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Abstract

It has been shown that local algorithms based on grey-scale images sometimes
lead to asymptotically unbiased estimators for surface area and integrated
mean curvature. This paper extends the results to estimators for Minkowski
tensors. In particular, asymptotically unbiased local algorithms for estimation
of all volume and surface tensors and certain mean curvature tensors are given.
This requires an extension of the known asymptotic formulas to estimators
with position dependent weights.
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1 Introduction

Minkowski tensors [4, 10] are generalisations of Minkowski functionals [9]. They
associate to a compact convex bodyX ⊆ Rd a symmetric tensor, rather than a scalar.
They carry information about shape features of X such as position, anisotropy, and
eccentricity. For this reason they are used as shape descriptors in statistical physics.
For instance, in [13] Minkowski tensors are used to detect anisotropy in spherical
bead packs. See e.g. [14] for an overview.

Since the data is often of digital nature, there is a need for fast digital algorithms
to estimate tensors. Such algorithms are suggested in [11, 12]. These algorithms are
all of local type, see [15], based on black-and-white images.

It is well known that local algorithms for Minkowski functionals based on black-
and-white images are generally biased [5, 15]. The situation seems to be the same for
most Minkowski tensors. Since most black-and-white images occur as thresholded
grey-scale images, the focus has switched to algorithms based directly on grey-scale
images without thresholding. Recent results [16] show the existence of asymptoti-
cally unbiased algorithms for surface area and integrated mean curvature. Grey-scale
images and local estimators are explained in Section 2.

Surface area and integrated mean curvature can be estimated using only 1×· · ·×1
configurations, whereas larger n× · · ·×n configurations are needed in order to gain
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information about surface normals. Moreover, position dependent weights are needed
in order to get information about position. This requires a slight extension of the
known results about the asymptotic behaviour of local algorithms. These follow
fairly easily from the technical lemmas in [16]. The theoretical results are given in
Section 3.

The estimation of Minkowski tensors is the topic of Section 4. The formal defini-
tion of the tensors is given in Subsection 4.1. The subsequent subsections introduce
local estimators for volume, surface, and certain mean curvature tensors. The algo-
rithms are asymptotically unbiased, i.e. they converge when the resolution tends to
infinity and the point spread function (PSF) becomes concentrated near the bound-
ary. In particular, we obtain a complete set of estimators for the Minkowski tensors
in 2D. The algorithms require that the PSF is known; at least the knowledge of
what a blurred halfspace looks like is required. Moreover, the resolution has to be
sufficiently high compared to the support of the PSF.

2 Local estimators for grey-scale images

2.1 Grey-scale images

Let X ⊆ Rd be the compact set we are observing. We assume that the light coming
from each point is spread out following a point spread function which is independent
of the position of the point. Hence the light that reaches the observer is given by
the intensity function

θX : Rd → [0, 1]

where the intensity measured at x ∈ Rd is given by

θX(x) =

∫

X

ρ(z − x)dz.

In other words, θX is the convolution 1X ∗ρ of the indicator function 1X for X with
a PSF ρ. The PSF is assumed to be a measurable function satisfying

(i) ρ ≥ 0.

(ii)
∫
Rd ρ(z)dz = 1.

We say that a PSF is rotation invariant if ρ(x) = ρ(|x|) depends only on |x|.
A digital grey-scale image is the restriction of θX to an observation lattice L. A

change of resolution corresponds to a change of lattice from L to aL for some a > 0.
We assume that the precision of the measurements changes with resolution in such
a way that the PSF corresponding to aL is

ρa(x) = a−dρ(a−1x),

see the discussion in [16] Section 2.1. The corresponding intensity function is denoted

θXa (x) =

∫

X

ρa(z − x)dz = a−d
∫

X

ρ(a−1(z − x))dz.
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Figure 1: A grey-scale image of a halfspace. The function θu measures how the grey-values
change along the horizontal line going from right to left.

In applications, the PSF is typically the Gaussian function [7] or the Airy disk [1].
These are smooth and rotation invariant but do not have compact support. Another
important example is ρB = Hd(B)−11B where B ⊆ Rd is a compact set of non-zero
finite volume Hd(B). In this case, we measure at each z ∈ L the fraction of z + B
covered by X. Such PSF’s have compact support, but are not continuous.

2.2 A blurred halfspace

For u ∈ Sd−1 and α ∈ R, write

H−α,u = {x ∈ Rd | 〈x, u〉 ≤ α}

for the halfspace. The intensity function associated to a halfspace in standard re-
solution will play a special role in the following. Hence we introduce the separate
notation

θu(t) := θ
H−0,u
1 (tu).

Note for later that

θ
H−0,u
a (ax) = θ

H−0,u
1 (〈x, u〉u) = θu(〈x, u〉)

independently of a.

Example 2.1. If ρ is the standard Gaussian

ρ(x) = (2π)−
d
2 e−

1
2
|x|2 ,

then

θu(t) =

∫

u⊥

∫ 0

−∞
ρ(tu− z − su)dsdz = Φ(−t)

where Φ is the distribution function for the standard 1-dimensional normal distri-
bution.

A geometric interpretation of θu is illustrated in Figure 1.

2.3 Local algorithms in the grey-scale setting

Let L be a lattice in Rd spanned by the ordered basis v1, . . . , vd ∈ Rd and let
Cv =

⊕d
i=1[0, vi) be the fundamental cell of the lattice. As we shall later be scaling

the lattice, we may as well assume that the volume det(v1, . . . , vd) of Cv is 1. For
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c ∈ Rd, we let Lc = L + c denote the lattice translated by c and aLc the scaling of
Lc by a > 0.

Fixed w ∈ L. A fundamental n× · · · × n lattice block is Cn
w,0 = (w + nCv) ∩ L.

More generally we consider its translations Cn
w,z = z + Cn

w,0 by z ∈ Rd. We denote
by [0, 1]C

n
w,0 the set of nd-tuples of points in [0, 1] indexed by Cn

w,0. A point is written
{θs}s∈Cn

w,0
. The restriction of θXa to aCn

w,z naturally defines a point in [0, 1]C
n
w,0 which

we denote by
ΘX
a (az; aCn

w,0) = {θXa (az + as))}s∈Cn
w,0
.

Definition 2.2. A local algorithm Φ̂f
q is an estimator of the form

Φ̂f
q (X) = aq

∑

z∈Lc

f(ΘX
a (az; aCn

w,0), z) (2.1)

where f : [0, 1]C
n
w,0 × Rd → R is a Borel function. We assume that the support of f

is contained in A × Rd where A ⊆ (0, 1)C
n
w,0 is compact and that f is bounded on

compact sets.

The assumptions on f make the sum (2.1) finite and z 7→ f(ΘX
a (az; aCn

w,0), z)
integrable whenever X is compact.

We assume that the lattice is stationary random, i.e. we consider the lattice
Lc = L + c where c ∈ Cv is uniform random. Then the mean estimator is

EΦ̂f
q (X) = aqE

∑

z∈Lc

f(ΘX
a (az; aCn

w,0), az) (2.2)

= aq−d
∫

Rd

f(ΘX
a (z; aCn

w,0), z)dz.

As a natural convergence criterion, we take the following:

Definition 2.3. A local algorithm is an asymptotically unbiased estimator for Φ(X)
if lima→0EΦ̂f

q (X) = Φ(X).

2.4 The relevant set-classes

In order to prove the formulas, we need to make some assumptions on X. First some
notation. For a closed set X ⊆ Rd, we let exo(X) denote the points in Rd not having
a unique nearest point in X. Let ξX : Rd \ exo(X) → X be the natural projection
taking a point in Rd \exo(X) to its nearest point in X. We define the normal bundle
of X to be the set

N(X) =
{(
x, z−x|z−x|

)
∈ X × Sd−1

∣∣ z ∈ Rd \ (X ∪ exo(X)), ξX(z) = x
}
.

For (x, u) ∈ N(X) we define the reach

δ(X;x, u) = inf{t ≥ 0 | x+ tu ∈ exo(X)} > 0.

Let Hk denote the k-dimensional Hausdorff measure. Following [6], we introduce
the class of gentle sets:
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Definition 2.4. A closed set X ⊆ Rd is called gentle if

(i) Hd−1(N(∂X) ∩ (B × Sd−1)) <∞ for any bounded Borel set B ⊆ Rd.

(ii) For Hd−1-almost all x ∈ ∂X there exist two balls Bin, Bout ⊆ Rd both contain-
ing x and such that Bin ⊆ X, int(Bout) ⊆ Rd \X.

The condition (ii) in the definition means that for a.a. x ∈ ∂X there is a unique
pair (x, u(x)) ∈ N(X) with (x, u(x)), (x,−u(x)) ∈ N(∂X). This class is quite ge-
neral, including for instance all C1 manifolds and all polyconvex sets satisfying a
certain regularity condition, see [6].

We shall also consider the subclass of r-regular sets:

Definition 2.5. A gentle set X ⊆ Rd is called r-regular for some r > 0, if the balls
Bin and Bout exist for every x ∈ ∂X and can be chosen to have radius r.

Being r-regular is slightly weaker than being a C2 manifold.
It can be proved [2], that if X is r-regular, then ∂X is a C1 manifold with Hd−1-

a.e. differentiable normal vector field u. Thus its principal curvatures k1, . . . , kd−1,
corresponding to the orthogonal principal directions e1, . . . , ed−1 ∈ T∂X, can be
defined a.e. as the eigenvalues of the differential du. Hence the second fundamental
form II x on the tangent space Tx∂X is defined for Hd−1-a.a. x ∈ ∂X. For a tangent
vector

∑d−1
i=1 αiei ∈ Tx∂X, II x is the quadratic form given by

II x

(d−1∑

i=1

αiei

)
=

d−1∑

i=1

ki(x)α2
i

whenever dxu is defined. In particular, the trace is Tr(II ) = k1 + · · · + kd−1. Note
for later that r-regularity ensures that k1, . . . , kd−1 ≤ r−1.

The (d− 2)nd curvature measure of X is defined [2] for r-regular sets by

Cd−2(X;A) =
1

2π

∫

∂X∩A
Tr(II )dHd−1

for all Borel sets A ⊆ Rd.

3 Asymptotic formulas

3.1 First order formulas

The following notation will be used in the proofs. For a finite set S and an interval I,
we denote by IS the |S|-tuples {θs}s∈S of points θs ∈ I indexed by S. Given a finite
set S ⊆ Rd we write

ΘX
a (x;S) = {θXa (x+ s)}s∈S ∈ [0, 1]S

Θu(t;S) = {θu(t+ 〈s, u〉)}s∈S ∈ [0, 1]S.
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For x ∈ ∂X understood and u an outward pointing normal, we also write Hu :=
H−〈x,u〉,u for the supporting halfspace. Note that

θHu
a (x+ a(tu+ s)) = θ

H−0,u
a (a(t+ 〈s, u〉)u)

= θu(t+ 〈s, u〉)
Θu(t;S) = {θHu

a (x+ a(tu+ s))}s∈S.
The proofs follow from the following lemma shown in [16] Lemma 7.1 and 7.2:

Lemma 3.1. Suppose X is gentle and ρ is a bounded PSF. Let D > 0. Then for
a.a. x ∈ ∂X,

lim
a→0

sup
{∣∣θXa (x+ atu+ as)− θu(t+ 〈s, u〉)

∣∣, t ∈ [−D,D], s ∈ B(D)
}

= 0.

Theorem 3.2. Suppose X ⊆ Rd is a compact gentle set, S ⊆ Rd is finite, and ρ is
a bounded PSF. Let f : (0, 1)S × Rd → R be continuous with suppf ⊆ [β, ω]S × Rd

for some β, ω ∈ (0, 1). Then

lim
a→0

a−1

∫

Rd

f(ΘX
a (x; aS), x)dx =

∫

∂X

∫

R
f(Θu(t;S), x)dtHd−1(dx).

Proof. Let D > 0 be such that
∫

|x|≥D
2

ρ(x)dx ≤ β, 1− ω

and S ⊆ B
(
D
2

)
where B(R) denotes the ball in Rd of radius R. This ensures that

suppf(ΘX
a (x; aS), x) ⊆ ∂X ⊕B(aD).

Then the generalized Weyl tube formula in [3] Theorem 2.1 yields
∫

Rd

f(ΘX
a (x; aS), x)dx =

d∑

m=1

mκm

∫

N(∂X)

∫ δ(∂X;x,u)

0

tm−1f(ΘX
a (x+ tu; aS), x+ tu)dtµd−m(∂X; d(x, u)). (3.1)

Here κm is the volume of the unit ball in Rm and the µi are certain signed measures
of locally finite total variation.

Observe that
∫ δ(∂X;x,u)

0

tm−1f(ΘX
a (x+ tu; aS), x+ tu)dt ≤ m−1amDm sup |f | (3.2)

so that dominated convergence together with [6] Eq. (8) yields

lim
a→0

a−1

d∑

m=1

mκm

∫

N(∂X)

∫ aD

0

tm−1f(ΘX
a (x+ tu; aS), x+ tu)dtµd−m(∂X; d(x, u))

=

∫

∂X

(
lim
a→0

∫ D

−D
f(ΘX

a (x+ atu; aS), x+ atu)dt
)
Hd−1(dx)

=

∫

∂X

∫ D

−D
f(Θu(t;S), x)dtHd−1(dx).

The last equation follows from Lemma 3.1 and continuity of f .

6



Assume X is compact gentle and ρ bounded. Let A ⊆ (0, 1)S be a compact set
and g : Rd → R a continuous function. Define the measures on A given for any Borel
set B ⊆ A by

µX,ga (B) = a−1

∫

Rd

1B
(
ΘX
a (x+ atu; aS)

)
g(x)dx

and

µX,g(B) =

∫

∂X

∫ D

−D
1B
(
Θu(t;S)

)
dtg(x)Hd−1(dx).

Corollary 3.3. Let X be a compact gentle set and A ⊆ (0, 1)S a compact set. Let
g : Rd → R be continuous and assume µX,g(∂A) = 0. Then µX,ga converges weakly to
µX,g. In particular, if h : A→ R is continuous and f(Θ, x) = h(Θ)g(x), then

lim
a→0

EΦ̂f
q (X) =

∫

∂X

∫ D

−D
h(Θu(t;S))dtg(x)Hd−1(dx).

Proof. For any bounded continuous h : A→ R,
∫

A

hdµX,ga →
∫

A

hdµX,g.

This follows from Theorem 3.2 by approximating h by continuous functions on
(0, 1)S.

3.2 Notation

We next introduce some more notation that will be used in order to keep formulas
short in the statement of the main second order theorem and its proof. Moreover,
we state a technical lemma proved in [16].

We will assume ρ to be continuous and compactly supported. In this case all
θu are C1 with (u, t) 7→ θ′u(t) continuous. We say that β ∈ (0, 1) is a regular value
if θ′u(t) < 0 for all t with θu(t) = β and all u ∈ Sd−1. Since θu is decreasing, this
ensures that θ−1

u (β) is uniquely determined.
For X ⊆ Rd r-regular, define the quadratic approximation Qx to X at x ∈ ∂X

by
Qx = {z ∈ Rd | 〈z − x, u〉 ≤ −1

2
II x(πu⊥(z − x))}

where πu⊥ : Rd → u⊥ denotes orthogonal projections.
It is shown in [16], in the proof of Lemma 7.6, that for s ∈ Rd

θQx
a (x+ a(tu+ s)) = θu(t+ 〈s, u〉) + aθQx(t, s) + o(a) (3.3)

where
θQx(t, s) = −1

2

∫

u⊥
II x(z)ρ(z − tu− s)dz.

Again we use the notation

ΘQx
a (t;S) = {θQx

a (x+ atu+ s)}s∈S
ΘQx(t;S) = {θQx(t, s)}s∈S.
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Choose D as in the proof of Theorem 3.2. Given A ⊆ (0, 1)S and x ∈ ∂X, let

tS0 = inf{t ∈ [−D,D] |Θu(t;S) ∈ A}
tS1 = sup{t ∈ [−D,D] |Θu(t;S) ∈ A}

tS0 (a) = inf{t ∈ [−D,D] |ΘQx
a (t; aS) ∈ A}

tS1 (a) = sup{t ∈ [−D,D] |ΘQx
a (t; aS) ∈ A}

tX,S0 (a) = inf{t ∈ [−D,D] |ΘX
a (x+ atu; aS) ∈ A}

tX,S1 (a) = sup{t ∈ [−D,D] |ΘX
a (x+ atu; aS) ∈ A}.

Finally, let

ψS0 (x) = max

{
− θQx(tS0 , s)

θ′u(t
S
0 + 〈s, u〉)

∣∣∣∣ s ∈ S, tS0 = ts0

}

ψS1 (x) = min

{
− θQx(tS1 , s)

θ′u(t
S
1 + 〈s, u〉)

∣∣∣∣ s ∈ S, tS1 = ts1

}
.

Lemma 3.4. Suppose that X is r-regular and ρ is continuous with compact support.
Let R > 0 and S ⊆ Rd finite be given.

For all a sufficiently small, t 7→ θXa (x + a(tu + s)) and t 7→ θQx
a (x + a(tu + s))

are decreasing functions for all x ∈ ∂X, s ∈ S, and t ∈ [−R,R].
There is a constant M > 0 such that for ν = 0, 1 and a sufficiently small

sup
{∣∣ΘX

a (x+ atu; aS)−Θu(t;S)
∣∣, (3.4)

x ∈ ∂X, t ∈ [−R,R]
}
≤Ma

sup
{
|tX,Sν (a)− tSν |

∣∣ x ∈ ∂X
}
≤Ma. (3.5)

Assume that A =×s∈S Is where Is are intervals and all points in ∂Is are regular
values. Then for each x ∈ ∂X and ν = 0, 1,

sup
{
|ΘX

a (x+ atu; aS)−ΘQx
a (t; aS)|

∣∣ t ∈ [−R,R]
}
,∣∣tX,Sν (a)− tSν (a)

∣∣ (3.6)

are of order o(a) and
tSν (a) = tSν + aψSν (x) + o(a). (3.7)

Proof. The lemma is essentially proved in [16]. Note that the notation is changed.
The first statement is proved in Lemma 7.5 for θX . The proof for θQx is similar. Eq.
(3.4) and (3.5) are shown in the proof of Theorem 3.2 and 5.2. Eq. (3.6) follows from
Lemma 7.7 and (3.7) from Lemma 7.6.

3.3 Second order formulas

Theorem 3.5. Suppose X is an r-regular set and ρ is continuous and compactly
supported. Let S ⊆ Rd be a finite set and A =×s∈S Is where Is ⊆ (0, 1) are closed
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intervals such that ∂Is consists of regular values for all s ∈ S. Let f : A× Rd → R
be C1. Then

lim
a→0

(
a−2

∫

Rd

f(ΘX
a (x; aS), x)dx− a−1 lim

a→0
a−1

∫

Rd

f(ΘX
a (x; aS), x)dx

)

=

∫

∂X

∫ tS1

tS0

tf(Θu(t;S), x)dtTr(II x)Hd−1(dx)

+

∫

∂X

∫ tS1

tS0

(〈
∇1f(Θu(t;S), x),ΘQx

0 (t;S)
〉

+ t
〈
∇2f(Θu(t;S), x), u

〉)
dtHd−1(dx)

+
∑

ν=0,1

∫

∂X

(−1)νf(Θu(t
S
ν ;S), x)ψSν (x)Hd−1(dx).

Here ∇1,∇2 are the gradients of Θ 7→ f(Θ, x) and x 7→ f(Θ, x), respectively.

Proof. For r-regular sets, the generalized Weyl tube formula reduces to

∫

Rd

f(ΘX
a (x; aS), x)dx = a

d∑

m=1

∫

∂X

∫ D

−D
tm−1

× f(ΘX
a (x+ atu; aS), x+ atu)dtsm−1(x)Hd−1(dx).

where sm(x) is the mth symmetric polynomial in the principal curvatures at x
whenever these are defined.

Again, (3.2) shows that dominated convergence applies to all terms with m ≥ 2
and shows that all terms with m ≥ 3 vanish asymptotically.

For m = 2, consider
∫ D

−D

∣∣tf(ΘX
a (x+ atu; aS), x+ atu)− tf(Θu(t;S), x)

∣∣dt

≤ 2D2 sup|∇f | sup
{∣∣ΘX

a (x+ atu; aS)−Θu(t;S)
∣∣+ aD

∣∣∣

t ∈
[
tS0 , t

S
1

]
∩
[
tX,S0 (a), tX,S1 (a)

]}

+ 2D sup |f |H1([tS0 , t
S
1 ]∆[tX,S0 (a), tX,S1 (a)]) (3.8)

where ∆ denotes the symmetric difference. By Eq. (3.4) and (3.5), the right hand
side is of order O(a).

For the m = 1 term, a similar argument shows that
∫ D

−D

(
f(ΘX

a (x+ atu; aS), x+ atu)− f(Θu(t;S), x)
)
dt (3.9)

is uniformly O(a). Hence another application of dominated convergence shows that
it is enough to determine the limit of this for each x ∈ ∂X.

Another argument similar to (3.8) using (3.6) shows that

lim
a→0

∫ D

−D
a−1
∣∣f(ΘX

a (x+ atu; aS), x+ atu)− f(ΘQx
a (t; aS), x+ atu)

∣∣dt = 0.
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Thus it remains to compute

lim
a→0

∫ D

−D
a−1
(
f(ΘQx

a (t; aS), x+ atu)− f(Θu(t;S), x)
)
dt.

The integrand is uniformly bounded on

G(a) =
(
tS0 , t

S
1

)
∩
(
tS0 (a), tS1 (a)

)

by differentiability of f and another application of Lemma 3.4 (3.4) with X replaced
by Qx. Observe that

1G(a)(t)→ 1(tS0 ,t
S
1 )(t)

point-wise. Hence by dominated convergence and Eq. (3.3),

a−1

∫

G(a)

(
f(ΘQx

a (t; aS), x+ atu)− f(Θu(t;S), x)
)
dt

→
∫ tS1

−tS0

(〈
∇1f(Θu(t;S), x),ΘQx(t;S)

〉
+ t
〈
∇2f(Θu(t;S), x), u

〉)
dt

for a→ 0.
It remains to consider the integral over the sets

[
tS0 (a) ∧ tS0 , tS0 (a) ∨ tS0

]
and

[
tS1 (a) ∧ tS1 , tS1 (a) ∨ tS1

]
. (3.10)

The integral over the first interval is
∫ tS0

tS0 (a)

a−1
(
f(ΘQx

a (t; aS), x+ atu) + f(Θu(t;S), x)
)
dt

=

∫ tS0

tS0 +aψS
0 (x)

a−1
(
f(ΘQx

a (t; aS), x+ atu) + f(Θu(t;S), x)
)
dt+ o(1)

by Lemma 3.4 (3.7). Since |t− tS0 | ≤Ma for all t ∈ [tS0 (a) ∧ tS0 , tS0 (a) ∨ tS0 ],
∫ tS0

tS0 +aψS
0 (x)

a−1
(
f(ΘQx

a (t; aS), x+ atu) + f(Θu(t;S), x)
)
dt

= −
∫ tS0 +aψS

0 (x)

tS0

a−1f(Θu(t
S
0 ;S), x)dt+ o(1)

= − ψS0 (x)f(Θu(t
S
0 ;S), x)dt+ o(1).

The second interval in (3.10) is treated similarly.

4 Estimation of the Minkowski tensors

4.1 Minkowski tensors

To a compact set X ⊆ Rd, we associate the generalized curvature measures Ck(X; ·)
on Σ = Rd×Sd−1 for k = 0, . . . , d− 1, see [9] in the case of poly-convex sets and [2]
for sets of positive reach. An extension to general compact sets can be found in [3].
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Let Tp denote the space of symmetric tensors on Rd of rank p. Identifying Rd

with its dual using the Euclidean inner product 〈·, ·〉, one can interpret a symmetric
p-tensor as a symmetric p-linear functional on Rd. Let xr denote the r-fold symmetric
tensor product of x ∈ Rd. For X ⊆ Rd and k = 0, . . . , d − 1, r, s ≥ 0 we associate
the (r + s)-tensors

Φr,s
k (X) =

1

r!s!

ωd−k
ωd−k+s

∫

Σ

xrusCk(X; d(x, u)),

and for r ≥ 0 we define the volume tensors

Φr,0
d (X) =

1

r!

∫

X

xrdx.

These are the so-called Minkowski tensors introduced in [8], see also e.g. [4, 10].
The Minkowski tensors satisfy the McMullen relations [8] on convex sets,

2π
∑

s

sΦr−s,s
k−r+s = Q

∑

s

Φr−s,s−2
k−r+s

where k ≥ 0, r ≥ 0, and Q is the metric tensor. All tensors in the sum that have
not been defined above should be interpreted as 0.

Below we shall define estimators for Φr,0
d , Φr,s

d−1, and Φr,0
d−2. The McMullen relations

show that for d = 2, all tensors are linear combinations of multiples of these by
powers of Q. Hence, in 2D we obtain a complete set of estimators for the Minkowski
tensors.

4.2 Volume tensors

It is easy to see that the volume tensors can be estimated unbiasedly from black-
and-white images even in finite resolution just using a Riemann sum:

Φ̂r,0
d (X) = ad

1

r!

∑

z∈aL∩X
zr.

If only a grey-scale image is given, one may threshold the image at level β ∈ (0, 1)
and apply this estimator. This yields the estimator

Φ̂r,0
d (X) = ad

1

r!

∑

z∈aL
1{θXa (z)≥β}z

r.

This is asymptotically unbiased for all sets with Hd−1(∂X) <∞ since

EΦ̂r,0
d (X) =

1

r!

∫

Rd

zr1{θXa (z)≥β}dz

and |1{θXa ≥β} − 1X | ≤ 1∂X⊕B(aD) where D is such that
∫

|z|≤D
ρ(z)dz ≥ β, 1− β.

11



4.3 Surface tensors

In this section we define local algorithms based on 2× · · · × 2 configurations for the
surface tensors Φr,s

d−1(X). For gentle sets, these take the form

Φr,s
d−1(X) =

1

r!s!

2

ωs+1

∫

∂X

xrusHd−1(dx).

Identifying Rd with its dual, it is enough to determine all their evaluations on a
basis v1, . . . , vd,

Φr,s
d−1(X)(vi1 , . . . , vir+s) =

1

r!s!

2

ωs+1

∫

∂X

r∏

k=1

〈x, vik〉
r+s∏

l=r+1

〈u(x), vil〉Hd−1(dx)

for all choices of i1, . . . , ir+s ∈ {1, . . . , d}. Hence it is enough to estimate (4.1) for
each tuple i1, . . . , ir+s. As basis we choose the vectors v1, . . . , vd spanning L. Let
V = max{|vi|, i = 1 . . . , d}.

As in the case of surface area estimators, this requires some assumptions on the
PSF :

(i) ρ is rotation invariant ρ(x) = ρ(|x|). In this case, θ(t) := θu(t) is independent
of u and

θu(t;S) = {θ(t+ 〈u, s〉)}s∈S.
(ii) θ is strictly decreasing on θ−1(0, 1). In this case the inverse exists on (0, 1) and

we denote this by ϕ.

(iii) The lattice is so fine compared to the support of ρ that θ−1(0, 1) contains an
interval of the form [β−V, ω+V ] where β < ω. In particular, ϕ is well-defined
on [β − V, ω + V ].

Note that (i) and (ii) are satisfied for both the Gaussian and the Airy disk.
Under these conditions, observe that

ϕ(θu(t+ 〈vi, u〉))− ϕ(θu(t)) = 〈u, vi〉. (4.1)

for t ∈ [β, ω]. Let S = {0, v1, . . . , vd} ⊆ C2
0,0 and A = [β, ω]××s∈S\{0}[β−V, ω+V ].

Define the weight function

f
(
{θs}s∈S, x

)
= 1A

(
{θs}s∈S

) 1

r!s!

2

ωs+1

r∏

k=1

〈x, vik〉
r+s∏

l=r+1

(
ϕ(θvil )− ϕ(θ0)

)
(4.2)

This requires that ϕ is known or, equivalently, the blurring of a halfspace θ.
Applying Theorem 3.5 to the local estimator with weight function (4.2) yields:

Corollary 4.1. Let X be a gentle set and suppose ρ satisfies Condition (i)–(iii). If
f is as in (4.2), then

lim
a→0

EΦf
d−1(X) =

2(ϕ(β)− ϕ(ω))

ωs+1r!s!
×
∫

∂X

r∏

k=1

〈x, vik〉
r+s∏

l=r+1

〈u(x), vil〉Hd−1(dx).

Since ϕ is strictly decreasing, (ϕ(β)−ϕ(ω)) > 0. Dividing by this factor thus yields
an asymptotically unbiased estimator for (4.1).
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For r-regular sets, a formula for the first order bias is given by Theorem 3.5.
Using 3×· · ·×3 configurations instead, we can make the first order bias vanish. Let
S = {0,±v1, . . . ,±vd} ⊆ C3

v,0 where v = v1 + · · ·+ vd. Consider the weight function

f
(
{θs}s∈S, x

)
= 1A

(
{θs}s∈S

) 2

ωs+1r!s!

r∏

k=1

〈x, vik〉

×
( r+s∏

l=r+1

(ϕ(θvil )− ϕ(θ0)) +
r+s∏

l=r+1

(ϕ(θ0)− ϕ(θ−vil ))

)
(4.3)

where
A = [β, 1− β]× ×

s∈S\{0}
[β − V − ε, 1− β + V + ε]

for ε > 0 so small that

[β − V − ε, 1− β + V + ε] ⊆ θ−1(0, 1).

Then Theorem 3.5 yields:

Corollary 4.2. Let X be an r-regular set and suppose ρ satisfies Condition (i)–(iii).
If f is as in (4.3), then

EΦf
d−1(X) =

2(ϕ(β)− ϕ(ω))

ωs+1r!s!

∫

∂X

r∏

k=1

〈x, vik〉
r+s∏

l=r+1

〈u(x), vil〉Hd−1(dx) + o(a).

Remark 4.3. More generally, u is determined by its coordinates (4.1) in the basis
v1, . . . , vd. This can be used in a similar way to find estimators for integrals of the
form ∫

∂X

f(x, u(x))Hd−1(dx).

Remark 4.4. Since Tr
(
Φ0,2
d−1(X)

)
is just the surface area of X up to a constant

factor, the above also yields a new surface area estimator. Taking larger configu-
rations into account than the surface area estimators in [16], one may hope for a
better precision. On the other hand, this new estimator requires more knowledge
about the underlying PSF and is hence harder to apply in practice.

Remark 4.5. It is known that asymptotically unbiased local surface area estimators
from black-and-white images do not exist [15]. Tensors of the form Φr,1

d−1 can be
estimated, but in general, asymptotically unbiased local estimators for Φr,s

d−1 are not
expected to exist for s > 0.

4.4 Mean curvature tensors

We similarly obtain estimators for tensors of the form Φr,0
d−2. Let β ∈

(
0, 1

2

)
and let

g : [β, 1− β]→ R be a C1 function satisfying g(x) = −g(1− x). Define

f(θ0, x) = g(θ0)xr. (4.4)

This defines a local estimator Φ̂f
d−2. Theorem 3.2 and 3.5 yield:
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Corollary 4.6. Suppose X is a compact r-regular set and ρ is continuous with
compact support and satisfies Condition (i)–(ii) in Section 4.3. With f as in (4.4)

lim
a→0

EΦ̂f
d−2(X) = 2πr!(c1 + c2 + c3)Φr,0

d−2(X) + r!

∫ ϕ(β)

−ϕ(β)

tg(θ(t))dtΦr,0
d (X)

where the constants c1, c2, c3 ∈ R are as in [16] Section 6.2.

This follows by rewriting the limit in Theorem 3.5 exactly as in [16]. The Φr,0
d (X)-

term comes from the ∇2-term by an application of the divergence theorem. We al-
ready found asymptotically unbiased estimators for volume tensors in Subsection 4.2,
so this can be corrected for.

Estimators for which c1+c2+c3 6= 0 are suggested in [16] Section 6.2. For instance,
this is the case for g(θ) = (θ− 1

2
)1[β,1−β](θ) and g(θ) = 1[β, 1

2
](θ)−1[ 1

2
,1−β](θ) and for

suitable values of β.
The remaining mean curvature tensors seem to be harder to get a hold of, since

the asymptotic mean involves the surface normals in a more involved way than in
the case of surface tensors.
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