
On the asymptotic expansion of the curvature of

perturbations of the L2 connection
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Abstract

We establish that the Hitchin connection is a perturbation of the L2

connection. We notice that such a formulation of the Hitchin connection

does not necessarily require the manifold in question possessing a rigid

family of Kähler structures. We then proceed to calculate the asymptotic

expansion of general perturbations of the L2-connection, and see when

under certain assumptions such perturbations are �at and projectively

�at. During the calculations we also found an asymptotic expansion of

the projection operator π
(k)
σ which projects onto the holomorphic sections

of the k−th tensor of prequantum line bundle.

Vi viser at Hitchin connectionen er en perturbation af L2 connectio-

nen. Vi bemærker, at en sådan formulering af Hitchin connectionen ikke

nødvendigvis kræver, at den pågældende mangfoldighed besidder en rigid

familie af Kähler strukturer. Vi fortsætter derefter med at udregne den

asymptotiske udvidelse af generelle pertubationer af L2 connectionen og

ser, hvornår, under bestemte antagelser, sådanne pertubationer er �at og

projectively �at. I løbet af udregningerne fandt vi desuden en asymp-

totisk udvidelse af projektionsoperatoren, π
(k)
σ , som projicerer ned på de

holomorfe sektioner af den k'te tensor af prequantum linie bundtet.
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Introduction

In his paper titled �Quantum �eld theory and the Jones polynomial� (Comm.
Math. Phys., 121(3):351�399, 1989), Witten proposed that Chern-Simons the-
ory should form the two dimensional part of (2 + 1)-dimensional TQFT, which
in turn led to the study of geometric quantization of the moduli space M of
�at SU (n)-connections on a surface Σ. This moduli space is prequantizable in
the sense that it admits a prequantum line bundle. Given the surface Σ, the
Teichmüller space T associated to Σ parametrizes the complex structures such
that for every σ ∈ T and for every k ∈ N, we have the quantum space of ge-

ometric quantization, which is the space, H(k) (σ) = H
(k)
σ = H0

(
M,Lk

)
, of

holomorphic sections of the k-th tensor power of the prequantum line bundle.
The spaces H(k) form the �bers of the Verlinde bundle over T , and it was shown
independently by Hitchin and Axelrod, Della Pietra and Witten that this bun-
dle admits a natural projectively �at connection, called the Hitchin connection.
As a result, there exists an identi�cation, as projective spaces, of the quan-
tum spaces associated with di�erent complex structures, through the parallel
transport of this connection.

We now give a brief description of the Hitchin connection as developed in [1]
by Andersen. We start o� with a compact symplectic (M,ω) equipped with a
prequantum line bundle L, further satisfying the condition that H1 (M,R) = 0
and that there exists an n ∈ Z such that the �rst Chern class of (M,ω) is
n [ω] ∈ H2 (M,Z). Now on Lk, we have the smooth family of ∂̄ operators ∇0,1

de�ned at σ ∈ T by

∇0,1
σ =

1

2
(Id+ iJσ)∇

For every σ ∈ T , consider the �nite dimensional subspace of C∞
(
M,Lk

)
given

by H
(k)
σ = H0

(
Mσ,Lk

)
=
{
s ∈ C∞

(
M,Lk

)
|∇0,1

σ s = 0
}
. Our assumption is

that these subspaces of holomorphic sections form a smooth �nite rank subbun-
dle H(k) of the trivial bundle T ×C∞

(
M,Lk

)
.

Let ∇̂t denote the trivial connection in the trivial bundle T ×C∞
(
M,Lk

)
and

let D
(
M,Lk

)
denote the vector space of di�erential operators on C∞

(
M,Lk

)
.

For any D
(
M,Lk

)
-valued smooth 1-form u on T , we have a connection ∇̂ in

T ×C∞
(
M,Lk

)
given by ∇̂V = ∇̂tV − u (V ) for all vector �elds V on T .

Proposition : The connection ∇̂ in T ×C∞
(
M,Lk

)
induces a connection in

H(k) if and only if
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2
V [J ]∇1,0s+∇0,1u (V ) s = 0 (1)

holds for all vector �elds V on T and all smooth sections s on H(k).

This induced connection is called the Hitchin Connection.

We next make the assumption thatM is endowed with a rigid family J of Kähler
structures parametrised by the complex manifold T . To �nd a u that satis�es
the above equation we use the operator

4G : C∞
(
M,Lk

) O1,0

−−−→ C∞
(
M,T (1,0)

σ M∗ ⊗ Lk
)

G−→ C∞
(
M,T (1,0)

σ M ⊗ Lk
)

∇1,0

−−−→ C∞
(
M,T (1,0)

σ M∗ ⊗ T (1,0)
σ M ⊗ Lk

)
Tr−−→ C∞

(
M,Lk

)
de�ned for G ∈ C∞

(
M,S2

(
T

(1,0)
σ M

))
, where G satis�es the relation, V ′ [J ] =

G (V )·ω, V ′ being the (1, 0) part of the vector �eld , and the relation concerning
rigidity i.e., ∂̄σ (G (Vσ)) = 0. Under such circumstances it is proven in [1] that

u (V ) =
1

2k + n
o (V ) + V ′ [F ] (2)

where F is the Ricci potential and

o (V ) =
1

2
4G(V) −∇G(V )dF − nV ′ [F ]

solve the equation (1).

The Hitchin connection as de�ned above, necessarily requires the manifoldM to
admit a rigid family of Kähler structures. During the course of this thesis how-
ever, we eschew the concept of rigidity by attacking the problem from another
perspective.

We �rst begin by examining the relationship between the Hitchin connection
(associated to the form u that solves (1)) and the he L2 connection, denoted∇L2 ,

which has the property that for a given vector �eld V on T , ∇L2

V s = π
(k)
σ V (s),

where π
(k)
σ denoted the projection onto holomorphic sections. In proposition 7

of chapter 5 of this thesis, we develop a new 1-form uN given by the equation

uN (V ) s = −
i

2

(
∇0,1

)∗
PV ′ [J ]∇1,0s
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where P is the parametrix to the operator ∇0,1
(
∇0,1

)∗
+
(
∇0,1

)∗∇0,1 (the
Laplace Operator) and that for a su�ciently large k, this 1-form uN , solve the
equation (1).

We next consider the connection ∇N , given by the equation ∇N = ∇̂tV −uN (V )
and we prove in proposition 9, chapter 5, that this is nothing but the L2 connec-
tion, itself. Further we prove that the relation between the L2 connection and

the Hitchin connection is given by the relation ∇H − ∇L2 = −π(k)
σ u, where u

is given by (2) (as developed by Andersen in [1]). Thus we see that the Hitchin

connection is of the form ∇M , where∇M = ∇L2 + π
(k)
σ gk where gk is a 1-form

on T with values in D
(
M,Lk

)
.

The raison d'être behind proceeding in this way, i.e. express the Hitchin con-

nection as ∇H = ∇L2 − π(k)
σ u, is that given a connection of the form ∇M =

∇L2 + π
(k)
σ gk where gk is a 1-form on T with values in D

(
M,Lk

)
, we hope to

calculate the asymptotic expansion of the curvature F∇M and thus get a set of
conditions as to when such a connection might be �at or projectively �at (since
the Hitchin connection, we know is projectively �at).

We therefore carry out a curvature calculation of connections of the form ∇M
in section 5.1 to obtain the formula

F∇M (X,Y ) s = π(k)
σ

[
X
[
π(k)
σ

]
, Y
[
π(k)
σ

]]
s+ π(k)

σ d
(
π(k)
σ gk

)
(X,Y ) s

+ π(k)
σ gk (Y )X

(
π(k)
σ

)
s− π(k)

σ gk (X)Y
(
π(k)
σ

)
s

+
[
π(k)
σ gk (X) , π(k)

σ gk (Y )
]
s

Given this result we express the 1-form gk as an in�nite series, given by gk =∑∞
l=0 g

(l)k−l, where each g(l) is a 1-form on T with values in D
(
M,Lk

)
. This

is the �rst step to giving an asymptotic expansion of the curvature of ∇M ,
denoted F∇M , as given above. However in order to do so we �rst of all need

an aymptotic expansion of the operator π
(k)
σ . This expansion is developed at

the end of chapter 4 in this thesis in theorems 9 and 10. We state the theorems
here for reference

Theorem : There exist global operators D
(k)
l : C∞

(
M,Lk

)
→ C∞

(
M,Lk

)
such

that we have for all section s of Lk, we have an asymptotic expansion

π(k)
σ s ∼ s+

∞∑
l=1

D
(k)
l (s)

kl
, i.e.,
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| π(k)
σ s− s−

N−1∑
l=1

D
(k)
l (s)

kl
|= O

(
1

kN

)
the norm being the Cm norm with respect to the norm on sections of Lk over
M.

Theorem : For a vector �eld V on T , V
(
π

(k)
σ

)
s has the asymptotic expansion

V
(
π(k)
σ

)
s ∼

∞∑
l=1

V
[
D

(k)
l

]
(s)

kl
, i.e.,

| V
(
π(k)
σ

)
s−

N−1∑
l=1

V
[
D

(k)
l

]
(s)

kl
|= O

(
1

kN

)
the norm being the Cm norm with respect to the norm on sections of Lk over
M.

With the help of the above results we are indeed able to give an asymptotic
expansion of the curvature F∇M in theorem 15. We state the theorem here for
reference (the notation used is as developed thus far).

Theorem : Keeping with the notation developed thus far, the asymptotic expan-
sion for the curvature F∇M is given by the expression

F∇M =

∞∑
n=0

Tn

kn

where
T0 = dg(0) + g(0) ∧ g(0)

T1 = dg(1) +D1dg
(0) +A1 +D1A0 +B1

with A1 and A0 being given by

A1 = g(0) ∧ g(1) + g(1) ∧ g(0) + dD1 ∧ g(0) − g(0) ∧ dD1

and
A0 = g(0) ∧ g(0),

and

Tn = dg(n) +
∑
i+j=n

Didg
(j)

+An +
∑
i+j=n

DiAj +Bn +
∑
i+j=n

DiBj
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where An for n ≥ 2 is given by

An =
∑
i+j=n

g(i) ∧ g(j) +
∑
i+j=n

dDi ∧ dDj+∑
i+j=n

dDi ∧ g(j) −
∑
i+j=n

g(i) ∧ dDj

and Bn n > 0 is given by

Bn =
∑

i+j+r=n

g(i) ∧Djg
(r).

We then proceed to analyze the cases as to when the curvature may be �at.
This is done in theorem 16 (under the assumption g(0) = 0). In fact we get a set
of necessary and su�cient condition in theorem 16 for the connection ∇M to be
�at. These conditions are given by equations (76) and (77) in the statement of
theorem 16. We state the theorem here for reference

Theorem : Given the setting and notation of theorem 15, under the additional
assumption that g(0) = 0, the necessary and su�cient conditions for the curva-
ture F∇M to vanish are

g(1) ∧ dD1 ∧ g(1) + 2dD1 ∧ dD1 ∧ dD1 = 0

and

0 =
∑

i+j+r=n

g(i) ∧ dDj ∧ g(r) + 2
∑

i+j+r=n

dDi ∧ dDj ∧ dDr

−
∑

i+j+r+q=n

g(i) ∧Djg
(r) ∧ g(q) +

∑
i+j+r+q=n

g(i) ∧Djg
(r) ∧ dDq

+
∑

i+j+r=n

g(i) ∧Dj (Ar +Br)−
∑

i+j+r+q=n

dDi ∧ dDj ∧Drg
(q)

+
∑

i+j+r+q=n

g(i) ∧ dDj ∧Drg
(q) −

∑
i+j+p+q+r=n

g(i) ∧Djg
(p) ∧Dqg

(r)

for n > 3.

We notice, in fact that the connection ∇M may be made �at upto order 2 with
no obstructions whatsoever (indeed the equations given above point out the
obstructions to making the curvature F∇M �at to orders higher than 2). As a
corollary (corollary 16.1), we prove that the connection ∇M is �at up to order
2 if we let g(1) and g(2) satisfy the following conditions

g(1) (X) = iX (D1)
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and
dg(2) = 0.

We already know that the Hitchin connection is projectively �at and therefore
for the �nal portion of thesis, we turn our attention to when the connection ∇M
may be projectively �at . Before doing so we establish the following notation
- given the context and notation established thus far, for a given di�erential

operator D, fD,k is a function on M such that π
(k)
σ Ds = π

(k)
σ fD,ks. The case

when ∇M may be projectively �at is done is theorem 17 under the additional
assumption that g(i) (X) are smooth functions on M for all i's. The rationale
behind making this assumption is that the Hitchin connection, in case of rigidity
is a perturbation of the L2 connection, of precisely this form (this is remarked
upon in the text in an exposition following proposition 9 in chapter 5). These
conditions are given by equations (91) and (95). We state theorem here in the
introduction for further reference

Theorem : Given the setting and the notation of theorem 15, and under the
additional assumptions that g(i) (X) are C∞ functions on M for all, i ≥ 0 and
vector �elds, X on T , the conditions for projective �atness of the connection
∇M are

dMdg
(0) = 0,

0 = dMdg
(1) (X,Y ) + dM

(
fD1,kdg

(0) (X,Y )
)

+

dM

(
fX(D1),kg

(0) (Y )− fY (D1),kg
(0) (X)

)
−

dM
(
fg(0)(X)Y (D1),k − fg(0)(Y )X(D1),k

)
+

dM

(
fg(0)(X)D1,kg

(0) (Y )− fg(0)(Y )D1,kg
(0) (X)

)
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and

0 = dMdg
(n) (X,Y ) +

∑
i+j=n

dM

(
fDi,kdg

(j) (X,Y )
)

+

∑
i+j=n

dM
(
fX(Di)Y (Dj),k − fY (Di)X(Dj),k

)
+

∑
i+j=n

dM

(
fX(Di),kg

(j) (Y )− fY (Di),kg
(j) (X)

)
−

∑
i+j=n

dM

(
fg(i)(X)Y (Dj),k − fg(i)(Y )X(Dj),k

)
+

∑
i+l+m=n

dM
(
fDi,k

(
fX(Dl)Y (Dm),k − fY (Dl)X(Dm),k

))
+

∑
i+l+m=n

dM

(
fDi,k

(
fX(Dl),kg

(m) (Y )− fY (Dl),kg
(m) (X)

))
−

∑
i+l+m=n

dM
(
fDi,k

(
fg(l)(X)Y (Dm),k − fg(l)(Y )X(Dm),k

))
+

∑
i+j+r=n

dM (
(
fg(i)(X)Dj ,kg

(r) (Y )− fg(i)(Y )Dj ,kg
(r) (X)

)
+

∑
i+l+m+p=n

dM

(
fDi,k

(
fg(l)(X)Dm,kg

(p) (Y )− fg(l)(Y )Dl,kg
(p) (X)

))
for all vector �elds X and Y on T . Here dM is the exterior derivative on M .
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1 Complex Di�erential Geometry

We begin by considering a smooth manifold M of dimension 2m and let TM be
the tangent bundle of M .

1.1 Almost Complex Structures

De�nition 1 A smooth section I of the endomorphism bundle End (TM) of
the tangent bundle of M is called an almost complex structure if it satis�es the
relation I2 = −Id where I denotes the identity morphism.

♦

Given such an almost complex structure I, we can think of TM as a complex
vector bundle TMI , where mutliplication by i is given by I. As a result we see
that any almost complex manifold must necessarily be even dimensional and
orientable. We now consider the complexi�ed tangent bundle TMC = TM ⊗C.
The linear extentension of I induces a decomposition

TMC = T (1,0)MI + T (0,1)MI

where T (1,0)MI and T (0,1)MI are the eigenspaces of I with eigenvalues i and

−i respectively; the explicit projections being given by π
(1,0)
I = 1

2 (Id− iI) and

π
(0,1)
I = 1

2 (Id+ iI). We use the notation X = X ′ + X ′′ where X ′ ∈ T (1,0)MI

and X ′′ ∈ T (0,1)MI , or the decomposition of a vector �eld on M .

Further we see that the almost complex structure acts on the cotangent bundle
TM∗ in an obvious way

(Iα)X = α (IX)

for every α, a 1-form X a vector �eld onM . As before we have a decomposition

TM∗C = T (1,0)M∗I + T (0,1)M∗I

into subbundles of eigenspaces. It is easily seen that T (1,0)M∗I consists of forms
vanishing on T (0,1)MI and T

(0,1)M∗I consists of forms vanishing on T (1,0)MI .

Given the splittings of TMC and TM∗C obtained above, we now have splittings
on the level of the tensor bundles into direct sums of eigensubbundles of TMC
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and TM∗C. Let ∧p,qTM∗I = ∧pT (1,0)M∗I ⊗∧qT (0,1)M∗I , then we have the obvious
decomposition

∧kTM∗C =
⊕

p+ q = k
∧p,q TM∗I

which in turn induces a splitting of the complex valued di�erential forms,

Ωk (M) =
⊕

p+ q = k
Ωp,q (M)

where Ωp,q (M) = C∞ (M,∧p,qTM∗I ), the space of (p, q)-type complex di�er-
ential forms. Similar splittings take place for other tensor bundles such as the
symmetric powers Sk (TM∗C) and Sk (TMC).

This now leaves us in a position to de�ne the ∂ and ∂̄ operators, which we do
using the exterior di�erential d and the projections πp,qI : Ωp+q (M)→ Ωp,q (M),

∂I : Ωp,q (M)→ Ωp+1,q (M)

where ∂I = πp+1,q
I ◦ d and,

∂̄I : Ωp,q (M)→ Ωp,q+1 (M)

where ∂̄I = πp,q+1
I ◦ d.

We now turn our attention to de�ning the complex structure on M .

1.2 Complex Structures

De�nition 2 A complex structure on the manifold M comprises of a maximal

atlas of smooth charts, ϕi : U i → U i
′

⊂ C
(
≡ R2

)
, with the added condition

that every transition function ϕj ◦ ϕ−1
i : ϕi

(
U i

′

∩ U j
′)
→ ϕj

(
U i

′

∩ U j
′)

is

holomorphic.

♦

Remark Note that any complex manifold admits a natural and canonical almost
complex structure on its tangent bundle. To see this, let zk = xk + iyk be he

local coordinates, with the corresponding vector �eldsXk =
∂

∂xk
and Y k =

∂

∂yk
.

Then the almost complex structure is given by

I
(
Xk
)

= Y k and I
(
Y k
)

= −Xk

18



i.e.,

I

(
∂

∂xk

)
=

∂

∂yk
and I

(
∂

∂yk

)
= −

∂

∂xk

Since the transition functions onM are holomorphic, the almost complex struc-
ture is independent of the coordinates chosen and therefore the tangent bundle
becomes a complex vector bundle.

De�nition 3 An almost complex structure is said to be integrable if it is in-
duced by a complex structure. We further de�ne the torsion tensor NI (also
known as the Nijenhuis tensor), as the antisymmetric tensor on M given by

NI (X,Y ) = [IX, IY ]− [X, Y ]− I [X, IY ]− I [IX, Y ]

for all vector �elds X and Y on M .

♦

It is easy to see that an intgrable almost complex structure implies that the Ni-
jenhuis tensor vanishes (i.e. an almost complex structure is torsion-free). How-
ever the converse statement is also true as stated in the celebrated Newlander-
Nirenberg theorem.

Theorem 1 (Newlander-Nirenberg Thoerem) Any torsion-free almost complex
structure is induced by a unique complex structure.

♦

There are several equivalent formulations of integrability, a few of which are
listed in the following proposition (stated without proof) for future reference.

Proposition 1 Let I be an almost complex structure on M . Then the following
are eqivalent

(i) The Nijenhuis tensor NI vanishes

(ii) The bundle T (1,0)MI is preserved by the Lie-bracket
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(iii) The exterior di�erential decomposes as d = ∂I + ∂̄I .

♦

Remark Property (iii) from proposition 1 implies the following identities

∂2
I = 0 ∂̄2

I = 0 and ∂I ∂̄I = −∂̄I∂I .

As a result we have the cochain complex

Ωp,0 (M)
∂̄I−→ Ωp,1 (M)

∂̄I−→ Ωp,2 (M)
∂̄I−→ . . .

for every positive integer p, the cohomology, being denoted by Hp,q
J (M) is called

the Dolbeault cohomogy of M .

1.3 Symplectic Structure

De�nition 4 A manifold M is called a symplectic manifold if there is a de�ned
on M a closed non-degenerate 2-form ω, i.e., ω ∈ Ω2 (M) such that

(i) dω = 0

(ii) on each tangent tangent space TmM , m ∈ M if ωm (X,Y ) = 0 for all
Y ∈ TmM then X = 0.

♦

Remark The assumptions about ω say that its restrictions to each m ∈ M
makes the tangent space TmM , into a symplectic vector space. Further by
the theorem of Darboux, we know that all symplectic manifolds of the same
dimensions are locally the same. We state the theorem for future reference.

Theorem 2 (Darboux theorem) Let ω0 and ω1 be two non degenrate and closed
forms of degree 2 on a 2n dimensional manifold M with ω0|m = ω1|m for some
m ∈ M . Then there exists a neighbourhood U of m with a di�eomorphism
F : U −→ F (U) ⊂M with F (m) = m such that F ∗ω1 = ω0.

♦
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We now turn to the concept of the Hamiltonian vector �elds.

De�nition 5 Given a symplectic manifold (M,ω) and H ∈ C∞ (M). Then a
vector �eld XH on M is called a Hamiltonian vector �eld with energy fuction
H, if we have i (XH)ω = dH. The triple (M,ω,XH) is called a Hamiltonian
system.

♦

Remark With these de�nitions in mind, we are now in a position to discuss the
concept of the Poisson structure. Given a symplectic structure on a manifold,
we can introduce the concept of the Poisson bracket on functions onM denoted
{·, ·}, given by the formula

{f, g} = −ω (Xf , Xg)

It is easy to see that the Poisson bracket thus de�ned satis�es the Jacobi identity
and the Leibniz rule.

De�nition 6 The Poisson bracket gives rise to a Poisson structure on a man-
ifold M, wherein the Poisson structure is an antisymmetric biliner mapping
{·, ·} : C∞ (M)×C∞ (M)→ C∞ (M) satisfying the Leibniz rule and the Jacobi
identity. The triple (M,ω, {·, ·}) denotes a Poisson manifold.

♦

Remark It is easily seen that on a Poisson manifold we have the identity

X{f,g} = [Xf , Xg] .

Therefore we see that the association f −→ Xf is nothing but a Lie algebra
homomorphism from the Lie Algebra of smooth functions equipped with the
Poisson bracket to the Lie Algebra of Hamiltonian vector �elds.

De�nition 7 Given a vector �eld X on M, we have the divergence of X as the
unique function δX such that

LXωm = δXωm
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where LX denotes the Lie derivative with respect to X.

♦

Remark Since LXω = 0 for all locally Hamiltonian vector �elds, and Hamilto-
nian vector �elds in particular, we see that δX = 0 for all Hamiltonian vector
�elds. This now leaves us in a position to explore the relationship between the
almost complex structure, the symplectic structure and the Riemannian metric.

De�nition 8 Given a symplectic manifold (M,ω), an almost complex structure
I, is said to be compatible if the assignment m 99K gm : TmM × TmM → R,
given by

gm (u, v) = ω (u, Imv)

de�nes a Riemannian metric on M, i.e., the bilinear form g must be symmetric
and positive de�nite. The triple (ω, g, I) is called compatible triple if g (·, ·) =
ω (·, I·).

♦

Given a symplectic manifold (M,ω) and a Riemannian metric g on M , it is
easily seen that there exists a canonical almost complex structure on which is
compatible. In particular, since Riemannian metrics always exist, any symplec-
tic manifold has compatible almost complex structures. Further it can be be
shown that the set of almost complex structures on a symplectic manifold is
path connected and indeed contractible.

Further it is easily seen that the symmetry of the metric g is equivalent to the
I -invariance of ω, and therefore also of g. As a consequence both g and ω are
of type (1, 1).

Remark The metric g induces the usual isomorphism ig : TM → TM∗ given
by

ig (X) (Y ) = g (X,Y )

for all vector �elds X and Y on M. This can be related to the corresponding
isomorphism iω by the equation

iω = ig ◦ I.
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Since the metric g and the symplectic form ω have type (1, 1), the isomorphisms
interchange types. The inverse metric tensor g̃ de�ned by the equation

g̃ =
(
i−1
g ⊗ i−1

g

)
(g)

is the unique bivector �eld which satis�es

g · g̃ = g̃ · g = Id.

The relation between the Poisson tensor ω̃ and the metric tensor g̃ is ω̃ = I · g̃.

Remark We further note that the Riemannian metric g induces a Hermitian

structure hT
(1,0)

on the eigen subbundle T (1,0) by

hT
(1,0)

(X, Y ) = g
(
X, Y

)
which in turn gives the canonical bundle1K a Hermitian structure hK .2

1.4 Kähler Manifolds

De�nition 9 A Kähler manifold is a complex, symplectic, Riemannian man-
ifold M with the added property that the symplectic form ω, the Rimannian
metric g and the (integrable) almost complex structure I (arising from the com-
plex structure) form a compatible triple (compatibility, as de�ned in de�nition
8).

♦

De�nition 10 The Levi-Civita connection on a Riemannian manifold (in our
case Kähler manifold) M is the unique connection ∇ on the tangent bundle of
M such that that it is torsion free, in the sense that,

∇XY −∇YX = [X,Y ]

1The canonical bundle KI is de�ned by the following equation,

KI = ∧nT (1,0)M∗
I

where 2n is the real dimension of M .
2In general we shall denote the Hermitian structure of a Hermitian vector bundle by h with

the name of the bundle as a superscript. However for the sake of brevity when the relevant
bundle is clear from the context, we shall drop the superscript. We shall be following the
same procedure regarding connections, etc.
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and compatible with the metric g, in the sense that

∇g = 0⇔ X [g (Y,Z)] = g (∇XY,Z) + g (Y,∇XZ)

for all vector �elds X, Y and Z.

♦

Remark An important fact to note about Kähler manifolds is that the inte-
grable almost complex structure is parallel also with respect to the Levi-Civita
connection, i.e.,

∇I = 0⇔ ∇X (IY ) = I∇XY.
But since the compatibility relation of the almost complex structure states that
g = ω (·, I·), we have, due to the compatibility of the Riemannian metric g
with the Levi-Civita connection ∇, and the parallelism of I with respect to the
Levi-Civita connection, that ω is itself parallel with respect to the Levi-Civita
connection. Further note that the parallelism of I implies that the Levi-Civita
connection preserves the eigen subbundles T (1,0)M and T (0,1)M of TMC and
therefore as a result, induces a connection on T (1,0)M which is compatible with
the Hermitian (and holomorphic) structure of T (1,0)M .

Before we move on to curvature we state a propostion (without proof) of relating
to some special coordinates for Kähler manifolds called geodesic coordinates (see
[30])

Proposition 2 Around any point p of a Kähler manifold M , there exist com-
plex coordinates z1, . . . , zm, such that the corresponding coordinate vector �elds
Z1, . . . , Zm (as de�ned in the previous section) satisfy

g
(
Zi, Zj

)
= δjk and ∇Zj = 0

at the point p. These coordinates are called geodesic coordinates.

♦

De�nition 11 The Kähler curvature R of the manifold M , is the curvature
corresponding to the Levi-Civita connection, given by,

R (X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z

for all vector �elds X, Y and Z. Clearly this is a 2-form with values in the
endomorphism bundle of the tangent budle End(TM).
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♦

Remark Since I is parallel with respect to the Levi-Civita connection ∇, we
have

R (X,Y ) IZ = ∇X∇Y IZ −∇Y∇XIZ −∇[X,Y ]IZ

= I
(
∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z

)
= IR (X,Y )Z

for all vector �elds X, Y and Z. Therefore we see that the endomorphism part
of the curvature preserves the type of the vector and as a result we conclude
that R is (1, 1) form with values in End

(
T (1,0)M

)
⊕ End

(
T (0,1)M

)
.

Remark One can use the metric g to raise or lower the indices, as usual, and
in particular, by lowering an index, the curvature can be viewed as a symmetric
section of ∧1,1TM∗I ⊗ ∧1,1TM∗I called the curvature tensor. Alternatively, by
raising the index we get the curvature operator which is an endomorphism of
∧1,1TM∗I .

De�nition 12 The Ricci tensor denoted r is an I-invariant symmetric, bilinear
form determined by

r (X,Y ) = Tr (Z 7−→ R (Z,X)Y )

The associated antisymmetric (1, 1)-form ρ given by

ρ (X,Y ) = r (IX, Y )

is called the Ricci form.

♦

Remark Using the symmetries of the Kähler curvature it can be shown that
Ricci form is minus the image of the Kähler form under the image of the cur-
vature operator, i.e.,

ρ = −R (ω) .

On any complex manifold, we know that closed forms are locally exact with
respect to the ∂∂̄ operator, i.e., if we have a closed form α ∈ Ωp,q (M) and a
contractible open subset U ⊂ M , then β ∈ Ωp−1,q−1 (U) such that α|U = ∂∂̄β.
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But on Kähler manifolds , a global version of this is true (as is stated and proved
in the following proposition from [6]).

Proposition 3 For any exact form α ∈ Ωp,q (M), there exists a form β ∈
Ωp−1,q−1 (M), such that α = 2i∂∂̄β.

♦

We can apply the above proposition to the Ricci form which we know is closed
and therefore di�ers form its harmonic part ρH by a real, exact (1, 1)-form.
Consequently, we can write the Ricci-form as

ρ = ρH + 2i∂∂̄F

where F ∈ C∞ (M) is a real function called the Ricci potential. Clearly if M is
compact the Ricci potential is determined upto a constant, and therefore it is
uniquely determined if we require that its average over M is 0.

We now turn our attention to the concept of prequantization and the prequan-
tum line bundle. As in the previous section, letM denote a symplectic manifold
of dimension 2n with symplectic form ω. Let Γ denote the group of symmetries
acting on M by symplectomorphisms.

De�nition 13 A prequantum line bundle over a symplectic manifold (M,ω),
is a triple

(
L, hL,∇L

)
, where L is a line bundle overM with a Hermitian metric

hL and a compatible connection ∇L whose curvature is

F∇L =
i

2π
ω

e.g.
∇X∇Y −∇Y∇X −∇[X,Y ] = ω (X,Y )

26



for all vector �elds X and Y on M . We say the symplectic manifold (M,ω) is
prequantizable if there exists a prequantum line bundle over it.

♦

Remark It is often natural to require that the action of the symmetry group
Γ on M lift to an action on the prequantum line bundle L by means of bundle
maps that preserve the Hermitian structure and the connection.

Remark Interestingly every symplectic manifold need not be prequantizable.
We know that the real �rst Chern class of the prequantum line bundle is given
by c̃1 (L) = [ω]. This leads us to the necessary condition for prequantizability,
known as the prequantum condition,

[ω] ∈ Im
(
H2 (M,Z)→ H2 (M,R)

)
.

This is also a su�cient condition (see [31]) for the existence of a prequantum
line bundle. When inequivalent prequantum line bundles exist overM , they are
parametrized by H1 (M,U(1)).

Remark If we choose an almost complex structure I on our manifold (M,ω)
which is compatible to the symplectic structure (and the metric), this will give
the manifold M , the structure of a Kähler manifold denoted MI , and since ω is
of the form (1,1), it follows that the connection on the prequantum line bundle
L gives it a holomorphic structure.
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2 Families of Kähler Structures

During the course of this chapter we shall study the families of Kähler structures
on a symplectic manifold (which lies at the heart of our study of the Hitchin
connection). For the rest of this section we shall use T to denote a smooth
manifold that will parametrize the Kähler structures on our symplectic manifold
denoted as usual as (M,ω). The reference for this chapter is [6] and [14].

2.1 Families of Kähler Structures

De�nition 14 A family of Kähler Structures on a symplectic manifold (M,ω)
parametrized by T is a map

I : T → C∞ (M,End (TM))

which associates to every point σ ∈ T an integrable, ω-compatible almost com-
plex structure on M . For the point σ the manifold M with its ω-compatible
Kähler structure I (σ) will be denoted Mσ (similar notation being used for the
corresponding metric), however when the point σ is clear from the context we
shall omit the use of the subscript.

♦

De�nition 15 A family of Kähler structures is called smooth if the map I (as
in de�nition 14) is smooth in the sense that it de�nes a smooth section of the pull
back bundle π∗MEnd (TM) over T ×M , where πM is the canonical projection
of T ×M onto M .

♦

2.2 In�nitisemal Deformations

Given a smooth family of Kähler structures I, we can can take its derivative
along a vector �eld V on T to obtain the map

V [I] : T → C∞ (M,End (TM))
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Further we have the identity
I2 = −Id (3)

Di�erentiating (3), we have

V [I] I + IV [I] = 0. (4)

Therefore from equation (4), we see that I anti-commutes with V [I], thus im-
plying that V [I]σ changes types on Mσ. Thus we have a decomposition

V [I] = V [I]
′
+ V [I]

′′
(5)

where
V [I]

′
σ ∈ C

∞
(
M,T (1,0)Mσ ⊗ T (0,1)M∗σ

)
and

V [I]
′′
σ ∈ C

∞
(
M,T (0,1)Mσ ⊗ T (1,0)M∗σ

)
.

We see that
V [g] (X,Y ) = ω (X,V [I]Y )

since ω is of type (1, 1) and g is symmetric, we have that

V [g] ∈ C∞
(
M,S2

(
T (1,0)M∗σ

)
⊕ S2

(
T (0,1)M∗σ

))
.

We now de�ne a bivector �eld G̃ (V ) ∈ C∞ (M,TMC ⊗ TMC) by the relation

V [I] = G̃ (V ) · ω

for any vector �eld V on T . Further we de�ne

G (V ) ∈ C∞
(
M,T (1,0)Mσ ⊗ T (1,0)Mσ

)
such that

G̃ (V ) = G (V ) + Ḡ (V ) (6)

where Ḡ (V ) ∈ C∞
(
M,T (0,1)Mσ ⊗ T (0,1)Mσ

)
for all real vector �elds V on T .

We see that G̃ and G are nothing but 1-forms with values in C∞ (TMC ⊗ TMC)
and C∞

(
T (1,0)Mσ ⊗ T (1,0)Mσ

)
respectively.

Remark We make the further assumption T is a complex manifold and I is
a holomorphic mapping (the family of Kähler structures being called holomor-
phic). Conecretely this means that

V ′ [I]σ = V [I]
′
σ and V ′′ [I]σ = V [I]

′′
σ
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where V ′ is the (1, 0) part of V and V ′′ is the (0, 1) of V .

Under the assumptions of the preceding remark we notice,

V ′ [I] = G (V ) · ω

and that G (V ) = G (V ′). Since V [g] = ω · V [I], we have

V [g] = ω · V [I] = ω · G̃ (V ) · ω (7)

and from this it is clear that G̃ takes values in C∞
(
M,S2 (TMC)

)
and G in

C∞
(
M,S2

(
T (1,0)Mσ

))
.

Finally we need the variation of the Levi-Civita connection which is the tensor
�eld

V [5] ∈ C∞
(
M, S2

(
T (1,0)M∗σ

)
⊗ T (1,0)Mσ

)
.

We state the formula for this variation without proof (for further reference see
[6]).

Lemma 1 For all vector �elds X,Y, Z on M , we have

2g (V [5]X Y,Z) = 5X (V [g]) (Y,Z) +5Y (V [g]) (X,Z)−5Z (V [g]) (X,Y )

♦

2.3 Holomorphic Families of Kähler Structures

We now turn our attention to the necessary and su�cient conditions to ensure
the holomorphicity of the family of Kähler structures. The reference for the
results in this section is [14]. Let us start this section by giving an alternative
characterization of holomorphic families of Kähler structures from the one de-
veloped above. As in the remark in section 2.2, we start by assuming that T is
a complex manifold, I is a holomorphic mapping and the the family of Kähler
structures is holomorphic. Let J be an integrable almost complex structure on
T induced by the complex structure. We now get an almost complex structure
Î on T ×M de�ned by

Î (V ⊕X) = JV ⊕ IX (8)

where V ⊕X ∈ T(σ,p) (T ×M).
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Proposition 4 (Andersen, Gammelgaard and Lauridsen) The family I is holo-
morphic i� the complex structure Î de�ned by equation (8) is integrable.

Proof : To say that Î is integrable is the same as saying that the Nijenhuis tensor
for Î vanishes. We further know that J is integrable so the Nijenhuis tensor of J
vanishes when evaluated on vector tangent to T and similarly Nijenhuis tensor
of I vanishes when evaluated on vectors tangent to M since I is a family of
integrable almost complex structues on M . So let V and X be vector �elds on
T and M respectively. We have [V, IX] = V [I]X, and so we have

NÎ (V ′, X) = [JV ′, IX]− [V ′, X]− Î [JV ′, X]− Î [V ′, IX]

= i [V ′, IX]− Î [V ′, IX]

= iV ′ [I]X − IV ′ [I]X

= 2iπ0,1V ′ [I]X

(9)

and similarly we show that NÎ (V ′′, X) = −2π1,0V ′ [I]X and therefore the Ni-
jemhuis tensor vanishes i�

π0,1V ′ [I]X = 0 and π1,0V ′′ [I]X = 0

which completes the proof of the proposition.

♦

Lemma 2 (Andersen, Gammelgaard and Lauridsen) If I is holomorphic family
of Kähler structures, then

W ′′V ′ [I] =
i

2
[V ′ [I] ,W ′′ [I]]

for any vector �elds V and W on T such that V ′ and W ′′ commute.

Proof : The holomorphicity of I implies that V ′ [I]π1,0 = 0, and therefore we
have

W ′′V ′ [I] =
i

2
V ′ [I]W ′′ [I] (10)

by di�erentiating along W ′′. In a similar fashion, by di�erentiating the relation
W ′′ [I]π0,1 = 0, we have

V ′W ′′ [I] = −
i

2
W ′′ [I]V ′ [I] (11)

By adding equations (10) and (11) and using the fact that V ′ andW ′′ commute,
we prove the assertion in the lemma.

♦
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2.4 Rigid Families of Kähler Structures

We now turn our attention to the the extremely important concept of rigidity.

De�nition 16 (Andersen) A family of Kähler structures I is said to be rigid
if

∇X′′G (V ) = 0 (12)

for all vector �elds X onM and V on T (G (V ) ∈ C∞
(
M,T (1,0)Mσ ⊗ T (1,0)Mσ

)
,

see section 2).

♦

Remark We therefore have that the family I is rigid if G (V ) is a holomorphic
section of S2

(
T (1,0)M

)
, for any vector �eld V on T .

2.5 Families of Ricci Potential

We end this chapter with a short discussion on families of Ricci potential.
Throughout this discussion we shall assume that our manifoldM is compact and
of real dimension 2n. For each σ ∈ T we have a corresponding Ricci potential
Fσ ∈ C∞ (M) satisfying

ρσ = ρHσ + 2i∂σ∂̄σFσ

where ρHσ is the unique harmonic part of the Ricci form.

Since we assume that M is compact the function Fσ uniquely determined upto
a constant, we can �x a unique Ricci potential by demanding that it have 0
average on our manifold, i.e. ∫

M

Fσω
n = 0.

With this normalization the Ricci potentials de�ne a smooth function F̂ ∈
C∞ (T ×M), which can be be interpreted as a smooth map F : T → C∞ (M).
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In general we say a smooth map F̂ ∈ C∞ (T ×M) is a smooth family of Ricci
potentials if it satis�es

ρσ = ρHσ + 2i∂σ∂̄σFσ (13)

for any σ ∈ T .

We further make an additional assumption that there exists an m ∈ Z such that
the real �rst Chern class of (M,ω) is given by

c̃1 (M,ω) = m

[
ω

2π

]
. (14)

But we know that the real �rst Chern class is represented by
ρ

2π
and conse-

quently we have
ρ = mω + 2i∂∂̄F. (15)

Since the Kähler form is harmonic. The following lemma (stated without proof,
see for reference [14]) gives a useful identity involving the variation of the Ricci
potential, given our assumptions.

Lemma 3 (Andersen) Suppose thatM is a compact, symplectic manifold which

satis�es H1 (M,R) = 0 and c̃1 (M,ω) = m

[
ω

2π

]
, and let I be a holomorphic

family Kähler structures on M . Then any family of Ricci potentials satis�es

4i∂̄V ′ [F ] = δ (V ′ [I]) + 2dF · V ′ [I]

for any vector �eld V on T .

♦

Remark Using lemma 3 , we can express the divergence of V [I] in terms of the
Ricci potential. By lemma 3 we have

4iV ′X ′′ [F ] = −2 (V ′ [I]V ) [F ] + 4iX ′′V ′ [F ] = δ (V ′ [I])X (16)

Conjugating equation (16), we have

−4iV ′′X ′ [F ] = δ (V ′′ [I])X (17)

The result follows by adding the above identities.
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3 Hitchin Connection

3.1 Setup for the construction of the Hitchin Connection

In this chapter we will detail the construction of the Hitchin connection as
given in [1]. We begin with the assumption that the manifold M is a compact
(complex) Kähler manifold with symplectic form ω. We further assume that the
manifoldM is prequantizable. Recall that for a manifoldM to be prequantizable
means that there exists a prequantum line bundle

(
L, hL,∇L

)
over M where L

is a line bundle overM with a Hermitian metric hL and a compatible connection
∇L with curvature i

2πω (see de�nition 13). Indeed having assumed our manifold
to be prquantizable, we �x the prequantum line bundle L over it.

We next assume that the smooth manifold T smoothly parametrizes the Kähler
structures on M (see de�nitions 14 and 15) by means of the map

I : T → C∞ (M,End (TM)) .

As in section 2.2 we make the further assumption that T is a complex manifold
and I is a holomorphic map.

Remark For the duration of this chapter, for the sake of brevity, we shall adopt
the usual notation along the lines established in chapter 2, by denoting I (σ) as
Iσ.

Let V be a vector �eld on T . Further as in section 2.2, we de�ne a bivector �elds
G̃ (V ) ∈ C∞ (M,TMC ⊗ TMC) and G (V ) ∈ C∞

(
M,T (1,0)Mσ ⊗ T (1,0)Mσ

)
by

the relations
V [I] = G̃ (V ) · ω.

and
G̃ (V ) = G (V ) + Ḡ (V )

where Ḡ (V ) ∈ C∞
(
M,T (0,1)Mσ ⊗ T (0,1)Mσ

)
for all real vector �elds V on T .

We now consider the k-th tensor power of the prequantum line bundle L, denoted
Lk. For every σ ∈ T consider the operator ∇(0,1)

σ given by

∇(0,1)
σ =

1

2
(Id+ iIσ)∇

where ∇ is the connection induced on Lk by the connection on L. This de�nes
a ∂̄ operator on Lk.
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Consider now the �nite dimensional subspace of C∞
(
M,Lk

)
given by

H(k)
σ = H0

(
Mσ,Lk

)
=
{
s ∈ C∞

(
M,Lk

)
| ∇0,1

σ s = 0
}
.

We further make the assumption that these subspaces of holomorphic sections
form a smooth �nite rank subbundle H(k) of the trivial bundle H(k) = T ×
C∞

(
M,Lk

)
.

We denote by ∇̂t the trivial connection in the trivial bundle H(k) = T ×
C∞

(
M,Lk

)
. Let D

(
M,Lk

)
denote the vector space of di�erential operators on

C∞
(
M,Lk

)
. For any smooth 1-form u on T with values in D

(
M,Lk

)
we have

a connection ∇̂ on H(k) given by

∇̂V = ∇̂tV − u (V ) (18)

for any vector �eld V on T .

We now state and prove the lemma from [1] that de�nes the condition for the
existence of the Hitchin connection.

Lemma 4 (Andersen) The connection ∇̂ in H(k) induces a connection in H(k)

i�
i

2
V ′ [I]∇1,0s+∇0,1u (V ) s = 0 (19)

for all vector �elds V on T and all smooth sections s of H(k).

Proof: Let s be a section of the subbundle H(k). Then ∇̂V s is a section of H(k)

for V , a vector �eld on T . Applying the ∇0,1 operator to ∇̂V s, we have

∇0,1
σ

((
∇̂V (s)

)
σ

)
= ∇0,1

σ (V [s]σ)−∇0,1
σ ((u (V ) s)σ)

= −
i

2

(
V [I]∇1,0s

)
σ
−∇(0,1)

σ ((u (V ) s)σ)

where the second equation above holds since

∇0,1
σ (V [s]σ) +

i

2

(
V [I]∇1,0s

)
σ

= 0

Therefore ∇̂ preserves the subbundle H(k) i� (19) holds.
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♦

Remark Note that V ′′ [I]∇1,0
σ s = 0, where V ′′ is the (0, 1)-part of the vec-

tor �eld V on T . Therefore u (V ′′) = 0 solves equation (19) along the anti-
holomorphic directions, i.e., the (0, 1)-part of the trivial connection ∇̂tV (see
(18)) induces a ∂̄-operator on H(k) and hence makes it a holomorphic vector
bundle over T .

We now consider the bivector �eld G from the previous section. Recall (from
section 2.2) that G (V ) ∈ C∞

(
M,S2

(
T (1,0)Mσ

))
. Therefore G (V ) induces the

bundle map
G (V ) : T (1,0)M∗σ → T (1,0)

σ M

Corresponding to G (V ) we construct the operator

∆G(V ) : C∞
(
M,Lk

)
→ C∞

(
M,Lk

)
de�ned by

∆G(V ) : C∞
(
M,Lk

) ∇1,0
σ−−−→ C∞

(
M,T (1,0)M∗σ ⊗ Lk

)
G(V )⊗Id−−−−−−→ C∞

(
M,T (1,0)Mσ ⊗ Lk

)
∇1,0
σ ⊗Id+Id⊗∇1,0

σ−−−−−−−−−−−−→ C∞
(
M,T (1,0)M∗σ ⊗ T (1,0)Mσ ⊗ Lk

)
Tr−−→ C∞

(
M,Lk

)

Now let F be the Ricci potential (see section 1.4 for reference). We now have
the following theorem.

3.2 The Hitchin Connection

We now construct an ansatz for a 1-form u that solves (19).

Theorem 3 (Andersen) Suppose I is a rigid family of Kähler structures on the
compact symplectic prequantizable manifold manifold (M,ω), with the property
that there exists an n ∈ Z such that the �rst Chern class of (M,ω) is n [ω] ∈
H2 (M,Z) and H1 (M,R) = 0. Then the 1-form u given by

u (V ) =
1

2k + n
o (V ) + V ′ [F ] (20)
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where

o (V ) =
1

2
∆G(V ) −∇G(V )dF − V ′ [F ] (21)

solves equation (18) for all k such that 2k + n 6= 0.

Lemma 5 (Andersen) Assume that the �rst Chern class of (M,ω) is n [ω] ∈
H2 (M,Z). For any σ ∈ T and for and G ∈ H0

(
Mσ, S

2 (Tσ)
)
we have the

following formula

∇0,1
σ (∆G (s)− 2∇GdFσ (s)) = −i (2k + n)Gω∇0,1

σ (s)

− ikTr
(
−2G∂σFω +∇0,1

σ (G)ω
)
s,

for all s ∈ H0
(
Mσ,Lk

)
.

Proof: Consider the e�ect of applying the operator ∇0,1
σ to the operator ∆G (s).

We have

∇0,1
σ (∆G (s)) = Tr

(
∇0,1∇1,0G∇1,0 (s)

)
= Tr

(
∇1,0∇0,1G∇1,0 (s)

)
− ikTr

(
ωG∇1,0 (s)

)
− iT r

(
ρσG∇1,0 (s)

) (22)

where ρσ ∈ Ω1,1 (Mσ) is the Ricci form (ρHσ ∈ Ω1,1 (Mσ) being the harmonic
part of the Ricci form). Now G is holomorphic by our assumptions, therefore
(22) becomes

∇0,1
σ (∆G (s)) = −ikTr

(
∇1,0 (Gωs)

)
− ikTr

(
ωG∇1,0 (s)

)
− iT r

(
ρσG∇1,0 (s)

) (23)

Now notice that ∇ (ω) = 0 due to our assmption that (M,ω) is Kähler. There-
fore we can further write (23) as

∇0,1
σ (∆G (s)) = −ikTr

(
∇1,0 (G)ω

)
⊗ s

− 2ikTr
(
ωG∇1,0 (s)

)
− iT r

(
ρσG∇1,0 (s)

) (24)

Finally notice that the assumption c1 (M,ω) = nω implies that ρHσ = nω which
in turn implies

ρσ = nω + 2i∂σ∂̄σFσ

Putting this in equation (24), one proves the lemma.

♦

We next state (without proof) a lemma that gives us the formula for the varia-
tion of the Ricci-form.
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Lemma 6 (Andersen) For any smooth vector �eld V on T we have that

(V ′ [ρ])
1,1

= −
1

2
∂Tr

(
∇1,0 (G (V ))ω

)
.

♦

Lemma 7 (Andersen) Given H1 (M,R) = 0, we have the following relation

2i∂̄σ (V ′ [F ]σ) =
1

2
Tr
(
2G (V ) ∂ (F )ω −∇1,0 (G (V ))ω

)
σ

Proof: We know by de�nition, that

ρ = ρH + 2id∂̄F.

Further we have assumed that ρH = nω. Hence we have

V ′ [ρ] = −dV ′ [I] dF + 2id∂̄V ′ [F ]

Therefore we have

2i∂∂̄V ′ [F ] = (V ′ [ρ])
1,1

+ ∂V ′ [I] ∂F.

But from lemma 6, we know that

(V ′ [ρ])
1,1

= −
1

2
∂Tr

(
∇1,0 (G (V ))ω

)
.

Therefore we have that

∂σ

(
1

2
Tr
(
2G (V ) ∂Fω −∇1,0 (G (V ))ω

)
σ
− 2i∂̄σV

′ [F ]σ

)
= 0

But we know from lemma 5 that

∂̄σ

(
1

2
Tr
(
2G (V ) ∂Fω −∇1,0 (G (V ))ω

)
σ
− 2i∂̄σV

′ [F ]σ

)
= 0

Thus in fact
1

2
Tr
(
2G (V ) ∂Fω −∇1,0 (G (V ))ω

)
σ
− 2i∂̄σV

′ [F ]σ is a closed 1-

form on M . But our assumption for the manifold is that H1 (M,R) = 0.

Therefore
1

2
Tr
(
2G (V ) ∂Fω −∇1,0 (G (V ))ω

)
σ
− 2i∂̄σV

′ [F ]σ is also an exact

form, but then in fact it vanishes, since it is also of type (0, 1) on Mσ.
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♦

From lemmas 5 and 7 we conclude that

u (V ) =
1

2k + n

{
1

2
∆G(V ) −∇G(V )dF + 2kV ′ [F ]

}

solves (19) thus proving theorem 3.

♦
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4 Toeplitz Operators and Star Products

4.1 De�nition

During the course of this chapter we shall present a review of the concepts of
Toepltiz operators and other related concepts. We continue the notations of the
previous chapters and assume the manifold M to be as in the last chapter, i.e.
prequantizable, with a �xed prequantum line bundle L (and Lk denoting the
k-th tensor power of L).

Let us begin by considering the space C∞ (M). For each f ∈ C∞ (M) we
consider the prequantum operator

M
(k)
f : C∞

(
M,Lk

)
→ C∞

(
M,Lk

)
given by

M
(k)
f (s) = f · s

where s ∈ H0
(
M,Lk

)
(H0

(
M,Lk

)
as in last chapter).

It is clear that these operators acting on C∞
(
M,Lk

)
also act on H(k), but

since f is merely smooth, the operators of the form Mf need not preserve the
subbundle H0

(
M,Lk

)
. Our aim however, is to have operators that preserve

the holomorphic subbundle H0
(
M,Lk

)
.

Consider the pre-Hilbert space structure on C∞
(
M,Lk

)
, i.e. the integral

〈s1, s2〉 =
1

m!

∫
M

(s1, s2)ωm (25)

(recall that the prequantum line bundle L comes equipped with a Hermitian
structure (·, ·)). Now recall that H(k) is de�ned to be

H(k) = T × C∞
(
M,Lk

)
Therefore we can think of the pre-Hilbert space structure on C∞

(
M,Lk

)
given

by 〈·, ·〉 in equation (25) as a pre-Hilbert space structure on H(k). This in turn,
induces a pre-Hilbert space structure on the �nite rank subbundle H(k) of H(k).
And this in turn induces the operator norm ‖ · ‖ on End

(
H(k)

)
.
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Since H
(k)
σ is a �nite dimensional subspace of C∞

(
M,Lk

)
= H(k)

σ therefore it
is closed. As a result we have the orthogonal projection

π(k)
σ : H(k)

σ → H(k)
σ .

Since H(k) is a smooth subbundle of H(k), the projections π
(k)
σ form a smooth

map π(k) from T to the space of bounded operatoes on the L2-completion of
C∞

(
M,Lk

)
.

To see this consider a local frame (s1, · · · , sRankH(k)) of H(k). Let

hij = 〈s1, s2〉

where 〈s1, s2〉 is de�ned is (25). Let h−1
ij denote the inverse of the matrix hij .

Then
π(k)
σ =

∑
i,j

〈s, (si)σ〉
(
h−1
ij

)
σ

(sj)σ

De�nition 17 For a smooth function f ∈ C∞ (M), the corresponding Toeplitz

operator T
(k)
f,σ is the operator

T
(k)
f,σ : H(k)

σ → H(k)
σ

de�ned by

T
(k)
f,σ (s) = π(k)

σ (fs)

for any element s ∈ H(k)
σ and any point σ ∈ T .

♦

We now prove a small lemma but fundamental lemma relating to the adjoint of
the operator ∇X where X ∈ C∞ (M,TMC).

Lemma 8 (Andersen) The adjoint of ∇X , denoted (∇X)
∗
, is given by

(∇X)
∗

= −∇X̄ − δX̄,

for any complex vector �eld X ∈ C∞ (M,TMC).
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Proof: Recall from de�nition 7, that the divergence δX̄ is the unique function
satisfying

LX̄ωn = δX̄ωn.

Therefore we have

LX̄ (s1, s2)ωn = (∇X̄s1, s2)ωn + (s1,∇Xs2)ωn + (s1, s2) δX̄ωn (26)

for smooth sections s1, s2 ∈ C∞
(
M,Lk

)
. By Cartan's formula for the Lie

derivative, the expression in equation (26) is an exact expression.

Applying integration and the Stoke's theorem to (26), we get〈
(∇X)

∗
s1, s2

〉
= −〈∇X̄s1, s2〉 −

〈
δX̄s1, s2

〉
which is what we seek.

♦

Proposition 5 (Andersen) If X ∈ C∞
(
M,T (1,0)Mσ

)
is a smooth section of

the holomorphic tangent bundle on M , then

π(k)
σ ∇X = −T (k)

δ(X),σ.

Proof: Let s1 ∈ C∞
(
M,Lk

)
and s2 ∈ H0

(
M,Lk

)
. Then we have

X (s1, s2) = (∇Xs1, s2) + (s1,∇X̄s2)

But we have
(s1,∇X̄s2) = 0

Therefore
X (s1, s2) = (∇Xs1, s2)

Taking the Lie derivative along X of (s1, s2), we have

d ((s1, s2) iXω
n) = (∇Xs1, s2)ωn + (s1, s2) δXωn

Integrating over M , we have,

0 = 〈∇Xs1, s2〉+ 〈δXs1, s2〉

which implies the proposition.

♦
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4.2 Star Products and Deformation Quantization

During the course of this section we will de�ne star products and deformation
quantizations with separation of variables and investigate brie�y some of their
properties. We begin by considering V , a Hausdor� topological vector space.
The references for this section are [17],[18] and [19]

De�nition 18 The elements of the space of formal Laurent series with �nite
principal part V

[
ν−1, ν

]
] are formal vectors. Let v (m), m ∈ R be a family of

vectors in V that admits an asymptotic expansion as m tends to ∞, v (m) ∼∑
r≥r0

vr
mr . The formalizer F is a operator that acts on v (m) such that

F : v (m) 7→
∑
r≥r0

νrvr.

♦

Now we turn our attention to our manifoldM . Let U ⊂M . We denote by F (U)
the space of all formal complex valued functions on U and let F (M) = F . Let
K = C

[
ν−1, ν

]
] be the set of all formal complex numbers.

De�nition 19 A deformation quantization on (M,ω) is an associative K-algebra
structure on F , with a product called star product, denoted ?, such that for
f =

∑
νjfj and g =

∑
νkgk ∈ F we have the following formula

f ? g =
∑
r

νr
∑
i+j+k

Ci (fj , gk)

where Cr for r = 0, 1, · · · is a sequence of bilinear mappings

Cr : C∞ (M)× C∞ (M)→ C∞ (M)

such that C0 (ϕ,ψ) = ϕψ and C1 (ϕ,ψ) − C1 (ψ,ϕ) = i {ϕ,ψ} for ϕ,ψ ∈
C∞ (M). If all Cr are bidi�erential operators, then the deformation quanti-
zation is called di�erential.

♦

Remark Given an open set U ⊂ M , a deformation quantization F can be
localized to U (with the corresponding star product also denoted ?).
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De�nition 20 Two deformation quantizations (F , ?1) and (F , ?2) are said to
be equivalent if there exists an isomorphism B : (F , ?1) → (F , ?2) of algebras
such that B is of the form

B = 1 + νB1 + ν2B2 + · · ·

where Bk are endomorphisms of C∞ (M).

♦

Remark Given f ∈ F , we have the operators left and right multiplication
operators denoted by Lf and Rf , such that

Lfg = Rgf = f ? g

where f, g ∈ F . It is clear that the associativity of the star product ? corresponds
to the commutativity of Lf with Rg for all f, g ∈ F .

We now turn to the concept of deformation quantization with separation of
variables.

De�nition 21 A deformation quantization (F , ?) is said to be a deformation
quantization with separation of variables if for any open set U ⊂ M and any
holmorphic function a and antiholmorphic function b on U the operators La and
Rb are pointwise multiplication operators by a and b respectively, i.e., La = a
and Rb = b.

♦

De�nition 22 A formal form ω̃ given by

ω̃ =

(
1

ν

)
ω +

∑
r≥0

νrωr

is called the formal deformation of the form
(

1
ν

)
ω if the forms ωr, r ≥ 0 are

closed but not necessarily nondegenerate (1, 1)-forms on M .

♦
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We now give a brief description of how to construct the star product ? with
separation of variables onM corresponding to the formal form ω̃. The discussion
follows closely the discussion from [17].

Consider an arbitrary contractible coordinate chart U of M with holomorphic
coordinates

{
zk
}
. Let Φ =

∑
r≥−1 ν

rΦr, be a formal potential of the ω̃ on U ,

i.e., ω̃ = −i∂∂̄Φ. The star product corresponding to ω̃ is such that on U we
have

L∂Φ/∂zk = ∂Φ/∂zk + ∂/∂zk

and
R∂Φ/∂z̄l = ∂Φ/∂z̄l + ∂/∂z̄l.

Let L (U) be the set of all left multiplication operators on U . L (U) is completely
described as the set of all formal di�erential operators commuting with the point-
wise multiplication operators by antiholomorphic coordinates Rz̄l = z̄l and the
operators R∂Φ/∂z̄l de�ned above. One can then construct the star product on
U from the knowledge of L (U) and since the local star products agree on the
intersections, they de�ne a global star product ? on M .

We now state 2 theorems of Schlichenmaier's that relates the operator Tfg with
the operator TfTg.

Theorem 4 (Schlichenmaier) There exists a unique (formal) star product on
C∞ (M)

f ? g =

∞∑
l=0

νlc(l) (f, g)

where c(l) (f, g) ∈ C∞ (M), such that for f, g ∈ C∞ (M) and for every N ∈ M
we have with suitable constants KN (f, g) for all k

‖ T (k)
f,σT

(k)
g,σ −

∑
0≤l≤N

(
1

k

)j
T

(k)

c(l)(f,g),σ
‖= KN (f, g)

(
1

k

)N
.

♦
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Theorem 5 (Bordemann Meinrenken Schlichenmaier)

(i) For every f ∈ C∞ (M) there is C > 0 such that

‖ f ‖∞ +
C

k
≤‖ T (k)

f,σ ‖≤‖ f ‖∞

In particular, limk→∞ ‖ T (k)
f,σ ‖=‖ f ‖∞, ‖ · ‖∞ is the sup-norm of f on

M .

(ii) For every f, g ∈ C∞ (M)

‖ mi
[
T

(k)
f,σ , T

(k)
g,σ

]
− T (k)
{f,g} ‖= O

(
1

m

)

as k →∞.

(iii) For every f, g ∈ C∞ (M)

‖ T (k)
f,σT

(k)
g,σ − T

(k)
fg,σ ‖= O

(
1

m

)

as k →∞.

♦

4.3 Further Properties

We use the notations from [19]. As earlier V is a vecor �eld on the parametrizing
manifold T . We begin by restating the setting from [19].

We begin by considering the dual line bundle τ : L∗ →M , with metric h̃ induced
by the metric h on L. We restrict our attention to the the S1-principal bundle
X de�ned by,

X =
{
α ∈ L∗ | h̃ (α) = 1

}
.

Let Ω̃ be de�ned as the S1-invariant volume form on X such that the following
holds ∫

X

τ∗ (f) Ω̃ =

∫
M

fΩ

for all f ∈ C∞ (M).
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We next identify the sections of Lk with the k-homogenous functions on L∗ by
means of the mapping

Θk : s→ ψs (27)

where
ψs (α) = α⊗k (s (x))

for all α ∈ X, x ∈ M and s ∈ C∞
(
M,Lk

)
. In fact this is an isometry between

the L2 sections of Lk and the k-th weight space of the S1 action on L2

(
X, Ω̃

)
.

For every σ ∈ T , we consider the Hardy space Hσ, a closed subset of square
integrable functions on X, which extends over the unit disc bundle D in L∗

holomorphically (D =
{
α ∈ L∗ | h̃ (α) < 1

}
), with respect the complex struc-

ture induced from the one on Mσ. The orthogonal projection from L2 (X) to
Hσ is called the Szegö projection and is denoted Πσ.

The Hardy space Hσ splits up into weight spaces Hσ =
∑
mH(m)

σ where H(k)
σ

is the k-th weight space of the the S1 action on L2

(
X, Ω̃

)
. The isomorphism

in (27) restricts to an isometry H0
(
Mσ,Lk

) ∼= H(k)
σ . Denote the Bergman

projection (orthogonal projection) onto H(k)
σ by π

(k)
σ and the Bergman kernel

by B
(k)
σ (note that B

(k)
σ ∈ C∞ (X ×X)).

4.3.1 Coherent states

As usual let x ∈ M . Let α ∈ L∗−{0} ('−{0}' means the zero section removed).

For every σ ∈ T , let e(k)
α,σ be the coherent state, i.e.,〈

s, e(k)
α,σ

〉
= α (s)

= α⊗k (s (x))
(28)

for all s ∈ H0
(
Mσ,Lk

)
(〈., .〉 being the hermitian scalar product on L2

(
Lk
)
,

antilinear in the second argument).

Now for s ∈ C∞
(
M,Lk

)
, we have

π(k)
σ (ψs)α = ψ

π
(k)
σ s

(α)

=

∫
X

B(k)
σ (α, β)ψs (β) Ω̃ (β) .
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In fact we have that B
(k)
σ (α, β) =

〈
e

(k)
β,σ, e

(k)
α,σ

〉
= ψ

e
(k)
β,σ

(α) (see page 11 of [19]).

Since the Bergman kernel decays faster than any power of k (see page 13 of
[19]), it follows that

|
〈
e(k)
α1,σ1

, e(k)
α2,σ2

〉
|= O

(
k−N

)
for all N ∈ N,αi ∈ L∗xi , x1 6= x2 and σi ∈ T , i = 1, 2. As a result we only need

the expression for the Bergman kernel B
(k)
σ near the diagonal.

4.3.2 Near diagonal expansion for the Bergman kernel

We now recall the near diagonal expansion of the Bergman kernel from [19].

We �x an arbitrary point x0 ∈ M , having chosen a σ ∈ T . Let U ⊂ M be a
contractible neighbourhood of x0 with local coordinates

{
zk
}
. Let s be a local

holomorphic frame of L∗ over U . Let α (x) be a smooth section of X over U
given by

α (x) =
s (x)√(
h̃ (s (x))

).
If we set Φ (x) = logh̃ (s (x)), we can express α (x) as

α (x) = exp

(
−

Φ (x)

2

)
s (x)

It follows from the fact the L is a prequantum line bundle that Φ is a potential
of ω on U .

Let Φ̃ ∈ C∞
(
U × U

)
be an almost analytic extension of the potential Φ from

the diagonal of U × U in the sense of Hörmander (see page 16 of [19]). It

is interesting to note that we may choose (1/2)
(

Φ̃ (x, y) + Φ̃ (y, x)
)
instead of

Φ̃ (x, y). Therefore we may choose Φ̃ such that Φ̃ (y, x) = Φ̃ (x, y). Denote by
χ ∈ C∞

(
U × Ū

)
the function given by

χ (x, y) = Φ̃ (x, y)−
1

2
(Φ (x) + Φ (y)) .

It is clear that χ (x, x) = 0. Further we can assume that Re (χ (x, y)) < 0 (see
lemma 5.5 in [19]). Lastly we have that the function y 7→ χ (x0, y) has a non-
degenerate critical point at y = x0. Having recalled the setup we can now state
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theorem 5.6 form [19] that gives us the near diagonal expansion of the Bergman
kernel.

Theorem 6 There exists an asymtotic expansion of the Bergman kernel on
U × U as m→∞, of the form

B(k)
σ (α (x) , α (y)) ∼ knekχ(x,y)

∑
r=0

(
1

k

)r
b̃r (x, y) (29)

such that

(i) for any compact E ⊂ U × U and N ∈ N

sup(x,y)∈E | B(k)
σ (α (x) , α (y))−knekχ(x,y)

N−1∑
r=0

(
1

k

)r
b̃r (x, y) |= O

(
kn−N

)
(ii) b̃r (x, y) is an almost analytic extension of br (x) from the diagonal of

U × U , where br, r = 0, are as de�ned in [32].

♦

4.3.3 Asymptotic expansion of πσ

Notation For the sake of brevity, for the rest of this subsection, whenever the
point σ ∈ T and the tensor power k of the bundle Lk are clear, we shall simply

use π to denote the projection π
(k)
σ .

Theorem 7 Let K ⊂ Rn be a compact set, X an open neighbourhood of K and
m a positive integer. If u ∈ C2m

0 , f ∈ C3m+1
0 and Imf ≥ 0 in X, Imf = 0,

f ′ (x0) = 0, detf ′′ (x0) 6= 0, f ′ 6= 0 in K-{x0}, then

|
∫
u (x) eikf(x)dx− eikf(x0) (det (kf ′′ (x0) /2πi))

− 1
2

∑
j<m

k−jLju |

≤ Ck−m
∑
|α|≤2m

sup | Dαu | (30)

with k > 0. Here C is bounded when f stays in a bounded set in C3m+1
0 and

| x− x0 | / | f ′ (x0) | has a uniform bound. With

G(x0) (x) = f (x)− f (x0)− 〈f ′′ (x0) (x− x0) , x− x0〉 /2
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which vanishes to third order at x0 we have

Lju =
∑

ν−µ=j

∑
2ν=3µ

i−j2−ν
〈
f ′′ (x0)

−1
D,D

〉ν (
Gµx0

u
)

(x0) /µ!ν!.

Here in keeping with the notation from [16], Gµx0
stands for the µ-th power of

the function Gx0
, and D stands for the column vector whose j − th entry is the

operator −i
∂

∂xj
, 0 ≤ j ≤ n.

♦

Remark It is further proved in [16] that Lj is a distribution of order 2j sup-
ported at x0

Theorem 8 (Hörmander) Given the setting of theorems 6 and 7, there exists
an asymptotic expansion of ψπ(s) (α) (x0) given by

ψπ(s) (α) (x0) ∼
∑
r≥0

(
1

kr

)
Dr (F )

where x0 ∈ M , U is a coordinate neighbourhood around x0, x, y ∈ U , Dr (for
r ≥ 0) are distributions of R-th order supported at x0 and D0 = δx0

, δx0
being

the Dirac measure, F (y) = b (x0, y, k)φ (y), b (x, y, k) ∈ S0 ((U × U)× R) is
a symbol such that it has the asymptotic expansion b ∼

∑∞
r=0 (1/mr) b̃r and

φ (y) = ψs (α (y)).

Proof: We begin by considering the expansion of the Toeplitz operator π (s).
We know that

π (ψs) (α) = ψπs (α) =

∫
X

B (α, β)ψs (β) Ω̃ (β)

As per our discussion in the subsection on coherent states, we need only consider
the expansion of the Bergman kernel near the diagonal. Therefore using the
notation of theorem 6 and the discussion immediately preceding it, we have

π (ψs) (α) (x0) ∼
∫
U

B (α (x0) , α (y))ψs (α) (y) Ω (y) (31)

But by (27) and (28), we can write the integral above (denoted by I) as

I (x0) =

∫
U

B (α (x0) , α (y))φ (y) Ω (y) (32)
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where φ (y) =
〈
α⊗k, s

〉
(y).

Now as in [19], choose a symbol b (x, y, k) ∈ S0 ((U × U)× R) such that it has
the asymptotic expansion b ∼

∑∞
r=0 (1/m)

r
b̃r. Therefore we have from theorem

6, the expansion of the Bergman kernel near the diagonal is asymptotically equal
to knekχ(x,y)b (x, y, k). Therefore the intgral I (x) in equation (32) asymptoti-
cally becomes

I (x0) ∼
∫
U

knekχ(x0,y)b (x0, y, k)φ (y) Ω (y) (33)

Treating b (x0, y, k)φ (y) as functions of the argument y we can write b (x0, y, k)φ (y)
as

b (x0, y, k)φ (y) = F (y)

Similary we can regard χ (x0, y) as a function of the argument y, and write
χ (x0, y) = χ̂ (y). Therefore the integral I (x) in equation (33), becomes

I (x0) ∼
∫
U

knekχ̂(y)F (y) Ω (y)

= kn
∫
U

ekχ̂(y)F (y) Ω (y) .

(34)

We now follow closely the discussion on pages 15 - 17 of [19]. We notice that
we can assume, that within U , Re(χ̂) ≤ 0 (with equality holding for y = x0).
Further as has been pointed out, the function y 7→ χ (x0, y) has only one non-
degenerate critical point at y = x0 within U . Therefore as in [19], we can apply
theorem 7 to the integral in (34). Therefore our integral admits an asymptotic
expansion

I (x0) ∼ kn
∑
r≥0

(
1

kn+r

)
Dr (F )

=
∑
r≥0

(
1

kr

)
Dr (F ) ,

(35)

whereDr, r ≥ 0, are distributions of R-th order supported at x0 andD0 = cnδx0
;

cn being a nonzero constant and δx0 being the Dirac measure. We can further
normalize D0 to be just D0 = δx0 (for reference see theorem 2.3 from [23] for
the explicit homotopy map which makes this possible).

♦
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We next consider, in the same vein the asymptotic expansion of the term πV (s).

Corollary 8.1 Given the setting in theorem 8, we have

ψπ(V (s)) (α) (x0) ∼
∑
r≥0

(
1

kr

)
Dr (F1)

where x0 ∈ M , U is a coordinate neighbourhood around x0, x, y ∈ U , Dr (for
r ≥ 0) are distributions of r-th order supported at x0 and Dr = δx0 , δx0 being
the Dirac measure, F1 (y) = b (x0, y, k)φ1 (y), b (x, y, k) ∈ S0 ((U × U)× R)
is a symbol such that it has the asymptotic expansion b ∼

∑∞
r=0 (1/mr) b̃r and

φ1 (y) = ψV (s) (α) (y).

♦

We now shift to working withing a local coordinate neighbourhood U of x0 and
a local trivialization of the bundle Lk. Applying theorem 7, to the integral (33),
and using the notation from theorem 8 and the homotopy map given in [23] we
obtain the asymptotic expansion, given by 3

π(k)
σ s (x0) ∼ s (x0) +

∞∑
l=1

D̃
(k)
l,x0

(s) (x0)

kl
(36)

where

D̃
(k)
l,x0

(s) =
∑
ν−µ=l

∑
2ν≥3µ

i−l2−ν

〈(
χ̂′′ (x0)

i

)−1

D,D

〉ν
Gµ(x0)bs

µ!ν!
(x0)

and
G(x0) (y) = χ̂ (y)− 〈χ̂′′ (x0) (y − x0) , y − x0〉 /2

Notice that within the coordinate neighbourhood U , D̃l,x0
is smooth in x0 (χ

as de�ned in theorem 6 is smooth on U × U and the Hessian χ̂′′ (x0) at each
x0 ∈ U , is non vanishing as is proved in [19] and in [32]). Therefore comparing
equations (35) and (36) we have that within the coordinate neighbourhood U ,

there are operators D
(k)
l,U ∈ D

(
U,Lk

)
such that

D̃
(k)
l,x0

(s) = D
(k)
l,U (s) (x0) .

3with the asymptotics in equation (36) is in Cm in x0 ∈ M with respect to the norm on
Lk over M
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If we take another coordinate neighbourhood U ′ of x0 and repeat the process

above, we get an operator D
(k)
l,U ′ satisfying the properties above in the neigh-

bourhood U ′. Therefore on the intersection U ′ ∩U , D(k)
l,U = D

(k)
l,U ′ . Therefore we

can de�ne a global operators

D
(k)
l : C∞

(
M,Lk

)
→ C∞

(
M,Lk

)
such that for every x0 ∈M we have (Dls) (x0) = Dl,x0

(s) (note that the section
s can easily be considered to be a global section by the use of a bump function).
Therefore we now have an asymptotic expansion of πks with the asymptotics in
Cm in x0 ∈ M with respect to the norm on Lk over M . We now di�erentiate
(36) along a vector �eld V on T to get the following asymtotic expansion

V
(
π(k)
σ

)
s ∼

∞∑
l=1

V
[
D

(k)
l

]
(s)

kl
(37)

Therefore we have the following theorems.

Theorem 9 There exist global operators D
(k)
l : C∞

(
M,Lk

)
→ C∞

(
M,Lk

)
such that we have for all section s of Lk, we have an asymptotic expansion

π(k)
σ s ∼ s+

∞∑
l=1

D
(k)
l (s)

kl
, i.e.,

| π(k)
σ s− s−

N−1∑
l=1

D
(k)
l (s)

kl
|= O

(
1

kN

)
the norm being the Cm norm with respect to the norm on sections of Lk over
M.

♦

Theorem 10 For a vector �eld V on T , V
(
π

(k)
σ

)
s has the asymptotic expan-

sion

V
(
π(k)
σ

)
s ∼

∞∑
l=1

V
[
D

(k)
l

]
(s)

kl
, i.e.,

| V
(
π(k)
σ

)
s−

N−1∑
l=1

V
[
D

(k)
l

]
(s)

kl
|= O

(
1

kN

)
the norm being the Cm norm with respect to the norm on sections of Lk over
M.
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♦

Remark Note that, in view of corllary 8.1 the dependence of D
(k)
l on k is a mild

one, in the sense that D
(k)
l acts as the restriction of an operator D̃l : C∞ (L∗)→

C∞ (L∗). Therefore we shall suppress the k dependence of D(k)
l and instead use

the notation Dl for the rest of the thesis.

Remark Suppose we have two operators

A
(k)
1 : C∞

(
M,Lk

)
→ C∞

(
M,Lk

)
and

A
(k)
2 : C∞

(
M,Lk

)
→ C∞

(
M,Lk

)
where each A

(k)
i for i = 1, 2 is given by

A
(k)
i s (x) =

∫
y∈M

K
(k)
i (x, y) s (y)

ωn (y)

n!

where K
(k)
i (x, y) is the integral kernel for A

(k)
i . Now suppose we have the kernel

expansion for Ki, like we do for the Bergman kernel (as given in theorem 6) we

can evaluate the composition A
(k)
1 and A

(k)
2 as follows

A2 ◦A1s (x) =

∫
y∈M

K
(k)
2 (x, y)A1s (y) ω

n(y)
n!

=

∫
(y,z)∈M×M

K
(k)
2 (x, y)K

(k)
2 (y, z) ω

n(y)
n!

ωn(z)
n!

By considering the asymptotic expansion of the integral in the variable y and
then considering the asymptotic expansion in the variable z, it is easily seen
that the composition of the two expansions in terms of the distributions (as
given in theorem 7) gives the expansion of the compostion of the operators in
terms of the distributions. We will use this in the calculations of theorem 15.
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5 New ansatz for the Hitchin connection

For the rest of this chapter, we shall assume that (M,ω) is a compact sympectic
manifold.

Recall that a prequantum line bundle over M is the triple (L, (·, ·) ,∇), where
L is a complex line bundle with a Hermitian structure (·, ·) and a compatible

connection ∇ whose curvature is given by F∇ =
i

2π
ω.

We say that a symplectic manifold M is prequantizable if there exists a pre-
quantum line bundle over it.

As in chapter 3, we parametrize the Kähler structures on the manifold M with
the smooth manifold T , i.e., we have a smooth map I : T → C∞ (M,End (TM)),
such that (M, ω, Iσ) is a Kähler manifold for every σ ∈ T . In fact, we assume
further that T is a complex manifold and I is holomorphic. Let V be a vector
�eld T and V ′ be the (1, 0) part of the vector �eld. For every σ ∈ T we consider
the �nite dimensional subspace of C∞

(
M,Lk

)
given by

H(k)
σ = H0

(
Mσ,Lk

)
=
{
s ∈ C∞

(
M,Lk

)
| ∇0,1

σ s = 0
}

We make the assumption these subspaces of holomorphic sections form a smooth
�nite rank subbundle H(k) of the trivial bundle H(k) = T × C∞

(
M,Lk

)
.

We denote by ∇̂t the trivial connection in the trivial bundle H(k) = T ×
C∞

(
M,Lk

)
. Let D

(
M,Lk

)
denote the vector space of di�erential operators on

C∞
(
M,Lk

)
. For any smooth 1-form u on T with values in D

(
M,Lk

)
we have

a connection ∇̂ on H(k) given by

∇̂V = ∇̂tV − u (V )

for any vector �eld V on T .

We restate for further reference, without proof, the lemma 4.

Lemma (Andersen) The connection ∇̂ in H(k) induces a connection in H(k)

i�
i

2
V ′ [I]∇1,0s+∇0,1u (V ) s = 0
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for all vector �elds V on T and all smooth sections s of H(k).

♦

We further restate, for future reference, the 1-form u (V ) that satis�es (19), as
obtained in [1] and theorem 3 of this thesis.

Proposition 6 (Andersen) The smooth 1-form u given by

u (V ) =
1

2k + n

{
1

2
∆G(V ) −∇G(V )dF + 2kV ′ [F ]

}

where F is the Ricci potential and 4G is an operator corresponding to the sym-
metric 2-tensor G (de�ned in section 2.4), given by Tr

(
∇1,0G∇1,0 (s)

)
, solves

(19) under the assumption of rigidity.

♦

Next we notice that −
i

2
V ′[I]∇1,0s ∈ Ker∇0,1. Further we know that

Ker∇0,1

Im∇0,1
= H0,1

(
M,Lk

)
.

We now state the Kodaira-Serre vanishing theorem that we shall use to establish

that −
i

2
V ′[I]∇1,0s ∈ Im∇0,1.

Theorem 11 (Kodaira-Serre Vanishing Thoerem) If is a positive line bundle
on M, then there exists a k0 such that for any k ≥ k0,

H0,q
(
M, Lk

)
= 0

for any q > 0.

♦

Since L is a positive line bundle onM we can apply the Kodaira-Serre vanishing
theorem to Lk for a su�ciently large k, to conclude that H0,1

(
M,Lk

)
= 0 for
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such a k. This in turn allows us to conclude that −
i

2
V ′[I]∇1,0s ∈ Im∇0,1,

under the assumption that k is su�ciently large.

We now consider the complex

Ω0
(
M,Lk

) O0,1

−−−→ Ω0,1
(
M,Lk

) O0,1

−−−→ Ω0,2
(
M,Lk

) O0,1

−−−→ . . .

where Lk = L⊗k. De�ne the operator ∆ = ∇0,1
(
∇0,1

)∗
+
(
∇0,1

)∗∇0,1. We
de�ne a partial inverse P to ∆,

P : Ω0,1
(
M,Lk

)
→ Ω0,1

(
M,Lk

)
such that ∆P = Id−π(k)

σ (where π
(k)
σ is the orthogonal projection from C∞

(
M,Lk

)
to H0

(
M,Lk

)
). P is therefore a parametrix to ∆.

Proposition 7 The smooth 1-form uN on T with values in D
(
M,Lk

)
given

by

uN (V ) s = −
i

2

(
∇0,1

)∗
PV ′ [I]∇1,0s (38)

sati�es (19).

Proof: Consider the e�ect of applying the operator ∇0,1 to the given 1-form uN

∇0,1uN (V ) s = ∇0,1
(
∇0,1

)∗
P

(
−
i

2
V ′ [I]∇1,0s

)

From the Kodaira-Serre Vanishing theorem (theorem 1) we know that−
i

2
V ′ [I]∇1,0s ∈

Im∇0,1 and therefore we have that,

∇0,1uN (V ) s =
(
Id− π(k)

σ

)(
−
i

2
V ′ [I]∇1,0s

)

= −
i

2
V ′ [I]∇1,0s

Thus proving the proposition.

♦

We now turn our attention to exploring the relationship between the Hitchin
connection (as established in [1]), the L2 connection (de�ned by the property
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∇L2

V s = π
(k)
σ V (s)) and the connection ∇N we have as a result of the the ansatz

uN satisfying (19), de�ned by ∇NV = ∇̂tV − uN (V ) (see equation (18)).

Proposition 8 ∇H −∇L2 = −π(k)
σ u, with the notations as established before.

Proof: Recall that by lemma 4, proposition 3 and (18), we have that

∇HV = ∇̂tV − u (V ) (39)

But notice also that since the Hitchin connection is a connection in H(k), we
have that

∇HV s = π(k)
σ ∇HV s (40)

Combining the equations (39) and (40), we establish that

∇HV s = π(k)
σ ∇HV s

= π(k)
σ (V − u (V )) s

= π(k)
σ V [s]− π(k)

σ u (V ) s

Finally notice that π
(k)
σ V [s] is nothing but ∇L2

V s, thus proving the proposition.

♦

Proposition 9 Given the notations established before, we have that ∇N = ∇L2 .

Proof: Since ∇N is a connection in H
(k)
σ , we have for a section s ∈ H(k)

σ , the
identity

π(k)
σ s = s (41)

Di�erentiating the above with respect to a vector �eld V on T , we have that

V
[
π(k)
σ

]
s+ π(k)

σ V [s] = V [s]

But this in turn implies

V
[
π(k)
σ

]
s =

(
Id− π(k)

σ

)
V [s] . (42)

We further notice that

V [s] = π(k)
σ V [s] +

(
Id− π(k)

σ

)
V [s] (43)

Notice further that
(
Id− π(k)

σ

)
V [s] ∈ Im

(
∇0,1

)∗
and that π

(k)
σ uN (V ) = 0.
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Now recall that ∇NV s = V [s]− uN (V ) s. But given equations (42) and (43), we
have that

∇NV s = ∇L2

V s+
(
V
[
π(k)
σ

]
− uN (V )

)
s (44)

Now consider the equation
(
π

(k)
σ

)2

= π
(k)
σ . Di�erentiating with respect to a

vector �eld V on T , we have that

V
[
π(k)
σ

]
= V

[
π(k)
σ

]
π(k)
σ + π(k)

σ V
[
π(k)
σ

]
(45)

But since
(
π

(k)
σ

)2

= π
(k)
σ , the equation (45) yields that

π(k)
σ V

[
π(k)
σ

]
= π(k)

σ V
[
π(k)
σ

]
π(k)
σ + π(k)

σ V
[
π(k)
σ

]
(46)

And as a result we have π
(k)
σ V

[
π

(k)
σ

]
π

(k)
σ = 0. Therefore since s ∈ H

(k)
σ , we

have that π
(k)
σ

((
V
[
π

(k)
σ

]
− uN (V )

)
s
)

= 0; and ∇N and ∇L2 are connections

in H
(k)
σ , this necessarily implies that

(
V
[
π

(k)
σ

]
− uN (V )

)
s = 0, hence proving

the assertion of the proposition.

♦

We now temporarily turn to certain cases when the Hitchin connection is known
to exist, i.e. the case when the manifold M admits a rigid family of Kähler
structures. Recall �rstly the result from proposition 8 which states that

∇H = ∇L2 − π(k)
σ u

Let gk be a 1-form with values in D
(
M,Lk

)
, satisfying the relation gk = −u.

Further let gk admit the asymptotic expansion

gk =

∞∑
l=0

g(l)k−l

where g(l) are 1-forms with values in D
(
M,Lk

)
.

Recall that u(V ) is given by

u (V ) =
1

2k + n

{
1

2
∆G(V ) −∇G(V )dF + 2kV ′ [F ]

}
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Thus we have that

u (V ) =
1

2k + n

{
1

2
∆G(V ) −∇G(V )dF − nV ′ [F ]

}
+ V ′ [F ]

Thus g(0)(V ) is nothing but −V ′ [F ]. Now let

o(v) =
1

2k + n

{
1

2
∆G(V ) −∇G(V )dF − nV ′ [F ]

}
.

Therefore we have

o(v) =
1

2k + n

{
1

2
∆G(V ) −∇G(V )dF − nV ′ [F ]

}

=
1

2k

(
1 +

n

2k

)−1{
1

2
∆G(V ) −∇G(V )dF − nV ′ [F ]

}

Expanding the power series we have that the �rst order term û(1) is nothing but

û(1)(V ) =
1

2

{
1

2
∆G(V ) −∇G(V )dF − nV ′ [F ]

}

Now applying π
(k)
σ to û(1), we have that

π(k)
σ û(1)(V ) =

1

2

{
1

2
π(k)
σ ∆G(V ) − π(k)

σ ∇G(V )dF − π(k)
σ nV ′ [F ]

}
(47)

We now state two theorems from [2] that help us to simply the above equation.

Theorem 12 (Andersen and Gammelgaard) If X ∈ C∞
(
M,T (1,0)M

)
is a

smooth section of the holomorphic tangent bundle on M , then we have

π(k)
σ ∇Xs = −π(k)

σ (δX) s

for any smooth section s ∈ C∞
(
M,Lk

)
.

Theorem 13 (Andersen and Gammelgaard) If B ∈ C∞
(
M,S2

(
T (1,0)M

))
is

a symmetric bivector �eld, then the operator ∆B satis�es

π(k)
σ ∆B = 0

for all smooth sections s ∈ C∞
(
M,Lk

)
.
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Notice �rstly that in equation (47), G (V ) dF ∈ C∞
(
M,T (1,0)M

)
. Therefore

for the above two theorems, we have that

π(k)
σ û(1)(V ) =

1

2

{
π(k)
σ δ (G (V ) dF )− π(k)

σ nV ′ [F ]
}

(48)

Therefore we have that g(1)(V ) is given by

g(1)(V ) =
1

2
{−δ (G (V ) dF ) + nV ′ [F ]}

Indeed we have for all g(l), since the l − th order term, û(l) is given by the
equation

û(l)(V ) =
(−1)

l−1
nl−1

2l

{
1

2
∆G(V ) −∇G(V )dF − nV ′ [F ]

}

and proceeding as above, we have

g(l)(V ) =
(−1)

l−1
nl−1

2l
{−δ (G (V ) dF ) + nV ′ [F ]}

For the next sections we shall be dealing with connections of the form

∇M = ∇L2 + π(k)
σ gk,

where gk is a D
(
M,Lk

)
-valued 1 form. Further we denote the curvature of

the connection ∇M as F∇M .4 We do not however assume that the manifold M
admits a rigid family of Kähler structures.

5.1 Calculation of curvature of connections of the form

∇M

We note �rstly that by the de�nition of the curvature of a connection, we can
express the curvature of the connection ∇M , denoted F∇M , as

F∇M (X,Y ) s = ∇MX∇MY s−∇MY ∇MX s−∇M[X,Y ]s.

4We note from proposition 8 that this covers the case of the Hitchin connection, ∇H in
the case when it exists.
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Remark We know that in any local coordinate system U around a point σ ∈ T
(with coordinates given by (x1, . . . , xm) where m is the dimension of T ), we
have that [

∂

∂xi
,
∂

∂xj

]
= 0

for all 1 ≤ i, j ≤ m. We can always choose our vector �elds X and Y to be
such that in a local coordinate patch around the point σ,

X =
∂

∂xi
and Y =

∂

∂xj
,

for i 6= j (if we choose i = j, the Lie bracket is trivially 0). Then we have,
within the coordinate neighbourhood U , [X,Y ] = 0. As a result we have

F∇M (X,Y ) s = ∇MX∇MY s−∇MY ∇MX s. (49)

We begin by calculating the curavture of the L2 connection.

Proposition 10 For vector �eld X,Y on T , such that [X,Y ] = 0, the curvature
of the L2 connection, ∇L2 , given by F∇L2 is be given by

F∇L2 (X,Y ) s = π(k)
σ

[
X
(
π(k)
σ

)
, Y
(
π(k)
σ

)]
s.

Proof: Notice �rstly that given vector �elds X,Y on T , such that [X,Y ] = 0,
we have that the curvature of the L2 connection, given by F∇L2 can be given
by

F∇L2 (X,Y ) s = π(k)
σ X

(
π(k)
σ Y (s)

)
− π(k)

σ Y
(
π(k)
σ X (s)

)
= π(k)

σ X
(
π(k)
σ

)
Y (s)− π(k)

σ Y
(
π(k)
σ

)
X (s)

(50)

Now note that for our holomorphic section s, we have that π
(k)
σ s = s. Therefore

di�erentiating we have

X
(
π(k)
σ

)
s+ π(k)

σ X (s) = X (s) (51)

which implies

X
(
π(k)
σ

)
s =

(
−π(k)

σ + Id
)
X (s) (52)
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Further recall that
(
π

(k)
σ

)2

= π
(k)
σ . Di�erentiating, we have

X
(
π(k)
σ

)
π(k)
σ + π(k)

σ X
(
π(k)
σ

)
= X

(
π(k)
σ

)
(53)

But (53), implies that π
(k)
σ X

(
π

(k)
σ

)
π

(k)
σ = 0.

So from equations (52) and (53) and the fact that π
(k)
σ s = s, we have that

π(k)
σ X

(
π(k)
σ

)
Y
(
π(k)
σ

)
s = π(k)

σ X
(
π(k)
σ

)(
Id− π(k)

σ

)
Y (s)

= π(k)
σ X

(
π(k)
σ

)
Y (s)

(54)

Therefore we now have,

F∇L2 (X,Y ) s = π(k)
σ

[
X
(
π(k)
σ

)
, Y
(
π(k)
σ

)]
s. (55)

♦

Theorem 14 For the connection ∇M given by the equation ∇M = ∇L2+π(0)gk,
the curvature F∇M , is given by

F∇M (X,Y ) s = F∇L2 (X,Y ) s+ C (X,Y ) s, (56)

where F∇L2 (X,Y ) s = π
(k)
σ

[
X
(
π

(k)
σ

)
, Y
(
π

(k)
σ

)]
s as proven in proposition 10,

C (X,Y ) s (henceforth called the correction term) is given by

C (X,Y ) s = π(k)
σ d

(
π(k)
σ gk

)
(X,Y ) s

+ π(k)
σ gk (Y )X

(
π(k)
σ

)
s− π(k)

σ gk (X)Y
(
π(k)
σ

)
s

+
[
π(k)
σ gk (X) , π(k)

σ gk (Y )
]
s

for all X, Y vector �elds on T and smooth sections s of H(k).

Proof: We begin the proof by considering the term ∇MX∇MY s from (49).

∇MX∇MY s =
(
∇L2

X + π(k)
σ gk (X)

)(
∇L2

Y + π(k)
σ gk (Y )

)
s

= ∇L2

X ∇
L2

Y s+∇L2

X π(k)
σ gk (Y ) s

+ π(k)
σ gk (X)∇L2

Y s+ π(k)
σ gk (X)π(k)

σ gk (Y ) s
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As a result of equation (49) and the calculations above, we can write the cur-
vature F∇M (X,Y ) s as

F∇M (X,Y ) s = ∇L2

X ∇
L2

Y s+∇L2

X π(k)
σ gk (Y ) s+ π(k)

σ gk (X)∇L2

Y s

+π(k)
σ gk (X)π(k)

σ gk (Y ) s−∇L2

Y ∇
L2

X s−∇L2

Y π(k)
σ gk (X) s

−π(k)
σ gk (Y )∇L2

X s− π(k)
σ gk (Y )π(k)

σ gk (X) s

But given our assumption that [X,Y ] = 0, we have that,

F∇L2 (X,Y ) s = ∇L2

X ∇
L2

Y s−∇L2

Y ∇
L2

X s.

Therefore we can write F∇M (X,Y ) s as

F∇M (X,Y ) s = F∇L2 (X,Y ) s+∇L2

X π(k)
σ gk (Y ) s+ π(k)

σ gk (X)∇L2

Y s

+π(k)
σ gk (X)π(k)

σ gk (Y ) s−∇L2

Y π(k)
σ gk (X) s

−π(k)
σ gk (Y )∇L2

X s− π(k)
σ gk (Y )π(k)

σ gk (X) s

(57)

Now we de�ne C (X,Y ) s to be

C (X,Y ) s = ∇L2

X π(k)
σ gk (Y ) s+ π(k)

σ gk (X)∇L2

Y s+ π(k)
σ gk (X)π(k)

σ gk (Y ) s

−∇L2

Y π(k)
σ gk (X) s− π(k)

σ gk (Y )∇L2

X s− π(k)
σ gk (Y )π(k)

σ gk (X) s

(58)

Because of equations (57) and (58), we can write

F∇M (X,Y ) s = F∇L2 (X,Y ) s+ C (X,Y ) s

Now recall that ∇L2

X s = π
(k)
σ X [s]. Therefore we have,

π(k)
σ gk (X)∇L2

Y s = π(k)
σ gk (X)π(k)

σ Y [s] (59)

π(k)
σ gk (Y )∇L2

X s = π(k)
σ gk (Y )π(k)

σ X [s] . (60)

Next consider the terms of the form ∇L2

X π
(k)
σ gk (Y ) s appearing in (58). Evalu-

ating ∇L2

X π
(k)
σ gk (Y ) s, we have

∇L2

X π(k)
σ gk (Y ) s = π(k)

σ X
[
π(k)
σ gk (Y ) s

]
= π(k)

σ X
[
π(k)
σ

]
gk (Y ) s+ π(k)

σ X (gk (Y ) s)
(61)

From equations (58), (59), (60) and (61), we have

C (X,Y ) s = π(k)
σ X

[
π(k)
σ

]
gk (Y ) s+ π(k)

σ X (gk (Y ) s) + π(k)
σ gk (X)π(k)

σ Y [s]

− π(k)
σ Y

[
π(k)
σ

]
gk (X) s− π(k)

σ Y (gk (X) s)− π(k)
σ gk (Y )π(k)

σ X [s]

+ π(k)
σ gk (X)π(k)

σ gk (Y ) s− π(k)
σ gk (Y )π(k)

σ gk (X) s
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But notice that

π(k)
σ X (gk (Y ) s)− π(k)

σ gk (Y )π(k)
σ X [s] = π(k)

σ X (gk (Y )) s

+ π(k)
σ gk (Y )

(
Id− π(k)

σ

)
X [s]

But we know that
(
Id− π(k)

σ

)
X [s] = X

[
π

(k)
σ

]
s. Therefore we have that

π(k)
σ X (gk (Y ) s)− π(k)

σ gk (Y )π(k)
σ X [s] = π(k)

σ X (gk (Y )) s

+ π(k)
σ gk (Y )X

[
π(k)
σ

]
s

Thus we have that

C (X,Y ) s = π(k)
σ X

[
π(k)
σ

]
gk (Y ) s+ π(k)

σ X (gk (Y )) s+ π(k)
σ gk (Y )X

(
π(k)
σ

)
s

− π(k)
σ Y

[
π(k)
σ

]
gk (X) s− π(k)

σ Y (gk (X)) s− π(k)
σ gk (X)Y

(
π(k)
σ

)
s

+ π(k)
σ gk (X)π(k)

σ gk (Y ) s− π(k)
σ gk (Y )π(k)

σ gk (X) s

Note further that π
(k)
σ X

[
π

(k)
σ

]
gk (Y ) s+π

(k)
σ X (gk (Y )) s = π

(k)
σ

(
X
[
π

(k)
σ gk (Y )

]
s
)

(since
(
π

(k)
σ

)2

= π
(k)
σ ). Therefore we have that

C (X,Y ) s = π(k)
σ d

(
π(k)
σ gk

)
(X,Y ) s

+ π(k)
σ gk (Y )X

(
π(k)
σ

)
s− π(k)

σ gk (X)Y
(
π(k)
σ

)
s

+
[
π(k)
σ gk (X) , π(k)

σ gk (Y )
]
s

thus completing the proof of the theorem.

♦

5.2 Asymptotic expression for the curvature of the con-

nection ∇M

We now return to the question of giving an expression for the curvature F∇M
of the connection ∇M . Recall that,

F∇M (X,Y ) s = π(k)
σ

[
X
[
π(k)
σ

]
, Y
[
π(k)
σ

]]
s+ π(k)

σ d
(
π(k)
σ gk

)
(X,Y ) s

+ π(k)
σ gk (Y )X

(
π(k)
σ

)
s− π(k)

σ gk (X)Y
(
π(k)
σ

)
s

+
[
π(k)
σ gk (X) , π(k)

σ gk (Y )
]
s
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We next write the 1-form gk in the above equation as

gk =

∞∑
l=0

g(l)k−l

where g(l) are 1-forms with values in D
(
M,Lk

)
.

Theorem 15 Keeping with the notation developed thus far, the asymptotic ex-
pansion for the curvature F∇M is given by the expression

F∇M =

∞∑
n=0

Tn

kn

where
T0 = dg(0) + g(0) ∧ g(0)

T1 = dg(1) +D1dg
(0) +A1 +D1A0 +B1

with A1 and A0 being given by

A1 = g(0) ∧ g(1) + g(1) ∧ g(0) + dD1 ∧ g(0) − g(0) ∧ dD1

and
A0 = g(0) ∧ g(0),

and

Tn = dg(n) +
∑
i+j=n

Didg
(j)

+An +
∑
i+j=n

DiAj +Bn +
∑
i+j=n

DiBj

where An for n ≥ 2 is given by

An =
∑
i+j=n

g(i) ∧ g(j) +
∑
i+j=n

dDi ∧ dDj+∑
i+j=n

dDi ∧ g(j) −
∑
i+j=n

g(i) ∧ dDj

and Bn n > 0 is given by

Bn =
∑

i+j+r=n

g(i) ∧Djg
(r).
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Proof : We begin by examing the n-th order term in the expansion of π
(k)
σ gk (X)π

(k)
σ gk (Y ) s.

As before let π
(k)
σ gk (Y ) s = s1. Thus we have the expansion

π(k)
σ gk (X) s1 = gk (X) s1 +

∞∑
l=1

Dl (gk (X) s1) (x0)

kl
(62)

But s1 itself admits the expansion

s1 = π(k)
σ gk (Y ) s =

∞∑
l=1

g(l) (Y ) s+
∑
i+j=lDig

(j) (Y ) s

kl

Thus we see that the n-th order term
(
π

(k)
σ gk (X)π

(k)
σ gk (Y ) s

)
n
, in the asymp-

totic expansion of π
(k)
σ gk (X)π

(k)
σ gk (Y ) s is given by(

π(k)
σ gk (X)π(k)

σ gk (Y ) s
)
n

=
∑
i+j=n

g(i) (X) g(j) (Y ) s+
∑

i+j+r=n

g(i) (X)Djg
(r) (Y ) s

+
∑

i+j+r=n

Di

(
g(j) (X) g(r) (Y ) s

)
+

∑
i+j+r+m=n

Di

(
g(j) (X)Drg

(m) (Y ) s
)

(63)

Next we turn to the terms of the form π
(k)
σ X

[
π

(k)
σ

]
Y
[
π

(k)
σ

]
s. Upon exami-

nation that the n-th order term,
(
π

(k)
σ X

[
π

(k)
σ

]
Y
[
π

(k)
σ

]
s
)
n
in the asymptotic

examination is given by(
π(k)
σ X

[
π(k)
σ

]
Y
[
π(k)
σ

]
s
)
n

=
∑
i+j=n

X (Di)Y (Dj) s+
∑

i+j+r=n

Di (X (Dj)Y (Dr) s)

(64)

Next we turn to the case of terms of the form π
(k)
σ X

[
π

(k)
σ

]
gk (Y ) s. As before

let gk (Y ) s be denoted s1. Therefore, upon examination of the asymptotic ex-

pansion of both s1 and X
[
π

(k)
σ

]
s1 the n-th order term

(
π

(k)
σ X

[
π

(k)
σ

]
gk (Y ) s

)
n

can be given by(
π(k)
σ X

[
π(k)
σ

]
gk (Y ) s

)
n

=
∑
i+j=n

X (Di) g
(j) (Y ) s+

∑
i+j+r=n

Di

(
X (Dj) g

(r) (Y ) s
)

(65)
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We next turn to the terms of the π
(k)
σ X (gk (Y )) s. And evaluating the asymp-

totic expansion, we see that the n-th order term
(
π

(k)
σ X (gk (Y )) s

)
n
is given

by (
π(k)
σ X (gk (Y )) s

)
n

= X
(
g(n)Y

)
s+

∑
i+j=n

Di

(
X
(
g(j)Y

)
s
)

(66)

Finally we turn to the terms of the form π
(k)
σ gk (Y )X

(
π

(k)
σ

)
s. As before we

examine the asymptotic expansions to get the expression for the n-th term(
π

(k)
σ gk (Y )X

(
π

(k)
σ

)
s
)
n
,(

π(k)
σ gk (Y )X

(
π(k)
σ

)
s
)
n

=
∑
i+j=n

g(i) (Y )X (Dj) s+
∑

i+j+r=n

Di

(
g(j) (Y )X (Dr) s

)
(67)

Therefore from equations (63), (64), (65), (66) and (67), we can deduce that the
n-th order term in the asymptotic expansion of F∇M (X,Y ) s, denoted Tn (X,Y )
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is given by

Tn (X,Y ) s =
∑
i+j=n

g(i) (X) g(j) (Y ) s+
∑

i+j+r=n

g(i) (X)Djg
(r) (Y ) s

+
∑

i+j+r=n

Di

(
g(j) (X) g(r) (Y ) s

)
+

∑
i+j+r+m=n

Di

(
g(j) (X)Drg

(m) (Y ) s
)

−
∑
i+j=n

g(i) (Y ) g(j) (X) s−
∑

i+j+r=n

g(i) (Y )Djg
(r) (X) s

−
∑

i+j+r=n

Di

(
g(j) (Y ) g(r) (X) s

)
−

∑
i+j+r+m=n

Di

(
g(j) (Y )Drg

(m) (X) s
)

+
∑
i+j=n

X (Di)Y (Dj) s+
∑

i+j+r=n

Di (X (Dj)Y (Dr) s)

−
∑
i+j=n

Y (Di)X (Dj) s−
∑

i+j+r=n

Di (Y (Dj)X (Dr) s)

+
∑
i+j=n

X (Di) g
(j) (Y ) s+

∑
i+j+r=n

Di

(
X (Dj) g

(r) (Y ) s
)

−
∑
i+j=n

Y (Di) g
(j) (X) s−

∑
i+j+r=n

Di

(
Y (Dj) g

(r) (X) s
)

+
∑
i+j=n

g(i) (Y )X (Dj) s+
∑

i+j+r=n

Di

(
g(j) (Y )X (Dr) s

)
−
∑
i+j=n

g(i) (X)Y (Dj) s−
∑

i+j+r=n

Di

(
g(j) (X)Y (Dr) s

)
+
∑
i+j=n

Di

(
dg(j) (X,Y ) s

)
+ dg(n) (X,Y ) s

(68)

Let An (X,Y ) be given by the equation

An (X,Y ) =
∑
i+j=n

[
g(i) (X) , g(j) (Y )

]
+
∑
i+j=n

[X [Di] , Y [Dj ]]

+
∑
i+j=n

(
X [Di] g

(j) (Y )− Y [Di] g
(j) (X)

)
+
∑
i+j=n

(
g(i) (Y )X [Dj ]− g(i) (X)Y [Dj ]

) (69)
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Therefore we can write

An =
∑
i+j=n

g(i) ∧ g(j) +
∑
i+j=n

dDi ∧ dDj+∑
i+j=n

dDi ∧ g(j) −
∑
i+j=n

g(i) ∧ dDj

(70)

Let Bn (X,Y ) be given by the equation

Bn (X,Y ) =
∑

i+j+r=n

(
g(i) (X)Djg

(r) (Y )− g(i) (Y )Djg
(r) (X)

)
(71)

Therefore we can write

Bn =
∑

i+j+r=n

g(i) ∧Djg
(r) (72)

Therefore from equations (70) and (72), we have that

Tn = dg(n) +
∑
i+j=n

Didg
(j)

+An +
∑
i+j=n

DiAj +Bn +
∑
i+j=n

DiBj
(73)

In particular we have that

T0 = g(0) ∧ g(0) + dg(0) (74)

Further, we have that

T1 = dg(1) +D1dg
(0) +A1 +D1A0 +B1 (75)

where
A1 = g(0) ∧ g(1) + g(1) ∧ g(0) + dD1 ∧ g(0) − g(0) ∧ dD1

and
A0 = g(0) ∧ g(0)

Thus proving the theorem

♦

In the subsequent part of the thesis, we explore the conditions under which the
connection ∇M is �at.
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Theorem 16 Given the setting and notation of theorem 15, under the addi-
tional assumption that g(0) = 0, the necessary and su�cient conditions for the
curvature F∇M to vanish are

g(1) ∧ dD1 ∧ g(1) + 2dD1 ∧ dD1 ∧ dD1 = 0 (76)

and

0 =
∑

i+j+r=n

g(i) ∧ dDj ∧ g(r) + 2
∑

i+j+r=n

dDi ∧ dDj ∧ dDr

−
∑

i+j+r+q=n

g(i) ∧Djg
(r) ∧ g(q) +

∑
i+j+r+q=n

g(i) ∧Djg
(r) ∧ dDq

+
∑

i+j+r=n

g(i) ∧Dj (Ar +Br)−
∑

i+j+r+q=n

dDi ∧ dDj ∧Drg
(q)

+
∑

i+j+r+q=n

g(i) ∧ dDj ∧Drg
(q) −

∑
i+j+p+q+r=n

g(i) ∧Djg
(p) ∧Dqg

(r)

(77)

for n > 3.

Proof: Note that under the assumption that g(0) = 0 the condition for the �rst
order term T1 to vanish is merely dg(1) = 0, but dg(1) (X,Y ) = 0 merely implies
that locally the 1-form g(1) is exact, i.e., there exists a 0-form g̃(1) such that for
any vector �eld X on T , we have that g(1) (X) = X

[
g̃(1)

]
.

We now turn to the second order term T2. Note that under the assumptions of
the theorem, the expression for T2 is given by,

T2 = dg(2) + g(1) ∧ g(1) + dD1 ∧ dD1 + dD1 ∧ g(1) − g(1) ∧ dD1

We thus have

dT2 = dg(1) ∧ g(1) − g(1) ∧ dg(1) + ddD1 ∧ dD1 − dD1 ∧ ddD1

+ ddD1 ∧ g(1) − dD1 ∧ dg(1) − dg(1) ∧ dD1 + g(1) ∧ ddD1

= 0

(78)

Thus allowing us to solve for g(2) such that T2 = 0.

So far therefore under the assumptions of the theorem, we have not encountered
any obstructions to the curvature of the connection ∇M vanishing to order 2.
Let us now turn to order to the order 3 term T3. As in the earlier cases we
assume that we have obtained solutions for g(1) and g(2), such that the �rst and
second order terms, T1 and T2 vanish. Therefore we have that dg(1) = 0 and
that

dg(2) = −A2 (79)
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where A2 = g(1)∧g(1) +dD1∧dD1 +dD1∧g(1)−g(1)∧dD1. Therefore we have

T3 = dg(3) +D1dg
(2) +D2dg

(1) +A3 +B3 +D1A2

= dg(3) +D1

(
dg(2) +A2

)
+A3 +B3

= dg(3) +A3 + g(1) ∧D1g
(1)

Thus we have that

dT3 = dA3 − g(1) ∧ dD1 ∧ g(1)

= −g(1) ∧ dg(2) + dg(2) ∧ g(1) − dD1 ∧ dg(2) − dg(2) ∧ dD1

− g(1) ∧ dD1 ∧ g(1)

(80)

From equation (79), we have that dg(2) = −A2, and A2 = g(1) ∧ g(1) + dD1 ∧
dD1 +dD1∧g(1)−g(1)∧dD1. Substituting these in equation (80), we have that

dT3 = g(1) ∧ dD1 ∧ g(1) + 2dD1 ∧ dD1 ∧ dD1

Therefore, we encounter our �rst obstruction to the curvature of ∇M vanishing,
namely, for the curvature F∇M to vanish up to third order, g(1) must necessarily
satisfy the equation

g(1) ∧ dD1 ∧ g(1) + 2dD1 ∧ dD1 ∧ dD1 = 0 (81)

We now turn to the general n-th order term. As before, we assume that the
Tk = 0 for all k < n. Thus we have that

Tn = dg(n) +
∑
i+j=n

Didg
(j)

+An +
∑
i+j=n

DiAj +Bn +
∑
i+j=n

DiBj

= dg(n) +An +Bn +
∑
i+j=n

Di

(
dg(j) +Aj +Bj

)
= dg(n) +An +Bn

where

An =
∑

i+j=n,i>0,j>0

g(i) ∧ g(j) +
∑

i+j=n,i>0,j>0

dDi ∧ dDj+∑
i+j=n,i>0,j>0

dDi ∧ g(j) −
∑

i+j=n,i>0,j>0

g(i) ∧ dDj

and
Bn =

∑
i+j+r=n,i>0,j>0,r>0

g(i) ∧Djg
(r)
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Given that we assume g(0) = 0, we shall assume for the rest of this proof that
all indices i and j are for g(i) and Dj are greater than 0. Therefore we have
that

dTn = dAn + dBn (82)

We �rst consider the term dBn.

dBn =
∑

i+j+r=n

dg(i) ∧Djg
(r) −

∑
i+j+r=n

g(i) ∧ dDj ∧ g(r)

−
∑

i+j+r=n

g(i) ∧Djdg
(r)

= −
∑

i+j+r=n

g(i) ∧ dDj ∧ g(r) +
∑

i+j+r=n

g(i) ∧Dj (Ar +Br)

−
∑

i+j+r+q=n

g(i) ∧ g(j) ∧Drg
(q) −

∑
i+j+r+q=n

dDi ∧ dDj ∧Drg
(q)

−
∑

i+j+r+q=n

dDi ∧ g(j) ∧Drg
(q) +

∑
i+j+r+q=n

g(i) ∧ dDj ∧Drg
(q)

−
∑

i+j+p+q+r=n

g(i) ∧Djg
(p) ∧Dqg

(r)

(83)

We now turn to the term dAn. We have

dAn =
∑
i+j=n

dg(i) ∧ g(j) − g(i) ∧ dg(j) − dDi ∧ dg(j) − dg(i) ∧ dDj (84)

Recalling the formulae for Ak and Bk and keeping in mind our assumption that
Tk = 0, i.e., dg(k) +Ak +Bk = 0 for all k < n, we have that

dAn = −
∑
i+j=n

Ai ∧ g(j) −
∑
i+j=n

Bi ∧ g(j)

+
∑
i+j=n

g(i) ∧Aj +
∑
i+j=n

g(i) ∧Bj

+
∑
i+j=n

dDi ∧Aj +
∑
i+j=n

dDi ∧Bj

+
∑
i+j=n

Ai ∧ dDj +
∑
i+j=n

Bi ∧ dDj

= 2
∑

i+j+r=n

g(i) ∧ dDj ∧ g(r) + 2
∑

i+j+r=n

dDi ∧ dDj ∧ dDr

+
∑

i+j+r+q=n

g(i) ∧ g(j) ∧Drg
(q) −

∑
i+j+r+q=n

g(i) ∧Djg
(r) ∧ g(q)

+
∑

i+j+r+q=n

dDi ∧ g(j) ∧Drg
(q) +

∑
i+j+r+q=n

g(i) ∧Djg
(r) ∧ dDq

(85)
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Therefore we have that

dTn = dAn + dBn

=
∑

i+j+r=n

g(i) ∧ dDj ∧ g(r) + 2
∑

i+j+r=n

dDi ∧ dDj ∧ dDr

−
∑

i+j+r+q=n

g(i) ∧Djg
(r) ∧ g(q) +

∑
i+j+r+q=n

g(i) ∧Djg
(r) ∧ dDq

+
∑

i+j+r=n

g(i) ∧Dj (Ar +Br)−
∑

i+j+r+q=n

dDi ∧ dDj ∧Drg
(q)

+
∑

i+j+r+q=n

g(i) ∧ dDj ∧Drg
(q) −

∑
i+j+p+q+r=n

g(i) ∧Djg
(p) ∧Dqg

(r)

(86)

Therefore the necessary condition for the solution of Tn = 0 to exist is

0 =
∑

i+j+r=n

g(i) ∧ dDj ∧ g(r) + 2
∑

i+j+r=n

dDi ∧ dDj ∧ dDr

−
∑

i+j+r+q=n

g(i) ∧Djg
(r) ∧ g(q) +

∑
i+j+r+q=n

g(i) ∧Djg
(r) ∧ dDq

+
∑

i+j+r=n

g(i) ∧Dj (Ar +Br)−
∑

i+j+r+q=n

dDi ∧ dDj ∧Drg
(q)

+
∑

i+j+r+q=n

g(i) ∧ dDj ∧Drg
(q) −

∑
i+j+p+q+r=n

g(i) ∧Djg
(p) ∧Dqg

(r)

Thus proving the theorem.
♦

Corollary 16.1 Under the setting of theorem 16, if we let g(1) and g(2) satisfy
the conditions

g(1) (X) = iX (D1)

and
dg(2) = 0

then the connection ∇M is �at upto order 2.
Proof: Clearly, if g(1) (X) = iX (D1), we have dg(1) = 0, therefore T1 = 0. Now
consider T2. Recall that T2 is given by

T2 = dg(2) + g(1) ∧ g(1) + dD1 ∧ dD1 + dD1 ∧ g(1) − g(1) ∧ dD1

Clearly dg(2) = 0 and g(1) (X) = iX (D1) satisfy T2 = 0, hence completing the
proof.

♦
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We now turn our attention to the conditions that ∇M is projectively �at. Be-
fore proceeding however we establish the following notation. Given the context
and notation established thus far, for a given di�erential operator D, fD,k is a

function on M such that π
(k)
σ Ds = π

(k)
σ fD,ks.

Theorem 17 Given the setting and the notation of theorem 15, and under the
additional assumptions that g(i) (X) are C∞ functions on M for all, i ≥ 0 and
vector �elds, X on T , the conditions for projective �atness of the connection
∇M are

dMdg
(0) = 0,

0 = dMdg
(1) (X,Y ) + dM

(
fD1,kdg

(0) (X,Y )
)

+

dM

(
fX(D1),kg

(0) (Y )− fY (D1),kg
(0) (X)

)
−

dM
(
fg(0)(X)Y (D1),k − fg(0)(Y )X(D1),k

)
+

dM

(
fg(0)(X)D1,kg

(0) (Y )− fg(0)(Y )D1,kg
(0) (X)

)
and

0 = dMdg
(n) (X,Y ) +

∑
i+j=n

dM

(
fDi,kdg

(j) (X,Y )
)

+

∑
i+j=n

dM
(
fX(Di)Y (Dj),k − fY (Di)X(Dj),k

)
+

∑
i+j=n

dM

(
fX(Di),kg

(j) (Y )− fY (Di),kg
(j) (X)

)
−

∑
i+j=n

dM

(
fg(i)(X)Y (Dj),k − fg(i)(Y )X(Dj),k

)
+

∑
i+l+m=n

dM
(
fDi,k

(
fX(Dl)Y (Dm),k − fY (Dl)X(Dm),k

))
+

∑
i+l+m=n

dM

(
fDi,k

(
fX(Dl),kg

(m) (Y )− fY (Dl),kg
(m) (X)

))
−

∑
i+l+m=n

dM
(
fDi,k

(
fg(l)(X)Y (Dm),k − fg(l)(Y )X(Dm),k

))
+

∑
i+j+r=n

dM (
(
fg(i)(X)Dj ,kg

(r) (Y )− fg(i)(Y )Dj ,kg
(r) (X)

)
+

∑
i+l+m+p=n

dM

(
fDi,k

(
fg(l)(X)Dm,kg

(p) (Y )− fg(l)(Y )Dl,kg
(p) (X)

))
for all vector �elds X and Y on T . Here dM is the exterior derivative on M .
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Proof : We begin by examining the �rst order term. Recall that T1 is given by
the expression

T1 = dg(1) +D1dg
(0) +A1 +D1A0 +B1.

But notice that in this cas A0 = 0. Now consider the asymptotic expansion for
the curvature

F∇M (X,Y ) s =

∞∑
n=0

Tn (X,Y ) s

kn

Applying the projection operator π
(k)
σ to both sides of the above equation, we

have

π(k)
σ F∇M (X,Y ) s =

∞∑
n=0

π
(k)
σ Tn (X,Y ) s

kn

But notice that π
(k)
σ F∇M (X,Y ) s = F∇M (X,Y ) s. Therefore we have that

F∇M (X,Y ) s =

∞∑
n=0

π
(k)
σ Tn (X,Y ) s

kn

Therefore, for n = 1, we have that

π(k)
σ T1 (X,Y ) s = π(k)

σ dg(1) (X,Y ) s+ π(k)
σ D1dg

(0) (X,Y ) s

+ π(k)
σ A1 (X,Y ) s+ π(k)

σ B1 (X,Y ) s
(87)

Now since D1 is a di�erential operator, we can say that π
(k)
σ D1 = π

(k)
σ fD1,k,

where fD1,k is a function on M . Since A1 (X,Y ) s is given by

A1 (X,Y ) s = g(0) ∧ g(1) (X,Y ) s+ g(0) ∧ g(1) (X,Y ) s+

dD1 ∧ g(0) (X,Y ) s− g(0) ∧ dD1 (X,Y ) s

and we know that all g(i) (X) are functions on M , we have that

A1 (X,Y ) s = dD1 ∧ g(0) (X,Y ) s− g(0) ∧ dD1 (X,Y ) s

Applying π
(k)
σ to both sides we have that

π(k)
σ A1 (X,Y ) s = π(k)

σ

(
fX(D1),kg

(0) (Y )− fY (D1),kg
(0) (X)

)
s

− π(k)
σ

(
fg(0)(X)Y (D1),k − fg(0)(Y )X(D1),k

)
s

(88)

And since B1 (X,Y ) s is given by

B1 (X,Y ) s = g(0) ∧D1g
(0) (X,Y ) s

We have that

π(k)
σ B1 (X,Y ) s = π(k)

σ fg(0)(X)D1,kg
(0) (Y ) s−

π(k)
σ fg(0)(Y )D1,kg

(0) (X) s
(89)
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Thus we have that π
(k)
σ T1 (X,Y ) s = π

(k)
σ t1 (X,Y ) s where t1 (X,Y ) is a function

on M given by

t1 (X,Y ) = dg(1) (X,Y ) + fD1,kdg
(0) (X,Y ) +(

fX(D1),kg
(0) (Y )− fY (D1),kg

(0) (X)
)
−(

fg(0)(X)Y (D1),k − fg(0)(Y )X(D1),k

)
+

fg(0)(X)D1,kg
(0) (Y )− fg(0)(Y )D1,kg

(0) (X)

(90)

Since the connection is projectively �at, we have that dM t1 (X,Y ) = 0 where
dM is the exterior derivative on M . Thus we have the condition that

0 = dMdg
(1) (X,Y ) + dM

(
fD1,kdg

(0) (X,Y )
)

+

dM

(
fX(D1),kg

(0) (Y )− fY (D1),kg
(0) (X)

)
−

dM
(
fg(0)(X)Y (D1),k − fg(0)(Y )X(D1),k

)
+

dM

(
fg(0)(X)D1,kg

(0) (Y )− fg(0)(Y )D1,kg
(0) (X)

)
(91)

We now turn our attention to the general term Tn. Recall that Tn is given by
the expression

Tn = dg(n) +
∑
i+j=n

Didg
(j)

+An +
∑
i+j=n

DiAj +Bn +
∑
i+j=n

DiBj

where An for n > 1 is given by

An =
∑
i+j=n

g(i) ∧ g(j) +
∑
i+j=n

dDi ∧ dDj+∑
i+j=n

dDi ∧ g(j) −
∑
i+j=n

g(i) ∧ dDj

and Bn for n > 1 is given by

Bn =
∑

i+j+r=n

g(i) ∧Djg
(r).

Proceeding as before and applying π
(k)
σ to Bn (X,Y ) s we have that

π(k)
σ Bn (X,Y ) s = π(k)

σ

∑
i+j+r=n

(
fg(i)(X)Dj ,kg

(r) (Y )− fg(i)(Y )Dj ,kg
(r) (X)

)
s

(92)
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And applying π
(k)
σ to An (X,Y ) s we have that

π(k)
σ An (X,Y ) s =

∑
i+j=n

(
fX(Di)Y (Dj),k − fY (Di)X(Dj),k

)
s+

∑
i+j=n

(
fX(Di),kg

(j) (Y )− fY (Di),kg
(j) (X)

)
s−

∑
i+j=n

(
fg(i)(X)Y (Dj),k − fg(i)(Y )X(Dj),k

)
s

(93)

Thus we have that π
(k)
σ Tn (X,Y ) s = π

(k)
σ tn (X,Y ) s where tn (X,Y ) is a func-

tion on M given by

tn (X,Y ) = dg(n) (X,Y ) +
∑
i+j=n

fDi,kdg
(j) (X,Y ) +

∑
i+j=n

(
fX(Di)Y (Dj),k − fY (Di)X(Dj),k

)
+

∑
i+j=n

(
fX(Di),kg

(j) (Y )− fY (Di),kg
(j) (X)

)
−

∑
i+j=n

(
fg(i)(X)Y (Dj),k − fg(i)(Y )X(Dj),k

)
+

∑
i+l+m=n

fDi,k
(
fX(Dl)Y (Dm),k − fY (Dl)X(Dm),k

)
+

∑
i+l+m=n

fDi,k

(
fX(Dl),kg

(m) (Y )− fY (Dl),kg
(m) (X)

)
−

∑
i+l+m=n

fDi,k
(
fg(l)(X)Y (Dm),k − fg(l)(Y )X(Dm),k

)
+

∑
i+j+r=n

(
fg(i)(X)Dj ,kg

(r) (Y )− fg(i)(Y )Dj ,kg
(r) (X)

)
+

∑
i+l+m+p=n

fDi,k

(
fg(l)(X)Dm,kg

(p) (Y )− fg(l)(Y )Dl,kg
(p) (X)

)

(94)

Since the connection is projectively �at, we have that dM tn (X,Y ) = 0 where

82



dM is the exterior derivative on M . Thus we have the condition that

0 = dMdg
(n) (X,Y ) +

∑
i+j=n

dM

(
fDi,kdg

(j) (X,Y )
)

+

∑
i+j=n

dM
(
fX(Di)Y (Dj),k − fY (Di)X(Dj),k

)
+

∑
i+j=n

dM

(
fX(Di),kg

(j) (Y )− fY (Di),kg
(j) (X)

)
−

∑
i+j=n

dM

(
fg(i)(X)Y (Dj),k − fg(i)(Y )X(Dj),k

)
+

∑
i+l+m=n

dM
(
fDi,k

(
fX(Dl)Y (Dm),k − fY (Dl)X(Dm),k

))
+

∑
i+l+m=n

dM

(
fDi,k

(
fX(Dl),kg

(m) (Y )− fY (Dl),kg
(m) (X)

))
−

∑
i+l+m=n

dM
(
fDi,k

(
fg(l)(X)Y (Dm),k − fg(l)(Y )X(Dm),k

))
+

∑
i+j+r=n

dM (
(
fg(i)(X)Dj ,kg

(r) (Y )− fg(i)(Y )Dj ,kg
(r) (X)

)
+

∑
i+l+m+p=n

dM

(
fDi,k

(
fg(l)(X)Dm,kg

(p) (Y )− fg(l)(Y )Dl,kg
(p) (X)

))

(95)

which proves our theorem.

♦
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