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Summary

In statistics, count data are data in which the observations can take only the non-
negative integer values and are often observed in applied fields such as biology
and epidemiology, for instance. The well-known univarate discrete distributions,
e.g., the Poisson and the negative binomial distribution do not generalise to the
multivariate case in a natural way. Therefore, how to model multivariate count
data is not obvious. This thesis deals with several issues related to the analysis of
correlated count data. It contains an introduction followed by three papers.

Paper A

In this paper, a certain class of the multivariate negative binomial distribution
for which the distribution is defined by its probability generating function is
considered. In the general case, the probability function can be expressed via the so-
called a-permanent, which can be thought of as a generalisation of the determinant.
No closed form expression for the a-permanent exists, and the probability function
has therefore previously only been derived for the two-dimensional case. As a
consequence hereof, inference for this distribution has been restricted to the use of
composite likelihood based on one- or two-dimensional marginals. In this paper
we derive the three-dimensional probability function as a sum with positive terms
only and study the range of possible parameter values. The subclass of infinitely
divisible distributions is considered in order to obtain more explicit results.

Paper B

Here, a multivariate mixed Poisson model is considered. The model is a generalisa-
tion of previously published Poisson mixture models since the mixing variable here
arises as a function of independent and identically distributed random variables.
The common distribution of the mixing variables belongs to an exponential family,
a generalisation of the often considered gamma distribution. For multivariate
mixture models the probability function is only rarely tractable and a composite
likelihood based on the two-dimensional marginals is considered. The main result
of the paper gives conditions for existence, consistency and asymptotic normality
of the maximum pairwise likelihood estimate.
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Summary

Paper C

The focus of this paper is on modelling bivariate time series of counts. Two versions
of a Poisson-based, bivariate INGARCH model are considered. The models only
differ in the construction of the bivariate, conditional Poisson distribution, since
the conditional mean process has the same structure for both models. For the first
model, a stability result already obtained in the literature is generalised to the
case of an exponential family for the conditional distribution of the counts, and
regularity conditions for strong consistency of the maximum likelihood estimate
are derived. A limitation of the first model is its inability to capture negative
dependence, and the second model, based on a copula approach, is therefore
proposed. Stability properties for the new model are derived, and the two models
are compared through a simulation study and application to a real data example.
This is work in progress.

viii



Resumeé

Telledata er data, hvor observationer kun antager de ikke-negative heltal og ob-
serveres ofte inden for anvendte videnskaber som f.eks. biologi og epidemiologi.
Det er ikke helt oplagt, hvordan flerdimensionalt teelledata skal modelleres, idet
flere af de velkendte endimensionale fordelinger, som f.eks. Poisson-fordelingen og
den negative binomial-fordeling, ikke generaliserer naturligt til flere dimensioner.
Denne afhandling beskeaeftiger sig med flere problemstillinger, der relaterer til
analyse af korreleret teelledata. Afthandlingen bestar af en introduktion efterfulgt
af tre artikler.

Artikel A

I denne artikel betragtes en klasse af den flerdimensionale negative binomial-
fordeling, der er defineret gennem sin sandsynlighedsgenererende funktion. I det
generelle tilfaelde kan sandsynlighedsfunktionen udtrykkes gennem den sdkald-
te a-permanent, der kan betragtes som en generalisering af determinanten. Der
findes ikke noget lukket udtryk til beregning af a-permanenten, og sandsynlig-
hedsfunktionen er derfor tidligere kun blevet udledt i det todimensionale tilfelde.
En konsekvens heraf er, at inferens for denne fordeling er begrenset til brugen af
composite likelihood-estimation baseret pd en- og todimensionale marginaler. I
denne artikel udledes en formel for den tredimensionale sandsynlighedsfunktion,
og formlen er en sum, der udelukkende bestar af positive led. Derudover betragtes
klassen af mulige parameterverdier, og delklassen af uendeligt delbare fordelinger
betragtes med henblik pa at opnd mere eksplicitte resultater.

Artikel B

I denne artikel betragtes en mixed-Poisson-model. Modellen er en generalisering
af tidligere publicerede mixed-Poisson-modeller, idet mixing-variablen her opstar
som en funktion af uathangige og identisk fordelte stokastiske variable. Den falles
fordeling for mixing-variablene tilhorer en eksponentiel familie, en generalisering
af de ofte betragtede gamma fordelinger. For flerdimensionale mixturfordelinger er
den faelles sandsynlighedsfunktion ofte uhandterbar, og derfor betragtes composite
likelihood-estimation baseret pa de todimensionale marginaler. Hovedresultatet i
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Resumé

denne artikel giver betingelser for eksistens, konsistens og asymptotisk normalitet
for maksimum composite likelihood-estimatet.

Artikel C

I dette manuskript er fokuspunktet modellering af todimensionale tidsraekker
af teellevariable. Vi betragter to versioner af en todimensional INGARCH-model.
Forskellen pa de to modeller ligger kun i konstruktionen af den todimensionelle
betingede Poisson-fordeling, idet den betingede middelverdiproces har samme
struktur for begge modeller. For den forste model betragter vi et stabilitetsresultat,
tidligere vist i litteraturen, og viser, at dette generaliserer til det tilfeelde, hvor den
todimensionelle betingede fordeling tilherer en eksponentiel familie. Derudover
udledes betingelser, der sikrer konsistens af maksimum likelihood-estimatet. Ud fra
den made hvorpa Poisson-fordelingen i denne model er konstrueret, giver modellen
kun mulighed for at modellere positiv afhe@ngighed mellem de to tidsraekker. Vi
foresldr derfor, at modellere afheengigheden vha. copulaer. Vi udleder betingelser,
der sikrer stabilitet af den nye model, og til slut sammenlignes de to modeller
gennem et simuleringsstudium samt anvendelse pa data. Arbejdet praesenteret i
dette manuskript er igangverende forskning.



Introduction

The purpose of the present chapter is to give an introduction to the subjects covered
in the thesis and describe the main results obtained.

1.1 Multivariate count data

In statistics, count data, or discrete data, are data in which observations can take only
non-negative integer values and where these arise from counting. Simple examples
of count data are the number of radioactive decays over a given time interval,
number of mutations on a DNA strand per unit length or the number of days a
machine works before it breaks down. When counts are treated as independent
random variables, the Poisson, binomial and negative binomial distributions are
commonly used to model the data.

This thesis deals with models and inference for correlated count data which are
frequently encountered in applied fields, e.g. epidemiology, biology, marketing,
criminology, accident analysis etc. A simple example of correlated count data is
when data are collected in a field, and where the 'living conditions’ vary over the
field. This is the case in the following two data sets. The data of Choo and Walker
(2008) reports the occurrence of testis cancer in 19 municipalities in the county
of Frederiksborg, Denmark, and the data of Beall (1939) reports the number of
Colorado potato beetles in each of 2304 units of a single field. For data of this type,
counts at nearby positions are, due to this underlying variation, expected to be
more similar than counts at distant positions and they are therefore likely to be
positively correlated.

An example of negatively correlated count data can be found in Aitchison and
Ho (1989). The data originates from a study of the relative effectiveness of three
different air samplers used for detecting pathogenic bacteria in sterile rooms. The
resulting data consists of triplets of bacterial colony counts from the samplers in 50
different sterile rooms. The data can therefore be described by a trivariate discrete
distribution. Aitchison and Ho (1989) model the data by use of a Poisson log-
normal mixture model and maximum likelihood estimation yields a significantly
negative correlation between the counts. This indicates that the samplers appear to
have been competing for the capture of the bacteria. In general, simple examples of



Introduction

negative correlated count data are data that can be modelled by the multinomial
distribution, e.g., the number of votes the different candidates receive at an election
where the number of voters is fixed - an increase in the number of votes on one
candidate requires a decrease in the number of votes on another candidate.

As mentioned above, one-dimensional count data are commonly modelled by
the Poisson, the binomial or the negative binomial distribution. These distributions
are well studied and estimation of the parameters can easily be performed by use
of maximum likelihood estimation. The situation is not that simple for correlated
count data. The following sections review methods to overcome some of the
problems that arise when multivariate data is considered.

1.2 Construction of multivariate distributions

It is well known that the Gaussian distribution generalises in a natural way from
one dimension to two or higher dimensions. The probability density function (pdf)
of a Gaussian random variable X is given as

f;t,a(x) 1 (X_V)z}r XGIR,

1
V2mo? { 207

with EX = p and Var(X) = 02. The equivalent for n dimensions is given as

fuz(x) = exp{-3(x-p) T (x-p)}, xeR",

(2m)"|X|

with g = (py,..., py) € R" and ¥ = {0;j}; j-1,..,, being a symmetric positive definite
matrix. It follows that EX; = y; and Cov(X;, X;) = 0;; for i,j = 1,..., n. Furthermore,
the marginal distributions are normal with means y; and variance 0j;,i =1,...,n.

Another well-known example where the one-dimensional case generalises easily
to higher dimensions is multidimensional contingeny tables (Lauritzen, 2002). Let
us first recall the multinomial distribution. Consider n identical trials with k
possible outcomes. Let X; be the number of times that outcome i occurs in the n
trials, i = 1,..., k. It is assumed that the probability of outcome i is the same for all
trials and this probablity is denoted p;. The probability mass function (pmf) of the
multinomial distribution is then given as

n! X

P(X =x)= p;*.

I

xploxg! L]
This is the usual characterisation of the multinomial distribution. One could also
consider the n objects as being classified according to a criterion with k different
levels. This is the case for a one-dimensional contingency table. An m-dimensional
contingency table is defined the following way. For ease of notation we describe
the two-dimensional case but the principle is the same for higher dimensions. Let
n objects be classified according to two criteria, A and B, having levels Ay,..., A,
and By, ..., B;. This gives rise to an r x s table on the form {n;;} with n;; being the
number of objects classified according to the levels A; and B;. If the probability
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of being classified as level A; and B, is p;;, then the statistical model of the data
is a multinomial distribution with rs possible outcomes, having n as the number
of trials and p;; as the probability of outcome (A;,B;). A well-known class of
models for contingency tables are the Hierarchical models with the subclasses
decomposable models, graphical models and Markov random fields (Darroch et al.,
1980).

Unfortunately, not all well-known (one-dimensional) distributions generalise
this easily to higher dimensions. One of the challenges is the difficulty in finding
a distribution that covers the entire range of possible dependences. Construction
of multivariate distributions is therefore a classical and ongoing field of research
in statistics. In this section we recall a few methods for constructing multivariate
distributions considered in this thesis. An extensive overview on the topic can be
found in Alzaga and Déniz (2008), and comprehensive studies of bivariate and
multivariate discrete distributions in general can be found in Kocherlakota and
Kocherlakota (1992) and Johnson et al. (1997), respectively.

1.2.1 Trivariate reduction

Trivariate reduction, also known as the variables in common method, is a well-known
and easy-to-apply technique for constructing dependent variables (Mardia, 1970).
The method applies in the continuous as well as the discrete case. When applying
the method to construct a pair of dependent variables, Y; and Y;, the starting point
is three mutually independent random variables, X;, X, and X3. The variables are
then connected through functions, f; and f,, in the following way.

Y) = f1(X1,X3) and Y, = f(Xp, X3).

Often the functions f; and f, are simple functions, e.g. summation of the variables.
Johnson et al. (1997) defines the bivariate Poisson distribution as the joint distribu-
tion of the random variables Y| = X; + X3 and Y, = X, + X3, where X;, X; and X3
are mutually independent Poisson random variables (this method is considered in
Paper C). A limitation of this method is that it only covers the case with positive
correlation since Cov(Yj, Y;) = Var(X3) > 0. The multivariate gamma distribution
considered in Choo and Walker (2008) can be considered as a generalisation of this
method, see section 1.2.2.

A simple way to introduce negative correlation for continuous random variables
is the following way. Let U be a uniform random variable on the interval (0,1)
and define the random variables Y; = F;l(U) and Y, = F/{l(l —U) where F, is a
continuous and strictly increasing cumulative distribution function (cdf) (e.g. the
cdf of the exponential distribution). Since 1 — U is also uniform on the interval
(0,1) it now follows that Y; ~ F,, i = 1,2, and the correlation between Y; and Y,
is negative due to Chebyshev’s other inequality (Fink and Jodeit Jr, 1984). Shin
and Pasupathy (2007, 2010) use this idea and present an algorithm, the Trivariate
Reduction Extension algorithm, for generating bivariate negatively correlated Pois-
son variables. Let p € (-1,1), A > A’ > 0 and k = A’/A. The principle is to construct
dependent Poisson random variables Y; and Y;, having correlation p and means A
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and A’ respectively, the following way. Let
Y, =X, +FH(U), Y,=X,+F.(U) if p>0,
Y, =X, +FH(U), Y,=X,+F,.(1-U) ifp<0,

where U is uniform on the interval (0,1), F, is the Poisson cdf with mean A and
F;l(u) =inf{x: Fy(x) > u}. It follows that X; ~ Po(A - A*) and X, ~ Po(A1’—kA*). The
main hurdle is to solve for A* such that Y; and Y, attain the target means, A and \/,
and the target correlation, p. Shin and Pasupathy (2010) present a fast numerical
procedure to identify A*.

1.2.2 Mixture models

Mixture distributions are often seen in the literature. When a population contains
two or more homogeneous subpopulations, with two subpopulations being the
simplest case, mixture models are a natural choice. When sampling from a popu-
lation consisting of two subpopulations denoted A and B we sample from A with
probability p and from B with probability 1 — p for some p € (0,1). The cdf for the
population is then given as pF4 + (1 —p)Fp where F4 and Fp are the cdf’s of A and B,
respectively. In general, if the number of subpopulations or mixing distributions is
finite the cdf can be expressed as a weighted sum of the cdf’s of the subpopulations
(Lindsay, 1995).

In this section we consider the case where the number is uncountable, since
the model considered in Paper B is of this type. A distribution of this type is
the distribution that results from assuming that a random variable is distributed
according to some parameterised distribution and that the parameters of that
distribution are random variables themselves. Mathematically formulated, let the
random variable X have density (or pmf) f; with A having density gy. The resulting
distribution of X is then given as

px(x:0) = ij(x;G)ge(/\)dA- (1.1)

A formula of the same type applies if some or all of the variables are vectors.

One reason for using mixture models is the possibility of modelling overdis-
persion, which is often found in correlated count data. If f; denotes the pmf of a
Poisson distribution, (1.1) represents a mixed Poisson distribution (Grandell, 1997).
It follows that EX = E A and Var(X) = EA+ Var(1) > E A. Hence, the mixed Poisson
distribution is overdispersed relative to the Poisson distribution.

Some well-known examples of count mixtures are the negative binomial dis-
tribution and the beta-binomial distribution. The negative binomial distribution
arises as a continuous mixture of a Poisson distribution Po() where the parameter
A is a random variable with a gamma distribution Ga(r,(1 —p)/p) with 0 <r < o
and 0 < p < 1. The beta-binomial distribution arises as a mixture of a binomial
distribution bi(n, p) where p is a random variable distributed according to a beta
distribution Be(a, ) with 0 < a, < . A renowned example of a mixture of
continuous variables is the generalised hyperbolic distribution, which arises as a
mixture of the normal distribution and the generalised inverse Gaussian distribu-
tion (Barndorff-Nielsen, 1978).
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From the above it follows that mixture distributions give a simple way of con-
structing a multivariate distribution. For instance, consider the model of Choo
and Walker (2008). The model proposed in that paper is a Poisson-gamma model
for investigating spatial variations of disease. Other Poisson-gamma models have
been proposed (Clayton and Kaldor (1987) and Tsutakawa (1988) among others)
but these fail to model the spatial correlation. The observations considered are
disease counts in different areas and these are modelled as conditionally inde-
pendent Poisson random variables, i.e. Y;|0; ~Po(y;), i =1,...,N, with y; = E;0;
where E; is a positive finite constant. The variable 6; is interpreted as the relative
risk in area i. To construct a multivariate distribution for 6,...,0y independent
gamma random variables R;; ~ Ga(a,a) are introduced. They can be thought
of as controlling the dependence between a neighbouring pair of areas i and j.
With A; being the set of pairs of neighbours involving area i, 6; is defined as
0; = ”i_l Z(i,j)eA,- R;; with n; being the number of elements in A;. The resulting
distribution is multivariate with gamma marginals having mean one and variance
(n;a)~' and Cov(6;,0;) = (n;npa)”!, i # i’ (see also Johnson and Kotz (1972) for
construction of multivariate gamma distributions by sums of independent gamma
variables). Therefore, the resulting model for the counts is a multivariate mixed
Poisson model with Cov(Y;,Y;)) = Cov(6;,0;)) > 0. Another example of a multi-
variate mixture model is the model of Henderson and Shimakura (2003), see the
following section.

1.2.3 Laplace transform or probability generating function

Some classes of multivariate distributions (e.g. gamma- and negative binomial-type
distributions) are defined solely through specification of the Laplace transform
or the probability generating function (pgf) and does not in general have a closed
form expression for the resulting probability distribution. Consider the following
example of the construction of a multivariate gamma distribution. Let Y7,..., Yq be
independent p-dimensional Gaussian random vectors with standard marginals and
a common correlation matrix C (p x p). Define Z; = %Z?zl Y].Zk fork=1,...,p. The

resulting distribution of the vector Z = (Z4,..., Zp)T is a multivariate gamma distri-
bution with marginal gamma distributions, Ga(q/2,4/2), and Laplace transform

Ele )= |1+ 2cu| ™, (1.2)

with U = diag(u), |- | being the determinant and I is the p x p identity matrix
(Krishnamoorthy and Parthasarathy, 1951).

Before continuing, we introduce the so-called a-permanent of a real square
matrix. Let A = {a;;} be a real m x m matrix and @ € R. The a-permanent of A is

defined as
pera(A) = Z aC(U)al,o(l)ala(Z) oo am,o(m)f
o€S,,
where §,, is the set of all permutations of 1,...,m and c(0) denotes the number
of cycles in the permutation 0. We notice that when a = -1 this is simply the
determinant of A. As is the case with the determinant, the a-permanents are in
general computationally complex.
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Vere-Jones (1997) studied the a-permanents and their application to the mul-
tivariate negative binomial distribution, among other distributions. Let N be an
m-dimensional discrete random vector with pgf

E

1

2 = [+ (I-2)A[®, (1.3)

m
=1
where o > 0 and A is a real m x m matrix. The one-dimensional marginals of N
can be shown to be negative binomial and we therefore refer to this distribution
as the multivariate negative binomial distribution and denote it by NB,,(a, A), see
Paper A. With Q = A(I + A)~! the resulting pmf is given as
n
P(N =n)=|I - Q|a%Q[|]),

i=1"i-

(1.4)

where Q[n] is obtained from Q by repeating index i n; times (Vere-Jones, 1997).

The question of existence of the model defined by (1.3) is treated in detail in
Griffiths and Milne (1987), Vere-Jones (1997), Shirai (2007) and Paper A. For a
general m there does not seem to exist easily verifiable necessary and sufficient
conditions. However, there do exist simple sufficient conditions, two of which is
given below (see the aforementioned references).

1. Ais a covariance matrix and a = %, k=1,2....
2. Q has non-negative entries and the eigenvalues of Q is bounded by one.

Loosely speaking, the conditions ensure that |[I — Q| > 0 and per,(Q[#n]) > 0 for all
n € INg' which is necessary for (1.4) to be a true probability function.

Moller and Rubak (2010) considered the so-called a-permanental random field
(a-prf) which plays an important role in the study of a-permanental point processes
(see for instance McCullagh and Mpgller (2006) and the references therein). The
model can, however, be considered as a special case of the multivariate negative
binomial distribution. The random vector (Njy,...,N,,) is an a-prf with parameter
(a, C) if the pgf is given as E[]/", lei =|I +a(I - Z)C|"/* with a a positive number
and C a real m x m matrix. This corresponds to the class NB,,(1/a, aC).

In some parts of the parameter space the distribution resulting from (1.3) can
in fact be obtained as a mixture distribution where the mixing distribution is mul-
tivariate gamma. This is the case in Henderson and Shimakura (2003) where a
Poisson-gamma model for longitudinal count data is presented. The multivariate
gamma distribution considered is defined through its Laplace transform, a gener-
alised version of (1.2). Mathematically, with Ny, .. .,Np denoting the event counts
and Zy,...,Z, the corresponding frailties, the counts are conditionally independent
Poisson random variables

T .
leZ]"VPO(Z]'exjﬁ), ]:1,...,[],

with x; being a fixed covariate vector and f an unknown regression coefficient.

The Laplace transform of the joint distribution of Zy,...,Z, is given as Ee'Z =

I + ECU["V¢ with & > 0 and C being a p x p matrix with entries Cik = pli=H,
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0 <p < 1. Hence, the univariate marginals are gamma with mean one, variance &
and Cor(Z;,Zy) = p|]’k|. The pgf of (Ny,...,Np) can then be found to be

E

p p
=1

Z?j = IE[GXP{— Z(l —zj)quj}] =|I+&(I-2)ucs,
j=1

with u; = ¢ P This is recognised as the pgf of NB,,(1/&,£UC). See also Chatelain
et al. (2009) for an example.

For later reference, we note that an enhanced version of the model of Henderson
and Shimakura (2003) is proposed in Fiocco et al. (2009). The setup is the same
but Fiocco et al. (2009) present a new gamma process which possesses the same
moments of interest as the one considered in Henderson and Shimakura (2003).
An advantage of the new process is that the finite dimensional marginals have
distributions that are computationally more stable and it is possible to simulate
from the entire parameter space. The distribution is construced by use of a renewal
process and the fact that a gamma distribution is infinite divisible. We refer to
Fiocco et al. (2009) for further details.

1.2.4 Copulas

During the recent years copulas have become very popular for modelling mul-
tivariate non-normal data. Loosely speaking, copulas are functions that couple
marginal distribution functions. That is, a cdf can be written in terms of (one-
dimensional) marginal distribution functions and a copula, where the marginal
distribution functions describe the distributions of the marginals, and the copula
describes the dependence between the marginals. The idea behind the copulas
can be described as follows. Let X = (X1,...,X,;) be a random vector with contin-
uous marginals. Let F;(x) = P(X; < x) be the associated cdfs. We note that they
are continuous functions due to the continuous marginals of X. Then, the vector
U= (Uy,...,Uy) = (F1(Xy),...,F4(X;)) has uniform marginals and the copula C of
X is defined as the joint cdf of U, i.e. C(uy,...,uy) =P(U; < uy,...,U; <uy). The
copula C then contains all the information about the dependence between the
variables and the F;s contain all the information about the marginal distributions.
This leads to the following definition (Joe, 1997; Nelsen, 2006).

Definition 1.1. C:[0,1]? — [0,1] is a d-dimensional copula if C is a joint cdf of a
d-dimensional random vector on the unit cube [0, 1% with uniform marginals.

Copulas have one very important property, which lays the theoretical foundation
for their use. It is given in Sklar’s theorem below.

Theorem 1.2 (Sklar, 1959). Let H be the joint cdf of (Xy,...,X) with marginal cdfs
Fi(x) = P(X; < x). Then there exists a copula C such that for all x1,...,x; € R

H(xq,...,x3) = C(F1(x1),...,Fa(x3)). (1.5)

If Fy,...,F; are continuous, then C is unique. Otherwise C is uniquely determined on
Ran(Fy) x---xRan(Fy), i.e. the Cartesian product of the ranges of the marginal cdfs.
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Conversely, if Fy,...,Fy are cdfs and C is a copula, then H defined by (1.5) is a cdf
with marginals Fy,...,Fy.

The second part of Sklar’s theorem states that given a marginal distribution function
and a copula one can construct a multivariate cdf. Hence, using a copula to
model the joint distribution of a set of random variables, makes it possible to
specify the marginal distributions in a more flexible way since one does not have to
specify the entire model at once. In particular, the marginal distributions can be
selected separately, which gives the possibility of having different types of marginal
distributions, e.g., a valid distribution can be constructed by combining a normal
distribution with a gamma distribution by use of the Frank copula (section C.4.1).
A review on copulas for count data can be found in Genest and Neslehova (2007)
and examples of modelling multivariate count data based on various copulas can be
found in Nikoloulopoulos and Karlis (2009). We also refer to Trivedi and Zimmer
(2005).

When modelling multivariate data by use of copulas, the derivation of the joint
density is easy for the continuous case as it can be found through partial derivatives
of the copula cdf. This is not possible in the discrete case where instead the pmf
can be found in the following way.

Proposition 1.3. Consider a discrete integer-valued random vector (Yy,...,Y,,) with
marginals Fy,...,F, and joint cdf given by the copula representation H(yy,...,Vy) =
C(F1(w1)-.» Fp(vm)). Let x = (xq,...,x,,) with xi being equal to either y; or vy —1,
k=1...,m. The joint pmf of (Yy,...,Y,,) is then given by

@1 ym) = ) (1" C(F (1), Fusln)), (1.6)

X

with n(x) being the number of xi’s equal to yy — 1.

From the proposition is follows that in order to calculate the pmf the copula has to
be evaluated repeatedly. Therefore, in order to model multivariate count data by
use of copulas one must use a copula with a computationally feasible form of the
corresponding cdf.

The family of copulas is very extensive. In this thesis we restrict attention to the
subclass of Archimedean copulas (Paper C). The two main reasons for considering
Archimedean copulas is that they (1) allow modelling of dependence in arbitrarily
high dimensions with only one parameter and (2) the most common Archimedean
copulas (e.g., the Frank and the Clayton copulas) have a closed form expression
for the cdf (contrary to for example the multivariate elliptical copulas, e.g., the
Gaussian and the Student-t copula). The Archimedean copulas are defined as
follows.

Definition 1.4. Let ¢ : [0,1] — [0, 00] be a continuous and strictly decreasing convex
function with (1) = 0. The Archimedean copula is defined as

Cuy,uz) = P (uy) + (uy)),
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with P! denoting the pseudo-inverse of 1 with domain [0, 00| defined by

C1]_ J¥7HE), 0<E<9(0),
v (t)_{o, P(0) < £ < oo.

For examples of Archimedean copulas we refer to section C.4.1.

The topic of Paper C is modelling of bivariate time series of counts, and in
particular the use of copulas for modelling the dependence between the two time
series at a given point in time. Heinen and Rengifo (2007) propose the Multivariate
Autoregressive Conditional Double Poisson model for modelling multivariate time
series of counts, a multivariate extension to the univariate model developed in
Heinen (2003). The marginal distributions are modelled by the double Poisson
distribution (Efron, 1986), which allows for under- and overdispersion (contrary
to the regular Poisson distribution), and the dependence between the observed
counts at a given point in time is modelled by a Gaussian copula. In order to be
able to apply the density of a Gaussian copula Heinen and Rengifo (2007) use
the continuous extension argument of Denuit and Lambert (2005) and create a
continuous version of the observed variable. The new variable is constructed by
adding an independent continuous random variable, with values in (0,1) and a
strictly increasing cdf (e.g., the uniform distribution), to the observed variable.
Applying the cdf of the new variable results in a variable being uniform on (0, 1)
and the Gaussian copula density can be applied. We refer to Heinen and Rengifo
(2007) for further details. For a review on copula models for economic time series
(the continuous case) we refer to Patton (2012).

1.3 Estimation

Given data that can be described by a parameterised model, maximum likelihood
estimation (MLE) is often a desirable method of estimation of the parameters. In
order to use this method an explicit expression for the joint density of the data
is needed. Unfortunately, it is not always available (see for instance the Papers A
and B).

When a closed form expression for the joint density is not known composite
likelihood methods can be very useful. Consider an m-dimensional random vector
Y, with probability density function parameterised by 6 € © C IRP. Consider a set
of conditional or marginal events with associated likelihoods, £, k = 1,...,K, that
can be written in closed form. The composite likelihood (Lindsay, 1988) combines
these events as

K
Lo =| | Lew:0),
k=1

where wy are non-negative weights to be chosen. Often, the weights are chosen
such that the composite likelihood coincides with the full likelihood in the case
of independence, see for instance Le Cessie and Van Houwelingen (1994) and
Henderson and Shimakura (2003). As in maximum likelihood estimation, the
maximum composite likelihood estimator is found by maximising the composite
likelihood or equivalently the log-composite likelihood. The composite likelihood
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is a product of valid likelihoods and therefore approximately unbiased estimators
with the usual asymptotic properties can be obtained under regularity conditions
(Varin et al., 2011).

A simple way of constructing a composite likelihood is to consider the prod-
uct of lower dimensional marginal densities, when closed form expressions for
these are known, with one-dimensional marginals as the simplest choice (Cox and
Reid, 2004; Varin, 2008). These composite likelihoods are sometimes referred to as
composite marginal likelihoods (Varin, 2008). Using one-dimensional marginals
corresponds to assuming independence between the observations and an obvious
limitation of this approach is the lack of possibility to estimate parameters associ-
ated with dependence. Hence, when the observations are dependent a composite
likelihood based on the two- or three-dimensional marginals is often desireable.
Composite likelihoods based on two-dimensional marginals are often referred to
as pairwise likelihoods. Another well-known type of composite likelihoods is the
pseudolikelihood proposed in Besag (1974), a composite likelihood constructed
from marginal conditional densities. An extensive overview of the theory and
application of composite likelihood is given in Varin et al. (2011).

The advantages of composite marginal likelihoods in practical applications
have been treated several places in the literature. For the model considered in
Henderson and Shimakura (2003) a closed form expression for the full likelihood
can be found by differentiation of the Laplace transform, but the number of terms
to be calculated increases drastically with the number of observations. Therefore
the full likelihood is intractable and pairwise likelihood as estimation method is
proposed. Other applications of pairwise likelihood estimation can be found in for
example Chatelain et al. (2009) and Rubak et al. (2010).

One purpose of the use of composite likelihoods is to reduce the complexity
of the computations. The complexity can be further reduced by considering a
two-stage estimation procedure, e.g. the one proposed in Fiocco et al. (2009). Here,
the marginal parameters are first estimated by use of a composite likelihood based
on one-dimensional marginals and, secondly, the correlation parameter is estimated
by use of a pairwise composite likelihood.

A two-stage procedure can also be useful when MLE is possible although com-
putationally very complex. This can for instance be the case when copulas are
used for modelling multivariate count data cf. the comment after Proposition 1.3.
The number of terms in (1.6) is 2" and therefore the computational complexity
increases drastically with the dimension in the case of MLE. In such a situation
a two-stage estimation procedure can be useful. In the first stage the parameters
of the univariate marginals are estimated using MLE and in the second stage the
dependence parameters are estimated with the univariate parameters held fixed at
the values obtained in the first stage. A study of the asymptotic efficiency of this
procedure for copula-based models can be found in Joe (2005).

10
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1.4 Setups and main results of accompanying papers

1.4.1 Paper A

The model considered in this paper is a particular generalisation of the negative
binomial distribution to the multivariate case, which is obtained through a specifi-
cation of the pgf. The probability function derived from the pgf can be expressed
through the a-permanent (Vere-Jones, 1997). No simple explicit form for the prob-
ability function exists and therefore no explicit form for the probability function
has been derived for the general case. An expression for the two-dimensional
probability function has been derived several times in the literature using differ-
ent approaches (Edwards and Gurland (1961), Henderson and Shimakura (2003),
Griffiths and Milne (1987) and Rubak et al. (2010)). Inference has therefore been
restricted to the use of composite likelihood based on the one- or two-dimensional
marginals. The aim of this paper is to derive the three-dimensional probability
function and study its properties.

The model is defined as follows. Let N = (Njy,...,N,,) be an m-dimensional
positive discrete random vector, with pgf of the form

o) =E[ [ =1+ 1-2)A17, (1.7)

1

m

z
=1
with |-| the determinant, z = (zy,...,2,) € R", Z = diag(zy,...,2,,), I the mxm
identity matrix, @ > 0 and A = {a;;} a real m x m matrix. The pgf can be rewritten in
terms of Q = A(I + A)™ as ¢(z) = (| - Q/|I - ZQ|)*.

Proposition A.1 gives necessary and sufficient conditions (in terms of Q) for
existence of the model as well as an explicit formula for the probability function
in the two-dimensional case. It states that the distribution exists if and only if the
diagonal entries are positive and bounded by one, the off-diagonal entries are of
the same sign (or one should be equal to zero) and the determinant |I — Q| is strictly
positive. Even though these results are known we give a simple and self contained
proof, which is based on expansion of the pgf. The reason for including the proof is
its usefulness when deriving the results in Proposition A.2, the main result of the
paper.

Proposition A.2 gives necessary and sufficient conditions for the existence of
the distribution for all a > 0 in the three-dimensional case, again in terms of Q.
We notice that the condition "for all & > 0’ corresponds to infinite divisility for this
model. For a fixed a there does not seem to exist simple necessary and sufficient
conditions on A for existence of the distribution. However, with a requirement
of existence for all @ > 0 there is a simple characterisation that generalise the
conditions from the two-dimensional case. The proposition furthermore gives an
explicit form for the three-dimensional probability function and an illustration of
it is given in Figure A.1.

In data applications, the parameterisation in terms of A is of interest since the
moments of the distribution can be found as simple functions of @ and A, see (A.2).
The conditions in Proposition A.1, which treats the two-dimensional case, are given
in terms of Q but can easily be rewritten in terms of A. Unfortunately, this is not the
case in the three-dimensional case, at least not for a general A matrix. We therefore

11
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restrict to the case of symmetric A matrices. This is a true restriction since not
all distributions in the three-dimensional case can be represented by a symmetric
matrix, contrary to the two-dimensional case. However, restricting to symmetric A
matrices only have an influence on the moments of order three or higher, see (A.2).
Proposition A.3 gives necessary and sufficient conditions on A for (1.7) to be a pgf
of a positive, discrete, infinite divisible distribution. The proposition is followed by
Corollary A.4 which gives conditions for existence of a special symmetric A matrix
to be used in the data application.

Finally, the use of the three-dimensional distribution is illustrated by fitting
the three-dimensional volcano data of Chatelain et al. (2009). The data consists
of three images of the same scenario obtained before and after an eruption: a
reference image (image 2) of the Nyiragongo volcano in Congo before an eruption
and two secondary images (images 1 and 3) of the same scene acquired after the
eruption. The data furthermore contain a binary image indicating the pixels of the
image, which have been affected by the eruption. The purpose of the analysis is to
construct a change detector, i.e. an indicator of change for each pixels, based on
the correlation between the pixels of the three images. For each pixel three number
of photons are observed corresponding to the three images. These will be denoted
Nj, N, and N3 with N, corresponding to the observation from the reference image.
Image 1 and 3 is obtained after the eruption and it is therefore assumed that
r < Cor(Ny, N3) under the assumption that r = Cor(Ny, N,) = Cor(N;, N3). For each
pixel the value of r is estimated based on an n x n window centered at the pixel and
if the estimated value is below some threshold value the pixel is classified as having
a change from before the eruption to after the eruption.

Appendix A.3 contains supplementary material not contained in the submitted
version of the paper. Here the results are applied to the @-permanental random field
(Mgller and Rubak, 2010). We notice that Corollary A.7 gives a simple characterisa-
tion of infinite divisibility in the case of a symmetric matrix with identical diagonal
entries. Furthermore, an additional data set it fitted by the three-dimensional
distribution.

1.4.2 Paper B

In this paper, we consider a multivariate mixed Poisson model where the mixing
variable arise from a function of independent and identically distributed random
variables whose common distribution belongs to an exponential family. The model
is a generalisation of the Poisson-gamma model of Choo and Walker (2008). A
challenge of this model is that the full likelihood is only rarely tractable making
maximum likelihood estimation complicated and often impossible. The aim of this
paper is to consider composite likelihood estimation based on the two-dimensional
marginals and to show consistency and asymptotic normality of the resulting
estimator. We notice that Choo and Walker (2008) consider a Bayesian approach to
the estimation within the model.

The model is defined as described in the following. Consider n areas (subsets)
of IR? and let ~ be a symmetric and reflexive neighbourhood relation, e.g. two areas
are neighbours if they share a common border. Define the neighbourhood of area
ias A;={jef{l,...,n}:i~ j}with m; = |A;| denoting the number of neighbours of

12
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area i. Let Y; be the observed count in area i and X; an associated latent variable
with X ={X;,i=1,...,n} and X; = {X;,i € L} for a subset L C{1,...,n}. The counts
are modelled as conditionally independent Poisson random variables

Yi[ X ~Po(Biu(Xa,), i=1,...,n

where ; € B C R, is a known covariate and u(Xj,) is a positive function of m;
variables. The latent variables are assumed to be independent and identically
distributed random variables with a common probability density function param-
eterised by 8 € © C R?, belonging to an exponential family. That is, the density
is of the form fy(x) = a(0)b(x)exp{@(6) - t(x)}, where ¢ : ® — RF and t : R — R¥
are known functions. The functions ¢(6) and yu are chosen such that E[u(Xy,)] is
independent of 6 (and typically equal to 1).

Due to the structure of the model we consider a pairwise likelihood of the form

n

[20)=1) ) logpi(¥;,Y;;0),

i=1 jeA:

where p;; is the bivariate probability function of a neighbouring pair Y; and Y; and
A7 = A; \ {i}. Theorem B.1, the main result of the paper, shows that under a set
of regularity conditions there exists a local maximum of /2 that is consistent and
asymptotically normal. Furthermore, the result holds for any consistent solution of
the likelihood equation. The theorem follows from a set of lemmas according to
Jensen (2011a,b) and from the Cramér-Wold Theorem (Cramér and Wold, 1936) it
follows that it suffices to show the result for the case d = 1. One of the regularity
conditions, (B3), is used for obtaining lower bounds on the moments of the first
and the second order derivatives of the log-pairwise likelihood function. Sufficient
conditions for this assumption to be fulfilled is given in Proposition B.6.

To illustrate the main result a simulation study is performed. For simplicity, a
setup in IR is considered, i.e. instead of subsets of IR? one can think of consecutive
intervals of the real line and, hence, A; = {i — 1,i,i + 1}. The latent variables are
modelled as independent gamma random variables with mean one and variance
0! and w(Xa,) = Xi_1 + X; + X 1. With this setup it is possible to derive a closed
form expression of the bivariate probability function of interest and composite
likelihood estimation is therefore possible. Finally, the model is fitted to a data set
on the occurrence of testis cancer in the county of Frederiksborg, Denmark.

1.4.3 Paper C

The focus in this paper is on modelling bivariate time series of counts. In the paper
two models are considered. The basic structure of both models is a Poisson-based
bivariate INGARCH model, which is capable of capturing the serial dependence
between two time series of counts. The difference between the two models lies
in the formulation of the bivariate conditional Poisson distribution. In the first
model (originally proposed in Liu (2012, Chapter 4)) the Poisson distribution is
constructed through trivariate reduction of independent Poisson random variables.
In the second model, proposed in this paper, the Poisson distribution is constructed
from two univariate Poisson distributions combined by use of a copula.

13
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Mathematically, the models are formulated as follows. Let Y; = (Y}, Yt,z)T be
the bivariate observation at time t where {Y; ;,¢ > 1} and {Y; ,,t > 1} are the two
time series of interest. The common Poisson-based bivariate INGARCH model of
order (1,1) is defined as

Y| Fioq ~ BP(/\t,l;/\t,zx(P): A= (/\t,lx/\t,z)T =6+AA,; +BY,, (1.8)

where 7; = 0{41,Yy,...,Y;} is the o-algebra of past events, ¢ € [, where [, C R,
6=1(8,,0,) €R? and A = {@i;},B = {B;;} are both 2 x 2 matrices with non-negative
entries. The notation BP(A; 1, A;,, @) represents a bivariate Poisson distribution
whose marginal Poisson distributions have means A;; and A, ,, respectively, and ¢
is used for modelling the dependence between the two time series. The parameter
vector (81,0, 11,12, @21, @22, B11, P12, P21, B22, @) is denoted by 6.

For the first model the pmf of the bivariate Poisson distribution is given as

IPG(Yt,l =m, Y, = n|F_y) (1.9)

n min{m,n} s
mi\[n (P
( 5 )(5)5!( (A1 = @) A2 — @) ) .

For this model the conditional correlation between the two time series at a given
time t is Cor(Yy 1, Yy 2| Fiy) = @(A1 Ar2) "2

The bivariate Poisson distribution of the second model is defined through its
cdf, which is given as

(A1 +A2—@) (A1 —@)" (A2 — @)
m! n!

=e
s=0

Po(Yy,1 <m, Yy <nlFq) = Cy(Fy, (m), Fy, ,(n)), (1.10)

where C,, is a copula parameterised by ¢ and F) is the cdf of a Poisson distribution
with mean A.

We notice that the conditional mean process {1;} of model (1.8) constitutes
a Markov chain. Proposition C.2 (Liu, 2012, Proposition 4.2.1) gives conditions
for {A,;} to have a stationary distribution under the model (1.8) with pmf given
by (1.9). In addition, the first part of the proposition provides conditions for
the stationary distribution to be unique, and the second part of the proposition
provides conditions for {A;} to be a geometric moment contracting Markov chain
with a unique stationary and ergodic distribution. In section C.3 we remark that
this result generalises to a setup where the bivariate Poisson distribution is replaced
by a bivariate distribution constructed through trivariate reduction of variables
with a distribution belonging to an exponential family satisfying a few regularity
conditions. An example of a distribution that satisfies the conditions is the negative
binomial distribution.

A natural way of estimating the parameters of model (1.8), with pmf given
by (1.9), is MLE. Theorem C.4 states that the MLE of the parameter is strongly
consistent. The result follows by adjusting the results of Wang et al. (2012) to this
two-dimensional setup.

The topic of section C.4 is the model (1.8) with cdf given by (1.10). Proposi-
tion C.9 gives sufficient conditions on the copula in order for the result of Proposi-
tion C.2 to hold when the bivariate Poisson distribution is given by (1.10). These
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conditions are satisfied for many Archimedean copulas, especially the Frank and
the Clayton copula. The result of Lemma C.10 is that {A,} still constitutes an e-chain
(which is the case under (1.9) due to Liu (2012)) when the distribution is now given
by (1.10). With this lemma the result of Proposition C.9 follows.

In the final two sections, the two types of models are compared through a
simulation study and application to data. The results of these preliminary studies
indicates that for a small sample size the copula-based model provides a better fit
compared to the model proposed in Liu (2012).

The work presented in this paper should be considered as work in progress.
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Abstract: We consider a particular generalisation of the negative binomial distribution to
the multivariate case obtained through a specification of the probability generating function
as the negative power of a certain polynomial. The probability function itself has previously
been derived for the two-dimensional case only, and inference in the multivariate negative
binomial distribution has hitherto been restricted to the use of composite likelihood based
on one- or two-dimensional marginals. In this paper we derive the three-dimensional
probability function as a sum with positive terms only and study the range of possible
parameter values. We illustrate the use of the three-dimensional distribution for modelling
three correlated SAR images.
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A.1. Introduction

A.1 Introduction

Correlated count data are often encountered in applied fields. A simple example is
when data are collected in a field, and where the ’living conditions’ vary over the
field. Counts at nearby positions are more similar than counts at distant positions
due to this underlying variation. Another example, which we consider in detail in
section A.3, is a series of SAR images taken before and after a major event. Here, the
correlation of interest is between the images for each pixel of the images. In each
pixel the number of photons received follows a mixed Poisson distribution, where
the mixture variable represents the reflected intensity that varies due to the local
structure in the area corresponding to the pixel. The above two examples point to
the natural class of mixture models, where the counts are conditionally independent
and Poisson distributed given the value of a latent variable. Correlation is then
introduced through the latent variable. The mixture representation is a common
motivation for the use of the univariate negative binomial distribution, the latter
being a mixture with respect to a gamma distribution. The multivariate negative
binomial model we consider in this paper can in some parts of the parameter
space be obtained as a mixture distribution where the mixture distribution is
multivariate gamma (Vere-Jones (1997), Henderson and Shimakura (2003) and
Mpller and Rubak (2010)). Other poisson mixture models are considered in Choo
and Walker (2008) and in Aitchison and Ho (1989). In the latter the mixture
distribution is a multivariate log-normal which allows for the extra flexibility of
negative correlations as opposed to the case of a gamma mixture distribution.

The starting point for the class of multivariate negative binomial distributions
of this paper is the probability generating function, given as a negative power
of a polynomial of a certain form. The precise definition is given in (A.1) below.
In particular, the form of the probability generating function implies that the
one-dimensional marginals follows a negative binomial distribution. The class
of multivariate negative binomial distributions has previously been studied in
Griffiths (1984), Griffiths and Milne (1987), Vere-Jones (1997), Henderson and
Shimakura (2003) and Moller and Rubak (2010). The probability function derived
from the generating function can be expressed through the so-called a-permanents
(Vere-Jones, 1997). No simple explicit form for the a-permanents is known and
for this reason, inference in the multivariate negative binomial distribution has
hitherto been restricted to the use of composite likelihood based on one- or two-
dimensional marginals (Chatelain et al. (2009) and Rubak et al. (2010)). The
two-dimensional probability function can be calculated as a sum where the number
of terms equals the smaller of the two counts (the formula is given in (A.5) below).
The two-dimensional probability function has been derived a number of times in
the literature. One of the earliest references is Edwards and Gurland (1961). In that
paper, as well as in Henderson and Shimakura (2003) a formula with an alternating
sum is described. A sum formula with positive terms only, is given in Griffiths and
Milne (1987) and Rubak et al. (2010). In this paper we extend these results and
derive the three-dimensional probability function as a sum with positive terms
only. The formula is obtained by a suitable expansion of the probability generating
function and using the two-dimensional formula along the way. The resulting
formula consists of a sum over four indices.
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The multivariate negative binomial distribution is parameterised by a shape
parameter a > 0 and a matrix A. In the two-dimensional case A can be replaced by
a symmetric matrix, and existence of the distribution at the parameter point (a, A)
implies existence for all (&,A), & > 0. In particular, this implies that in the two-
dimensional case all distributions are infinite divisible. In the three-dimensional
case these results do not hold, see Griffiths and Milne (1987) and Vere-Jones (1997).
In this paper we study the subclass of infinite divisible distributions in order to
obtain more explicit results. We also study subclasses of the infinite divisible
distributions where simple descriptions of the parameter space can be given.

In summary, we focus in this paper on properties of the three-dimensional
negative binomial distribution, and illustrate the use of this distribution for mod-
elling three-dimensional count data. The paper is organised as follows. We start
in section A.2 by defining the multivariate negative binomial model and stating
and proving the results on existence in the two- and three-dimensional cases. The
results for the two-dimensional case, as well as the existence result for the three-
dimensional case, are known, but we give here simple and self-contained proofs,
and use the proofs for the known results for deriving the new results. In section A.3
we apply likelihood estimation based on the three-dimensional probability function
to a real data example.

A.2 The multivariate negative binomial distribution

In this section we state and prove results for the multivariate negative binomial
distribution, which we then use in the data analysis in section A.3. Some of these
results are known, but we give here simple and self-contained proofs.

Let N = (Ny,...,N,,) be an m-dimensional positive discrete random vector, with
probability generating function (pgf) of the form

2N = | +(I-2)A, (A.1)

1

¢(z)=E

m
i=1
with || the determinant, z = (zy,...,2,) € R", Z = diag(zy,...,2,), I the mxm
identity matrix, & > 0 and A = {a;;} a real m x m matrix. The possible values of the
matrix A is the subject of sections A.2.1 and A.2.2 below and the interpretation
of A in terms of means and covariances is given below. The generating function
of N; is obtained on setting z; = 1, j # i, that is, {1 + (1 —z;)a;;}”". This is the
generating function of a negative binomial distribution with mean aa;;. Due to this
fact we refer to the distribution corresponding to (A.1) as the multivariate negative
binomial (MNB) distribution and denote the distribution by NB,,(a, A). For the
density we use the notation p,,(ny,...,n,,) = P(N; = ny,...,N,, = n,,). The model
has been studied in detail in Griffiths and Milne (1987) and Vere-Jones (1997).
Other models of this type have been studied in Griffiths (1984), Henderson and
Shimakura (2003), Chatelain et al. (2009), Moller and Rubak (2010) and Rubak
et al. (2010).

When using the MNB distribution for data analysis the parameterisation by A
is of interest since the moments can be found as simple functions of a and A. In
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particular we have

EN; = aaj;, E(N;Nj) = a’aj;aj; + aa;jaji, %], (A.2)
VarN; = aa? + aaj;, Cov(N;,N;) = aa;jaj; i#]. ‘

The correlation can then be found, and using Proposition A.1 below we obtain an
upper limit for the correlation which, in the case a;; < 4;;, becomes

COI(N. N) _ aija]-i < \/aii(ﬁl]']‘ + 1) _ \/(IENI) VarN]- (A 3)
vy = (.- - . L ’
\/aii(aii+1)ﬂjj(ﬂjj+1) ajj(aj+1) (ENj)* Var N;

The marginal generating function for a subset of variables is obtained from (A.1) on
setting z; = 1 for those j’s not in the subset. It follows that the marginal generating
function has the same form as in (A.1), with the same a and with A replaced by the
submatrix obtained by deleting rows and columns corresponding to those variables
not considered.

Whereas the representation in (A.1) is well suited for moment properties it is
less suited when one wants to find the probability function and find necessary and
sufficient conditions on the matrix A for the model to exist. Instead we use the
reparameterisation obtained by setting Q = A(I + A)~! =1 —(I + A)~! and rewriting

(A.1) as
[ 1=-Ql\*
(p(z)_(u—zg) : (A.4)

In order that ¢(z) from (A.1) represents a pgf we must have |[ + (I — Z)A| > 0 for
Z =diag(zy,25,...,2y), 0 < z; <1, which shows that |I + A| > 0, allowing us to define
Q. Similarly, for (A.4) to be a pgf we must have |I - Q| > 0, and A is given through
the relation A = Q(I - Q).

To study when (A.4) is a pgf of a positive discrete random vector we have to
consider for which matrices A the function (A.4) is defined for |z;| < 1,i=1,...,m,
and when all the coefficients of a power series expansion are non-negative. We
study this question in the two- and three-dimensional cases in the following subsec-
tions. In the general case Vere-Jones (1997) has expressed the probability function
pm(ny,...,n,) through the a-permanent of a n x n matrix with n = ny +--- + n,,.
The a-permanent itself is expressed as a sum over all permutations of n elements,
where each term in the sum involves the number of cycles in the permutation.
This formula is not useful for numerical implementation, and for this reason we
concentrate in this paper on the two- and three-dimensional distributions.

A.2.1 Two dimensions

In this subsection we deduce necessary and sufficient conditions for (A.1) and (A.4)
to be well defined in the two-dimensional case and we find an expression for the
probability function by use of a Taylor series. Furthermore, we consider for which
matrices Q the distribution corresponding to (A.4) is infinitely divisible. We use
the notation a' = a(a +1)---(a + k= 1) = T(a + k)/T(a). The results are as follows.
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Proposition A.1. Let ¢(z) = [ - Q|*|[ - ZQ["* with a > 0 and Q = {q;;} a real 2x 2
matrix. Then ¢ is a pgf for a random variable in IN? if and only if

0<q;i<1,i=12, and 0<qi2q51 <(1-4g11)(1-422).
The probability function can be written as

OKTrOCTS min{r,s}

pa(r,s) =1-Q| ( )( ) " (412921) 417" 455", (A.5)

k=0

for r,s € N. The equivalent conditions in term of A= Q(I - Q) ' area; >0,i=1,2,
and 0 < a12a71 < aji1dpy + min{au,azz}.

Proor. Let ¢ be a pgf Then
z) = Z pa(r,8)z125, (A.6)

r,5>0
and p,(0,0) = ¢(0,0) = |[I - Q|* > 0, but the form of ¢ implies that, actually,
Il - Q%> 0. Let

N(z1,22) =1 = ZQ| = (1 -g1121)(1 = 42222) — 41292121 22-

In order for ¢(z) to be finite for |z1|,|z;| < 1, we see that 7/(z1, z;) > 0 in this region. In
particular, [I - Q| =#(1,1) > 0 implies that g159,1 < (1 —g11)(1 —q22). Next, (z1,0) =
1—-4112; >0 for |z;| < 1 implies that g7 < 1. Also, since @(z;,0) =} 2 pa(r,0)z] is
non-decreasing for z; >0, we find that g;; > 0. By symmetry we get 0 < g,, <1.

Finally, assume that q;,49,7 < 0. Let a,b > 0 and let @(az, bz) < oo for 0 < z < z,.
Then ¢(az, bz) is non-decreasing for 0 < z < zy and therefore 7/(az, bz) has to be non-
increasing. When ¢1,9,1 < 0 it follows that 7(az, bz) is increasing for sufficiently
large z, and therefore there must exist zy < co with 71(azy, bzg) = 0. If q11420 > 0 we
take a = 1/q1, and b = 1/g;,, and then

n(az,bz) = (1 -2)* = q12q21(911922) '2* > 0,

for all z> 0. Thus, this contradicts the assumption g;,4,; < 0. Similarly, if g1, =0,
g22 > 0 we take a = —q5,(q12921)”" and b = 1/g,,, with similar choices in the case
q11 > 0, q22 = 0, and if qy; = g = 0 we take a = b = 1. In all cases we get a
contradiction, which proves that g;,4,7 > 0.
For the sufficiency part we see that when 0 < g1,9,1 <(1 —¢11)(1 —¢g22) we can
expand #(zy,2;)”% in powers of g1,4,1212,. Thus
alk

n(z1,22)” Z«? (2122012921)F(1 = 21411) @™ (1 - 2,9,
k=0

) a+k)

When 0 < g;; < 1 we can expand (1 — g;;z;)~(@*%)

obtain

oz+kT’“1 a + k)T k k
1n(z1,22)" Z Z Z k! ( ) (912921) %101?2221%122%2’

my! mo!
k=0 my=0m,=0 1 2

in powers of g;;z;, i = 1,2. We then

which shows that the coefficient to z]z5 in (A.6) is given by (A.5). Since the coeffi-
cients are all non-negative it follows that ¢ is a pgf. m]
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A.2. The multivariate negative binomial distribution

One of the first appearances of the two-dimensional probability function is in
Edwards and Gurland (1961). In that paper, as well as in Henderson and Shimakura
(2003), a formula with an alternating sum is described. A formula similar to
(A.5) can be found in Griffiths and Milne (1987) and in Rubak et al. (2010). The
conditions for existence in the above proposition correspond to the ones in Proposi-
tion 5.6 in Vere-Jones (1997). Our proof is based on the characteristics of a pgf and
is different from the one given by Vere-Jones. The reason for including the proof in
this paper is that the proof is used directly when the three-dimensional probability
function is derived in the next subsection.

From (A.5) it is seen that the distribution depends on g;, and g;,; through g;,9,;
only (equivalently the distribution depends on a;; and a,; through a;,a,; only).
Thus Q, or A, can always be chosen as a symmetric matrix (this is not true for the
NB;-distribution). Furthermore, the condition a;,4,; > 0 shows that the correlation
between the two variables is always positive. Hence, the model can only be used to
analyse data where a positive correlation is expected. This is the case for the data
we analyse in section A.3.

By definition the NB;(a, A)-distribution is infinite divisible if and only if (A.1),
with a replaced by a/n, is a pgf for all n > 1. Since the conditions in Proposition A.1
do not involve «, we see that indeed all NB,(a, A)-distributions are infinite divisi-
ble. For general m we have that the NB,,(a, A)-distribution is an infinite divisible
distribution if and only if the NB,, (&, A)-distribution exists for all & > 0 (see the
argument leading to Proposition 3.11 in Vere-Jones (1997)).

A.2.2 Three dimensions

In this subsection we consider the case m = 3. We give necessary conditions for
(A.1) and (A.4) to be well defined and we find an expression for the probability
function by use of a Taylor series. We deduce necessary and sufficient conditions
on Q for the distribution corresponding to (A.4) to exist for all @ > 0. In special
cases we express the corresponding conditions on A.

Contrary to the two-dimensional case not all NB;(a, A)-distributions are infinite
divisible, that is, existence of the NB3(a, A)-distribution does not imply existence
of the NB3(&, A)-distribution for all & > 0. For a fixed a there does not seem to
exist simple necessary and sufficient conditions on A for existence of NB3(a, A).
However, requiring existence for all & > 0 there is a simple characterisation. The
necessary and sufficient conditions in the proposition below have earlier been given
in Theorem 2 of Griffiths and Milne (1987) and in Proposition 5.7 of Vere-Jones
(1997). The proposition is formulated in terms of Q, but as in the two-dimensional
case it can be reformulated in terms of A if this is needed.

Proposition A.2. Let ¢(z) = [ - Q|*| - ZQ[™* with Q = {q;;} a real 3x 3 matrix. Then
@ is a pgf for all @ > 0 for a random variable in N3 if and only if

1. |I—Q|>0, 2. OSqil’<1,i:1,2,3,
3. 0<qijq;i <(1—g;;)(1 —gjj),i =], 4. 912923931,913932921 = 0.
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The probability function can be written as

Ts Tt Tu
p3(S,t,u):|I—Q|au

sltlu!
min(s,t} S\[£\ k! min{s+t,u} A
’ ° u—-m _ _
) ; (k)(k)ﬂ ZO (m)—aqu33 h(s—k,t—k,m,k),
- —

for s, t,u € IN, where h(-) is given below through (A.8), (A.9) and (A.10) with b;; = g;;q;;
and bjjk = q;jqjk9ki-

(A7)

Proor. Let

n(z1,22,23) = [ = ZQ)|
= (1 =z1911)(1 = 22922)(1 — 22933) — 212223(912923931 + 913932921)
— 2122412921 (1 = 23933) — 2123913931 (1 — 2292) — 2223923932(1 — 21411)-

As in the proof for the two-dimensional case we obtain the conditions [ — Q| > 0,
0<g;; <1land 0<gq;;q;; <(1-9q;;)(1-qjj), i #j, by considering 7(1,1,1), (21,0, 0),
1(z1,1,0), 11(az, bz, 0) etc.

The necessity of b;jx = q;jqgjkqri = 0 follows from the condition p3(1,1,1) > 0 for

z=0 —
zero we get bypz + D130 > 0. From b;; = g;;9;; > 0, i # j, one sees that byy3b13; > 0 so

that we obtain by,3,b13, > 0. Hence, the necessity has been proved.
For the sufficiency part we find by direct calculations that

all @ > 0. The latter is equivalent to a‘lﬁia%q(z)_ﬂ > 0. Letting « tend to

1(z1,22,23) = (1 = q3323){(1 = Hy 21 )(1 = Hyzp) — Hy221 22},

where
Hy =gy + %3‘]3123, Hy =gy + %3’13223,
1 -q3323 143323
(912023931 + 013952421)7°  913931923932%3
H = =+ +
12 = 412921 T (1—25523)°

Clearly, Hy,H;,Hy, > 0 for 0 < z3 < 1. Also, from #(1,0,z3) >0, #(0,1,2z3) > 0 and
1(1,1,z3) > 0 it follows that H; <1, H, <1 and H;, < (1 - H;)(1 — H,). Hence, we
can use the result from the two-dimensional case and we obtain that

o0 aTTaTS min(r,s)(

1(z1,22,23)" = (1 - q3323)"° Z sl ;

r,s=0

r\(s\ k! —k —kr1k
By using the binomial formula to expand le_k and H;‘k we obtain

r+s—2k

r—krys—k _ 23 " _ _
HI*H5* = mZ—o (—1_%323) F(r—ks—k m),

with

min(m,a)

a b v a—v b

fla,b,m)= Z (v)(m_v)bzfsb% v4?1vqg2m+v- (A.8)
v=max(0,m—b)
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Similarly, using the multinomial formula we obtain

2% ) .
Hk = ( 3 ) (k,m),
12 r; 1— 43323 4 )
with
Lm/2] L
g(k,m) = (v, 20 k—m+ v)(b13b23)”(b123 +b132)" b5, (AL9)

v=max(0,m—k)

with | m/2] denoting the integer part of m/2. Combining these two expressions we
obtain

n(z)™ =(1-4s323)" Z{ el 21252

min(r,s) Als\ Kl r+S . m
x ( )( )— (—3) h(r—k,s—k,m,k)},
; k\k aTk =5 1—q33Z3
with
min(m,2k)
mabmk)= Y flabm-c)lko). (A.10)

c=max(0,m—a—b)
Finally, we insert the expansion

o0

- m+0(
(1-43323) a(l q33z3) Z 33 7,

u=

and finding the coeficient to z]z5z} in 7(z)"* we obtain (A.7). O

When deriving the probability function for the NBs-model we used the representa-
tion of the two-dimensional density. This points to the possibility that generally
higher order probability functions can be found from lower orders. However, this is
likely not of much practical interest as the number of terms in the sum representing
the probability function will grow very fast with the counts.

To illustrate the three-dimensional probability function we have created plots
of (A.7) by calculating the probability as a function of (N, N3) for different values
of N; and Q. We consider two parameter matrices

d a e dy plla e
Ay=|la dy a| and A,=|pia d, poa|, (A.11)
e a d e ia dq

that give rise to the same correlation matrix and the same marginal means. For
the plots we have used the values d; =2,d, =1,a=1,e=1.5,p; =2, p, =39
and a = 1. The plots can be seen in Figure A.1. In the three topmost plots the
probabilities are based on A; and in the three lowermost plots the probabilities
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Figure A.1: Illustration of the three-dimensional probability function. The three
topmost figures are based on A; and the three lowermost plots are based on A, in
(A.11). The parametersared; =2,dy=1,a=1,e=15,p1=2,p,=39anda =1
and all probabilities have been multiplied by 10°. From left to right the value of
N, is 8, 10, and 12. For each column the same colour scale has been used.

are based on A;. Even though there is the same mean and correlation structure in
the two distributions, there is a clear difference in the two rows and hence in the
distributions.

As mentioned above, no necessary and sufficient conditions for existence seem
to be known, for a fixed a. The necessary conditions a;;a;; < a;;a;; + min{a;;, a;j;},
|I + Al >0 and a;; > 0 follow directly from Proposition A.1. Sufficient conditions for
existence (for a general m) have been given in Griffiths and Milne (1987), Vere-Jones
(1997) and Shirai (2007).

In Proposition A.3 below we consider conditions on A for (A.1) to represent an
infinitely divisible distribution when A is symmetric. We notice that not all distri-
butions in the NBj class can be represented by symmetric matrices A. Since A is
symmetric if and only if Q is symmetric we can argue in terms of Q. For a symmetric

Q we have 412923931 + 413932921 = 24/412921 V413931 V923932 Considering

q
0

p

g 0
Q= q B, 0<g<1,0<p<1-g
0 q

we get a distribution that satisfies the conditions in Proposition A.2, but not satisfy-
ing the equation above. This is contrary to the two-dimensional case where all the
distributions can be obtained from symmetric matrices. However, the correlation
matrix, see (A.3), can always be obtained from a symmetric matrix. Therefore,
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choosing A to be symmetric will only have an influence on the moments of order
three or higher and this is seldom of interest from a practical point of view.

Proposition A.3. Let A be a symmetric matrix of the form

di app aps
A=lay dy ay)|,
aj3 a; ds
and define for i = 1,3, with asy = a3, B; = (1 +d;)(1 +d;) —ai22, Ci=di(l1+dy)- aizz,
D; = d2(1+d1-)—ai22 and h = a;3—H with H = ay,a,3/(1+d,). Then ¢(z) = |[-(I-Z)A[™,
a >0, is a pgf of a positive, discrete, infinitely divisible distribution if and only if

(i) d;20,i=1,2,3, aj; <d;d; + min{d;,d;}, i <},

(ii) h*(1 +d,)? <min{B5C;,B,Cs}, (hd, — H)? < D; D3,

(iii) h=0o0r ajy = ay3 = 0 or both aj,a,3 # 0 and 0 < % < min{%,ﬁ}.

oo

3

Proor. The conditions in (i) follow from the two-dimensional case in Proposi-
tion A.1. Writing Q = I — (I + A)™! in terms of d; and a;j we use Proposition A.2.
The condition g;; < 1 is satisfied under assumption (i), and g;; > 0 leads to (ii). Also
(i) and (ii) gives [I — Q| > 0. The condition g;;q;; < (1 —q;;)(1 —g;;) is in the present
setting a consequence of the condition ¢;; > 0. Finally, the condition g1,4,3931 >0
reduces to h{a;,B3(1 +dy)! — haysHar3Bi (1 +dy)~! —hay,} > 0, which gives (iii). O

For later use in section A.3, we state the following corollary.

Corollary A.4. Let the assumptions be as in Proposition A.3, but with ai, = a3,
dy = ds. Then @(z) = |I + (I — Z)A|™® is a pgf of a positive discrete infinitely divisi-
ble distribution if and only if either d, > 0, a%z < dyd, +min{d,,d,} and

2 2 2 2 2
a, 2a,-(1+d))d, a2, +\(d (1+d,)—a?,)(1+d, ) (1+d,)-a2,)
max{1+d2’ dz S a13 S 1+d2 :

orboth dy = aj, = 0and a2, < dy(1+d).

Proor. This follows directly from Proposition A.3. ]

A.3 Application to data

To illustrate the use of the three-dimensional distribution, we consider the data
from Chatelain et al. (2009). The data consists of three low-flux synthetic aperture
radar (SAR) images: a reference image of the Nyiragongo volcano in Congo before
an eruption and two secondary images of the same scene acquired after the eruption.
Each of the images can be represented as a matrix with each entrance in the matrix
corresponding to the measured number of photons in the corresponding pixel of
the image. The data also contain a binary image (the mask), referred to as the
ground truth in Chatelain et al. (2009), indicating the pixels of the image, which
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(a) After (Nq) (b) Before (N3) (c) After (N3)

Figure A.2: Low-flux 200 x 100 radarsat images of the Nyiragongo volcano before
and after an eruption. The pixels within the strip bounded by the red lines are the
pixels that have been affected by the eruption.
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Figure A.3: Histograms of the observed counts for each image.

have been affected by the eruption. The low-flux images can be seen in Figure A.2.
Histograms of the observed counts for each image can be seen in Figure A.3.

For each pixel three numbers of photons are observed corresponding to the
three images. These will be denoted (Ny,N,,N;) where N, corresponds to the
reference image and N; and Nj correspond to the two secondary images. The
individual pixel count originates from the reflectance of the radar signal by the
ground, and the intensity of the reflectance is the mean of the poisson count for
that pixel. The reflected intensity is random due to the micro structure of the
area covered by the pixel. For a given type of ground the reflected intensities for
different pixels are independent, and so the pixel counts within an image becomes
independent. However, for the same pixel across a series of images, we expect a
positive correlation since the pixel corresponds to the same area across the series of
images. As a model for the three-dimensional data for each pixel we use the NB3-
distribution. When the type of ground changes the parameters of the distribution
changes as well. We assume that the ground is locally homogeneous so that we
can use the same distribution within a small window. Using the NB3-distribution
we can from the probability function in Proposition A.2 establish the likelihood
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function and consider maximum likelihood estimation (MLE). Chatelain et al.
(2009) analyse the data by using the NB,-model and a composite likelihood. They
furthermore consider estimation based on the method of moments, and perform
a simulation study that shows that their proposed estimator based on the NB,-
distribution outperforms the moment estimator.

When specifying the model we consider the correlation structure in the data.
Since image 1 and 3 both have been registered after the eruption, it is natural to
assume that there is a stronger correlation between these two images than between
image 1 and 2 and image 2 and 3. Hence, we assume that r{, = 1,3 < ry3 with
rij = Cor(N;,N;). We let r = rj; = ry3. Furthermore, it is natural to assume that
[EN; = ENj since both images are obtained after the eruption. Since the correlation
between image i and j, r;;, is given by (A.3), which depends on 4;; and a;; through
ajja;; only, we restrict attention to symmetric matrices A with non-negative off-
diagonal entries. Hence, we make the assumption that

arq VA, \/7135111 (a1 +1)

A= \/T’Alz ajy TA12 y (AlZ)

Vrizan(a; +1) VrAp, ar

where Aj, = \/all(all +1)azy(az; +1). The matrix A is then of the type considered
in Corollary A.4.

Moreover, it is assumed that o = 1. This is due to the experimental setup as
explained in Chatelain et al. (2009). A check of this assumption can be based on the
relation Var N; = EN; + "' (EN;)?. Using non-overlapping windows with n pixels,
indexed by i, we calculate the average N; and the empirical variance 51.2 and use the
unbiased estimating equation

Z{Slz _Ni - 1+1na(nNi2 _Ni)} =0.

i

For non-overlapping windows of size 2x 2 the estimate is & = 0.951 with asymptotic
standard error 0.028. Based on this analysis it seems reasonable to assume that
a=1.

For each pixel we use an n x n window centered at the pixel and estimate the
correlation r. If the estimated value 7 is below some threshold ¢ the pixel is classified
as having a change from before to after the eruption. Since pixels are considered
independent we have n? observations from the NB3-distribution to be used for the
estimation.

We use the NB;-model with A given by (A.12) and require infinite divisibility,
such that the parameter space is given by Corollary A.4. To reduce the computa-
tional cost we estimate the means a;1, a5, and a33 from the marginal distributions
(recall that « = 1). Thus, we use MLE for estimating r and rj3. We consider
estimation windows of size 3x3,5x5and 7 x 7.

In order to estimate the parameters r and ry3 by use of MLE we have to calculate
the probability given in (A.7) for every pixel for several values of the parameters.
Even though the formula by itself is simple, the computational complexity in-
creases rapidly with the size of the counts. Here, complexity refers to the number
of terms that has to be calculated. We notice that formula (A.7) has the lowest
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number of terms if s < u < t. Figure A.3 shows histograms of the observed counts
for each image and it is seen that the counts lie in the interval [0,2017]. If we
consider the vector of averages (N(1), N(3), N(2)) ~ (147,151,148) formula (A.7) has
1813444 terms that needs to be calculated, and if we consider the vector of medi-
ans (N(l),N(3),N(2)) =(96,97,96) there are 761 838 terms. In the lower end, if we
consider the vector (5,23, 6), corresponding to one of the pixels, there are only 1434
terms. In order to be able to perform the calculations we use a saddlepoint approxi-
mation (Jensen, 1995) to (A.7) whenever the number of terms to be calculated is
too large. We notice that it follows from (A.7) that the number of terms is bounded
by 2(N1) + 1)2(N(2) + 1) and that this bound is independent of N3). Therefore we
use the saddlepoint approximation whenever at least two of the values of Ny, N,
and Nj are greater than 10 giving the upper bound 29282 for the number of terms
when calculating (A.7). Hence, for 930 pixels we use the exact probability given
in (A.7), for 16028 pixels we use a full saddlepoint approximation to (A.7) and for
the rest we use a saddlepoint approximation to p3(ny,--), p3(-, np,-) and ps(-,-, n3)
respectively. We defer the details to the appendix.

As a measure of the quality of the detection algorithm we use the area under
the receiver operating characteristic (ROC) curve (AUC) (Fawcett, 2006). The ROC
curve is a way of illustrating the perfomance of a binary classifier. It is created
by plotting the fraction of true positives out of the positives versus the fraction
of false positives out of the negatives, at various threshold settings. The AUC can
therefore be used as a measure of the quality of the classifier. The result is seen in
Figure A.4(a). We find that the AUC increases with increasing window size. As an
alternative to the ROC curves we consider the mean and standard deviation (std)
of 7 and 7,3 when the estimation is based on a 3 x 3 window. For the affected pixels
the mean of 7 is 0.337 with a std of 0.240 and the mean of #;3 is 0.667 with a std of
0.180. For the unaffected pixels the mean of 7 is 0.616 with a std of 0.180 and the
mean of 713 is 0.699 with a std of 0.155. We notice that there is a clear difference
between the estimate of r for the affected pixels and the remaining correlation
estimates.

As an interesting remark we illustrate that the performance of the change
detector can be improved by not only using #; from pixel i to classify pixel 7, but
also using the neighbouring values 7;s. This reflects the assumption of a locally
homogeneous ground; the correlations among the three images for a particular
pixel presumably resembles the correlations in nearby pixels. In Figure A.4(b) we
have used the rule that there is a change at pixel i if

#ljF<tjeW,)=m, (A.13)

where W, is the window of size n x n centered at pixel i. This method is a new
approach and as compared to Chatelain et al. (2009). We refer to the method as
the neighbourhood method. We notice that if n = m = 1 we simply have the rule
discussed above.

The three curves in Figure A.4(b) corresponds to three different classifiers based
on the neighbourhood method. The values of n and m define the classifier through
(A.13). For all three curves, the estimation of r is based on a window of size 3 x 3.
As can be seen in the plot the AUC is increased when the neighbourhood method is
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Figure A.4: (a) ROCs for the classification based on MLE for three three window
sizes. (b) ROCs for the classification based on the neighbourhood method. For all
three classifiers the estimation of r is based on a window of size 3 x 3. The values of
n and m refers to (A.13).

used. This implies that it is worthwhile to take the neighbourhood into account
when performing the classification of a single pixel.
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Appendix: Saddlepoint approximation

In this appendix we state a few details on the saddlepoint approximations used
in section A.3. We follow the procedure from section 2.2 in Jensen (1995). We
first find the saddlepoint approximation to p3(rny,n,,n3). From (A.4) we obtain the
Laplace transform

Zis)=l1-Ql"

X {1 _ blesl _ bzesz _ b3653 _ b12651+52 _ blf‘,esl +S3 _ b23652+53 _ b123651+52+53 }’

where b; = ¢q;;,1=1,2,3, b;; = 9;jqji — qi;qjj, i <], and byy3 =|Q|. The saddlepoint is
given as the solution to the equations

LlogZL(s)=m, i=1,23. (A.14)
Letting z; = €%, i =1, 2,3, and solving (A.14) we find that

. = Tli(l - b]Z] - kak - b]'kZ]'Zk) 2123 (A 15)
! (a+ni)(bi+bijzj+bikzk+b123zjzk), T '
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with b;; = b;;, i < j. The saddlepoint can now be found from an iterative scheme
based on (A.15), and the saddlepoint approximation is then given by formula (2.2.4)
in Jensen (1995).

The saddlepoint approximations for p3(ny,-,-), p3(-, 1,-) and p3(-,-, n3) are found
in a similar way. We only consider the approximation to p3(ny,-,-) since the others
can be found by symmetry. By differentiating (A.4) n; times with respect to z; and
letting z; = 0 we obtain

(b1 +byozy +b1323 + by32p23)"
(1 =byzy — b3zz — by3zp23)**™

anlpa(nlyj,k)ZQZ’é = |- Q*a'™
ik

Normalising both sides by }_; ; n1!p3(n1, j, k) we get the following Laplace transform
7

ZH(s2,53) Z(

by + byoeS? + by3e% + by pzestss \m 1—by—by—b a+my
1 12 13 123 2 3 23
bl +b12+b13+b123 1 —b2652 —b3€s3 —b23esz+53

The saddlepoint is given as the solution to the equations
a%log,%(sz,%) =n;, i=273. (A.16)
Letting z; = €%, i = 2,3, and solving (A.16) gives the two quadratic equations
didyia +n;)zf + (dpdi(ny +n; + @) = digdyi(n; =)z —nidind; =0, i=2,3,

where diO =1- b]'Z]‘, dil = bl + bljZ]‘, dlz' = bli + b123Z]' and di = bi + bjizj! i,j =23,
i # j, with b;; = bj;. The relevant solution to these equations is found by making
sure that z; > 0, d;; +dy;z; >0 and d;y +d;z; >0, i = 2,3. Again the two equations
are solved by an iterative scheme where new values are found with fixed values of
the d’s, and formula (2.2.4) from Jensen (1995) gives the approximation.

The saddlepoint approximation described above for the NB3-distribution can
also be considered for the NB,,-distribution, m > 3. However, it can only be used
for large counts and the quality of the approximation may well depend on the
dimension m.
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Supplementary material

This appendix presents applications of the above results not included in the sub-
mitted version of Paper A.

A.I Application to a-permanental random fields

The a-permanental random field (a-prf) is studied in detail in Moller and Rubak
(2010). In this section we show that this model fit into the setup of Paper A and
apply the results.

Let S ={sy,...,5,,} be an arbitrary finite set, and let N = (N, s € S) be a collection
of non-negative integer-valued random variables. The a-prf is defined as follows.

Definition A.5. N = {N,,s € S} is an a-permanental random field with parameter
(a, C) if the probability generating function is given by

¢(2) :JE]_[Z§VS = [ +a(I-2Z)C[V*, (A.17)

seS

with Z = diag(zy,...,2,,), a a positive number and C a real m x m matrix.
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With this definition it follows from (A.1) that the a-prf corresponds to the multi-
variate negative binomial model with parameters (1/a,aC). Due to the parameteri-
sation the formulas for the moments take a different form than (A.2). The first and
second order moments of the a-prf can be found to be

IEN,' = Cjj, IE(NiNj):aCijCji+Ciiijf iij,

Var N; =Cii+0(Cl-2i, COV(NZ',N]‘)ZOCCZ']‘C]'I' li]

Therefore, in the a-prf the parameter a scales the variance independently of the
mean which is not the case in the multivariate negative binomial model.
The matrix Q from (A.4) becomes here C = aC(I + aC)~! and the reformulation

of the pgf is given by
~ /a
-cl\
p(z) = ( :

[I-2zC]

The results of the paper now applies to the a-prf; one simply has to replace 4;; by
(XCZ']' and qu by Eij'

For the rest of this section we consider the a-prf in the case m = 3 when C is
symmetric and with identical diagonal entries. Proposition A.3 gives necessary
and sufficient conditions on A for (A.1) to represent the pgf of a positive discrete
infinitely divisible distribution when A is symmetric. Applying this proposition
results in a simple way of characterising infinite divisibility for all « > 0 which is
the case if

@(z) = [ +a (I -2Z)C[V/*

is a pgf of a positive discrete random vector for all ay,a; > 0. To deduce the con-
ditions we apply Proposition A.3 with Q replaced by C. The matrix C depends on
a and hence the conditions should be satisfied for all & > 0. It leads to the following
corollary.

Corollary A.6. Let @ > 0 and let

d a b
C=la d e, (A.18)
b e d

with d >0, a,b,e € R, satisfying |e| < |a| and a®,b?,e?> < d*. Then the function ¢(z) =
I +a(I - Z)C|7V is a pgf of a positive discrete infinitely divisible distribution for all
a > 0 if and only if one of the following conditions is satisfied.

* At least two of the parameters a, b and e are equal to zero.
* ae =0, sgn(a) =sgn(e), a®,e? = d* and % <b < %.
* ae=0,sgn(a)=sgn(e), a%,e? = d? and % <bs<%.

The result gives rise to the following corollary that gives an alternative way of
characterising infinite divisibility for all @ > 0 when C is invertible and of the type
(A.18).
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Corollary A.7. Let the assumptions be as in Corollary A.6. Furthermore, assume that
|C| # 0. The matrix C satisfies the conditions for infinite divisibility for all a > 0 if and

only if
sgn((C™");j) = —sgn(|Cl)-sgn(Cyj), i #].

Proor. With C as defined in the corollary we obtain that

d?—e? be—ad ae-bd

ct'= o|be—ad d>-b% ab-ed|.
IC] ae—bd ab—ed d*-a?
Then the result follows directly from Corollary A.6. O

We notice that Corollary A.7 implies that if |C| > 0 then the distribution is infinitely
divisible if and only if the ijth element in C~! is of the opposite sign as the ijth
element of C when i # j. If |C| < 0 they should be of the same sign.

As a final remark, we notice that the setup of Henderson and Shimakura (2003)
can be fit into the setup of the a-prf and therefore the results apply.

A.IT Application to data: Danish testis cancer

We consider a data set from Choo and Walker (2008) on the occurrence of testis
cancer in the 19 municipalities in the county of Frederiksborg, Denmark, together
with the expected numbers based on population counts (see section B.4.2 for further
details about the data). Rubak et al. (2010) have analysed this data using a com-
posite likelihood based on the two-dimensional marginals with a NB,-distribution.
Here we consider the use of three-dimensional marginals following an infinitely
divisible NB3(a, A)-distribution with a symmetric matrix A with non-negative off-
diagonal entries. Since the marginal means are aa;; we let 4;; = E;/a where E;
is the expected count. The following correlation structure is assumed. For two
municipalities i and j that share a border (denoted by i ~ j) the correlation is p, for
two municipalities i and j that do not share a border, but share a border with the
same third municipality (denoted by i = j), the correlation is o and otherwise the
correlation is zero. Let i = j denote that either i ~jori = j.

The parameters p, 0 and a are estimated by maximising a trivariate composite
likelihood given by

Ei(p,a,a;n):pz(n],ns;p,a)wls I_[ p3(n,, ngn;p,0, ). (A.19)

r<s<t
r=s,r=t,s=t

The first term in £3, accounts for the two municipalities Jegerspris and Skibby
that share a border and are separated from the other municipalities by water. It
is assumed that these municipalities are not related to any other municipality.
The weights of the likelihood is chosen such that when p = ¢ = 0 the composite
likelihood £3, approximately coincides with the likelihood function £! obtained
when the observations are independent and negative binomially distributed. We
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notice that £!(a;n) = ]_[21 p1(n,;a). For p = 0 = 0 the composite likelihood function
L3, reduces to

19
£E§U(a; n) = I_[pl (nr; a)ZSihszr wrs’

r=1

with w,s = w,,, r #s. Hence, the weights are chosen by solving the system of linear

equations given by
Z we~1, r=1,...,19.

SET,S=T

For this the procedure 1sqlin in MATLAB was used.

Figure A.5 shows the variation in £3,. For a set of (p,0) the log-composite
likelihood is plotted as a function of a. The log-likelihood log £! for the data, when
the data is considered to be 19 independent negative binomial variables, has been
added to the plot. As can be seen there is little evidence for correlation in these data.
The estimate obtained by maximising (A.19) is found to be (&, ¢, &) = (36,0,0). Con-
sidering the case where we assume the data to be independent negative binomial
variables the likelihood interval {a|log £!(a) > maxz-log L1 (&) — 2} clearly covers
a = oo. The negative binomial distribution with a = co corresponds to independent
Poisson distributions.
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Figure A.5: Plots of £3, as functions of a for fixed values of p and o. The black
dashed curve represents £!.
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Abstract: In this paper we consider a multivariate mixed Poisson model where the mixing
variable arise from a function of independent and identically distributed random variables
whose common distribution belongs to an exponential family. For models of this type
the full likelihood is only rarely tractable and a composite likelihood based on the two-
dimensional marginals is considered. The main result of the paper gives conditions for
existence, consistency and asymptotic normality of the maximum pairwise likelihood
estimate. The results are illustrated through a simulation study and application to data.
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B.1. Introduction

B.1 Introduction

Correlated count data is often observed in applied fields and models based on
mixtures of distributions are widely used to describe these data. One advantage of
mixture distributions is that it is possible to construct multivariate distributions
that allows for overdispersion, i.e. the variance exceeds the mean noticeably, con-
trary to e.g. the Poisson distribution where the variance and the mean are equal.
In this paper we consider a multivariate mixed Poisson model where the mixing
distribution belongs to an exponential family.

A discrete random variable Y follows a mixed Poisson distribution (Grandell,
1997) with a mixing distribution having probability density function (pdf) f, if its
probability function is given by

Xy
IP(YZ}’):J e f(dy, p=01,...
o ¥

This univariate case generalises naturally to the multivariate case assuming condi-
tional independence. Let f, be a pdf defined on R”. The corresponding probability
function of the discrete random vector Y = (Yy,...,Y,) is

n x?z
P(Y =y) = f 11 ;e""fnmdx,

+ =1

with y = (y1,...,9,) and x = (x,...,x,).

Often a log-Gaussian distribution is used as mixture distribution but the result-
ing distribution is quite complex. In the literature there has been several attempts
to construct useful multivariate models where the mixing distribution is a multi-
variate gamma distribution. Henderson and Shimakura (2003) and Chatelain et al.
(2009) consider a multivariate mixed Poisson distribution where the mixing distri-
bution is a multivariate gamma distribution defined through its Laplace transform.
Fiocco et al. (2009) presents a new version of the model considered by Henderson
and Shimakura (2003) where the multivariate gamma distribution is constructed
by use of a renewal process and the fact that the gamma distribution is infinitely
divisible. We refer to Fiocco et al. (2009) for details. Another multivariate Poisson-
gamma model has been presented in the paper by Choo and Walker (2008). The
model is used for investigating spatial variations of disease, when the observations
arise from non-infectious diseases and the investigation is concerned with spatial
variations of disease risk in small areas. Their argument for the model is that two
neighbouring areas share many similar features, socio-economic characteristics
and levels of exposure to potential hazards for instance. Hence, it seems natural to
consider the spatial correlation between neighbouring areas if one wants to create a
model for disease counts. The observations are disease counts in geographical areas,
and since information about the expected count in each area often is available,
this is incorporated in the model. The multivariate gamma distribution used in
this model is constructed by sums of independent gamma random variables. The
model we present in this paper is a generalised version of the Choo and Walker
(2008) model. The mixing variable considered in this paper arises from a function
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of independently and identically distributed random variables with a distribution
belonging to an exponential family.

A challenge of these models is that the full likelihood is only rarely tractable, and
therefore makes maximum likelihood estimation complicated and often impossible.
One way to overcome this problem is to consider a Bayesian approach and construct
a Gibbs sampler for the posterior distribution. This is the method of Choo and
Walker (2008). Another way is to consider composite likelihood estimation (see
Varin et al. (2011) for an extensive overview). Since the two-dimensional probability
function often is tractable, estimation based on the log-pairwise likelihood function
is possible. Henderson and Shimakura (2003) and Chatelain et al. (2009) both
consider maximum pairwise likelihood (MPL) estimation but only Chatelain et al.
(2009) consider the asymptotic properties of the resulting estimate. Chatelain et al.
(2009) consider asymptotic properties of the estimate based on N independent
samples from the distribution of interest with n = 3 and then let N turn to infinity.
In this paper we consider MPL estimation and study the asymptotic properties of
the estimate in the case with one sample only, but with # turning to infinity.

The paper is organised as follows. The model is formulated in section B.2 and
the asymptotic results are derived in section B.3. To conclude, a simulation study is
performed and the model is applied to the data of interest in Chatelain et al. (2009).
The results are given in section B.4.

B.2 Model formulation

We consider n areas (subsets) of R? and define a symmetric and reflexive neighbour-
hood relation ~ between the areas (e.g. two areas are neighbours if they share a com-
mon border). The neighbourhood A; of area i is defined as A; = {j € {1,...,n} : j ~i}.
For easy reference, we let m; = |A;| denote the number of areas in neighbourhood
A;. Furthermore, we let A;; = A; UA; and m;; = |A;j].

Let Y; be the observed count in area i and let X; be a latent variable associated
with area i. We let X be all of the latent variables and X; = {X;,i € L} for a
set L C{1,...,n}. The counts are modelled as conditionally independent Poisson
random variables

Yi|X ~Po(Bip(Xa)), i=1,..,n (B.1)

where f; € B C R, is a known covariate and p(X,,) is a positive function of m;
variables. The latent variables Xj,..., X,, are assumed to be independent and iden-
tically distributed random variables with a common probability density function
fo(-) parameterised by 6 € ©® C R, belonging to an exponential family (Choo
and Walker (2008) model the X;s as independent gamma random variables and
#(X4,) = Liea, Xi)- That is, the density is of the form

fo(x) = a(0)b(x) exp{¢(6) - t(x)},

where @ : ® — RF and ¢ : R — R¥ are known functions. Furthermore, it is assumed
that ¢(-) is C*. The functions ¢(0) and p are chosen such that [E[u(Xy,)] is inde-
pendent of 6 (and typically equal to 1). We let 6 denote the true value of the
parameter O and for the rest of the paper we let the expected values, variances and
probabilities be with respect to 6 unless otherwise stated. For an example with
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specific choices of fy and p, see section B.4 below. We note that from the model
formulation it follows directly that Y; and Y; are independent if A;NA; =0 and,
furthermore, the moments of Y; follows by use of conditional distributions.

Let A; = Bipu(x4,) and let fpo(1)(v) = ’;—?e_/\ be the Poisson density. It follows from
(B.1) that the bivariate probability function for (Y;,Y;), i = j, i,j € N, is given by

pij(vi,y;0) = J;le_]_ Pij(vi, vjlxa,;) ]_[ Jo(x)d(xa,), (B.2)

ZEA,']'

with p;j(vi,9;1xa;,) = feo(a,) (Vi) feo(a,) (¥7)-
For the rest of the paper we consider the following assumptions.

(B1) Every area has at least one neighbour, excluding itself, and the number
of neighbours is limited, i.e. there exists K; € IN, such that 2 < m; < Kj,
i=1,...,n.

(B2) The set B C IR, is compact and for any neighbourhood A, with |A| < Ky, the
expected value of y, E[u(Xy)], is finite and independent of 6.

(B3) There exist functions cq, ¢, > 0 such that

(1) Var(¥jex: - 25108 pi(Y;, 0:60) | X4, ) 2 €1(Xa,),

(i) For j € A}: Var(u- 251ogp;;(¥i, 0;60)| Xa,) 2 2(Xa),

for all i € N and all unit vectors u.

(B4) There exists a finite constant K, and an open neighbourhood Vj, of 6 such
that

E Pz’j(Yi,Y]’;Q)lf

2ot i ) [ ot d(xa, )| < Ko

ZEA,']'

for 0 € V}y and for all polynomials p3 in |t,(x;)| of order less than or equal to 3,
r= 1,...,k, I EAij.

B.3 Asymptotics for the maximum pairwise likelihood
estimate

In this section we examine the asymptotic properties of the MPL estimate. Due
to the correlation structure in the model we consider the log-pairwise likelihood
function based on the bivariate probability function, p;;, for the pairs (Y}, Y;) with
i#jandi~j. Let A = A;\{i}. The log-pairwise likelihood function is then given
by
n
[20)=1) ") logpij(¥;, Y;;0) (B.3)

i=1 jeA:
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To ease the notation we let

n n
. 2
Uy(0) = 3 Z Z%logpij(Yi, Y;;0) and j,(60)=-3% Z Z 25 logpij(V;,Y};0).
i=1 jeA; i=1 jeA;
We notice that the number of terms in (B.3) is given by N,, = %Z?:l |A7|. The
following theorem, the main result of this paper, states that the MPL estimate of
the parameter 0 is consistent and asymptotic normal.

Theorem B.1. Let Y3,Y),... be observations from the model (B.1) and assume (B1)—
(B4). Then there exists a local maximum 0, of 12(0) with 0, — 0, in probability
and

Var(Un(00))™"* Elju(00)](0 = 05) = N(0,I).
Actually, this holds for any consistent solution 0, to the pairwise likelihood equation.

The model and the theorem above has been formulated for 6 € RY. The Cramér-
Wold Theorem (Cramér and Wold, 1936) states that a Borel probability measure on
R* is uniquely determined by its one-dimensional projections. Using this and the
uniformity with respect to u in assumption (B3), we can, without loss of generality,
in the proof consider the case d = 1 only. Thus, we let for the rest of section B.3 the
dimension of 0 be d = 1.

The result in the theorem follows directly by Lemma B.3, B.4 and B.5 below,
according to Theorem 4 in Jensen (2011a). Regarding the central limit theorem in
Lemma B.3 we refer to Jensen (2011b). In that paper a setup with variables indexed
by i € Z? is considered, but, following the steps of the proof, the setup of this paper
is covered as well. The first variance condition of assumption (B3) is used to obtain
a lower bound on the variance of U,;, and the second to get a lower bound on the
mean of j,. From Proposition B.6 below it follows that the conditions are fulfilled
when p is strictly increasing as a function of each of its arguments and #(x) - %(p(@)
is strictly monotone as a function of x when x is large. Assumption (B4) is used for
the uniform convergence of j,(6) in Lemma B.5. The condition can be rewritten as

- Pij(¥i:9j560)
j { Z L pij(yiryj|xA,-]-)}p3(xAij)]_[fe(xl)d(xAi]-)
r"i \, &=, Pij(¥i:9j;0) |
Y1,9;=0 ledy; (B.4)
ol

Hence, the assumption can be reduced to the condition that the function 6 —
pij(Y;,Y}56q)
pij(Y;,Y;;0)
properties.

Before we state and prove the three lemmas, we consider the bivariate prob-
ability function for the model (B.1) and prove an additional lemma needed for

Lemma B.3, B.4 and B.5. From (B.2) it follows that for k = 1,2, 3 we have that

pij(Y;, Yj;69)
pij(Yi, Y;;0)

= IEQ[P3(XA11)1E6[

should be bounded by a function of (Y;,Y;) with suitable integrability

%Pi]‘(}’ir}’j}e) = J;R Gg(xAij)pij(yiryj |xa;;) ]_[ Jo(x1)d(xa,), (B.5)
K leAi]'
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with

Ghlxa,) =) golx),  Ghlxa,) =) {580(x))+8o(x)Gp(xa,)}

lGA,‘/ ZGAl‘]‘ (B 6)
Golxa,) = ) {35280(x1) + 25580 (x1) G (xa,) + 80 (x) G (xa, )}
IGAZ‘]'
where
80(x) = 25 10g fo(x) = 25 loga(0) + t(x) - Z5¢(6). (B.7)
The following lemma ensures that the moments of aa—gkk logp;;(Y;, Y;;0) are finite.

Lemma B.2. Let Y1,Y,,... be observations from the model (B.1) and assume (B1). For
k=1,2,3 and m € IN, there exists 0 < 9, y < oo, such that

E[ | 55 log pij(¥i, Y55 00)|" | < Sy

J
9 e _ 7gPii(%i:9;00) ) .
Proor. We note that == logp;;(yi,y;;600) = w00 and from Minkowski’s in

equality it follows that
2
IE[ |25 log pi(V;, in90)|m]

2
- (IE[ 255pi;(Yi,Y;30)

pij(Yi, Yj;6)
IE[ |25 log pi;(V;, Yj190]|m]

2
< ' (%Pi]‘(YirYj;Qo))a_ 2ij(Yi, Yj;00) 22pij (Yi, Y3 00)
B pij(Yi, Y}5600) pij(Y;, Y;;60)?
mql/m\m
+E l ] .

3

2 pij(Y;, Y500)
pij(Yi, Y};00)

Hence, in order to prove the lemma it remains to show that for k =1,2,3 and m e N,

there exist 0 < 6,y < oo, such that

m

|

It follows from (B.2) and (B.5) that

2pij(Yi, Y;5600)
pij(Yi, Y};60)

2m~|l/m]m

mq1l/m

and

mql/m
| s

k
%Pij(yirYﬁQo)
pij(Yi, Yj56y)

k
22pij(vi,9j;600)
pij(i,vj;00)

= E[G§, (Xa,)]
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with E being the expected value w.r.t. the density Xp,; % nkeA-]- fo, (xx)-
if\YirYjr 1
From Jensens’ inequality it now follows that
k
2 pij(Y;, Y;500) "
E
pij(vi,yj; 00)
< E[B[IG§, (Xa,)I"]]
% pii (@i vjl1xa,) [ Tiea.. fo,(x1)
= ii(v1,v:;0 Gk XA.. " - - d(xy,,
Z pz](yz y] O)J;R'”ij| 90( A,])| pij(yifyj;QO) ( Al])

vi,9;=0

- J]?Rm,‘j
- J]?Rm,‘j

It follows from (B.6) that for fixed x, Ggo(xA,-,-)m is a polynomium in t(x;) with
coefficients that are continuous functions of 8 and therefore this is finite due to
properties of the exponential family. O

Gooea)l™ Y pijwivilxa) [ | fo,(ed(xa,)

%1,9;=0 leA;;

Go, Cea)I" | | fonen) d(xa, ).

IGA,-]-

We are now ready to state and proof the lemmas that combined give the result of
Theorem B.1.

Lemma B.3. Let Y;,Y,,... be observations from the model (B.1) and assume (B1)—(B3).
Then there exists €9 > 0, K < oo, such that ¢y < NLVar(Un(QO)) <Ky and

1

Proor. The proof in Jensen (2011b) can be used in our setup and the result of
Lemma B.3 follows if we show that there exists a finite ¢y, such that for all ¢

3
E[%logpij(Yi;YjZQO)] =0, IE[ |25 1og pii(Y;, Y;500)| ]S co,
and that there exists ¢ > 0, such that
n
Var(% Z Z%logpij(Yi, Yj;QO)) >¢egN,.
i=1 jeA:

The first two conditions are satisfied due to standard likelihood theory and Lem-
ma B.2. For the third, we wish to apply the law of total variance conditioning in
such a way that we obtain a sum of independent variables. Consider the following
recursion. Let i; € {1,...,n}. Then, for k > 1, choose i} € {1,..., n}\Uf;llAi]_ recursively

and let Q) be the largest value of k for which this is possible. Then, let I = U]Q:1{ij}/
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Ag = U](.)ZlA;.‘j and Y* = {Yj}jca,- Then

n
Vaf(% ZZ 2 logp;j(V;, ineo))

i=1 jeA:

n
> E[Vaf(% Z Z 2-10g pi(is1)(Yi Yie1300)| (X1}, Y)]

i=1 jeA:

- ZIE[Var(Z %logpij(yi, Y;;6) | X} Y*)].

iel jeA:

It now suffices to show that all the terms in the sum are greater than some constant
0¢ > 0. Since the calculations are identical for all terms, we only consider the first
term and assume, that i; = 1. Then

IE[Var( Z % logp1j(Y1,Yj;60) |X, Y*)]
JEA]

1

>E IP(Y] = 0,] € Axi |{Xl})Var(Z %logplj(Yl,Y],()o)HY] = 0,] € A;},X):I
JeA,

=FE exp{— Z /\j}Var( Z %logplj(Yl,O;GoﬂXA1 )]
) jEA] JEA]
>E exp{— Y Aj}cl(xAl)]. (B.9)

A}

From assumption (B2) and (B3) it follows that there exists a constant oy > 0 such
that IE[eXP{—Z]’eA; Aife1(Xa,)] = 6¢. This fulfils the proof. O

Lemma B.4. Let Yy,Y,,... be observations from the model (B.1) and assume (B1)-
(B3). Then

1. IE[NL]'”(BO)] > cq, for some ¢y > 0, and
2. N%jn(eo) —IE[N%]'H(QO)] — 0 in probability.

Proor. For the first part we notice that

Elju(60)]=4) ) Var(5logpij(Y;, ¥;60))

i=1 jeA:
Therefore, it is sufficient to show that there exists a 65 > 0 such that

Vaf(%logpij(Yi, Yj;eo)) > 8o

47



Paper B

for all j € A}, i =1,...,n. Using the same type of arguments as in (B.9) we obtain
that

Var( 55 log pi; (Y, ¥;360))
> E[IP(Y; = 0| X,,) Var( 55 log pij(Y;, Yj;60)  Y; = 0, X4, )|
= lE[e_’\f Var(%logpl-]-(Yi,O;Ho)lXAi)]
> Ele ey (Xa,)].

From assumption (B2) and (B3) it follows that there exists a constant oy > 0 such
that IE[e’/\J'CQ(XAi)] > 0p.

For the second part it follows from Chebychev’s inequality that it suffices to
show that

n

2
Var(zLN" ZZaa_mlOgPij(Yi,Yj;eo)) —0, n-—oo.
i=1 jeA]

Let /Lj = UueAl,],Au. We note that due to the Cauchy-Schwartz inequality and
Lemma B.2, there exists a constant 0 < M < oo such that

2 2
|Cov( 25 log pi;(Y;, Y} 00), 4> 10g prom( Yy, Ym}eo))| <M,

forje A}, me Ajand i, =1...,n. Due to assumption (B1) it now follows that

n
Var(%Nn Z Zaa—gzlogpij(yzu Yj;90))

i=1 jeA]
n n
4;]2 ZZZ Z |Cov( 25z 10g pij(Yi, Yj300), 257 108 Pim( Vi, Yius 60) )|
n

i=1 jeA] I=1 meA;]

LYYy ym

" i=1 jEA; IeA,; meA;

<

< —nK{.
N;

This fulfils the proof since N? is of order n. |

Lemma B.5. Let Y1,Y),... be observations from the model (B.1) and assume (B1)—(B4).
Then for all {0,,}, with 6,, = 0 for n — oo

. . P
sup |NL”(]n(9)_]n(60))|_>0-
{6|6_6|Sbn}
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Proor. Let {0,} be a sequence of positive real numbers, with 6,, — 0 for n — co. Let
By(0,,) be an open ball with radius 0,, centered at 6. Let 6 € By(9,,). Then

sup |NL(jn(9)_jn(90))|
0eBy(5,,)

< sup o XZLW log py;(Y;, Yj;60) ~ oz 1og pij (Y, Y3 60)|
0€eB(5,) i 1]6A

ZZJ |863 logpl] Yz;Y],V |dv

i=1 jeA]

Let € > 0. It follows from Markov’s inequality that

P( sup I5-(ia(0)~ ju(00)) 2 )

0€B,(5,,)
(LNZZJ z logPij(Yi;Yj;v)|dv2$)
i=1 jeA]
0y+9, ,
= ZL IE“aa_mlogpij(Yi;Yj;V)Hdv.
-5

From (B.8) it follows that

%Pij(lfi,Yj;G)H “(%Pi]‘(Yi,Yj;G))

]

IE[ |a‘7—93310gpij(Yi,Yj;6]| ] < ]EH

pij(Yi, Y;;0) pij(Y:, Y;;0)
31E[ 2pij(Y;,Y;50) 3/2]2/3113[ 2p;i(Y;,Y;;0) 3]1/3
+ 00T I 007 )7 7 ,
pij(Yi, Y;;0) pij(Y;,Y;;0)

As in the proof of Lemma B.2 it follows that

[‘aa_gkkplj(yuyv];e ‘ ] Ian,] XA |mp1](Yl’ |XA7])]_[16AZ]f@(Xl)d(XAU)
pij(erYJIQ) B pz](Yiij;Q)

with mk = 3 for k = 1,2, 3. The result now follows from assumption (B4). O

The next proposition gives sufficient conditions for the conditions in assump-
tion (B3) to be fulfilled.

Proposition B.6. Assumption (B3) is fulfilled if the functions x; — pu(xa,), | € A;,

i =1,...,n, are strictly increasing and if there exists a constant ¢ € R such that the
function x +— t(x) - %@(6) is strictly increasing (or decreasing) for x > c.

Proor. We consider only the first condition of assumption (B4) since both con-
ditions follow from the same type of argument. By use of (B.2)—(B.7) we obtain
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that

Jgems QO(XA,])pzj(yvleA,])]_[leA fo,(x1)d(xa,,)

]

20 ng](?z» , O)—
jex ];1 LRmi,- Pij (i, 01xa;) [ Tiea,,; fo,(x1)d(xa;;)
TP el | Jo,(x1)d(xa,

.[]Rm’]
_: ) 1 Ai=A;=A
mij eyz °8 ]l_[leA fe() xl) ( ])

JEA]

- ZIE%‘[GQO Xa)b

jea;

)

j

with [E,, being the expected value with respect to the density

log A4~
ehios iea; fo,(x1)
xAi'

H
Tog A, '
T [y €08 "Tliea,, fo,(x1)d(xa;)

When y; increases the term e¥11°8%~4i shifts the mode to larger values of A; and

hence larger values of the x;s since the functions x; = A; = B;u(x,,) are strictly
increasing. We notice that

G, (xa,) = mij 25 loga(Oo) + ) t(x1)- 2(6).
ZEA,‘]'

By assumption we then have that Géo is strictly increasing (or decreasing) for large
values of the x;s. This implies that there exists a constant 0 < ¢ < oo such that
) ZjeAf % logp;j(yi,0;00) is strictly increasing (or decreasing) for y; > c. We can

therefore conclude that Var(ZjGA; % logp;;(Yi,0;00) |XA,-) > 0. |

We note that the assumption about Poisson distribution is not essential. The only
place the Poisson distribution plays a role is in the proof of Proposition B.6. Hence,
the result in Theorem B.1 can be generalised to other positive discrete distributions.

In section B.4 below we consider the setup with fy being the density function
of a gamma distribution with mean 1 and variance 0~!. Before we turn to that
setup, we notice that the conditions of Proposition B.6 are fulfilled for the classical
Poisson log-normal setup (Aitchison and Ho, 1989) with fy being the density of

a normal distribution with mean —6/2 and variance 6. Mathematically, fy(x) =
(x+0/2)?

ﬁexp{— o) for x € R and p(xa;) = exp{)jeq, 1}, i = 1,...,n (this ensures
that 4> 0and E[u(X,,)]=1,i=1,...,n). It follows that p is strlctly increasing in

all of its arguments and that #(x) - %(p(@) Zx is strictly increasing for x > 0.

B.4 A Poisson-gamma setup

To illustrate the main result of the paper we consider the following example where
the latent variables are modelled as independent gamma random variables with
mean one (Choo and Walker, 2008). For the rest of this section we let

folx) = 2el0-Dlogx-0x 5 9 g5, (B.10)
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and as ‘correlation’-function p we let p(x,,) = le ) ica, xj implying that assump-
tion (B2) is fulfilled with E[u(X,4. )] = 1,1 =1,...,n. It follows from Proposition B.6
that assumption (B3) is fulfilled for this setup since #(x) - %@(9) =logx — x, which
is increasing for x > 1 and y is strictly increasing in all of its arguments. Let
m?j =|A; N A;|. From the model formulation it then follows that

BiB;j Cov(u(Xa,), p(X4,))

COI‘(YI‘, Y]) =
B E(Xa )]+ B2 Var(u(Xa, ))) (B E[ (X )] + B2 Var(u(X,)
1]

(B.11)

B \/W\/(l +6m;/B;) (1 + 9’”]’//3]'),

for i = j with A; N A; # 0. Therefore, with this definition of y, large values of 0
correspond to weak dependence between the counts.

B.4.1 Simulation

We perform a simulation study to illustrate the main result of the paper. For
simplicity we consider the one-dimensional case, that is, instead of subsets of R?2
one can think of the areas as consecutive intervals of the real line, IR. Hence, the
neighbourhood of interval i becomes A; ={i—1,i,i+ 1} withm; =3,i=1,...,n, im-
plying that assumption (B1) is fulfilled. With this setup the log-pairwise likelihood

reduces to
n-1

12(0) =) logp; i1(Y;, Yii130).
i=1
Furthermore, we are able to derive a closed form of the bivariate probability func-

tion of interest by use of (B.2) and the binomial theorem. For u,v € INj it is given
by

Piji+1(1,v;0)
_ (Bi/m)* (Biz1/mis1)” 940
-l v T(20)T(0)2 (B.12)

y SR (u)(v) L(I+j+20) T(u-1+60) T(w-j+0)
=0 =0\ 1\ (

l %+%+9)l+]’+26 (fz_ii+6)ufl+9 (%_{_e)v—ﬂ@'

From this we can show that assumption (B4) is fulfilled. Let 0 < 6 < 1 and let
Os = 0 +6. Furthermore, let a € R, and k € N and consider the following inequali-
ties.

k+
(a+0)k+0 < 6(9,5)( <c(6,5)(1+¢(0,5))F

k+6 \k+0
(a + 95)k+60 B )

k+60 -9

and

I'(k+0) < (/108 (k+O)-08T(k+6,)| < (@) 5)p(6.0)108(14k)
F(k + 95)
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with ¢(60, ) and ¢(6, 0) being generic positive and finite constants dependent on 6
and 6. Moreover, ¢(0,0) — 0 for 6 — 0. Using each of these three times we obtain

pi,i+1(1,v;0 £9)
Piji+1(u,v;0)

< 6(9,6)(u4 + 1)4 + 1)(1 + 5(9’6))u+v

<(0,0)(1+¢(0,0))"",

where ¢(0,0) is a generic positive and finite constants dependent on 6 and 6.
Pi,iv1(Y;, Yiy1;0£9)

Considering the expression of (B.4) we obtain that
]E[(X,,)IE[ X]]
0[Pt i) 0 Pi,i+1(Yi, Yi41;0) Aiden

<c(0,9) IEe[pa XAiin) IEQ[ (1+&(6,6))YitYim XAM”
c(6,96) 1E9[p3 Xa,,.)e £(6,0)Bi1(Xs,) (O, ﬁ,ﬂp(XAM)].

From (B.10) it follows that this is finite since f8;¢(6,0) < 0 for ¢ sufficiently small.
For comparison in the numerical results, we also estimate 6 by the method of
moments. We notice that [E[Y;/8;] =1 and

& forli-jl=1
L 1 .
COV(E, ﬂ—]) = COV(P‘(XAi);M(XAj)) ={d forli—j|=
0 otherwise.

\O

An estimate of ¢ = 1/6 can then be found as

n-1 n— 2
¢M0M=%{%Z(% N5z -1)+ %z:z—l)}-
i=1 1:1

To create the sequence {f;} to be used in the simulation, we simulated indepen-
dent observations from a N (15, 81)-distribution and then uniformly sampled 5000
observations from the interval [6,45]. The true value of the parameter is 6 = 2.

Table B.1 and Figure B.1 show the results of the simulation. The empirical bias
(bias), standard deviation (std) and root mean squared error (rmse) of the logarithm
of the estimated parameter 6 has been reported in Table B.1. Q-Q plots for the
logarithm of the MPL estimate is shown in Figure B.1. The number of Monte Carlo
runs is 1000. As expected from Theorem B.1, the bias, std and rmse decreases as
n increases and the Q-Q plots show that the asymptotic distribution is normal.
Furthermore, we notice that MPL performs better than the method of moments.

B.4.2 Application to data

We consider the data set from Choo and Walker (2008) on the occurence of testis
cancer in the 19 municipalities in the county of Frederiksborg, Denmark, together
with the expected numbers based on population counts. Due to the definition of
fo and p it is possible to find a closed form of the bivariate probability function of
interest which resembles (B.12). Two municipalities are neighbours if and only if
they share a common border. Hence, the A;s have been defined by considering a
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Theoretical Quantiles

Theoretical Quantiles

Table B.1: Bias, std and rmse of the logarithm of the estimate.

MPL Moment
n bias std rmse bias std rmse
20 0.1380 0.6045 0.6197 0.5374 1.1394 1.2592
50 0.0568 0.3614 0.3657 0.2451 0.7696 0.8073
100 0.0332 0.2491 0.2512 0.1342 0.5404 0.5565
250 0.0119 0.1521 0.1524 0.0332 0.2751 0.2769
500 0.0098 0.1106 0.1110 0.0306 0.2039 0.206
1000 0.0072 0.0771 0.0774 0.0155 0.1395 0.1402
5000 0.0005 0.0351 0.0351 0.0005 0.0630 0.0630
n=50 n=100 n=250
N Jeo i 900 N o
: : 7] ¢ 7]
070 075 1?0 115 210 075 110 115 014 016 018 110 112
Sample Quantiles Sample Quantiles Sample Quantiles
n=500 n=1000 n=5000
7] ¢ 7]
0?4 0?6 018 110 12 0?5 0?6 0?7 0?8 0?9 0.:30 0.I65 0.I70 0.75 0.;50

Sample Quantiles

Figure B.1: Normal Q-Q plots of the logarithm of the estimated parameter 6.

Sample Quantiles

Sample Quantiles
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Table B.2: Danish testis cancer data.

i Municipality name Y; Bi A;

1 Allered 18 17.61 {1,2,3,10,12,14,17,18}
2 Birkered 17 1820 {1,2,3,12}

3  Farum 14 13.65 {1,2,3,18}

4  Fredensborg-Humlebak 14 14.29 1{4,7,9,10,14}

5  Frederikssund 21 13.17 {5,6,16,17,19}

6  Frederiksverk 14 14.63 {5,6,8,11,16}

7 Greested-Gilleleje 13 1238 {4,7,8,9,10}

8 Helsinge 8 13.66 {6,7,8,10}

9  Helsinger 31 47.18 {4,7,9)

10 Hillerod 28 27.23 {1,4,7,8,10,14,16,17}
11 Hundested 8 6.44 (6,11}

12 Hersholm 28 17.04 {1,2,12,14}

13 Jeegerspris 4 6.05 {13,15}

14 Karlebo 12 13.78 {1,4,10,12,14}

15 Skibby 6 457 {13,15)

16 Skeevinge 6 428 {56,10,16,17}

17  Slangerup 3 6.44 {1,5,10,16,17,18,19}
18 Stenlose 13 1047 {1,3,17,18,19}

19 Olstykke 14 1093 {5,17,18,19}

geographic map. As covariate information we let §; = E;, i = 1,...,n, where E; is the
expected count in municipality i. The data is shown in Table B.2.

Estimating the parameter & by MPL gives the result 6 = 16.93. A histogram
of the resulting correlation estimates, calculated by use of (B.11), can be seen in
Figure B.2. A simulation under 6, = oo (corresponding to the model where the
Y;s are independent and Y; ~ Po(p;), i = 1,...,n) shows that a value of O less than
16.93 happens with probability 0.211. The result coincides with the conclusion
of Rubak et al. (2010). In that paper, they consider another type of model where
spatial correlation also is taken into account, and reach the conclusion that there is
little evidence of spatial correlation in the data.
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On bivariate time series of counts
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Abstract: The focus of this paper is on modelling bivariate time series of counts. We
consider a Poisson-based bivariate INGARCH model where the bivariate Poisson distribu-
tion is constructed by trivariate reduction of independent Poisson variables. We show that
stability results previously obtained in the literature extend to the case where the Poisson
distribution is replaced by a general distribution from the exponential family. Furthermore,
we show that the maximum likelihood estimator of the parameter of the model is strongly
consistent. A limitation of the model is that it is not able to capture negative dependence
between the two time series. We propose a new bivariate Poisson distribution to replace the
distribution in the bivariate INGARCH model. It is constructed by use of copulas, which
allows it to capture negative dependence between the two time series at a given point in
time. We show that the aforementioned stability result also applies in this new setup. The
two types of models are compared through a simulation study, and both models are applied
to a real data example. This is work in progress.

Keywords: Copula, time series, likelihood inference, asymptotics, count data.
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C.1. Introduction

C.1 Introduction

Multivariate count data are frequently encountered in applied fields and the data
are often observed over time, resulting in multivariate time series of counts. The
focus of this paper is on modelling bivariate time series of counts. When construct-
ing a model for bivariate (or multivariate) time series both the modelling of the
dependence between the two time series at a given point in time and the modelling
of the serial dependence needs to be considered. For the univariate case, the serial
dependence is often modelled by use of an autoregressive (AR), autoregressive
conditional heteroskedasticity (ARCH) or generalised ARCH (GARCH) model. It is
not a simple matter to model the dependence between the two time series at a given
point in time (conditional on previous events) as there do not exist natural general-
isations to two dimensions for many of the standard discrete distributions (e.g. the
Poisson and the negative binomial distributions). For a comprehensive treatment
of bivariate (and multivariate) Poisson distributions we refer to Kocherlakota and
Kocherlakota (1992) and Johnson et al. (1997).

There are several models in the literature that describe univariate time series of
counts, see for instance Davis et al. (1999), McKenzie (2003) and Jung and Tremayne
(2006). The treatment of the bivariate case is not as extensive but some models
can be found in for instance Heinen and Rengifo (2007), Pedeli and Karlis (2011)
and Liu (2012, Chapter 4). The model proposed in Liu (2012) is a Poisson-based
bivariate integer-valued GARCH (INGARCH) model which is capable of capturing
the serial dependence between two time series of counts. As the bivariate Poisson
distribution of that model is constructed by using trivariate reduction it can not
capture negative dependence between the two time series, which is a limitation.

In this paper we propose a new model for bivariate time series of counts that
is able to capture negative dependence between the time series under certain
assumptions. The model is a Poisson-based bivariate INGARCH model of the same
type as the model proposed in Liu (2012), i.e. the structure of the conditional mean
process is the same, and the marginal counts are conditionally Poisson distributed.
The difference lies in the modelling of the dependence between the two time series
at a given time. In the new model the dependence is modelled by a copula, i.e. the
bivariate Poisson distribution, is constructed by combining two univariate Poisson
distributions by a copula.

We use copulas, which, loosely speaking, are functions that couple marginal
distribution functions. In other words, a cumulative distribution function (cdf)
can be written in terms of marginal distribution functions and a copula, where the
marginal distribution functions describe the distribution of the marginals, and the
copula describes the dependence between the marginals. Mathematically, a func-
tion C:[0,1]4 —[0,1] is a d-dimensional copula, if C is a cdf of a d-dimensional
random vector on [0,1]? with uniform marginals (Joe, 1997; Nelsen, 2006). From
Sklar’s theorem (Sklar, 1959) it follows that if C is a copula and F and G are dis-
tribution functions, then the function H(x,y) = C(F(x), G(v)) is a joint distribution
function with marginals F and G. The reverse is also true, but the copula C is
only uniquely determined if F and G are continuous. Since Sklar’s theorem also
holds in d dimensions, the results of this paper can presumably be extended to d
dimensions.
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We consider Archimedean copulas, since these possess two great properties
compared to, for instance, non-parametric copulas. Firstly, Archimedean copulas
allow modelling of dependence in arbitrarily high dimensions by use of only one
parameter. Secondly, the most common Archimedean copulas (e.g. the Frank
and the Clayton copulas) have an explicit formula for the cdf. Archimedean
copulas are copulas of the form C(u,v) = 1/)[_1](1,D(u) + ¥ (v)), where the generator
¥ :[0,1]? — [0,00] is a strictly decreasing, convex function with (1) = 0, and w[_l]
is the pseudo-inverse satisfying 1(il~11(¢)) = min(t, 1(0)). Details about the Frank
and Clayton copulas can be found in section C.4.1.

The paper is organised as follows. In section C.2, the common structure of the
model presented in Liu (2012) and our new model is described. Section C.3 gives
further details of the model in Liu (2012), and an extension of it where the Poisson
distribution is replaced by an exponential family is considered. Furthermore,
consistency of the maximum likelihood estimator is proved for the model in Liu
(2012). Details of our new model are given in section C.4, and a stability result
for the conditional mean process is proved. In section C.5, a simulation study is
performed, and in section C.6 the two models are applied to a real data example.

C.2 Structure of the models

In this section, we consider the common structure of the model presented in Liu
(2012) and our new model but defer the details to the following two sections. The
basic structure of both models is a Poisson-based bivariate INGARCH model which
is able to capture the serial dependence between two time series of counts.

Let Y, = (Y1, Ytlz)T be the bivariate observation at time t, where {Y; ,t > 1} and
{Y;2,t > 1} are the two time series of interest. A Poisson-based bivariate INGARCH
model of order (1,1) is defined as

Y| 5 ~BP(A 1, Ao @), Ar= (A1, Ain)T =8 +AA +BY, (C.1)

where F; = 0{A1,Yy,...,Y;} is the o-algebra of past events, ¢ € [, where [, is a
subset of R, & = (8;,0,) € R? and A, B are both 2 x 2 matrices with non-negative
entries. The notation BP(A; 1, A;», @) denotes a bivariate Poisson distribution whose
marginal Poisson distributions have means A;; and A, ,, respectively, and ¢ is
used for modelling the dependence between the two time series — either through
a common Poisson term or a copula (see sections C.3 and C.4). It follows that
{A¢} ={Ast > 1} is the conditional mean process. If the largest eigenvalue (spectral
radius) of A, p(A), is strictly less than one it follows by recursion that

A >(I-A)'s forall t. (C.2)

We shall see later that this model is able to capture dependence between Y; ; and
Y, if @ # 0 (section C.3) or ¢ does not induce the independece copula (section C.4)
or if the coefficient matrices A and B are not both diagonal. We notice that {A,}
constitutes a bivariate Markov chain.

In the following sections, we consider maximum likelihood estimation (MLE) of
the parameters, and for the model proposed in Liu (2012) we study the asymptotic
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behaviour of the estimate. Due to the common model structure, the likelihood func-
tions of the two models are of the same form. Let A ={a;;}; ;1,2 and B = {B;;}; j-1,2-
Then, we obtain the parameter vector 8 = (01,02, @11, 12, A21,A22, B11, P12, P21
B22,9)T. The parameter space is denoted by © C R'!, and the true value of 6
is denoted by 8. The likelihood function based on the observations Yy,...,Y, and
conditional on A, is given by

n n
L(eler"'lYn!/\l) = f(Yl |’\1r9)l_[f(Yt|Y1r"'rYt—1r/\1r9) = ]_[pe(Ytl’\t)
t=2 t=1

with pg(Y;|A;) being the conditional probability mass function (pmf) of the respec-
tive model ((C.3) or (C.5) below). Furthermore, the log-likelihood function is given
by

1(0)= ) logpo(Y:|A)).
t=1

C.3 Modelling of dependence through trivariate reduction

In this section, we consider the model proposed in Liu (2012), where the bivari-
ate Poisson distribution is constructed by trivariate reduction (Mardia, 1970),
where two dependent Poisson varibales are constructed from three independent
Poisson variables. We adopt the setup of section C.2. Conditional on F_4, let
Xy ~ Pois(Ay1 — @), Xy ~ Pois(A;, — @) and X3 ~ Pois(@), 0 < ¢ < min{A; 1, A; 5},
be mutually independent Poisson random variables and let Y;; = X; + X3 and
Y; » = X5 + X3. The pmf of Y, is then given by

Po(Yiy =m, Yy p =n|F_)
mAn

= ) (X1 =m—s)Pg(X, = 1n—5)Py(X5 = s) (C.3)
s=0

= ei(/\t,l"’At,Qi(P) (/\t'l _ (p)m (/\tlz - (p)n nil "I S|( (P )S
m! n! ARIAS ’ (A1 =) (A2 — @)

S=

with mAn = min{m, n}. For this model, the correlation structure is modelled through
the common random variable X3 with Cov(Y; 1, Y; | F_1) = ¢. When p(A) <1, (C.2)
provides a feasible upper bound on ¢, since 0 < ¢ < min{A;,A;,} for all ¢. It
follows that this model is only able to capture dependence between the two time
series if ¢ > 0 or if A and B are not both diagonal. Furthermore, we notice that with
the above construction of the bivariate distribution there is an upper bound on the
correlation. Assume that A;; < A;,. Then

%
Cor(Yy1, Yol Fio1) = ———== < A1/ A2
o VAL1 A2 T

If A;1 << A;, then Cor(Y;, Y| F-1) << 1. This might be the case if ay, a3, 11,
Bi2, P21 and B, are very small while §; << 9,.
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Before continuing, we introduce some necessary terminology and definitions.
We let [[J||, = maxy.o{llJxI|,/lIx[l, : x € C"} be the p-induced norm of a general matrix
J € C"™" for 1 < p < co with [[x[|, denoting the p-norm of the vector x. We note that
[IJIl; is the maximal absolute column sum of J, and ||J||, is the maximal absolute row
sum. The following definition introduce the e-chain, a property that is important in
the proofs of Propositions C.2 and C.9 below.

Definition C.1. [Meyn and Tweedie, 2009] The Markov transition function P is called
equicontinuous if for any continuous function f with compact support, the sequence
of functions {P* f : k € N} is equicontinuous on compact sets. A Markov chain which
possesses an equicontinuous Markov transition function is called an e-chain.

Liu (2012) states and proves the following proposition regarding the stability
properties of the bivariate Markov chain {A;}.

Proposition C.2 (Liu, 2012). We apply model (C.1) with pmf given by (C.3) and as-
sume that 8, A and B have non-negative entries.

(a) If p(A+B) <1, there exists at least one stationary distribution of {A;}. In addition,
if ||All, <1 for some 1 < p < oo, then the stationary distribution is unique.

(b) If ||All, + 21‘(1/P)||B||p <1 for some 1 < p < oo, then {A;} is a geometric moment
contracting Markov chain with a unique stationary and ergodic distribution,
denoted by .

The proof of the proposition is based on results from Meyn and Tweedie (2009) and
Wu and Shao (2004). By showing that {1;} is a weak Feller chain that is bounded in
probability on average, it follows from Meyn and Tweedie (2009, Theorem 12.0.1)
that there exists at least one stationary distribution. Furthermore, by showing that
{A¢} is an e-chain it follows from Meyn and Tweedie (2009, Theorem 18.8.4) that the
distribution is unique. The proof of (b) is based on the iterated random functions
approach (see e.g., Diaconis and Freedman (1999) and Wu and Shao (2004)) and
follows from Wu and Shao (2004, Theorem 2) on proving the relevant regularity
conditions.

We note that the Poisson assumption is only important when showing that {A,}
constitutes an e-chain; in the remainder of the proof, the essential properties are the
structure of the model given by (C.1) and the fact that the bivariate distribution is
constructed by sums of independent random variables. When proving that {1,} is an
e-chain, the crucial feature is that } {2 |py, (1)—pa, ()] < 2(1 —e 2=l with p, denot-
ing the pmf of a Poisson distribution with parameter A; the left-hand side is small
when |1, — A1| is small. If the Poisson distribution is written in exponential family
form, the bound on the right-hand side is given by 2(1 —exp{—|loga(A,)—loga(A)|})
where a() is the normalising constant of the exponential family form. The propo-
sition therefore easily generalises to a setup where the bivariate distribution is
constructed through sums of independent random variables with a distribution
satisfying the conditions of one of the two following setups.

(I) Let
fo(x) = a(0)b(x)e® @, xeN, O0€R,
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be the pmf of a positive, discrete random variable satisfying the convolution
property (fo, * fo,)(x) = fo,+0,(x) and the condition that for € > 0, there exists
n > 0 such that [loga(6;) —loga(6,)| < € when |0, — 0,| < 5. Furthermore,
D(0) - t(x) should be increasing (or decreasing) in 6 for all x.

(IT) Let
fo(x) = ag(x)bg(x)e™ ™Y, xeNy, 6,x€eR,

be the pmf of a positive, discrete random variable satisfying the convolution
property (fo, « * fo,,)(X) = fo,+0,,(x) and the condition that for £ > 0, there ex-
ists 7 > 0 such that [logag, (k) —logag, (k)| < € when |01 —0,| < 1. Furthermore,
bg(x) should be increasing (or decreasing) in 6 for all x.

For setup (I), we let Xy ~ fg, ¢, X2 ~ fo,,- and X3 ~ f,, and for setup (II) we let
X1~ fo,,-p.xr X2 ~ fo,,—px and X3 ~ f, . For both setups, the conditions on ¢
depend on the choice of f.

Example C.3.

From Liu (2012) it follows that the Poisson distribution fulfills the conditions in (I).
An example of a distribution which satisfies the conditions in (II) is the negative

binomial distribution with pmf given by

x+6-1
x

fone ) = (1- K>9(

)e"logk, 0<k<1,0<0 < co.

It is well known that the convolution condition holds in this setting, and with
ag(x) = (1 —x)? it follows that |0; log(1 — x) — 8,10g(1 — k)| < |01 — 0,]|log(1 — «)|.
Furthermore, 6 — (“2_1) is increasing, and therefore all the conditions are met.
Since {A,} (given by (C.1)) is the conditional mean process, A; = K’fj(et,l,et,z)? The
parameter ¢ should satisfy 0 < ¢ <min{6,,0,,} for all t, and it follows from (C.2)
that 1_TK(I —A)716 yields a feasible upper bound. o

With 6 = (51, 62, d11,012,021,0)), ﬁllrﬁ127ﬁ2llﬁ22! (P)T, we let for the rest of this
section (and Appendix: Proofs on page 77) 8(6) = (6,,0,)7, A(8) = {aijlij=1,2, B(O) =
{Bij}ij=1,2 and ¢(6) = . Moreover, we let [;(6) = logpe(Y;|A;). Furthermore, we
let the expected values [E and the probabilities IP be with respect to the stationary
distribution unless otherwise stated.

Liu (2012) suggests using MLE to estimate the parameters of the model and
illustrate this in an application to a real data set. In the following theorem we state
that the MLE is strongly consistent under the following regularity conditions:

Assumption C.1. The log-likelihood is maximised over the set D, where D is a
compact subset of © satisfying the following:

b 60€D.

* 5(0), A(0) and B(6) have non-negative entries and B(0) is of full rank for all
0eD.

« @(0) < (I-A(6))"16(0) for all @ € D.
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* There exists a p € [1,00] such that [|A(O)]], + 21‘(1/P)||B(6)||p <1forall®@eD.

llp

Theorem C.4. Apply model (C.1) with pmf given by (C.3). Under Assumption C.1, the
maximum likelihood estimator @ is strongly consistent, i.e., @ — 6 a.s. with respect to
the stationary distribution.

The proof is analogous to the proof of Theorem 3.1 in Wang et al. (2012), when
adjusting to this two-dimensional setup, and the theorem therefore follows directly
from Lemmas C.5-C.8 below. The proofs of the lemmas are deferred to Appendix:
Proofs.

Lemma C.5. Let the assumptions be as in Theorem C.4. Then ]E[||/\t||5s] < oo when
IE[||/\0||55] < oo for s € IN, which ensures that the stationary distribution u has moments
of all orders.

Lemma C.6. Let the assumptions be as in Theorem C.4. Then the log-likelihood is
asymptotically independent of the initial value A1, i.e., supeeDH(l )-1(A | — 0 a.s.
with respect to the stationary distribution.

Lemma C.7. Let the assumptions be as in Theorem C.4. Then E[logpg(Y;|As)] is
continuous as a function of 6.

Lemma C.8. Let the assumptions be as in Theorem C.4. Then the model is identifiable.

C.4 Modelling of dependence through copulas

We again consider the setup in section C.2 but opposed to the previous section
where the dependence was modelled through a common random variable, we
propose here, to model it through a copula. Since copulas are defined through their
cdf, the bivariate Poisson distribution of this model is also defined through its cdf
and is given by

Po(Y;1 <m, Y5 <nlF_1)=Cy(Fy,, (m),Fy,,(n), (C.4)

where C,, is a copula parameterised by ¢, and F) is the cdf of a Poisson distribution
with mean A. Since Y; ; and Y, , are integer valued random variables their joint pmf
is given by

Po(Y;1 =m, Yo =n|F 1) =Cy(Fy, (m),F,, ,(n)—Cy(Fy, (m—1),F, (n))
—Cy(Fy, (m),Fy, (n=1))+ Cy(Fy, (m—1),F) (n-1)). (C.5)

The conditional dependence between Y;; and Y;, at a given time ¢ is modelled
through the copula. Due to the properties of copulas, this definition of a bivariate
Poisson distribution ensures that Y; ;| F_; ~ Pois(A;;), i = 1,2, regardless of the
choice of copula. Model (C.1) with pmf (C.4) is able to detect dependence between
the two time series {Y;;} and {Y;,}, provided that the chosen copula is not the
independence copula or if the coefficient matrices A and B are not both diagonal.
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A main advantage of using copulas is that with the appropriate copula, the model
is able to capture negative dependence.

We remark that model (C.4) can be shown to be identifiable by using the same
type of arguments as in the proof of Lemma C.8, since copulas preserve marginal
distributions. In addition, this model has certain stability properties, and in this
section we state and prove a result which is the equivalent of Proposition C.2. In
the remainder this paper, we assume that the copula C, satisfies the following
conditions:

(C1) Cy(u,v)is symmetric in u and v (this is trivial for Archimedean copulas).

(C2) u; > Cy(uy,uy) is differentiable on (0,1) for i = 1, 2.

(C3) u; > %C(p(ul,uz) is continuous on [0,1] and differentiable on (0,1) for
]
i,j=1,2.

. . 2
(C4) Vpel,I0<K,<ocoVizj: #(%C(P(ul,@) <Ky ¥(uy,up) € (0,1)2.

Under these conditions we have the following result regarding stability properties
of the Markov chain {A,}.

Proposition C.9. Assume conditions (C1)—(C4) and that 8, A and B have non-negative
entries. Then Proposition C.2 holds for model (C.1) with pmf given by (C.5)

Since the new model is of the same type as the model considered in section C.3, the
result follows if one proves that {A;} is an e-chain. Hence, details that coincide with
the proof in Liu (2012) are omitted and instead we formulate a lemma stating that
{A;} is an e-chain.

Lemma C.10. Let the assumptions be as in Proposition C.9. Then {A,} is an e-chain.

Before we prove the lemma, we give a short comment on the proof of part (b) of
the proposition. As mentioned above the proof makes use of the iterated random
function approach and we remark that the random function needed is

fa(A) =6 +AL+BF; (u),

where A = (A1,4,)7, Fy'(u) = (3! (1), F3! (u))T € NG and Fy'(u) = inf{t > 0 :
Fy(t) > u}. The randomness is induced by u. It follows that, for all t A; = fy, (A1),
where {U;,t > 1} is an independent and identically distributed sequence with
distribution given by the copula C,,.

Proor (Lemma C.10). The Markov chain {A;} is an e-chain, if for any continuous
function f with compact support defined on [0, ) X [0, 00) and & > 0 there exists an
# > 0 such that |P,Z‘lf —szlf| < e for|[x; —z1]| <7 and all k > 1, where x; = (x1,%12)7,
z, = (211,212)" and || || is some norm defined on R?. Without loss of generality, we
assume that |f| < 1.

By assumption there exists a p € [1, c0] such that [|A||, < 1. As f is a continuous
function with compact support we can take ¢’ and 7 sufficiently small such that,
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whenever |x; —z||, <7, &’ +8nK,/(1-||All,) < € and |f(x;) - f(z;)| < €’. In the case
k =1 we obtain

B, f =B, fl

< Z |f(6+Ax1 +B(m,n)T)p9(m,n|x1)—f(6+Azl +B(m,n)T)p9(m,n|zl)|

m,n=0

< i pe(m,n|x1)|f(6+Ax1 +B(m,n)T)—f(5+Az1 +B(m,n)T)|

m,n=0

+ ) Ipo(m,nlxi) = po(m,n|z))||f(6 + Azy +B(m,n)|

m,n=0

where pg(m, n|xy) is the pmf given by (C.5). We denote the first sum on the right-
hand side by S; and the second by S,. The term S, is considered first and we
observe that

Y Ipo(m,nlxi) - pa(m,nlzy)

m,n=0

< Y Ipa(m,nlx1) = po(m,nl(x11,212))l + ) Ipo(m,nl(x11,212)) - pa(m,nlzy)|

m,n=0 m,n=0

We denote the first sum on the right-hand side by S,, and the second by S;;,. Due
to symmetry it suffices to consider S,,. Applying (C.5), S, can be rewritten as

SZa = Z |C(P(Fx11 (m)’Fxlz(n)) - C‘P(qu (m - 1)’ FXIZ(n))

m,n=0
- C(p(Fxll (m)’ Fxlz(n - 1)) + C(p(Fxn(m - 1)'Fx12(n - 1))
- C(p(Fx” (m),Fle(n)) + Ccp(FxH (m - 1)1F212(n))

+ C(p(FxH(m)le]z(n - 1)) - C(p<Fx11(m_ 1)1F212(”_ 1)) :

2
Let Cgl(u,v) = %C(p(u,wﬂw:v and C(})l(u,v) = aZaWC(p(z,w)hz’w):(u,v). We then note

that, for k € {m—1,m} and I € {n -1, n} it follows from the Fundamental Theorem of
Calculus that

Co(Fx,, (k), Fx,, (1)) = Co(Fy,, (k), Fz (1)

1 (C.6)
= {Fxn(l)—qu(l)}L CO(Fyy, (k) Eopy (1) + u{ By, (1)~ F (1)) du.

Now, define
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From (C.6), the Fundamental Theorem of Calculus and assumption (C4) we obtain

[Co(Exy, (), Fyy, (1) = C By, (), Ex, ()]
~[CoplFay (m=1), (1) = CyFyy (m= 1), E ()]
< [Fy,y (1) = oy ()

f |CO1 o, (m), g(u;1, lelzlz)) Cﬁ,il(qu(m—1),g(u;l,xu,zlz>)|du

1 1
< |Fx12(l)—lez(l)lpxn(m)'[ j |C(1pl(h(v;m,xn),g(u;l,xlz,zlz)ﬂdvdu
0
S |F.X12(l) le( )lpxll( )K({)
for € {n—1,n}, with p, being the Poisson pmf. Using this, we find that

Sa< ) {IFu,(m)=Fopy (Ml pyy, (m)Kyy + |Fy (1= 1) = o (1= 1) py, (m)K,

m,n=0

= 2Ky |x12 = 212l
Similarly, we obtain Sy, < 2K,,|x1; —z11|- We note that
Ix1; — z1il < lIx1 —z1lly < ¢plixs —z4ll,
with cp= 21=(1/pP) < 2 for i = 1, 2. Hence, for any x,z;, we have

Y Ipo(m,nlx1) = po(m,n|z1)| < 8Ky lxy ~ 2 l,-

m,n=0

As |f| <1, we have shown that S; < 8K,[lx; -zl
Let us now look at Sy. As [|A||, <1 and |[jx; —z]|, <7 it follows that

6+ Axy +B(m,n)T — (6 + Az, + B(m, n)T)||p <y,
and therefore S; < ¢’. Hence
P, f =P, fl <&+ 8Ky lIx1 =24l (C.7)

For the case k = 2, we have

Px2f_ 2f|
‘ Z [pﬂ m, H|X1 zf—Pe(m:”|Zl)Pz2f”
m,n=0
Z po(m, n|x1) B f — By, f]+ Z Ipo(m,n|x1) = po(m, n|z))|IP,, f1,
m,n=0 m,n=0

where x, = 6+ Ax; + B(m,n)T and z, = 6 + Az, + B(m, n)T. Since

lIx2 = 22l = [|A(x1 —z1)llp <[IAllplIx1 =24, < 77,
p= p p p
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it follows from (C.7) that

P2 f — P} fl <€ +8K,lix — 2oll, + 8K, lIx; — 4,

< e+ SK(p”A”p”xl _ZIHp + 8K(p||X1 _ZIHp-

Hence, by induction, we have for any k > 1

k-1
PEf-PEfl<e’+8) KllAllxi -2l
5=0
8nK,
</ ——T <,
1-[lAll,
proving that {A;} is an e-chain. O

C.4.1 Examples of copulas

As mentioned in section C.1, we consider Archimedean copulas, since these only
require one parameter to model the dependence structure, and for the most com-
mon ones there exists a cdf on explicit form. We restrict attention to the Frank and
Clayton copulas (Nelsen, 2006) since these are able to model negative dependence
and satisfy the conditions (C1)-(C4). The cdf of the Frank copula is given by

—% log(l - —(1_67?)1‘_)6(,1;674)” ), =0,

Cplu,v) =
uv, =0,
for (u,v) € [0,1]? and ¢ € (—o0, o). We notice that C_.(u,v) = max(u +v —1,0), the
so-called Fréchet-Hoeffding lower bound for copulas, and C,(u#,v) = min(u, v), the
Fréchet-Hoeffding upper bound for copulas. The cdf of the Clayton copula is given
by

Cy(u,v) = [max(u™? +v7% -1, )]~/
(u+v -1, uv,p>00rbothp<0and u™+v?>1,
=uv, @ =0,
0, otherwise,

for (u,v) € [0,1]? and ¢ € [-1,00) \ {0}. As is the case for the Frank copula, C_; is
the Fréchet-Hoeffding lower bound, and C,, is the Fréchet-Hoeffding upper bound.
We notice that for both copulas ¢ = 0 corresponds to independence of the marginal
distributions.

To visualise the correlation struture for these copulas, we have simulated obser-
vations from the two distributions for different values of ¢. The results can be seen
in Figures C.1 and C.2. We notice that both models are able to capture negative
dependence, although for the Clayton copula this has a somewhat special form.
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Figure C.1: Plots of simulated data from the Frank copula for different values of
the parameter ¢. The value of ¢ is indicated at the top of each plot.

-1
e e e =
© @ © ©
o 7 o 7 S 7 =)
© | © _| © _| ©
o o o o
< < < b
o o o o
N N N N
o o o o
o e e =
° T T T T T e T T T T T e e
00 02 04 06 08 1.0 00 02 04 06 08 1.0 00 02 04 06 08 1.0
3 10 100
< S e e
@ o | o | o | /
© © © © 4
IS) o 7 S 7 ISE
< < | < <
o o o o
o~ o~ N N
o o 7 o 7 o 7
o o o o
<) o o o

00 02 04 06 08

1.0

00 02 04 06 08

1.0

T T T

T T T

00 02 04 06 08 10

Figure C.2: Plots of simulated data from the Clayton copula for different values of
the parameter ¢. The value of ¢ is indicated at the top of each plot.

69



Paper C

C.5 Comparison through simulation

In a simulation study, we compare the two models described in sections C.3 and C.4.
The model proposed in Liu (2012) (section C.3) has a very simple structure, which
makes it easy to use in practice, whereas the new model (section C.4) is slightly
more advanced but in return is able to model negative dependence between the two
time series if the copula is chosen appropriately. We compare four models with the
structure in (C.1); two with distributions given by (C.3) and two with distributions
given by (C.5). More explicitly, we compare the following models:

Model I: (C.3), ¢ > 0, Model II: (C.3), ¢ = 0 and B diagonal,
Model III: (C.5), Clayton copula, Model IV: (C.5), Frank copula.

Without loss of generality, we assume that A is diagonal in all four models. Then
Model II corresponds to two independent time series. Under these assumptions, the
Models I, IIl and IV all have a 9-dimensional parameter, 8 = (01,0, a1, a3, B11, P12,
Ba1,B22, )T, whereas the independence Model IT has a 6-dimensional parameter,
0 = (61,a1, 1,02, a2, B2)" .

For each model, we simulate N = 1000 independent replications of bivariate
time series of length n = 50,100, 250,500, 1000. Data is simulated from each of the
four models and for every simulated data set we check which model fit the data
better. As a measure of how well the models fit the data (with respect to each other),
we use the Akaike information criterion (AIC), the Bayesian information criterion
(BIC) and three different prediction scores. Most of the prediction scores presented
in the literature (e.g. Czado et al. (2009) and Jung and Tremayne (2011)) are of
the form (n—1)"! Y i, s(F(Y;)), where s(-) is the scoring rule and F,(-) is the cdf of
the predicted distribution. We will consider the following prediction scores: the
logarithmic score (LS), the quadratic score (QS) and the ranked probability score
(RPS). To reduce the computational costs, one-dimensional scores have been used.
The scores are defined as follows:

LS: s(Fi(Y;)) =—logp:(Y:),
QS:  s(Fi(Y;) = =2p,(Yy) +lpell®,

RPS: s(F(Y) = ) {Fi(j)~ 1y},
j=0

where p,(-) is the pmf of the predicted distribution and ||p,||* = Z;’iopt(j)z. In
general one seeks to minimise these measures.

The data are generated using the algorithms described below. When simulating a
bivariate time series of length , distributed according to the model (C.1), 500 extra
observations are simulated in order to simulate from the stationary distribution
(Algorithm 1).

Algorithm 1. Generation of a bivariate time series of length n distributed according
to the model (C.1), where BP(A; 1, A; 5, @) refers to the distribution corresponding
to either (C.3) or (C.4).

1. Set A; =(1,1)T and simulate X; = (X1,1;X1,2)T from BP(1,1, ).
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2. Repeat for t =2,...,n+500:

(a) Set /\‘t = 6 +A/\i’—l + th—l'
(b) Simulate X; = (thl,thz)T from BP(A; 1, At 2, ).

3. SetY = (X501 Xy4500)-

The following two algorithms specify how the simulation in 2.(b) of Algorithm 1
can be carried out, depending on the desired pmf.

Algorithm 2. Generation of a random vector Y from the distribution BP(1{, A,, @)
corresponding to (C.3):

1. Simulate X; ~ Pois(A; — @), X, ~ Pois(A, — ¢) and X3 ~ Pois(¢).

2. Set Y =(X; + X3, X, + X3)T.

Algorithm 3. Generation of a random vector Y from the distribution BP(1¢, A,, @)
corresponding to (C.5):

1. Simulate (U, V) from the copula distribution C,,. Suppose (U, V) = (u,v).
2. Calculate y; = F;ll(u) and vy, = F/{zl(v).

3. SetY = (yl,yz)T.

C.5.1 Results of the simulations

The outcomes of the simulations are presented in Tables C.3-C.10 in Appendix:
Results of the simulations on pages 82-85. Tables C.3, C.5, C.7 and C.9 report
the empirical bias, the standard deviation (std) of the bias and the root mean
squared error (rmse) for the parameters of the model being simulated from. When
simulating from Model II, which, as already mentioned, corresponds to simulating
two independent time series, one would expect that the three other models estimate
the dependence parameter ¢ to be close to zero. When ¢ = 0, the Frank and Clayton
copulas both correspond to the independence copula. Therefore, the bias, std of
the bias and the (rmse) have also been reported for the estimate of ¢ for these
models (Table C.5). To visualise the results, the bias and the std have been plotted
as functions of n in Figures C.3-C.6. From these figures it is clear that for all four
models the bias decreases with increasing sample size and that the bias is small
compared to the standard deviation.

As mentioned above, five different measures, AIC, BIC, LS, QS and RPS, are
used in order to determine how well the model of interest fits the simulated data.
To make use of these measures, we have reported the fraction of the 1000 runs
where the given model provides the best fit to the data or provides the worst fit
to the data, respectively. The results are presented in Tables C.4, C.6, C.8 and
C.10. A visualisation of the results can be seen in Figure C.7 on page 75. The
figure shows plots of the fraction of ’best fit’ versus the sample size n for each
measure for each fitted model. Each column corresponds to simulations from one
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Figure C.3: Illustration of the results of the simulation from Model I reported in
Table C.3, where full lines represent the bias and dashed ones the std. Recall that
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model, with the leftmost from Model I and the rightmost from Model IV. Each row
represents one measure, with the top row corresponding to the AIC and the bottom
row corresponding to the RPS. The colour represents the model that is being fitted.

The results from the copula-based models are shown in the two rightmost
columns. It is clear that for both models the true model has the highest fraction
of best fit for all sample sizes and the fraction increases with increasing sample
size. The trend is more pronounced for Model III where the fraction of best fit
reaches 1000 out of 1000 when 7 = 1000. The results from Model I are shown in the
leftmost column. It follows that, based on the scores, Model I, III and IV fit the data
equally well for all sample sizes, whereas the likelihood-based measures favour
the true model when the sample size is large but not for small sample sizes. For
Model II, the AIC and the BIC both favour the true model whereas the scores are
difficult to interpret. To summarise, these results indicate that for a small sample
size the copula-based models (in particular the Clayton) provide a better fit.

C.6 Data application

We consider a data set containing the number of daytime (6:00am - 10:00pm) and
nighttime (10:00pm - 6:00am) road accidents in the Schipol area in the Netherlands
(Pedeli and Karlis, 2011). The data are shown in Figure C.8. In this section, we fit
the four models considered in the simulation study to the data and use the same
five measures to decide which one provides the best fit to the data. The results of
the fits can be seen in Table C.1.

As previously mentioned, each of the measures favours the model with the
lowest value, and we see from Table C.1 that all five measures favour Model 1. We
also notice that for all measures the values for all models seem to be very close. To
investigate if the values are in fact close, corresponding to the models fitting equally
well, we simulated 1000 observations under Model I with the maximum likelihood
estimate under Model I, 8; = (2.06,0.70,0.56,0.28,0.08,0.37,0.04,0.06,0.26)7, as
parameter. The results are reported in Table C.2. We see that the likelihood meas-
ures favour Model I and the score measures favour Model III whereas Model II
has the highest fraction of worst fit with respect to all five measures. This could
indicate that both Model I and Model III fit the data equally well and that the two
time series are indeed dependent.

Table C.1: Results of the model fit.

Model AIC BIC LS QS RPS

I 3472911 3508.010 2.3691 —-0.1449 1.6323
1I 3496.228 3525.860 2.3888 —-0.1433 1.6529
111 3484.689 3519.789 2.3777 -0.1443 1.6379
v 3496.228 3531.327 2.3828 —0.1442 1.6491
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Figure C.8: Number of daytime and nighttime road accidents in the Schiphol area
in the Netherlands.

Table C.2: Results of the 1000 simulations from Model I with sample size n =
365 and parameter 6 = (2.06,0.70,0.56,0.28,0.08,0.37,0.04, 0.06, 0.26)T. For each
model, an entry in the table reports the fraction of the 1000 runs for which the given
measure has selected the specific model as the best or the worst fit, respectively.

Best fit Worst fit
Model  AIC BIC LS Qs RPS AIC BIC LS Qs RPS
I 0.422 0.319 0.149 0.266 0.197 0.003 0.099 0.000 0.003 0.000
11 0.007 0.278 0.000 0.003 0.000 0.982 0.644 0.995 0.989 0.995
111 0.281 0.207 0.478 0.386 0.414 0.006 0.194 0.000 0.001 0.000
v 0.290 0.196 0.373 0.345 0.389 0.009 0.063 0.005 0.007 0.005
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C.7 Future work

This paper is a work in progress. Asymptotic results for the copula-based model
remains to be investigated as well as asymptotic normality for the model of sec-
tion C.3. When considering the copula-based model, the form of the pmf, given in
(C.5), is a challenge. Furthermore, application of the two types of models to several
real data examples, and further simulation studies, would be desirable in order
to explore the advantages and disadvantages of the two models in details. The
preliminary results obtained in this paper, seem to indicate that the copula-based
model gives a better fit for small sample sizes.
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Appendix: Proofs

Proor (LEmma C.5). Let 6 = (61,6,)T, A = {aij}ij=1,2 and B = {B;j}; j=1,2- Further-
more, let ¥ = (y1,72)T € R?, with y > (I-A)716. Now, let s > 1 and V(A) = ||)\||55.
We note that Ai=0i+aj1Agq +aipdo2+ Bi1Yo1 + BinYo,2 fori=1,2. Then

E[V(A)I A =7] _ E[{Af,lu’iz}s L ]
V) e ST
_ ]E[{(él +anyr+ a2+ priYor +p12Yo02 )p
7l
. ( 02+ a1 Y1 +anyr+PaYor + f22Yoo )p}s]
Il
= E[h(Yq, p)].

Let u; = yi/llYll,, i = 1,2, and u = (u1,1,)T. We notice that Yo ~Po(y;), i=1,2,
conditionally on {1q = p}. If Z ~ Po(A), we have for k > 1 E[|Z - A[F]"k < O(1+A1/2).

This gives
k11/k 1+7/i1/2
E| |u <O|uy; -0,

i
for ||y|l, — co. From this we find that

Yo,i—7io
1

1

E[|h(Yo, )= h(y,y)I] > 0 for |lyll, —> oo
Furthermore, it follows from the assumptions that
h(y, ) ={Il(A+B)ullp} < {lIAll, + 2"~ P|IB||,}P* < 1.

The result now follows from the same type of arguments as in Wang et al. (2012).
See also Proposition 6.2.12 and the remarks in section 6.2.2 in Duflo (1997). O
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Proor (LEmMma C.6). We notice that

t—1
A, =6+Ad, +BY,  =C, | +AL, | = ZA’HCt_k +AA
k=1

with C; = 6 + BY; which implies that A; can be expressed as a function of 1. Let
P =supgepllAll, <1. Then

supl[A;(A;) - Ai(Ay)

Il
6eD

t—1 t—1

=sup ZA’HCt_k +AIA - ZA’HCt_k +AR,
€PN k-1 k-1 p
=sup||A"'(A; - A, < p 1A, - Aill, = Kp',
6eD

with K =||A; = A4]| »/p. From the form of the log-likelihood function it follows that

n
sup|y(I(A1) = 1(A)))| < sup;, leogpe(Ytl/\t) —~logpe (Y|4 (C.8)
6D 6D

To ease the notation, welet A=A, A=1,and Y =Y,. Let

Y, AY,

and g(Y, A, @)= Z (il)(y2)s!f(/\,(p)s,

S

fA @)=

¢
(A =@)(A2—-9)

s=0

and assume that f(1,¢) > f(A, @) (when (A, ) < f(A, @) a similar argument can
be made). For a term in (C.8), we reach the upper bound

[log pe(Y|A) ~log pg(Y | A)]
= |—(/\1 + A — @)+ Y log(A — @)+ Yylog(A, — @) +1logg(Y, A, )
+ (A1 + A2 = @) = Y log(d - @) - Yy log(1; — ) ~logg(Y, 4, ¢)|

<2+ ilog 12 ) wftog( 5272 |« g G2 2). (9

We look at the last three terms in this sum in turn. For the first two terms, we
obtain the upper bound

i- V- (- Kp!
vi|log( 22| < v, Az ==l iy KLy o (C.10)
Ai—o@ € €

with ¢ = infgep(min;((I —A)‘lé)j — @). Applying the same type of inequalities, an
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upper bound for the last term is found to be

(Y, 4, ¢)
'log(g(Y, /qu))

zZ;SYZ(Y;><Y;>s!exp{slogﬂw)})

Y0 ((D)stf (A, @)

Yo P (O(2)stf (A, ) exp{suogﬂlq))—logfu,(pn})
Y20 COC2)sf (A, @)

< log| exp{(Y1 A Ya)[log f (1, @) ~log f (A, )]}

ol

=lo

= log

t

K
< 2||Y||27". (C.11)
It then follows that the difference between the log-likelihoods based on an arbitrary

initial value and on the stationary initial one is

- < Kp! Kp'
sup|L(I(A;)~I(A;)) < sup L Z{zKpf w2yl =+ 2||Yt||2—?}
0eD 0eD T £ €

N

< qe(Kye) ) p'(L+11Y4ll),
t=1

with ¢(K, €) a constant depending on K and ¢ but independent of Y;. The result now
follows from Cesaro’s Lemma if p’||Y,]l, — 0 a.s. The Borel-Cantelli Lemma gives
that it suffices to show that for all ¢ > 0 we have ) 2, P(p||Y;ll> > ¢) < co. From
Markov’s inequality with s € IN we obtain that

00 e t S &0
Y PN > e < Y ORI S e ppoty a5,

&S
t=1 t=1 t=1

with poly(A;,s) being a polynomium in A;; and A;, of order s. It follows from
Lemma C.5 that this sum is finite (see also Francq and Zakoian (2004)). O

Proor (Lemma C.7). For 6 € D let V,(0) C D be an open ball with radius 7 centered
at 0. The result follows if

ua[ sup [L,(6)-1L©O)| >0 for -0,
eV, ()

We adopt the notation from the proof of Lemma C.6 and let ¢(-) be a generic,
positive, finite constant depending on its arguments. Then, by using inequalities
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for the p-norm

14:(6) = A:(O)ll,

ZA]‘ IC, x +A™1A, - ZA" 1C, , —A1A,
- p

t—1
Y (AR = AHC, il + IASHC i = Copll} + AT = AT A,

IA
- =
=

{2(k = 1)p*2nlIC,tll, + 0" [l15 = 8, + [1(B ~ B)Y, I, |}

[

k=1

+2(t=1)p Al

-1

< ) {20k = 1)p* 21611, + IBY ll,) + 0~ [21+ 20l1Y ]l ]}
k=1

+2(t=1)p 2yl ll,
t—1
<ne(8,8,p) ) {IAsll, +kp (1 + Y ,ill,)),
k_

1
with A = A(8), A = A(8), etc. We notice that the right hand side is independent of
0.
For ease of notation, let A, = A,(8) and A; = 1,(6). Assuming that f(A, @) >
f(A, @) and following the same method as in the proof of Lemma C.6 (see (C.9)-
(C.11)) we find that

1:(6) ~1,(8)|

A - ;\t”p +1
—_—

. A, @
<= Al + 7+ 2Vl il ””))

t 1

I¥:ly Og(fut,cm
< ()1 + IV }IA = All, + 1)
t—1

<c(e ){1+”Yt||p}{77+77c (0,B, {II/\lllp+kp" YA+, k||p)}}

k:l

t-1

<nc(8,B,&p){1 +[Ylp} { + Z A1l + ko 11+ 1Y, k||p)}}
k=1

Again, we notice that the right-hand side is independent of 8, and a similar argu-

ment can be made if (A, @) < f(A, ). It follows from Holder’s inequality that

IE[ sup |1,(6)- lt(9)|]

6<V,(6)
t—1

< 11c(8,B,&,0)E[ 11+ [[Y{[|, "] m[ ) (il + kp* 11y knp)}] :
k=1

The two expected values are finite and the result follows from applying Lemma C.5
and Holder’s and Minkowski’s inequalities. m]
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Appendix: Results of the simulations

Proor (Lemma C.8). Let Eg, be the expected value with respect to the true value
of 8. From Jensen’s inequality, it follows that

o, [1,(0) - (00)] = Bo, | o, (1og L2TH N 7 )

pe(Y:| A
< i g (LXAOD
0|8 o (7, 3,007 |
:IEeo(logl)
=0,

with equality if and only if pg(Y;|A4(0)) = PeO(YtM (6p)) a.s. Fi_i. Thus [Bg [1(0)] <
Eg,[/(69)], and equality implies Eg [1;(8)] = Eq,[1:(6¢)], t = 1,...,n, that is ¢ = @g
and A,(0) = A, (0g) a.s. F_1,t=1,...,n. Assume that 6 satlsﬁes /\ H(0) = A,(0y) a.s.
Fi_1. This gives

0=24(8) - A:(B0) = (6(8) — 8(60)) + (A(8) ~ A(B¢)) Ar-1 + (B(8) —B(8)))Y;-1,

and varying Y,_; shows that B(8) —B(0;) = 0. Also, when B(8) has full rank, A,_;
is not confined to a lower-dimensional subspace of R?, and so A(8) = A(8) and
8(0)-6(0). O

Appendix: Results of the simulations

The Tables C.3-C.10 on pages 82—85 report the results of the simulations.
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Table C.3: Simulation from Model I with 6 =(3,0.8,0.2,0.1,0.4,0.2,0.1,0.3, O.3)T.

n o1 02 a a p11 B12 B21 B22 P

50  bias 0.6413 0.1340 -0.0203 0.0444 -0.0549 0.0108 -0.0088 —-0.0684 0.1374
std 1.5963 0.6533 0.1909 0.1935 0.1342 0.1881 0.0627 0.1340 0.4674
rmse 1.7195 0.6666 0.1919 0.1984 0.1449 0.1883 0.0633 0.1504 0.4870

100 bias 0.4163 0.0317 -0.0232 0.0239 -0.0276 0.0070 —0.0019 —0.0292 0.0575
std 1.2095 0.4767 0.1553 0.1571 0.0941 0.1524 0.0460 0.1007 0.3574
rmse 1.2786 0.4775 0.1570 0.1588 0.0980 0.1525 0.0460 0.1048 0.3618

250 Dbias  0.1929 -0.0021 -0.0173 0.0134 —0.0060 0.0023 —-0.0011 —0.0103 0.0240
std 0.8410 0.3320 0.1219 0.1226 0.0626 0.1049 0.0317 0.0662 0.2519
rmse 0.8624 0.3319 0.1230 0.1233 0.0628 0.1049 0.0317 0.0670 0.2529

500 bias 0.1285 0.0018 -0.0117 0.0075 —0.0034 0.0013 -0.0004 —-0.0061 0.0139
std 0.6087 0.2412 0.0887 0.0989 0.0471 0.0743 0.0230 0.0450 0.1986
rmse 0.6219 0.2411 0.0894 0.0991 0.0471 0.0743 0.0230 0.0454 0.1990

1000 bias  0.0275 0.0093 —-0.0008 —0.0002 —-0.0026 —0.0008 —0.0003 —0.0028 —0.0002
std 0.4168 0.1812 0.0633 0.0734 0.0305 0.0506 0.0163 0.0334 0.1449
rmse 0.4175 0.1814 0.0633 0.0734 0.0306 0.0506 0.0163 0.0335 0.1448

Table C.4: Simulation from Model I with 8 =(3,0.8,0.2,0.1,0.4,0.2,0.1,0.3,0.3)T.
For each model, an entry in the table reports the fraction of the 1000 runs for
which the given measure has selected the specific model as the best or the worst fit,
respectively.

Best fit Worst fit

n Model AIC BIC LS QS RPS AIC BIC LS QS RPS
50 I 0.068 0.014 0.370 0.303 0.298 0.337 0.481 0.019 0.053 0.016

I 0.587 0.891 0.050 0.100 0.044 0.308 0.052 0.916 0.812 0.900

111 0.204 0.052 0.271 0.299 0.318 0.214 0.286 0.043 0.082 0.057

v 0.141 0.043 0.309 0.298 0.340 0.141 0.181 0.022 0.053 0.027
100 I 0.183 0.035 0.413 0.307 0.330 0.191 0.401 0.001 0.031 0.003

I 0.286 0.794 0.005 0.062 0.010 0.610 0.134 0.988 0.911 0.980

II1 0.272 0.077 0.265 0.338 0.339 0.129 0.303 0.005 0.031 0.007

v 0.259 0.094 0.317 0.293 0.321 0.070 0.162 0.006 0.027 0.010
250 1 0.343 0.215 0.390 0.326 0.317 0.011 0.182 0 0.003 0

11 0.022 0.413 0 0.011 0 0.965 0.505 0.999 0.987 0.999

111 0.336 0.198 0.311 0.368 0.378 0.015 0.220 0 0.005 0

v 0.299 0.174 0.299 0.295 0.305 0.009 0.093 0.001 0.005 0.001
500 I 0.438 0.413 0.331 0.357 0.339 0 0.019 0 0 0

II 0 0.064 0 0.003 0 0.999 0.905 1 0.997 1

111 0.284 0.269 0.382 0.345 0.355 O 0.056 0 0.003 0

v 0.278 0.254 0.287 0.295 0.306 0.001 0.020 0 0 0
1000 I 0.561 0.561 0.261 0.359 0.370 O 0 0 0 0

I 0 0 0 0 0 1 0.999 1 1 1

111 0.186 0.186 0.401 0.372 0.363 O 0.001 O 0 0

v 0.253 0.253 0.338 0.269 0.267 O 0 0 0 0
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Table C.5: Simulation from Model II with 8 = (3,0.1,0.2,2,0.4,0.2)7.

n o1 ay B1 ) ap B2 @1 Q111 PV

50  bias -0.0581 0.0437 -0.0268 1.0242 -0.1826 -0.0210 0.2980 0.0085 0.0570
std 1.1027 0.2248 0.1201 1.4741 0.2602 0.1267 0.4000 0.1941 0.9391
rmse 1.1037 0.2289 0.1230 1.7944 0.3178 0.1283 0.4987 0.1942 0.9403

100 bias -0.1276 0.0518 -0.0199 0.5620 —-0.1058 —0.0096 0.2107 0.0078 0.0305
std 0.9711 0.2216 0.0934 1.2741 0.2591 0.0942 0.2963 0.1294 0.6636
rmse 0.9790 0.2275 0.0955 1.3920 0.2798 0.0946 0.3634 0.1295 0.6640

250 Dbias -0.1789 0.0497 -0.0077 0.2880 —-0.0544 -0.0036 0.1142 0.0016 —0.0125
std 0.8066 0.1953 0.0642 0.9982 0.2185 0.0607 0.1773 0.0819 0.4008
rmse 0.8258 0.2015 0.0646 1.0384 0.2251 0.0608 0.2109 0.0818 0.4008

500 Dbias -0.1451 0.0386 —-0.0053 0.1102 -0.0193 -0.0029 0.0890 0.0007 0.0010
std 0.6343 0.1555 0.0435 0.7305 0.1630 0.0440 0.1254 0.0501 0.2838
rmse 0.6503 0.1601 0.0438 0.7384 0.1640 0.0440 0.1537 0.0501 0.2836

1000 bias -0.0635 0.0169 —0.0022 0.0763 -0.0157 0.0003 0.0592 —0.0017 -0.0081
std 0.4856 0.1178 0.0318 0.5011 0.1139 0.0306 0.0878 0.0347 0.2067
rmse 0.4895 0.1189 0.0319 0.5066 0.1150 0.0305 0.1058 0.0347 0.2068

Table C.6: Simulation from Model II with 6 = (3,0.1,0.2, 2,0.4,0.2)T. For each
model, an entry in the table reports the fraction of the 1000 runs for which the given
measure has selected the specific model as the best or the worst fit, respectively.

Best fit Worst fit
n Model AIC BIC LS Qs RPS AIC BIC LS QS RPS
50 1 0.018 0.001 0.394 0.260 0.302 0.553 0.572 0.071 0.110 0.075
II 0.898 0.994 0.257 0.249 0.208 0.034 0.002 0.618 0.524 0.606
111 0.054 0.004 0.174 0.252 0.241 0.259 0.267 0.189 0.205 0.165
v 0.030 0.001 0.175 0.239 0.249 0.154 0.159 0.122 0.161 0.154
100 I 0.009 0 0.402 0.191 0.238 0.582 0.600 0.060 0.128 0.104
11 0.900 0.999 0.286 0.252 0.248 0.029 0 0.650 0.546 0.613
111 0.050 0.001 0.174 0.288 0.275 0.236 0.240 0.168 0.193 0.171
v 0.041 0 0.138 0.269 0.239 0.153 0.160 0.122 0.133 0.112
250 1 0.017 0.001 0.440 0.185 0.215 0.627 0.647 0.063 0.138 0.122
II 0.908 0.998 0.349 0.344 0.337 0.034 0.001 0.609 0.488 0.564
111 0.046 0.001 0.104 0.254 0.233 0.173 0.181 0.180 0.189 0.162
v 0.029 0 0.107 0.217 0.215 0.166 0.171 0.148 0.185 0.152
500 I 0.009 0 0.455 0.196 0.231 0.594 0.610 0.044 0.152 0.112
II 0.920 0.999 0.326 0.376 0.331 0.024 0 0.663 0.511 0.616
111 0.038 0 0.136 0.228 0.222 0.213 0.217 0.153 0.161 0.144
v 0.033 0.001 0.083 0.200 0.216 0.169 0.173 0.140 0.176 0.128
1000 I 0.018 0 0.470 0.180 0.223 0.615 0.627 0.046 0.161 0.115
II 0.894 1 0.353 0.423 0.363 0.034 0 0.631 0.489 0.591
111 0.045 0 0.114 0.206 0.219 0.198 0.210 0.163 0.192 0.147
v 0.043 0 0.063 0.191 0.195 0.153 0.163 0.160 0.158 0.147
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Table C.7: Simulation from Model III with 6 = (3,0.8,0.2,0.1,0.4,0.2,0.1,0.3, 3)T.

n o1 ) ai a B11 B12 Ba1 B2z P

50 bias 0.2863 0.0466 0.0103 0.0265 —0.0470 0.0036 —0.0006 —0.0520 0.5112
std 1.2838 0.5551 0.1682 0.1742 0.1320 0.1798 0.0721 0.1354 0.9202
rmse 1.3147 0.5568 0.1684 0.1762 0.1400 0.1798 0.0720 0.1450 1.0522

100 bias 0.1499 0.0366 0.0031 0.0047 -0.0285 0.0144 -0.0019 -0.0195 0.2323
std 0.9249 0.4064 0.1248 0.1271 0.1015 0.1564 0.0598 0.1091 0.5406
rmse 0.9365 0.4078 0.1248 0.1271 0.1053 0.1570 0.0598 0.1108 0.5881

250 bias  0.1285 0.0409 -0.0059 -0.0042 —-0.0105 0.0022 —0.0027 -0.0052 0.0973
std 0.6336 0.2715 0.0871 0.0910 0.0745 0.1180 0.0417 0.0755 0.3203
rmse 0.6462 0.2744 0.0872 0.0911 0.0752 0.1180 0.0417 0.0757 0.3346

500 bias 0.0558 0.0217 -0.0041 -0.0065 —0.0029 -0.0008 —0.0001 -0.0029 0.0505
std 0.4295 0.1924 0.0615 0.0685 0.0530 0.0920 0.0312 0.0583 0.2306
rmse 0.4329 0.1936 0.0616 0.0688 0.0531 0.0920 0.0312 0.0583 0.2360

1000 bias  0.0292 0.0156 0.0003 —-0.0032 —-0.0042 0.0007 -0.0007 —0.0005 0.0212
std 0.3070 0.1405 0.0430 0.0526 0.0370 0.0646 0.0209 0.0398 0.1610
rmse 0.3083 0.1413 0.0430 0.0526 0.0372 0.0646 0.0209 0.0398 0.1623

Table C.8: Simulation from Model III with 6 = (3,0.8,0.2,0.1,0.4,0.2,0.1,0.3,3).
For each model, an entry in the table reports the fraction of the 1000 runs for
which the given measure has selected the specific model as the best or the worst fit,
respectively.

Best fit Worst fit
n Model AIC BIC LS QS RPS AIC BIC LS QS RPS
50 I 0.001 0.001 0.005 0.041 0.027 0.001 0.016 0.825 0.753 0.697
I 0 0 0.341 0.337 0.329 0.997 0.982 0.065 0.047 0.121
111 0.923 0.923 0.495 0.365 0.449 0.001 0.001 0.029 0.048 0.053
v 0.076 0.076 0.159 0.257 0.195 0.001 0.001 0.081 0.152 0.129
100 I 0 0 0 0.015 0.004 O 0 0.948 0.879 0.845

IT 0 0 0.182 0.245 0.195 1 1 0.029 0.016 0.093

111 0.988 0.988 0.741 0.522 0.672 0 0 0 0.017 0.010

v 0.012 0.012 0.077 0.218 0.129 0 0 0.023 0.088 0.052
250 1 0 0 0 0 0 0 0 0.997 0.991 0.972

II 0 0 0.042 0.113 0.063 1 1 0.003 0 0.027

II1 1 1 0.956 0.770 0.916 0 0 0 0 0

v 0 0 0.002 0.117 0.021 O 0 0.009 0.001
500 I 0 0 0 0 0 0 0 1 0.998 0.997

II 0 0 0.002 0.028 0.004 1 1 0 0 0.003

111 1 1 0.998 0.940 0.994 0 0 0 0 0

v 0 0 0 0.032 0.002 0 0 0 0.002 0
1000 I 0 0 0 0 0 0 0 1 1 1

II 0 0 0 0.001 0 1 1 0 0 0

III 1 1 1 0.992 1 0 0 0 0 0

v 0 0 0 0.007 0 0 0 0 0 0
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Table C.9: Simulation from Model IV with 6 = (3,0.8,0.2,0.1,0.4,0.2,0.1,0.3, 3)T.

n J ) ai a B11 B12 B21 B2z P

50 bias 0.5304 0.0581 -0.0163 0.0279 -0.0570 0.0281 0.0021 -0.0622 0.2918
std 1.5095 0.6325 0.1870 0.1849 0.1375 0.1952 0.0679 0.1333 1.0814
rmse 1.5992 0.6348 0.1876 0.1869 0.1488 0.1971 0.0679 0.1471 1.1196

100 bias 0.3183 0.0085 —0.0079 0.0250 -0.0323 0.0110 —-0.0009 —0.0284 0.1541
std 1.1854 0.4433 0.1577 0.1567 0.1029 0.1545 0.0539 0.1038 0.7083
rmse 1.2780 0.4549 0.1630 0.1621 0.1128 0.1581 0.0560 0.1116 2.3505

250 bias  0.1345 0.0242 -0.0076 0.0042 —0.0085 0.0005 —0.0016 —-0.0094 0.0400
std 0.7655 0.2995 0.1102 0.1108 0.0670 0.1085 0.0353 0.0690 0.4302
rmse 0.7769 0.3004 0.1104 0.1109 0.0675 0.1084 0.0353 0.0696 0.4319

500 bias 0.0645 0.0144 -0.0040 -0.0012 -0.0057 0.0072 —0.0007 -0.0026 0.0261
std 0.5466 0.2276 0.0795 0.0844 0.0495 0.0817 0.0247 0.0475 0.3039
rmse 0.5501 0.2280 0.0796 0.0844 0.0498 0.0820 0.0247 0.0476 0.3049

1000 bias  0.0503 0.0153 -0.0037 —0.0032 —-0.0012 —0.0026 0.0000 —-0.0023 0.0119
std 0.3781 0.1603 0.0558 0.0654 0.0335 0.0560 0.0178 0.0337 0.2182
rmse 0.3812 0.1610 0.0559 0.0655 0.0335 0.0560 0.0178 0.0338 0.2184

Table C.10: Simulation from Model IV with 6 =(3,0.8,0.2,0.1,0.4,0.2,0.1,0.3,3)T.
For each model, an entry in the table reports the fraction of the 1000 runs for
which the given measure has selected the specific model as the best or the worst fit,
respectively.

Best fit Worst fit
n Model AIC BIC LS QS RPS AIC BIC LS QS RPS
50 I 0.055 0.026 0.104 0.213 0.177 0.047 0.292 0.152 0.193 0.127
II 0.041 0.285 0.079 0.108 0.075 0.844 0.368 0.766 0.632 0.752
111 0.209 0.153 0.408 0.273 0.316 0.094 0.304 0.051 0.117 0.083
v 0.695 0.536 0.409 0.406 0.432 0.015 0.036 0.031 0.058 0.038
100 I 0.041 0.031 0.050 0.163 0.083 0.002 0.048 0.153 0.207 0.120
1I 0 0.037 0.024 0.068 0.029 0.986 0.809 0.830 0.681 0.842
111 0.117 0.114 0.429 0.301 0.382 0.012 0.140 0.009 0.068 0.025
v 0.842 0.818 0.497 0.468 0.506 O 0.003 0.008 0.044 0.013
250 1 0.005 0.005 0.009 0.088 0.024 O 0 0.063 0.132 0.049
II 0 0 0 0.012 0 1 1 0.937 0.844 0.949
111 0.026 0.026 0.399 0.356 0.370 O 0 0 0.015 0.002
v 0.969 0.969 0.592 0.544 0.606 O 0 0 0.009 0
500 I 0 0 0 0.032 0.002 O 0 0.015 0.064 0.016
II 0 0 0 0.004 0 1 1 0.985 0.933 0.984
111 0.001 0.001 0.272 0.334 0.327 O 0 0 0.003 0
v 0.999 0.999 0.728 0.630 0.671 O 0 0 0 0
1000 I 0 0 0 0.005 0 0 0 0.006 0.028 0.005
II 0 0 0 0 0 1 1 0.994 0.972 0.995
111 0.001 0.001 0.152 0.303 0.255 O 0 0 0 0
v 0.999 0.999 0.848 0.692 0.745 O 0 0 0 0
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