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Preface

Stereology concerns the estimation of geometric characteristics of spatial structures
from lower dimensional information about the structures. I was introduced to the
fascinating and creative world of stereology in my master’s studies at Aarhus
University, primarily through the writing of my master’s thesis. It is in particular the
interplay of geometrical and statistical issues in stereology that has a great appeal
to me. A more recent and less developed branch of stereology is local stereology.
This thesis is a contribution to local stereology and presents the outcome of the
research part of my PhD studies. The studies were carried out at the Department of
Mathematics, Aarhus University, from October 2010 to September 2013, under the
careful supervision of Markus Kiderlen. The PhD studies were partly financed by
Center for Stochastic Geometry and Advanced Bioimaging (CSGB), funded by the
Villum Foundation.

The thesis consists of three independently written and self-contained papers:

Paper A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Ó. Thórisdóttir and M. Kiderlen. Wicksell’s problem in local stereology.
Adv. Appl. Prob. To appear, 2013.

Paper B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Ó. Thórisdóttir and M. Kiderlen. The invariator principle in convex geom-
etry. Submitted, 2013.

Paper C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Ó. Thórisdóttir, Ali H. Rafati and M. Kiderlen. Estimating the surface area
of non-convex particles from central planar sections. Submitted, 2013.

Besides being submitted to international journals, all three papers can be found as
CSGB research reports. The technical parts that were omitted in the accepted version
of Paper A and only included in the CSGB research report can be found as supple-
mentary material on pages 54–58. The thesis also contains an introductory chapter,
where the three papers are connected together, their main results summarized and
their importance for the stereological community emphasized.

The work constituting the three papers has been presented at the following
conferences and workshops:
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• 16th Workshop on Stochastic Geometry, Stereology and Image Analysis. Sand-
bjerg, Denmark, June 2011,

• 13th International Conference on Stereology, Beijing, China, October 2011,
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• GPSRS Workshop, Erlangen, Germany, September 2012

• 6th Internal CSGB Workshop, Skagen, Denmark, May 2013

• 11th European Congress of Stereology and Image Analysis, Kaiserslautern,
Germany, July 2013.
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Abstract

This thesis presents advances in local stereology. The goal is to make statistical infer-
ence about geometric characteristics of a spatial structure. The inference is typically
made from flat sections taken through a fixed reference point of the structure. Local
stereology has proven to be very useful for applications in biomedicine.

When the aim is to estimate the distribution of the particle shape from random
samples, strict shape assumptions on the particles under study have to be imposed.
There exists much literature on the classical Wicksell problem, which is concerned
with the estimation of the radius distribution of balls from the radius distribution of
isotropic uniform random (IUR) flat sections through the balls. We treat Wicksell’s
classical problem in a local setting. Here the balls are (up to rotations) characterized
by two random variables: their radius and the position of their reference point
inside the ball. We derive several results that are analogue to results for the classical
Wicksell problem such as unfolding of the arising integral equations, moment
relations and stereology of extremes, but we also emphasize differences between
the local and the classical problem.

Without strict shape assumptions on the particles of interest, we have to settle for
mean geometric characteristics of the particles, instead of their distribution. These
characteristics could for example be intrinsic volumes, like volume or surface area.
We derive a new local stereological estimator for surface area which we call the Morse
type surface area estimator. The estimator is obtained by combining Morse theory,
Crofton’s formula and the invariator principle, which is a Blaschke-Petkantschin
type measure decomposition. The estimator can also be described as a modification
of the ‘area tangent count method’ in stereology. We show that the Morse type
estimator is better (in terms of efficiency and precision) than existing local surface
area estimators and illustrate its practicability in a biological application.

The above mentioned combination of the classical Crofton formula with the
invariator principle is a powerful tool to derive rotational Crofton formulae. As rota-
tional Crofton formulae in turn are the basis for local stereological estimators, we
discuss these formulae more systematically. Rotational Crofton formulae deal with
sections of an object with isotropically randomized flats that pass through the origin.
They answer the question which measurement function of the section to choose to
obtain an unbiased estimator of a geometric characteristic of the object. We first re-
view known measurement functions that yield intrinsic volumes or, more generally
Minkowski tensors. We then show that there are also rotational Crofton formulae
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Abstract

for support measures and curvature measures. Often, the measurement function is
not given explicitly but only as an integral geometric expression. We derive several
different, more explicit representations of the measurement function. The most im-
portant of these representations involves writing the measurement function in terms
of so-called critical values of the section profile. This is first achieved for smooth
manifolds using Morse theory and then for polyconvex sets using Hadwiger’s index.
All the different representations play an important role when rotational Crofton
formulae are applied in local stereology.
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Resumé

Denne afhandling præsenterer fremskridt i lokal stereologi. Formålet er at lave
statistisk inferens om geometriske karakteristika af et objekt i rummet. Inferensen
laves typisk fra affine snit taget igennem et fast referencepunkt i objektet. Lokal
stereologi har vist sig at være meget nyttig for anvendelser i biomedicin.

Når formålet er at estimere fordelingen af formen af partikler fra tilfældige snit, er
det nødvendigt at lægge strenge antagelser på formen af partiklerne. Der eksisterer
en betydelig mængde litteratur om det klassiske Wicksell-problem, som involverer
estimationen af radiusfordelingen af kugler fra radiusfordelingen af isotropiske
uniforme (IUR) snit gennem kuglerne. Vi betragter Wicksells klassiske problem i et
lokalt setting. Her er kuglerne (op til rotationer) karakteriserede ved to stokastiske
variable: deres radius og positionen af deres referencepunkt inden i kuglen. Vi
udleder adskillige resultater, der svarer til resultater for det klassiske Wicksell-
problem som for eksempel inversion af de integral-ligninger der opstår, moment-
relationer og stereologi af ekstremer, men vi beskriver også forskelle mellem det
lokale og det klassiske problem.

Uden strenge antagelser på formen af partiklerne som vi betragter, må vi nøjes
med gennemsnittet af geometriske karakteristika, i stedet for deres fordeling. Disse
karakteristika kunne for eksempel være de indre volumina, som volumen eller
overfladeareal. Vi udleder en ny lokal stereologisk estimator for overfladeareal
som vi kalder „Morse-type estimatoren af overfladeareal “. Estimatoren er baseret
på at kombinere Morse-teori, Croftons formel og invariator-princippet, som er en
måldekomposition af Blaschke-Petkantschin-type. Estimatoren kan også beskrives
ved en modificering af „areal-tangent-optælningsmetoden“ i stereologi. Vi viser,
at estimatoren af Morse-type er bedre (hvad angår effektivitet og præcision) end
eksisterende estimatorer og illustrerer dens brugbarhed i en biologisk anvendelse.

Den ovennævnte kombination af den klassiske Crofton-formel og invariator-
princippet er et nyttigt redskab for at udlede rotations-Crofton-formler. Da rotations-
Crofton-formler udgør grundlaget for lokale stereologiske estimatorer, diskuterer vi
disse formler mere systematisk. Rotations-Crofton-formler beskæftiger sig med snit
af objekter med isotropiske randomiserede planer, der går igennem origo. De giver
svar på spørgsmålet om, hvilken målingsfunktion af snittet, der burde betragtes
for at få en middelværdiret estimator af geometriske karakteristika af objektet. Vi
giver først en oversigt over kendte målingsfunktioner, der giver de indre volu-
mina, eller mere generelt Minkowski-tensorer. Dernæst viser vi, at der også findes
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rotations-Crofton-formler for supportmålene og krumningsmålene. Målingsfunk-
tionen er ofte ikke udtrykt eksplicit men kun som et integralgeometrisk udtryk.
Vi udleder adskillige forskellige mere eksplicitte repræsentationer af målingsfunk-
tionen. Den mest vigtige af disse repræsentationer udtrykker målingsfunktionen
ved hjælp af såkaldte kristiske værdier af snit-profilen. Dette gøres først for glatte
mangfoldigheder ved at bruge Morse-teori og så for polykonvekse mængder ved at
bruge Hadwigers indeks. Alle de forskellige repræsentationer spiller en vigtig rolle,
når rotations-Crofton-formler er anvendt i lokal stereologi.

x



Introduction

The three papers that constitute this thesis are all facets of local stereology that
were missing in the general picture. This introductory chapter serves to bind the
papers together, present their main results and emphasize their importance for the
stereological community. In order to achieve this we give a few pages of introduction
to stereology and important concepts in stochastic and integral geometry.

1 Stereology

The International Society for Stereology (ISS) was founded in 1961 and gathered
researchers from as different fields as biology, mathematics, medicine and metallurgy.
The common goal of these researchers was to obtain better understanding of three-
dimensional objects from microscopy images. Today, the objectives of stereology
still remain the same. Recent advances in technology, both in microscopy and
measurement techniques, have only increased the need for methods for analyzing
advanced microscopy and bioimaging data, that require as little manual workload
as possible without making the resulting information insufficient. Although the
term stereology was first coined only around 50 years ago its roots stretch back much
further, of which Buffon’s needle problem [Buf77] may be considered as a first
example. An extensive list of classic stereology references can be found in [BJ05, pp.
52–54] and [Jen98, pp. 33–34]. We mention in particular the early introduction given
in [WE66a] and [WE66b], the theoretical framework for stereology laid down in the
important papers [DM77], [MD76], [MD77], [Mil78a] and [Mil78b], and the surveys
[CO87] and [Sto90].

Stereology can be considered a subdiscipline of stochastic geometry and spatial
statistics. Many stereological results are obtained by applying classical results from
stochastic geometry and sampling theory in this new setting, where the emphasis is
on practical applications. Exactly this interdisciplinarity, combining well established
results from related fields with a creative and innovative use of modern technology,
is what makes stereology so fascinating.

In stereology, statistical inference about geometric characteristics of an object of
interest, e.g. its volume or the surface area of its boundary, is made by sampling
the object. Hence stereology can also be thought of as geometric sampling theory
[BJ05]. Opposed to classical survey sampling, where typically units are sampled at
random from a discrete target population, e.g. by simple random sampling, affine
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Introduction

flats, windows, lattices (digital stereology) or a combination of these are used to
sample a spatial structure in stereology. A structure can be sampled by, for instance,
intersecting it with an affine flat or by projecting it onto a flat.

There are two different approaches for making statistical inference in stereo-
logy and these are referred to as model-based stereology and design-based stereology.
In model-based stereology the object of interest is assumed to be random and the
affine subspace, the sampling probe, to be arbitrary (deterministic). To obtain a repre-
sentative sample, the random object under study is assumed to be homogeneous, an
assumption which was first made mathematically rigorous later by using random
closed sets; see [SKM95] and references therein. This assumption of homogene-
ity works well in many applications in material science and geology but is often
inappropriate in biological applications where the structure of interest is usually
highly organized. Design-based stereology does not require any assumptions on the
object under study. The object is considered to be deterministic and a representative
sample is obtained by using a random sampling probe. The setting of this thesis is
design-based.

This thesis presents advances in an even more recent branch of stereology called
local stereology. Local stereology has been developed since the beginning of the
eighties in close collaboration with users of stereological tools. The mathematical
foundations of local stereology can be found in the monograph [Jen98]. In local
stereology the goal is the same as in classical stereology, namely to obtain geometric
characteristics of spatial structures, but the sampling designs are different. Instead
of using affine subspaces, only linear subspaces, taken through a fixed reference
point, are considered. This is of interest in many biological applications where the
structure of interest has a fixed reference point. The fixed reference point can e.g. be
a nucleus or a nucleolus of a biological cell. Local procedures are most conveniently
implemented if optical sectioning is available. Sections taken through a fixed reference
point are often called central sections, as reference points are often centrally located.
The advantages of central sections as compared to arbitrary sections are that they
often carry more information about the object of interest and they diminish the
‘overprojection effect’ which occurs when cells are sectioned with planes that are
almost tangent to the cell. Such sections show a very blurred cell boundary in
confocal microscopy and are therefore often useless for stereological measurements.

2 Theoretical background

As previously mentioned the goal of local stereology is to obtain some geometric
characteristics of a spatial structure. Throughout this thesis there are different regu-
larity assumptions imposed on the spatial structure, of which convexity is one of the
most basic ones. Convexity is convenient as estimators and formulae, when present,
often simplify under this assumption. A convex body in n-dimensional Euclidean
space Rn is a compact, convex subset of Rn and it is uniquely determined by its
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2. Theoretical background

support function hX given by

hX(u) = max
x∈X
〈u, x〉 ,

where u is an element of the unit sphere Sn−1 = {x ∈ Rn | ‖x‖ = 1}. We write Kn

for the family of all convex bodies in Rn. The radial function is dual to the support
function. If X is nonempty, compact and star-shaped at O (i.e. every line through O
that hits X does so in a (possibly degenerate) line segment), its radial function ρX is
defined by

ρX(x) = sup{α ∈ R | αx ∈ X},

for x ∈ Rn \ {O}. The set X is uniquely determined by its radial function.

2.1 The intrinsic volumes

The desired geometric characteristic is often one of the intrinsic volumes. The intrinsic
volumes are important functionals in convex geometry and they can for instance
be defined via the Steiner formula. We write X + Y = {x + y | x ∈ X, y ∈ Y} for the
Minkowski sum of X, Y ⊆ Rn. For X ∈ Kn and ε > 0, the set

Xε = X + εBn = {x ∈ Rn | d(x, X) ≤ ε},

is the parallel body of X at distance ε. Here Bn = {x ∈ Rn | ‖x‖ ≤ 1} is the unit ball in
Rn and d(x, X) = miny∈X ‖x− y‖, where ‖x− y‖ is the Euclidean distance between
x and y. We write κn for the volume of Bn. According to the Steiner formula the
volume Vn of Xε is a polynomial in ε of degree at most n

Vn(Xε) =
n

∑
j=0

εn−jκn−jVj(X).

This formula defines the intrinsic volumes V0, V1, . . . , Vn and we extend the definition
by Vj(∅) = 0. The volume Vn, surface area 2Vn−1 and the Euler characteristic V0 are
of special interest. We also write χ(X) for the Euler characteristic of X, whenever
defined. We note that if X ⊆ R1 is compact, χ(X) is the number of connected
components of X. We equip Kn \ {∅} with the Hausdorff metric δ defined by

δ(X, Y) = min{ε ≥ 0 |X ⊆ Yε, Y ⊆ Xε}.

The intrinsic volumes can be characterized by simple geometric properties. A real
function φ : Kn → R is additive if

φ(X ∪Y) + φ(X ∩Y) = φ(X) + φ(Y),

for all X, Y ∈ Kn with X ∪ Y ∈ Kn, and φ(∅) = 0. Hadwiger’s famous characteri-
zation theorem states that any additive, motion invariant and continuous function
φ : Kn \ {∅} → R is a linear combination of intrinsic volumes. A proof of the
characterization theorem in three dimensions was given in [Had51] and in arbitrary
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dimension in [Had52]; see also [Had57]. We will frequently work with a generaliza-
tion of Kn, the so-called class of polyconvex sets. If a set can be represented by a finite
union of convex bodies in Rn we say that it is a polyconvex set in Rn. The intrinsic
volumes can be additively extended to polyconvex sets (but then continuity is lost)
and to even more general set classes.

2.2 Linear and affine subspaces

Most stereological formulae that we will consider later on, will be based on sections
with linear or affine subspaces. We let Ln

j[O] be the family of all j-dimensional linear
subspaces of Rn, j ∈ {0, 1, . . . , n}, and Ln

j be the family of all j-dimensional affine
subspaces of Rn. We typically denote their elements by Ln

j[O] and Ln
j , respectively.

These spaces are equipped with their standard topologies [SW08]. There exists a
unique rotation invariant measure on Ln

j[O] and a unique motion invariant measure
on Ln

j , up to multiplications with a positive constant. We write dLn
j[O] and dLn

j ,
respectively, when integrating with respect to these invariant measures and refer to
[SW08] for their construction. We use the same normalization as in [SW08]:∫

Ln
j[O]

dLn
j[O] = 1 and

∫
{Ln

j ∈Ln
j | Ln

j ∩Bn 6=∅}
dLn

j = κn−j.

We call a random linear subspace whose distribution is given by the rotation in-
variant measure an isotropic random (IR) subspace. Similarly we say that a random
Ln

j ∈ Ln
j is isotropic uniform random (IUR) hitting a compact object Y if and only if its

distribution is given by

PLn
j
(A) = c

∫
Ln

j

1A∩{Ln
j ∈Ln

j | Ln
j ∩Y 6=∅} dLn

j ,

where c is a normalizing constant and A is a Borel-set on Ln
j .

2.3 Blaschke-Petkantschin type measure decompositions

Measure decompositions are of great importance when constructing local stere-
ological estimators. Frequently used decompositions are the ones of Blaschke-
Petkantschin type. We adopt the explanation in [SW08] to describe the common
feature of these formulae: When a tuple of geometric objects is to be integrated
over a product of measure spaces, we can associate a so-called ‘pivot’ to the tuple
(typically span or intersection) and decompose the integration into an inner inte-
gration of the tuple restricted to one pivot and an outer integration which is over
all possible pivots. The integrations are with respect to the natural measures. This
decomposition of the integration often allows for much simpler computation of the
initial integral.

In the linear (classical) Blaschke-Petkantschin formula the geometric objects are
j points in Rn, j ∈ {1, . . . , n}, the initial integration space is the j-fold product of
Lebesgue measure in Rn, the pivot is Ln

j[O] ∈ L
n
j[O] that is (almost surely) spanned
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by the j-tuples of points and the outer integration space is Ln
j[O]. The linear formula

is due to [Bla35] and [Pet35] but as remarked in [Mil79], it was first fully stated in
[Mil71]. The linear formula has led to a series of further measure decompositions for
which [Mil79] and [San04] are good references. A generalized Blaschke-Petkantschin
formula, where Lebesgue measures are replaced by Hausdorff measures, was pre-
sented in [Zäh90] and [JK92].

We are in particular interested in a formula of Blaschke-Petkantschin type
where there is only one geometric object, which is an affine subspace Ln

j ∈ Ln
j ,

j ∈ {0, . . . , n− 1}, the initial integration space is Ln
j , the pivot is a linear subspace

of dimension j + 1 containing the affine subspace, the inner integration space is
over all affine subspaces in the fixed linear subspace and the outer integration
space is Ln

j+1[O]. This is a special case of [Pet35, Formula (49)]. For all non-negative
measurable functions f on Ln

j and j ∈ {0, 1, . . . , n− 1} it can be written as

∫
Ln

j

f (Ln
j )dLn

j = cn−j
1

∫
Ln

j+1[O]

∫
Lj+1

j

f (Lj+1
j )d(O, Lj+1

j )n−j−1dLj+1
j dLn

j+1[O], (1)

where cn−j
1 is a known constant that depends on n and j (see (B.1)). Notice that

for 0 ≤ j ≤ r ≤ n and a fixed Ln
r[O] ∈ L

n
r[O] we write Lr

j for the family of all j-
dimensional affine subspaces Lr

j within this linear subspace. In stereological terms,
(1) states how an affine hyperplane in an IR subspace must be chosen such that it is
motion invariant in Rn. For example, with n = 3 and j = 1 this gives another way of
generating a line that is IUR in three-dimensions. As the line is chosen in an IR two-
dimensional section plane this eliminates the need for three-dimensional scanning
of objects. This construction of an IUR line was rediscovered in local stereology in
[CO05] and (1) (with n = 3 and j = 1) was given the name invariator principle in
[CO09]. In [GACO09] equation (1) was generalized to Riemannian manifolds with
constant sectional curvature.

3 Classical vs. local stereology

Local stereology came later than classical stereology but it is gradually developing
and is now considered a very powerful tool in biomedicine, in particular in neu-
roscience and cancer grading. Examples of recent applications of local stereology
are [AGP03], [HSN07] and [HKK+06]. All the results obtained in this thesis are
important bricks that complement local stereology, where classical stereology is
more developed. To emphasize this we give an overview of typical methods in
classical stereology and compare them with their counterparts in local stereology, if
present. We divide this brief survey into procedures for obtaining specific geometric
summary statistics and procedures for constructing particle distributions.

5



Introduction

3.1 Geometric summary statistics

The essence of stereology is to reduce complicated measurements to simpler ones.
Hence integral geometric identities of the form

β(X) =
∫

α(X ∩ T)dT, (2)

are essential. Here X is the object of interest, α(·) and β(·) are geometric character-
istics, T is the sampling probe and the integration is over all possible positions of
the probe with respect to a natural measure (appropriate ‘uniform integration’). The
functional α(·) to be measured on a section will be called a measurement function. In
many cases considered in this thesis, the measurement function is itself obtained
by sampling the section profile in T. We will discuss efficient ways to calculate
this measurement function focusing in particular on simplicity (low workload) and
precision (low variance). The Fundamental Formulae of Stereology are a collection of
results of the form (2), where T runs through all affine subspaces; see for example
[BJ05, Chapter 2]. The oldest of these is Delesse’s principle which shows that the
average fraction of volume of a mineral in a homogeneous rock equals the average
fraction of area of the mineral on a plane section of the rock; see [Del47] and [Del48].
More specifically, the observed area fraction in a plane section of a homogenous
structure is an unbiased estimator for the true volume fraction in the original struc-
ture. This gives a practical method for determining the composition of rocks as
volume estimation has been reduced to the more simple area measurement.

All the Fundamental Formulae of Stereology are applications of Crofton’s for-
mula, which is a classical result of integral geometry. The classical Crofton formula
is of the form (2) where the probe is an affine subspace Ln

j ∈ Ln
j , β(·) and α(·)

are the intrinsic volumes and the integration is over Ln
j with respect to its motion

invariant measure. Hence Crofton’s formula relates geometric characteristics of
a spatial structure to properties on affine sections of the structure. According to
Hadwiger’s theorem, Crofton’s formula cannot be extended to any other geometric
characteristics without loosing desirable properties. This does though not imply
that Crofton’s formula is the only integral geometric identity with practical rele-
vance for stereology. The counterpart of Crofton’s formula in local stereology are
so called rotational Crofton formulae. These are versions of (2) where the probe is
a linear subspace Ln

j[O] ∈ L
n
j[O] and the integration is over Ln

j[O] with respect to its
rotation invariant measure. In other words, rotational Crofton formulae are versions
of Crofton’s classical formula that only use linear sections.

Examples of important choices of β(·) in (2) are the area and the boundary length
of planar objects and the volume and the surface area of three-dimensional objects.
We describe in the following procedures from classical stereology and local ste-
reology for obtaining unbiased estimators of these important summary statistics.
Unbiasedness is a desirable property of an estimator but good precision obtained
with ‘reasonable’ amount of workload is as important. A commonly used procedure
to increase the precision of an estimator is to apply systematic sampling. Systematic
sampling is a standard variance reduction method in classical sampling theory and
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it is typically much more efficient than simple random sampling. Throughout this
section we assume that the object of interest X is fixed and arbitrary and we sample it
with a random probe, that is we describe estimators in a design-based setting. More
details for the classical procedures can be found in [BJ05] and references therein. For
the local procedures we recommend [Jen98].

3.1.1 Geometric summary statistics obtained using classical procedures

When X is a compact planar object, its area can be estimated by superimposing a
random point grid on the plane. The grid can for example be a rectangular grid with
horizontal spacing r and vertical spacing s and with the origin chosen uniformly in
a square of area rs. An unbiased estimate of the area of X is obtained by counting
the number of grid points that hit X (and multiplying by rs). An explicit analytic
expression for the variance of this estimator is not available but there is much
literature on this subject; see [BJ05, p. 327] for references. In analogy, a spatial point
grid can be used to estimate the volume of a compact three-dimensional object X.
A more frequently used estimator for volume is the Cavalieri estimator (also called
‘estimation of volume by Cavalieri’s principle’). The three-dimensional object X
is sliced by a systematic equally spaced stack of parallel, two-dimensional affine
planes. An unbiased estimator for the volume of X is obtained by measuring the
area covered by the object in each slice, summing up these areas for all the sections
and multiplying by the spacing between the planes.

These estimators for volume and area do not require a randomized orientation
of the probe but this randomization is essential for estimating length and surface
area. The key tool here is Crofton’s formula. A well-known estimator for the length
of a planar rectifiable curve is the Steinhaus estimator. The procedure has its roots
in Buffon’s famous needle problem. An equally spaced IUR grid of parallel test
lines is superimposed on the plane and the number of intersections of the line
grid with the curve are counted. By summing up over the number of intersections
and multiplying by a known constant, an unbiased estimator for the length of the
curve is obtained. The length of a curve in space can be obtained from an equally
spaced IUR stack of parallel two-dimensional affine planes. This is equivalent to
the Cavalieri estimator but now the orientation of the planes needs to be IR (that
is the unit normal of the planes is IR). Hence this design is sometimes referred to
as the isotropic Cavalieri design. An estimate of the length of a rectifiable curve in
space is obtained by counting the number of intersections of the curve with the IUR
stack of planes (and multiplying by a known constant). An IUR stack of planes can
also be used to estimate the surface area of the boundary of a three-dimensional
object X. Then counting is replaced by measuring the boundary length of the object
in each slice, summing up the contributions from all slices and multiplying by a
known constant. Counting the number of intersections with a systematic grid of
IUR lines (and multiplying by a known constant) also gives an unbiased estimator
for the surface area.

The length of a planar curve can also be estimated by a method known as
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the area tangent count method. The idea of the method is to sweep a line, at a
uniformly chosen direction, through the plane and find all translates of the line
that are tangent to the curve. Tangents that represent an increase in the number
of connected components (of the sweeping line section with the curve) are called
‘positive tangents’ and those that represent a decrease in the number of connected
components are called ‘negative tangents’. All other tangents, for instance tangents
through inflection points, are disregarded (these tangents do almost surely not
occur). An estimate of the length of the curve is obtained by subtracting the number
of negative tangents from the number of positive tangents (and multiplying by a
known constant). When the planar curve is the result of taking a random section
through a surface in space, this method gives the integral mean curvature of the
surface.

3.1.2 Geometric summary statistics obtained using local procedures

Many of the well-established procedures in local stereology can be derived from
rotational Crofton formulae. A rotational Crofton formula, in its most general form,
can be written as

β(X) =
∫
Ln

j+1[O]

α(X ∩ Ln
j+1[O])dLn

j+1[O], (3)

j = 0, 1, . . . , n− 1, for suitable X and functionals α(·) and β(·). In [JR08] the func-
tional β(·) was calculated when the measurement function is an intrinsic volume of
the section profile. As already implied, the ‘opposite’ problem, i.e. how to calculate
α(·) to obtain a desired geometric characteristic β(X) of X, is of more interest in
stereology. When the work behind this thesis started there existed well established
local procedures for estimating the area of a planar region, the length of a planar
curve (the Horvitz-Thompson estimator) and the volume of a three-dimensional object
(the nucleator). There also existed surface area estimators but none which had gained
critical acclaim. We describe the typical local procedures for the estimation of these
geometric characteristics. For simplicity we assume that the objects contain O in
their interior, are star-shaped at O and have smooth boundaries. As mentioned
earlier, more details about these procedures can be found in [Jen98].

The area of a compact, planar object and its boundary length can be unbiasedly
estimated by sampling the object at a uniformly chosen direction in the section
plane. To obtain the area we need to measure the squared radial function (distance
to the boundary) at the uniformly chosen direction. In order to obtain the length of
the boundary, both the radial function at the sampled direction and an angle in the
section plane need to be measured. The angle that needs to be measured is formed
by the outer unit normal to the object at the boundary point (for the given direction)
and the line connecting this boundary point with O. The variance of both procedures
can be decreased by applying angular systematic sampling in the section plane, for
example also considering the opposite direction, which corresponds to sampling
with an IR line in the plane instead of only a ray, or even using two perpendicular
lines passing through O.
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The volume and the surface area of a three-dimensional structure can be unbi-
asedly estimated by using a sampling procedure that consists of two steps. First
the object is intersected by an IR two-dimensional plane and then in that section
plane a uniform direction is chosen. To estimate the volume, the radial function at
the sampled direction needs to be measured (and raised to the power of three). The
resulting estimator is the nucleator. Here, variance reduction can also be achieved by
using angular systematic sampling and the nucleator with four sampled rays (two
perpendicular lines) is much used in practice. The integrated nucleator requires mea-
suring the distance to every boundary point of the section profile and it is therefore
only feasible in practice if automatic identification of the boundary of the section
profile is possible. The available local stereological estimator for surface area is the
surfactor. It requires measuring both the radial function at the sampled direction in
the section plane and the angle between the unit normal to the section profile at the
boundary point and the line connecting this boundary point with O. On the contrary
to what was implied in [CO05], the surfactor does neither seem to be much affected
by the singularity in its representation nor by inaccuracies in the necessary angle
measurements as shown very recently in a simulation study involving ellipsoids
[DJ13]. Nonetheless, angle measurements are cumbersome in practice and, to our
knowledge, the surfactor has only been used to estimate surface area in [KCO97]
and [TGJ97]. As for the other procedures the variance can be decreased by applying
angular systematic sampling in the plane.

Quite recently, new local estimators for surface area and volume were derived.
These estimators are based on a rotational Crofton formula that is obtained by
combining the invariator principle (1), with n = 3 and j = 1, and the classical
Crofton formula and they are referred to as invariator estimators; see [CO05]. The
invariator estimator for volume does not seem to enjoy any particular advantages
over the nucleator but the invariator estimator for surface area presents a very simple
and interesting alternative to the surfactor. The invariator estimator for surface area
(which we call the invariator estimator from now on) plays a central role in this thesis
and is discussed further in Section 4.1. We propose a new surface area estimator,
which is based on the invariator estimator. This new estimator does not involve
angle measurements and it requires less workload than the invariator estimator to
obtain a given precision. One of the main goals of this thesis is to promote this new
estimator and show its applicability in biological sciences.

3.2 Particle distributions

We now discuss problems of a different nature, where the goal is not only to estimate
some geometric summary statistics of objects but rather the distribution of objects,
that is, the distribution of the shape, where the objects are assumed to belong to a
certain family of shapes. An introduction to stereological particle analysis can be
found in [BJ05, Chapter 11]. In this section we restrict attention to three-dimensional
objects.
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3.2.1 Particle analysis using classical procedures

In the tissue of many organs, e.g. in the thymus, there are a number of small,
regularly shaped particles. These particles can vary considerably in size within
the same organ. The number of particles and their size distribution can also vary
considerably between different organs and between different individuals. Almost a
century ago anatomists were interested in estimating the size distribution of these
particles from observations in plane sections. Determining size distributions from
random samples is intractable without strict shape assumptions. The mathematical
statistician S.D. Wicksell showed that under the assumption that the particles are
spherical, their size distribution can be uniquely determined from plane sections
[Wic25]. Wicksell’s arguments were made rigorous in [SKM95] where it was shown
that when a stationary particle process of non-overlapping balls, with finite mean
radius, is intersected by a plane, the size distribution of the original balls and
the size-distribution of the section profiles are essentially connected by an Abel
integral equation which can be inverted explicitly. It was shown in [Jen84] that the
aforementioned integral equation also holds in a design-based setting. There exists
much literature on Wicksell’s classical problem, as can be seen from the surveys
[SKM95, Section 11.4] and [CO83] and references therein. It has for example been
shown that the radius of the section profile can be expressed in terms of the size-
weighted radius of the intersected ball [BJ05], which also lead to moment relations.

Wicksell was aware of the fact that planes sample balls with probability propor-
tional to their radii and that the radii of section profiles are almost surely smaller
than the original radii. These two sampling effects can cancel each other. When the
radii of the balls follow a Rayleigh distribution, the profile radii also follow this
distribution with the same parameter. It was shown in [DR92] that the Rayleigh
distribution is the only reproducing distribution in this sense. Despite the fact that
the Abel integral equation associated to Wicksell’s problem can be solved explicitly,
there are both statistical and numerical obstacles in implementing the solution.
Several methods have been suggested in order to overcome the moderate ill-posed
nature of the problem. As remarked in [SKM95] it could even be claimed that the
problem serves as a playground for the application of regularization methods in
inverse problem theory.

Wicksell [Wic26] extended some of his results to prolate spheroids (ellipsoids
with main axes a1, a2 and a3 satisfying a1 = a2 < a3) and oblate spheroids (a1 =

a2 > a3), of variable size but fixed shape. In [CO76] it was shown in full generality
that Wicksell’s problem can be solved for spheroids of the same type but that the
problem is indetermined for general ellipsoids and for populations consisting of
both prolate and oblate spheroids

In some practical applications the distribution of the tail of a particle size distri-
bution is of more interest than the whole distribution. This tail behaviour can for
example be of interest when damage of materials is studied [MB99]. Stereology of ex-
tremes is concerned with the study of extremal parameters using lower dimensional
sections and it has received increasing interest in the recent years. It has been shown
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that in the classical Wicksell problem the size distributions of the balls and their
section profiles belong to the same type of extreme value distribution. This has also
been studied for the size and shape parameters of spheroidal particles; see [Hlu03a],
[Hlu03b], [Hlu06] and [BBH03].

3.2.2 Particle analysis using local procedures

In [Jen91] it was remarked that Wicksell’s problem in a local setting is trivial when
the reference point coincides with the ball’s center. Another main goal of this thesis
is to show that Wicksell’s problem in a local setting is far from trivial when this
restrictive assumption is violated.

Stereology of extremes in a local setting was treated in [Paw12] for spheroids
where the isotropic section plane was passing through the spheroid’s center. We
remark that this assumption on the position of the section plane is quite restrictive.
We show in Paper A that this restriction is not necessary when dealing with spher-
ical particles. To the best of our knowledge, [Paw12] has been the only study of
stereology of extremes in a local setting before the present thesis.

4 Motivation

As pointed out earlier, the invariator principle was rediscovered in local stereology
in [CO05], a paper that was the starting point of the master’s thesis [Thó10]. The
results obtained in [Thó10] in turn prompted the work presented in this thesis. We
introduce the invariator estimator, describe the main results obtained in [Thó10]
and give an outline of the papers that constitute this thesis.

4.1 The invariator estimator

One of the ultimate goals of this thesis is to derive a new improved surface area esti-
mator that would become the preferred stereological tool for surface area estimation
in local stereology and applicable to a broad class of objects. Surface area estimation
is important in many practical applications. For example, cells with larger surface
area often have a larger ability of exchanging ions and organic molecules with their
environment than cells with small surface area. Surface area is also of interest when
studying schizophrenia. In [PMJ+11] it was shown that patients with schizophrenia
have regions in the brain with significant localised surface area contraction as com-
pared to healthy individuals (after age and total surface area have been corrected
for).

In Section 3.1.1 it was mentioned that in classical stereology the surface area
of the boundary of a three-dimensional object can be unbiasedly estimated by
sampling the object with an IUR line and counting the number of intersections of
the line with the boundary of the object. The invariator principle (1), with n = 3 and
j = 1, presents a local analogue of this estimator, as it shows how a line in a two-
dimensional IR plane should be generated such that it is IUR in three-dimensions.
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The resulting estimator is the invariator estimator [CO05, first eq. (2.12)]. As the
invariator estimator is based on sampling the object of interest with an IUR line, the
object should be contained in a reference set (as the motion invariant measure on
the family of all affine subspaces is not finite). We take the reference set to be a ball
RB3 of radius R > 0, centered at O. Let X ⊆ RB3 be a compact object with smooth
boundary. The invariator estimator can be expressed as

Ŝinv = 4πR2χ(X ∩ L3
2[O] ∩ (z + z⊥)), (4)

where L3
2[O] ∈ L

3
2[O] is an IR plane, z ∼ unf(RB3 ∩ L3

2[O]) and z + z⊥ is the line in
the section plane L3

2[O], that passes through O and is orthogonal to the axis joining

z with O. We note that Ŝinv is an unbiased estimator for the surface area of the
boundary of X for any given reference set containing X.

4.2 Variance decomposition

The main goal of the master’s thesis [Thó10] was to study the variance of the
invariator estimator Ŝinv. This study gave some interesting results which we briefly
describe in the following. In [Thó10] we restricted attention to convex bodies in R3

as then the estimator Ŝinv is particularly easy to calculate. When X ∈ K3, the Euler
characteristic in (4) equals one if the line hits the section profile X ∩ L3

2[O] and is
otherwise zero, that is

χ(X ∩ L3
2[O] ∩ (z + z⊥)) = 1{X∩L3

2[O]
∩(z+z⊥) 6=∅} .

The invariator estimator is obtained by choosing three random variables: an IR
section plane and each of the two polar coordinates of a uniformly distributed point
in the section plane. The variance of Ŝinv can be decomposed into the contribution
due to each of these three random variables. For a given IR section plane L3

2[O],
let (r, u) be the polar coordinates of z ∼ unf(RB3 ∩ L3

2[O]), with r ∈ [0, ∞) and
u ∈ S2 ∩ L3

2[O]. From the conditional version of the law of total variance [BS12], we
find that

Var(Ŝinv) = Vdist + Vorient + Vplane, (5)

where
Vdist = E Var(Ŝinv|L3

2[O], u)

is the variance contribution from choosing the distance of the line ru + u⊥ from O,

Vorient = E Var(E[Ŝinv|L3
2[O], u]|L3

2[O])

is the variance contribution from choosing the orientation of the line ru + u⊥ in the
section plane and

Vplane = Var E[Ŝinv|L3
2[O]]

is the variance contribution from choosing the IR section plane L3
2[O]. These different

variance contributions were given more explicitly in [Thó10, Theorem 22] and were
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in particular studied for ellipsoids. It is presumably not possible to obtain explicit
analytic expressions for the different variance contributions when X is a three-
dimensional ellipsoid and we therefore turned to numerical methods for calculating
them. The general conclusion of an extensive simulation study in [Thó10] was that
Vdist, the variance from choosing the distance of a uniformly distributed point from
O, is much larger than the other two variance contributions. This result of [Thó10]
was exciting as it is possible to eliminate Vdist without too much workload and
hence obtain a new improved surface area estimator. The contribution Vdist can
be eliminated by, instead of generating a line, measuring the support function for
a uniformly chosen direction in the section plane. This was already suggested in
[CO05] and called one-ray pivotal estimator in [CO08]. The draw-back of the pivotal
estimator is that it only holds for convex bodies.

In [CO05] another improvement of the invariator estimator for surface area was
suggested, which also reduces variance. The estimator is called the invariator grid
estimator and we denote it by Ŝgrid. It does not require that the object of interest is
a convex body. It obtains its variance reduction from random systematic sampling
in the section plane. Instead of only using one test line, a random grid of test lines
is used in the section plane. This is expected to decrease Vorient and possibly also
Vdist. We considered an alternative systematic sampling approach in the section
plane, which also does not require convexity assumptions. For a given direction in
the section plane a random grid of parallel test lines could be used to decrease the
variance. The distances of the test lines should though not be uniform, but weighted.
This would expectedly decrease Vdist. We did not follow this idea through as we
found a way to eliminate this variance contribution Vdist altogether. More specifically,
we succeded in deriving an estimator, which enjoys the variance reduction of the
pivotal estimator but does not require that the object under study is convex. This is
a major advantage as clinical experts are often skeptic of convexity assumptions. We
call this new estimator Morse-type surface area estimator and present it in Paper B and
Paper C.

4.3 Composition of the papers

In the following sections we summarize the main results obtained in Paper A, Paper
B and Paper C.

In Section 3.2.1 we saw that the size-distribution of spherical particles can be
uniquely determined from the size-distribution of plane sections. It is of interest to
analyse if an analogue result can be obtained in a local setting. This is the goal of
Paper A. Without the strong shape assumption of spherical particles, a local shape
distribution estimation is out of reach, and expectedly impossible. However, it is
possible to estimate certain geometric characteristics as detailed in 3.1. The main
geometric characteristic of interest in Paper B and Paper C is the surface area.

Although the invariator principle was only rediscovered in local stereology a
few years ago its use and applications have stretched far. Paper B collects and,
where possible, generalizes invariator related results. The main new contribution is
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a new rotational Crofton formula involving Morse theory. The Morse type surface
area estimator is based on this new rotational Crofton type formula. Paper B is
rather mathematical and Paper C is meant to make the Morse type estimator more
easily accessible to the applied stereological community. In Paper C the estimator is
illustrated in a study of giant-cell glioblastoma using an expert-assisted procedure.
Although stereology is mainly concerned with three-dimensional objects, most of
the results in Paper A and Paper B are presented for objects in arbitrary dimension,
as this does not pose any essential extra difficulties. In Paper C we restrict attention
to R3 but many of the results can easily be generalized to arbitrary dimension.

5 Wicksell’s problem in local stereology

As mentioned in Section 3.2.1 there exists a vast amount of literature on the classical
Wicksell problem but it has never been studied in a local setting. Paper A is meant
to fill that gap and is therefore a good complement to the existing literature. In the
accepted version of the paper, some technical parts have been suppressed and the
interested reader is instead referred to the technical report [TK12]. We have included
these technical parts as ‘Supplementary material’ in A.I–A.III.

5.1 Local Wicksell

In a local design-based setting of Wicksell’s corpuscle problem we consider deter-
ministic n-dimensional (approximate) balls, each with a fixed reference point O.
We write R for the radius of a ball, and assume that it is positive, and Q for the
relative distance of the ball’s center O′ from the reference point O. Up to rotations,
a ball is determined by R and Q (that is, we do not consider the direction of the
reference point relative to the ball’s center) and these quantites are assumed to
be random. When a ball containing O is intersected by an IR hyperplane Ln

n−1[O],
independent of the ball, an (n− 1)-dimensional ball is obtained almost surely. We
write r for the radius of the (n− 1)-dimensional ball and q = 1

r ‖O′|Ln
n−1[O]‖ for the

relative distance of its center from O. In analogy to Wicksell’s classical problem,
we ask if the joint distribution of the particle parameters (R, Q) can be determined
from the joint distribution of the profile parameters (r, q). We refer to this problem
as the local version of Wicksell’s classical corpuscle problem. As remarked in Sec-
tion 3.2.2 the local version is trivial when the reference point coincides with the
ball’s center. When Q = 0 the size distributions of balls and section profiles are
identical. In Paper A we assume P(Q = 0) = 0. Most of the results can easily be
extended to the case P(Q = 0) > 0. We remark that when the reference point of a
three-dimensional ball lies on the boundary of the ball, Q = 1 a.s., the local Wicksell
problem becomes equivalent to the classical Wicksell problem, as the central section
can then be considered to be an IUR plane hitting the ball.

The local Wicksell problem shares many similarities with the classical Wicksell
problem and in order to describe these, as well as differences between the two,
Paper A starts off with a short outline of known results for the classical problem.
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It then proceeds with an overview of the main results obtained in the paper but
we restate these in the following, concentrating on numerical reconstruction. In
the local Wicksell problem there is no size-weighting as in the classical Wicksell
problem. Hence, as the radii of the section profiles are smaller than the radii of the
respective balls there does not exist a reproducing distribution in the local Wicksell
problem (under the assumption P(Q > 0) > 0). The main result of Paper A is that
the joint cumulative distribution function F(r,q) of the profile parameters can be given
in terms of the joint distribution of the particle parameters (R, Q). As one of the
profile variables determines the other whenever Q and R are given, there need not
exist a joint probability density function of (r, q). It is however not difficult to show
that the marginal distribution functions Fr and Fq always have probability densities.
From the integral transform connecting F(r,q) and F(R,Q) it is immediately obtained
that Fq uniquely determines FQ. More specifically, Fq and FQ are connected by an
Abel type integral equation which can be inverted explicitly (we give an explicit
solution when n = 3). Furthermore, when R and Q are independent, F(r,q) can be
shown to uniquely determine F(R,Q) but it is still an open problem if this holds when
the independence assumption is dropped. When only the marginal distributions Fq

and Fr are given this is not the case, as shown by a counterexample.
Many of the results in Paper A require that the particle parameters are indepen-

dent, that is the size of the particle and the position of its reference point should
be independent. There does not appear to be any easy way to check this indepen-
dence assumption from section profiles, as the profile parameters seem to always be
dependent apart from mathematically trivial cases (for instance when Q = 1 a.s.).
Hence independence is assumed a priori. We believe that this assumption is realistic
in many practical applications.

To proof the uniqueness conjecture under the independence assumption, we
used the interesting result that the profile radius can be represented as a multiple
of R and a random variable Γ, whose density can be given explicitly as a function
of Q. This is in analogy to the classical problem (but here R is not size-weighted
and the random variable depends on Q). As Γ only depends on (R, Q) through Q,
moment relations can be obtained when R and Q can be assumed to be independent.
If mk and Mk are the kth moments of r and R, respectively, then mk = ck(Q)Mk,
k ∈ {0, 1, 2, . . .}, and the constants ck(Q) can be given in terms of FQ. We show that
when n = 3, ck(Q) can also be given in terms of Fq which is very useful in practice
as it allows us to access Mk from the section profiles. An extensive simulation study
indicates that this estimation procedure is quite stable for moments up to 7th order.
This procedure opens up the possibility to determine the parameters in a parametric
model of R, thus allowing for a semi-parametric model, where only R, but not Q,
needs to follow a parametric model.

It was mentioned in Section 3.2.1 that the size distributions in the classical
Wicksell problem belong to the same type of extreme value distributions. This nice
result also holds for the marginal distributions in the local setting, given that the
particle parameters R and Q are independent.
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5.2 Reconstruction methods

Although most of the results in Paper A are theoretical, considerable time was spent
on reconstructing the marginal distributions FR and FQ when n = 3 from given
section profiles. Up to date, none of the several suggested methods for the classical
problem seems to be superior to all others. We considered three existing distribution-
free methods for numerically solving the local problem when the particle parameters
are independent. In Paper A we only discuss one of these methods and remark that
the other two did not give satisfactory results.

The method that performed well in the local setting is a Scheil-Schwartz-Saltykov
type method [Sal74]. In [BMN84] six distribution-free methods for solving the classi-
cal Wicksell problem were compared. The Scheil-Schwartz-Saltykov method per-
formed well and it is relatively easy to implement. The idea is to group the data and
discretize FQ and FR. Then the Abel type integral equation relating FQ and Fq be-
comes a system of linear equations that can be solved. This gives an estimator for FQ

which can be used to write Fr in terms of F(R,Q) as a system of linear equations which
can be solved. The feasibility of the approach is illustrated in a simulation study
involving various different distributions and choices of bin width. The method even
gives satisfactory results when the profile variables are measured with moderate
random multiplicative errors or when small profiles are omitted. These problems
are often encountered in practice.

The other two more advanced numerical methods that we studied are product
integration and kernel density estimators. Both of these methods were applied to the
integral transform connecting FQ and Fq (that is, we only reconstructed FQ from
the section profiles). The product integration method is explained in [AJ75] where
it is claimed to yield accurate results for the classical Wicksell problem. We used
the method on the inverted Abel type integral equation giving FQ in terms of
Fq. The idea of the method is to smooth the sample distribution function with a
localised Lagrange interpolation and then to integrate the singularity (in the integral
equation) out analytically. The obtained reconstructions of FQ approximate the true
distribution function quite well on average but fluctuate far too much around the
true value to be of any use. We also used a quartic kernel smoothing for fq that
allowed to express fQ in terms of a linear combination of numerous incomplete Beta
functions. However, this reconstruction was not stable.

6 Rotational Crofton-type formulae using the invariator
principle

The idea of the Morse type surface area estimator is quite simple and it is based on
a modification of the area tangent count method, which was discussed in Section
3.1.1 for estimating planar curve length and the integral mean curvature of surfaces.
Prompted by a remark of Professor Jan Rataj we decided to use classical Morse theory
to describe this new estimator, which explains the appellation ‘Morse type surface
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area estimator’. The analogy of the estimator to the area tangent count method
is deferred to Section 7.1. Paper B presents new rotational Crofton formulae, the
most important one being a rotational Crofton formula involving Morse theory. The
Morse type estimator is derived from a special case of this formula, for objects in
arbitrary dimension.

We mentioned earlier that a functional α(·) satisfying (3), where β(X) is an intrin-
sic volume, is obtained by combining the classical Crofton formula and the invariator
principle, as shown in [AJ10, Proposition 1] and, independently, in [GACONnB10,
Theorem 3.1 with λ = 0]. As the invariator principle is simply a measure decom-
position, analogous results can be obtained using variants of the classical Crofton
formula. These variants include a local version of Crofton’s formula [Gla97, Theo-
rem 3.4] involving the support measures of polyconvex sets and a Crofton formula
for manifolds [Jen98, Proposition 3.7]. These generalizations are treated in Paper
B. In [ACZJ12] the invariator principle was combined with a Crofton formula for
Minkowski tensors of convex bodies [HSS08, Theorem 2.2].

These rotational Crofton-type formulae do not give an explicit form of the
functional α(·) to be measured on the linear section. We give more explicit represen-
tations of the measurement function in Paper B. When the volume is sought for, a
particularly simple representation for the measurement function is obtained. This
representation requires no assumptions on the geometric structure of interest, apart
from measurability. Other representations include:

(i) writing the measurement function associated to the curvature measures as an
integral over the boundary of the section profile,

(ii) writing a special case of the measurement function associated to the intrinsic
volumes in terms of the radial function of the section profile and an angle in
the section plane,

(iii) writing a special case of the measurement function associated to the Hausdorff
measures, intrinsic volumes, respectively, in terms of so-called critical values
of the section profile.

These representations require different regularity assumptions on the object of inter-
est. Representation (i) involves the principal curvatures and the object is therefore
assumed to be a convex body with boundary of class C2. Representation (ii) still re-
quires that the object is convex but the C2 smoothness assumption can be dropped if
O is contained within the interior of the object. Representation (iii) for the Hausdorff
measures requires that the object is a compact, smooth manifold while it should
be a polyconvex set when the intrinsic volumes are considered. These different
representations all play a role when rotational formulae are applied in stereology,
a special case of the volume representation is e.g. the integrated nucleator whereas
a special case of representation (ii) is the integrated surfactor [CO12, Eq. (24)]. In
[AJ10, Proposition 3] representation (i) was derived for the intrinsic volumes. Repre-
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sentation (iii) is of most interest, as it leads to the Morse type surface area estimator,
and we account for it briefly in the following.

6.1 A rotational Crofton formula involving Morse theory

In Paper B we first apply classical Morse theory to the section profile Y = X∩ Ln
j+1[O],

j ∈ {0, 1, . . . , n− 1}, and we therefore require that this profile has a smooth boundary
(this is satisfied under the assumption that X is a compact, smooth manifold of
dimension n− j that intersects Ln

j+1[O] transversely in Rn for almost all Ln
j+1[O] ∈

Ln
j+1[O]). We later show that also non-smooth sets can be allowed. To show this

we assume that the section profile is polyconvex (which is satisfied when X is
polyconvex), and the Morse indices (to be defined later) have to be replaced by a
Hadwiger type index [Had55].

Let X be a compact, smooth manifold of dimension n− j that satisfies the weak
regularity condition mentioned above. For β(X) = Hn−j

n (X), where Hn−j
n is the

(n− j)-dimensional Hausdorff measure in Rn, equation (3) holds with

α(Y) = cn−j+1,n−j
n+1,1,1

∫
Sn−1∩Ln

j+1[O]

∫ ∞

−∞
χ(Y ∩ (ru + u⊥))|r|n−j−1drduj, (6)

where cn−j+1,n−j
n+1,1,1 is a constant depending on n and j (see (B.1)). We use classical

Morse theory to write the Euler characteristic in the above expression in terms of
critical values on Y. For u ∈ Sn−1 ∩ Ln

j+1[O] let fu(y) = 〈y, u〉 be the height function
on Y. We say that a point p ∈ Y is a critical point of fu if there is a local coordinate
system φ : U → Y, where U is a neighbourhood of O, with φ(O) = p, such that
d( fu◦φ)

dx (O) = 0. If p is a critical point of fu then fu(p) is called a critical value of fu.

The critical point has index one, if the second derivative d2( fu◦φ)
dx2 (O) is negative, and

index zero if the second derivative is positive. The main result of Paper B is obtained
by writing the Euler characteristic in (6) in terms of the critical values of the section
profile. Then the inner integral in (6) can be calculated explicitly and we obtain

α(Y) =
cn−j+1,n−j

n+1,1
n−j

∫
Sn−1∩Ln

j+1[O]

M(Y, u)duj, (7)

where

M(Y, u) =
m

∑
k=2

(sgn(rk)|rk|n−j − sgn(rk−1)|rk−1|n−j)
k−1

∑
i=1

vi (8)

depends on all the critical values r1 < r2 < · · · < rm of the smooth one-dimensional
manifold Y ⊆ Ln

j+1[O] with respect to the height function fu. The respective Morse

indices are λ1, . . . , λm and we abbreviated vi = (−1)λi , i = 1, . . . , m.

6.2 The Morse type surface area estimator

Let X be a compact, smooth manifold of dimension n− 1 that satisfies the weak
regularity condition (X intersects Ln

2[O] transversely in Rn for almost all Ln
2[O] ∈ L

n
2[O]).
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Recalling (3), we obtain from (7) with j = 1 that the surface area of X can be written
as

S(X) = cn
2,1

∫
Ln

2[O]

∫
Sn−1∩Ln

2[O]

M(X ∩ Ln
2[O], u)du1dLn

2[O], (9)

where M is given by (8) with j = 1. The integrand presents an unbiased estimator
for the surface area of X. The precision of the estimator can be increased by applying
angular systematic sampling in the section plane to unbiasedly estimate the inner
integral in (9). This gives the Morse type surface area estimator

ŜN =
cn

1
N

N−1

∑
l=0

M(X ∩ Ln
2[O], uα0+l π

N
), (10)

where uα is a unit vector making an angle α with a fixed axis in the IR section plane
Ln

2[O] ∈ L
n
2[O], α0 is uniformly distributed in the interval [0, π/N) and N ∈N is the

number of sampled directions in the section plane.
When it is possible to find critical values for all directions in the section plane

(e.g. by automated segmentation of the boundary), equation (9) presents another
unbiased surface area estimator which we call the generalized flower estimator

Ŝflo = cn
2,1

∫
Sn−1∩Ln

2[O]

M(X ∩ Ln
2[O], u)du1, (11)

where Ln
2[O] ∈ L

n
2[O] is IR. We derive a simple computational formula for (11) when

X ⊆ R3 is a simply connected set with interior points that can be represented as
the union of finitely many convex polytopes. The formula only requires a list of the
vertices of the polygon X ∩ L3

2[O].
In Paper B we show that the estimators in (10) and (11) also hold for polyconvex

sets X in Rn (without any extra regularity assumptions) when the Morse indices
and critical values in (8) are replaced by Hadwiger type indices and critical values.
Furthermore, we show that when X ⊆ Rn is a compact, topologically regular set
(X = cl(intY)) with smooth boundary (satisfying the weak regularity condition
mentioned earlier), the two definitions of critical values and indices are the same.

6.3 Flower area

When X is a convex body in Rn, equation (8) simplifies and the generalized flower
estimator becomes

Ŝflo = cn
2

∫
Sn−1∩Ln

2[O]

sgn(hX∩Ln
2[O]

(u))|hX∩Ln
2[O]

(u)|n−1du1, (12)

where sgn(·) is the signum function. As −hX∩Ln
2[O]

(−u) ≤ hX∩Ln
2[O]

(u) for all u ∈
Sn−1 ∩ Ln

2[O], the integrand in (12) is the radial function of some set. We call this

set the (n − 1)-flower set of X ∩ Ln
2[O] and denote it by Hn−1

X∩Ln
2[O]

. The flower set of

a convex body is only an auxiliary set associated to the section profile and not
necessary for the estimation procedure. When O ∈ X, equation (12) with n = 3 is
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the flower estimator for surface area given in [CO05]. The terminology ‘flower’ is due
to [CO05] and comes from the fact that when X ∩ L3

2[O] is a planar polygon, H1
X∩L3

2[O]

is a union of finitely many disks and resembles slightly a flower.
For central two-dimensional sections in R3 the average area of the 1-flower set

of a section profile is, up to a factor 4, the surface area of the boundary of the object

S(∂X) = 4
∫
L3

2[O]

V2(H1
X∩L3

2[O]
)dL3

2[O].

This is in formal analogy with Cauchy’s surface area formula [SW08, Eq. (6.12)] that
expresses the surface area as mean area of two-dimensional projections

S(∂X) = 4
∫
L3

2[O]

V2(X|L3
2[O])dL3

2[O].

This analogy was observed in [GACO09, Section 4.3]. It seems that this analogy is
merely a coincidence due to a special choice of dimensions as it only generalizes for
very special choices of the dimension of the surrounding space and the dimension
of the linear subspace. We did not only treat this analogy for the surface area but for
all the intrinsic volumes (and then considered Kubota’s formula [SW08, Eq. (6.11)]
which generalizes Cauchy’s formula).

Paper B also sheds further light on the standing uniqueness conjecture
[GACONnB10, Conjecture 4.1] that (3) with β(X) = Vn−j+m, 0 ≤ m ≤ j, only
holds if the measurement function is of the invariator form

α(·) = cj+1,n−j+m+1,n−j
m+1,n+1,1

∫
Lj+1

j

Vm(· ∩ Lj+1
j )d(O, Lj+1

j )n−j−1dLj+1
j .

This is inspired by [CO12].

7 The Morse type surfacea area estimator in practice

The goal of Paper C is to advocate the benefits of the Morse type surface area
estimator (10) to practical users of stereological tools. In Paper C the object of
interest X is either a three-dimensional polyconvex set or a compact subset of R3

with smooth boundary. If X is a compact set with smooth boundary we have to
impose the weak regularity condition mentioned in Section 6.1 to guarantee that the
section profile X ∩ L3

2[O] has again a smooth boundary.

7.1 A modification of the area tangent count method

The idea of the Morse type estimator is based on a modification of the area tangent
count method. The area tangent count method is used to calculate the Euler charac-
teristic in (4) for all r ∈ R but as the line in the section plane is weighted, it is not
enough to count the number of tangents in the section plane, also their distances
from O need to be registered. These distances are the ‘critical values’ defined in
Section 6.1. The procedure is the same as for the tangent count method: a line in the
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IR section plane, at a uniformly chosen direction, is swept through the section profile
and all translates of the line that are tangent to the section profile are registered,
as well as their type (positive or negative tangents, see Section 3.1.1) and critical
values. A positive tangent corresponds to a critical point with Morse index zero (and
Hadwiger index one) and a negative tangent to a critical point with Morse index
one (and Hadwiger index −1).

Tangent counting is derived for ideal smooth objects which is not the case in
practice. The boundary of a section profile on a microscopy image can be quite
blurry and the (approximate) section profile can therefore appear to have more
tangents than the true section profile. This can make tangent counting unstable in
practice, as mentioned in [Bad84]. This problem is not a severe practical limitation
in our setting as the critical values are used and not only the number of tangents.
The modified tangent method splits the integration over the real numbers up into
intervals where the Euler characteristic in (4) is constant. The ‘wrong’ tangents (that
is lines that appear to be tangent to the section profile due to the boundary being
blurry), for a given direction, are typically very close to ‘real’ tangents. Therefore,
intervals where the ‘wrong’ Euler characteristic is used are very small and do not
contribute much to the estimator.

In Paper C we discuss the precision gain in terms of variance reduction obtained
by using the Morse type surface area estimator as compared to earlier approaches
(the surfactor and the invariator grid estimator). We generalize the variance de-
composition of the invariator estimator (5) to non-convex objects and calculate the
different contributions more explicitly (this can be generalized to objects of arbitrary
dimension without any extra difficulties). We also mention how these variance
contributions simplify for convex objects and in particular for ellipsoids and balls.
These variance contributions can be used to express the variance of the Morse type
estimator and of the generalized flower estimator (11). To explain the motivation
for deriving the Morse type surface area estimator, the results of the simulation
study performed in [Thó10] are discussed in Paper C, as already done briefly in
Section 4.2.

7.2 Implementation of the Morse type surface area estimator

It was the purpose of Paper C to demonstrate the practicability of the Morse type
estimator in a biological application. This required software that allows the user
to efficiently sweep a line through a section profile and register tangents. This
program was written in [Kal12] and used to estimate the boundary length of planar
geometric objects in a more efficient way than the Steinhaus estimator. We adapted
this program to our setting for surface area estimation, that is, we used the output
of the program to calculate the Morse type surface area estimator. The software is
available at the home page home.imf.au.dk/olofth and we refer to it as an ‘expert-
assisted procedure’. In Paper C we give a brief description of this expert-assisted
procedure in order to enable stereologists to use it in practice. The procedure is
quite simple to use. The input is a section profile, a microscopy image in JPEG
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format. When the procedure is run, the user can, on the image, translate a line that
is attached to the mouse cursor. The user needs to place all translates of the line
that are tangent to the section profile. To distinguish between positive and negative
tangents, the user left and right clicks, respectively, with the mouse. It is possible to
choose the number of directions N that are to be sampled in the section plane. In
the absence of other large sources of variation than the variance from the sampling
procedure we recommend using N = 4, N = 2 if the section profile resembles an
ellipse. When there are other sources of variation, which is the case in most real-
world applications, we recommend using N = 2. These other sources of variation
can for example be the true population variance (the variation in surface area among
particles) when the aim is to estimate the average surface area in a population of
particles. The recommendation concerning the choice of N, when no other major
sources of variation are present, was concluded on the basis of a simulation study.
The simulation study involved section profiles of various different shapes. For these
shapes we also compared the efficiency of ŜN and the invariator grid estimator
Ŝgrid. The comparison was done by considering the amount of workload needed to
obtain a given precision for each of these estimators. It turns out that ŜN with N > 1
should clearly be preferred to Ŝgrid and when the expert-assisted procedure is used
we always recommend using the Morse type estimator.

We illustrate the application of the Morse type surface area estimator in a study of
giant-cell glioblastoma. Although some clinical experts claim that not many objects
in practice can be assumed to be convex in shape it turned out to be rather difficult
to find particles that could justify the need for extending the pivotal estimator to
non-convex particles. However, giant-cell glioblastoma are of interest in medical
applications and their nuclei are typically non-convex in shape. The surface area
of 51 sampled nuclei was estimated using ŜN with N ∈ {1, 2, 4}. We used these
different choices of N, and ignored our own recommendation, to be able to compare
the precision of the estimators. The average surface area of the nucleus of a giant-cell
glioblastoma was then estimated by taking the average of the empirical estimates of
the surface area of the 51 sampled nuclei. Sampling in more directions in the section
plane did not noticeably increase the precision of the estimator. When only the
variance due to choosing the orientation in a section plane Vorient, was studied, for a
given nucleus, a large decrease was observed when N was increased. However, this
variance contribution is very small compared to the other variance contributions,
the variance due to choosing the plane within each nucleus and the true population
variance (the variation in surface area among the nuclei). Estimates for the other two
variance contributions, Vplane and the true population variance, could be obtained
by modelling the nuclei. If the nuclei could be modelled by balls (which is not very
realistic) the theory in Paper A could be used to obtain these estimates.

The decomposition of the variance of the invariator estimator shows that
Vplane = Var(Ŝflo) and that the generalized flower estimator has lower variance
than Ŝinv, Ŝgrid and ŜN . As Ŝflo requires finding tangents in all directions in the
section plane it is usually not feasible in practice. However, if the boundary of a

22



8. Outlook

section profile can be approximated by a polygon, using automated segmentation,
the simple computational formula for Ŝflo mentioned in Section 6.2 (see (B.46)) can
be used to obtain Ŝflo. Automated segmentation can be of poor quality which leads
to a heavily biased estimator (as a ‘wrong’ section profile is used instead of the
true one). Semi-automatic procedures have been proposed to deal with this problem.
This was done for surface area estimation in [DJ13] and for volume estimation in
[HNAJ11]. In semi-automatic procedures, a clinical expert supervises the automated
segmentation of the boundary of a given section profile and only intervenes if the
segmentation is not satisfactory. If it is satisfactory the surface area is estimated
by Ŝflo where the true section profile is replaced by the estimated one. In case of
unsatisfactory segmentation, we suggest that the expert performs the necessary
measurements in the section plane using the Morse type estimator ŜN . This is most
conveniently done by using the expert-assisted procedure.

8 Outlook

In this thesis we derived both results that are interesting from a theoretical point of
view and for practical applications in stereology.

We showed a ‘local analogue’ to the classical Wicksell problem, where we in
particular emphasized similarities and differences between the classical and the
local problem. In the classical problem, the size distribution of spherical particles
can be uniquely determined by the size distribution of its section profiles. It is still
an open question if this holds in a local setting, that is, if the joint distribution of the
particle parameters can be uniquely determined from the joint distribution of the
profile parameters. In the treatment of Wicksell’s problem in a local setting we in
particular derived stereology of extremes results for the marginal distributions of
the parameters. This is presumably only the second study of sterelogy of extremes
in a local setting, and the only one where the reference point is arbitrarily positioned
inside the particle. Although a population of spheres is a rather restrictive scenario
in practical applications, the local Wicksell problem is fascinating and reveals an
interesting comparison between local and classical stereological methods. Moreover,
there exist particle populations where this assumption is realistic, for example white
fat cells [MBBO04]. It would be natural to formulate a local version of Wicksell’s
problem for ellipsoids like in the classical theory. However, there would be six
unknown variables to describe the shape in three-dimensional space and the com-
plicated integral relations between them and their profile counterparts appear to be
very complicated and difficult to evaluate.

In the spirit of stereology we combined two seemingly different fields to create a
highly useful stereological tool. We intertwined the classical theory of Morse and a
Blaschke-Petkantschin type measure decomposition. The result is the Morse type
surface area estimator. We argued that the Morse type estimator is the preferred
surface area estimator available in local stereology. When automated segmentation
is available, we suggested that a semi-automatic procedure should be used to re-

23



Introduction

duce the wokload. If the segmentation of a section profile is satisfactory, the simple
computational formula for the generalized flower estimator should be used, as the
generalized flower estimator is the optimal (with respect to variance) estimator avail-
able. If the segmentation is not satisfactory the Morse type estimator, implemented
with the expert-assisted procedure, should be used.

The comparison of classical and local stereology also led to new insight of the
relation between averaged central sections and projections. Furthermore we derived
new rotational Crofton formulae involving critical values and shed further light
on the uniqueness conjecture of the measurement function in rotational Crofton
formulae. In Paper B we mentioned that it might be possible to extend these rota-
tional Crofton formulae involving critical values to the more general class of sets
of positive reach, or even to sets that can be written as certain finite unions of sets
of positive reach. This would require an extensive study of the work in [Fu89] but
would relax the regularity assumptions required for the application of the Morse
type estimator. We remark that these regularity assumptions are typically satisfied in
the biological applications, we have in mind. We only considered rotational Crofton
formulae involving critical values when the measurement function is of the form (6).
That is, we only considered the weighted Euler characteristic of the section profile
intersected with an affine line in the IR section, integrated over all possible choices
of this line. It is of interest if this can be generalized to other intrinsic volumes than
the Euler characteristic. More specifically, it is an open problem if Morse theory and
the invariator principle can be combined to derive rotational Crofton formulae in
full generality.

Minkowski tensors of convex bodies are a natural extension of the intrinsic
volumes and they contain information on size, location, shape and orientation. In
[JZ13] local stereological estimators of the Minkowski tensors are presented, both
old and new, and their performance is investigated in a simulation study. These
estimators are based on the invariator principle and here also the sweeping line idea
might prove to be valuable. Tensor valuations will most likely play a decisive role
in future research in stereology on size- and orientation-distributions, shape and
spatial positioning of arbitrary particles.
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Wicksell’s problem in local
stereology

Ó. Thórisdóttir and M. Kiderlen

Department of Mathematics, Aarhus University

Abstract: Wicksell’s classical corpuscle problem deals with the retrieval of the size distribu-
tion of spherical particles from planar sections. We discuss the problem in a local stereology
framework. Each particle is assumed to contain a reference point and the individual particle
is sampled with an isotropic random plane through this reference point. Both the size of
the section profile and the position of the reference point inside the profile are recorded
and used to recover the distribution of the corresponding particle parameters. Theoretical
results concerning the relationship between the profile and particle parameters, unfolding
of the arising integral equations, uniqueness issues and domain of attraction relations are
discussed. We illustrate the approach by reconstructing from simulated data using numerical
unfolding algorithms.

Keywords: Wicksell’s corpuscle problem; local stereology; inverse problems; numerical
unfolding; stereology of extremes.

2010 MSC: 60D05; 45Q05; 65R30; 62G05

A.1 Introduction and account of main results

This work discusses Wicksell’s corpuscle problem in a local stereology framework,
where the size distribution of spherical particles is recovered from plane sections
through reference points. In order to describe similarities and differences of the local
and the classical Wicksell problem, we start with a short outline of the latter.

Wicksell’s classical corpuscle problem, described very figuratively as ‘tomato
salad problem’ by Günter Bach, asks how to recover the size distribution of random
balls in R3 from the observed size distribution of two-dimensional section profiles.
Although the stereological literature often refers to ball-shaped particles as ‘spheres’,
we decided to adopt terminology from pure mathematics, calling the solid particles
‘balls’, and reserving the word ‘sphere’ for the boundary of a ball. Assuming that
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the “density of the centers and the distribution of the sizes being the same in all
parts of the body [where the observation is taken]”, Wicksell showed [Wic25] that
the density fr of the profile radii r is given by

fr(x) =
x

ER

∫ ∞

x

1√
y2 − x2

dFR(y), (A.1)

where FR is the cumulative distribution function of the radius R of the balls in R3,
and ER is the usual expectation of R. Stoyan & Mecke [MS80] made Wicksell’s
arguments rigorous showing that (A.1) actually holds for all stationary particle
processes of non-overlapping balls, when R has a finite mean. The right hand side
of (A.1) is essentially an Abel integral transform of FR. It can be inverted explicitly,
and this shows in particular that FR is determined by the cumulative distribution
function Fr of r.

Relation (A.1) is the result of two mutually counteracting sampling effects: As
the probability that a ball is hit by the plane is proportional to its radius, the radius
distribution of the intersected balls is size weighted, preferring large balls. On the
other hand, the profile radius is always smaller than the radius of the intersected
ball, as the section plane almost surely misses the ball’s center. Already Wicksell
was aware of the fact that these two effects can annihilate each other. When R
follows a Rayleigh distribution (the distribution of the length of a centered normally
distributed two-dimensional vector), r also follows this distribution, with the same
parameter. The Rayleigh distribution is the only reproducing distribution in this sense;
see [DR92]. If Rw denotes the radius-weighted radii distribution with cumulative
distribution function

FRw(x) =
1

ER

(
xFR(x)−

∫ x

0
FR(s)ds

)
,

x ≥ 0, the two sampling effects can also be expressed by the relation

r = ΛRw, (A.2)

where Λ is a random variable with Lebesgue-density s 7→ 1[0,1](s)s/
√

1− s2 that is
independent of Rw; see [BJ05]. This also gives the well-known moment relations

m̃k = ck+1
M̃k+1

M̃1
, (A.3)

k = −1, 0, 1, 2, . . ., where m̃k and M̃k are the kth moments of r and R, respectively,
and

ck =

√
π

2
Γ ((k + 1)/2)
Γ (k/2 + 1)

. (A.4)

The inversion of the integral equation (A.1) is ill-posed, which can informally be
described as ‘small deviations of the data can lead to arbitrarily large deviations of
the solution’. There exist several methods, both distribution-free (non-parametric)
and parametric ones, for numerically solving Wicksell’s classical problem. Examples
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of distribution-free methods are finite difference methods, spectral differentiation
and product integration methods and kernel methods. Parametric methods can be
divided into maximum likelihood methods and methods that only use the moment
relations. All methods have their advantages and disadvantages and none appears
to be generally best. References for the respective methods and an overview of
existing ones are given in for example [SKM95, Section 11.4.1], [CO83], [BMN84],
[AJ75a] and [ADH90].

Stereology of extremes has received much interest due to applications in material
science; see [TS02] for an application to metallurgy. The maximum size of balls in
Wicksell’s classical problem is studied in [DR92], [TS96], [TS98] and [TS01]. There
it is shown that FR and Fr belong to the same type of extreme value distribution.
Extremes of the size and shape parameters of spheroidal particles are studied in
[Hlu03a], [Hlu03b], [Hlu06] and [BBH03].

More detailed reviews of the classical Wicksell problem can be found in [SKM95,
Section 11.4], [CO83], [OM00, Chapter 6] and earlier contributions, that are listed in
these sources.

In the above description of Wicksell’s problem, we adopted the common model-
based approach, where the particle system is random, and the probe can be taken
with an arbitrary (deterministic) plane due to stationarity. Jensen [Jen84] proved
that (A.1) also holds in a design-based setting, where the particle system is de-
terministic – possibly inhomogeneous – but the plane is randomized. In order to
obtain a representative sample, it is enough to choose an FUR (f ixed orientation
uniform random) plane. Inspired by local stereology, we discuss here a design-based
sampling scheme, where each particle contains a reference point and the individual
particle is sampled with an isotropic plane through that reference point. This design
is tailor-made for applications e.g. in biology, where cells often are sampled using a
confocal microscope by focusing on the plane through the nucleus or the nucleolus
of a cell; see the monograph [Jen98] on local stereology. To our knowledge, the
first explicit mention of Wicksell’s problem in a local setup is [Jen91], where it is
remarked that the problem is trivial whenever the reference point coincides with the
ball’s center, as the size distributions of balls and section profiles are then identical.
This being obvious, we want to show here that the local Wicksell problem is far from
trivial if this condition is violated.

Although biological application suggests to restrict considerations to R3, we will
consider particles in n-dimensional space intersected by hyperplanes, as the general
theory does not pose any essential extra difficulties. Like in the classical setting,
we assume that the particles are (approximate) balls, and in order to incorporate
the natural fluctuation, we assume that both the radius of the ball and the position
of the reference point in the ball are random. This way, a ball-shaped particle is
described by two quantities: firstly its random radius R, the size of the ball, and the
distance of the reference point from the center of the ball. It turns out to be favorable
to work with the relative distance Q ∈ [0, 1] instead, meaning that QR is the distance
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of the reference point to the ball’s center. The variable Q can be considered as shape
descriptor. We do not take into account the direction of the reference point relative
to the ball’s center, as this direction appears to be of minor interest. In addition it
cannot be determined from isotropic sections, unless we would also register the
orientation of the section plane (which we will not do here). If a ball with a given
reference point is intersected by an isotropic hyperplane through the reference point
(independent of the ball), an (n− 1)-dimensional ball is obtained. We let r be its
radius and q be the relative distance of the reference point to its center.

Our first result, Theorem A.1, shows that the joint distributions of (r, q) and (R, Q)

are connected by an explicit integral transform. Here and in the following we assume
that all balls have a positive radius, and that the reference point does almost surely
not coincide with the center of a ball, that is, we agree on P(Q = 0) = 0. The last
assumption is not essential, and most of our results can be extended to the case
P(Q = 0) > 0, as outlined in Remark A.2. Like in the classical Wicksell problem
we show that the marginals of r and q always have probability densities fr and fq,
respectively, and we determine their explicit forms in Corollary A.4. However, the
joint distribution of (r, q) need not have a density. Corollary A.4 also shows that fq

only depends on the distribution of Q and not on R, which explains why we are
working with relative distances. In Proposition A.5 we show that

r = ΓR (A.5)

with a random variable Γ, whose density can be given explicitly. This is in analogy
to (A.2) in the classical case. However, there is no size-weighting in our local stereo-
logical design, and the variable Γ is now depending on the distribution of Q. Thus,
when R and Q are independent, so are R and Γ, and moment relations in analogy to
(A.3) are readily obtained: if mk and Mk are the kth moments of r and R, respectively,
then

mk = ck(Q)Mk, (A.6)

k = 0, 1, 2, . . .. The constants ck(Q) depend on the distribution of Q and are given
in Remark A.6. However, (A.6) cannot be applied directly to obtain (estimates of
the) moments Mk, as ck(Q) depends on the shape of the full particle. Corollary A.10
shows that ck(Q) can be expressed by the distribution of q, making it possible to
estimate both mk and ck(Q) from the section profiles and thus to access Mk. Simula-
tion studies showed that this estimation procedure is quite stable, as described after
Corollary A.10.

We then turn to uniqueness in Section A.4. That the distribution of Q is uniquely
determined by the distribution of q follows from the fact that the two distributions
are connected by an Abel type integral equation. It can be inverted explicitly; see
Proposition A.9 for n = 3. Theorem A.7 shows that even the joint distribution of
(R, Q) is uniquely determined by the distribution of the profile quantities (r, q), but
only under the assumption that R and Q are independent. The two marginals of
(r, q) do not uniquely determine (R, Q) without this extra assumption, as shown
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by an example after Theorem A.7. It is an open problem whether the joint distribu-
tion of (r, q) determines the joint distribution of (R, Q) without the independence
assumption.

To reconstruct FR and FQ from simulated data, when R and Q are independent,
we chose to use distribution-free methods. Maximum likelihood methods and
method of moments can though also be used as for the classical Wicksell problem.
In Section A.6 we describe the implementation of a Scheil-Schwartz-Saltykov type
method [Sal74]. Following [CO83], the method can be classified as a finite difference
method, more specifically a ‘successive subtraction algorithm’. The data is grouped
and the distributions FQ and FR discretized. Then Fq written in terms of FQ, Fr written
in terms of FR,Q, respectively, become systems of linear equations, which can be
solved. We carried out a number of simulation studies which illustrate the feasibility
of the approach. An example of a reconstruction is reported in Figure A.2.

In Section A.7 we discuss practical examples and then turn to stereology of ex-
tremes in Section A.8. Similar results as in the classical case are obtained. Proposition
A.15 shows that if the particle parameters, R and Q, are independent, FR and Fr

belong to the same type of extreme value distribution. An analogous result holds for
the shape parameters. To our knowledge, stereology of extremes in a local setting
has only been treated in [Paw12]. There the shape and size parameters of spheroids
are studied but the isotropic section plane is always taken through the center of the
spheroid.

As mentioned earlier, a number of results and the implemented reconstruction
algorithm depend on the assumption that the particle parameters R and Q are
independent. We comment on this assumption in the concluding Section A.9.

A.2 Preliminaries

Throughout we let Rn denote the n-dimensional Euclidean space and O its origin.
The Euclidean scalar product is denoted by 〈·, ·〉 and the Euclidean norm by ‖·‖.
We let ei be the vector in Rn with 1 in the ith place and zeros elsewhere. For a set
Y ⊆ Rn, we define

Y + x = {y + x | y ∈ Y}, x ∈ Rn, αY = {αy | y ∈ Y}, α > 0. (A.7)

We use ∂Y for the boundary and 1Y for the indicator function of Y. The unit ball in
Rn is Bn = {x ∈ Rn : ‖x‖ ≤ 1} and the boundary of it is the unit sphere (in Rn)
Sn−1, Sn−1 = {x ∈ Rn : ‖x‖ = 1}. A ball in Rn of radius R centred at O is denoted
by RBn, in accordance to (A.7). We write σn for the surface area of the unit ball
in Rn, i.e. σn = Hn−1

n (Sn−1), whereHd
n is the d-dimensional Hausdorff measure in Rn.

When n is clear from the context, we abbreviateHd
n(du) by dud. For p = 0, 1, . . . , n

let

Ln
p[O] = {Ln

p[O] ⊆ Rn | Ln
p[O] is a p-dim. linear subspace},

Ln
p = {Ln

p ⊆ Rn | Ln
p is a p-dim. affine subspace},
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be the family of all p-dimensional linear, respectively affine, subspaces of Rn. These
spaces are equipped with their standard topologies ([SW08]) and we denote their
Borel σ-algebras by B(Ln

p[O]), B(L
n
p), respectively. The spaces are furthermore en-

dowed with their natural invariant measures, and we write dLn
p[O] and dLn

p, respec-
tively, when integrating with respect to these measures. We use the same normaliza-
tion as in [SW08], ∫

Ln
p[O]

dLn
p[O] = 1.

A random subspace Ln
p[O] is called isotropic random (IR) if and only if its distribution

is given by

PLn
p[O]

(A) =
∫
Ln

p[O]

1AdLn
p[O], A ∈ B(Ln

p[O]).

Similarly, a random flat Ln
p ∈ Ln

p is called isotropic uniform random (IUR) hitting a
compact object Y if and only if its distribution is given by

PLn
p
(A) = c

∫
Ln

p

1A∩{Ln
p∈Ln

p | Ln
p∩Y 6=∅}dLn

p, A ∈ B(Ln
p), (A.8)

where c is a normalizing constant. We let x|Ln
p[O] be the orthogonal projection of

x ∈ Rn onto Ln
p[O]. We furthermore adopt the convention of writing v⊥ for the

hyperplane with unit normal v ∈ Sn−1. We use B(z; a, b) to denote the incomplete
Beta function, given by

B(z; a, b) =
∫ z

0
ta−1(1− t)b−1dt, 0 < z < 1, a, b > 0.

When z = 1 we write B(a, b). Note in particular that B(1/2, (n− 1)/2) = σn/σn−1.
For an arbitrary function f we let f+(x) = max{ f (x), 0} be its positive part. Given a
random variable X, its characteristic function (or Fourier transform of its distribution)
is defined by

ϕX(t) = EeitX, t ∈ R.

A.3 The direct problem

Consider a random ball in Rn with positive radius, centered at O′ and containing
the origin. Let R and Q denote the random variables giving the radius of the ball,
and the relative distance of the center of the ball from O, respectively. Intersect
the ball with an IR hyperplane, Ln

n−1[O], independent of the ball. Then an (n− 1)-

dimensional ball is obtained. Let r be its radius and q = 1
r ‖O′|Ln

n−1[O]‖ the relative
distance of its center from O, see Figure A.1. Note that r is almost surely positive.

When Q = 0 the ball is centered at the origin and all hyperplanes give equivalent
(n− 1)-dimensional balls of radius R. We exclude this throughout, i.e. we assume
that

P(Q > 0) = 1. (A.9)

This assumption can easily be relaxed, see Remark A.2. The cumulative distribution
function F(r,q) of (r, q) is given in the following theorem.
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−→

Figure A.1: To the left: RB3 +O′ with reference point (bold). The full line segment has length
R and the broken line segment has length RQ. To the right: Section plane with profile. The
full line segment and the broken line segment have length r and rq, respectively.

Theorem A.1. Let RBn +O′ be a random ball in Rn containing O with ‖O′‖ = RQ, and
let

Z = Z(R, Q, x, y) =
1

Q2 max
{ (R2 − x2)+

R2 ,
(Q2 − y2)+

1− y2

}
(A.10)

for x ∈ [0, ∞), y ∈ [0, 1). If Ln
n−1[O] is an IR hyperplane, independent of RBn + O′, we

have
F(r,q)(x, y) = 1− σn−1

σn
E
[

B
(

1−
(

1− Z
)+

;
1
2

,
n− 1

2

)]
, (A.11)

for x ≥ 0 and 0 ≤ y < 1. For y = 1, we obtain the marginal distribution function of r by

Fr(x) = F(r,q)(x, 1)

= 1− σn−1

σn
E
[

B
(

1−
(

1− 1
Q2R2 (R2 − x2)+

)+
;

1
2

,
n− 1

2

)]
,

(A.12)

where x ≥ 0.

Proof. To avoid confusion we adopt the notation EX, EX,Y for the expectation with
respect to the random variable X and the pair of random variables (X, Y), respec-
tively. Assume without loss of generality that O′ = RQen. (Otherwise both RBn +O′

and the section plane can be appropriately rotated. As the rotation is independent
of the section plane, the rotated plane is still IR.) Let v be an isotropic vector on Sn−1

representing the unit normal direction of Ln
n−1[O]. Applying Pythagoras’ theorem,

we obtain

r = R
√

1−Q2 〈en, v〉2 and q = Q

√
1− 〈en, v〉2

1−Q2 〈en, v〉2
. (A.13)

Using conditional expectation we have for x ∈ [0, ∞) and 0 ≤ y ≤ 1, that

F(r,q)(x, y) = ER,QEv

[
1
{

R
√

1−Q2 〈en, v〉2 ≤ x, Q

√
1− 〈en, v〉2

1−Q2 〈en, v〉2
≤ y

} ∣∣∣ R, Q
]

= ER,Q
1
σn

∫
Sn−1

1
{

R
√

1−Q2 〈en, v〉2 ≤ x,
1− 〈en, v〉2

1−Q2 〈en, v〉2
≤ y2

Q2

}
dvn−1.

We use cylindrical coordinates [Mül66, p. 1], writing v = ten +
√

1− t2ω, with
ω ∈ Sn−1 ∩ e⊥n and t ∈ [−1, 1]. Using 〈en, v〉 = t and Hn−2

n−1(S
n−1 ∩ e⊥n ) = σn−1, the
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cumulative distribution function becomes

F(r,q)(x, y) = ER,Q
σn−1

σn

∫ 1

−1
1
{

R
√

1−Q2t2 ≤ x,
1− t2

1−Q2t2 ≤
y2

Q2

} (
1− t2) n−3

2 dt.

The integrand is an even function of t. This and rearranging the indicator functions
gives

F(r,q)(x, y) =
2σn−1

σn
ER,Q

∫ 1

0

(
1
{

t ≥ 1
QR

√
(R2 − x2)+, y = 1

}
+ 1{t ≥

√
Z, y < 1}

) (
1− t2) n−3

2 dt,

where Z is given by (A.10). Using the substitution s = t2 the cumulative distribution
function of (r, q), under the assumption 0 ≤ y < 1, becomes

F(r,q)(x, y) =
σn−1

σn
ER,Q

∫ 1

min{1,Z}
s

1
2−1(1− s)

n−1
2 −1ds

= 1− σn−1

σn
ER,Q

[
B
(

1−
(

1− Z
)+

;
1
2

,
n− 1

2

)]
.

Using similar calculations, we obtain (A.12) for the marginal distribution of r. �

Remark A.2. If P(Q > 0) < 1, the result of Theorem A.1 and, similarly, results in the
subsequent sections can be generalized by conditioning on the event Q > 0. When Q = 0,
we have r = R, and hence

F(r,q)(x, y) = P(Q > 0)
(

1− σn−1

σn
E
[

B
(

1−
(

1− Z
)+

;
1
2

,
n− 1

2

)∣∣∣Q > 0
])

+ P(R ≤ x, Q = 0),

when x ≥ 0, 0 ≤ y < 1. A similar modification allows to generalize (A.12).

The distribution functions given by (A.11) and (A.12) simplify considerably when
n = 3.

Corollary A.3. When n = 3,

F(r,q)(x, y) = E
(

1−
√

Z
)+

, 0 ≤ x, 0 ≤ y < 1, (A.14)

and
Fr(x) = E

[(
1− 1

RQ

√
(R2 − x2)+

)+]
, x ≥ 0. (A.15)

From (A.11) we immediately infer that the marginal distribution of q is given by

Fq(y) = 1− σn−1

σn
E
[

B
( (Q2 − y2)+

Q2(1− y2)
;

1
2

,
n− 1

2

)]
, 0 ≤ y < 1, (A.16)

which does not depend on the distribution of R. This is an important fact, which
we will use later on. It follows from (A.13) that one of the variables r and q deter-
mines the other whenever Q and R are given. This implies that a joint probability
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density function of (r, q) need not exist. However, it is elementary to show that
the marginal probability density functions exist. Let φ(·) be any smooth function
having a compact support in (0, ∞). Then Eφ(X) =

∫ ∞
0 φ′(x)(1− FX(x))dx, where

X = r, respectively q. Using Fubini and Tonelli arguments, integration by parts and
Leibnitz’s rule we obtain the following corollary.

Corollary A.4. Adopt the set-up in Theorem A.1. The probability density functions of r
and q exist. The function

fr(x) =
2σn−1

σn
E
[1{R

√
1−Q2 ≤ x < R}x
QR
√

R2 − x2

(
1− R2 − x2

Q2R2

)(n−3)/2]
, (A.17)

x ≥ 0, is a density function of r and

fq(y) =
2σn−1

σn
E
[
1{0 < y < Q}

( y
Q

)n−2 (1−Q2)(n−1)/2√
Q2 − y2(1− y2)n/2

]
, (A.18)

0 ≤ y < 1, a density function of q.

We remark that when R and Q are independent and n = 3, (A.17) simplifies

fr(x) = xER

[ 1{x < R}
R
√

R2 − x2

(
EQ

1{R
√

1−Q2 ≤ x}
Q

)]
, x ≥ 0. (A.19)

According to (A.2) the radius of the section profile can be written as a multiple of the
size-weighted radius Rw of the intersected ball in the classical Wicksell problem. A
similar result holds in the local Wicksell problem but here the radii of the intersected
balls are not size-weighted.

Proposition A.5. If the assumptions of Theorem A.1 hold, then

r = ΓR,

where the random variable Γ has density

fΓ(z) =
2σn−1

σn
E
[
1{
√

1−Q2 ≤ z < 1} z
Qn−2

√
1− z2

(Q2 − 1 + z2)
n−3

2

]
, (A.20)

z ≥ 0. If R and Q are independent, then R and Γ are independent.

Proof. Let h(x|R = R0), x ≥ 0, be the conditional density of r given that a ball of
radius R0 is cut by the section plane. By (A.17) we have that

h(x|R = R0) =
2σn−1

σn
E
[1{R0

√
1−Q2 ≤ x < R0}x

QR0

√
R2

0 − x2

(
1− R2

0 − x2

Q2R2
0

) n−3
2
∣∣∣R = R0

]
,

x ≥ 0, is a version of this density. We note that h satisfies the scaling property

h(x|R = R0) =
1

R0
h
( x

R0

∣∣∣R = 1
)

.
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Let Γ be the random variable defined by Γ = r/R. Using conditional expectation,
conditioning on R = R0, and then a substitution, we obtain

P(Γ ≤ z) = EP(r ≤ zR0|R = R0) = E[
∫ z

0
R0h(sR0|R = R0)ds],

for z ≥ 0. Applying the scaling property and conditional expectation we see that
a density of Γ is given by (A.20). When Q and R are independent, R and Γ are
independent by construction. �

The cumulative distribution function of the random variable Γ in Proposition A.5 is
immediately obtained using (A.12) with R = 1,

FΓ(z) = 1− σn−1

σn
E
[

B
(

1−
(

1− (1− z2)

Q2

)+
;

1
2

,
n− 1

2

)]
, 0 ≤ z < 1. (A.21)

Remark A.6. As the distribution of Γ in Proposition A.5 only depends on (R, Q) through
Q we may write ck(Q) = EΓk, k = 0, 1, 2, . . . , for the kth moment of Γ. These moments are
given by

ck(Q) =
2σn−1

σn
E
[ 1

Qn−2

∫ 1
√

1−Q2

zk+1
√

1− z2
(Q2 − 1 + z2)(n−3)/2dz

]
, (A.22)

for k = 0, 1, 2, . . . . In particular for n = 3, the substitution x = z2, yields

ck(Q) =
1
2

E
[ 1

Q

(σk+3

σk+2
− B

(
1−Q2,

k + 2
2

,
1
2

))]
. (A.23)

Denote the kth moment of R by Mk, and that of r by mk. When R and Q are indepen-
dent, Proposition A.5 gives us the following moment relation

mk = ck(Q)Mk, (A.24)

where ck(Q) is given by (A.22).

A.4 Uniqueness

The distribution Fq uniquely determines FQ. This can be seen from (A.18), which can
be rewritten as

fq(y) =
2σn−1yn−2

σn(1− y2)n/2 1{y > 0}
∫ 1

y

(1− s2)
n−1

2

sn−2
√

s2 − y2
dFQ(s).

This is essentially an Abel transform of the positive measure (1− s2)
n−1

2 /sn−2dFQ(s).
The Abel transform has a unique solution, see e.g. [GV91, Section 1.2], and hence Fq

uniquely determines FQ. An explicit solution is given in Proposition A.9 for n = 3.
When the spatial parameters R and Q are independent, we also can show that Fr

determines FR uniquely.

40



A.4. Uniqueness

Theorem A.7. Adopt the set-up in Theorem A.1. If R and Q are independent, F(r,q)

uniquely determines F(R,Q).

Proof. From Proposition A.5 we have that r = ΓR and thus log r = log Γ + log R.
When R and Q are independent, Γ and R are independent and hence the characteris-
tic functions obey

ϕ− log r(t) = ϕ− log Γ(t)ϕ− log R(t), t ∈ R. (A.25)

We want to show that the characteristic function ϕ− log Γ is an analytic function. We
note that F− log Γ(z) = 1− FΓ(e−z). Using the dominated convergence theorem, we
get limz→0 fΓ(z) = 0. Hence, applying l’Hopital’s rule, we obtain

lim
z→∞

1− F− log Γ(z)
e−z = lim

z→0

FΓ(z)
z

= lim
z→0

fΓ(z) = 0,

that is 1− F− log Γ(z) = o(e−z) as z→ ∞. As F− log Γ(−z) = 0 when z ≥ 0, we have

1− F− log Γ(z) + F− log Γ(−z) = o(e−z).

Therefore ϕ− log Γ is an analytic function [Luk60, p.137]. This implies that ϕ− log Γ has
only countably many zeros. Therefore, in view of (A.25), ϕ− log r uniquely determines
the continuous function ϕ− log R. It then follows from the Fourier uniqueness theorem
that Fr determines FR uniquely. As Fq uniquely determines FQ, this finishes the
proof. �

It is of interest to ask if the same holds without the independence assumption:
Does the joint distribution F(r,q) uniquely determine F(R,Q) when the independence
assumption is dropped? This is an open question, but the following example shows
that the answer is negative if only the marginals Fq and Fr are given.

Example A.8. Assume n = 3 and let the joint density of (R, Q) be given by

f(R,Q)(t, s) = 3s 1{0 < t < s < 1}. (A.26)

Then the two marginals are

fQ(s) = 3s2 1{0 < s < 1}, fR(t) = 3
2 (1− t2) 1{0 < t < 1}.

We now show that there is another pair (R′, Q′) of size and shape variables
which are independent, but lead to the same section marginals Fq and Fr as does the
pair (R, Q) with density (A.26). As FQ′ is uniquely determined by Fq, we necessarily
have FQ′ = FQ. If we assume that R′ has a density fR′ , this and (A.17) imply that this
density must satisfy

fr(x) = 3
2 x3

∫ ∞

x

fR′(s)
s3
√

s2 − x2
ds. (A.27)

Solving this Abel transform (see e.g. [GV91, p.35]), we get

fR′(s) = −
4s4

3π

∫ ∞

s

d
dx ( fr(x)x−3)
√

x2 − s2
dx. (A.28)
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Hence, we would define fR′ by (A.28) if we can guarantee that this function is a
density. By (A.26) and (A.17), fr is explicitly known. With this fr the right hand
side of (A.28) indeed is non-negative and integrates to one; see [TK12, p.12-13] for
details. Hence fR′ is a density. We thus have shown that populations of balls with
size-shape parameters (R, Q) and (R′, Q′), respectively, lead to the same size-shape
distributions of their profiles, although F(R,Q) 6= F(R′,Q′).

A.5 The unfolding problem

We mentioned in the introduction that there exists a reproducing distribution for
the radii in the classical Wicksell problem (the Rayleigh distribution). In the local
Wicksell problem a reproducing radii distribution does typically not exist. When
the balls are not a.s. centered at O, the radii of the section profiles are smaller than
the radii of the respective balls with positive probability. This implies that there
does not exist a reproducing distribution in the local Wicksell problem under the
assumption P(Q > 0) > 0.

In the previous section we saw that under the assumption that R and Q are
independent, F(r,q) uniquely determines F(R,Q). In this section we will present analyt-
ical unfolding formulae and moment relations. In order to avoid technicalities, we
restrict attention to the three-dimensional case, which is most relevant for practical
applications. The following proposition gives FQ in terms of Fq.

Proposition A.9. If the assumptions of Theorem A.1 hold, and n = 3, then

1− FQ(y) = −
2y3

π

( ∫ 1

y

(s2 − 2)(1− Fq(s))

s3
√

1− s2
√

s2 − y2
ds−

∫ 1

y

√
1− s2

s2
√

s2 − y2
dFq(s)

)
, (A.29)

y ∈ [0, 1).

Proof. Let 0 ≤ y < 1. From (A.16) we know that the distributions of Q and q are
connected by

Fq(y) = 1−E
[√(Q2 − y2)+

Q
√

1− y2

]
.

Using integration by parts and rearranging, we obtain

1− Fq(y) =
y2√

1− y2

∫ 1

y

1
s2
√

s2 − y2
(1− FQ(s))ds. (A.30)

Define

h(y) =
√

1− y2

y2 (1− Fq(y)) and g(s) =
1− FQ(s)

s2 . (A.31)

Equation (A.30) is an Abel transform of g(s) with solution given by

g(y) = − 2
π

d
dy

∫ 1

y

sh(s)√
s2 − y2

ds = −2y
π

∫ 1

y

h′(s)√
s2 − y2

ds; (A.32)
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see for instance [GV91, p.35]. Inserting for g and the derivative of h, (A.29) is ob-
tained. �

Using similar arguments as in the proof of Proposition A.9, we obtain that when Q
has a density fQ, it is given by

fQ(s) =
8s2

π

d2

d(s2)2

∫ 1

s

t
√

1− t2
√

t2 − s2
(1− Fq(t))dt, 0 ≤ s < 1. (A.33)

We can use (A.32) to write the moments of Γ in Proposition A.5 as functions of q
only.

Corollary A.10. Adopt the set-up in Theorem A.1. For n = 3 the moments of the random
variable Γ in Proposition A.5, can be written as

EΓk = 1− k
π

E[Γ̃(q)], k = 0, 1, 2, . . . , (A.34)

where

Γ̃(y) =
∫ y

0

√
1− s2

s

∫ s2

0

√
t(1− t)

k−2
2

√
s2 − t

dtds. (A.35)

Proof. Using (A.21) with n = 3 we note that the distribution function of Γ can be
written as

FΓ(z) = E
[(

1− 1
Q

√
1− z2

)+]
=
√

1− z2
∫ 1
√

1−z2
g(s)ds, 0 ≤ z < 1,

where g(s) is given by (A.31). Using the first equality in (A.32) and substituting
t = 1− z2, the moments of Γ are given by

EΓk =
∫ 1

0
kzk−1(1− FΓ(z))dz = 1− k

π

∫ 1

0
(1− t)

k−2
2
√

t
∫ 1

√
t

yh(y)√
y2 − t

dydt.

Inserting h and using Tonelli’s theorem we arrive at

EΓk = 1− k
π

∫ 1

0

√
1− y2

y
(1− Fq(y))

∫ y2

0

√
t(1− t)

k−2
2√

y2 − t
dtdy

= 1− k
π

E[Γ̃(q)],

where Γ̃ is given by (A.35). �

If k = 2m, m ≥ 1, equation (A.34) simplifies to

EΓ2m = 1− m
π

m−1

∑
j=0

(
m− 1

j

)
(−1)j σ2j+4

σ2j+3
E
[

B
(

q2; j + 1,
3
2

)]
,

and in particular
EΓ2 = 1

3 (2 + E[(1− q2)3/2]).
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Thus the average surface area of balls in R3 can be estimated ratio unbiasedly by

12π
N ∑N

i=1 r2
i

2 + 1
N ∑N

i=1(1− q2
i )

3/2
,

where (r1, q1), . . . , (rN , qN) are N independent observations of profile parameters.
When Q has a density, similar arguments as applied in the proof of (A.33) can

be used to show that the moments of Γ can be written as

EΓk =
1

2π
E[Γ̃1(q2)] +

1
π

E[Γ̃2(q2)], (A.36)

where

Γ̃1(y) =
∫ y

0

(1− t)k/2
√

t
B
(y− t

1− t
,

1
2

,
1
2

)
dt, Γ̃2(y) =

√
1− y

∫ y

0

(1− t)k/2
√

t
√

y− t
dt.

By (A.24) and Corollary A.10, the moments of R can be estimated from the section
profiles when R and Q are independent. A number of stochastic simulation studies
were carried out, varying FQ, FR and the number of observations. The function quad
in the language and interactive environment Matlab was used to determine Γ̃1 and
Γ̃2 numerically. We used (A.36) instead of the more general expression given in
Corollary A.10 as it is more straight-forward to implement. Then Mk was estimated
by dividing the crude Monte Carlo (CMC) estimate of mk by the CMC estimate
obtained for EΓk using (A.36). The simulations suggest that the estimation procedure
is quite stable for moments up to 7th order. The difference between the coefficient of
error of this estimator and of Mk estimated by CMC, using the simulated particle
radii, is typically less than 10% for k = 1, . . . , 7. This seems to be true irrespective of
the choice of FQ and even after adding moderate measurement errors to r and q.

A.6 Reconstruction

In this section we will discuss the estimation of FR and FQ from data. We assume
throughout this section that R and Q are independent, and that n = 3. To assure
this independence, a priori knowledge on the particles is required. There are, how-
ever, cases, where this independence holds trivivally. We refer to the concluding
Section A.9 for a discussion. As mentioned in the introduction, there exist var-
ious methods for numerically solving Wicksell’s classical problem but none of
these seems to be superior to all the others. In [BMN84] six distribution-free meth-
ods are compared using several error criteria as well as studying their numerical
stability and sensitivity to underlying distributions. Considering all criteria, the
Scheil-Schwartz-Saltykov method (S3M) from [Sal74] is favoured, in particular when
the underlying distribution is smooth. The method can be classified as a finite dif-
ference method, a class of methods which are relatively easy to implement. We
therefore chose to implement a variation of S3M. The method and its advantages
and disadvantages are discussed in [BMN84]. Although this method is rather crude,
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we obtain satisfactory results. We have also studied the product integration method
explained in [AJ75b]. The method has been claimed to yield accurate results for
Wicksell’s classical problem, but our reconstruction of FQ based on Proposition A.9 is
not satisfactory. The reconstruction F̂Q is not monotonic and fluctuates far too much
around FQ to be of any use. We have also implemented kernel density estimators for
obtaining F̂Q but without obtaining stable results.

In the following we describe the implementation of S3M in our setup. We start
using S3M to obtain a discrete approximation of FQ based on the Abel-type relation
(A.30). By discretizing FQ, the integral becomes a finite sum. This produces a system
of linear equations that can be solved. After having obtained an estimate F̂Q we
can apply S3M again, this time discretizing FR to solve (A.15) numerically (where
F̂Q is substituted for the unknown FQ). We used Matlab for all simulations and for
generating Figure A.2.

Assume that we observe N pairs (r1, q1), . . . , (rN , qN) of size and shape variables
in independent sections of (independent) particles. Assume further that all observed
r’s, are less than or equal to a constant c. Divide the intervals (0, 1] and (0, c] into
classes of constant width. Let k1 denote the number of classes for q, k2 the number
of classes for Q, k3 for r and k4 for R. Different to [BMN84] we allow k1, k3, to be
greater than k2, k4, respectively. Define ∆i = 1/ki, i = 1, 2, ∆i = c/ki, i = 3, 4. Let
ni = P(q ∈ ((i − 1)∆1, i∆1]) be the probability that q is in class i ∈ {1, . . . , k1},
Nj = P(Q ∈ ((j − 1)∆2, j∆2]) the probability that Q is in class j ∈ {1, . . . , k2},
ma = P(r ∈ ((a− 1)∆3, a∆3]) the probability that r is in class a ∈ {1, . . . , k3}, and
Mb = P(R ∈ ((b− 1)∆4, b∆4]) the probability that R is in class b ∈ {1, . . . , k4}.

The S3M method approximates FQ(u) by the step function

u 7→ ∑
j:∆2 j≤u

Nj.

Note that we use the standard definition of a cumulative distribution function
and hence the notation is slightly different from [BMN84] where left continuous
distribution functions are considered. Inserting the approximation for FQ in (A.30)
and simplifying, we obtain

1− Fq(i∆1) ≈
1√

1− i2∆2
1∆2

k2

∑
j=1

Nj1{i∆1 < j∆2}

√
j2∆2

2 − i2∆2
1

j
,

where the approximation is exact if and only if Q only has mass in the points ∆2 j,
j = 1, . . . , k2. Hence ni can be approximated by

ni = (1− Fq((i− 1)∆1))− (1− Fq(i∆1)) ≈
k2

∑
j=1

bijNj, (A.37)

for i = 1, . . . , k1, where the constants bij depend only on ∆1 and ∆2; see [TK12, p.17]
for an explicit formula. If Fq in (A.37) is replaced by its empirical cumulative distri-
bution function we obtain n̂i =

1
N ∑N

j=1 1{qj ∈ ((i− 1)∆1, i∆1]} as approximations of
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the left hand side of (A.37). Using these and solving the corresponding linear system
yields therefore approximations N̂j of the unknown probabilities Nj, j = 1, . . . , k2.
The function

F̂Q(u) = ∑
j:∆2 j≤u

N̂j (A.38)

is then the estimator for FQ.
In a second step (A.15) is inverted using S3M and the estimator F̂Q. This is in

analogy to the treatment of FQ and the derivation is deferred to the appendix.
In our simulations, we used N independent realizations of (ri, qi) to estimate

n̂i, i = 1, . . . , k1 and m̂a, a = 1, . . . , k3. Then we solved (A.37) using constrained
minimum least squares, lsqlin in Matlab. To ensure that the estimated distribu-
tion functions are non-decreasing, we required that N̂j ≥ 0, j = 1, . . . , k2, M̂b ≥ 0,
b = 1, . . . , k4. Non-negativity constraints have also been suggested in [Tay83] for
the classical S3M. The distribution function FQ is then estimated by (A.38). Using
the estimate F̂Q, the linear system of equations involving the relative frequencies m̂a

in terms of M̂b (equation (A.40)) can be solved for M̂b, b = 1, . . . , k4, in exactly the
same way and FR is then estimated by F̂R(u) = ∑b:∆4b≤u M̂b.

The simulations in [BMN84] show that classes with overestimation of the distri-
bution function are usually close to classes with underestimation and the authors
refer to this phenomenon quite intuitively as waves. In order to decrease the occur-
rence of waves, we allowed k1, k3, to be greater than k2, k4, respectively. However,
this does not seem to be of great importance in our setting. We ran two types of
simulations, one with the number of classes equal and another one with the number
of classes unequal. Then the Kullback Leibler divergence between the true proba-
bility distribution and each of the estimated ones was calculated using KLDiv in
Matlab.The difference was negligible (even after adding independent measurement
errors to rj and qj). Therefore we chose the number of classes equal in the figure
presented below.
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Figure A.2: The dashed curves are the true distribution functions FQ(u) (to the left) and
FR(u) (to the right) when Q ∼ Beta(5, 2) and R ∼ e(1) whereas the step functions are the
estimated ones. Parameter choice: k1 = k2 = k3 = k4 = 20, N = 100.

In Figure A.2 true and reconstructed distribution functions of Q (left) and R
(right) are compared, where Q follows the Beta distribution with parameters 5 and
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2 while R is exponentially distributed with mean one. The number of classes were
chosen to be 20 for all four variables and 100 observations were used.

These results indicate that the S3M method works well for reconstructing FR and
FQ from simulated data. This is true even when the profile variables are measured
with random multiplicative errors. The errors were chosen to be independent,
lognormally (truncated lognormal in the case of q) distributed variables with mean
one and moderate variance. Even with variance 1/2 the mean Kullback Leibler
divergence between the true probability distribution and the one obtained using the
perturbed profile variables did not differ from the corresponding mean Kullback
Leibler divergence using the unperturbed profile variables.

In practice, for instance in a confocal microscopy image, the boundary of an
object can be quite blurry and it can therefore be difficult to evaluate profile variables
when the reference point is close to the boundary and the IR section is such that it
produces a small profile. We analysed how this influenced the reconstructions by
omitting small profiles obtained when Q > 1− 0.1/R and 0 < r < 0.5. Otherwise
the setup was like in Figure A.2, again with 100 valid observations. This did not
influence the reconstruction of FQ, but to obtain a satisfactory reconstruction of FR

a similar recommendation as in [BMN84] applies: the sample size should be large
(more than 400 profile sections) but the number of classes small (around 7).

A.7 Examples

For illustration we discuss some special cases and variants of the above general
theory. We restrict attention to the three-dimensional case. Recall that we considered
Q to be a variable describing the ‘shape’ of the random ball under consideration.
We first show that the formulae simplify if Q is (almost surely) the same for all
particles, meaning that all reference points have the same relative distance from
their respective ball centers.

Example A.11. Assume that Q = Q0 a.s., Q0 > 0. Then the marginal distribution
function of q given by (A.30) becomes

Fq(y) = 1− 1{y < Q0}

√
Q2

0 − y2

Q0
√

1− y2
.

Furthermore, the moments of Γ in (A.23) simplify to

ck(Q) =
1

2Q0

(σk+3

σk+2
− B

(
1−Q2

0,
k + 2

2
,

1
2

))
.

For k = 1, 2, we obtain

c1(Q) =
π

4Q0
−

sin−1(
√

1−Q2
0)

2Q0
+

√
1−Q2

0

2
, c2(Q) = 1− Q2

0
3

.
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The formulae simplify in particular if the reference point lies on the boundary of the
object, that is, when Q0 = 1.

Example A.12. Let the reference point be located on the boundary of the ball RB3 +

O′. Then Q = 1 a.s. and we immediately obtain from Example A.11 that q = 1 a.s.
and ck(Q) = σk+3/(2σk+2). Note that this constant is the same as ck+1 given by (A.4),
which can be explained by the fact that the section plane is an IUR plane hitting the
ball, as shown in Example A.14. The moments of Γ can in fact be calculated explicitly
in n-dimensional space and (A.24) becomes

mk =
σn−1σk+n

σnσk+n−1
Mk.

Furthermore (A.19) becomes an Abel transform of the positive measure PR(dt)/t.
Hence, when R has a density function fR, it is given by

fR(t) = −
2t2

π

∫ ∞

t

1√
x2 − t2

d
dx

( fr(x)
x

)
dx

= −2t
π

d
dt

∫ ∞

t

fr(x)√
x2 − t2

dx;

see for instance [GV91, p.35].

In practice a particle may have an easily identifiable kernel that cannot be treated as
a mathematical point. Thus one has to work with a reference set of positive volume.
In general, our methods do not apply in this case, but whenever the reference
set is (approximately) ball-shaped, concentric with the whole particle, and has a
radius proportional to the particle size, our method can be used. We suggest in the
following examples two possible schemes for this situation.

Example A.13. Assume that the particle RB3 + O′ contains a reference set Q0RB3 +

O′, Q0 ∈ (0, 1]. The first sampling design we suggest is the choice of an isotropic
plane through a uniformly chosen boundary point of the reference set. Let L3

2[O] be
an IR plane and z a uniformly distributed point on the boundary of the reference set,
chosen independently of L3

2[O]. Define L = L3
2[O] + z and adopt L as the section plane,

that is (r, q) refers to the parameters of the disk (RB3 + O′) ∩ L. By construction
(r, q) can thus be interpreted as section variables from a local IR plane through
the reference point z, which has relative distance Q0 from the ball’s center. Hence,
we can use the local Wicksell theory directly with Q = Q0. The simplifications in
Example A.11 apply.

Example A.14. As in Example A.13 assume that the particle RB3 + O′ contains a
reference set Q0RB3 + O′, Q0 ∈ (0, 1]. In contrast to Example A.13 we now use an
IUR section plane L3

2 hitting the reference set. By definition, the distribution of L3
2 is

PL3
2
(A) =

1
2σ3Q0

∫
S2

∫ Q0

−Q0

1A(ru + u⊥)drdu2, A ∈ B(L3
2).
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Using cylindrical coordinates, we have, equivalently,

PL3
2
(A) =

1
σ2

3

∫
S2

∫
S2

1A(Q0v + u⊥)du2dv2,

so L3
2 is an isotropic plane through the (independent) point z = Q0v, which is

uniform on the boundary of the reference set. Concluding, we see that L3
2 has the

same distribution as L in Example A.13. Hence, the two designs lead to the same
sample distribution, and, again, Wicksell’s local theory with Q = Q0 applies.

The last two (coinciding) sampling schemes can in particular be applied when the
reference set is taken to be the whole ball. This is equivalent to choosing Q0 = 1 and
the formulae in Example A.12 can be applied in this case.

A.8 Stereology of extremes

In some practical applications, for instance when studying damage of materials
[MB99], the distribution of the maximal size parameter is of more interest than
the whole distribution. When extremal parameters are studied based on lower
dimensional sections we speak of stereology of extremes. We will here discuss
stereology of extremes in the context of the local Wicksell problem.

The reader is referred to [Haa70] for results in extreme value theory. Following
the notation in [Haa70] we write F ∈ D(L) if F is in the domain of attraction of the
distribution function L. Up to affine transformations, L must be one of the extreme
value distributions: Fréchet L1,γ, Weibull L2,γ and Gumbel L3, where γ > 0 is a
parameter.

We assume that R and Q are independent and that n = 3. Given independent
observations (r1, q1), . . . , (rN , qN) we are interested in the distribution of the ex-
tremal particle radius. Therefore relations between the domains of attraction of the
distributions of the size parameters are of interest. These are given in the following
theorem.

Proposition A.15. Let n = 3, γ > 0, and assume that R and Q are independent and have
probability densities. The following statements hold

• if FR ∈ D(L1,γ), then Fr ∈ D(L1,γ),

• if FR ∈ D(L2,γ), then Fr ∈ D(L2,γ+1/2),

• if FR ∈ D(L3), then Fr ∈ D(L3).

A proof of this proposition can be found in [TK12, p.22-24]. Using similar arguments,
an analogous result for the shape parameters can be shown: FQ ∈ D(L2,γ) implies
Fq ∈ D(L2,γ+1/2) and FQ ∈ D(L3) implies Fq ∈ D(L3).

In order to use these results in practical applications, the normalizing constants
for both Fr and FR are required. They can be estimated by a semi-parametric ap-
proach as in the classical Wicksell problem: First a parametric model for FR is chosen.
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We know from Proposition A.15 that FR and Fr belong to the same domain of attrac-
tion. Hence normalizing constants based on (r1, q1), . . . , (rN , qN) can be found, for
example using maximum likelihood estimators based on the k largest observations;
cf. [Wei78]. One then has to derive normalizing constants for FR from the estimated
normalizing constants for Fr. Methods regarding this are discussed in e.g. [Hlu03b]
and [Tak87]. When normalizing constants for FR have been obtained, they can be
used to approximate the distribution of the extremal particle radius.

A.9 Conclusion

The present paper gives a detailed survey of Wicksell’s famous corpuscle problem
in a local setting. We have derived several results analogous to the ones existing
for the classical problem and described differences between the two. We have in
particular given the distributions and marginal densities of the profile parameters in
terms of the particle parameters, derived moment relations, uniqueness results and
domain of attraction relations as well as given some examples and reconstructions
of the particle distributions from experimental data. Many of these results require
that the particle parameters are independent. Given experimental data, one might
hope that the independence assumption of the particle parameters could be assured
by cheking if the profile parameters can be assumed to be independent. However,
this is not possible as the profile parameters are always dependent apart from
mathematically trivial cases, for instance when Q = 1 a.s. Nevertheless, we believe
that in many practical applications it is not unrealistic to assume a priori that the
relative position of the reference point does not depend on the size of the object.

It should be mentioned that also the case Q = 1 a.s. (certainly implying the
independence of R and Q) is relevant for applications. For instance, white fat cells
are spherical in shape and have their nucleus at the cell’s periphery; see [MBBO04,
p. 163]. Using this nucleus as reference point allows to use the formulae in Example
A.12 and the S3M algorithm to estimate moments or even the distribution of R. As
we have seen in Example A.14, the local formulae can even be applied when there is
no natural reference point, but the section planes are just chosen to be IUR hitting
the particle under consideration.
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Appendix: S3M for FR

We have described shortly in the main text how S3M can be used to invert (A.30).
The following inversion of (A.15) is slightly more involved, as it is based on the
approximation F̂Q. We therefore give some additional details here. We note that
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(A.15) can be rewritten as

Fr(x) = (1− FR(x)) + E
[
1{x < R}

√
R2 − x2

R

∫ 1

1
R

√
R2−x2

1
s2 (1− FQ(s))ds

]
,

for x ∈ [0, ∞). Approximating FQ by F̂Q given by (A.38) we find

E
[
1{x < R}

√
R2 − x2

R

∫ 1

1
R

√
R2−x2

1
s2 (1− F̂Q(s))ds

]
= 1−

k2−1

∑
j=1

N̂j
1

∆2 j

∫ x/
√

1−∆2
2 j2

x

x2

t2
√

t2 − x2
(1− FR(t))dt

− FR(x)− N̂k2

1
∆2k2

∫ ∞

x

x2

t2
√

t2 − x2
(1− FR(t))dt.

Hence

Fr(x) ≈ 1
3

(
2−

k2−1

∑
j=1

N̂j
1

∆2 j

∫ x/
√

1−∆2
2 j2

x

x2

t2
√

t2 − x2
(1− FR(t))dt

− N̂k2

1
∆2k2

∫ ∞

x

x2

t2
√

t2 − x2
(1− FR(t))dt

)
.

(A.39)

Recall that ma is the probability that r is in class a, a = 1, . . . , k3, and Mb the proba-
bility that R is in class b, b = 1, . . . , k4. The S3M method approximates FR(u) by

u 7→ ∑
b:∆4b≤u

Mb.

Using this in (A.39) we obtain, again using elementary calculations, that

Fr(a∆3) ≈ −
1
3

( k2−1

∑
j=1

N̂j
1

∆2 j

k4

∑
b=1

Mb1{∆4b ≥ a∆3}

√
1−

(
min

{∆2
4b2

a2∆2
3

,
1

1− ∆2
2 j2

})−1

+ N̂k2

1
∆2k2

k4

∑
b=1

Mb1{∆4b ≥ a∆3}

√
1−

a2∆2
3

∆2
4b2
− 2
)

.

We are thus lead to the linear system

m̂a = F̂r(a∆3)− F̂r((a− 1)∆3) =
k4

∑
b=1

cab M̂b, (A.40)

a = 1, . . . , k3, involving the relative frequencies m̂a =
1
N ∑N

j=1 1{rj ∈ ((a− 1)∆3, a∆3]}.
Here

cab =
1
3

k2−1

∑
j=1

N̂j
1

∆2 j

(
1{∆4b ≥ (a− 1)∆3}

√
1−

(
min

{ ∆2
4b2

(a− 1)2∆2
3

,
1

1− ∆2
2 j2

})−1

− 1{∆4b ≥ a∆3}

√
1−

(
min

{∆2
4b2

a2∆2
3

,
1

1− ∆2
2 j2

})−1)
+

N̂k2

3∆2k2

(
1{∆4b ≥ (a− 1)∆3}

√
1−

(a− 1)2∆2
3

∆2
4b2

− 1{∆4b ≥ a∆3}

√
1−

a2∆2
3

∆2
4b2

)
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for a = 1, . . . , k3, b = 1, . . . , k4, depends only on ∆3, ∆4, (N̂1, . . . , N̂k2) and ∆2. The
linear system of equations can be solved for the unknown M̂b approximating Mb,
b = 1, . . . , k4.
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Supplementary material

For the reader’s convenience we give here the parts of the extended version [TK12]
that are referred to in Paper A.

A.I Extended version of Example A.8

Example A.16. Assume n = 3 and let the joint density of (R, Q) be given by

f(R,Q)(t, s) = 3s 1{0 < t < s < 1}. (A.41)

Then the two marginals are

fQ(s) = 3s2 1{0 < s < 1}, fR(t) = 3
2 (1− t2) 1{0 < t < 1}.

Inserting (A.41) into (A.17) and using elementary but tedious calculations, we obtain
that fr is given by

fr(x) = 3 1{x < 1} tan−1
(√

1− x2/x
)

− 1{1/2 < x < 1}3x(log(1 +
√

1− x2)− log x)

− 1{x < 1/2}3x
[

log
(√

(1−
√

1− 4x2)/2 +
√
(1−

√
1− 4x2)/2− x2

)
+ log(1 +

√
1− x2)− log x

− ((1 +
√

1− 4x2)/2)−1/2 + ((1−
√

1− 4x2)/2)−1/2

− log
(√

(1 +
√

1− 4x2)/2 +
√
(1 +

√
1− 4x2)/2− x2

)]
. (A.42)

We now show that there is another pair (R′, Q′) of size and shape variables which
are independent, but lead to the same section marginals Fq and Fr as does the pair
(R, Q) with density (A.41). As FQ′ is uniquely determined by Fq, we necessarily have
FQ′ = FQ. If we assume that R′ has a density fR′ , this and (A.17) imply that this
density must satisfy

fr(x) = 3
2 x3

∫ ∞

x

fR′(s)
s3
√

s2 − x2
ds. (A.43)
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Define

h(x) =
2

3x3 fr(x) and g(s) =
fR′(s)

s3 .

Equation (A.43) is an Abel transform of g(s) with solution given by

fR′(s) = −
2s4

π

∫ ∞

s

h′(x)√
x2 − s2

dx, (A.44)

see e.g. [GV91, p.35]. Hence, we would define fR′ by (A.44) if we can guarantee
that this function is a density. Inserting fr given by (A.42) it can be shown that the
function h′(x) is negative for all x. Furthermore, using Tonelli’s theorem, we obtain∫ ∞

0
fR′(s)ds = − 2

π

∫ ∞

0
h′(x)

∫ x

0

s4
√

x2 − s2
dsdx

= −3
8

∫ ∞

0
h′(x)x4dx.

Using partial integration and inserting for h, we find that fR′ integrates to one.
Hence fR′ is a density. We thus have shown that populations of balls with size-
shape parameters (R, Q) and (R′, Q′), respectively, lead to the same size-shape
distributions of their profiles, although F(R,Q) 6= F(R′,Q′).

A.II The constants in (A.37)

The constants bij in (A.37) are given explicitly by

bij =
1

j∆2

(
1{(i− 1)∆1 < j∆2}

√
j2∆2

2 − (i− 1)2∆2
1√

1− (i− 1)2∆2
1

− 1{i∆1 < j∆2}

√
j2∆2

2 − i2∆2
1√

1− i2∆2
1

)
,

for j = 1, . . . , k2, i = 1, . . . , k1 − 1, and

bk1 j =
1

j∆2
1{(k1 − 1)∆1 < j∆2}

√
j2∆2

2 − (k1 − 1)2∆2
1√

1− (k1 − 1)2∆2
1

, j = 1, . . . , k2.

A.III Proof of Proposition A.15

Let ωF = sup{x : F(x) < 1} be the right endpoint of a distribution function F. There
are sufficient and necessary conditions for F ∈ D(L). These conditions are (γ > 0)

• F ∈ D(L1,γ)⇔ ωF = ∞, limx→∞
1−F(yx)
1−F(x) = y−γ for all y > 0.

• F ∈ D(L2,γ)⇔ ωF < ∞, limx→0+
1−F(ωF−yx)
1−F(ωF−x) = yγ for all y > 0.

• F ∈ D(L3) ⇔ limx→ωF−
1−F(x+yb(x))

1−F(x) = e−y for all y ∈ R. The function b is
some auxiliary function (it can be chosen such that it is differentiable for
x < ωF with limx→ωF− b′(x) = 0 and limx→∞ b(x)/x = 0 if ωF = ∞, or
limx→ωF− b(x)/(ωF − x) = 0 if ωF < ∞).
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The proof of Proposition A.15 uses the following lemma. The lemma is a slight
generalisation of [Haa70, Lemma 1.2.1] and the proof is analogous to the one given
there. A similar result can be found in [KM06, Lemma 2.4].

Lemma A.17. Let f and g be positive functions on R2 and a ∈ R, such that∫ ω

a
f (s, t)dt < ∞,

∫ ω

a
g(s, t)dt < ∞

for some ω ∈ (a, ∞] and all s ≥ a. If

lim
(s,t)→(ω,ω)

s≤t<ω

f (s, t)
g(s, t)

= c, where c ∈ [0, ∞]. (A.45)

then

lim
s→ω−

∫ ω
s f (s, t)dt∫ ω
s g(s, t)dt

= c.

An analogous result holds when s approaches ω from the right.

Proof of Proposition A.15. Writing out (A.15) explicitly gives

1− Fr(x) =
∫ ∞

x

(√t2 − x2

t

∫ 1

1
t

√
t2−x2

fQ(s)
s

ds + FQ

(1
t

√
t2 − x2

))
fR(t)dt.

Applying integration by parts on the outer integral, we find that

1− Fr(x) =
∫ ∞

x

x2

t2
√

t2 − x2
(1− FR(t))

∫ 1

1
t

√
t2−x2

fQ(s)
s

dsdt, x > 0. (A.46)

We see from (A.13) that ωFR = ωFr and we will call this common value ω. Let y > 0
and assume first that FR ∈ D(L1,γ) and this implies ω = ∞. Using (A.46) and then
the substitution t = yz in the numerator, we obtain after some simplification

lim
x→∞

1− Fr(yx)
1− Fr(x)

= lim
x→∞

∫ ∞
x

x2

t2
√

t2−x2 (1− FR(yt))
∫ 1

1
t

√
t2−x2

fQ(s)
s dsdt∫ ∞

x
x2

t2
√

t2−x2 (1− FR(t))
∫ 1

1
t

√
t2−x2

fQ(s)
s dsdt

.

We note that

lim
(x,t)→(∞,∞)

x≤t<∞

1
t2
√

t2−x2 (1− FR(yt))
∫ 1

1
t

√
t2−x2

1
s fQ(s)ds

1
t2
√

t2−x2 (1− FR(t))
∫ 1

1
t

√
t2−x2

1
s fQ(s)ds

= lim
x→∞

1− FR(yx)
1− FR(x)

.

Hence using Lemma A.17, and FR ∈ D(L1,γ), we find

lim
x→∞

1− Fr(yx)
1− Fr(x)

= lim
x→∞

1− FR(yx)
1− FR(x)

= y−γ,

that is Fr ∈ D(L1,γ).
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Let us now assume that FR ∈ D(L2,γ) implying in particular that 0 < ω < ∞.
From (A.46) we have

lim
x→0+

1− Fr(ω− yx)
1− Fr(ω− x)

= lim
x→0+

y
∫ x

0
(ω−yx)2(1−FR(ω−zy))

(ω−zy)2
√

(ω−zy)2−(ω−yx)2

∫ 1
1

(ω−zy)

√
(ω−zy)2−(ω−yx)2

fQ(s)
s dsdz∫ x

0
(ω−x)2(1−FR(ω−z))

(ω−z)2
√

(ω−z)2−(ω−x)2

∫ 1
1

(ω−z)

√
(ω−z)2−(ω−x)2

fQ(s)
s dsdz

,

where we have substituted t = ω − zy in the numerator and t = ω − z in the
denominator. As

lim
(x,z)→(0,0)

0<z≤x

(ω−yx)2(1−FR(ω−zy))
(ω−zy)2

√
(ω−zy)2−(ω−yx)2

∫ 1
1

(ω−zy)

√
(ω−zy)2−(ω−yx)2

fQ(s)
s ds

(ω−x)2(1−FR(ω−z))
(ω−z)2

√
(ω−z)2−(ω−x)2

∫ 1
1

(ω−z)

√
(ω−z)2−(ω−x)2

fQ(s)
s ds

= lim
x→0+

1
√

y
(1− FR(ω− xy))
(1− FR(ω− x))

we have, using Lemma A.17 and FR ∈ D(L2,γ), that

lim
x→0+

1− Fr(ω− yx)
1− Fr(ω− x)

= y lim
x→0+

1
√

y
(1− FR(ω− xy))
(1− FR(ω− x))

= yγ+1/2.

Thus, Fr ∈ D(L2,γ+1/2).
Assume next that FR ∈ D(L3) and let the auxiliary function b be differen-

tiable for x < ω with limx→ω− b′(x) = 0 and limx→∞ b(x)/x = 0 if ω = ∞ or
limx→ω− b(x)/(ω− x) = 0 if ω < ∞. Using (A.46) we have

lim
x→ω−

1− Fr(x + yb(x))
1− Fr(x)

= lim
x→ω−

∫ ω
x+yb(x)

(x+yb(x))2(1−FR(t))
t2
√

t2−(x+yb(x))2

∫ 1√
1−(x+yb(x))2/t2

1
s fQ(s)dsdt∫ ω

x
x2(1−FR(t))

t2
√

t2−x2

∫ 1√
1−(x/t)2

1
s fQ(s)dsdt

.

Due to the properties of b there exists an x0 ∈ (0, ω) such that g : x 7→ x + yb(x) is a
strictly increasing function on [x0, ω); see for instance [DR92]. Using the substitution
t = z + yb(z) in the numerator and noting that from the properties of b we have
limx→ω− g−1(ω) = ω, we obtain

lim
x→ω−

1− Fr(x + yb(x))
1− Fr(x)

= lim
x→ω−

(
1 + y

b(x)
x

)2

∫ ω
x

(1−FR(z+yb(z)))
∫ 1√

1−(x+yb(x))2/(z+yb(z))2
1
s fQ(s)ds

(z+yb(z))2
√

(z+yb(z))2−(x+yb(x))2
(1 + yb′(z))dz∫ ω

x
(1−FR(z))
z2
√

z2−x2

∫ 1√
1−(x/z)2

1
s fQ(s)dsdz

.
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Considering the quotient of the integrands, we have

lim
(x,z)→(ω,ω)

x≤z<ω

(1−FR(z+yb(z)))
∫ 1√

1−(x+yb(x))2/(z+yb(z))2
1
s fQ(s)ds

(z+yb(z))2
√

(z+yb(z))2−(x+yb(x))2
(1 + yb′(z))

(1−FR(z))
z2
√

z2−x2

∫ 1√
1−(x/z)2

1
s fQ(s)ds

= lim
(x,z)→(ω,ω)

x≤z<ω

(
1−

( x
z

)2) 1
2
(

1 + y
b(z)

z

)−3(
1−

( x
z

)2(1 + yb(x)/x
1 + yb(z)/z

)2)− 1
2

× 1− FR(z + yb(z))
1− FR(z)

∫ 1√
1−( x

z )
2( 1+yb(x)/x

1+yb(z)/z )
2

1
s fQ(s)ds∫ 1√

1−( x
z )

2
1
s fQ(s)ds

(1 + yb′(z)).

Using the properties of the function b, applying Lemma A.17 and using FR ∈ D(L3),
we find

lim
x→ω−

1− Fr(x + yb(x))
1− Fr(x)

= lim
x→ω−

1− FR(x + yb(x))
1− FR(x)

= e−y.

Hence Fr ∈ D(L3), which finishes the proof. �
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The invariator principle in convex
geometry

Ó. Thórisdóttir and M. Kiderlen

Department of Mathematics, Aarhus University

Abstract: The invariator principle is a measure decomposition that was rediscovered in
local stereology in 2005 and has since been used widely in the stereological literature. We
give an exposition of invariator related results where existing formulae are generalized
and new ones proposed. In particular, we look at rotational Crofton-type formulae that are
obtained by combining the invariator principle and classical Crofton formulae. This results
in geometrical quantities represented as averages over weighted Crofton-type integrals in
linear sections. We refer to these weighted integrals as measurement functions and derive
several, more explicit representations of these functions. In particular, we use Morse theory
to write the measurement functions in terms of critical values of the sectioned object. This is
very useful for surface area estimation.

Keywords: Local stereology; invariator principle; rotational Crofton-type formulae; Morse
theory; Hadwiger’s index; surface area estimation.

2010 MSC: 60D05; 52A22; 58E05

B.1 Introduction

The invariator [CO05] is a powerful principle for generating a hyperplane in an
isotropic random subspace that is motion invariant in n-dimensions. It is a special
case of a classical result [Pet35] that was rediscovered in local stereology and used for
applications in [CO05]. Since then it has received much interest in the stereological
literature. It was generalized in [GACO09] to Riemannian manifolds with constant
sectional curvature. In [GACO09] and, independently, in [AJ10], the invariator
principle was combined with the classical Crofton formula to obtain new rotational
Crofton-type formulae which yield new stereological estimators of geometrical
quantities. The purpose of this survey is to give an overview of invariator related
results in Euclidean space and to include natural generalizations that apparently
have not been treated in the literature yet.
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Crofton’s formula is an important result of integral geometry as it relates prop-
erties on flat sections of a spatial structure to geometrical quantities of the original
structure. Rotational versions of Crofton’s formula only use sections with linear
subspaces, that is, subspaces through a fixed reference point, which usually is as-
sumed to be the origin. They express certain geometrical quantities as averages of
measurements in the linear sections. The average is taken with respect to a rotation
invariant measure, therefore the word rotational. Techniques that are based on sec-
tions through a fixed reference point are often called local; see the monograph [Jen98]
on local stereology. In integral geometry the term ‘local’ is used when so-called local
versions of the intrinsic volumes are considered, that is when also normals and
position of boundary points of an object of interest are taken into account. In the
following we use the latter notion of the word.

The major new contribution of the present paper is to combine the invariator and
concepts from Morse theory for obtaining a new rotational Crofton formula. What
is different and appealing with this new formula is that the measurement functional
on the section of the object is written entirely in terms of so-called critical points.
This proves to be very useful for applications where the surface area is sought for.

The paper is written self-contained. It is organized as follows. In Section B.2 we
introduce the notation and recall some important concepts. The first result, Propo-
sition B.2 in Section B.3, is a rotational Crofton formula for the support measures
obtained by combining the invariator principle and a local Crofton formula. It has
as a special case the rotational Crofton formula for intrinsic volumes derived in
[GACO09] and [AJ10]. The combination of the invariator principle and the classical
Crofton formula does not yield an explicit form of the functional to be measured
on the section. This functional will be called the measurement function from now on,
and we will present more explicit representations of this measurement function in
Section B.4. We start by generalizing the results of [AJ10]. In [AJ10] the measurement
function involving the intrinsic volumes is written as an integral over the object’s
boundary and we extend this to curvature measures. Then we show that when the
object of interest is convex, the measurement function can be written in terms of the
radial function of the sectioned object and an angle in the section plane. The main
result can be found in Section B.4.3. Here we give a very basic introduction to Morse
theory before presenting the new rotational Crofton formula for smooth manifolds
in Theorem B.6. This theorem is formulated for smooth manifolds as we want to
apply classical Morse theory. As shown in Theorem B.7 an analogous result holds for
polyconvex sets, where Hadwiger’s index [Had55], an index closely related to the
Morse index, is used for determining critical points. When the geometrical quantity
of interest is the surface area of a topologically regular set with smooth boundary,
the two theorems coincide. In Section B.4.4 we discuss the formal analogy of the
new formula with Kubota’s formula and give a simple computational formula for
the measurement function when the object of interest is a polytope. We conclude the
paper with a discussion on stereological applications of these rotational formulae,
both old and new.
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B.2 Preliminaries

Throughout, Rn denotes the n-dimensional Euclidean space and O its origin. The
Euclidean scalar product is denoted by 〈·, ·〉 and the Euclidean norm by ‖·‖. For a
topological space E we let B(E) be the Borel σ-algebra in E. We furthermore write
Hd

n for the d-dimensional Hausdorff measure in Rn [SW08, p. 634]. When n is clear
from the context,Hd

n(du) is abbreviated to dud. For a set Y ⊆ Rn, we define

Y + x = {y + x | y ∈ Y}, x ∈ Rn, αY = {αy | y ∈ Y}, α > 0.

We use ∂Y for the boundary, intY for the interior, clY for the closure and 1Y for the
indicator function of Y. When we want to emphasize the geometric meaning, we
write S(Y) = Hn−1

n (Y) for the surface area of a Borel-set Y. Whenever defined, χ(Y)
denotes the Euler characteristic of Y. If Y ⊆ R1 is compact χ(Y) is the number of
connected components of Y. The unit ball in Rn is Bn = {x ∈ Rn | ‖x‖ ≤ 1} and the
boundary of it is the unit sphere (in Rn) Sn−1 = {x ∈ Rn | ‖x‖ = 1}. The volume of
Bn is given by

κn = πn/2Γ(1 + n
2 )
−1

and the surface area of its boundary by

σn = nκn = 2πn/2Γ( n
2 )
−1.

To simplify later expressions, we write

ci1,i2,...,ik′
j1,j2 ...,jk

=
σi1 σi2 · · · σik′

σj1 σj2 · · · σjk
. (B.1)

For α, β, γ ∈ R, γ /∈ {0,−1,−2, . . . }, we write F(α, β, γ; ·) for the hypergeometric
function

F(α, β; γ; z) =
∞

∑
k=0

(α)k(β)k

(γ)k

zk

k!
, z ∈ [−1, 1],

where (x)k is the Pochhammer symbol

(x)k =


Γ(x+k)

Γ(x) , x > 0,

(−1)k Γ(−x+1)
Γ(−x−k+1) , x ≤ 0.

Let X ⊆ Rn be a nonempty, compact set which is star-shaped at O (i.e. every line
through O that hits X does so in a (possibly degenerate) line segment). The radial
function of X, ρX, is defined by

ρX(x) = sup{α ∈ R | αx ∈ X},

for x ∈ Rn \ {O}. The set X is uniquely determined by ρX. We use Kn for the family
of all convex bodies (compact, convex sets) of Rn; cf. [Sch93] for the theory of convex
bodies. If X ∈ Kn and ∂X does not contain any line segment X is called strictly
convex. For X ∈ Kn its support function, hX, is given by

hX(u) = max
x∈X
〈u, x〉 , u ∈ Sn−1.
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The value hX(u) is the signed distance from O to the supporting hyperplane to X
with outer unit normal vector u. For q > 0 we define the q-flower set Hq

X of X ∈ Kn

by
ρHq

X
(u) = sgn(hX(u))|hX(u)|q, u ∈ Sn−1, (B.2)

where sgn(·) is the signum function. Note that the right hand side of (B.2) is always
the radial function of some set, as −hX(−u) ≤ hX(u) for all u ∈ Sn−1. When q = 1,
H1

X is the set whose radial function is the support function of X and is referred to
as the support set of X in [CO05]. When X is a planar polygon, H1

X is a union of
finitely many disks and resembles slightly a flower and was called the flower of X in
[CO11]. As already mentioned, we extend that terminology and speak of a q-flower
set, see Section B.4.4 for its relevance in connection with the invariator principle.

We let Rn be the family of all polyconvex sets (sets that can be expressed as
finite unions of convex bodies) of Rn. A support element of ∅ 6= X ∈ Kn is a pair
(x, u) ∈ Σ = Rn × Sn−1, where x ∈ ∂X and u is an outer unit normal vector of X at
x. More formally (x, u) ∈ Σ is a support element of X if and only if x ∈ X satisfies
hX(u) = 〈u, x〉. We let NorX be the set of all support elements of X. As in [Gla97,
p. 109] we extend this definition to polyconvex sets. For X ∈ Rn let R(X) be the set
of all sequences (Xi)i∈N in Kn with X = ∪∞

i=1Xi and Xi = ∅ for almost all i ∈ N

and let S(N) be the set of all nonempty subsets of N. Then we define

NorX = ∩(Xi)∈R(X) ∪v∈S(N) Nor(∩i∈vXi). (B.3)

We follow the notation in [Sch93, 4.2] and write Ξm(X, ·), 0 ≤ m ≤ n − 1, for
the support measures of X ∈ Rn on B(Σ). They are concentrated on NorX. We
obtain the curvature measures by the specialization Φm(X, A) = Ξm(X, A× Sn−1),
A ∈ B(Rn), and the area measures by Ψm(X, B) = Ξm(X, Rn × B), B ∈ B(Sn−1),
m ∈ {0, 1, . . . , n− 1}. For m = n, only the curvature measure is defined. We put
Φn(X, ·) = Hn

n(X ∩ ·), so Φn(X, ·) is the restriction of the Lebesgue measure to X.
The intrinsic volumes are the total measures Vm(X) = Ξm(X, Σ). Of special interest
will be the volume Vn, the surface area 2Vn−1 and the Euler characteristic V0 = χ.
For X ∈ Kn, integers r, s ≥ 0 and m ∈ {0, 1, . . . , n− 1}, we write

Φm,r,s(X) =
σn−m

r!s!σn−m+s

∫
Σ

xrusΞm(X, d(x, u)),

for the Minkowski tensors. Here xrus is the symmetric tensor product of rank r + s of
the symmetric tensors xr and us. For s = 0 we obtain the volume tensor of rank r

Φm,r,0(X) =
1
r!

∫
X

xrΦm(X, dx),

which is also defined for m = n. Note also that Φm,0,0(X) = Vm(X). For an introduc-
tion to Minkowski tensors see [HSS08] and references therein.

For j = 0, 1, . . . , n we let

Ln
j[O] = {Ln

j[O] ⊆ Rn | Ln
j[O] is a j-dim. linear subspace},

Ln
j = {Ln

j ⊆ Rn | Ln
j is a j-dim. affine subspace}
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be the families of all j-dimensional linear and affine subspaces of Rn, respectively.
For 0 ≤ j ≤ r ≤ n and a fixed Ln

r[O] ∈ L
n
r[O] we write Lr

j for the family of all j-
dimensional affine subspaces Lr

j within this linear subspace, despite the fact that this
notation does not reflect the surrounding linear space. These spaces are equipped
with their standard topologies and endowed with their natural invariant measures;
see [SW08]. We write dLn

j[O], and dLr
j , respectively, when integrating with respect to

these invariant measures. We use the same normalization as in [SW08]:∫
Ln

j[O]

dLn
j[O] = 1 and

∫
{Lr

j∈Lr
j | Lr

j∩Bn 6=∅}
dLr

j = κr−j.

A random subspace Ln
j[O] is called isotropic random (IR) if and only if its distribution

is given by

PLn
j[O]
(A) =

∫
Ln

j[O]

1A dLn
j[O], A ∈ B(Ln

j[O]).

Similarly, a random flat Ln
j ∈ Ln

j is called isotropic uniform random (IUR) hitting a
compact object Y if and only if its distribution is given by

PLn
j
(A) = c

∫
Ln

j

1A∩{Ln
j ∈Ln

j | Ln
j ∩Y 6=∅} dLn

j , A ∈ B(Ln
j ),

where c is a normalizing constant. We write (Ln
j )
⊥ ∈ Ln

n−j[O] for the linear subspace
orthogonal to Ln

j[O] ∈ L
n
j[O] and x|Ln

j[O] for the orthogonal projection of x ∈ Rn onto

Ln
j[O] ∈ L

n
j[O]. We furthermore adopt the convention of writing u⊥ for the orthogonal

complement of the line through O with direction u ∈ Sn−1. For η ⊆ Σ and Ln
j ∈ Ln

j ,
j ∈ {0, . . . , n− 1}, we define

η ∧ Ln
j = {(x, u) ∈ Σ | there are u1, u2 ∈ Sn−1 with (x, u1) ∈ η,

x ∈ Ln
j , u2 ∈ (Ln

j )
⊥, u ∈ pos{u1, u2}},

where pos{u1, u2} = {λ1u1 +λ2u2 | λ1, λ2 ≥ 0} is the positive hull of the set {u1, u2}.
For B ∈ B(Sn−1) we let

B ∧ Ln
j = {u ∈ Sn−1 | there are u1, u2 ∈ Sn−1 with u1 ∈ B,

u2 ∈ (Ln
j )
⊥, u ∈ pos{u1, u2}}.

A generalization of the classical Crofton formula is the following local Crofton
formula for polyconvex sets.

Proposition B.1. [Gla97, Theorem 3.4] Let X ∈ Rn and j, m be integers satisfying
0 ≤ m < j ≤ n− 1. Then for η ∈ B(NorX)

Ξn−j+m(X, η) = cj+1,n−j+m+1
m+1,n+1

∫
Ln

j

Ξm(X ∩ Ln
j , η ∧ Ln

j )dLn
j . (B.4)
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We use the word smooth to mean differentiable of class C∞ and refer to [Bre93, 2.1.
Definition p. 68] for a definition of an m-dimensional smooth manifold in Rn. For
a manifold X ⊆ Rn of class C1 let Tx(X) be the vector space of all tangent vectors
to X at a point x ∈ X. For two manifolds X1, X2 ⊆ Rn of class C1 we write X1 t X2

in Rn, and say that X1 intersects X2 transversely in Rn, if whenever x ∈ X1 ∩ X2, we
have Tx(X1) + Tx(X2) = Tx(Rn). This is standard notation in differential geometry
[Bre93, 7.6. Definition p. 84]. Correspondingly, for X ∈ Rn and Ln

j[O] ∈ L
n
j[O] we

write ∂X t Ln
j[O] in Rn if any supporting hyperplane of X at any point in ∂X ∩ Ln

j[O],
together with Ln

j[O], spans Rn, that is

(x, u) ∈ NorX, x ∈ Ln
j[O] ⇒ u 6⊥ Ln

j[O].

When X ∈ Rn and O /∈ ∂X, we have ∂X t Ln
j[O] in Rn for almost all Ln

j[O] ∈ L
n
j[O]. This

was shown for X ∈ Kn in [JR08, Prop. 1] and generalizes to polyconvex sets using
(B.3). Furthermore, if X1 and X2 are embedded submanifolds of Rn, in the sense of
[Bre93, 5.7. Definition p. 79], and X1 t X2 in Rn, then X1 ∩ X2 is a submanifold of
Rn of dimension dim(X1) + dim(X2)− n [Bre93, 7.7. Theorem p. 84].

B.3 Invariator principle and rotational Crofton formulae

The goal of rotational integral geometry is to find analogs of (B.4) where the motion
invariant integration over all affine flats is replaced by rotation invariant integration
over all linear subspaces. In its most general form, a rotational Crofton formula is
thus

β(X) =
∫
Ln

j+1[O]

α(X ∩ Ln
j+1[O])dLn

j+1[O], (B.5)

j = 0, 1, . . . , n− 1, for suitable X and functionals α(·) and β(·). We consider here
only the stereologically motivated question how α(·) should be chosen in order to
obtain a desired geometric characteristic β(X) of X. For the question of how β(X)

can be explicitly calculated, when α(·) is given (e.g. an intrinsic volume) see [JR08].
In [AJ10, Proposition 1] and [GACONnB10, Theorem 3.1 with λ = 0] a functional

α(·) was given such that (B.5) holds where β(X) = Vm(X), m = n− j, . . . , n. The key
idea is to combine the classical Crofton formula with a Blaschke-Petkantschin-type
result, which is often called the invariator principle in stereology. In stereological
terminology, this relation states how a j-dimensional flat in an isotropic (j + 1)-
dimensional subspace must be chosen in order to obtain an IUR flat in Rn. For all
non-negative measurable functions f on Ln

j and j ∈ {0, 1, . . . , n− 1}∫
Ln

j

f (Ln
j )dLn

j = cn−j
1

∫
Ln

j+1[O]

∫
Lj+1

j

f (Lj+1
j )d(O, Lj+1

j )n−j−1dLj+1
j dLn

j+1[O], (B.6)

where d(O, Lj+1
j ) is the Euclidean distance from O to Lj+1

j and the constant cn−j
1

is given by (B.1). This follows from [GACO09, Corollary 3.1 when λ = 0] where
different normalizations of the invariant measures have been used. The same ap-
proach leads also to a rotational Crofton formula for support measures by combining
Proposition B.1 with (B.6).
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Proposition B.2. Let X ∈ Rn, j ∈ {1, . . . , n − 1}, m ∈ {0, . . . , j − 1} and η ∈
B(NorX). For β(X) = Ξn−j+m(X, η), equation (B.5) holds with

α(·) = cj+1,n−j+m+1,n−j
m+1,n+1,1

∫
Lj+1

j

Ξm(· ∩ Lj+1
j , η ∧ Lj+1

j )d(O, Lj+1
j )n−j−1dLj+1

j ,

with the leading constant given by (B.1).

The proposition holds in particular for the marginal measures of the support mea-
sures and their total masses, the intrinsic volumes. Explicitly, taking η = A× Sn−1 in
Proposition B.2, with A ∈ B(Rn), it follows that for β(X) = Φn−j+m(X, A), equation
(B.5) holds with

α(·) = cj+1,n−j+m+1,n−j
m+1,n+1,1

∫
Lj+1

j

Φm(· ∩ Lj+1
j , A ∩ Lj+1

j )d(O, Lj+1
j )n−j−1dLj+1

j , (B.7)

0 ≤ m ≤ j ≤ n− 1. Similarly for β(X) = Ψn−j+m(X, B), B ∈ B(Sn−1), equation (B.5)
holds with

α(·) = cj+1,n−j+m+1,n−j
m+1,n+1,1

∫
Lj+1

j

Ψm(· ∩ Lj+1
j , B ∧ Lj+1

j )d(O, Lj+1
j )n−j−1dLj+1

j , (B.8)

0 ≤ m < j ≤ n− 1. As already stated in [AJ10, Proposition 1] and [GACONnB10,
Theorem 3.1 with λ = 0] for more general set classes, taking η = Σ, equation (B.5)
with β(X) = Vn−j+m(X) holds for

α(·) = cj+1,n−j+m+1,n−j
m+1,n+1,1

∫
Lj+1

j

Vm(· ∩ Lj+1
j )d(O, Lj+1

j )n−j−1dLj+1
j , (B.9)

0 ≤ m ≤ j ≤ n − 1. This relation will be of particular interest when the Euler
characteristic occurs on the right hand side. Taking m = 0 in (B.9), applying the
duality result [Jen98, Proposition 3.3] and an invariance argument, we note that
β(X) = Vn−j(X) and

α(·) = cn−j+1,n−j
n+1,1,1

∫
Sn−1∩Ln

j+1[O]

∫ ∞

−∞
χ(· ∩ (ru + u⊥))|r|n−j−1drduj (B.10)

satisfy (B.5). When the section profile Y = X ∩ Ln
j+1[O] is convex, the Euler char-

acteristic of Y ∩ (ru + u⊥) equals one if the hyperplane ru + u⊥ hits Y, and zero
otherwise. Clearly, for a given u ∈ Sn−1 ∩ Ln

j+1[O], ru + u⊥ hits Y if and only if
−hX∩Ln

j+1[O]
(−u) ≤ r ≤ hX∩Ln

j+1[O]
(u). Hence, we can calculate the inner integral in

(B.10) explicitly and obtain, using the reflection invariance of the Hausdorff measure,

α(·) = cn−j+1,n−j
n+1,1

n−j

∫
Sn−1∩Ln

j+1[O]

sgn(h(·)(u))|h(·)(u)|n−jduj. (B.11)

If furthermore X contains O, the expression becomes

α(·) = cn−j+1,n−j
n+1,1

n−j

∫
Sn−1∩Ln

j+1[O]

hn−j
(·) (u)duj. (B.12)
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For a smooth manifold X ⊆ Rn of dimension m, equation (B.5) holds with β(X) =

Hm
n (X) and

α(·) = cm+1,j+1,n−j
j+m−n+1,n+1,1

∫
Lj+1

j

Hm−n+j
n (· ∩ Lj+1

j )d(O, Lj+1
j )n−j−1dLj+1

j , (B.13)

where j is an integer satisfying n−m ≤ j ≤ n− 1. This follows by combining (B.6)
with the Crofton formula for manifolds [Jen98, Proposition 3.7].

When X ∈ Kn a classical Crofton formula for Minkowski tensors [HSS08, The-
orem 2.2] (see also [SS02] for special cases) can be combined with the invariator
principle to obtain rotational Crofton formulae for Minkowski tensors. The deriva-
tion of these formulae is straightforward, but we do not report them here as the
function β(·) occurring in these formulae is typically a linear combination of several
Minkowski tensors also involving the metric tensor and complicated coefficients.
In [ACZJ12] the notion of Minkowski tensors was extended to so-called integrated
Minkowski tensors obtained as certain tensor averages of flat sections of X. This
extended class has the appealing property to be closed under rotational Crofton
integrals: if α(·) in (B.5) is an integrated Minkowski tensor, then β(·) is an integrated
Minkowski tensor, too [ACZJ12, Proposition 4.1]. The proof is based on a measure
decomposition that generalizes (B.6); see (B.16) below. A special case of this result,
particularly important for applications, is obtained in [ACZJ12, Corollary 4.4 with
q = 1]: For r ∈N0 and s ∈ {0, 1} equation (B.5) holds with β(X) = Φn+m−j−1,r,s(X)

and

α(·) = c
∫
Lj+1

j

Φ
(Lj+1

j )

m−1,r,s(· ∩ Lj+1
j )d(O, Lj+1

j )n−j−1dLj+1
j . (B.14)

Here 0 < m ≤ j ≤ n− 1, Φ
(Lj+1

j )

m−1,r,s is the Minkowski tensor relative to Lj+1
j and

c = (m−1)!(n−1)!
(j−1)!(n+m−1−j)! c

n,s+m+1,n−j
n−j+m+s+1,j,1.

Furthermore, for j ∈ {0, 1, . . . , n− 1} and any non-negative integer r, equation (B.5)
with β(X) = Φn,r,0(X) holds for

α(·) = cn−j
1

∫
Lj+1

j

Φ
(Lj+1

j )

j,r,0 (· ∩ Lj+1
j )d(O, Lj+1

j )n−j−1dLj+1
j . (B.15)

It is not a limitation of the results of this section that they are obtained using (B.6)
instead of the more general measure decomposition [SW08, p. 285]∫
Ln

r

f (Ln
r )dLn

r = c(n, j, r)
∫
Ln

j+1[O]

∫
Lj+1

r

f (Lj+1
r )d(O, Lj+1

r )n−j−1dLj+1
r dLn

j+1[O], (B.16)

where f ≥ 0 is a measurable function on Ln
r , 0 ≤ r ≤ j ≤ n − 1 and c(n, j, r) is

a constant depending on n, j and r. Combining this measure decomposition with
Crofton’s formula produces expressions of the form (B.5) where the measurement
functions are integrals over Lj+1

r instead of Lj+1
j . These functionals do though not
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depend on r, as was shown for the intrinsic volumes in [AC10, Proposition 2]. The
proofs for the cases where β(·) is a support measure (in η ⊆ NorX), a Hausdorff
measure or Φk,r,s, where 1 ≤ k ≤ n− 1, r a non-negative integer and s ∈ {0, 1}, are
almost identical to the one given there and are based on an application of Crofton’s
formula in Lj+1

r .

B.4 Representations of the measurement function

The measurement function α(·) in Proposition B.2 and the special cases given in
(B.7)–(B.9), as well as (B.13), are difficult to evaluate as they involve a weighted
Crofton-type integration in the section plane Ln

j+1[O]. More explicit representations
for the measurement function are known, in particular when X has a C2 boundary
or is a polytope. We will now give different representations of the measurement
function, which all play a role when applying rotational formulae in stereology.

A particularly simple representation is obtained for the volume functional β(·) =
Hn

n(·). In this case, no assumptions on X, apart from measurability, are required.

Proposition B.3. For any X ∈ B(Rn), β(X) = Hn
n(X) and

α(·) = cn
j+1

∫
(·)
‖z‖n−j−1dzj+1

satisfy (B.5) for any 0 ≤ j ≤ n− 1.

Proposition B.3 follows from a twofold application of spherical coordinates and
an invariance argument; see also [AJ10, Proposition 2] for an alternative proof. It
implies in particular that β(X) = Φn(X, A) and

α(·) = cn
j+1

∫
(·)∩A

‖z‖n−j−1dzj+1 (B.17)

satisfy (B.5) for any X ∈ Rn, A ∈ B(Rn).

B.4.1 The measurement function as an integral over the profile
boundary

We show that the measurement function associated to the curvature measures can
be written as an integral over the boundary of the section profile. As this integral
involves principal curvatures, we assume that X ∈ Kn has a boundary of class
C2. For Ln

j ∈ Ln
j , j ∈ {1, . . . , n − 1}, let ∂′(X ∩ Ln

j ) be the relative boundary of
X ∩ Ln

j , i.e. its boundary as a subset of Ln
j . As ∂X t Ln

j for almost all Ln
j ∈ Ln

j , the
principal curvatures κ′1(x), . . . , κ′j−1(x) of ∂′(X ∩ Ln

j ) ⊆ Ln
j at x ∈ ∂′(X ∩ Ln

j ), as well
as the normalized elementary symmetric functions of the principal curvatures of
∂′(X ∩ Ln

j ), H0 = 1,

Hm(x, Ln
j ) =

(
j− 1

m

)−1

∑
1≤i1<···<im≤j−1

κ′i1(x) · · · κ′im
(x),
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m = 1, . . . , j − 1, exist almost surely. In addition, we write n′(x) for the (almost
surely unique) outer unit normal of X ∩ Ln

j at x ∈ ∂′(X ∩ Ln
j ).

Proposition B.4. Let X ∈ Kn with boundary of class C2, A ∈ B(Rn) and let j, m be
integers with 0 ≤ m < j ≤ n− 1. Then β(X) = Φn−j+m(X, A) and

α(X ∩ Ln
j+1[O]) = cj+1,n−j+m+1,n−j

m+1,n+1,j−m,1

∫
∂′(X∩Ln

j+1[O]
)∩A

hm(X ∩ Ln
j+1[O], x)dxj (B.18)

satisfy (B.5), where

hm(X ∩ Ln
j+1[O], x)

=

(
j− 1

m

) ∫
Lj+1

j[O]

Hj−m−1(x, Lj+1
j[O]

+ x)‖n′(x)|Lj+1
j[O]
‖‖x|(Lj+1

j[O]
)⊥‖n−j−1dLj+1

j[O]
.

The proof of Proposition B.4 uses the representation [SW08, p. 607] of Φn−j+m(X, ·)
as integral involving principal curvatures and follows otherwise the proof of [AJ10,
Proposition 3] where (B.18) is shown for A = Rn without the convexity assumption.

For m = j− 1, the function hj−1(X ∩ Ln
j+1[O], ·) does not depend on the principal

curvatures, and was determined in [AJ10, Proposition 4]. In view of (B.18) and using
this simplification, β(X) = Φn−1(X, A) and

α(X ∩ Ln
j+1[O])

= cn
j+1,1

∫
∂′(X∩Ln

j+1[O]
)∩A
‖z‖n−j−1F(− 1

2 ,− n−j−1
2 ; j

2 ; sin2∠(n′(z), z))dzj (B.19)

satisfy (B.5). The special cases A = Rn of (B.18) and (B.19) yield the known rotational
Crofton formula [AJ10, Proposition 3 and p. 6] for intrinsic volumes.

Note that (B.19) can be written using the j-th support measure Ξ′j(Y, ·) of Y =

X ∩ Ln
j+1[O] with respect to Ln

j+1[O]; see for instance [HSS08, p. 488]. Hence β(X) =

Φn−1(X, A) and

α(X ∩ Ln
j+1[O]) =cn

j+1,1

∫
(A∩Ln

j+1[O]
)×(Sn−1∩Ln

j+1[O]
)
‖z‖n−j−1

F(− 1
2 ,− n−j−1

2 ; j
2 ; sin2∠(u, z))Ξ′j(X ∩ Ln

j+1[O], d(z, u))
(B.20)

satisfy (B.5). As support measures are weakly continuous [Sch93, Theorem 4.2.1] and
any convex body can be approximated by a decreasing sequence of convex bodies
with boundary of class C2 [Sch93, pp. 159–160], equation (B.20) is a solution of (B.5)
with β(X) = Φn−1(X, A) for arbitrary convex bodies, as long as Φn−1(X, ∂A) = 0.
In particular, the choice A = Rn gives a rotational integral formula for Vn−1(X) for
all X ∈ Kn.

B.4.2 The measurement function as an integral over the sphere

When β(X) in (B.5) is the surface area of X ∈ Kn, the measurement function can
be written in terms of the radial function of the section profile and an angle in
the section plane. This is obtained by using representation (B.20) derived in the
preceding section for m = j− 1 and the coarea formula.
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Proposition B.5. For X ∈ Kn with O ∈ intX and Ln
j+1[O] ∈ L

n
j+1[O] let Y = X∩ Ln

j+1[O].
Then β(X) = Vn−1(X) and

α(Y) = cn
j+1,1

∫
Sn−1∩Ln

j+1[O]

ρn−1
Y (u)

1
cos α

F(− 1
2 ,− n−j−1

2 ; j
2 ; sin2 α)duj (B.21)

satisfy (B.5), where α is the angle between the (almost surely unique) outer unit normal of Y
in Ln

j+1[O] at ρY(u)u and the line connecting this boundary point with O.

Proof. We assume first that X has a unique outer unit normal in every boundary
point. This is equivalent to saying that ∂X is a C1-surface; see e.g. [Sch93, p. 104].
Then (B.19) with A = Rn gives

α(Y) = cn
j+1,1

∫
∂′Y
‖z‖n−j−1F(− 1

2 ,− n−j−1
2 ; j

2 ; sin2 α)dzj.

In the following, we identify Ln
j+1[O] with Rj+1 (and hence assume Y ⊆ Rj+1). The

claim then follows for X with boundary of class C1 if we can show the transformation
formula ∫

Sj
g( f (u))J f (Sj; u)duj =

∫
∂Y

g(z)dzj (B.22)

with

f : Rj+1 \ {O} → ∂Y

x 7→ ρY(x)x,

and Jacobian J f (Sj; u) = ρ
j
Y(u)/ cos α, for arbitrary measurable g ≥ 0.

Equation (B.22) follows from an application of the coarea formula [Jen98, Theo-
rem 2.1] by calculation of the Jacobian. We have

D f (x) =
( ∂ fi

∂xk

)
i,k=1,...,j+1

= x(OρY(x))t + ρY(x)Ij+1,

where Ik is the (k × k)-identity matrix. If u denotes the outer unit normal of Y
at ρY(x)x, the directional derivative of f in direction y 6= O must be a vector in
the tangent space ρY(x)x + u⊥, so (D f (x)y)tu = 0. More explicitly, ytOρY(x)xtu +

ρY(x)ytu = 0. Choosing y ∈ u⊥ arbitrary, and then y = u gives OρY(x) = − ρY(x)
cos α u,

so
D f (x) = ρY(x)(Ij+1 − 1

cos α xut)

when x ∈ Sj. The Jacobian is given by

J f (Sj; x) =
√

det(ED f (x)t(ED f (x)t)t)

where the rows of the matrix E consist of an orthonormal basis of x⊥. This gives

J f (Sj; x) = ρ
j
Y(x)

√
det(Ij+1 +

1
cos2 α

Eu(Eu)t)

= ρ
j
Y(x)(1 + ‖Eu‖2

cos2 α
)1/2

=
ρ

j
Y(x)

cos α
,
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as required. Using the continuity of the intrinsic volumes and Lebesgue’s dominated
convergence theorem the C1-assumption can be omitted, as outlined in the following.
If Y has a unique outer unit normal in Ln

j+1[O] at y ∈ ∂Y we say that y is a regular point

of Y. Let reg Y be the set of regular points of Y, SY = {u ∈ Sn−1 ∩ Ln
j+1[O] | ρY(u)u /∈

reg Y} and define

g : ∂Y \ reg Y → SY

x 7→ x
‖x‖ .

As [Sch93, Theorem 2.2.4.] implies Hj
j+1(∂Y \ reg Y) = 0 and g is a Lipschitz map-

ping, we haveHj
j+1(SY) = 0. We therefore only consider u ∈ Sn−1 ∩ Ln

j+1[O] \ SY in
the following.

Let Xi = X + i−1Bn be the parallel body of X at distance i−1. Then ∂Xi is a
C1-surface. As Xi ↘ X for i → ∞ we have that Yi = Xi ∩ Ln

j+1[O] converges to
Y = X ∩ Ln

j+1[O] and, by continuity of the radial function, ρYi(u)u → ρY(u)u, as
i→ ∞. By the fact that ρY(u)u ∈ reg Y, we conclude that αi → α for i→ ∞, where
αi is the angle between the outer unit normal of Yi at ρYi(u)u and the line connecting
this boundary point with O. As O ∈ intX, there exists α′ such that αi < α′ < π/2 for
all i and hence cos αi > cos α′ > 0. This implies that the hypergeometric function
F(− 1

2 ,− n−j−1
2 ; j

2 ; sin2 αi) can be written as an absolutely convergent power series
in sin2 αi and is therefore a continuous function on [0, α′]. Therefore, there exists a
finite constant C = C(Y, n, j) such that

ρn−1
Yi

(u)
1

cos αi
F(− 1

2 ,− n−j−1
2 ; j

2 ; sin2 αi) < C

for all u ∈ Sn−1 ∩ Ln
j+1[O] and all i. Furthermore, we have shown pointwise conver-

gence of the integrand

ρn−1
Yi

(u)
1

cos αi
F(− 1

2 ,− n−j−1
2 ; j

2 ; sin2 αi)→ ρn−1
Y (u)

1
cos α

F(− 1
2 ,− n−j−1

2 ; j
2 ; sin2 α)

for u ∈ Sn−1 ∩ Ln
j+1[O] \ SY. Hence Lebesgue’s dominated convergence theorem can

be applied and the result follows without assuming that ∂X is a C1-surface. �

We remark that the proposition also holds without assuming O ∈ intX but then the
assumptions that X is strictly convex and that ∂X is a C1-surface have to be added.
Then (B.21) becomes

α(Y) = cn
j+1,1

∫
{u∈Sn−1∩Ln

j+1[O]
| ∃β∈R:βu∈Y}

ρn−1
Y (u)

1
cos α

F(− 1
2 ,− n−j−1

2 ; j
2 ; sin2 α)duj.

The hypergeometric function in (B.21) simplifies when n = 3, j = 1 [Jen98, Exam-
ple 5.10]

F(− 1
2 ,− 1

2 ; 1
2 ; sin2 α) = cos α + α sin α. (B.23)
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Hence, according to Proposition B.5, for X ∈ K3 with O ∈ intX, equation (B.5) with
β(X) = V2(X) is satisfied by

α(X ∩ L3
2[O]) =

∫
S2∩L3

2[O]

ρ2
X∩L3

2[O]
(u)(1 + α tan α)du.

This integral equation is the basis of the well-known surfactor, see Section B.5.

B.4.3 Morse type representation

In the derivation of (B.11), we have seen that a measurement function depending
on the Euler characteristic of hyperplane sections can be expressed by means of
the support function when X is convex. The values of the support function can be
thought of as critical values of the section profiles. We now show that the use of
critical values of the section profiles can be extended to more general sets. We first
formulate the result for smooth manifolds and then for polyconvex sets.

In order to obtain the counting measure on the right hand side of (B.13) we
consider an (n − j)-dimensional manifold X. If we assume that X t Ln

j+1[O] in
Rn for almost all Ln

j+1[O] ∈ L
n
j+1[O], then Y = X ∩ Ln

j+1[O] is almost surely a one-
dimensional smooth manifold; see the discussion at the end of Section B.2. To
discuss critical values of the manifold Y we use classical Morse theory. This theory
studies the topology of manifolds in terms of functions defined on the manifolds.
For the convenience of the reader we give here the basics of Morse theory for one-
dimensional manifolds and refer to [Mil63] for more general results. We describe
Morse theory in Rn, but will later apply it to the section plane Ln

j+1[O]. For the
purposes of stating results from Morse theory we introduce CW-complexes. The
notion of a CW-complex is due to [Whi49]. We will assume that X is compact and
therefore only need to consider finite CW-complexes. A finite CW complex Y is a
topological space such that there is n ∈N0 and a finite nested sequence

∅ ⊆ Y0 ⊆ Y1 ⊆ · · · ⊆ Yn = Y, (B.24)

such that the following two conditions hold

(i) Y0 is finite,

(ii) for each d ∈ {1, . . . , n}, Yd is obtained from Yd−1 by attaching finitely many d-
cells, as described in [LW69, p. 47], where a d-cell is the image of a continuous
function φ : Bd → X that is injective on intBd.

The number n in the above nested sequence is the dimension of the CW-complex Y. If
n0 is the number of elements in Y0, and nd is the number of d-cells attached to Yd−1

to obtain Yd, the Euler characteristic of Y is given by [Lee00, p. 373]

χ(Y) =
n

∑
d=0

(−1)dnd. (B.25)
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In the present work only CW-complexes of dimension one play a role, and they will
be used only as a tool to determine the Euler-characteristic of hyperplane sections
and sublevel sets of one-dimensional smooth manifolds.

Let Y ⊆ Rn be a compact smooth manifold of dimension one and let f : Y → R

be a smooth function. A point p ∈ Y is a critical point of f if there is a local coordinate
system φ : U → Y, where U is a neighbourhood of O, φ(O) = p, such that f̄ = f ◦ φ

has a usual critical point at O:
d f̄
dx

(O) = 0.

If furthermore
d2 f̄
dx2 (O) 6= 0

we say that p is a non-degenerate critical point. The definition of a critical point and
non-degeneracy does not depend on the choice of the local coordinate system φ. If p
is a critical point of f then f (p) is called a critical value of f . We say that a function f
is a Morse function if all of its critical points are non-degenerate and with different
critical values. It is shown in [Fu89, Section 5] that the height function fu(y) = 〈y, u〉
is a Morse function for almost all u ∈ Sn−1, even under the weaker assumption that
Y is a set of positive reach. A set X ⊆ Rn is said to be of positive reach if there exists
r > 0 such that for all x ∈ X + rBn there exists a unique point of X nearest to x.

If the second derivative at a non-degenerate critical point is negative, the critical
point is said to have index one, otherwise it has index zero. Again, the index does
not depend on the local coordinate system chosen. According to the Morse Lemma
[Mil63, Lemma 2.2] the behaviour of f in a neighbourhood of a non-degenerate
critical point p can be completely described by its index: There exists a chart y in a
neighbourhood U of p with y(p) = 0 and such that

f = f (p) + (−1)λy2

holds throughout U, where λ ∈ {0, 1} is the index of f at p. From this it follows that
a non-degenerate critical point is isolated.

In the following we will apply Morse theory only to height functions fu, where
u ∈ Sn−1 is chosen such that fu is a Morse function for a given manifold Y. For a
given r ∈ R and u ∈ Sn−1 we define the sub- and superlevel sets

Y≤r = {y ∈ Y | fu(y) ≤ r},
Y≥r = {y ∈ Y | fu(y) ≥ r}.

According to [Bre93, 7.4. Corollary p. 84] (with θ the height function on Y) and the
fact that fu is a Morse function for almost all u, the set Y ∩ (ru + u⊥) is an embedded
submanifold of Y for almost all r ∈ R and almost all u ∈ Sn−1. Therefore we can use
the additivity of the Euler characteristic for manifolds, to write

χ(Y ∩ (ru + u⊥)) = χ(Y≤r) + χ(Y≥r)− χ(Y). (B.26)

Let r1, r2 ∈ R with r1 < r2 and assume that the set {y ∈ Y | r1 ≤ fu(y) ≤ r2} contains
no critical points of fu. Then, by [Mil63, Theorem 3.1], Y≤r2 and Y≤r1 are homotopy
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equivalent. Furthermore if fu has no degenerate critical points, Y has the homotopy
type of a CW-complex with one cell of dimension λ for each critical point of index
λ [Mil63, Theorem 3.5]. According to [Mil63, Remark on p. 24], for all r ∈ R the
set Y≤r has the homotopy type of a finite CW-complex, with one cell of dimension
λ for each critical point of index λ in Y≤r. This holds even if r is a critical value.
In particular, both have the same Euler characteristic. Let now m = m(u) be the
number of critical points of the height function fu on Y and ri = ri(u), i = 1, . . . , m,
their critical values. We assume without loss of generality that the critical points are
enumerated such that r1 < r2 < · · · < rm. Then, if λi = λi(u), i = 1, . . . , m, are the
indices of the respective critical points, it follows from (B.25) with n = 1 that

χ(Y≤r) = ∑
i:ri≤r

(−1)λi . (B.27)

Applying the same argument with the function f−u and constant −r, we obtain the
Euler characteristic of the superlevel sets

χ(Y≥r) = ∑
i:ri≥r

(−1)1−λi . (B.28)

From (B.27) and (B.28) we get

χ(Y) =
m

∑
i=1

(−1)λi =
m

∑
i=1

(−1)1−λi , (B.29)

so χ(Y) = 0. Inserting (B.27)–(B.29) into (B.26) gives

χ(Y ∩ (ru + u⊥)) = ∑
i:ri≤r

(−1)λi − ∑
i:ri≥r

(−1)λi

= 2 ∑
i:ri≤r

(−1)λi − ∑
i:ri=r

(−1)λi . (B.30)

We are now equipped with the necessary terminology and results for writing the
measurement function associated to the Hausdorff measures in (B.13) with m = n− j
in terms of critical points of the height function on the section profile.

Theorem B.6. Let X ⊆ Rn be a compact smooth manifold of dimension n − j, where
j ∈ {0, 1, . . . , n− 1}. Assume that X t Ln

j+1[O] for almost all Ln
j+1[O] ∈ L

n
j+1[O]. Then for

β(X) = Hn−j
n (X), equation (B.5) holds with

α(·) = cn−j+1,n−j
n+1,1

n−j

∫
Sn−1∩Ln

j+1[O]

M(·, u)duj, (B.31)

where

M(Y, u) =
m

∑
k=2

(sgn(rk)|rk|n−j − sgn(rk−1)|rk−1|n−j)
k−1

∑
i=1

vi (B.32)

depends on all the critical values r1 < r2 < · · · < rm of the smooth one-dimensional
manifold Y ⊆ Ln

j+1[O] with respect to the function fu(x) = 〈x, u〉. The respective Morse
indices are λ1, . . . , λm and we abbreviated vi = (−1)λi , i = 1, . . . , m.

73



Paper B

Proof. Taking m = n− j in (B.13) and using the results leading to (B.10) ([Jen98,
Proposition 3.3] and an invariance argument), the expression becomes

α(X ∩ Ln
j+1[O]) = cn−j+1,n−j

n+1,1,1

∫
Sn−1∩Ln

j+1[O]

∫ ∞

−∞
H0

n(X ∩ Ln
j+1[O] ∩ (ru + u⊥))

|r|n−j−1drduj.
(B.33)

Due to the assumption of transversality, X ∩ Ln
j+1[O] is a one-dimensional embedded

submanifold of Rn for almost all Ln
j+1[O] ∈ L

n
j+1[O]; see the discussion at the end of

Section B.2. As fu is a Morse function on X ∩ Ln
j+1[O] for almost all u ∈ Sn−1 ∩ Ln

j+1[O],

(X ∩ Ln
j+1[O]) ∩ (ru + u⊥) is a finite set for almost all u ∈ Sn−1 ∩ Ln

j+1[O] and r ∈ R.
Hence, the counting measure in (B.33) can be replaced by the Euler characteristic
and the theorem follows by inserting (B.30) into (B.33) and calculating the inner
integral explicitly. �

We remark that it might be possible to generalize Theorem B.6 to sets of positive
reach by using [Fu89], where the classical Morse theory is extended to sets of positive
reach. We do not consider this here but give an analogous result for not necessarily
smooth polyconvex sets using Hadwiger’s index, an index closely related to the
Morse index. For Y ∈ Rn and u ∈ Sn−1 let

g∗u(Y; r) = lim
ε→0+

(χ(Y ∩ (ru + u⊥))− χ(Y ∩ ((r− ε)u + u⊥))), (B.34)

r ∈ R, be the index function given by [Had55, Eq. (9)]. The index function is non-zero
for only finitely many r. Hadwiger [Had55] showed that

χ(Y) = ∑
r

g∗u(Y; r) (B.35)

holds for all u ∈ Sn−1. We use this index to represent the measurement function
(B.10) associated to the intrinsic volumes entirely in terms of critical values in the
section profile. For u ∈ Sn−1 let

gu(r) = g∗u(Y; r)− g∗−u(Y; r), r ∈ R. (B.36)

We note that gu also depends on Y but decided not to overload the notation. For a
given u ∈ Sn−1 we say that r ∈ R is a critical value of Y in direction u if gu(r) 6= 0.

In order to parallel the formulation to Theorem B.6 in the following result for
polyconvex sets, we choose β(X) = 2Vn−j(X) for the left hand side of (B.5). That the
factor two is natural here, can be seen in the case j = 1, as 2Vn−1(X) = Hn−1

n (∂X)

for any convex body X with interior points.

Theorem B.7. Let X ∈ Rn and j ∈ {0, 1, . . . , n − 1}. Then for β(X) = 2Vn−j(X),
equation (B.5) holds with

α(·) = cn−j+1,n−j
n+1,1

n−j

∫
Sn−1∩Ln

j+1[O]

M(·, u)duj, (B.37)
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where

M(Y, u) =
m

∑
k=2

(sgn(rk)|rk|n−j − sgn(rk−1)|rk−1|n−j)
k−1

∑
i=1

vi (B.38)

depends on all the critical values r1 < r2 < · · · < rm of Y ⊆ Ln
j+1[O] in direction u with

respective indices vi = gu(ri), i = 1, . . . , m, where gu is given by (B.36).

Proof. For Ln
j+1[O] ∈ L

n
j+1[O] the set Y = X ∩ Ln

j+1[O] is polyconvex. Fix u ∈
Sn−1 ∩ Ln

j+1[O]. Using (B.35), we have χ(Y) = ∑m
i=1 g∗u(Y; ri). Furthermore, as the

sublevel set Y≤r, r ∈ R, is polyconvex and

g∗u(Y; r′) = g∗u(Y≤r; r′)

for r′ ≤ r, its Euler characteristic can be written as

χ(Y≤r) = ∑
i:ri≤r

g∗u(Y; ri), r ∈ R.

Similarly, we can write the Euler characteristic of the superlevel set

χ(Y≥r) = ∑
i:ri≥r

g∗−u(Y; ri), r ∈ R.

As (B.26) also holds when Y is a polyconvex set, this gives

χ(Y ∩ (ru + u⊥)) = ∑
i:ri≤r

(g∗u(Y; ri)− g∗−u(Y; ri)) + ∑
i:ri=r

g∗−u(Y; ri).

Inserting this into (B.10) and calculating the inner integral explicitly, the result
follows. �

As already noted in (B.11) and at the beginning of this section, when X ∈ Kn there
are two critical values for any given direction u ∈ Sn−1 ∩ Ln

j+1[O], and these are
hX∩Ln

j+1[O]
(u) and −hX∩Ln

j+1[O]
(−u). Using that −hX∩Ln

j+1[O]
(−u) ≤ hX∩Ln

j+1[O]
(u), that

v1 = 1 for all u ∈ Sn−1 ∩ Ln
j+1[O] and all Ln

j+1[O] ∈ L
n
j+1[O], and that the Hausdorff

measure is reflection invariant, it follows that (B.37) simplifies to (B.11) and fur-
thermore to (B.12) if X contains O. This shows in particular that when X ∈ Kn

has a smooth boundary, the M-functions in (B.32) and (B.38) with j = 1 coincide,
which implies that Theorem B.6, applied to ∂X, is equivalent to Theorem B.7. The
M-functions agree for more general classes of sets than smooth convex sets. Let X
be a compact, topologically regular set, i.e. X = cl(intX). If ∂X is a smooth man-
ifold of dimension n− 1 and ∂X t Ln

2[O], then the boundary of Y = X ∩ Ln
2[O] is a

one-dimensional smooth manifold. We formulate the result for Y and identify Ln
2[O]

with R2.

Proposition B.8. Let Y ⊆ R2 be compact, topologically regular and such that ∂Y is a
one-dimensional smooth manifold. Then, for almost all u ∈ S1, r is a critical value of ∂Y
with respect to the height function fu, in the sense of classical Morse theory, if and only if
gu(r) 6= 0 for Y. Furthermore, if λ is the Morse index of a non-degenerate critical point
with critical value r, then

gu(r) = (−1)λ. (B.39)
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Proof. Let u ∈ S1 be such that fu is a Morse function. If r is not a critical value in
the sense of Morse theory, (B.30) implies that χ(X ∩ (tu + u⊥)) is constant for all t
in a neighbourhood of r. This implies gu(r) = 0, so r is not a critical value in the
Hadwiger sense.

Now assume that r is a critical value in the sense of Morse theory. To simplify
notation, we assume that u = (0, 1) and r = 0 holds. Hence, the x-axis is a tangent
to ∂Y at some point p, which we may assume to be O. As fu is a Morse function, the
origin is non-degenerate and isolated from all other critical points. Assume first that
the index of O is λ = 0. Then there is an ε > 0 and a neighbourhood U of O in the
x-axis such that ∂Y ∩ εB2 = graphγ for some convex function γ : U → R. As Y is
topologically regular, either M+ = epiγ ∩ εB2 = {(x, y) ∈ εB2 | x ∈ U, γ(x) ≤ y} or
M− = cl(εB2 \M+) coincides with Y ∩ εB2.

Consider the case Y ∩ εB2 = M−. As all other critical values are at positive
distance from r = 0, (B.30) shows that χ(X ∩ (tu + u⊥)) does not change for small
t ≤ 0 implying g∗u(Y; 0) = 0. However, for small t > 0, χ(X ∩ (tu + u⊥)) =

χ(X ∩ u⊥) + 1 and g∗−u(Y; 0) = −1. This gives gu(0) = 1 = (−1)λ, as required. The
case Y ∩ εB2 = M+ is treated in a similar way, and the case λ = 1 can be reduced to
the above by replacing u with −u. Summarizing, the definition of critical value is
the same for both, Morse and Hadwiger theory, and (B.39) holds. �

B.4.4 The generalized flower volume and projection formulae

The invariator principle was first used in [CO05] to estimate volume and surface
area of objects in R3 from 2-dimensional flat sections. Up to a factor 2, the surface
area of X ∈ K3 is V2(X) and it follows from (B.11) and the definition (B.2) of the
q-flower set that

V2(X) = 2
∫
L3

2[O]

V2(H1
X∩L3

2[O]
)dL3

2[O]. (B.40)

For O ∈ X this was observed in [CO05]. An analogous result holds in all dimensions.

Lemma B.9. Let X ∈ Kn be given. Then, for j ∈ {1, . . . , n− 1},

Vn−j(X) = cn−j+1,n−j
n+1,1

j+1
n−j

∫
Ln

j+1[O]

Vj+1(H
n−j
j+1

X∩Ln
j+1[O]

)dLn
j+1[O]. (B.41)

Proof. Equation (B.11) and the definition (B.2) of the q-flower set imply

Vn−j(X) =
cn−j+1,n−j

n+1,1
n−j

∫
Ln

j+1[O]

( ∫
{u∈Sn−1∩Ln

j+1[O]
| hX∩Ln

j+1[O]
(u)≥0}

ρ
j+1
Hq

X∩Ln
j+1[O]

(u)duj

−
∫
{u∈Sn−1∩Ln

j+1[O]
| hX∩Ln

j+1[O]
(u)≤0}

|ρHq
X∩Ln

j+1[O]

(u)|j+1duj
)

dLn
j+1[O],

where q = (n− j)/(j + 1). Introducing spherical coordinates in Ln
j+1[O] shows that

the inner integrals yield the (j + 1)-dimensional volume of Hq
X∩Ln

j+1[O]
up to a factor

j + 1. �
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In [GACO09, Section 4.3] the formal analogy of (B.40) with Kubota’s formula [SW08,
Eq. (6.11)] was remarked. Kubota’s formula expresses intrinsic volumes of X ∈ Kn

by orthogonal projections X|Ln
n−j[O] of X onto Ln

n−j[O] ∈ L
n
n−j[O]:

Vn−j(X) = cn−j+1,j+1
n+1,1

∫
Ln

n−j[O]

Vn−j(X|Ln
n−j[O])dLn

n−j[O]. (B.42)

The special case n = 3, j = 1 reads

V2(X) = 2
∫
L3

2[O]

V2(X|L3
2[O])dL3

2[O], (B.43)

so the surface area of X is proportional to the average area of all its projections on
isotropic hyperplanes. Similarly (B.40) expresses V2(X) as average of areas asso-
ciated to sections with isotropic hyperplanes, where now, areas of the associated
1-flower set H1

X∩L3
2[O]

have to be taken. Lemma B.9 shows that this analogy breaks

down in general dimensions for two reasons: the (n− j)th intrinsic volume of X
requires (j + 1)-dimensional sections, and a (n − j)/(j + 1)-flower set has to be
considered instead of a 1-flower set. Only when n is odd and j = (n− 1)/2 the
formal analogy between (B.42) and (B.41) holds, like in the special case n = 3, j = 1.
It is thus questionable if (B.40) should be considered as a ‘dual’ of (B.43) in the spirit
of the dual theory of convex geometry. It appears that this analogy is a coincidence
due to a special choice of dimensions.

It should also be noted that formulae like (B.41) trivially hold for some associated
set replacing the (n− j)/(j + 1)-flower set of X, as any non-negative number α is
the volume of e.g. a (j + 1)-dimensional ball with radius (α/κj+1)

1/(j+1).
Due to the relevance for applications, we return to the analogy of the special

cases (B.40) and (B.43). In [Sch88] it was shown (in arbitrary dimension) that (B.43)
still holds for X ∈ R3, if the integrand on the right hand side of

V2(X|L3
2[O]) =

∫
L3

2[O]

1X|L3
2[O]

(z)dz2

is replaced by the integral of the orthogonal projections of X on L3
2[O] with multiplic-

ities. This is also true for (B.40), if the indicator in

V2(H1
X∩L3

2[O]
) =

∫
L3

2[O]

1H1
X∩L3

2[O]

(z)dz2

is replaced by χ(X ∩ L3
2[O] ∩ (z + z⊥)). The latter function only takes integer values

and could be interpreted as ‘indicator function of H1
X∩L3

2[O]

with multiplicities’. The

next proposition determines this function more explicitly when X is a finite union
of polytopes in K3. We write Y = X ∩ L3

2[O] and identify L3
2[O] with R2. We restrict

attention to topologically regular sets Y ⊆ R2.

Proposition B.10. Let Y ⊆ R2 be topologically regular, bounded and polygonal. Then
∂Y consists of finitely many closed polygonal Jordan paths p(1), p(2), . . . , p(k) ⊆ R2 such
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that p(i) ∩ p(j) is empty or finite for all 1 ≤ i < j ≤ k. If y(i)1 , . . . , y(i)mi are the consecutive
vertices when walking along p(i), then

χ(Y ∩ (z + z⊥)) =
k

∑
i=1

mi

∑
j=1

1
B(y(i)j )\B(y(i)j+1)

(z)

forH2
2-almost all z ∈ R2, where B(y) = y

2 +
‖y‖

2 B2 and y(i)mi+1 := y(i)1 .

Proof. ForH2
2-almost all z ∈ R2 we have

χ(Y ∩ (z + z⊥)) =
1
2

χ(∂Y ∩ (z + z⊥))

=
k

∑
i=1

1
2

mi

∑
j=1

χ
(
[y(i)j , y(i)j+1] ∩ (z + z⊥)

)
, (B.44)

where [y, y′] is the line segment with endpoints y, y′ ∈ R2. By Pythagoras’ theorem,
we have [0, y] ∩ (z + z⊥) 6= ∅ if and only if z ∈ B(y) and hence, for H2

2-almost all
z ∈ R2,

[y, y′] ∩ (z + z⊥) 6= ∅⇔ z ∈ (B(y) \ B(y′)) ∪ (B(y′) \ B(y)).

Thus, for almost all z,

1
2

mi

∑
j=1

χ
(
[y(i)j , y(i)j+1] ∩ (z + z⊥)

)
=

1
2

mi

∑
j=1

(1
B(y(i)j )\B(y(i)j+1)

(z) + 1
B(y(i)j+1)\B(y

(i)
j )
(z))

=
mi

∑
j=1

1
B(y(i)j )\B(y(i)j+1)

(z).

Inserting this into (B.44) gives the assertion. �

When Y ⊆ R2 is a simply connected, polygonal set with interior points, and
y1, . . . , ym are its consecutive vertices, then

χ(Y ∩ (z + z⊥)) =
m

∑
i=1

1B(yi)\B(yi+1)(z)

forH2
2-almost all z ∈ R2. In other words, χ(Y∩ (z+ z⊥)) can be read from the vector

v = (1B(y1)(x), 1B(y2)(x), . . . , 1B(ym)(x)) ∈ {0, 1}m by counting the number of blocks
with consecutive 1’s (in a cyclic manner). For instance, when v = (1, 1, 0, 1, 1, 0, 1),
the number of such blocks is χ(Y ∩ (x + x⊥)) = 2. A combination of Proposition
B.10 and (B.10), together with an explicit calculation gives the following corollary.

Corollary B.11. Let X ⊆ R3 be a simply connected set with interior points that can be
represented as the union of finitely many polytopes in K3. Then, equation (B.5) holds with
β(X) = V2(X) and

α(X ∩ L3
2[O]) = 2

m

∑
i=1

V2(B(yi) \ B(yi+1)), (B.45)
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where B(y) = y
2 + ‖y‖

2 B2 and y1, . . . , ym, ym+1 = y1 are the consecutive vertices of
X ∩ L3

2[O]. Equivalently,

α(X ∩ L3
2[O])

=
1
2

m

∑
i=1

(
π‖yi‖2 − γ

(
‖yi‖, ‖yi‖2−〈yi ,yi+1〉

‖yi−yi+1‖
)
− γ

(
‖yi+1‖, ‖yi+1‖2−〈yi ,yi+1〉

‖yi−yi+1‖
))

,
(B.46)

where γ(r, x) = r2 arccos x
r − x

√
r2 − x2.

Proof. The measurement function (B.10) associated to the intrinsic volumes with
n = 3 and j = 1 can be written as

α(X ∩ L3
2[O]) = 2

∫
L3

2[O]

χ(X ∩ L3
2[O] ∩ (z + z⊥))dz2.

Therefore, using Proposition B.10, equation (B.45) is evident.
The latter representation (B.46) is obtained from the first one by direct calculation.

We consider the triangle whose vertices are O and the midpoints of the circles B(yi)

and B(yi+1). Let φ be the angle between the line segments [O, yi/2] and [yi+1/2, yi/2]
and φ′ the angle between [O, yi+1/2] and [yi+1/2, yi/2]. Furthermore, let r = ‖yi‖/2
and r′ = ‖yi+1‖/2 be the radii of the circles and m′ = 1

2‖yi − yi+1‖ be the lenght of
the line segment connecting the midpoints of the circles. Draw the line orthogonal
to the line connecting yi+1/2 and yi/2 and passing through O and let

x =
1
2

(
m′ +

r2 − (r′)2

m′
)

, x′ =
1
2

(
m′ − r2 − (r′)2

m′
)

.

Applying Pythagoras’ theorem, we find

V2(B(yi) \ B(yi+1)) = πr2 − (r2φ− x
√

r2 − x2)− ((r′)2φ′ − x′
√
(r′)2 − (x′)2).

Again using Pythagoras’ theorem, we can write φ = arccos x
r , φ′ = arccos x′

r′ ,

x =
‖yi‖2 − 〈yi, yi+1〉

2‖yi − yi+1‖
and x′ =

‖yi+1‖2 − 〈yi, yi+1〉
2‖yi − yi+1‖

and the result follows. �

When X in Corollary B.11 is a convex polytope in R3 with O ∈ intX, alternatives to
(B.46) can be found in [CO11, Proposition 3] and [CO12, Corollary 2].

B.5 Stereological applications

There are various applications in local stereology of the different representations
of the measurement function given in Section B.4. We mention some of them here,
with an emphasis on surface area estimation. We start by a review on existing
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methods and then present applications of the new rotational Crofton formulae given
in Section B.4.3.

Choosing m = j− 1 in (B.9) and mulitplying by two, a measurement function
for the surface area of the boundary of X ∈ Rn is obtained. Similarly, with m = j
we obtain a measurement function for the volume of X. We assume j = 1 in the
following, which gives the relations

S(∂X) = 2Vn−1(X) = (n− 1)cn
1

∫
Ln

2[O]

∫
L2

1

V0(X ∩ Ln
2[O] ∩ L2

1)d(O, L2
1)

n−2dL2
1dLn

2[O],

Vn(X) = cn−1
1

∫
Ln

2[O]

∫
L2

1

V1(X ∩ Ln
2[O] ∩ L2

1)d(O, L2
1)

n−2dL2
1dLn

2[O].

Identical relations can be obtained for a smooth manifold by choosing m = n− j and
j = 1 or j = 0, respectively, in (B.13). As mentioned at the beginning of Section B.4.4,
the above relations were first applied in stereology in [CO05] for bounded objects in
R3 with piecewise smooth boundary of class C1. As evident, an unbiased estimator
for the surface area of ∂X is obtained by taking an IR two-dimensional subspace and
then generating an IUR line (hitting a reference set) within this subspace, weighting
that line by a power of its distance from O and counting how often the weighted line
hits the section profile. In [CO05] for n = 3 a line obtained in this way is referred to
as an r-weighted line, where r is its distance from O. Similarly, by measuring the
length of the intersection of an r-weighted line and the section profile, an unbiased
estimator for the volume of X is obtained. An r-weighted line in a two-dimensional
plane in R3 can be generated by choosing a uniformly distributed point z in the
section plane intersected with the reference set and taking a line through that
point that is orthogonal to the line connecting z with O. Formally this follows by
introducing polar coordinates in the section plane. An application of these estimators
was illustrated in [CORHAP10], where they are denoted invariator estimators.

Already in [CO05] improved surface area estimators were suggested for three-
dimensional convex objects containing O. A first approach is to measure the support
function for a given angle in a given IR subspace instead of generating an r-weighted
line. If the support function can be measured in all directions in the subspace the
flower estimator is obtained

Ŝflo = 2
∫

S2∩L3
2[O]

h2
X∩L3

2[O]
(u)du1, (B.47)

which is (B.12) with n = 3, j = 1, up to a factor 2. This is the area of the 1-flower
set H1

X∩L3
2[O]

, called flower area in [CO11], up to a factor four. In [CO11], both the

flower estimator for convex bodies and the wedge estimator for volume based on
the invariator principle, were studied. In particular, simple formulae for calculating
the flower area when the object of interest is either an ellipsoid or a convex polygon,
were given. We already referred to the latter case in Section B.4.4. As anticipated in
[CO05] a good compromise between accuracy and effort might be not to measure
the whole flower area but apply angular systematic random sampling in the plane,
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measuring the support function for N angles for a discrete approximation of the
flower area. In [DJ13] it was shown that the flower estimator for three-dimensional
ellipsoids with O in the interior is identical to its discretization when the support
function is measured at four perpendicular directions. There, a semi-automatic
estimation of the flower estimator was proposed and studied, in analogy to the
approach in [HNAJ11] for the nucleator volume estimator.

Using the new rotational Crofton-type formulae derived in Section B.4.3, we
obtain analogues of these improved estimators in general dimension and without
assuming convexity of the object of interest. We state these in the following. We
assume that X ∈ Rn or that X is a compact, topologically regular set with ∂X an
(n − 1)-dimensional smooth manifold satisfying ∂X t Ln

2[O] in Rn for almost all
Ln

2[O] ∈ L
n
2[O]. According to Theorem B.7 and Proposition B.8 we can use Hadwiger’s

index to write the surface area of ∂X as

S(∂X) = cn
2,1

∫
Ln

2[O]

∫
Sn−1∩Ln

2[O]

M(X ∩ Ln
2[O], u)du1dLn

2[O], (B.48)

where M is given by (B.38) with j = 1. Then an unbiased estimator for the surface
area of ∂X is given by

Ŝ1 = cn
1 M(X ∩ Ln

2[O], U), (B.49)

where U is uniformly distributed in Sn−1 ∩ Ln
2[O] and Ln

2[O] ∈ L
n
2[O] is IR. When

X ∈ Kn the determination of M(X∩ Ln
2[O], U) is equivalent to measuring the support

function in the two opposite directions U and −U. The estimator can be improved
further by finding the critical points in all directions in the two-dimensional IR
subspace. The estimator

Ŝflo = cn
2,1

∫
Sn−1∩Ln

2[O]

M(X ∩ Ln
2[O], u)du1, (B.50)

where Ln
2[O] ∈ L

n
2[O] is IR, is an unbiased estimator for the surface area of X. For

X ∈ K3 containing O, this is equivalent to the flower estimator (B.47) for surface area.
A discretization of the generalized flower estimator gives the following unbiased
estimator

ŜN =
cn

1
N

N−1

∑
l=0

M(X ∩ Ln
2[O], uα0+l π

N
), (B.51)

where uα is the unit vector making an angle α with a fixed axis in the IR section
plane Ln

2[O] ∈ L
n
2[O], α0 is uniformly distributed in the interval [0, π/N) and N is the

number of sampled angles. Choosing N = 1 in (B.51) gives (B.49). We refer to these
estimators as the Morse type surface area estimators. As M(·, U) = M(·, U + π), the
Cauchy-Schwarz inequality implies

Var(Ŝ2N) ≤ Var(ŜN) ≤ Var(Ŝ1)

for all N ∈N. This was shown for X ∈ K3 in [DJ13, p. 145]. Furthermore from the
law of total variance Var(Ŝflo) ≤ Var(ŜN) for all N ∈ N. The drawback of Ŝflo is
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that it requires finding critical points in all directions in the section plane, which is
usually not feasible in practice (unless the object of interest is a simply connected
polytope as then Corollary B.11 can be used).

In a separate work [TRK13] we present an interactive software based on these
Morse type formulae and use it to estimate the average surface area of the nuclei of
giant-cell glioblastoma from microscopy images. Also the precision gain in terms of
variance reduction compared to earlier approaches is discussed in [TRK13].

The different representations of the measurement functions in Section B.4 all
stem from the invariator expressions in Section B.3 and are therefore equivalent,
for a given n, j, m and β(·). This shows in particular that estimators based on these
expressions, some of which were originally derived independently of each other,
coincide. We make this more precise for the intrinsic volumes in the following.

In [GACONnB10, Conjecture 4.1] it was asked if (B.5) with β(X) = Vn−j+m(X)

holds only if the measurement function is of the invariator form (B.9). Some light
was shed on this uniqueness conjecture in [CO12] by showing that the integrated
versions of the classical estimators of volume and surface area, the nucleator and the
surfactor, respectively, coincide with the invariator estimators. More specifically, it
was shown that the integrated nucleator [HNAJ11, Section 2.1.2] coincides with the
mean wedge volume estimator [CO12, Eq. (10)] and that for a strictly convex object
with O in its interior and C2 boundary, or a convex polygonal object containing O,
the flower estimator coincides with the integrated surfactor [CO12, Eq. (24)]; see
[Jen98, Section 5.6] for a derivation of the classical surfactor. The proofs rely on
the use of figures and differentials and are restricted to three-dimensional objects.
Section B.4 presents alternative proofs of these results in arbitrary dimension, as
(B.17) with A = Rn is the integrated nucleator and (B.21) essentially the integrated
surfactor. In particular, as (B.21) and (B.12) with j = 1 are both derived from (B.9)
with m = 0, j = 1, we have for X ∈ Kn with O ∈ intX∫

Sn−1∩Ln
2[O]

hn−1
X∩Ln

2[O]
(u)du1 =

∫
Sn−1∩Ln

2[O]

ρn−1
X∩Ln

2[O]
(u)

1
cos α

F
(
− 1

2
,−n− 2

2
;

1
2

; sin2 α
)

du1,

which is a generalization of [CO12, Propositions 2 and 3] to arbitrary dimension
and without assuming strict convexity of X. This relation even holds with arbi-
trary power of the support and radial functions. We formulate the result for two-
dimensional convex bodies.

Proposition B.12. Let Y ∈ K2 with O ∈ intY. Then for i ∈ {1, 2, . . . }∫
S1

hi
Y(u)du1 =

∫
S1

ρi
Y(u)

1
cos α

F(− 1
2 ,− i−1

2 ; 1
2 ; sin2 α)du1, (B.52)

where α is the angle between the (almost surely unique) outer unit normal of Y at ρ(u)u
and the line connecting this boundary point with O.

Proof. The derivation of (B.12) from (B.9) with m = 0 can be repeated with an
arbitrary power of the distance, leading to∫

S1
hi

Y(u)du1 = i
∫

S1

∫ ∞

0
χ(Y ∩ (ru + u⊥))ri−1drdu1.
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The rest of the proof follows the one of Proposition B.5 word by word, where only
the power n− j− 1 has to be replaced with i− 1. �

As for Proposition B.5, we obtain an expression analogous to (B.52) without assum-
ing O ∈ intY if Y is strictly convex and ∂Y is a C1-curve∫

S1
sgn(hY(u))|hY(u)|idu1 =

∫
{u∈S1 | ∃β∈R:βu∈Y}

ρi
Y(u)

1
cos α

F(− 1
2 ,− i−1

2 ; 1
2 ; sin2 α)du1.

When i = 1 in Proposition B.12 we find a formula for the boundary length of Y ∈ K2

2V1(Y) =
∫

S1
ρY(u)

1
cos α

du1,

which is essentially the Horvitz-Thompson estimator for length [Jen98, p. 122].
Stereological estimators of Minkowski tensors follow directly from the Minkowski

tensor relations (B.14) and (B.15) as shown in [JZ13, Proposition 1]. In [JZ13, Section
5] a detailed account of all the estimators obtained for n = 3 and r + s ≤ 2 is given.
These include the classical estimators of volume and surface area but also new local
stereological estimators of centres of gravity and tensors of rank two. As an example,
choosing n = 3 and r = j = 0 in (B.15) gives the nucleator estimator for volume
while for j = 1 it is the integrated nucleator. Similarly, letting n = 3, r = s = 0 and
j = m = 1 in (B.14) we obtain the flower estimator for surface area.
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Estimating the surface area of
non-convex particles from central
planar sections

Ó. Thórisdóttir1, A.H. Rafati2 and M. Kiderlen1

1 Department of Mathematics, Aarhus University
2 Stereology and EM Research Laboratory, Aarhus University

Abstract: In this paper, we present a new surface area estimator in local stereology. This
new estimator is called the ‘Morse type surface area estimator’ and is obtained using a
two-stage sampling procedure. First a plane section through a fixed reference point of a
three-dimensional structure is taken. In this section plane a modification of the area tangent
count method is used. The Morse type estimator generalizes Cruz-Orive’s pivotal estimator
for convex objects to non-convex objects. The advantages of the Morse type estimator over
existing local surface area estimators are illustrated in a simulation study. The Morse type
estimator is well suited for computer assisted confocal microscopy and we demonstrate its
practicability in a biological application: the surface area estimation of the nuclei of giant-cell
glioblastoma from microscopy images. We also present an interactive software that allows
the user to efficiently obtain the estimator.

Keywords: surface area; local stereology; area tangent count; invariator principle; Morse
type surface area estimator.

C.1 Introduction

In local stereology, statistical inference about geometric characteristics like volume
and surface area is made by taking random sections through a fixed reference point
of a spatial structure of interest. This branch of stereology is tailor-made for applica-
tions e.g. in biology, where a typical example is optical sectioning of a cell through
its nucleus; see the monograph [Jen98] on local stereology. The nucleator [Gun88]
is a well-established local stereological estimator for volume. Until recently, the

87



Paper C

surfactor was the only local stereological estimator available for estimating surface
area; see [JG87] and [Jen98, Section 5.6]. Unlike the nucleator, the surfactor has not
become a standard estimation tool. This might be due to the fact that the surfactor
requires measuring angles in a section of the object and angle measurements can be
rather cumbersome in practice.

In [CO05] a new surface area estimator, the invariator estimator, was derived. It
is an unbiased estimator for the surface area of the boundary of a spatial structure
that only requires counting in a two-dimensional isotropic random plane. The
estimator is obtained by combining the classical Crofton formula with the invariator
principle. The invariator principle states how a line in an isotropic random plane
must be chosen such that it is IUR in three-dimensions. The principle has been
applied widely and we refer to [TK13] for an overview of invariator related results.
An unbiased estimator for volume is also obtained by combining the invariator
principle with Crofton’s formula but the invariator estimator for volume does not
seem to enjoy any advantages over the nucleator. We therefore restrict attention to
surface area estimation.

When the spatial structure is convex, improved versions of the invariator estima-
tor have been suggested: the flower estimator and a discretization of it called the
pivotal estimator; see [CO05] and [CO11]. These estimators require more workload
than the invariator estimator but adding this extra effort results in considerable
variance reduction. Some clinical experts convey concern about the convexity as-
sumption and claim that not many objects in practice can be assumed to be convex
in shape. The new rotational Crofton formulae [TK13, Theorems 6 and 7] tackle this
problem. They present an unbiased estimator for surface area, which is better (with
respect to variance) than the invariator estimator but still works for non-convex
objects. The aforementioned convex estimators, the flower estimator and discretiza-
tions of it, are special cases of this new estimator. The new estimator can be obtained
using a modification of the area tangent count [DeH67] method on a section of the
structure. For a given section profile and a given direction in the section plane, a
sweeping line is used and all tangents to the section profile are recorded, together
with their type (if they represent a positive or a negative tangent) and their distance
from the origin. We call the distance of a tangent from the origin a critical value
and the type an index. The new estimator can be written entirely in terms of these
indices and critical values. The estimator was originally derived using classical
Morse theory and is therefore called the Morse type surface area estimator. It is well
suited for computer assisted confocal microscopy and the main goal of this paper is
to illustrate its feasibility using an expert-assisted procedure.

After introducing some notation in Section C.2 we give a detailed overview
of the sampling designs for the different surface area estimators discussed in this
paper. The motivation for deriving the new rotational Crofton formulae came from
studying the variance of the invariator estimator. The estimator is obtained by
choosing three random variables: an IR section plane and both of the polar coor-
dinates (a direction and a distance) of a uniformly distributed point in the section
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plane. In Section C.3.1 we show how the variance of the invariator estimator can be
decomposed according to these three different variables. These different variance
contributions are calculated numerically when the object of interest is an ellipsoid as
discussed in Section C.3.2. It turns out that the variance from choosing the distance
of the uniformly distributed point from the origin is by far the biggest variance
contributor. This variance contribution is not present in the new Morse type surface
area estimator which is what makes it much more efficient than the invariator esti-
mator. Instead of choosing a uniformly distributed point, only a uniform direction
in the plane is chosen and all tangents are found at this direction. A further variance
reduction is achieved by applying angular systematic sampling in the section plane,
that is, by not only finding tangents for one direction but for several, as discussed in
Section C.3.3.

In Section C.3.4 we give recommendations concerning the implementation of the
Morse type estimator and compare it with the so-called invariator grid estimator
[CO05, Section 3.1] in a simulation study. Finding tangents for four directions in the
section plane gives a very precise estimator but using only two directions also results
in a good estimator. The Morse type estimator should always be preferred to the
invariator grid estimator, at least when the expert-assisted approach, derived in this
paper, is used. The application of the Morse type surface area estimator is illustrated
in a study of giant-cell glioblastoma in Section C.4. We present an expert-assisted
procedure to obtain the estimator and use the procedure to estimate the surface
area of the nuclei of giant-cell glioblastoma from microscopy images. The results are
presented in Section C.4.4. We conclude the paper with a brief discussion.

C.2 Theoretical background

Before giving an overview of the different surface area estimators, we introduce
the notation and recall some important concepts. Throughout, Rn denotes the n-
dimensional Euclidean space, O its origin, ‖ · ‖ the Euclidean norm and 〈·, ·〉 the
Euclidean scalar product. We restrict consideration to three-dimensional space
although many of the results can be generalized to arbitrary dimension. We let
RB3 = {x ∈ R3 | ‖x‖ ≤ R} be the 3-dimensional ball of radius R, centered at O, and
S2 = {x ∈ R3 | ‖x‖ = 1} be the unit sphere. For z ∈ R2 we write z⊥ for the line
through O that is orthogonal to the axis joining z with O and Fz = z + z⊥ for the line
that is parallel to z⊥ and passes through the point z.

We use K for the family of all convex bodies (compact, convex sets with nonempty
interior) of R3. A non-degenerate ellipsoid is an example of a convex body. If the
axes of an ellipsoid E3 ⊆ R3 are parallel to the usual coordinate axes it is of the form

E3 =
{

x ∈ R3
∣∣∣ 3

∑
i=1

( xi − zi

ai

)2
≤ 1

}
, (C.1)

where a1, a2, a3 > 0 are the lengths of the semiaxes and z = (z1, z2, z3) ∈ R3 is its
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center. For X ∈ K its support function, hX, is given by

hX(u) = max
x∈X
〈u, x〉 , u ∈ S2.

The value hX(u) is the signed distance from O to the supporting hyperplane to X
with outer unit normal vector u.

We let L2 be the family of all two-dimensional linear (passing through O) planes.
A random plane L2 ∈ L2 is called isotropic random (IR) if its distribution is rotation
invariant on L2. We introduce the surface area estimators for a fixed spatial structure
X ⊆ R3. The spatial structure can either be a polyconvex set (composed of a finite
union of convex bodies) or a compact set with smooth boundary. If X is a compact
set with smooth boundary we have to add the technical requirement that X ∩ L2 has
again a smooth boundary, for almost all L2 ∈ L2. This assumption is discussed in
[TK13] and typically imposes no restrictions in practice. In Section C.4 we extend
the setting to a random particle X. We write ∂X for the boundary of X, S(∂X)

for the surface area of its boundary, V(X) for its volume and χ(X) for its Euler
characteristic. If X ⊆ R1 is compact, χ(X) is the number of connected components
of X. An overview of the notation of the different surface area estimators that will
be discussed, their name and where they originate from can be found in Table C.1.
All these estimators are unbiased and are based on measurements of X in central

Notation Name Reference

Ŝinv invariator estimator [CO05]
Ŝgrid invariator grid estimator [CO05]
Ŝ+

N pivotal estimator [CO05]
Ŝflo generalized flower estimator [TK13]
ŜN Morse type estimator [TK13]

Table C.1: An overview of the surface area estimators relevant for the present paper.

two-dimensional sections. In a typical application X could be a biological cell with
a reference point (for instance a nucleus or nucleolus) which we identify with the
origin. The data necessary for the estimators is obtained from an isotropic two-
dimensional section through X.

C.2.1 The invariator estimator for surface area

Combining the classical Crofton formula and the invariator principle, the surface
area of ∂X can be written as

S(∂X) = E
[
4
∫

L2

χ(X ∩ L2 ∩ Fz)dz2
]

(C.2)

where the expectation is with respect to the IR distribution of the section plane
L2 ∈ L2; see [CO05, first eq. (2.10)]. Recall that Fz is the line in the section plane
passing through z and orthogonal to the axis connecting z with O. Introducing polar
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coordinates in the section plane, we have

S(∂X) = E
[
4
∫

S2∩L2

∫ ∞

0
χ(X ∩ L2 ∩ Fru)rdrdu

]
. (C.3)

The line Fru, where r is its distance from O, is referred to as an r-weighted line in
[CO05].

We assume now that X is contained in a known reference set, which we take to
be a ball RB3 of radius R > 0. The invariator estimator for surface area [CO05, first
eq. (2.12)] can be expressed as

Ŝinv = 4πR2χ(X ∩ L2 ∩ FZ), (C.4)

where L2 ∈ L2 is an IR plane and Z ∼ unf(RB3 ∩ L2) is a uniformly distributed
point on the disk RB3 ∩ L2. From (C.2) it follows that Ŝinv is an unbiased estimator
for S(∂X). It can be obtained using the following sampling procedure:

1. Choose R > 0 such that X ⊆ RB3.

2. Choose an IR L2 (for instance by parametrizing S2 and choosing an isotropic
unit vector V ∈ S2, being a unit normal of L2).

3. Choose a uniformly distributed point Z on the disk RB3 ∩ L2.

4. Determine the estimator by counting the number of connected components of
X ∩ L2 ∩ FZ.

It is important to notice that the estimator is unbiased for any given reference set
containing the object.

C.2.1.1 Invariator grid estimator

To reduce the variance of the invariator estimator, it was suggested in [CO05, Section
3.1] to use systematic random sampling in the IR section plane as described in
the following. Apply the first two steps in the sampling procedure described in
Section C.2.1. For a given IR section plane L2 a twice periodic point grid of grid
distance d > 0, with O chosen uniformly at random in a square of area d2, is thrown
onto the section plane, see [CORHAP10, Fig.1] for illustration. For any grid point z
in the reference space RB3 consider the test line Fz. Then

Ŝgrid = 4d2 ∑
z

χ(X ∩ L2 ∩ Fz), (C.5)

where the sum is over all grid points z in the reference space, is an unbiased estimator
for S(∂X). The application of this estimator was illustrated in [CORHAP10] on a
group of rat brains.
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C.2.2 Morse type surface area estimator

In this paper we promote another improvement of the invariator estimator, which
also reduces variance. It uses the fact that the Euler characteristic in (C.3) only
changes value (for u ∈ S2 ∩ L2 fixed and r ∈ [0, ∞) varying), if the line Fru is tangent
to the section profile X ∩ L2. We call the distance r of a tangent line from O a critical
value. The innermost integral in (C.3) can be calculated explicitly in terms of the
critical values of the section profile. This presents surface area estimators that can
be written entirely in terms of critical values in a section plane. These estimators
were derived in [TK13] in arbitary dimension using Morse theory. Morse theory
studies the topology of manifolds in terms of functions defined on the manifolds;
see the famous monograph [Mil63]. In our setting, the manifold is the boundary
of the object of interest. Here we will not discuss Morse theory but rather give
an intuitive explanation of critical values based on a procedure that is known in
stereology under the name of area tangent count [DeH67]. We refer to [TK13] for a
more mathematically rigorous derivation of the estimators.

C.2.2.1 A modification of the area tangent count method

For an IR section plane L2 ∈ L2 let Y = X ∩ L2 be the section profile and u ∈ S2 ∩ L2

a given direction in the section plane. The idea of the area tangent count method is
to sweep the line u⊥ through the section profile and find all translates of the line that
are tangent to Y. We distinguish between positive tangents (+) and negative tangents (-).
When the sweeping line passes a tangent there is either an increase or a decrease in
the number of connected components (of the sweeping line section with the profile).
If the tangent represents an increase in the number of connected components we say
that it is a positive tangent and a negative tangent if it represents a decrease in the
number of connected components.

In the classical use of the area tangent count method, e.g. when estimating
the integral mean curvature in a structure [DeH67], only the number of tangents
and their type are registered. As we are interested in calculating the weighted
integral in (C.3), we also record the distance of each tangent from O. If the line
ru + u⊥ is tangent to Y we call the distance r = r(u) a critical value of Y. Moreover
we let ιu(r) ∈ {−1, 1} be the type of the tangent, which we also call its index. A
positive tangent (a tangent with index 1) can occur in two ways: either the sweeping
line enters a new connected component of Y, like for the lowest critical value r1

of Figure C.1, or a connected component splits up, like for the critical value r2 in
Figure C.1. A negative tangent (a tangent with index−1) indicates that the sweeping
line leaves a part of Y, like for the remaining two critical levels in Figure C.1, or that
two components of Y intersected with the line melt together (not represented in
Figure C.1).

The above interpretation of critical values also leads to an intuitive protocol for
finding them. Given a direction u in the section plane, find all tangents to the section
profile Y that are parallel to u⊥. For each of these tangents with critical value r0, say,
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Figure C.1: Critical levels and indices for a given direction u in a section profile. Positive
tangents are colored red while negative tangents are colored blue.

determine its index by checking if the number of connected components χ(Y ∩ Fru)

is increasing or decreasing when sweeping over value r0.
A positive tangent is sometimes referred to as a ‘convex’ tangent and a negative

one as a ‘concave’ tangent, see e.g. [Bad84]. In [Bad84] it is remarked that tangent
counting is derived for ideal smooth objects and that it can therefore be unstable
when it is applied to blurred images. This is not a severe practical limitation in our
setting as we do not only use the number of tangents for a given section profile in a
given direction, but rather their distances from O, the critical values.

C.2.2.2 Surface area in terms of critical values

If m = m(u) is the number of critical values of a section profile Y in direction u,
enumerated such that r1 < r2 < · · · < rm, the Euler characteristic in (C.3) can be
written as

χ(Y ∩ Fru) = ∑
i:ri≤r

ιu(ri) (C.6)

for almost all r; see [TK13, Section 4.3]. This says that the number of connected
components can be given entirely in terms of the tangents. For instance, for the
example in Figure C.1, we have

χ(Y ∩ F2u) = 1 + 1 = 2, χ(Y ∩ F4u) = 1 + 1− 1 = 1.

Inserting the expression for the Euler characteristic into (C.3), the innermost integral
can be calculated explicitly, and we obtain

S(∂X) = E
[ ∫

S2∩L2

M(X ∩ L2, u)du
]

(C.7)
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where

M(Y, u) =
m

∑
k=2

(rk|rk| − rk−1|rk−1|)
k−1

∑
i=1

ιu(ri) (C.8)

depends on all the critical values r1 < r2 < · · · < rm of Y = X ∩ L2 in direction
u ∈ S2 ∩ L2. The function M may look complicated but it is only a linear combination
of the squared critical values. For the example in Figure C.1,

M(Y, u) = (r2
2 + r2

1) + (r2
3 − r2

2)2 + (r2
4 − r2

3) = r2
1 − r2

2 + r2
3 + r2

4.

It follows from (C.7) that the estimator

Ŝ1 = 2πM(X ∩ L2, U), (C.9)

where L2 ∈ L2 is IR and U ∼ unf(S2 ∩ L2), is an unbiased estimator for the surface
area of ∂X. The estimator can be obtained using the following sampling procedure:

1. Choose an IR L2.

2. Choose a uniformly distributed direction U ∼ unf(S2 ∩ L2) in the section
plane.

3. For a given direction U = u find all tangents of the section profile and record
their critical values and indices.

4. Calculate the linear combination given by (C.8).

When X ∈ K, there are only two critical values for every given direction and using
the definition of the support function, the function M simplifies

M(Y, u) = hY(u)|hY(u)|+ hY(−u)|hY(−u)|. (C.10)

If furthermore O ∈ X, the support function is non-negative and

M(Y, u) = h2
Y(u) + h2

Y(−u), (C.11)

so then the estimator given by (C.9) becomes

Ŝ1 = 2π(h2
X∩L2

(U) + h2
X∩L2

(−U)).

C.2.2.3 Generalized flower estimator

If it is possible to find tangents for all directions in the section plane, the unbiased
estimator for surface area

Ŝflo =
∫

S2∩L2

M(X ∩ L2, u)du, (C.12)

where L2 ∈ L2 is IR, can be obtained. In other words

Ŝflo = E[Ŝinv|L2]. (C.13)
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When X ∈ K and O ∈ X, equation (C.12) can be written as

Ŝflo = 2
∫

S2∩L2

h2
X∩L2

(u)du, (C.14)

where the reflection invariance of the Hausdorff measure has been used. This is the
flower estimator given in [CO05].

The flower estimator can also be written as four times the area of a so-called
flower set [CO05, (2.19)], which is the set whose radial function is the support
function of Y = X ∩ L2 [TK13, p. 3]. When Y is a planar polygon, the flower set
is a union of finitely many disks and resembles slightly a flower [CO11, Fig.5],
which explains the terminology. The estimator Ŝflo in (C.12) can be referred to as the
generalized flower estimator. There exists a simple computational formula for the
generalized flower estimator when X is a simply connected polytope with interior
points. The formula can be found in [TK13, Corollary 10] and only requires a list of
the vertices of the polygon Y = X ∩ L2, where L2 ∈ L2 is IR. When X is a convex
polytope containing O, alternative formulae can be found in [CO11, Proposition 3]
and [CO12, Corollary 2].

C.2.2.4 Morse type surface area estimator

When X is not a polytope, a good compromise between accuracy and effort might
be cyclic systematic sampling of finitely many unit vectors in S2 ∩ L2 for a discrete
approximation of the integral in (C.12). Let N ∈N be the number of directions to
be sampled. Then the following unbiased estimator is obtained

ŜN =
2π

N

N−1

∑
l=0

M(X ∩ L2, uα0+l π
N
), (C.15)

where L2 ∈ L2 is IR, α0 ∼ unf[0, π/N) and uα is the unit vector in L2 making an
angle α with a fixed axis in the section plane. This estimator is referred to as the
Morse type surface area estimator as, like already mentioned, it was originally derived
using the theory of Morse. When N = 1, the estimator (C.9) is obtained. For convex
X

ŜN =
2π

N

N−1

∑
l=0

(h2
X∩L2

(uα0+l π
N
) + h2

X∩L2
(−uα0+l π

N
)). (C.16)

For N = 2, equation (C.16) can be found in [CO05, Eq. (3.2)]. In [DJ13] it was shown
that Ŝflo and Ŝ2 are identical when X is a three-dimensional ellipsoid with O in its
interior. To avoid confusion we remark that the number of sampled directions N in
(C.16) equals half the number of sampled rays in [DJ13, Eq. (8)]. More specifically, if
rays are used and O is contained in the interior of X, the estimator

Ŝ+
N =

4π

N

N−1

∑
l=0

h2
X∩L2

(uα0+l 2π
N
), (C.17)

where now α0 ∼ unf[0, 2π/N), is an unbiased estimator for the surface area of the
boundary of X. This estimator is referred to as the pivotal estimator in [CO08] and
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[DJ13, Eq. (8)]. We note that ŜN = Ŝ+
2N . In practice it is more natural to sweep a line

at a given direction through the whole section profile and not stop when the line hits
O. Therefore we introduced the Morse type estimator (C.15) using the M function
given by (C.8) instead of using 2M+ given by

M+(Y, u) = ∑
k:rk>0

(r2
k −max(0, rk−1)

2)
k−1

∑
i=1

ιu(ri), (C.18)

where M+(Y, u) = 0 if rk < 0 for all k.

C.3 Variance

The variance of the surface area estimators in Table C.1 has only been studied to
a very limited extent and the purpose of this section is to analyse the variance in
greater detail. The main result is a decomposition of the variance of the invariator
estimator Ŝinv. As these different variance contributions cannot be evaluated easily
for general sets, we discuss the different variance contributions for ellipsoids. The
decomposition can be used to express the variances of the Morse type- and the
generalized flower estimator. A recommendation concerning the choice of N when
applying ŜN is given and it is compared to the invariator grid estimator Ŝgrid in a
simulation study.

C.3.1 Variance decomposition

To evaluate the quality of the invariator estimator Ŝinv, we studied the different
sources of variation separately. The variance of the estimator can be decomposed
into three different contributions according to the integration variables in (C.3):

Vdist = E Var(Ŝinv|L2, u), (C.19)

which is the variance contribution from choosing the distance of the line Fz from O,

Vorient = E Var(E[Ŝinv|L2, u]|L2), (C.20)

which is the variance contribution from choosing the orientation of the line Fz and

Vplane = Var E[Ŝinv|L2], (C.21)

which is the variance contribution from choosing the IR section plane L2. This is
made more explicit in the following proposition.

Proposition C.1. The variance of Ŝinv in (C.4) can be decomposed into three parts

Var(Ŝinv) = Vdist + Vorient + Vplane, (C.22)
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where

Vdist = 16π2E
[

M+(X ∩ L2, u)(R2 ∑
k:rk>0

k−1

∑
i=1

ιu(ri)−M+(X ∩ L2, u))
]
, (C.23)

Vorient = 16π2E Var(M+(X ∩ L2, u)|L2), (C.24)

Vplane = 4π2 Var E[M(X ∩ L2, u)|L2]. (C.25)

Here the function M is given by (C.8) and M+ by (C.18).

Proof. The variance of Ŝinv is finite and hence, by the law of total variance

Var(Ŝinv) = E Var(Ŝinv|L2) + Var E[Ŝinv|L2].

Let L2 ∈ L2 be a given IR section plane and (r, u) be the polar coordinates of a
uniformly distributed point in RB3 ∩ L2, with r ∈ [0, ∞) and u ∈ S2 ∩ L2. Using the
conditional version of the law of total variance [BS12], we get

Var(Ŝinv|L2) = E[Var(Ŝinv|L2, u)|L2] + Var(E[Ŝinv|L2, u]|L2).

The variance of Ŝinv can therefore be decomposed into the three contributions given
in (C.19)–(C.21). In the following we calculate these different contributions. Inserting
the estimator Ŝinv into (C.21), introducing polar coordinates in the section plane and
then using the expression (C.6) for the Euler characteristic we find

Vplane = Var
(

4πR2 1
πR2

∫
L2∩RB3

χ(X ∩ L2 ∩ Fz)dz2
)

= 16π2 Var
(

R2 1
2π

∫
S2∩L2

1
R2

∫ ∞

−∞
χ(X ∩ L2 ∩ Fru)|r|drdu

)
= 16π2 Var

( 1
2π

∫
S2∩L2

m

∑
k=2

k−1

∑
i=1

ιu(ri)
∫ rk

rk−1

|r|drdu
)

.

Integrating the inner integral explicitly and using the notation (C.8), we find

Vplane = 4π2 Var E[M(X ∩ L2, u)|L2].

By applying similar arguments and the notation (C.18), we obtain

Vorient = 16π2E Var
(

2
∫ ∞

0
χ(X ∩ L2 ∩ Fru)rdr | L2

)
= 16π2E Var(M+(X ∩ L2, u)|L2).

Furthermore, using that

Vdist = E[Ŝ2
inv]−E[E[Ŝinv|L2, u]2]

we get from (C.6) and (C.18) that

Vdist = 16π2E
[

R2M+(X ∩ L2, u) ∑
k:rk>0

k−1

∑
i=1

ιu(ri)
]
− 16π2E[(M+(X ∩ L2, u))2],

which simplifies to (C.23). �
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Proposition C.1 implies in particular, that only the variance contribution (C.23) de-
pends on the size R of the reference set, and it is increasing with R. More importantly,
(C.13) and (C.21) show that

Vplane = Var(Ŝflo)

is the variance of the generalized flower estimator. Moreover, as all the surface area
estimators Ŝ in Table C.1 satisfy E[Ŝ|L2] = Ŝflo a variance decomposition similar to
(C.22) for Var(Ŝ) implies that Ŝflo has the lowest possible variance among them all.
This is discussed further in Section C.3.3.

C.3.1.1 Variance decomposition for convex bodies

In view of (C.10) the different variance contributions in Proposition C.1 simplify
when the particle X is convex. Using (C.11) and the rotation invariance of the
Hausdorff measure, the expressions are particularly simple when the reference point
is contained in X.

Remark C.2. When X ∈ K and O ∈ X the variance contributions (C.23)–(C.25) simplify
to

Vdist = 16π2E[h2
X∩L2

(u)(R2 − h2
X∩L2

(u))],

Vorient = 16π2E Var(h2
X∩L2

(u)|L2),

Vplane = 16π2 Var E[h2
X∩L2

(u)|L2].

When X is a three-dimensional ellipsoid, the section profile Y = X ∩ L2 is an ellipse
that can be expressed with respect to an orthonormal basis of the section plane L2

[Thó10, Proposition 10]. Hence, the support function of Y can be obtained and using
elementary but tedious calculations the different variance contributions in Proposi-
tion C.1 can be made more explicit. As the expressions are quite involved they are
deferred to Proposition C.4 in the appendix. For illustration we give explicit analytic
expressions for the different variance contributions when X in Proposition C.1 is a
three-dimensional ball of radius r. We assume without loss of generality that the
ball is centered at O′ = (0, 0, z), z ≥ 0, and assume that the ball contains O.

Proposition C.3. Let X = O′ + rB3, with r > 0, O′ = (0, 0, z), z ∈ [0, r], and assume
that X ⊆ RB3. Then the different variance contributions (C.23)–(C.25) in Proposition C.1
can be expressed as

Vdist = 16π2r2
(

R2 − r2 − 4
3

z2
)

,

Vorient = 16π2z2
(4

3
r2 − 1

5
z2
)

,

Vplane =
16π2z4

5
.

The proof uses Pythagoras’ theorem and elementary but tedious calculations and
can be found in [Thó10, p. 36–38]. Adding up the different variance contributions
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in Proposition C.3, we obtain the total variance of the estimator when X is a ball of
radius r

Var(Ŝinv) = 16π2r2(R2 − r2); (C.26)

see also [CO08].

C.3.2 Numerical results for ellipsoids

As mentioned earlier, Proposition C.4 in the appendix gives more explicit expres-
sions for the different variance contributions of the estimator Ŝinv when X is a
three-dimensional ellipsoid. It is quite involved, if at all possible, to derive explicit
analytic formulas for these expressions. We therefore turned to numerical methods
in the language and interactive environment Matlab for calculating the different
contributions (C.31)–(C.33). At the home page home.imf.au.dk/olofth programs
for calculating the variance contributions in Matlab can be found. In the following
we briefly describe the most important modules of this implementation.

We assume without loss of generality that the ellipsoid is of the form (C.1). In
calculations.m the user reports the center (z1, z2, z3) of the ellipsoid under study,
the lengths, a1, a2 and a3, of the ellipsoidal axes, and the radius R of the reference
ball. The output are numerical estimates of the respective variance contributions
Vdist (the variance from choosing the distance of the line Fz from O), Vorient (the
variance due to the choice of the orientation of the line), Vplane (the variance due
to choosing the IR section plane L2), the total variance obtained by adding up
the different contributions Total variance = Vdist + Vorient + Vplane, and the total
variance obtained from implementing the theoretical expression (C.35). We used
the theoretical expression for the total variance (C.35) involving elliptic integrals
to compare with the total variance obtained by adding up the different variance
contributions. The comparison study included numerous different values of the
parameters and implied that the algorithm is very stable and precise.

The function dblquad in Matlab was used to calculate numerically the double
integrals in (C.31)–(C.33) and the program elliptic12.m, written by Moiseev Igor1,
was used to calculate the incomplete elliptic integrals of first and second kind to
obtain (C.35). In Figure C.2 the contribution Vdist (dashed curve), Vorient (dashed-
dotted curve), Vplane (dotted curve) and the total variance T = Vdist + Vorient + Vplane

(solid curve) can be seen for ellipsoids embedded in a ball of radius 10.5 and given
by {

x ∈ R3
∣∣∣ (x1 − 0.4)2

52 +
(x2 − 0.2)2

42 +
(x3 − 0.2)2

a2
3

≤ 1
}

, (C.27)

where a3 varies from 0.2 to 10.
Further discussion on the different variance contributions for ellipsoids can be

found in [Thó10, Section 3.5], where the shapes of the different curves, comparison
between them and the role of the size of the reference space are discussed. The

1It was downloaded from: http://www.mathworks.com/matlabcentral/fileexchange/
8805-elliptic-integrals-and-functions.
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Figure C.2: The different variance contributions for ellipsoids centered at (0.4, 0.2, 0.2), with
axes of lengths a1 = 5, a2 = 4 and a3 varying from 0.2 to 10.

general conclusion is that the variance contribution Vdist (the variance contribution
from choosing the distance of the closest point on the line Fz from O), is very large
relative to both Vorient and Vplane. Hence, to improve the estimator it is most efficient
to concentrate on reducing Vdist.

C.3.3 Variance of the Morse type surface area estimator

The study of three-dimensional ellipsoids suggests strongly that the variance of
Ŝinv primarily comes from choosing the distance of the line Fz in (C.4) from O. We
believe this to hold for more general sets, too. As this variance contribution is not
present in the Morse type estimator ŜN , it is highly recommended to add the extra
effort needed to find tangents, as a dramatic variance reduction is obtained.

As an example of the variance reduction obtained, the standard error is reduced
by a factor of 2.9 for the ellipsoid given by (C.27), with a3 = 10 and R = 10.5, when
the pivotal estimator Ŝ+

1 is used instead of the invariator estimator Ŝinv. When X is
a ball of radius r > 0, centered at (0, 0, z), we obtain from Proposition C.3 that the
coefficient of variation of Ŝ+

1 is

CV(Ŝ+
1 ) =

√
Var(Ŝ1)

EŜ1
=

2z√
3r

. (C.28)

This has been reported earlier when X is a unit ball [CO08, Eq. (6)]. In [CO08] this
coefficient of variation was compared to the one obtained for the surfactor estimator
[JG87]. For the unit ball, Ŝ+

1 had smaller coefficient of variation than the surfactor.
As already mentioned after Proposition C.1, the law of total variance immediately

gives Var(Ŝflo) ≤ Var(ŜN) for all N ∈ N but as Ŝflo requires finding tangents in
all directions in the section plane it is usually not feasible in practice (unless the
section profile is a polygon or if its boundary can be approximated by a polygon
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using automated segmentation as briefly discussed in Section C.5.2). We therefore
restrict attention to ŜN in what follows.

Let Y = X ∩ L2, L2 ∈ L2, be the section profile. Applying systematic sampling
in the section plane typically reduces the variance. More specifically, using that
M(Y, U) = M(Y, U + π), U ∼ unf(S2 ∩ L2), and Cauchy-Schwarz inequality, we
obtain

Var(Ŝ2N) ≤ Var(ŜN) ≤ Var(Ŝ1) (C.29)

for all N ∈ N. This was shown for X ∈ K in [DJ13, Section 2.2]. We only mention
here that using [GACO00, Eq. (2.4)], the variance of the Morse type estimator ŜN

can be expressed as

Var(ŜN) = Vplane + E
[2π

N

N−1

∑
l=0

g(ul π
N
)−

∫
S2∩L2

g(ω)dω | L2

]
,

where the function g is the circular covariogram of M on the section profile

g(ω) =
∫

S2∩L2

M(Y, u)M(Y, u + ω)du, ω ∈ S2 ∩ L2.

C.3.4 Efficiency of the Morse type surface area estimator

We now discuss how the number N of directions in L2 should be chosen so that
the variance of ŜN becomes small while still keeping a reasonable workload of the
sampling procedure in L2. As the variance contribution Vplane is common for all
surface area estimators considered here, we ignore this contribution in the following
discussion and consider the variance of ŜN given L2. Clearly, the function f (N) =

Var(ŜN |L2) depends crucially on the shape of the underlying object. We therefore
carried out a simulation study with a variety of different shapes shown in Figure C.3.
The simulations were done using R.

Shape 1 Shape 2 Shape 3 Shape 4 Shape 5

Shape 6 Shape 7 Shape 8 Shape 9 Shape 10

Figure C.3: Polygons and half-circles.
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In the next section, we determine the empirical CV’s of ŜN , N ∈ {1, 2, 3, 4, 5},
from independent Monte Carlo replications and derive an empirical recommenda-
tion for the choice of N. In Section C.3.4.2 we compare empirically the precision and
workload required for the new estimator ŜN and the well-known estimator Ŝgrid.

C.3.4.1 Choice of N

Although the variance of ŜN for a given section profile does not increase when
the number of orientations sampled is doubled, as shown in (C.29), it is not a non-
increasing function of N. Table C.2 presents estimates of the CV’s for the shapes in

CV N = 1 N = 2 N = 3 N = 4 N = 5

Shape 1 0.6388 0.0242 0.0151 0.0085 0.0055
Shape 2 0.3410 0.0848 0.0146 0.0141 0.0123
Shape 3 0.2652 0.1048 0.0249 0.0087 0.0120
Shape 4 0.2587 0.1487 0.0246 0.0149 0.0090
Shape 5 0.1376 0.0188 0.0239 0.0084 0.0049
Shape 6 0.1970 0.0228 0.0065 0.0080 0.0029
Shape 7 0.2217 0.0747 0.0456 0.0167 0.0072
Shape 8 0.3025 0.0422 0.0331 0.0204 0.0082
Shape 9 0.2783 0.0129 0.0037 0.0023 0.0013
Shape 10 0.2542 0.0908 0.0255 0.0162 0.0091

Table C.2: CV for the shapes in Figure C.3.

Figure C.3, which are all contained in a reference disk of radius one, centered at O. To
recommend a value of N, we suggest that a CV of not more than 2.5% is acceptable.
Hence, the smallest N for a given shape where the empirical CV is 2.5% or less,
is our recommendation for the choice of N. We only need to find tangents in two
directions for shapes 1, 5, 6 and 9, in three directions for shapes 2, 3 and 4 and in four
directions for shapes 7, 8 and 10. For all simulated ellipses, two orientations give a
CV of less than 2.5%. This is even true for ellipses not containing the reference point
O. This is not surprising as it follows from [DJ13] that Ŝ2 and Ŝflo are identical when
Y is an ellipse with O in its interior, as already mentioned at the end of Section C.2.2
for three-dimensional ellipsoids. When the reference point is moved away from the
center of an ellipse, the CV increases. This is evident for a disk from (C.28). The
elongation of the ellipse does not seem to influence the CV when N > 1. For N = 1,
the CV increases slightly for increased elongation of the ellipse.

A number of simulations were carried out and they suggest strongly that taking
N = 4 is sufficient for obtaining a CV of less than 2.5% for a large class of shapes.
Although the CV can increase as N increases, as is the case for Shape 5 with N = 2
and N = 3, it is our experience that this increase is rare, and, when it occurs, it is not
substantial. Therefore taking N = 4 instead of N = 3 should typically not decrease
the precision of the estimator. When the object of interest resembles an ellipse, we
recommend using N = 2. We note that these recommendations are only based on
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the variance of the sampling procedure. When there are other sources of variation
that are much larger than the variance due to the sampling procedure, N = 2 is
typically adequate, see Section C.4.4.

C.3.4.2 Comparison of ŜN and Ŝgrid

We still consider a given section profile Y = X∩ L2 and fix L2 ∈ L2. An alternative to
the Morse type estimator ŜN is the invariator grid estimator Ŝgrid given by (C.5). We
compare the efficiency of these two estimators by finding the amount of workload
needed to estimate E[Ŝflo|L2] at a given precision. Define the complexity numbers

CŜN
= total number of tangents for the N directions,

CŜgrid
= 2 ∑

z
χ(Y ∩ Fz) + ∑

z
1{(Y∩Fz)=∅} .

Hence, CŜgrid
is the total number of points in the intersection of the boundary of the

section profile with the test lines plus the number of test lines that do not hit the
section profile. Both complexity numbers are motivated by the number of mouse
clicks in an interactive microscopy software to determine the estimator; see also
Section C.4.3. The workload in obtaining these numbers is typically not equivalent,
as determining a critical point is most likely more difficult than to determine if a line
hits the boundary of the object or not. But given the ratio Q = CŜgrid

/CŜN
, a clinical

expert can decide if it is more feasible to use ŜN or Ŝgrid. The simulation study shows
strong evidence for that ŜN should be preferred to Ŝgrid, at least when N > 1.

For a given polygon we generated 1000 independent replications of ŜN for a
given N and of Ŝgrid for a given grid distance d. From these observations we calcu-
lated an empirical estimate for the variance of ŜN , Ŝgrid, respectively, and recorded
the complexity constants CŜN

. We then used a normal kernel with smoothness pa-
rameter s to smooth V̂ar(Ŝgrid) as a function of the grid distance d. We denote the
smoothed estimate of the variance by V̂ars(Ŝgrid). For a given N we found d such
that Ŝgrid has essentially the same precision as ŜN , that is, such that

|V̂ars(Ŝgrid)− V̂ar(ŜN)| ≤ 10−6.

Given this d we then again generated 1000 independent replications of Ŝgrid and
calculated CŜgrid

. For a given N and the corresponding d we obtained an unbiased
estimate of the ratio Q

Q̂ =
1

1000

1000

∑
i=1

CŜgrid

CŜN

.

In Table C.3 results for the shapes in Figure C.3 can be seen, where the smoothness
parameter s = 0.1 has been used. When N > 2, d is close to zero and Q̂ very large
(much greater than 100) for all the shapes in Figure C.3. This means that Ŝgrid only
attains the efficiency of ŜN when unrealistically many test lines are used, making
the complexity number of Ŝgrid large compared to the one of ŜN . For ellipses we find
that Q̂ > 2 when N = 1 and that it is very large when N = 2. The ratio Q typically
decreases with increased elongation of an ellipse.
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Var d Q̂

Shape 1
N = 1 3.52 0.81 2.9
N = 2 4.8 · 10−3 ' 0 �100

Shape 2
N = 1 6.7 · 10−2 0.64 4.9
N = 2 7.2 · 10−3 0.21 22.6

Shape 3
N = 1 2.56 · 10−1 0.65 3.7
N = 2 3.84 · 10−2 0.32 7.9

Shape 4
N = 1 2.08 · 10−1 0.68 4.9
N = 2 7.2 · 10−2 0.46 5.3

Shape 5
N = 1 1.23 0.48 5.0
N = 2 2.08 · 10−2 ' 0 �100

Shape 6
N = 1 1.47 0.51 3.2
N = 2 1.6 · 10−2 ' 0 �100

Shape 7
N = 1 5.92 · 10−1 0.36 8.6
N = 2 6.72 · 10−2 0.10 52.1

Shape 8
N = 1 1.33 0.58 4.4
N = 2 1.34 · 10−2 0.04 �100

Shape 9
N = 1 4.06 · 10−1 0.43 10.0
N = 2 8.30 · 10−4 ' 0 �100

Shape 10
N = 1 4.19 · 10−1 0.40 12.0
N = 2 5.41 · 10−2 0.16 35.0

Table C.3: Comparison for the shapes in Figure C.3.

The simulations imply that Q is always greater than 2. Hence, ŜN should at least
be preferred to Ŝgrid if the workload needed to identify a tangent, as well as its type
and critical value, is not more than twice of that needed to determine if a line hits
the boundary of an object or not. It should be noted that this factor 2 is a worst-case
scenario. The ratio Q can be much larger than two even when N = 1, as can be seen
in Table C.3. When the software, described in Section C.4.3, is used, the estimator ŜN

can be obtained very efficiently and should therefore always be preferred to Ŝgrid.

C.3.4.3 Convex hull

Rather surprisingly it is not necessarily better (with respect to variance) to find ŜN

for the convex hull of an object than for the true object. We show this by an example.
The object in Figure C.4 to the left is a disk of radius r, where one fourth has been
cut off, and the one to the right is its convex hull. In Table C.4 estimates for the CV’s
based on 1000 independent replications of ŜN for N ∈ {1, 2, 3} and each of the two
objects can be seen.

We note that the CV’s for the convex hull, the object to the right in Figure C.4,
are considerably larger than those for the object to the left. This can be explained by
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Figure C.4: A disk of radius r, where one fourth has been cut off, and its convex hull.

CV N = 1 N = 2 N = 3

Fig. C.4 left 0.001140 0.000165 0.000357
Fig. C.4 right 0.075878 0.040691 0.020190

Table C.4: CV for the objects in Figure C.4

considering the integrand in the generalized flower estimator, the function M. The
true value E[Ŝflo|L2] can be written as

E[Ŝflo|L2] = 2
∫ 2π

0
f (α)dα.

where for the object to the left the function f is a constant, f (α) = r2 for all α ∈
[0, 2π), while for the convex hull

f (α) =


r2, α ∈ [0, 3π/2)

r2 sin2 α, α ∈ [ 3π
2 , 7π

4 )

r2 cos2 α, α ∈ [ 7π
4 , 2π).

This explains the greater variance of ŜN for the convex hull.

C.4 Application of the Morse type surface area estimator to
giant-cell glioblastoma

We illustrate the application of the Morse type estimator ŜN in a study of giant-cell
glioblastoma. The goal is to estimate the average surface area of the nucleus of giant-
cell glioblastoma from microscopy images. Giant-cell glioblastoma is a rare brain
neoplasm which accounts for 1% of glioblastomas. It is formerly known as monstro-
cellular brain tumour. Histologically, the tumour is characterized by bizarre-looking,
variable sized and shaped multinucleated giant-cells with abundant eosinophilic cy-
toplasm [OPN+00]. Giant-cell glioblastoma is a subtype of glioblastoma multiforme,
however the rarity of giant-cell glioblastoma has prevented further characterization.
Giant-cell glioblastoma is more prevalent in young-male patients and tends to occur
more in parietal and temporal lobe of brain. We chose to illustrate the estimator for
the nuclei of giant-cell glioblastoma as they are typically non-convex in shape, see
Figure C.5.
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Figure C.5: Section profiles through a nucleoli of the nuclei of two giant-cell glioblastoma.

C.4.1 Model-based setting

In the preceding sections we have assumed that the structure of interest is deter-
ministic and the section plane is random, that is we have worked in a design-based
setting. We will now adopt the common model-based approach, where the par-
ticles, here nuclei of giant-cell glioblastoma, are random isotropic and the plane
is deterministic. This isotropy assumption allows us to avoid a complicated, time
consuming protocol, where each particle is sectioned physically or optically by a
new isotropically generated plane. Hence we assume that the nuclei are realizations
of an ergodic isotropic random process, meaning that nuclei far away from each
other have independent orientations. We then can apply a model-based version of
the estimator ŜN . The estimator is identical to the one given by (C.15), but now the
particle X is assumed to be random and the section plane L2 fixed. For all random
nuclei X we assume that ES(X) = S̄, where the expectation is with respect to the
random particle process and S̄ is the average surface area of the typical particle. S̄ is
the target quantity. The unbiasedness of the model-based version of the estimator
then follows from the unbiasedness of the design-based estimator and the strong
law of large numbers.

C.4.2 Materials and preparation methods

From ten small pieces of tissue biopsies sized 1 mm3 to 2 mm3, one piece was ran-
domly chosen, embedded in glycol methacrylate (GMA) for preparation of a plastic
block. Two 40 µm-thick plastic sections were serially sectioned on a microtome
(HM355, Microm, DMK & Michelsen, Denmark) and stained with hematoxylin and
eosin stain for light microscopy. Data-acquisition was performed using a stereo-
logical microscopy system (BX-51 microscope, Olympus, Denmark) equipped with
the NewCast Version 4.1 software package (Visiopharm, Hoersholm, Denmark)
and mounted with a digital camera (Olympus DP72) on top of the microscope
to project live views of tissue sections on a monitor. The z-axis of the microscope
was monitored with a Heidenhain electronic microcator and the x-y position was
monitored by motorized stage system (ProscanTM, Prior Scientific Instruments Ltd.,
Cambridge, U.K).

106



C.4. Application of the Morse type surface area estimator

The image of the tumour region was captured and delineated by navigator tool
of NewCast with 4× objective. An unbiased counting frame (X × Y, 15 × 13 =

195 µm2) was used to sample randomly a total of n = 51 nuclei. The red and green
‘rectangle’ on the images in Figure C.6 is a counting frame. The images of nuclei
were captured by optical disector with an oil objective (100×, NA: 1.25).

As already mentioned in Section C.2, any point in the nucleus can serve as
reference point as long as it is easily identifiable in any section direction. We chose
the nucleoli in the selected nuclei as reference points. If a nucleus contained several
nucleoli, we chose one out of all the admissible nucleoli (with respect to the counting
frame) with uniform probability. In order to decrease the variance of the estimator
systematic sampling was applied in the tissue by using a counting frame with a
step-length of 400 µm in both x and y direction. This assures that the nuclei can be
assumed to have independent orientations. In other words, we can assume that
the n sampled nuclei are realizations of independent, isotropic random particles
X1, X2, . . . , Xn satisfying ES(Xi) = S̄ for i = 1, . . . , n.

C.4.3 Implementation of the Morse type surface area estimator

The estimator ŜN was used to estimate the surface areas of the sampled nuclei. In
Section C.3.4.1 we recommended to use N = 4, that is to find tangents for four direc-
tions in the section plane (N = 2 when the object of interest resembles an ellipsoid),
to obtain a good precision of the surface area. In the present implementation we
used one, two and four directions in the section plane in order to be able to compare
the performance of the estimators. The estimation was done using an expert-assisted
procedure which was implemented using Matlab. It is based on a program derived
in [Kal12] for estimating the perimeter of planar geometric structures. The interac-
tive software is available at the home page home.imf.au.dk/olofth. We give a brief
description of it in the following.

The present implementation is an off-line expert-assisted procedure, where the
sampled section profiles – microscopy images in JPEG format – are used as input.
The user, preferably a clinical expert, can choose the number N of directions that
are to be sampled. As previously stated we recommend using N = 4 (N = 2 for
ellipsoids) but we describe the procedure for an arbitrary N. Microscopy images are
often stored with a scale, see for instance Figure C.5 to the left. If this is the case, the
user should indicate the scale before running the procedure. If a scale is reported,
the calculated surface area estimate is given on this scale, otherwise it is given in
pixel units. We assume in the following that a scale is given.

When the procedure is run, the image pops up with a short explanation of what
the user should do next. The measurement procedure consists of three steps which
are illustrated in Figure C.6.

Scale The user left clicks on the endpoints of the scale, see the image in the upper
left corner in Figure C.6. This tells the program that the length of the red
‘measure’ line segment is 10.706 µm.
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Figure C.6: An illustration of the expert-assisted procedure on one section profile through a
nucleolus of the nucleus of a giant-cell glioblastoma. The short black line segment indicates
the sampled direction. Positive tangents are colored red while negative tangents are colored
blue.

Reference point The user left clicks on the reference point, see the image in the
upper right corner in Figure C.6.

Tangents The computer generates a random unit vector U in the section plane
including an angle α0 with the x-axis that is uniform in [0, π/N). In the image
in the lower left corner in Figure C.6, this vector is indicated as a short black
line segment attached to the red line orthogonal to U, passing through the
position of the mouse cursor. The line can be translated using the mouse.
The user now marks all tangent positions of this line to the section profile,
clicking left whenever a positive tangent is located, and clicking right for
every negative tangent. If N > 1 this step is repeated with all N − 1 lines with
associated angles α0 + lπ/N, l ∈ {1, 2, . . . , N − 1}.

When these three steps are completed and the user has found all tangents for the
N sampled directions an estimate ŜN of the surface area is calculated. The number
of tangents that need to be placed gives the complexity number CŜN

defined in
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Section C.3.4.2. It should be noted again that it certainly is more time consuming
to place tangents at a given direction than just counting intersection points of the
profile boundary with a given line, as is the case for the invariator estimator. But for
an experienced user of the software, the Morse type estimator ŜN can be obtained
very efficiently and should be preferred to the alternative invariator grid estimator
Ŝgrid.

As biological images are blurred, there might be tangents that appear to pass
through a point of inflection of the boundary (although this event has probability
zero with idealized mathematical particles). The easiest solution is to ignore these
tangent lines, and neither left- nor right click at these positions. This is in corre-
spondence with the theory, as a sweeping line passing through this tangent will
neither increase nor decrease the associated Euler characteristic. It can also happen
in practice, that the sweeping line appears to be tangent to the section profile at
more than one point for certain critical values. As the images are blurred, it could
for example appear that the sweeping line enters more than one new connected
component at a critical value or that it enters a new connected component and
leaves a part of the section profile at the same critical value. These events also have
probability zero with idealized mathematical particles. To deal with these tangents,
we simply suggest making a left- or a right mouse click for every change, without
translating the line.

C.4.4 Results

We used the expert-assisted procedure to obtain estimates of the surface area of the
n = 51 section profiles. We did this for N = 1, 2 and 4. An unbiased estimator for
the average surface area of the nucleus X of a giant-cell glioblastoma is then given
by

Ŝave
N (X) =

1
51

51

∑
i=1

ŜN(Xi ∩ L2),

where L2 is a fixed plane and ŜN is the Morse-type estimator given by (C.15). Empir-
ical estimates for the average surface areas can be found in Table C.5.

N = 1 N = 2 N = 4

Ŝave
N (X) 675.0 µm2 597.8 µm2 599.3 µm2

Table C.5: Empirical estimates for the average surface area of the nucleus of a giant-cell
glioblastoma, depending on the number N of systematic directions used in the section plane.

In Figure C.7 boxplots for the surface area estimates of the nuclei for N = 1, 2
and 4, respectively, can be found. The red lines in Figure C.7 are the medians, the
bottom and the top of the boxes represent the lower quartiles (25th percentiles) and
the upper quartiles (75th percentiles), respectively, and the red ‘pluses’ are outliers
(more than 1.5 IQR from the upper quartiles). The boxplots in Figure C.7 do not
suggest that sampling with a higher number N of directions gives a more precise
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Figure C.7: Boxplots for the surface area estimates of the 51 nuclei for N = 1, 2 and 4,
respectively.

estimator. This seemingly counter-intuitive result can be explained by looking at the
different sources of variation of Ŝave

N (X). The variance of Ŝave
N (X) can be decomposed

into the true population variance, that is the variation in surface area among the
nuclei, and the mean variance due to the estimation procedure within each nucleus.
The variance due to the estimation procedure within each nucleus can then again be
decomposed into Vplane and Vorient, as shown in Proposition C.1. The true population
variance is unknown and as the data only consist of one section profile for each
sampled nuclei we can not assess Vplane. For a given nucleus, Vorient can be estimated
from the section profile. This was done for each of the estimators in Table C.5 for
a few of the section profiles. A large decrease in Vorient was observed for each of
the studied nuclei when N was increased. This decrease in Vorient was much more
pronounced when N was increased from one to two than when it was increased
from two to four. However, this variance contribution is very small compared to
the sum of the true population variance and the mean variance due to choosing the
plane within each nucleus. This explains why there is no noticeable precision gain
in Figure C.7 when N is increased. In the present application the choice N = 1 led to
an extreme outlier and Vorient that is much larger than when N = 2. As a conclusion,
this example suggests that the choice N = 2 is preferrable in situations where a
relatively large population variance is present. The workload for the choice N = 2
is not very high.
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C.5 Discussion

C.5.1 Account of main results

We have presented the Morse type surface area estimator and an expert-assisted
protocol to apply it in practice. The Morse type estimator is a generalization of
Cruz-Orive’s surface area estimator for convex objects [CO05, Eq. (3.2)] ((C.16) with
N = 2) to non-convex objects.

The surfactor is an alternative surface area estimator. The surfactor does not only
require measuring distances in an IR section plane but also angles of the section
profile with certain test rays. It was implied in [CO05] that this requirement to
perform angle measurements might be difficult in practice and yield inaccurate
estimates due to the singularity in its representation. In light of this belief and the
simplicity of the estimator (C.16) it was claimed in [CO05] that (C.16) was the only
reasonably efficient surface area estimator available at that time.

As mentioned in Section C.3.3, the surfactor was compared to the one-ray pivotal
estimator, (C.17) with N = 1, in [CO08]. This variance comparison was extended to
ellipsoidal particles in [DJ13]. The results obtained in [DJ13] show that the surfactor
performs better than previously thought. In a simulation study involving ellipsoids,
the surfactor was shown to be neither much affected by the singularity in its repre-
sentation nor by inaccuracies in the necessary angle measurements. In [DJ13] it was
also shown that the surfactor with two orthogonal directions sampled in the section
plane [DJ13, Eq. (12) with N = 4] needs twice as much workload to obtain similar
precision as (C.16) with N = 2. Hence, although the surfactor is a better competitor
to (C.16) than previously expected, (C.16) is more efficient and should be preferred
when the object of interest is convex. This recommendation can be transferred to
the Morse type surface area estimator, which we showed to be the preferred surface
area estimator available.

We have shown in Section C.3.1 that the variance of the pivotal estimator Ŝpiv

decomposes into three parts Vplane, Vorient and Vdist according to the randomization
of the section plane, and the orientation and position of the test line, respectively.
Among all estimators considered in the present paper, the generalized flower es-
timator has the lowest variance, as this variance coincides with Vplane. However,
this estimator requires exact knowledge of the boundary of the section profile. We
therefore also considered estimators derived from Ŝinv that still have a reasonable
workload but a better variance than Ŝinv. The detailed analysis of the three variance
contributions in Section C.3.2 in the case of ellipsoidal particles showed that Vdist

is by far the largest variance contribution. We therefore suggested the Morse type
surface area estimator ŜN for which this variance contribution vanishes. By choosing
the number N of systematic random test directions, also the variance contribution
due to the randomization of the direction can be decreased. However, we have seen
that only small values of N have to be considered, and that values N = 2 or N = 4
are theoretically advisable depending on the regularity of the objects. This also is
in agreement with Figure C.2 that shows that Vorient is a relatively small variance
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contribution (in the case of ellipsoids).
The application example of giant-cell glioblastoma showed that other sources

of variation, such as the population variance or the uncertainty of measurements
due to blurred or ambiguous images can be of the same order or larger than the
theoretical variance contribution of the estimator. This indicates that the choice
N = 2 appears to be appropriate in real-world applications.

C.5.2 Automatic and semi-automatic estimation of surface area

Inspired by [CO12] it was shown in [TK13] that the generalized flower estimator
Ŝflo given by (C.12) and the integrated surfactor [CO12, Eq. (24)] coincide. The gen-
eralized flower estimator is the optimal estimator with respect to variance (among
all the estimators considered in this paper) but as mentioned in Section C.3.3 it can
typically not be calculated in practice if the section profile is not a polygon. However,
if it is possible to identify the boundary of a given section profile by automated
segmentation, the boundary can be approximated by a polygon. Using this approxi-
mation the generalized flower estimator Ŝflo, with the true section profile Y = X ∩ L2

replaced by its estimate, can be obtained using [TK13, Corollary 10] as mentioned in
Section C.2.2.3. If the segmentation is flawless, this automatic estimator is unbiased.
However, if it is of poor quality, the estimator can be heavily biased. To deal with
this problem a semi-automatic procedure for estimating surface area was proposed
in [DJ13], based on a similar approach for volume estimation in [HNAJ11]. In the
semi-automatic procedure, a clinical expert supervises the process and determines if
the automated segmentation of the boundary of a given section profile is satisfactory
or not. If it is determined to be satisfactory the surface area is obtained using Ŝflo

with Y being the estimate obtained by the automated segmentation. If it is unsatisfac-
tory, the clinical expert intervenes and performs the necessary measurements in the
section plane. In [DJ13] it was suggested to use (C.16) in the case where all particles
are convex. We suggest to use the Morse-type estimator, which does not require
any convexity assumption and reduces to (C.16) when the particles are convex. This
semi-automatic procedure can reduce the workload substantially.
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Appendix: Variance decomposition for ellipsoids

The following proposition gives the different variance contributions in Proposi-
tion C.1 more explicitly when X is a three-dimensional ellipsoid containing O. A
proof can be found in [Thó10, Theorem 25]. As the reference set RB3 is trivially
invariant under all rotations at the origin, and as the sampling procedure is rotation
invariant, we may assume without loss of generality that the ellipsoid’s main axes
are parallel to the standard coordinate axes.

Proposition C.4. Let E3 ⊆ RB3 be a non-degenerate ellipsoid given by

E3 =
{

x ∈ R3
∣∣∣ 3

∑
i=1

(
xi − zi

ai

)2

≤ 1
}

, (C.30)

where a1, a2, a3 > 0 and (z1, z2, z3) ∈ R3. If O ∈ E3, the variance of Ŝinv given by (C.4),
can be expressed as

Var(Ŝinv) = Vdist + Vorient + Vplane,

where

Vdist = 4π
∫ 2π

0

∫ π/2

0

(
R2
( 1

λ1
+

1
λ2

+ (z′1)
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2
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+
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2
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3
4
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2 + (z′2)
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′
1 + (z′2)u

′
2)

2
(9

2
1

λ1
+

3
2

1
λ2

)
+ (z′1u′′1 + z′2u′′2 )

2
( 3

2λ1
+

9
2λ2

)))
sin θdθdφ, (C.31)

Vorient = 4π
∫ 2π

0

∫ π/2

0

( 3
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1
+

1
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3
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2
+

3
4
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4)

+ (z′1u′1 + z2u′2)
2
( 9

2λ1
+

3
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2

( 1
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+
1
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2
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sin θdθdφ, (C.32)

Vplane = 2π
∫ 2π

0

∫ π/2

0

( 1
λ1

+
1

λ2
+ (z′1)

2 + (z′2)
2
)2

sin θdθdφ

−
( ∫ 2π
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∫ π/2

0

( 1
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1

λ2
+ (z′1)

2 + (z′2)
2
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sin θdθdφ
)2

. (C.33)

Here λ−1/2
1 and λ−1/2

2 are the lengths of the semiaxes of the ellipse E3 ∩ L2, u′ = (u′1, u′2)
t,

u′′ = (u′′1 , u′′2 )
t its corresponding principal axes and (z′1, z′2)

t its center, all written with
respect to a suitably chosen orthonormal basis of the IR plane L2.

Although the decomposition formulae for ellipsoids are quite complicated it is not
difficult to derive a theoretical formula for the total variance of Ŝinv when X is an
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ellipsoid. When X is a convex body, χ(X ∩ L2 ∩ Fz) is a Bernoulli random variable
and hence using the unbiasedness of Ŝinv

Var(Ŝinv) = S(∂X)(S(∂(RB3))− S(∂X)). (C.34)

As a side note, this immediately gives the coefficient of variation of the estimator,
which is

CV(Ŝinv) =
( 4πR2

S(∂X)
− 1
)1/2

,

in accordance to [CO08, Eq. (18)], as well as the total variance (C.26) of the estimator
when X is a ball.

Let now E3 be a non-degenerate ellipsoid given by (C.30). Assume without loss
of generality that a1 ≥ a2 ≥ a3. Then the surface area of E3 is given by [Eag58,
(12) on p. 281]

S(∂E3) = 2π
(

a2
3 +

a2a2
3√

a2
1 − a2

3

F(σ, m) + a2

√
a2

1 − a2
3E(σ, m)

)
,

where

σ = arcsin

√
a2

1 − a2
3

a2
1

, m =
a2

1(a2
2 − a2

3)

a2
2(a2

1 − a2
3)

and F(·, ·) and E(·, ·) are the incomplete elliptic integrals of the first kind and of the
second kind, respectively. Inserting this into (C.34), we find

Var(Ŝinv) = 4π2
(

2R2
(

a2
3 +

a2a2
3√

a2
1 − a2

3

F(σ, m) + a2

√
a2

1 − a2
3E(σ, m)

)

−
((

a2
3 +

a2a2
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a2
1 − a2

3

F(σ, m) + a2

√
a2

1 − a2
3E(σ, m)

))2)
. (C.35)

For an oblate ellipsoid (that is when a1 = a2 > a3), the surface area has an explicit
form and the total variance becomes

Var(Ŝinv) = 4π2
(

2R2
(

a2
1 +

a1a2
3√

a2
1−a2

3
log
(√

a2
1−a2

3+a1
a3

))
−
(

a2
1 +

a1a2
3√

a2
1−a2

3
log
(√

a2
1−a2

3+a1
a3

))2)
;

see [Thó10, p. 34] for a derivation. When X is an oblate or a prolate ellipsoid, explicit
analytic expressions for Vplane can be found in [DJ13, Eq. (2.5) and (2.6)].
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[DJ13] J. Dvořák and E.B.V. Jensen. On semiautomatic estimation of surface
area. J. Microsc., 250(2):142–157, 2013.

[Eag58] A. Eagle. The Elliptic Functions as they should be: An account, with
applications, of the functions in a new canonical form. Galloway and
Porter, Cambridge, 1958.

[GACO00] X. Gual-Arnau and L.M. Cruz-Orive. Systematic sampling on the
circle and on the sphere. Adv. Appl. Prob., 32(3):628–647, 2000.

[Gun88] H.J.G. Gundersen. The nucleator. J. Microsc., 151(1):3–21, 1988.

[HNAJ11] L.V. Hansen, J.R. Nyengaard, J.B. Andersen, and E.B.V. Jensen. The
semi-automatic nucleator. J. Microsc., 242(2):206–215, 2011.

[Jen98] E.B.V. Jensen. Local Stereology. World Scientific, Singapore, 1998.

[JG87] E.B.V. Jensen and H.J.G. Gundersen. Stereological estimation of
surface area of arbitrary particles. Acta Stereol., 6:25–30, 1987.

[Kal12] T. Kallemose. Application of stereological projection formulae for
perimeter estimation. Master’s thesis, Aarhus University, 2012.

[Mil63] J.W. Milnor. Morse Theory. Princeton University Press, Princeton,
1963.

[OPN+00] H. Ohgaki, A. Peraud, Y. Nakazato, K. Watanabe, and A. Von Deim-
ling. Giant cell glioblastoma. In World Health Organization classification
of tumours. Pathology and genetics of tumours of the nervous system, pages
40–41. IARC Press, Lyon, 2000.

[Thó10] Ó. Thórisdóttir. Variance for surface area estimation based on the
invariator. Master’s thesis, Aarhus University, 2010.

115



Paper C

[TK13] Ó. Thórisdóttir and M. Kiderlen. The invariator principle in convex
geometry. Submitted, 2013.

116


