expected number of false positives among p variables, where t is t-distributed.
We can then select ωn, tending to zero at a sufficiently fast rate, and determine α
from ωn. At the intuitive level the thresholded independence rule should exclude
all false positives and should include some true positives. To illustrate this intuitive
background of the classifier, we have in Table 1 chosen the expected number of
false positives to be ωn = 0.1, chosen α accordingly, and then calculated the scaled
differential expression needed in order to include a variable in the classififer with a
high probability, here taken as 0.9. The interesting aspect of the table is the amount
of differential expression needed in order to include a variable in the classifier with
some certainty. In particular se see that for moderate values of n, the number of
observations, the number of variables p can be quite large still allowing for inclusion
of true positives.
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n p α δ

40 1000 1.37 1.82
80 1000 0.92 1.22

160 1000 0.64 0.85
160 4000 0.69 0.90
160 20000 0.75 0.96

Table 1: Threshold and differential expression to achieve separation. For each value of
the number of observations, n0 = n1 = n/2, and each value of the number of variables p,
the threshold α has been chosen such that the upper bound ωn on the expected number
of false positives among p variables is 0.1. The scaled differential expression δ has been
chosen such that an expressed variable is included in the classifier with probability 0.9

Appendix

In this appendix we have put together the bounds used for the normal distribution
and the t distribution.

Lemma 3. Let U ∼ N(0, 1), V ∼ χ2(n)/n and t =
√
m(δ + 1√

m
U)/
√
V , where

m ≥ κ3n and n→∞. Then there exists constants a1 and a2 such that the following
inequalities hold.

(i) For x > 0 we have Φ(x) ≤ 1
2
e−x

2/2.

(ii) For x > 0 and |ε| < 1
2
we have |Φ(x(1 + ε))− Φ(x)| ≤ ε/4.

(iii) For a > 0 we have

P (V > 1 + a) ≤ exp{−n(
√

1 + 2a− 1)2/4},
P (V < 1− a) ≤ exp{−na2/4}.

(iv) For |δ| < α
2
we have P (|t| ≥ √mα) ≤ a1e

−a2α2n.

(v) For |δ| < α
2
we have E

[
1(|t| > √mα)U2

]
≤ a1e

−a2α2n.

(vi) For |δ| > 2α we have P (|t| ≤ α
√
m) ≤ a1e

−a2α2n.

Proof. Proof of (i). This follows from

Φ(x) =

∫ ∞

x

e−z
2/2

√
2π

dz = e−x
2/2

∫ ∞

0

e−u
2/2

√
2π

e−uxdu ≤ 1
2
e−x

2/2.

Proof of (ii). This is simply the mean value theorem together with the bound
yφ(y) < 1/4, y > 0, where φ is the standard normal density.

Proof of (iii). The two bounds follows from (4.3) and (4.4) in Laurent and Massart
(2000).
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Proof of (iv). Let fV be the density of V and consider δ with |δ|/α ≤ ω < 1. Then
we have

P (t >
√
mα) =

∫ ∞

0

Φ
(√

m(
√
vα− δ)

)
fV (v)dv

≤ P (V ≤ ω2) + Φ
(
m(ωα− δ)

)

≤ e−n(1−ω2)/4 + 1
2
e−α

2m(ω−δ/α)2/2,

where the last inequality follows from the bounds (i) and (iii). For the case δ < α
2

we use ω = 3
4
and obtain

P (t >
√
mα) ≤ e−7n/64 + 1

2
e−α

2nκ3/32 ≤ a1e
−a2α2n,

for suitable values of a1 and a2 and α bounded from above. For the lower tail, and
with δ ≤ α

2
, we find

P (t < −√mα) =

∫ ∞

0

Φ(−√m(
√
vα− δ))fV (v)dv

≤ P
(
V ≤ 1

2

)
+ Φ

(
−√mα(

√
1/2− δ

α
)
)

≤ e−n/16 + 1
2
e−α

2m(
√

2−1)2/8

≤ a1e
−a2α2n,

for suitable values of a1 and a2 and α bounded from above.

Proof of (v). As above we consider δ with |δ|/α ≤ ω < 1. Using partial integration
we have

∫∞
z
u2φ(u)du = zφ(z) + Φ(z) so that

E
[
1(t >

√
mα)U2

]
=

∫ ∞

0

∫ ∞
√
m(α
√
v−δ)

u2φ(u)fV (v)dudv

≤ P (V ≤ ω2) +

∫ ∞

ω2

{
z(v)φ(z(v)) + Φ(z(v))

}
fV (v)dv, z(v) =

√
m(α
√
v − δ)

≤ e−n(1−ω2)/4 + e−α
2m(ω−δ/α)2/3 + 1

2
e−α

2m(ω−δ/α)2/2,

where we have used xφ(x/
√

3) < 1
2
in the last inequality. As before when δ < α

2

we use ω = 3
4
and obtain a bound on the form a1 exp(−a2α

2n). For the lower
tail E[1(t < −√mα)U2] the above argument is combined with the argument in
point (iv).

Proof of (vi). For |δ| > 2α we find

P (|t| ≤ α
√
m) ≤ P (t ≤ α

√
m) =

∫ ∞

0

Φ
(√

m(α
√
v − δ)

)
fV (v)dv

≤ P
(
V ≥ 2

)
+ Φ

(√
m(α
√

2− 2)
)

≤ e−n(
√

3−1)2/4 + 1
2
e−mα

2(2−
√

2)2/2,

where we have used points (i) and (iii). As before we obtain a bound on the form
a1 exp(−a2α

2n) for suitable a1 and a2.
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