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Abstract

The standard Hawkes process is constructed from a homogeneous Poisson
process and using the same exciting function for different generations of
offspring. We propose an extension of this process by considering different
exciting functions. This consideration could be important to be taken into
account in a number of fields; e.g. in seismology, where main shocks produce
aftershocks with possibly different intensities. The main results are devoted to
the asymptotic behavior of this extension of the Hawkes process. Indeed, a law
of large numbers and a central limit theorem are stated. These results allow us
to analyze the asymptotic behavior of the process when unpredictable marks

are considered.
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1. Introduction

The standard Hawkes process (HP) is a temporal point process having long memory,
clustering effect and the self-exciting property. The standard HP and its extension to

a marked point process are of wide interest, partly because of their many important
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applications and illustrative examples in the theory of non-Markovian point processes
constructed by a conditional intensity. The seminal ideas are due to Hawkes [9, 10] and
Hawkes and Oakes [11], whereas useful reviews on the topic are provided in Daley and
Vere-Jones [4] and Zhu [21]. Its applications include fields such as finance, genetics,
neuroscience and seismology; see e.g. Carstensen et al. [3], Embrechts et al. [5], Gusto
and Schbath [8], Ogata [16, 17] and Pernice et al. [18].

As mentioned, the standard HP is a cluster process, where the starting points of the
clusters are called immigrants and appear according to a homogeneous Poisson process
on the non-negative time-axis. Each immigrant is the ancestor of a first generation of
offspring, each point of first generation offspring is the ancestor of a second generation
point offspring, and so on. Thereby the cluster for an immigrant is a set of generations
of offspring. More precisely, for a given ancestor appearing at time s, the associated
offspring point process is Poisson with intensity function (¢ — s), which is defined for
t > s and is not depending on immigrant and offspring points generated before time s.
Thus the clusters, conditional to the immigrants, are independent. Note that the same
exciting function ~ is used for all offspring processes. This is the crucial difference with
the extension proposed in our work, where we allow different exciting functions for
the different generations of offspring. This extension could be relevant for instance in
seismology, where main shocks generate aftershocks with possible different intensities.

The main objective of this work is to investigate the asymptotic behavior of our
extension of the HP process. Indeed, a law of large numbers and a central limit
theorem are established. Furthermore, by making use of these results, a central limit
theorem is proved when unpredictable marks are added to the process. In particular
our asymptotic results do not require the complete identification of offspring processes,
but only of the integrals of their exciting functions. We also extend a result obtained by
Fierro et al. in [6]. Recently, functional central limit theorems for linear and non-linear
HP have been obtained in [1] and [20], respectively. However, their results are based on
the standard HP, while ours, coming from a more general definition of HP, cannot be
obtained from these works. Simulation algorithms and statistical methodology for the
extension proposed in this paper remain as open problems to be developed in future
studies. For details on exact and approximate simulation algorithms for the standard

HP with unpredictable marks, see [13, 14].



Hawkes process with different excitations 3

The paper is organized as follows. The results of this work are introduced in the
second section, which is divided into four subsections. In Subsection 2.1, we define
the HP with different excitation functions and establish some preliminary facts. In
Subsection 2.2, we present two of the main results namely, a law of large numbers and
a central limit theorem for the process. In Subsection 2.3, we consider two special
cases, one of them is the standard HP and the other concerns the case consisting of a
finite number of generations. In Subsection 2.4, we state a central limit theorem for
the process with unpredictable marks. The proofs of our results are provided in the

third section.

2. The Hawkes process with different excitation functions

2.1. Definition and preliminary results

In the sequel, {7, }nen denotes a sequence of locally integrable functions from R
to Ry. Here R} = [0,00) is the non-negative time-axis, and N = {0,1,...} the set of
non-negative integers.

The following proposition is the basis of what we name the HP with different
excitation functions. For concepts related to counting processes and their stochastic

intensities, we refer to [2].

Proposition 2.1. There exist a probability space (0, F,P) and a sequence {N"},en of
non-explosive counting processes without common jumps satisfying the following three

conditions:
(A1) N is a Poisson process with intensity Yo.

(A2) For each m > 1, N™ has predictable stochastic intensity A" given by A} =
Jo (= 5)dNZ

(A3) Foreachn € N, conditional to N°, ..., N™, N"*1 is a non-homogeneous Poisson

process with intensity X1,
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Definition 2.1. Let {N"},cn be as in Proposition 2.1 and N = >">° ' N™. We call
NO the immigrant process, N (n > 1) the nth generation offspring process and N the

HP with excitation functions {7, }nen-

Remark 2.1. In the standard HP, 79 = p is constant and all ,, = for all n > 1. In
this case there is no need of identifying the offspring processes, since N has stochastic

intensity A given by \; = u + fot y(t — s) dNs.

Remark 2.2. In Proposition 2.1, (A3) allows us to obtain, recursively, the joint
distribution of N° ... ,N™ for n € N. It is easy to see that (A2) and (A3) are

equivalent.

Remark 2.3. Notice that N is univocally defined in distribution. Indeed, according
to Theorem 3.6 in [12], there exists, on the Skorohod space, a unique counting process

having predictable stochastic intensity A =y + >0 ;| A™.

Let A™ be the compensator of N™, that is, for each n € Nand t > 0, A} = fot Al ds,
where \Y = 74(s) is a deterministic function. Thus, for each n € N, M™ = N" — A" is a
(IF, P)-martingale, where IF = {F; };>¢ with F; = 0(N?2; s < t) the o-algebra generated
by {N%;0 < s <t}.

Proposition 2.2. For each n € N\ {0} andt >0, A} = fg Yt — s)NP~1ds.

For two locally integrable functions f and g from R+ to R, f * g denotes the

convolution between f and g, i.e., fo f(t—s)g(s)ds, for t > 0.

Proposition 2.3. For each t > 0,

E(Nt):/ Z Yo % -k ) (u) du.

Proposition 2.3 motivates to consider the following condition:

(B) For each t > 0, the sequence {7y, }nen satisfies

/nyo* <k ) (u) du < oo.

Let M = ZZO:() M™. Then the HP N is a counting process with compensator
A =37 ,A™ and, under condition (B), M = N — A is a (IF, P)-martingale.
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For any measurable function h : [0,00) — [0, 00], we denote its Laplace transform

by L[h], i.e., for s € R, L[](s) = [;~ e™** h(u) du.

Remark 2.4. Under condition (B), N is a non-explosive counting process with pre-

dictable compensator A.

Proposition 2.4. Condition (B) is satisfied when one of the following five conditions
holds:

(C1) There exists so > 0 such that sup,,cy L[Vn](s0) < 1.

(C2) limyso0 supgey L[vx](s) = 0.

(C3) There exist C > 0 and a > 0 such that supycy i (t) < Ce.
(C4) [y suppenvx(s)ds < oco.

(C5) supgey [y vr(s)ds < 1.

2.2. Asymptotic results

Let p = supgen fo ~k(s) ds. In this subsection, we assume the following condition

holds:
(D) There exists 7p = limy_,o0 + T fo Yo(s)ds and p < 1.

In particular, from Proposition 2.4, condition (B) holds when condition (D) is
satisfied.

In the sequel, mg = 7, for each p € N\ {0}, m, = Y [[}_ 1f0 ~i(u) du and
m =3 " ,my. Notice that, under condition (D), m < oo.

For the standard HP, the condition p < 1 is usually assumed in order to obtain a
non-explosive process (see e.g. [4]).

We have the following law of large numbers.

Theorem 2.1. Ast — 0o, {N¢/t}i>o and {A¢/t}es0 converge P-a.s. tom, and {M;/t}>o

converges in quadratic mean to zero.
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The following central limit theorem is the main result of this work.

Theorem 2.2. For eacht >0, let X; = (N; —m)/\/t and

2

00 oo  ptj o)
U?V:Z 1—1—2 H / vi(u)du | m;.
=0 p=1i=j+1"0

Then, 012\[ < 0o and, ast — 0o, { X }is0 converges in distribution to a normal random

variable with mean zero and variance 012\,.

The proofs of Theorems 2.1 and 2.2, provided in Section 3, involve the following

three lemmas.

Lemma 2.1. Let h be a non-negative measurable function defined on Ry.. Then, for

each s,t > 0 with s < t,

/:(h*%)(v) dv < </0°° h(r) dr) (/:'yo(u) du) .

Lemma 2.2. For each q € (0,2] exists C > 0 such that

ZsupE( sup |Mg/\/%|‘1> <C.
7=0

—o t>0 0<u<t

Lemma 2.3. For each integer p > 1,

p—1
AP = gk kyipa s MO sy oy x 1 (1)
j=0
and
oo p—1 . 0o
A:ZZVp*"'*’Yj-H*M]+Z’Yp*"‘*’}/1*70*1~ (2)
p=1j=1 p=0
Moreover,
1A .
tli{gc;ZZE[(%*'“*%H*\MJDt]:O (3)
p=135=0
and
AP
lim sup |- —m,| =0 P —a.s. (4)
t—)OOpeN
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2.3. Two particular cases

Below we consider two special cases where condition (D) is satisfied and consequently
the process {X;}i>0, defined in Theorem 2.2, has asymptotic normality. Thereon two
corollaries of Theorem 2.2 are derived.

In the first case, the functions v, (n € N\ {0}) are assumed to be equal and hence

it covers the case of the standard HP.

Corollary 2.1. Suppose the excitation functions v, = 7 do not depend on n, for

n > 1, and the following two conditions hold:
(E1) The limit 7o = limy o0 1 fot Yo(s) ds exists.
(E2) [i%~v(u)du < 1.

Then, as t — oo, {X;}is0 converges in distribution to a normal random variable with

mean zero and variance
Yo
3
(1 - fooo ¥(u) d“)

The second particular case is when there exists n* € N such that y,-+1 = 0, a.e., with

0% =

respect to the Lebesgue measure. Then, there is at most n* generations of offspring
processes. The particular case n* = 1 corresponds to a Neyman-Scott cluster point

process where the ‘mother point process’ (i.e., the immigrant process) is included (see
e.g. [15]).

Corollary 2.2. Suppose condition (E1) and that there exists n* € N such that ypx41 =
0, a.e., with respect to the Lebesque measure. Then, as t — 0o, {X;}i~0 converges in

distribution to a normal random wvariable with mean zero and variance

2

n* n*—j p+j %)
A=Y (1+ X 1 [ wewde) m;
j=0 p=1 i=j+10

2.4. Unpredictable marks

Consider the extension of the standard HP with unpredictable marks defined in
[4] and [13] to the case of our HP with different excitation functions, i.e., for each
k € N, we associate a random mark & to the kth jump time T}, where these marks

are independent, identically distributed and independent of N. Moreover, assume the
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marks are real-valued random variables with mean v and variance 2. Under these

assumptions, we study the asymptotic distribution of the process { R; }+~o defined by

1 (&
R, = 7 (kzzogk — uE(Nt)> .

Using the notation of Theorem 2.2, we have the following central limit theorem, which

extends a result obtained by Fierro et al. in [6].

Theorem 2.3. If condition (D) is satisfied, then {Ri}1~0 converges in distribution to

a normal random variable with mean zero and variance mo? + 1/0'12\[.
The proof of Theorem 2.3 uses the following result.

Lemma 2.4. Let {Ui}i>0 and {Vi}iso be two real stochastic processes defined on
(Q, F,P) and (U, V) be a bivariate random vector defined on the same probability space.

Moreover, suppose the following two conditions hold:
(F1) For any € > 0, there exists Cc > 0 such that sup,- o P(max{|U|,|V;|} > C¢) < e.

(F2) For any bounded functions u and v from R to R, lim;_,o E(u(Up)v(V;)) =
E(u(U)v(V)).

Then, as t — oo, {(U, Vi) }+>0 converges in distribution to (U, V).

3. Proofs

Below 14 stands for the indicator function of a set A.

Proof of Proposition 2.1 Let (22, F,P) be a complete probability space where a
Poisson process N°, with intensity 7o, is defined. Let {A}};>¢ be the increasing and

(IF, P)-adapted process defined as

t u
A} :/ (/ 7 (u—9) ng) du.
0o \Jo

Since Al is predictable and continuous, it follows from Theorem 3.6 in [12] that
there exists a counting process N! adapted to the filtration IF with compensator A'.

Consequently, for any predictable process {Cs}s>0, we have

E(/ CSdNSl>:E(/ CSdA;):E(/ CS)\;ds>7
0 0 0
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where AL = [ v1(u—s) dN?. This proves A! is a stochastic intensity for N'. Because
NV is non-explosive, for each t > 0, A} < oo, P-a.s., which implies N! is non-explosive.
Next, suppose N1,..., N™ are non-explosive counting processes having stochastic

intensities A!, ..., \", respectively, given by
t
)\;":/ Yo (t — 8) AN, 1<m<mn,
0

and let {A}'};>0 be the (IF, P)-adapted and increasing process defined as

t u
APt :/ (/ Y1 (u —s) dNS") du.
0 \Jo

We have A™*! is predictable and continuous, and as before, Theorem 3.6 in [12]
implies there exists an (IF, P)-adapted counting process N™*! with compensator A"+,

Accordingly, for any predictable process {Cs}s>0, we have

E (/ C, ng+1) =E (/ C, dAg+1> =E (/ C A ds> ,
0 0 0

where ATt = [*~,, 11 (u—s) dNZ'. This proves A"+ is a stochastic intensity for N" 1.
Since N™ is non-explosive, for each ¢t > 0, A?H < 00, P-a.s., which implies N*+! is
non-explosive. Hence by induction, {N"},en is a sequence of non-explosive counting
processes satisfying (A1) and (A2).

Let n,p € N with p > 0. Since A"*? depends on w € Q only through N"*P~1(w),
conditional to N©, ..., N*TP~1 N7*tP is distributed as a Poisson process with intensity
AP In particular, (A3) holds. Let us prove that N™ and N"P have no common
jumps. Suppose T is a stopping time such that AN} = 1, P-a.s. Hence T is measurable

with respect to the o-algebra generated by N™ and thus

E(ANpTPIN"FP=1) = B( [ Ly (w) dNJHP NP
— E(fooo I{T} (U)AZer du|N”+p*1)
= fooo Liry (u)EAMTP| NP1 dy
=0

because for each w € , the Lebesgue measure of {T'(w)} equals 0. Consequently,
E(ANEAN}YP) = E(ANZE(ANPINFTP71)) = 0, and therefore, ANFAN? = 0,

P-a.s., which completes the proof.
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Proof of Proposition 2.2 By the Fubini theorem and a change of variable, we have

Ay = /Of (/Ouw(u_s)ng_l) .
= [ ([ i) ase

¢
= / Fo(t—s)dN 1,
0
where F,,(t) = f; Vn(u) du. Integrating by parts, we obtain
t t
| Futt =5 AN = BN = BN+ [l - ) s
0 0

and hence A} = fot Yn(t — 8)NP~1ds, which concludes the proof.

Proof of Proposition 2.3 Let 9 = v and, foreachn > 1 and ¢t > 0, u, (t) = E(A}).

From Proposition 2.2, we have

@) =B ([ att = 5081 = [0t = 9B 05 = (0 pa0)0)

It follows by induction that p,, = g * 71 * - -+ * ¥, and hence

S EV) = / 30 s ) ) du

which concludes the proof.

Proof of Proposition 2.4 Let H(t) = E(N;), r = sup, ey £[1n](s50) and suppose
(C1) holds. By Proposition 2.3,

1 & r
H < = [ )
£[ ](SO)— SO;T 50(177,) <00

Consequently, H < oo a.e. with respect to the Lebesgue measure, and since H is
continuous, for each t > 0, H(t) < oo, which implies (B).

Note that (C2) implies there exists so > 0 such that sup,en £[7&](s0) < 1. Hence
(C2) implies (C1) and consequently (B) is satisfied. Under (C3), we have

C

)
sS—a

0 < sup L[vx](s) < C/ e~ (5T gy =
keN 0

whenever s > a, and thus (C3) implies (C2) and consequently also (B).
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By the Dominated Convergence Theorem (DCT), (C4) implies (C2) and hence (B)

holds.

Finally,

[Toorsm@an = ([Tanwan) ([T ran)
(s [ )™

and therefore (C5) implies (B), concluding the proof.

IN

Proof of Lemma 2.1 We have

/:(h*%)(v)dv - /: (/Ovh(u_u)%(u)du) d
= /: Yo(u) </Ot h(r) dr) du
(/OOO h(r)dr) (/:Wo(u)du) ,

IN

which concludes the proof.

Proof of Lemma 2.2 Since M =, % - %91 * 70, from Lemma 2.1, we have

E<Az>:/0 <vj*-~-ww><u>du3pﬂ‘/o 70(u) du.

Hence the Jensen and Doob inequalities imply
, N\ 4/2 ) ‘ t
E< sup |Mﬂ|q> < E< sup |Mg|2> < 29E(A)1/? < 2919/2 (/

0<u<t 0<u<t 0

Thus,

} A 1/t q/2
sup ( sup E/VE) < 2072 sup (4 [ sofu)au)
t>0 0

>0 0<u<t

and consequently

>sup® ( sup (1A < C.
=0 t>0 0<u<t

q/2
where C' = 2%sup, (% I o0 (u) du) / (1 — p?/2). This completes the proof.

(@) )
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Proof of Lemma 2.3 For each p € N, NP = MP 4+ AP, and for each p > 1, AP =

7% NP1, Hence (1) follows by induction and (2) is obtained from (1).

Let F(t) = $ Y02, Z?;é(fyp %+ xyj41 % [M7]); for t > 0. Then

o0

1
|F@) = ;Z (IM7] Z Yp K Y1)t

j=0 p=j+1

w0k ) (u) du

IN
I
\¢
£
—
\¢

ST NN ) i ATt

00<u p=j+1i=j+1

oo
Mj
_ Lzbup|t|
j=00=us

and from Lemma 2.2, we have lim;_, . E(|F(t)|) = 0, which proves (3).

Let hy = yp* - %~y and h = 3°7° | hy,. We have

T O = 1 [ e du

_ _/Ot hy(s) (1 /ttS'yO(u) du> ds

4 1/Ot’yo(u)du/0thp(s)ds.

Hence

[l o)

h

1

‘/VO du/h s)ds —myp|.
tJo

—(vp* k1 x 0 % 1)(2)

By the DCT,

. oo 1 t
tlirgo ; h(s) <t /tis ~o(u) du) ds=10
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and
1t t 1/t t
‘/ 70(u)du/ hp(s)ds —m,| = '(/ WO(u)du—'V())/ hp(s)ds
tJo 0 tJo 0
- %/ hp(s)ds
t
1 t e3¢}
< |3 [ [T rsas
tJo 0
+ %/ h(s)ds
t
Since [, h(s)ds < p/(1— p) < oo, we have
1
lim sup |~ (yp * - *y1 %y * 1)(t) — m,| = 0. (5)
t*}OOpeN t

From (1), (3) and (5), we obtain (4).

Proof of Theorem 2.1 We have
= Y ) = Y B
=0 =0
Hence from Lemma 2.2 and the DCT, we obtain
Jim BML/AP) = 3 i B ) =0

which proves {M;/t}:~o converges in quadratic mean to zero.

From (2), for each ¢t > 0, we have
At 1 &
1S

Hence from (3) and the Fatéu lemma, in order to prove {A;/t}:~¢ converges P-a.s. to

p—1 1 oo

) J ,E
O'yp* *7j+1>x<M + / 171,* * 71 % Y * 1.
: p:

zero, it suffices to prove that

tlggothp Ey Rk L=m. (6)
Lemma 2.1 implies
= 1 I = [
dosup—(ypxexyxqo s 1)(t) < sup ([ o(w)du) Y (g xm)(n)d
p=1 t>0 >0 0 =170

IN
~ N
=
o
7N
o~ | =
O\H‘
2
S
—
£
o,
<
"
—
|‘E

RS
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Hence (6) follows from the DCT along with (5). Since {M;/t};~0 is uniformly inte-
grable, {M;/t};~¢ converges P-a.s. to zero. Thus, {N;/t}i~ converges P-a.s. to m and

the proof is complete.
Proof of Theorem 2.2 From (2), for each ¢t > 0,

t .
/ (yp * -+ % 'yj+1)(u)Mt{u du.
0

Let
oo p—1 Mtj 00

/0(vp*mwﬁn(u)(Mf_u—Mﬁ)du

and
oo p—1 i
Mt] >

Dav=3 3 " | (s (w) du

We need to prove {D1 ;}i>0 and {Ds}i>0 converge in probability to zero.

We have

oo p—1

B0 <303 [y e e BN, — 24 VD

p=1j=0
and, since

|M{_, = M{|/VE<2 sup |MI|/VE,

0<u<t
we have (7, * - - % v;41) (w)BE(|M7_, — M/|/\/%) is bounded by
(1) =200y -3y () sup (sup MV )
>0 \0<u<t

Thus, by Lemma 2.2,

co p—1 ) [e%e] '] 00
ZZ/ Cpi(u)du = Z Z / Cpj(u)du
p=1;=0"0 =0 p=j+170
< 2> sk (sup M31/E)
1—p =0 t>0 0<u<t

< oQ.
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Consequently,

oo p—1

hmsupE |D14|) ZZ/ ok yi1) (w) limsup E(|M7_, — M7|/v/t) du
t— — t—o0

Let hj = 7, x---*x~ and t* > 0 such that 1f0 Yo()dv <75+ 1 if ¢ > t*. By the

Jensen inequality, for each u > 0,

E(IM{_, — M{|/V)? < E(M{_, - M{]*/t)
= E[(A] - AL/t
- 1/tiu(hj*fyo)(v)dv
= /t—u h;(s) (1 /ttju’yo(r) dr) ds
/ hj( ( / S’yo(r)dr) ds
< [Two(t] e as
/ i ( / sm(r)dr) ds.
Since . .
i g [ o= i g [ ar=0
and
/OOO hj(s)ds < oo,

it follows from the DCT that lim; o B(|M7_, — M]|/\/t) = 0, which proves that
limsup,_, .o E(|D1:]) = 0.

We have
E(|D24]) < iiEﬂMﬂ/ﬂ) /too(% ek 1) (u) du
and
E(|M]|/Vt) Z / x40 (w) du < supE (0;1}; IMil/\/f> PP

p=j+1
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Since, by Lemma 2.2,

oo p—1 e’}
S % supk (sup (3VE) 20 = LS s (s (01VE) < o0
1—p >0

S
p=1i=ot 0<u<t 0<u<t

[

we obtain

oo p—1

Jlim E(|Dy) < ZZ lim E( |MJ|/\f)/ (yp * - - % j41) (u) du.

But sup,.,E(|M/|/vt) < oo and Jo (v * -+ % yi1)(u) du < oo.  Consequently
limg_ o B(|Da|) = 0.
Due to {D1}i>0 and {Da}1>0 converge in probability to zero, it only remains to
prove {Y;}+>0 converges in distribution to a normal random variable with mean zero
2

and variance o%;. To this purpose, we use Theorem 1 in [19] (Chapter 8). For each

jEN, let
co  ptJ

a=1+% T [ it

p=1i=j+1
and note that Y; = Z;/v/t, where Z = {Z;}1>0 is given by Z, = Z;io athj. Since

Sup,en @ < 00, we have

o0
E(Z}) < supa’ ZE(|M£|2) = sup a;B(N;) < o0
jeN "3 jEN
Moreover, the martingales M7 (j € N) have no common jumps. Hence the predictable

quadratic variation of the martingale {Z;};>¢ is given, for each ¢t > 0, by

Z)y =Y ai (M), =) ol
j=0 j=0

As usual, [t] denotes the integer part of ¢ (¢ > 0). By making use of Lemma 2.2, it
is easy to see that {Y; — Y};}i>0 converges in probability to zero. Consequently, in
order to prove the convergence of {Y;}:-0, it suffices to prove {Y, },em (0} converges
in distribution to a normal random variable with mean zero and variance o%;.

For n > 1, define &, = (Zk — Zk—1)/v/n (k = 1,...,n). Hence {&, x}o<k<n
is a martingale-difference array with respect to {&, k}o<k<n, where for each n € N,

Enk = Fi, L.e., & is &,k measurable and E(&, x|En,x—1) = 0.
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Note that
ZE(EEL,Mgn,k—l) = Z Z aF(A), — A _)/n= ZQ?A%/H
k=1 k=1 j=0 =0
and
> EE ilEni-1) Za (—m3>
k=1
Thus,

n

E ZE(@QL,H&L,k—ﬂ — ok

k=1

(o] 5
N
2 n

< E ajE’n —mj|.

=0

Notice that if mj« = 0 for some j* € N, from (4) we have

Jjr—-1

2 n _
= nl;rgo Z 'E ’ m;| = 0.

Ad
lim g Ot2E —" —m;
n—00 n

7=0

Next, assume m; # 0 for all j € N. This implies that 75 # 0 and from (1) and Lemma

2.1 we obtain

A "
sup E( n ) sup ( / (95 %= m)( du) ( du)
n>1,j€EN nm; n>1,5eN \; Jo

IN

j [e.¢] 1
< sup —— / ¥i(u (/ Yo (u )
n>1,jeN \ M 1:[ nJo
1 n
= sup — Vo(u)du
n>1,5€N Yon
< 00.
Since
A
E‘”mj <myE ‘ (C + 1)m;,
n mj
where C' = sup,,>; jen E(A, /nm;), and > oi—gmj =m < oo, from (4) in Lemma 2.3
we obtain
li OOQE —OOQI'EA% =0
Jim, D GBS —m| =D o] lim BISE - my| =0
§=0 3=0
Hence
n
~ 2 _2
lim E ;E(ﬁn,k\&,k—l) a%| =0

To complete the proof, we need to verify that {&, 1 }o<k<n satisfies the Lindeberg
condition stated in Theorem 1 in [19] (Chapter 8). For this purpose, we prove that the
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sequence {maxo<k<n &n,k fnen\ {0} is uniformly integrable and converges in probability
to zero (see e.g. pages 314-315 in [7]).
Let k* = min{k < n: fi,k = maxo<k<n fiyk or k = n}. Hence by the Doob Optional

Sampling Theorem along with (1) and Lemma 2.1, we have
E < max 53“,6) = E(&£4)

0<k<n
_ 1 - 2E Aj Aj
- ;Z%— (k*_ k*—l)
j=0

- 7Za2E (/k » 7]*~--*71*70)(U)du>

([ o)
lsup / duZazpj

n >0 t

IN

IN

Since sup,- + fot Yo(u) du Y 32, aZp) < oo, we obtain lim,, o E(maxo<k<n & 1) = 0.
Thus, the sequence {maxo<g<n &n,k }nen {0} is uniformly integrable and converges in

probability to zero. This concludes the proof.

Proof of Lemma 2.4 For each C > 0, let ¢ be the function from R to R defined

as
-C, if xz<-C,
pol(x) = rz, if C<x<C(C,
C, if z>C.

Due to (F1), it suffices to prove that, for each C > 0, {(vc(Ut), 0c(Vi)) }e>0 converges
in distribution to (pc(U), pc(V)). Fix C > 0 and let f be a bounded and continuous
function from R2? to R and € > 0. From the Stone-Weierstrass theorem, there exist
Ui, ...,ur and vy, ..., v, real continuous functions, defined on K = [-C, C] x [-C, (]

such that

sup Zm y)| <e.

(m,y)eK
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Hence

s

E[f(pc(U), pc(Vi)] = Elf (e (V) el < | Eluilpc(Ur)vilee (V)]

=1

—E[ui(oc(U))vi(pc(V))]| + 2¢
and from (F2), we obtain

limsup [E[f(pc(Ur)), pc(Vi)] — Elf (0c(U)), pc(V)]] < 2e.

t—o0

Since € > 0 is arbitrary, the proof is complete.

Proof of Theorem 2.3 For each n € N\ {0} and ¢ > 0, let

LS -0 and v, —p (N EQY)
Xn—ﬁkzzo(fk> d v ( 7 )

We have { X, },em 10y and {Y;}¢>0 are independent and

/N
R, = TtXNt + Y. (7)

By the standard Central Limit Theorem and Theorem 2.2, { X, }nen (o} and {Y;}i>o0
converge in distribution to two normal random variables X and Y, respectively. We
assume X and Y are defined on (Q, F, P) and hence they are independent. By Theorem
2.1, (7) and the Slutzky theorem, it suffices to prove {(Xu,,Y:)}+>0 converges in
distribution to (X,Y’). For this purpose, we use Lemma 2.4. Since {Xn, }+>0 and
{Y:}+>0 are convergent in distribution, we have {(Xy,, Y;)}i>0 satisfies (F1). Let u
and v be continuous and bounded functions from R to R, ¢, = sup,cp |u(z)| and
Cy = sup,¢g |v(x)|. Since {X;}~0 converges in distribution to X, there exists t* > 0
such that |E[u(X;) — u(X)]| <, for all t > ¢*.
Since X is independent of {Y;}4~¢ and Y, we have

B(u(Xn,)o(Yy) —uw(X)o(Y))] < [E(w(Xy,) — u(X)]v(¥2))|

T Blu(X)pY:) — o)

|El(u(Xn,) = u(X))o(Yy)Lin,> ]

+  2¢u,c,P(Ny < %) + ¢y |E[v(Yz) —o(Y)]].

IN

For each w € {N; > t*}, we have
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[El(u(Xn,) = w(X)o(Y) (N, >3 [ Ne] ()

= [o(Vi(w)E[(u(Xn,) = w(X) x>} [Ne] (@)
|

< o |E[(“(XNf,(w)> - u(X))I{Nt>t*}|Nt](w)
= G |E[<“(XNt(w)) - U(X))H Ly, >y (w)
< CyE.

Consequently,
[E(u(XN,)v(Ye) = u(X)o(Y))] < cve + 2cucoP(Ny <17) + ey [E[o(Y2) = v(Y)]].

But € > 0 is arbitrary and lim oo {2¢cuc,P(Ny < t*) + ¢ |[E[v(Y2) —v(Y)]|} = 0.
Therefore, lim;—, oo |E[u(Xn,)v(Y:) — w(X)v(Y)]] = 0 and, by Lemma 2.4, the proof is

complete.
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