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Abstract

In this paper we use the new stochastic integral introduced by Ayed and Kuo
(2008) and the results obtained by Kuo et al. (2012b) to find a solution to a
drift-free linear stochastic differential equation with anticipating initial condi-
tion. Our solution is based on well-known results from classical Itô theory and
anticipative Itô formula results from Kuo et al. (2012b). We also show that
the solution obtained by our method is consistent with the solution obtained
by the methods of Malliavin calculus, e.g. Buckdahn and Nualart (1994).
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1 Introduction

The aim of the present paper is to establish a solution to linear stochastic differential
equation with an anticipating initial condition of a certain form, namely

{
dXt = αtXtdBt + βtXtdt t ∈ [a, b]

Xa = p(Bb −Ba).
(1.1)

In the case with Xa = x ∈ R, it is a well-known fact that the unique solution is
given by

Xt = x exp

{∫ t

a

αsdBs +

∫ t

a

(
βs − 1

2
α2
s

)
ds

}
. (1.2)

For details, see for example, (Kuo, 2006, Section 11.1). The significance of our result
lays in the fact that the solution Xt of Equation (1.1) is an anticipating stochas-
tic process and it cannot be obtained by the classical tools from the Itô theory of
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stochastic integration. Instead, we use the integral of adapted and instantly inde-
pendent processes introduced by Ayed and Kuo (2008, 2010) and further developed
by Kuo et al. (2012a,b, 2013). In contrast to results obtained by Buckdahn and
Nualart (1994) and Esunge (2009), our results do not rely on Malliavin calculus or
white noise analysis and are anchored in basic probability theory.

The reminder of this paper is organized as follows. In Section 2 we recall all the
necessary definitions and previous results used in the rest of the paper. Section 3
contains a simple example that illustrates our methods and Section 4 presents our
main result, Theorem 4.1. We conclude with several examples in Section 5.

2 Preliminary Definitions

In this section we fix the notation and recall several definitions used in the remainder
of this work.

We denote by Ck(R) the space of all functions f : R → R that are k times
continuously differentiable, and by C∞(R) the space of functions whose derivatives
of all orders exist and are continuous. The space of all smooth functions whose
Maclaurin series converges for all x ∈ R is denoted byM∞, that is

M∞ =
{
f ∈ C∞(R)

∣∣∣ f(x) =
∞∑

k=0

f (k)(x)

k!
xk for all x ∈ R

}
,

where f (k)(x) stands for the k-th derivative of f(x).
We denote by S(R) the Schwartz class of rapidly decreasing functions, that is

S(R) =
{
f ∈ C∞(R)

∣∣∣ sup
x∈R
|xnf (m)(x)| <∞, for all m,n ∈ N

}
. (2.1)

It is a well known fact that S(R) is closed under the Fourier transform, which
we define as f̂(ζ) =

∫
R f(x)e−2πixζ dx, with the inverse Fourier transform given by

f(x) =
∫
R f̂(ζ)e2πixζ dζ. In this setting, we have the following property of the Fourier

transform
̂(
d

dx
f(x)

)
(ζ) = 2πiζf̂(x). (2.2)

Let (Ω,F , P ) be a complete probability space, Bt be a standard Brownian motion
on (Ω,F , P ) and (Ft)t∈[0,∞) be a right-continuous, complete filtration such that:

1. for each t ∈ [0,∞), the random variable Bt is Ft-measurable;
2. for all s and t such that 0 ≤ s < t, the random variable Bt−Bs is independent

of Fs.
Following Ayed and Kuo (2008), we say that a stochastic process Xt is instantly
independent with respect to (Ft)t∈[0,∞) if for each t ∈ [0,∞), the random variable
Xt is independent of Ft. Recall that if ft is adapted and ϕt is instantly independent
with respect to (Ft), the Itô integral of the product of f and ϕ is defined as the
limit ∫ b

a

ftϕtdBt = lim
‖∆n‖→0

n∑

i=0

fti−1
ϕti(Bti −Bti−1

), (2.3)

2



whenever the limit exists in probability. Note that if ϕ ≡ 1, then the integral defined
in Equation (2.3) reduces to the ordinary Itô integral for adapted processes. This
kind of integral was introduced by Ayed and Kuo (2008, 2010) and studied further
by Kuo et al. (2012a,b, 2013).

Following the notation of Kuo (2006), we denote by L2
ad(Ω× [a, b]) the space of

all adapted stochastic processes Xt such that E[
∫ b
a
X2
t dBt] <∞. It is a well-known

fact that the Itô integral is well-defined for processes from L2
ad(Ω× [a, b]).

As in the Itô theory of stochastic integration, the key tool used in this work will
be the Itô formula. We state below one of the results of Kuo et al. (2012b) where the
authors provide several formulas of this type. Multidimensional version and further
generalizations of Itô formulas together with an anticipative version of the Girsanov
theorem can be found in Kuo et al. (2013+).

Theorem 2.1 (Kuo et al. (2012b, Corollary 6.2)). Suppose that

θ(t, x, y) = τ(t)f(x)ϕ(y),

where τ ∈ C1(R), f ∈ C2(R), and ϕ ∈M∞. Let

Xt =

∫ t

a

αs dBs +

∫ t

a

βs ds,

where α, β ∈ L2
ad (Ω× [a, b]). Then

θ(t,Xt, Bb −Ba) = θ(a,Xa, Bb −Ba) +

∫ t

a

∂θ

∂x
(s,Xs, Bb −Ba) dXs

+
1

2

∫ t

a

∂2θ

∂x2
(s,Xs, Bb −Ba) (dXs)

2

+

∫ t

a

∂2θ

∂x∂y
(s,Xs, Bb −Ba) (dXs)(dBs)

+

∫ t

a

∂θ

∂t
(s,Xs, Bb −Ba) ds.

(2.4)

Equivalently, we can write the Equation (2.4) in a differential form as

dθ(t,Xt, Bb −Ba) =
∂θ

∂x
(t,Xt, Bb −Ba) dXt +

1

2

∂2θ

∂x2
(s,Xt, Bb −Ba) (dXt)

2

+
∂2θ

∂x∂y
(t,Xt, Bb −Ba) (dXt)(dBt)

+
∂θ

∂t
(t,Xt, Bb −Ba) ds.

(2.5)

3 A Motivational Example

In this section, we present an example that illustrates the method for obtaining a so-
lution of Equation (1.1). We begin with the simplest possible case of Equation (1.1),
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that is we set α ≡ 1, β ≡ 0 and p(x) = x, and restrict our considerations to the
interval [0, 1]. Thus we wish to find a solution to

{
dXt = Xt dBt, t ∈ [0, 1]

X0 = B1.
(3.1)

The natural guess for the solution of Equation (3.1) is obtained by putting B1

for x in Equation (1.2) to obtain

Xt = B1 exp
{
Bt − 1

2
t
}
.

Using the Itô formula, it is easy to show that the process Xt is not a solution of
Equation (3.1), but it is a solution of

dXt = Xt dBt + eBt− 1
2
tdt, (3.2)

which is obviously different from Equation (3.1). The failure of this approach comes
from the fact that we do not account for the new factor in the equation, namely B1.
To account for B1 in Equation (3.1), we can introduce a correction term to Xt that
will counteract the dt term appearing in Equation (3.2).

Now, we will use the following as an ansatz for the solution of Equation (3.1)

Xt = (B1 − ξ(t)) exp
{
Bt − 1

2
t
}
, (3.3)

where ξ(t) is a deterministic function. The reason for this particular choice is sim-
ple. We see that the difference between Equations (3.2) and (3.1) is the term
exp{Bt − 1

2
t} dt, and to counteract this, we need to introduce another dt-term with

the opposite sign. Looking at the Itô formula in Theorem 2.1, we see that we have
to introduce a correction factor that depends only on t.

We use the Itô formula from Theorem 2.1 with θ(t, x, y) = (y − ξ(t))ex− 1
2
t, and

θt = −ξ′(t)ex− 1
2
t − 1

2
(y − ξ(t))ex− 1

2
t,

θx = (y − ξ(t))ex− 1
2
t,

θxx = (y − ξ(t))ex− 1
2
t,

θxy = ex−
1
2
t,

to obtain

dθ(t, Bt, B1) = (B1 − ξ(t)) eBt− 1
2 dBt + 1

2
(B1 − ξ(t)) eBt− 1

2 dt

+ eBt− 1
2
t dt−

(
ξ′(t)eBt− 1

2
t + 1

2
(B1 − ξ(t))eBt− 1

2
t
)
dt

= (B1 − ξ(t)) eBt− 1
2 dBt +

(
eBt− 1

2
t − ξ′(t)eBt− 1

2
t
)
dt.

So for Xt = θ(t, Bt, B1) to be the solution of Equation (3.1), function ξ(t) has to
satisfy the following ordinary differential equation

{
ξ′(t) = 1, t ∈ [0, 1]

ξ(0) = 0.
(3.4)
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Thus, with ξ(t) = t, process Xt given in Equation (3.3) is a solution to stochastic
differential equation (3.1), that is

Xt = (B1 − t) exp
{
Bt − 1

2
t
}

(3.5)

solves Equation (3.1).
We point out that the solution in Equation (3.5) coincides with the one that can

be obtained by methods of Buckdahn and Nualart (1994), where in Proposition 3.2
authors state that the unique solution of Equation (3.1) has the form

Xt = g(t, x)
∣∣∣
x=B1

exp
{
Bt − 1

2
t
}
,

where g solves the following partial differential equation
{
gt(t, x) = −gx(t, x), t ∈ (0, 1]

g(0, x) = x.

In our case, g(t, x) = x− t.

4 General Case

Theorem 4.1 gives the solution to Equation (1.1) for a certain class of coefficients
αt and βt, and initial conditions p(x) with x = Bb − Ba. The proof of this theorem
uses the idea of a correction term introduced in the previous section.

Theorem 4.1. Suppose that α ∈ L2([a, b]) and β ∈ L2
ad(Ω × [a, b]). Suppose also

that p ∈M∞ ∩ S(R). Then the stochastic differential equation
{
dXt = αtXt dBt + βtXt dt, t ∈ [a, b]

Xa = p(Bb −Ba),
(4.1)

has a unique solution given by

Xt =
[
p(Bb −Ba)− ξ(t, Bb −Ba)

]
Zt, (4.2)

where

ξ(t, y) =

∫ t

a

αsp
′
(
y −

∫ t

s

αu du

)
ds, (4.3)

and

Zt = exp

{∫ t

a

αs dBs +

∫ t

a

(
βs − 1

2
α2
s

)
ds

}
.

Remark 4.2. Before we proceed with proof of Theorem 4.1, let us remark that if
a = 0, αt ≡ α and βt ≡ β, that is the coefficients are constant and evolution starts
at 0, we can again apply the results of Proposition 3.2 of Buckdahn and Nualart
(1994). In our notation, the above mentioned proposition states that the solution to
Equation (4.1) has the form

Xt = g(t, B1) exp
{
αBt +

(
β − 1

2
α2
)
t
}
, (4.4)
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where g(t, x) is the solution of the following partial differential equation
{
gt(t, x) = −αgx(t, x) t ∈ (0, b)

g(0, x) = p(x).
(4.5)

Hence in order to show that our solution and the one given by Equation (4.4)
coincide, it is enough to show that g(t, x) = p(x) − ξ(t, x) solves Equation (4.5).
Note that in the case of constant coefficients, g(t, x) = p(x−αt). Now it is a matter
of simple computation to check that g solves Equation (4.5).

Proof. The uniqueness of a solution follows from linearity of Equation (4.1) and
standard arguments. To prove the existence of a solution, first observe that Zt is a
solution of a stochastic differential equation given by

{
dZt = αtZt dBt + βtZt dt, t ∈ [a, b]

Za = 1.

Consider

dXt = d
[(
p(Bb −Ba)− ξ(t, Bb −Ba)

)
Zt
]

= d
[
p(Bb −Ba)Zt

]
− d
[
ξ(t, Bb −Ba)Zt

]
,

where

ξ(t, y) =
∞∑

n=0

ξn(t)yn, for all t ≥ 0, y ∈ R. (4.6)

Note that since the function zξn(t)yn satisfies the assumptions of the Theorem 2.1,
we can write

d(Ztξ(t, Bb −Ba)) = d
(
Zt

∞∑

n=0

ξn(t)(Bb −Ba)
n
)

=
∞∑

n=0

d (Ztξn(t)(Bb −Ba)
n)

=
∞∑

n=0

[
ξn(t)(Bb −Ba)

n dZt + Ztξ
′(t)(Bb −Ba)

n dt

+ Ztξn(t)n(Bb −Ba)
n−1(dZt)(dBt)

]

= ξ(t, Bb −Ba) dZt + Zt
∂ξ

∂t
(t, Bb −Ba) dt

+
∂ξ

∂y
(t, Bb −Ba)(dZt)(dBt).

(4.7)
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Using Theorem 2.1 and Equation (4.7) we obtain

dXt = p(Bb −Ba)dZt + p′(Bb −Ba)(dZt)(dBt)

−
[
∂ξ

∂t
(t, Bb −Ba)Zt dt+ ξ(t, Bb −Ba) dZt +

∂ξ

∂y
(t, Bb −Ba)(dZt)(dBt)

]

=
[
p(Bb −Ba)− ξ(t, Bb −Ba)

]
dZt

+
[
p′(Bb −Ba)(dZt)(dBt)−

∂ξ

∂t
(t, Bb −Ba)Zt dt

− ∂ξ

∂y
(t, Bb −Ba)(dZt)(dBt)

]
.

So for Xt to be a solution of Equation (4.1), we need

p′(Bb −Ba)(dZt)(dBt)−
∂ξ

∂t
(t, Bb −Ba)Zt dt−

∂ξ

∂y
(t, Bb −Ba)(dZt)(dBt) = 0 (4.8)

for all t ∈ [a, b]. Note that

(dZt)(dBt) =
(
αtZt dBt + βtZt dt

)
(dBt)

= αtZt dt. (4.9)

Putting together Equations (4.8) and (4.9) yields

p′(Bb −Ba)αtZt dt−
∂ξ

∂t
(t, Bb −Ba)Zt dt−

∂ξ

∂y
(t, Bb −Ba)αtZt dt = 0,

or equivalently,

[
p′(Bb −Ba)αt −

∂ξ

∂t
(t, Bb −Ba)−

∂ξ

∂y
(t, Bb −Ba)αt

]
Xt dt = 0.

Hence it is enough to find ξ(t, y) such that
{
p′(y)αt − ∂ξ

∂t
(t, y)− ∂ξ

∂y
(t, y)αt = 0, t ∈ [a, b]

ξ(0, y) = 0.
(4.10)

Thus the problem of finding a solution to the stochastic differential equation (4.1)
has been reduced to that of finding a solution to the deterministic partial differential
equation (4.10). In order to solve Equation (4.10), we apply the Fourier transform
to both sides of Equation (4.10), to obtain

p̂′(ζ)αt −
∂

∂t
ξ̂(t, ζ)− 2πiζξ̂(t, ζ)αt = 0. (4.11)

Note that Equation (4.11) is an ordinary differential equation in t, with an integrat-
ing factor

exp
{

2πiζ

∫ t

a

αs ds
}
.
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Hence Equation (4.11) is equivalent to

∂

∂t

(
ξ̂(t, ζ) exp

{
2πiζ

∫ t

a

αs ds
})

= p̂′(ζ)αt exp
{

2πiζ

∫ t

a

αs ds
}
. (4.12)

Integration with respect to t of both sides of Equation (4.12) yields

ξ̂(t, ζ) exp
{

2πiζ

∫ t

a

αs ds
}

= p̂′(ζ)

∫ t

a

αs exp
{

2πiζ

∫ s

a

αu du
}
ds+ Ĉ(ζ), (4.13)

for some function Ĉ(ζ) ∈ S(R). Thus, the Fourier transform of function ξ(t, y), that
is a solution of Equation (4.10), is given by

ξ̂(t, ζ) = p̂′(ζ)

∫ t

a

αs exp
{
−2πiζ

∫ t

s

αu du
}
ds

+ Ĉ(ζ) exp
{
−2πiζ

∫ t

a

αs ds
}
. (4.14)

Now, we apply the inverse Fourier transform to get

ξ(t, y) =

∫

R
p̂′(ζ)

∫ t

a

αs exp
{
−2πiζ

∫ t

s

αu du
}
ds exp

{
−2πiyζ

}
dζ

+

∫

R
Ĉ(ζ) exp

{
−2πiζ

∫ t

a

αs ds
}

exp
{

2πiyζ
}
dζ

=

∫ t

a

αs

∫

R
p̂′(ζ) exp

{
aπiζ

(
y −

∫ t

s

αu du
)}

dζ ds

+

∫

R
Ĉ(ζ) exp

{
aπiζ

(
y −

∫ t

s

αu du
)}

dζ

=

∫ t

a

αsp
′
(
y −

∫ t

s

αu du
)
ds+ C

(
y −

∫ t

a

αs ds
)
.

Using the initial condition from Equation (4.10), we see that C(y) ≡ 0. Hence Xt

as in Equation (4.2) is a solution of Equation (4.1).

Remark 4.3. Although very tedious, it is straightforward to check that function
ξ(t, y) in Equation (4.3) can be expressed in the form of Equation (4.6).

5 Examples

Below we give several examples of stochastic differential equations with either deter-
ministic or anticipating initial conditions. It is interesting to compare the solutions
to see how anticipating initial conditions affect the solutions.

Example 5.1 (Adapted). Equation
{
dXt = XtdBt +Xtdt

X0 = x

has solution given by
Xt = x exp

{
Bt + 1

2
t
}
.
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Example 5.2 (Anticipating, compare with Example 5.1). Equation
{
dXt = XtdBt +Xtdt

X0 = B1

has solution given by
Xt = (B1 − t) exp

{
Bt + 1

2
t
}
.

Example 5.3 (Anticipating, compare with Example 5.1). Equation
{
dXt = XtdBt +Xtdt

X0 = eB1

has a solution given by
Xt = eB1−t exp

{
Bt − 1

2
t
}

Example 5.4 (Adapted). Equation
{
dXt = αtXtdBt + βtXtdt

X0 = x

has solution given by

Xt = x exp

{∫ t

0

αsdBs +

∫ t

0

(
βs − 1

2
α2
s

)
ds

}
.

Example 5.5 (Anticipating, compare with Example 5.4). Equation
{
dXt = αtXtdBt + βtXtdt

X0 = B1

has solution given by

Xt =
(
B1 −

∫ t

0

αsds
)

exp

{∫ t

0

αsdBs +

∫ t

0

(
βs − 1

2
α2
s

)
ds

}
.
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