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Abstract

Matérn’s classical hard core models can be interpreted as models obtained from
a stationary marked Poisson process by dependent thinning. The marks are
balls of fixed radius, and a point is retained when its associated ball does not hit
any other balls (type I) or when its random birth time is strictly smaller than
the birth times of all balls hitting it (type II). Extending ideas of [M. Månsson
and M. Rudemo. Random patterns of nonoverlapping convex grains. Adv.
in Appl. Probab., 34:718–738, 2002.], who considered grains that are isotropic
rotations or random scalings of a fixed convex set, we discuss these two models
in d-dimensional space when the marks are arbitrary random compact grains.
We determine the intensity and the mark distribution after thinning, and find
the second order factorial moment density of the ground process for model
II under weak additional assumptions. By Brunn-Minkowski’s inequality, the
volume density associated to model II turns out to be bounded by 2−d. This
bound is sharp. It is attained asymptotically (when the proposal intensity
tends to infinity) only when all grains coincide with one deterministic origin-
symmetric convex set. We also discuss how known connections of this model
with the process of intact grains of the dead leaves model and the Stienen
model leads to analogous results for the latter.

Keywords: Matern hard core models of types I and II, Palm distribution,
dependently thinned Poisson point process, germ grain model, soft core particle
process, dead leaves model, Stienen model, volume density

1 Introduction

In his D. Sc. thesis [17] Matérn introduced a number of models for random collections
of repulsive points in the plane that cannot be closer to one another than a certain
prescribed distance D > 0. These models are obtained from dependent thinning of a
stationary Poisson point process X0 and are now known as Matérn hard core point
processes of types I, II and III.

The type I process X0
I , illustrated in Figure 1, consists of all points of X0 which

have no D-neighbors in X0, that is, no other point in X0 of distance D or less.
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Figure 1: The classical Matérn hard core process of type I in a unit window: The initial
Poisson point process with intensity γ = 20 and disks of radius 0.07 with the overlapping
particles in gray (left), the particle process XI after thinning (middle), and the hard core
process X0

I (right).

To construct the process X0
II of type II the points of X0 are assigned independent

marks (uniformly distributed in the interval (0, 1), usually interpreted as birth times)
and only those points survive that are older than all their D-neighbors. Figure 2
depicts a realization of XII and its ground process. The intensity of X0

II is higher
than that of X0

I . However, it could be further increased, as the procedure leading
to X0

II also deletes points whose D-neighbors all have been deleted by other points
in X0. Retaining such points would increase the intensity further. Matérn therefore
mentions a third point processX0

III obtained by an iterative procedure, where a point
is deleted only if its D-neighborhood contains an older point that was retained. Due
to the resulting long range dependence, even the intensity of X0

III cannot be given
in closed form, but recent work revealed that its likelihood function can be written
down. This opens the door to likelihood-based inference [7] and perfect simulation
[20] in bounded windows in Rd. In the present paper we will only work with XI, XII

and generalizations of those.
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Figure 2: The classical Matérn hard core process of type II in a unit window: The initial
Poisson point process with intensity γ = 20 and disks of radius 0.07 with particles that are
‘younger’ than a competing neighbor in gray (left), the particle process XII after thinning
(middle), and the hard core process X0

II (right). Note that the same realization of X as in
Figure 1 is used.

If every point in X0 is a marked with a disk of diameter D, we obtain a special
germ grain modelX, and the elements ofXI (i.e., the points ofX0

I together with their
marks) correspond to the non-overlapping particles of X. Similarly, the elements
of XII form the process of particles that are older than all other particles they
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overlap with. Inspired by problems of fatigue in materials science, Månsson and
Rudemo [16] used Matérn’s construction to obtain non-overlapping particle systems
with shapes other than spheres. More precisely, they allowed for particles that are
either random scalings or isotropic rotations of a given convex shape. For instance,
applying Mathérn’s construction with a distance other than the Euclidean one, the
corresponding germ grain models after thinning would be non-overlapping translates
of the unit ball of this distance. Closely following [16] we define generalizations of XI

and XII, but now allow for arbitrary compact particles (which may be different in
shape for different germs). As all points of X0 not only have an associated particle,
but also a birth time, one works most conveniently with marked point processes.
Assume that X is a stationary marked point process in Rd with two marks for each
of its points, the first is a compact particle, the second is a birth time. The birth
time may now have an arbitrary distribution on R, and it may even depend on the
particle. The marked point process XM after global thinning is obtained by deleting
all marked points of X whose particles hit another particle with later or equal birth
time. This corresponds to a ‘survival of the youngest’-rule, which is adopted here in
order to ease comparison with [16] and is in contrast to Matérn’s original ‘survival
of the oldest’. Of course, mathematically this choice does not change the class of the
model, as one can always reflect the birth time at the origin in order to switch from
one rule to the other. Even stronger, under very weak assumptions the two point
processes produced with the two rules are equal in distribution; see Lemma 2.1
below. We will omit the auxiliary birth-times in XM as they were only necessary
for thinning, and thus consider XM as a marked point process where each point has
only one mark, namely the particle associated to this point. The process XM will be
referred to as generalized Matérn particle process (with arbitrary compact grains).
It contains Matérn’s original constructions as special cases. Choosing all particles
equal to a fixed sphere of diameter D, and independent birth-times that are uniform
in (0, 1) yields XM = XII, and only considering the ground process of points gives
X0
M = X0

II. Whenever all competing particles have the same (deterministic) birth
time, all overlapping particles are deleted. Hence, XM coincides with XI in this case.
In general, however, X0

M is not hard-core. As the points of X0
M exhibit repulsion,

X0
M can be seen as a model of a soft core process. In [5] X0

M is therefore called
generalized Stoyan soft core process and shown to be Brillinger-mixing.

Figure 3 illustrates a realization based on a stationary Poisson process with
intensity γ = 30 and a mark distribution Q that is concentrated on axis-parallel
rectangles in C0. A typical rectangle with distribution Q has i.i.d. side lengths that
are uniformly distributed in the interval (0.02, 0.2). The birth times were chosen
stochastically independent of the particles and uniform in (0, 1). The process XM

after thinning is depicted in Figure 3, middle.
In the language of [16], the above thinning is based on a global assignment rule,

as each point has exactly one birth time that is used ‘globally’ in all comparisons.
An alternative to global assignment is the pairwise assignment rule, also suggested
in [16]. Again X is an independently marked point process in Rd where each of
its points xi has two marks, namely a compact particle and a sequence of birth
times (t

(i)
k ). For each pair of points (xi, xj), i 6= j, with overlapping particles, xi dies

in the competition with xj if t
(i)
j ≤ t

(j)
i . Equivalently, one can think of this rule as a
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Figure 3: The generalized Matérn hard core process in a unit window: The initial Poisson
point process with rectangular marks, where particles that are ‘older’ than a competing
neighbor are gray (left), the particle process XM after thinning (middle), and the soft core
process X0

M (right).

pairwise competition of overlapping particles, where new birth-times are generated
for each pair, and only the strictly younger of the two particles survives. Pairwise
assignment does typically lead to a smaller intensity than global assignment [16,
Corollary 2.3], and the corresponding intensity converges to zero when the initial
intensity converges to ∞. We therefore only consider the global assignment rule,
but emphasize that the theory of marked point process also allows to treat the
pairwise assignment rule, generalizing the results in [16]. Quite recently, Teichmann
et. al [28] have presented generalizations of X0

I and X0
II, where the deterministic

dependent thinning of the classical Matérn processes is replaced by a probabilistic
thinning method. As their thinning probabilities depend on the Euclidean distance
of competing point pairs, their approach can be interpreted as thinning of Euclidean
balls, whereas the main focus of the present work is to consider arbitrarily shaped
particles.

The paper is organized as follows. Section 2 presents the main results and their
interpretations, while Section 3 is devoted to the proofs. In Section 2.1 we deter-
mine the first and certain second order properties of the stationary marked point
process XM , that is, its intensity, its mark distribution and the reduced second order
moment density of X0

M . These results are essentially taken from the doctoral thesis
[6, Section 2.3.5] of the second author. If the birth-time distribution is independent
of the corresponding particle and atom-free, we show in Lemma 2.1 that the dis-
tribution of XM does not depend on the birth-time distribution. In this case, the
volume density of the particle union of XM is shown in Theorem 2.6 to be bounded
by 2−d, where this bound is attained asymptotically if and only if all particles are
coinciding with a fixed origin-symmetric convex set. Using and extending a known
connection of XM to the process of intact grains of the dead leaves model, we show
in Section 2.2 that the same bound also holds for the volume density of the in-
tact grains. In Section 2.3, we show that also the volume fraction associated to the
Stienen model (with arbitrary random compact grains) has the same bound with
the same characterization of the equality case.
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2 Main results

2.1 Matérn’s construction with compact grains

Throughout the paper we assume that X is a stationary marked point process
in Rd with intensity γ > 0 and mark space C0 × R; see e.g., [22] for standard
notions in stochastic geometry. The first marginalQ of the mark distribution is called
(proposal) shape distribution and is concentrated on the family C0 of all non-empty
compact subsets of Rd with circumsphere at the origin. The second component of the
mark space corresponds to the birth time. The distribution of the time mark T may
depend on the particle C ∈ C0 and is therefore written as conditional probability
PT (·|C). For details, see Section 3.2. The marks C and T are independent, if and only
if PT = PT (·|C) is (almost surely) independent of C. If C and T are independent,
and if PT is atom-free (PT ({t}) = 0 for all t ∈ R), it has been shown in special
cases ([16] and [27]) that first and certain second order properties of the generalized
Matérn process XM , derived from X by global thinning, are independent of PT . This
es even true for the distribution of XM .

Lemma 2.1. If PT = PT (·|C) is independent of C and atom-free, then the distri-
bution of XM is independent of PT .

This Lemma and all other results stated in Section 2 will be proven in Section 3.
In the following, λ stands for the Lebesgue measure in Rd. For sets A,B ⊂ Rd,
A + B = {a + b : a ∈ A, b ∈ B} is the Minkowski sum. For α ∈ R we write αA =
{αa : a ∈ A}. When α is negative, this can be thought of as a reflection −A = (−1)A
of A at the origin followed by a scaling with |α|. We will often abbreviate A+ (−B)
by A−B. Let C ∈ C0 and t ∈ R be given. We will show in Section 3.2 that

gM(C, t) = exp

(
−γ
∫

C0
PT
(
[t,∞)

∣∣C ′
)
λ(C − C ′)Q(dC ′)

)
(2.1)

can be interpreted as the probability that a typical point survives, given its associ-
ated mark is (C, t). Hence,

gM(C) =

∫ ∞

−∞
gM(C, t)PT (dt|C),

is the retaining probability for a typical point, given its particle is C. The shape
distribution Q is called non-degenerate, if

∫

C0
λ(C − C ′)Q(dC ′) > 0 (2.2)

for Q-almost all C ∈ C0. The shape distribution Q is clearly non-degenerate if

Q({C ∈ C0 : λ(C) > 0}) > 0.

The last condition is trivially true when Q-almost all particles have positive volume,
but we do not want to impose so strong a condition in order to allow for such
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Figure 4: A model of non-overlapping line segments in a unit window: The initial Poisson
point process with axis-parallel line segments as marks, where particles that are ‘older’ than
a competing neighbor are gray (left), the particle process XM after thinning (middle), and
the ground process X0

M (right). Due to the requirement of disjointness the line segments
appear to have locally preferred directions.

interesting models as the one depicted in Figure 4. In the illustrated model all
particles are axis-parallel line segments with uniform random lengths in the interval
[.1, .4]. For each of these line segments one of the two possible orientations is chosen
with equal probability and stochastically independent of its length.

If Q is non-degenerate, then gM(C) < 1 for Q-almost all C ∈ C0. In other words,
if Q is non-degenerate, the typical particle has a positive risk of being deleted.

Proposition 2.2. Assume that Q is non-degenerate, and that PT = PT (·|C) is
independent of C. Then

gM(C) ≤
1− exp

[
− γ

∫
C0 λ(C − C ′)dQ(C ′)

]

γ
∫
C0 λ(C − C ′)dQ(C ′)

(2.3)

holds for Q-almost all C. Equality holds in (2.3) for Q-almost all C if and only if
PT is atom free.

The intensity and the shape distribution of the thinned process XM is given in
the next theorem.

Theorem 2.3. Assume that the stationary marked Poisson point process X has
intensity γ > 0, and shape distribution Q on C0, and that the conditional distribution
of the time mark given the shape C is PT (·|C). Then XM is a stationary marked
point process with intensity

γM = γ

∫

C0
gM(C)Q(dC).

If, in addition γM > 0, then XM has shape distribution

QM(A) =
γ

γM

∫

A
gM(C)Q(dC)

for any measurable set A ⊂ C0.
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The condition ∫

C0
λ(C +Bd)Q(dC) <∞, (2.4)

is sufficient for γM being positive, but it is not necessary when Q is concentrated on
the family of compact sets without interior points. We will use this criterion, as it is
natural; see e.g., [22, Theorem 4.1.2]. If, for instance, Q is concentrated on a family
{αC0 : α > 0} of scaled versions of a fixed C0 ∈ C0 with interior points, then (2.4)
is equivalent to the requirement that the image measure of Q under αC0 7→ α has
finite dth moment. In view of Proposition 2.2, we obtain the most important special
case of Theorem 2.3.

Corrolary 2.4. Assume that the stationary marked Poisson point process X has
intensity γ > 0, and non-degenerate shape distribution Q on C0, and that the condi-
tional distribution PT (·|C) of the time mark given the shape C is independent of C
and atom-free. Then

γM = γ

∫

C0

1− exp
[
− γ

∫
C0 λ(C − C ′)dQ(C ′)

]

γ
∫
C0 λ(C − C ′)dQ(C ′)

Q(dC). (2.5)

If, in addition, γM > 0,

QM(A) =
γ

γM

∫

A

1− exp
[
− γ

∫
C0 λ(C − C ′)dQ(C ′)

]

γ
∫
C0 λ(C − C ′)dQ(C ′)

Q(dC) (2.6)

for any measurable set A ⊂ C0.
It should be noted that (2.3), (2.5), and (2.6) can be simplified using mixed

volumes, when Q is concentrated on convex particles. If, in addition, Q is isotropic,
(2.3), (2.5), and (2.6) can be expressed with the help of Minkowski functionals of
C and C ′, thus avoiding the complicated volume λ(C −C ′); see [6] for details. Also
the second order properties of XM after removing the marks can be calculated when
the distribution of the birth time is independent of the particle and atom-free. For
C,C ′ ∈ C0 and x ∈ Rd we use the abbreviations

α =

∫

C0
λ
(
(x+ C − C) \ (C ′ − C)

)
Q(dC), (2.7)

β =

∫

C0
λ
(
(C ′ − C) \ (x+ C − C)

)
Q(dC), (2.8)

κ =

∫

C0
λ
(
(x+ C − C) ∩ (C ′ − C)

)
Q(dC). (2.9)

Theorem 2.5. Let the assumptions of Theorem 2.3 be satisfied. If PT (·|C) is inde-
pendent of the particle and atom-free then the reduced second order factorial moment
density of the ground process X0

M = {x : (x,C) ∈ XM} is

ρ(2)(x) =

∫

{(C,C′)∈C20 :(x+C)∩C′=∅}

[
1

α + β + κ

(
1

α + κ
+

1

β + κ

)
− e−γ(α+κ)

β(α + κ)

− e−γ(β+κ)

α(β + κ)
+

α + β

αβ(α + β + κ)
e−γ(α+β+κ)

]
Q2
(
d(C,C ′)

)
. (2.10)
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In the doctoral thesis [6, Satz 2.3.9] the second order moment density of the
marked point process XM , even with birth-mark retained, is given in full generality.
This result is though less explicit than Theorem 2.5 as the birth-time distribution
is not integrated out. Note that α + κ and β + κ are independent of x. When Q is
concentrated on one shape C0, then

ρ(2)(x) = 0 (2.11)

for all x ∈ C0 − C0 and ρ(2) depends on C0 only through C0 − C0. Actually, (2.11)
holds if and only if x ∈ C0 − C0, which can be seen directly from (3.13) and (3.14),
below. Hence, when Q({C0}) = 1, the second order properties of the ground process
determine C0 if and only if C0 is origin-symmetric. If C0 is a ball with fixed radius,
the formula for ρ(2) in Theorem 2.5 coincides with [27, (3.2)], if the first summand
1/(a+ b) in that formula is replaced by the correct 1/(a(a+ b)); see also [25, p. 164],
where the result is stated correctly. In [27, Theorem 2] the second order moment
density is calculated in the special case, where all particles are random balls.

If (2.4) is satisfied, then {x+ C : (x,C) ∈ XM} is a stationary particle process,
cf. [22, Theorem 4.1.2]. Its union set

ZM =
⋃

(x,C)∈XM

(x+ C)

is a stationary random set. Its volume density V M(γ) will be considered as a function
of γ. As the particles associated to XM do not overlap, we have

V M(γ) = γM

∫

C0
λ(C)QM(dC),

and Theorem 2.3 gives

V M(γ) = γ

∫

C0
λ(C)gM(C)Q(dC). (2.12)

If the distribution of T is atom-free and independent of the particle C, Proposi-
tion 2.2 shows that V M(γ) is increasing in γ. We consider therefore the asymptotic
volume density

V M(∞) := lim
γ→∞

V M(γ).

It will be shown in Subsection 3.2 that an application of the Brunn-Minkowski
inequality gives a sharp upper bound for V M(∞).

Theorem 2.6. Assume that Q is non-degenerate and satisfies (2.4). If PT (·|C) is
independent of C and atom free, then the asymptotic volume density satisfies

V M(∞) =

∫

C0

λ(C)∫
C0 λ(C − C ′)Q(dC ′)

Q(dC) ≤ 2−d, (2.13)

with equality on the right if and only if all particles are coinciding with a fixed
origin symmetric convex set of positive volume (i.e., Q({C0}) = 1 for some origin-
symmetric convex C0 ∈ C0, λ(C0) > 0).

8



It should be noted that the first equality in (2.13) still holds for some models,
where PT = PT (·|C) is independent of C but has atoms. This is for instance true
when the supremum of all atoms of PT is strictly smaller than the right endpoint of
its support, as can be seen from (3.4) in Lemma 3.1, below.

If one considers only isotropic typical particles in Theorem 2.6, then equality in
(2.13) can only hold if Q({C0}) = 1 for an origin-symmetric C0, which is invariant
under all rotations of Rd fixing 0. In other words, in the isotropic case, the volume
density is bounded by 2−d, and the bound is attained if and only if all particles
are Euclidean balls with the the same fixed radius. This confirms and generalizes
[2, Conjecture 3.3]. The special case of this statement, where d ∈ {2, 3} and Q is a
Dirac measure, was already shown in [16, Theorem 4.4].

Under the assumptions of Proposition 2.2 we know that V M(γ) is bounded by
the middle term in (2.13), and we obtain directly the following corollary.

Corrolary 2.7. Assume that Q is non-degenerate and satisfies (2.4). If PT (·|C) is
independent of C, then the volume fraction after thinning satisfies

Vγ(ZM) < 2−d.

This does not mean, however, that volume fractions larger than 2−d cannot be
obtained by global thinning. In fact, it was shown in [2, Theorem 4.1] that if the
birth times T may depend on the particles C, a volume density arbitrarily close to 1
can be obtained even with finite intensity.

Note that the sharp lower bound of Vγ(ZM) without additional assumptions is
zero. This is even true when the typical particle is isotropic. For instance, let Q be
rotation invariant and concentrated on the family {Bd ∩ x⊥ : 0 6= x ∈ Rd} of all
(d−1)-dimensional unit discs that are centered at the origin. However, if Q is known
to be concentrated on one full-dimensional convex shape (i.e., Q({C0}) = 1 for a
convex set C0 ∈ C0 with interior points), a non-trivial lower bound can be found
when PT (·|C) is independent of C and atom free. Under these assumptions

V M(∞) ≥
(

2d

d

)−1

with equality if and only if C0 is a simplex. This was shown in [16, Theorem 4.3]
based on a difference-body inequality in [21].

2.2 Intact grains of the dead leaves model

In this section, we outline and exploit the connection between Matérn’s hard core
processes and the dead leaves model introduced by Matéron [18]; see also Serra’s
monograph [23] and the works by Jeulin [8, 10, 12]. This connection was first de-
scribed in [26] for ball-shaped particles, and extended in [15]. The process of the
intact grains of the dead leaves model (with arbitrary compact grains) can be defined
as follows; see e.g., [9], [15]. Consider a stationary, independently marked Poisson
point process on Rd×R with intensity one and mark distribution Q on C0. Let Y be
its restriction to Rd × (−∞, 0]× C0. For a point (x, t, C) ∈ Y , t will be interpreted
as birth time of the particle x + C (a ‘leave’). The process Yig of intact grains of

9



the dead leaves model (at time zero) are all those triples (x, t, C) of Y for which the
particle does not overlap with any other particle of Y that arrived later. In order
to assure that Yig is locally finite, we assume again that Q is non-degenerate. After
thinning we obtain a marked point process Y . Omitting the birth times in Y leads
to a marked point process Yig with marks in C0, which is usually called the process
of intact grains of the dead leaves model. Its ground point process is denoted by Y 0

ig.
Figure 5 shows an example.

+

+

+
+

+

+

+

+

+
+

+

+

Figure 5: A realization of the intact grains of the dead leaves model Yig (left), where the
proposal shape distribution Q is the same as in Figure 3 and the corresponding ground
process Y 0

ig.

For γ > 0 let Y (γ) be the point process Y ∩ (Rd × [−γ, 0]× C0). Then Y (γ) can
be interpreted as a stationary Poisson point process on Rd with independent marks
in R× C0, intensity γ and mark distribution unif[−γ, 0]⊗Q, where unif[a, b] is the
uniform distribution on the interval [a, b] ⊂ R. Thinning of this subprocess by only
retaining those particles that do not overlap with any other particle of Y (γ) that
arrived later, and subsequently ignoring the birth time, corresponds to the global
thinning procedure described in Section 1. Hence the resulting point process YM(γ)
is a generalized Matérn process with initial shape distribution Q and a distribution
of the birth-mark that is uniform in [−γ, 0]. Clearly

⋃
γ>0 YM(γ) = Yig, and one

observes that the process of intact grains is the limit of globally thinned Matérn
hard core processes as the intensity tends to infinity. A simple coupling argument
makes this independent of the particular construction.

Proposition 2.8. Let Q be a non-degenerate distribution on the mark space C0. Let
Yig be the stationary process of intact grains of the dead leaves model with initial
shape distribution Q. For every γ > 0 let X be a stationary marked Poisson point
process with intensity γ and mark distribution Q× PT , where PT is atom-free (and
may vary with γ) and let XM(γ) be the derived generalized Matérn particle process.
Then

1. Yig stochastically dominates XM(γ), that is, there is a process X ′M(γ) with the
same distribution as XM(γ) and X ′M(γ) ⊂ Yig,

2. as γ →∞, we have the following convergence in distribution:

XM(γ)
d−→ Yig. (2.14)

As Yig is a stationary marked point process with marks in C0, its intensity γig
(which is of course also the intensity of Y 0

ig) and mark distribution Qig are well-
defined. They are obtained by taking the limit γ →∞ in Corollary 2.4.

10



Corrolary 2.9. With the notation from above, we have

γig =

∫

C0

(∫

C0
λ(C − C ′)Q(dC ′)

)−1
Q(dC). (2.15)

If γig > 0, we have

Qig = γ−1ig

∫

(·)

(∫

C0
λ(C − C ′)Q(dC ′)

)−1
Q(dC). (2.16)

The union of the particles in Yig thus has volume density V M(∞) given by (2.13).

We remark two consequences of this corollary. Firstly, Theorem 2.6 also holds
for Yig: The volume density of Yig is bounded by 2−d and this bound is attained
if and only if Q is concentrated on one origin-symmetric convex particle. Under
the assumptions d ∈ {2, 3} and Q({C0}) = 1 for some convex C0 ∈ C0, this result
was already loosely stated in [13, p. 128]. More generally, for shape distributions
that are concentrated on scaled versions of a fixed convex particle, or isotropic
shape distributions concentrated on rotations of a fixed convex particle the exact
statement was shown in [15, Theorems 5.1 and 5.2] for d ∈ {2, 3}.

Another consequence of (2.16) are moment relations when all leaves are randomly
scaled versions of a fixed, origin-symmetric particle C0 ∈ C0 of positive volume.
Then, also the intact grains are random scalings of this particle. Let R and Rig be
the random scaling factors of C0 before and after thinning, respectively. Hence, R
has distribution

Q({αC0 : α ∈ (·)}) =

∫

C0
1(

λ(C)
λ(C0)

)1/d
∈(·)

Q(dC), (2.17)

and similarly for Rig with Q replaced by Qig. From (2.16) we obtain

ERk = γigλ(C0)
d∑

j=0

(
d

j

)
(ERd+k−j

ig )(ERj), (2.18)

k = 0, 1, 2, . . .. We will show in Section 3.3 that (2.18) allows to determine all mo-
ments of R from the quantities γig, and ERk

ig, k = 0, 1, 2, . . . when d = 2. Whenever
the moments ERk of R do not grow too fast with k, for instance when Carleman’s
condition

∞∑

k=1

(ERk)−1/(2k) =∞ (2.19)

holds, even the distribution of R, and hence Q, is determined by Yig. See e.g., [1] or
[24] for details on uniqueness in the Stieltjes and other moment problems.

Proposition 2.10. Consider the process of intact grains Yig of a planar (d = 2) dead
leaves model, where the shape distribution Q is concentrated on scaled versions of one
single origin-symmetric shape C0 with interior points. Assume that the distribution
(2.17) of the random scaling R satisfies (2.19).

Then γig and Qig determine Q.

11



Jeulin [11, p. 17] derived (2.18) in the plane with C0 = B2 and explains an
estimation procedure of low order moments of R from those of Rig. He also derives
similar relationships for planar thickened fibre particles and explains stereological
applications to the morphological analysis of powders. Generalizing this, (2.18) could
naturally be extended to the case where Q is concentrated on convex sets (and
not necessarily a Dirac measure) when mixed volumes are used. We omit explicit
equations, though.

2.3 The generalized Stienen model
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Figure 6: A realization of the classical Stienen model with intensity γ = 15 in a unit
window (left) and a realization of the generalized Stienen model with the same shape
distribution Q as in Figure 3.

The classical Stienen model is obtained by attaching random balls to the points
of a stationary Poisson point process. The radius of a ball at a point of the process
is half the distance to its closest neighbor; see Figure 6, left. Alternatively, one
can think of this process in a dynamic way, by letting balls grow with constant
speed. Then an (infinitesimal) ball attached to a given point grows until it first
meets one of the other growing balls, if the latter would grow forever. This dynamic
point of view was adapted in [15] to generalize the model by replacing the ball by
a non-spherical convex particle (possibly randomized by an isotropic rotation) and
allowing for different – random – constant growing speeds. The latter is equivalent
to saying that each particle is scaled by a random factor before the growth starts.
In this model all particles have the same shape, possibly up to rotation. In the
following we drop this restriction and consider a Stienen model, where each point
is independently marked by a random shape, not necessarily convex, thus allowing
realizations where no two particles have the same shape. The proposal process is
now an independently marked Poisson point process X with intensity γ > 0 and
mark distribution Q on C0. We let YS be the marked point process of particles in
the Stienen model derived from X; see Figure 6, right. More formally,

YS =
⋃

(x,C)∈X

{(
x, τ
(
X;x,C

)
C
)}
,

where

τ(F ;x,C) = inf
(x′,C′)∈F\{(x,C)}

inf{α ≥ 0 : (x+ αC) ∩ (x′ + αC ′) 6= ∅}

12



is defined for arbitrary x ∈ Rd, C ∈ C0 and a locally finite set F ⊂ Rd × C0. Due
to the lack of convexity, if all particles would grow indefinite, a given particle might
hit another particle at a given time and be disjoint to all other particles at a later
time point. Our definition of τ(F ;x,C) implies that the particle stops growing when
first hitting another one. If X is a marked stationary Poisson process as above, the
cumulative distribution function of τ = τ

(
X;x,C

)
is

Fτ (t) = 1− exp

(
−γ
∫

C0
λ (t star(C − C ′))Q(dC ′)

)
(2.20)

t ≥ 0. Here,
starA = {αa : 0 ≤ α ≤ 1, a ∈ A}

is the star hull of A ⊂ Rd, i.e., the smallest set containing A that is star shaped
with respect to the origin. Equation (2.20) is essentially a consequence of the Poisson
property, and shown in Section 3.4. If Q is concentrated on star-shaped sets the star-
operator in (2.20) can be omitted. This is in particular true, if almost all particles
are convex. Again, we assume that Q is non-degenerate, as this assures that almost
all particles grow with a finite stopping time (and hence are compact).

Proposition 2.11. Let X be a stationary marked Poisson process intensity γ > 0
and non-degenerate mark distribution Q on C0. Then the derived Stienen model YS
is a stationary marked point process with intensity γ and mark distribution

QS =

∫

C0
P
(
τ(X; 0, C)C ∈ (·)

)
Q(dC) (2.21)

on C0. The volume density of the union of all its particles is

V S =

∫

C0

λ(C)∫
C0 λ(star(C − C ′))Q(dC ′)

Q(dC). (2.22)

A comparison of (2.22) with (2.13) reveals that the Stienen model with proposal
shape distribution Q has the same volume fraction as the dead leaves model with
shape distribution Q when λ(star(C − C ′)) = λ(C − C ′) for Q2-almost all (C,C ′).
In the case where Q is concentrated on convex sets in C0, this was shown in [15].
It is interesting to observe that this appears to be the only instance in the present
theory, where convexity yields a qualitatively different result compared to the general
(compact) case. As we have trivially C−C ′ ⊂ star(C−C ′), the upper bound for the
asymptotic volume fraction in the Matérn case in Theorem 2.6 can be transferred
to the Stienen model.

Theorem 2.12. Let X be a stationary marked Poisson process in Rd with intensity
γ > 0 and non-degenerate mark distribution Q. Then the volume density of the
union of all particles of the derived Stienen model satisfies

V S ≤ 2−d

with equality if and only if Q is concentrated on one origin-symmetric convex particle
C0 ∈ C0 with positive volume.
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Finally, we remark that Proposition 2.10 has an analogue for the Stienen model:
assume that the proposal shape distribution Q of a planar Stienen model YS is con-
centrated on scaled versions of one single origin-symmetric convex particle C0 ∈ C0.
Then its intensity γ and shape distribution QS determine the distribution of the
scaling. In the language of [15], when all particles of a planar Stienen model YS have
the same origin-symmetric convex shape but possibly different growth speeds, then
YS determines the growth speed of the typical particle.

3 Proofs

3.1 Some auxiliary results for random variables

Here and in the following, the notation B(S) always denotes the Borel-σ algebra of
a topological space S. We start with some general remarks on distributions P on
B(R). We denote by

ωP = sup (suppP ) ∈ (−∞,∞]

the upper endpoint of the support of P , and by

aP = sup{x ∈ R : P ({x}) > 0} ∈ [−∞,∞]

the supremum of all atoms of P . Let F be the cumulative distribution function of
P and let F← be the generalized inverse of F defined by

F←(s) = inf{x ∈ R : F (x) ≥ s},

s ∈ (0, 1); see for instance [3, pp. 37–38]. If S is uniform in (0, 1) then F←(S) has
distribution P . For 0 < s, s′ < 1 we have

1F←(s)≤F←(s′) = 1s<s′ + 1F (F←(s)−)≤s′≤F (F←(s)), (3.1)

where F (x−) = limy↗x F (y), as usual. Hence,

1F←(s)≤F←(s′) = 1s<s′ (3.2)

holds for λ-almost all s, s′ ∈ (0, 1) if and only if P is atom free.

Lemma 3.1. Let P be a distribution on B(R) and β > 0. Then

β

∫

R
e−βP ([x,∞))P (dx) ≤ 1− e−β. (3.3)

Equality holds in (3.3) if and only if P is atom free. Furthermore, if aP < ωP , then

lim
β→∞

β

∫

R
e−βP ([x,∞))P (dx) = 1. (3.4)
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Proof. Let F be the cumulative distribution function of P . Using the fact that
F←(S) has distribution P when S is uniform in (0, 1) we get

f(β) = β

∫

R
e−βP ([t,∞))P (dt)

= β

∫ 1

0

exp

(
−β
∫ 1

0

1F←(s)≤F←(s′)ds
′
)
ds.

Hence, by (3.1),

f(β) ≤ β

∫ 1

0

exp

(
−β
∫ 1

0

1s≤s′ds
′
)
ds

= 1− e−β,
using elementary integration. Equality holds here if and only if P is atom free.
To show (3.4), we set αp = P ((aP , ωP )) > 0 and define the atom-free probability
measure

P̃ = α−1P P (· ∩ (aP , ωP )).

Then,

f(β) ≥ β

∫ ωP

aP

e−βP ([x,∞))P (dx) = αPβ

∫ ωP

aP

e−αP βP̃ ([x,∞))P̃ (dx) = 1− e−αP β,

using the equality case in (3.3) where β and P are replaced by αPβ and the atom-free
distribution P̃ , respectively. Together with (3.3) this shows the assertion (3.4).

Proposition 3.2. Let R and R′ two i.i.d. non-negative stochastic variables, and let
d ∈ N be given. Then

ER
Rd

ER′(R +R′)d
≤ 2−d (3.5)

with equality if and only if R = R′ is a fixed positive constant.

Proof. If ERR = ER′R
′ = 0, the left hand side of (3.5) is understood to be zero,

so (3.5) holds with strict inequality. Assume now that ERR = ER′R
′ > 0. The

convexity of f(x) = 1/x on (0,∞) implies

f
( d∑

i=0

αixi

)
≤

d∑

i=0

αif(xi) (3.6)

for all positive α0, . . . , αd summing up to 1, and all x0, . . . , xd > 0. As f is strictly
convex, equality holds here if and only if x0 = . . . = xd. For R > 0 we set

αi = 2−d
(
d

i

)
and xi =

ER′(R
′)i

Ri
,

i = 0, . . . , d. Then (3.6) gives

2d
Rd

ER′(R +R′)d
≤ 2−d

d∑

i=0

(
d

i

)
Ri

ER′(R′)i
,

which obviously also holds for R = 0. Taking expectations gives (3.5) and the
characterization for the equality case.
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3.2 Proofs for the generalized Matérn particle process

We use standard notions from stochastic geometry; see [22]. Let C ′ be the family of
all non-empty compact subsets of Rd, and let C0 be the set of all C ∈ C ′ with center
of their circumsphere z(C) at the origin. As z(·) is translation covariant, C0 contains
exactly one member of the translation class of any C ∈ C ′. LetX be an independently
marked stationary point process in Rd with mark space M = C0×R, where the first
component of the mark is the grain C at a given location and the second component
is the birth time T . If the unmarked point process X0 has intensity γ > 0, and the
marks have distribution Λ on M , then γ(λ⊗ Λ) is the intensity measure of X. The
first marginal Q = Λ(·×R) is the shape distribution, and represents the distribution
of a typical grain before thinning. As C0 is a measurable subset of a Polish space [22,
p. 101 and Theorem 12.2.1] there exists a regular version PT (·|C) of the conditional
distribution of T given the shape C; see [14, Theorems 6.3 and A1.2]. It satisfies

Λ(A× A) =

∫

A
PT (A|C)Q(dC), (3.7)

for all A ∈ B(C0) and A ∈ B(R).
The generalized Matérn particle process XM is now formally given by

XM = {(x,C) : (x,C, t) ∈ X with fM(X;x,C, t) = 1}, (3.8)

where the thinning function fM is defined by

fM(X;x,C, t) =
∏

(x′,C′,t′)∈X\{(x,C,t)}
(1− 1(x+C)∩(x′+C′)6=∅1t′≥t). (3.9)

This function is measurable, and as X0
M ⊂ X0, XM is a marked point process on Rd

with mark space C0. The stationarity of X implies the stationarity of XM .
If PT = PT (·|C) does not depend on C, Lemma 2.1 is now a direct consequence of

the properties of F← for the cumulative distribution function F of PT . Indeed, X has
the same distribution as a marked point process, where the distribution of T is the
image of the uniform distribution on (0, 1) under F←. But the definition of XM in
(3.8) and (3.9) only depends on the birth times through comparison of pairs. Hence,
(3.2) shows that one can instead directly compare marks that are uniform in (0, 1)
if PT is atom free. Summarizing, if PT = PT (·|C) is atom-free, it can be replaced by
the uniform distribution on (0, 1) without changing the distribution of XM .

We now show that (2.1) is the retaining probability of a point given its marks are
(C, t). The marked point process X is a random element with values in the family Flf

of all locally finite subsets of Rd × C0 × R. (Note that all point processes occurring
here are simple, and we therefore identify these random counting measures with
there supports.) We let P 0,C,t be the Palm distribution of X. It can be interpreted
as the distribution of X under the condition that (0, C, t) ∈ Rd × C0 × R is a point
of X. This typical point survives the thinning if fM(X; 0, C, t) = 1, and thus its
retaining probability is

gM(C, t) =

∫

Flf

fM(F ; 0, C, t)P 0,C,t(dF ). (3.10)
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To show that (3.10) and (2.1) coincide, one can use Slivnyak’s theorem [22, The-
orem 3.5.9], stating that P 0,C,t coincides with the distribution of X ∪ {(0, C, t)},
[22, Theorem 3.2.4] expressing the generating functional GX(f) =

∏
x∈X f(x) of the

Poisson process X at a measurable function f with values in (0, 1) by

GX(f) = exp

(
−γ
∫

Rd

∫

C0

∫

R
1− f(x,C, t)PT (dt|C)Q(dC)λ(dx)

)
, (3.11)

and the finally the fact that

{x′ ∈ Rd : C ∩ (x′ + C ′) 6= ∅} = C − C ′.
To prove Proposition 2.2, note that the definition of gM(C) simplifies to

gM(C) =

∫ ∞

−∞
exp

(
−γ
∫

C0
λ(C − C ′)Q(dC ′)PT ([t,∞))

)
PT (dt),

when PT (·|C) = PT is independent of C. Lemma 3.1 with β = γ
∫
C0 λ(C−C ′)Q(dC ′)

and P = PT now implies the claim, as β > 0 for Q-almost all C ∈ C0.
The following proof of Theorem 2.3 follows closely the proofs of the known special

cases, and is thus kept concise. The refined Campbell theorem states that

E
∑

(x,C,t)∈X
f(X;x,C, t)

= γ

∫

Rd

∫

C0

∫

R

∫

Flf

f(F + x;x,C, t)P 0,C,t(dF )PT (dt|C)Q(dC)λ(dx)

for any measurable f ≥ 0 on Flf × Rd × C0 × R. The intensity measure of XM at
B ×A ∈ B(Rd × C0) is therefore given by

E# (XM ∩ (B ×A)) = E
∑

(x,C,t)∈X
fM(X;x,C, t)1B×A(x,C)

= γλ(B)

∫

A

∫

R
gM(C, t)PT (dt|C)Q(dC),

where we also used the fact that fM is invariant under simultaneous translations of
its first two arguments. Choosing a set B with λ(B) = 1 and using the fact that the
intensity measure of the stationary marked point process XM is γM(λ ⊗ QM), we
get

γMQM(A) = γ

∫

A

∫

R
gM(C, t)PT (dt|C)Q(dC). (3.12)

Note that (3.12) holds even without the Poisson assumption for X, if gM(C, t) is
defined by (3.10). Relation (3.12) now implies Theorem 2.3 as the two definitions of
gM(C, t) in (3.10) and (2.1) are equivalent.

We show Theorem 2.5. By Lemma 2.1 we may assume that the birth times are
distributed uniformly in (0, 1) and independent of the particles. The second factorial
moment measure [22, p. 55] of X0

M is given by

Λ(2)(A×B) = E
∑

((x,C,t),(x′,C′,t′))∈X2
6=

1(x,x′)∈A×BfM(X;x,C, t)fM(X;x′, C ′, t′),
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A,B ∈ B(Rd), where X2
6= is the point process of all different marked pairs of X. The

Slivnyak-Mecke formula [22, Corollary 3.2.3] gives

Λ(2)(A×B) = γ2
∫

A×B

∫

C20

∫

[0,1]2
EfM(X ∪ {(x′, C ′, t′)};x,C, t)

× fM(X ∪ {(x,C, t)};x′, C ′, t′)d(t, t′)Q
(
d(C,C ′)

)
λ2(d(x, x′)),

where we have used that

fM(X ∪ {(x′, C ′, t′), (x,C, t)};x,C, t) = fM(X ∪ {(x′, C ′, t′)};x,C, t)

(and a similar identity with (x,C, t) and (x′, C ′, t′) interchanged) holds. From the
above equality the density ρ̃(2)(x, x′) of Λ(2) can be read off. As usual, the stationarity
of X, and the fact that thinning only depends on the relative positions of points,
imply that ρ̃(2)(x, x′) only depends on x − x′ and the reduced density ρ(2)(x) =
ρ̃(2)(x, 0) is thus given by

ρ(2)(x) = γ2
∫

C20

∫

[0,1]2
EfM(X ∪ {(0, C ′, t′)};x,C, t)

× fM(X ∪ {(x,C, t)}; 0, C ′, t′)d(t, t′)Q2
(
d(C,C ′)

)

= γ2
∫

C20
1(x+C)∩C′=∅

∫

[0,1]2
EfM(X;x,C, t)

× fM(X; 0, C ′, t′)d(t, t′)Q2
(
d(C,C ′)

)
. (3.13)

By (3.11) the expectation in the last expression satisfies

EfM(X;x,C, t)fM(X; 0, C ′, t′) = e−γ(α(1−t)+β(1−t
′)+κ(1−min{t,t′})), (3.14)

with α, β, and κ given by (2.7), (2.8), and (2.9). Inserting (3.14) in (3.13), the
integrations w.r.t. t and t′ can be carried out, leading to (2.10).

We now show Theorem 2.6 assuming that the distribution of the birth-time is
atom-free and independent of the associated particle. Then Corollary 2.4 and (2.12)
imply by monotone convergence

V M(∞) = lim
γ→∞

∫

C0
λ(C)

1− exp
[
− γ

∫
C0 λ(C − C ′)dQ(C ′)

]
∫
C0 λ(C − C ′)dQ(C ′)

Q(dC)

=

∫

C0

λ(C)∫
C0 λ(C − C ′)dQ(C ′)

Q(dC), (3.15)

which is the equality in (2.13). Using Brunn-Minkowski’s inequality for compact sets
(see e.g., [4, 8.1.1. Theorem]), we get

∫

C0
λ(C − C ′)Q(dC ′) ≥

∫

C0
[λ(C)1/d + λ(C ′)1/d]dQ(dC ′), (3.16)

with equality if and only if almost all C ′ are convex and homothetic to −C. Let
R ≥ 0 and R′ ≥ 0 be i.i.d. copies of the random variable λ(C)1/d, where C is the
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typical particle (so PR is the image measure of Q under C 7→ λ(C)1/d). Using this
notation, we get from (3.15) and (3.16) that

V M(∞) ≤ ER
Rd

ER′(R +R′)d
.

In view of Proposition 3.2, the right hand side of this inequality is bounded by
2−d with equality if and only if R = R′ is a positive constant. We conclude that
V M(∞) ≤ 2−d with equality if and only if Q({C0}) = 1 for some origin-symmetric
convex set C0 with positive volume. Theorem 2.6 is shown.

3.3 Proofs for the dead leaves model

To show Proposition 2.8, we use the construction described in the paragraph before
this proposition and make use of the processes YM(γ) and Yig. With the notations
of the Proposition, XM(γ) is a generalized Matérn process with initial intensity γ,
shape distribution Q and birth a time distribution that is independent and atom-
free. By Lemma 2.1 its distribution is thus independent of PT , and we may take
PT = unif[−γ, 0]. This shows that XM(γ) has the same distribution as YM(γ).
Assertion 1. thus follows by setting X ′M(γ) = YM(γ) ⊂ Yig, and (2.14) follows if we
can show

YM(γ)
d−→ Yig, (3.17)

as γ →∞. By [19, Theorem 6.5] this is equivalent to the pointwise convergence of the
capacity functionals (or the void functionals) on all compact sets in the continuity
family of Yig. Now if A ⊂ Rd × C0 is compact, then, for all realizations, the events
[YM(γ) ∩ A = ∅]↘ [Yig ∩ A = ∅], as γ →∞, and hence

lim
γ→∞

P (YM(γ) ∩ A = ∅) = P (Yig ∩ A = ∅),

which implies (3.17). To prove Corollary 2.9, it is enough to notice that XM(γ)
and YM(γ) have the same intensity and mark distribution (which is given by Corol-
lary 2.4), and that (3.17) together with YM(γ) ↗ Yig implies convergence of these
to intensity and mark distribution of Yig, respectively.

We finally show Proposition 2.10, and assume without loss of generality that
λ(C0) = 1. As (2.19) implies that all moments of R are finite, (2.15) implies γig > 0.
It is enough to show that the two equations in (2.18) with k = 0 and k = 1 determine
ER and ER2, as all higher order moments of R then can be determined recursively
using (2.18) with k = 2, 3, 4, . . .. The equations in question are, explicitly,

γ−1ig = ER2
ig + 2ERigER + ER2,

γ−1ig ER = ER3
ig + 2ER2

igER + ERigER
2.

These equations determine ER and ER2 if and only if 2 var(Rig) 6= γ−1ig . But

2 var(Rig) ≤ 2ER2
ig = 2γ−1ig ER

(
R2

ER′λ(RC0 +R′C0)

)
≤ 2γ−1ig ER

(
R2

ER′(R +R′)2

)
,
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where we inserted the distribution of Rig to obtain the first equality, and RC0 +
R′C0 ⊃ (R +R′)C0 for the last inequality. Now (3.5) implies

2 var(Rig) ≤ γ−1ig /2 < γ−1ig .

The assertion is shown.

3.4 Proofs for the generalized Stienen model

We first show (2.20). For 0 6= x′ ∈ Rd and C,C ′ ∈ C0 we have

τ({(x′, C ′)}; 0, C) ≤ t ⇐⇒ inf{α ≥ 0 : (αC) ∩ (x′ + αC ′) 6= ∅} ≤ t

⇐⇒ inf{α ≥ 0 : x′ ∈ α(C − C ′)} ≤ t

⇐⇒ x′ ∈ t star(C − C ′).
(3.18)

As X is stationary, and (x,X) 7→ τ(X;x,C) is translation covariant, we have

P (τ(X;x,C) > t) = P (τ(X; 0, C) > t)

for any fixed x ∈ Rd and C ∈ C0. As X is a Poisson process on Rd×C0 with intensity
measure γ(λ⊗Q), its generating functional is explicitly known, so

1− Fτ (t) = E
∏

(x′,C′)∈X

(
1− 1τ({(x′,C′)};0,C)≤t

)

= exp

(
−γ
∫

C0

∫

Rd
1τ({(x′,C′)};0,C)≤tλ(dx′)Q(dC ′)

)
.

Inserting the last term of (3.18) here, gives (2.20).

We now show Proposition 2.11. As Q is non-degenerate, (2.20) implies that the
marks in the definition of YS are almost surely compact. Clearly, YS is a stationary
marked point process with intensity γ. ForA ∈ B(C0) and B ∈ B(Rd) with λ(B) = 1,
its mark distribution is given by

QS(A) =
1

γ
E

∑

(x,C)∈YS ,x∈B
1A(C)

=
1

γ
E

∑

(x,C)∈X,x∈B
1A
(
τ(X;x,C)C

)

=

∫

C0

∫

B

P (τ(X;x,C)C ∈ A)λ(dx)Q(dC),

where we used the Slivnyak-Mecke formula [22, Corollary 3.2.3] in the last step.
Again, by stationarity of X and the translation covariance of (x,X) 7→ τ(X;x,C),
(2.21) follows. As the particles in YS do not overlap, we have

V S = γ

∫

C0
λ(C)QS(dC).
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In view of (2.21) this implies

V S = γ

∫

C0
λ(C)Eτ d(X; 0, C)Q(dC).

From (2.20), we get

Eτ d(X; 0, C) = d

∫ ∞

0

td−1(1− Fτ (t))dt =

(
γ

∫

C0
λ(star(C − C ′))Q(dC ′)

)−1
,

and substituting this in the above equality yields (2.22).
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