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Abstract

We introduce a promising alternative to the usual hidden Markov tree model for
Gaussian wavelet coefficients, where their variances are specified by the hidden states
and take values in a finite set. In our new model, the hidden states have a similar
dependence structure but they are jointly Gaussian, and the wavelet coefficients
have log-variances equal to the hidden states. We argue why this provides a flexible
model where frequentist and Bayesian inference procedures become tractable for
estimation of parameters and hidden states. Our methodology is illustrated for
denoising and edge detection problems in two-dimensional images.

Key words: conditional auto-regression; EM algorithm; hidden Markov tree; integrated
nested Laplace approximations.

1 Introduction

To model statistical dependencies and non-Gaussianity of wavelet coefficients in signal
processing, Crouse, Nowak & Baraniuk (1998) introduced a model where the wavelet
coefficients conditional on a hidden Markov tree are independent Gaussian variables,
with the hidden states taking values in a finite set (in applications, each hidden variable
is often binary) and used for determining the variances of the wavelet coefficient. We
refer to this as the Gaussian-finite-mixture (GFM) wavelet tree model or just the GFM
model. The GFM model and a clever implementation of the EM-algorithm have been
widely used in connection to e.g. image segmentation, signal classification, denoising,
and image document categorization, see e.g. Crouse et al. (1998), Po & Do (2006),
and Choi & Baraniuk (2001). According to Crouse et al. (1998), the “three standard
problems” (page 892) are training (i.e. parameter estimation), likelihood determination
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(i.e. determining the likelihood given an observed set of wavelet coefficients), and state
estimation (i.e. estimation of the hidden states); they focus on the two first problems,
but mention that state estimation “is useful for problems such as segmentation” (page
893).

In the present paper, we propose an alternative model—called the Gaussian-log-
Gaussian (GLG) wavelet tree model or just the GLG model—where the hidden states
are jointly Gaussian and described by a similar dependence structure as in the GFM
model, and where the wavelet coefficients conditional on the hidden states are still in-
dependent Gaussian variables but the log-variance for each wavelet coefficient is given
by the corresponding hidden state. In comparison with the GFM model, in many cases
the GLG model provides a flexible model and a better fit for wavelet coefficients, it is
easy to handle for parameter estimation in a frequetist setting as well as in a Bayesian
setting, where state estimation is also possible in the latter case, and it works well for
denoising and edge detection problems.

The paper is organized as follows. Section 2 provides further details of the GFM and
GLG models. Section 3 studies the moment structure of parametric GLG models and ex-
ploits the tractability of the lower-dimensional distributions of the GLG model to develop
composite likelihoods so that the EM-algorithm becomes feasible for parameter estima-
tion. Section 4 concerns fast Bayesian procedures for marginal posterior estimation of
parameters and hidden states in the GLG model, where we use integrated nested Laplace
approximations (Rue, Martino & Chopin 2009). Section 5 demonstrates how our meth-
ods in Sections 3 and 4 apply for denoising and edge detection in two-dimensional images.
Section 6 contains concluding remarks. Technical details are deferred to Appendix A-D.
Matlab and R (R Core Team 2013) codes for our statistical inference procedures are
available at http://www.mathworks.com/matlabcentral/fileexchange/43417.

2 Wavelet tree models

For both the GFM and the GLG model, we consider wavelet coefficients w = (w1, . . . , wn),
where the units 1, . . . , n represent an abstract single index system. The units are iden-
tified with the nodes of a tree with root 1 (the coarsest level of the wavelet transform)
and edges corresponding to the parent-child relations of the wavelet coefficients at the
coarsest to the finest level, see Figure 1. Conditional on hidden states s = (s1, . . . , sn),
the wavelet coefficients are independent Gaussian distributed, where each wi depends
only on si (in Section 5.2 we modify the GFM and GLG models and consider wavelet
coefficients with noise). For simplicity and since it is frequently the case in applications,
we assume that each conditional mean E[wi|si] = 0 is centered. However, for the two
models, the conditional variance Var[wi|si] depends on i and si in different ways; the
details are given in Sections 2.1 and 2.2.

The conditional independence structure for the hidden states is the same for the two
models and given by the tree structure, i.e. s is viewed as a directed graphical model (see
e.g. Lauritzen (1996)): For i = 1, . . . , n, denote c(i) ⊂ {1, . . . , n} the children of i, where
each child j ∈ c(i) is at one level lower than i (see Figure 1); if i is at the finest wavelet
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Figure 1: Illustration of a binary tree structure corresponding to a one-dimensional signal
with l = 3 levels of wavelet coefficients. Node j has one parent ρ(j) and node
i has two children c(i).

level, i has no children (c(i) = ∅); else c(i) 6= ∅. Typically in applications, if i is not at
the finest wavelet level, i has 2d children, where d is the dimension of the signal/image.
Now, the joint density for hidden states and wavelet coefficients factorizes as

p(s,w) = p0(s1)
n∏

i=1

[
qi(wi|si)

∏

j∈c(i)
pi(sj |si)

]
(1)

where p0(·), pi(·|·), and qi(·|·) are either probability mass functions or probability den-
sity functions, with the true nature being obvious from the context, and where we set∏
j∈c(i) pi(sj |si) = 1 if c(i) = ∅.
We refer to (1) as a wavelet tree model. We shall consider parametric models, using

θ as generic notation for the unknown parameters, and to stress the dependence of θ
we write e.g. p(s,w|θ) for the density p(s,w). When we later discuss parameter esti-
mation (Sections 3 and 4), we consider k independent pairs (s(1),w(1)), . . . , (s(k),w(k))
with density p(s,w|θ), where we suppose only the wavelet coefficients w(1), . . . ,w(k) are
observed.

2.1 The GFM model

For the GFM model, it is assumed in Crouse et al. (1998) that

• the state space of each si is a finite set {1, . . . ,m} (often m = 2),

• qi(·|si) is a Gaussian density where both the mean µi,si and the variance σ2i,si
depend on the index i and the argument si.

Crouse et al. (1998) remark that instead of a single Gaussian distribution, the m-state
Gaussian mixture distribution for each wavelet coefficient is needed because of “the
compressing property... resulting in a large number of small coefficients and a small
number of large coefficients” (page 887); and the conditional dependence structure is
used to “characterize the key dependencies between the wavelet coefficients” (page 887),
i.e. it “matches both the clustering and persistence properties of the wavelet transform”
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(page 891) so that “if one coefficient is in a high-variance (low-variance) state, then its
neighbor is very likely to also be in a a high-variance (low-variance) state” (page 891).

The parameters of the GFM model are

• the variance σ2i,si of qi(·|si) ∼ N(0, σ2i,si), si = 1, . . . ,m, i = 1, . . . , n,

• the initial probabilities p0(·) and the unknown transition probabilities pi(·|·) of the
hidden state variables with c(i) 6= ∅ and i = 0, . . . , n (setting c(0) = {1}).

Usually the variances and transition probabilities are assumed only to depend on the
level of the nodes. Then, denoting l the number of levels in the tree, the number of
parameters is

rGFM = ml +m− 1 +m(m− 1)(l − 1). (2)

2.2 The GLG model

In the GLG model,

• each wavelet coefficient wi conditional on si is zero-mean Gaussian with variance
exp(si), i.e. qi(·|si) = q(·|si) does not depend on i, and

q(wi|si) ∼ N(0, exp(si)); (3)

• the hidden states are jointly Gaussian, i.e. p0(s1) = p(s1|µ0, σ20) and pi(sj |si) =
p(sj |si, αi, βi, κ2i ) for j ∈ c(i), where

p(s1|µ0, σ20) ∼ N(µ0, σ
2
0), (4)

p(sj |si, αi, βi, κ2i ) ∼ N(αi + βisi, κ
2
i ), (5)

where µ0, αi, and βi are real parameters and σ0 and κi are positive parameters.

The density (3) is completely determined by the variance exp(si), and it appears to be
a more flexible model for wavelet coefficients than the m-state Gaussian mixture model
used in Crouse et al. (1998): In the GFM model, wavelet coefficients from all trees and
associated to the same parent (or to the root) are sharing the same set of m possible

variances, while in the GLG model, each wavelet coefficient w
(t)
i for each tree t is having

its ‘own’ log-Gaussian hidden state s
(t)
i .

In Section 3.1.2 and further on we assume—as in the GFM model—‘tying within
levels’, that is the parameters on each level are equal (detailed later in (15)). Then the
number of parameters in the GLG model for a tree with l levels is rGLG = 3l − 1. In
comparison the GFM model with m = 2 is specified by rGFM = 4l− 1 parameters, while
the difference will be even larger as m grows, cf. (2).
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3 Parameter estimation using composite likelihoods and the
EM-algorithm

Section 3.1 describes the first and higher order moment structure of the hidden states and
the wavelets coefficients under the GLG model. In particular we clarify the meaning of
tying within levels, which is assumed when we in Section 3.2 discuss parameter estimation
using composite likelihoods and the EM-algorithm.

3.1 Mean and variance-covariance structure

3.1.1 Full parametrization

This section considers a full parametrization of the GLG model (4), i.e. when

µ0 ∈ R, σ0 > 0, (αi, βi, κi) ∈ R×R× (0,∞) (6)

for i ≥ 0 and c(i) 6= ∅. For each node j 6= 1 in the tree structure, let ρ(j) denote the
parent to j (see Figure 1), and set ρ(1) = 0. By (4) and (5), each hidden state sj is
Gaussian distributed with a mean and variance which are determined by the means and
the variances of its ancestors:

pj(sj) = p(sj |µρ(j), σ2ρ(j)) ∼ N(µρ(j), σ
2
ρ(j)) (7)

for j = 1, . . . , n, where the mean and the variance are determined recursively from the
coarsest level to the second finest level by

µi = αi + βiµρ(i), σ2i = κ2i + β2i σ
2
ρ(i) (8)

for i ≥ 1 and c(i) 6= ∅. Conversely, the GLG model is parametrized by (µ0, σ0) ∈
(−∞,∞) × (0,∞) and (µi, σi, βi) ∈ (−∞,∞) × (0,∞) × (−∞,∞) for all i ≥ 1 with
c(i) 6= ∅, since

αi = µi − βiµρ(i) and κ2i = σ2i − β2i σ2ρ(i) (9)

whenever i ≥ 1 and c(i) 6= ∅.
Set κ0 = σ0 and denote σi,j = Cov(si, sj), the covariance of si and sj . Note that

σi,i = σ2ρ(i); a general expression for σi,j is given by (34) in Appendix A. In particular,

σh,j = κ2ρ(h)βh if j ∈ c(h), σi,j = κ2ρ(h)β
2
h (10)

if i, j ∈ c(h) and i 6= j.

Moments of the form E
[
wai w

b
j

]
for a = 0, 1, . . . and b = 0, 1, . . . can be derived by

conditioning on the hidden states and exploiting well-known moment results for the log-
Gaussian distribution, see e.g. (30)-(32) in Appendix A. In particular, letting c(0) = {1},
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then for any h ≥ 0 and j ∈ c(h),

η
(2)
h := E

[
w2
j

]
= exp

(
µh + σ2h/2

)
, (11)

η
(4)
h := E

[
w4
j

]
= 3 exp

(
2µh + 2σ2h

)
, (12)

η
(2,2)
h := E

[
w2
iw

2
j

]
= exp

(
2µh + κ2ρ(h)β

2
h + σ2h

)
if i ∈ c(h) and i 6= j, (13)

ξ
(2,2)
h,j := E

[
w2
jw

2
h

]
= exp

(
µh + µρ(h) + κ2ρ(h)βh + σ2h/2 + σ2ρ(h)/2

)
. (14)

3.1.2 Tying within levels

For each node i in the tree structure, denote `(i) the level of i, i.e. `(i) is the number of
nodes in the path from the root to i, and let l be the number of levels (see Figure 1). For
convenience, define `(0) = 0. Henceforth we assume tying within levels of the parameters
in (4) and (5), that is

αi = α(`(i)), βi = β(`(i)), κi = κ(`(i)), 1 ≤ `(i) < l. (15)

Thus the unknown parameters are

µ0 ∈ R, σ0 > 0, (α(1), . . . , α(l)) ∈ Rl,
(β(1), . . . , β(l)) ∈ Rl, (κ(1), . . . , κ(l)) ∈ (0,∞)l.

Note that for 1 ≤ `(i) < l, by (8), (15), and induction, (µi, σ
2
i ) depends on the node i

only through its corresponding level `(i), i.e.

µi = µ(`(i)), σ2i = σ2(`(i)). (16)

Furthermore, for 0 ≤ `(h) < l and j ∈ c(h), we obtain from (11)-(15) that (η
(2)
h , η

(4)
h ,

η
(2,2)
h , ξ

(2,2)
h,j ) depends on h only through `(h), i.e.

η
(2)
h = η(2)(`(h)), η

(4)
h = η(4)(`(h)), η

(2,2)
h = η(2,2)(`(h)), ξ

(2,2)
h,j = ξ(2,2)(`(h)). (17)

3.2 Parameter estimation

For parameter estimation in the GFM model, Crouse et al. (1998) propose to use the
EM-algorithm. Here the main difficulty is the calculation of pi(si, sj |w) for j ∈ c(i),
the two-dimensional marginal probabilities of any si and its child sj conditional on the
wavelet coefficients, where the calculation has to be done for each E-step of the EM-
algorithm and each wavelet tree w = w(t), t = 1, . . . , k. Crouse et al. (1998) solve
this problem using an upward-downward algorithm which is equivalent to the forward-
backward algorithm for hidden Markov chains. Durand, Gonçalvès & Guédon (2004)
improve on the numerical limitations on this algorithm.

Modifying the upward-downward algorithm in Crouse et al. (1998) to the GLG model
is not leading to a computationally feasible algorithm mainly because, for each si, we
have replaced its finite state space {1, . . . ,m} under the GFM model by the real line
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under the GLG model, and numerical integration would be repeatably needed at the
various (many) steps of the algorithm. As noticed in Appendix C, the Gauss-Hermite
quadrature rule provides good approximations with few quadrature nodes when consid-
ering trees with no more than two levels. However, since the integrants involved in the
transition between levels of the upward-downward algorithm are not sufficiently smooth,
we propose instead an EM algorithm for estimating θ based on composite likelihoods for
the joint distribution of wavelets corresponding to each parent and its children. These
joint distributions are relatively easy to handle. Further details are given in the sequel.

3.2.1 Marginal likelihoods

When defining composite likelihoods in connection to the EM-algorithm in Section 3.2.2,
we use the following marginal likelihoods given in terms of the full parametrization (4)
and (5).

Combining (3) and (4), we obtain the density of (s1, w1),

p(s1, w1|µ0, σ20) =
exp

(
−1

2

[
w2

1
exp(s1)

+ s1 + (s1−µ0)2
σ2
0

])

2πσ0
(18)

and hence the marginal density of the root wavelet,

q(w1|µ0, σ20) =

∫ ∞

−∞
p(s1, w1|µ0, σ20) ds1. (19)

The marginal log-likelihood based on the root wavelet vector w̄1 = (w
(1)
1 , . . . , w

(k)
1 ) for

the k trees is given by

l0(µ0, σ
2
0|w̄1) =

k∑

t=1

log q(w
(t)
1 |µ0, σ20). (20)

Consider any i ∈ {1, . . . , n} with c(i) 6= ∅. Denote wi,c(i) the vector consisting of wi
and all wj with j ∈ c(i), and si,c(i) the vector consisting of si and all sj with j ∈ c(i).
Using (3)-(5) and (7), we obtain the density of (si,c(i),wi,c(i)),

p(si,c(i),wi,c(i)|µρ(i), σ2ρ(i), αi, βi, κ2i ) =

exp

(
−1

2

{[
w2
i

exp(si)
+ si +

(si−µρ(i))2
σ2
ρ(i)

]
+
∑

j∈c(i)

[
w2
j

exp(sj)
+ sj +

(sj−αi−βisi)2
κ2i

]})

(2π)1+|c(i)|σρ(i)κ
2|c(i)|
i

(21)

where |c(i)| denotes the number of children to i. Hence the density of wi,c(i) is given by
the integral

q(wi,c(i)|µρ(i), σ2ρ(i), αi, βi, κ2i ) =
∫ ∞

−∞

∏

j∈c(i)

∫ ∞

−∞
p(si,c(i),wi,c(i)|µρ(i), σ2ρ(i), αi, βi, κ2i ) dsj dsi. (22)
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Finally, denoting w̄i,c(i) the vector of the ith wavelets w
(1)
i , . . . , w

(k)
i and their children

w
(1)
j , . . . , w

(k)
j , j ∈ c(i), the log-likelihood based on w̄i,c(i) is

li(µρ(i), σ
2
ρ(i), αi, βi, κ

2
i |w̄i,c(i)) =

k∑

t=1

∑

j∈c(i)
log q(w

(t)
i , w

(t)
j |µρ(i), σ2ρ(i), αi, βi, κ2i ). (23)

3.2.2 EM-algorithm

This section shows how the EM-algorithm applies on composite likelihoods (Gao &
Song 2011) defined from the marginal likelihoods in Section 3.2.1 under the assumption
of tying within levels, cf. (15). We proceed from the coarsest to the finest level, where
parameter estimates are calculated by the EM-algorithm as detailed in Appendix C

1. Apply the EM-algorithm for the (marginal) log-likelihood (20) to obtain an esti-
mate (µ̂0, σ̂

2
0).

2. For r = 1, . . . , l − 1, denoting w̄(r) the vector of all w̄i,c(i) with `(i) = r, the
log-composite likelihood given by the sum of the log-likelihoods (23) based on all
w̄i,c(i) with `(i) = r is

l(r)(µ(r − 1), σ2(r − 1), α(r), β(r), κ(r)2|w̄(r))

=
∑

i:`(i)=r

li(µ(r − 1), σ2(r − 1), α(r), β(r), κ2(r)|w̄i,c(i)).

Now, suppose we have obtained an estimate (µ̂(r − 1), σ̂2(r − 1)). Then we apply
the EM-algorithm on l(r)(µ̂(r − 1), σ̂2(r − 1), α(r), β(r), κ(r)2|w̄(r)) to obtain an

estimate (α̂(r), β̂(r), κ̂2(r)). Thereby, using (8) and (15), an estimate (µ̂(r), σ̂2(r))
is also obtained.

These composite likelihoods for our GLG model can be handled mainly because of the
conditional independence structure and since the marginal distribution of si is Gaussian.
In contrast, for the GFM model, unless n is small or all except a few nodes have at most
one child, it is not feasible to handle marginal distributions and corresponding composite
likelihoods.

For the initial values used in steps 1 and 2, moment-based estimates obtained as
described in Appendix B are used. If such an estimate is not meaningful (see Remark 1
in Appendix B), we replace the parameter estimate by a fixed value which makes better
sense. Each iteration of step 1 leads to an increase of the marginal log-likelihood (20), so
the value returned by the EM algorithm is a local maximum; and each iteration of step
2 leads to an increase of the log-composite likelihood, so the value returned by the EM
algorithm is a local maximum when (µ(r− 1), σ2(r− 1)) = (µ̂(r− 1), σ̂2(r− 1)) is fixed.
In each step, as usual when applying the EM-algorithm, there is no guarantee that the
global maximum will be found.
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4 Bayesian inference

For the GFM model, Bayesian methods are not feasible: Indeed Crouse et al. (1998) de-

rive recursions for calculating the conditional densities p(s
(t)
i |w(t), θ) and p(s

(t)
j , s

(t)
i |w(t), θ),

j ∈ c(i), but it is not possible to calculate or satisfactory approximate the marginal
posterior densities for (any subparameter of) θ or (any subvector) of s(t). For in-

stance, if w̄ = (w(1), . . . ,w(k)) is the vector of wavelets from all the trees, p(s
(t)
i |w̄) =∫

p(s
(t)
i |w(t), θ)p(θ|w̄) dθ where under the GFM model we do not know what p(θ|w̄) is

and it seems hopeless to evaluate this high dimensional integral.
Using a Bayesian approach for the GLG model, with a prior imposed on all the rGLG

unknown parameters, also leads to a complicated posterior distribution. In principle
it could be handled by Markov chain Monte Carlo (MCMC) methods, but “MCMC
sampling remains painfully slow from the end user’s point of view” (page 322 in Rue et al.
(2009)). However, approximate Bayesian methods based on Laplace approximations
(Tierney & Kadane 1986, Rue & Martino 2007, Rue et al. 2009) are feasible for GLG
submodels when the number of unknown parameters is not high, as in our GLG submodel
introduced in Section 4.1. Furthermore, Section 4.2 considers integrated nested Laplace
approximations (INLA) to obtain marginal posterior distributions for θ and the hidden
states (Rue et al. 2009).

4.1 Conditional auto-regressions

Romberg, Choi & Baraniuk (2001) consider GFM submodels where θ is of dimension
nine, and they demonstrate that the submodels are acceptable for denoising images with
a high degree of self-similarity, e.g. as found in images of natural scenes. Encouraged
by these results and because of the larger flexibility in modelling the variances of single
wavelet coefficients in the GLG model, we consider the following GLG submodel.

First, notice that by (4), s is a Gaussian Markov random field or in fact a conditional
auto-regression (CAR; Besag (1974, 1975); Rue & Held (2005, Chapter 1)). The
Gaussian distribution of s is specified by the mean µρ(i) of each si and the precision
matrix ∆ (the inverse of the variance-covariance matrix of s) which has (i, j)th entry

∆i,j =





1

κ2ρ(i)
+ |c(i)|β

2
i

κ2i
if i = j, c(i) 6= ∅,

1

κ2i
if i = j, c(i) = ∅,

−
βρ(i)

κ2ρ(j)
if i = ρ(j),

−
βρ(j)

κ2ρ(i)
if j = ρ(i),

0 otherwise,

(24)

cf. Appendix A.
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Second, consider the homogeneous GLG model specified by that

αi = α, βi = β, κ2i = κ2,

whenever `(i) < l. Then the free parameters are θ = (µ0, σ
2
0, α, β, κ

2) ∈ (−∞,∞) ×
(0,∞)× (−∞,∞)× (−∞,∞)× (0,∞). By (8) and (16), we obtain a special mean and
variance structure for the hidden states: For level r = 1, . . . , l,

µ(r) =




α
βr − 1

β − 1
+ βrµ0 if β 6= 1,

rα+ µ0 if β = 1,

and

σ2(r) =




κ2
β2r − 1

β2 − 1
+ β2rσ20 if β 6= 1,

rκ2 + σ20 if β = 1.

4.2 INLA

Integrated nested Laplace approximations (INLA) is a general framework for performing
approximate Bayesian inference in latent Gaussian models where the number of parame-
ters is small (see Rue et al. (2009) and Martins, Simpson, Lindgren & Rue (2013)). Rue
et al. (2009) notice that “The main benefit of INLA is computational: where Markov
chain Monte Carlo algorithms need hours or days to run, INLA provides more precise
estimates in seconds or minutes.” This includes estimates of the posterior marginals for
θ and for the hidden states.

Parsimonious GLG submodels fit the INLA assumptions. We have implemented the
homogeneous GLG model in INLA, where prior specification is largely handled auto-
matically in INLA. Specific calls used in the experiments reported in the sequel can be
seen in our released code.

5 Examples of applications

This section compares results using the GLG and GFM models for wavelet coefficients
in real images. The GFM model has proven to be useful for modelling different kinds
of multiscale transforms (Crouse et al. 1998, Romberg et al. 2001, Po & Do 2006), but
our results are only for the standard wavelet transform, where in both the GFM and the
GLG model the directions of the wavelet transform are modelled independently. Sec-
tion 5.1 discusses how well GLG and GFM models describe standard wavelet coefficients,
Section 5.2 considers denoising of images, and Section 5.3 concerns edge detection.

5.1 Modelling standard wavelet coefficients in images

For illustrative purposes, in this and the following sections, we use three test images from
the USC-SIPI image database available at http://sipi.usc.edu/database: ’Lena’,
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’mandrill’, and ’peppers’, see Figure 2. These images are 512-by-512 pixels represented
as 8 bit grayscale with pixel values in the unit interval, and we have fitted the GFM and
GLG models to wavelet transforms using the corresponding EM algorithms. Figure 3
shows four histograms of the wavelet coefficient from a single subband along with the
fitted marginal distributions. The figure illustates that no model is fitting better than
the other in all cases: For level 1 of the vertical subband of ’Lena’ (upper left panel)
and for level 2 of the vertical subband of ’mandrill’ (upper right panel), the GLG model
provides the best fit; for level 3 of the vertical subband of ’mandrill’ (lower left panel),
the GLG model is too highly peaked at zero and the GFM model provides a better fit;
and for level 3 of the diagonal subband of ’mandrill’ (lower right panel), the two models
fit equally well.

5.2 Denoising

Consider an image corrupted with additive white noise, i.e. we add an independent term
to each pixel value from the same zero-mean normal distribution. Recall that when
working with orthonormal wavelets, the distribution and the independence properties of
the noise are preserved by the wavelet transform, and the procedure for denoising with
wavelets works as follows:

noisy data→ noisy wavelets→ noise-free wavelets→ noise-free data.

Thus, a wavelet tree w = (w1, . . . , wn) is also observed with additive white noise:

vi = wi + εi, i = 1, . . . , n, (25)

where εi ∼ N(0, σ2ε), the εi are mutually independent and independent of (s,w), and we
assume that the noise variance σ2ε is known. The dependence structure in the tree with
noisy observations is illustrated in Figure 4. From this and (25) we obtain

p(w|v, s, θ) =
n∏

i=1

p(wi|vi, si, θ).

Below we discuss estimation of w.
In the frequentist setup, we estimate wi by E[wi|vi, θ], with θ replaced by its estimate

obtained by the appropriate EM-algorithm (see Section 3.2.2 and Crouse et al. (1998)).
For an m-state GFM model,

E[wi|vi, θ] = vi

m∑

j=1

p(si = j|vi)
σ2i,j

σ2i,j + σ2ε

(see Crouse et al. (1998)). Under the GLG model, we have

E[wi|vi, θ] =
vi

c(vi|µρ(i), σ2ρ(i))
∫

exp(si)

(exp(si) + σ2ε)
3/2

exp

(
−1

2

[
v2i

exp(si) + σ2ε
+

(si − µρ(i))2
σ2ρ(i)

])
dsi (26)

11



Figure 2: The three test images: ’Lena’, ’mandrill’, and ’peppers’.

where we use the Gauss-Hermite quadrature rule for approximating the integral. Equa-
tion (26) is derived in Appendix D.

In the Bayesian setup for the homogeneous GLG model, we work with the posterior
distribution p(wi|vi) from which we can calculate various point estimates. We have

p(wi|vi) =

∫
p(wi|vi, si)p(si|vi)dsi, (27)

E(wi|vi) =

∫
E(wi|vi, si)p(si|vi)dsi,

where p(si|vi) is calculated in INLA. Since p(wi|si) ∼ N(0, exp(si)) and p(vi|wi) ∼

12
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Figure 3: Histograms of wavelet coefficients from one scale of the 3 level wavelet trans-
form with a Daubechies 4 wavelet. The probability density functions of the
fitted GLG model (solid line) and the fitted GFM model (gray line) are shown.
Upper left panel: Level 1 of the vertical subband of ’Lena’. Upper right panel:
Level 2 of the vertical subband of ’mandrill’. Lower left panel: Level 3 of
the vertical subband of ’mandrill’. Lower right panel: Level 3 of the diagonal
subband of ’mandrill’.

N(wi, σ
2
ε ), we obtain

p(wi|vi, si) ∝ p(wi|si)p(vi|wi) ∼ N
(

vi exp(si)

σ2ε + exp(si)
,
σ2ε exp(si)

σ2ε + exp(si)

)

and

E(wi|vi) = vi

∫
exp(si)

σ2ε + exp(si)
p(si|vi)dsi.

We apply the two denoising schemes with a three level wavelet transform using the
Daubechies 4 filter to noisy versions of the three test images in Figure 2. To estimate the
performance of a denoising scheme, we calculate the peak signal-to-noise ratio (PSNR)

13
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Figure 4: Graphical model of a binary tree with two levels and noisy observations. The
rectangular nodes are observed variables and the round nodes are unobserved
variables.

in decibels between a test image I and a noisy or cleaned image J . For images of size
N ×N , the PSNR in decibels is defined as

PSNR = 20 log10
N(max{I(x)} −min{I(x)})

‖I − J‖
where the maximum and the minimum are over all pixels x and ‖ · ‖ is the Frobenius
norm. Table 1 shows for the test images and different noise levels σε, the PSNR between
each test image and its noisy or denoised version: For the frequentist results, the images
denoised using the GLG model have PSNRs that are consistently higher than those
denoised using the GFM model. The Bayesian results yields the lowest PSNR values,
but they are also based on a more parsimonious model.

An example of the visual appearance of denoising using frequentist means is seen
in Figure 5; again the GLG model performs best, where details around e.g. the stem
of the center pepper are more crisp. The median (the 50% quantile) of the posterior
distribution is only one possible point estimate of the posterior distribution. However,
using other quantiles or the posterior mean are not providing better results, see Figure 6.

5.3 Edge detection

Edge detection in an image is performed by labelling each pixel as being either an
edge or a non-edge. Turning to the wavelet transform for this task has the advantage
that wavelet coefficients are large near edges and small in the homogeneous parts of an
image; the difficulty lies in quantifying “large” and “small”. Another advantage is that
a multiresolution analysis allows us to search for edges that are present at only selected
scales of the image, thereby ignoring edges that are either too coarse or too fine. In this

section, for each tree t = 1, . . . , k, we focus on how to label the wavelet coefficient w
(t)
i

by an indicator variable f
(t)
i , where f

(t)
i = 1 means w

(t)
i is “large”, and f

(t)
i = 0 means

w
(t)
i is “small”. Labelling of wavelet coefficients using the GFM model is introduced in

14



Table 1: For the three test images and three noise levels, peak signal-to-noise ratios in
dB between the image and its noisy version ot its denoised version obtained
using either the GFM model and the EM-algorithm, the GLG model and the
EM-algorithm, or the homogeneous GLG model and INLA. In the latter case,
the PSNR is calculated using the median of the posterior image. For each
image, a three level Daubechies 4 wavelet transform is used.

PSNR

test image
noise

level σε noisy GFM GLG hom. GLG

0.10 18.76 26.57 27.93 23.57
Lena 0.15 15.44 25.18 26.18 20.68

0.20 13.17 24.15 24.72 18.77

0.10 19.18 22.68 23.39 22.47
Mandrill 0.15 15.77 21.23 21.61 19.70

0.20 13.49 20.20 20.52 18.09

0.10 19.18 25.99 27.96 24.00
Peppers 0.15 15.83 24.68 25.87 21.08

0.20 13.57 23.70 24.41 19.18

Sun, Gu, Chen & Zhang (2004); we recap this labelling algorithm and afterwards modify
it to work with the GLG model. Finally, we discuss how to transfer these labels to the
pixels and show examples.

The labelling in Sun et al. (2004) consists of three steps. First, using the EM algorithm
of Crouse et al. (1998), an estimate θ̂ of the parameter vector θ of a 2-state GFM model
is obtained from the data {w(t)}kt=1. Second, using an empirical Bayesian approach, the
maximum a posteriori (MAP) estimate of the hidden states

ŝ(t) = argmax
s

p(s|w(t), θ̂) = argmax
s

p(s,w(t)|θ̂), (28)

t = 1, . . . , k, is computed using the Viterbi algorithm (Durand et al. 2004). Third, the

MAP estimate is used to define f
(t)
i = (ŝ(t))i.

The idea of labelling wavelet coefficients with the GLG model is overall the same as
presented above for the GFM model, with the differences arising from the continuous
nature of the hidden states and different algorithms being applied for parameter estima-
tion and state estimation. First, the EM algorithm in Section 3.2.2 is used to provide
an estimate θ̂ of the parameter vector of the GLG model. Second, in analogy with (28)

we compute the MAP estimate ŝ(t). However, the Viterbi algorithm cannot be used
here: The Viterbi algorithm computes the MAP estimate by successively maximizing
the terms in (1) associated to each level of the wavelet tree. For the GFM model, it is
easy to perform these maximization steps due to the fact that the hidden state space
is finite. For the GLG model, the MAP estimate can be computed at the finest level,

15



Figure 5: Denoising results for the peppers image from Table 1 when the standard devi-
ation of the noise is 0.20. Top left panel: The original image. Top right panel:
The noisy image (PSNR is 13.57). Bottom left panel: The noisy image cleaned
using the GFM model and the EM-algorithm (PSNR is 23.70). Bottom right
image: The noisy image cleaned using the GLG model and the EM-algorithm
(PSNR is 24.41).

but this estimate is a complicated function that cannot easily be used in the remaining
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Figure 6: Denoising the ’peppers’ image using the posterior distribution (27) and INLA.
The original and noisy images are seen in Figure 5. The top left, top right,
and bottom left images are based on the 25%, 75%, and 50% quantiles of the
posterior distribution, respectively (the PSNRs are 16.38, 16.41, and 19.18,
respectively). The bottom right image is based on the mean of the posterior
distribution (PSNR is 19.15). The posterior mean and median are almost
identical.

maximization steps. Instead, we note that

p(s,w|θ̂) = p(s|θ̂)
n∏

i=1

p(wi|si) (29)
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where p(s|θ̂) is a multidimensional Gaussian density function with mean vector µ̂ and
precision matrix ∆̂ given by (24) with θ = θ̂. The log of (29) and its gradient vector
and Hessian matrix with respect to s are

log p(s,w|θ̂) ≡ −1

2

{
(s− µ̂)>∆̂(s− µ̂) +

n∑

i=1

(
w2
i exp(−si) + si

)}
,

∇ log p(s,w|θ̂) = −∆̂(s− µ̂) +
1

2

[
w2
i exp(−si)− 1

]
1≤i≤n,

H
(
log p(s,w)

∣∣θ̂) = −∆̂− 1

2
diag

(
w2
i exp(−si), 1 ≤ i ≤ n

)
,

where ≡ means that an additive term which is not depending on s has been omitted
in the right hand side expression. The Hessian matrix is strictly negative definite for

all (s,w) with w 6= 0 and hence ŝ(t) can be found by solving ∇ log p(s,w(t)|θ̂) = 0

using standard numerical tools. Third, observe that if the estimate (ŝ(t))i is large in

the estimated distribution N(µ̂ρ(i), σ̂2ρ(i)) for si, then we expect w
(t)
i to be “large”.

Therefore, denoting zp the p-fractile in N(µ̂ρ(i), σ̂2ρ(i)) (with e.g. p = 0.9), we define

f
(t)
i = 1 if (ŝ(t))i ≥ zp and zero otherwise.

It remains to specify the transfer of f
(t)
i (defined by one of the two methods above) to

the pixel domain (this issue is not discussed in Sun et al. (2004)). For specificity, consider
a gray scale image I = {pj}knj=1 and {w(t)}kt=1 = W{pj}knj=1, where W is the used wavelet
transform operator. To each pixel j we associate a binary variable ej indicating if j is
part of an edge or not: Since the wavelet transform does not necessarily map binary
values to binary values, we define {ẽj}knj=1 = W−1{f (t)}kt=1 and set

ej =

{
1 if ẽj 6= 0,

0 otherwise.

The ej ’s are sensitive to the choice of W , and using the Haar wavelet results in thin
edges.

As mentioned, the multiresolution analysis of the wavelet transform allows us to con-
sider edges that are present at only specific scales. To exclude edges at a level l in the

wavelet transform, we simply modify {f (t)}kt=1 by setting f
(t)
i = 0 if `(i) = l. Figure 7

compares the results of the two edge detection algorithms, where we only use the finest
scale in the wavelet transform. The method based on the GLG model classifies fewer
pixels as edges; in particular the GFM model classifications include many false positives.
While the images within Figure 7 are comparable, we notice they are not directly com-
parable to the images presented in Sun et al. (2004) who use a non-decimated wavelet
transform and an extension of the GFM model where the different directions are not
modelled independently.
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Figure 7: Examples of edge detection of the ’Lena’ and ’peppers’ images using the
method from Sun et al. (2004) (left column) and our variant that uses the
GLG model (right column). A three level Haar wavelet transform is used and
only the finest level of the wavelet transform is considered. The 90% fractile
is used for thresholding with the GLG model.

6 Concluding remarks

We have introduced the GLG model for wavelet trees, developed methods for performing
inference, and demonstrated possible applications in signal and image processing, where
the GLG model outperforms the GFM model of Crouse et al. (1998). However, there
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is still work to be done. We do not have a procedure for likelihood determination of a
full wavelet tree given the model parameters in the general GLG model (it is possible
to compute the likelihood in INLA, but this is only for submodels). In the GFM model
this likelihood is calculated as a by-product of the EM algorithm in Crouse et al. (1998),
but as noted we cannot easily modify this EM algorithm to the GLG model.

As an alternative method for inference we have considered a variational EM algorithm
(see e.g. Khan (2012)). The parameter estimates obtained with this variational method
may be more consistent across the levels of the wavelet transform. We have omitted a
further discussion of this variational method, since it cannot be used for making inference
with noisy observations.
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Appendix A: Moments

Using (1) and (3) and by conditioning on s and exploiting the conditional independence
structure, we obtain

E
[
w2
i

]
= exp

(
µρ(i) + σ2ρ(i)/2

)
, (30)

E
[
w4
i

]

3
(
E
[
w2
i

])2 = exp
(
σ2ρ(i)

)
, (31)

E
[
w2
iw

2
j

]

E
[
w2
i

]
E
[
w2
j

] = exp(σi,j) if i 6= j. (32)

For i = 1, . . . , n, let vi = si − βρ(i)sρ(i) where β0 = 0. Then

si =
∑

j∈P1,i

vj
∏

h∈Pj,ρ(i)
βh (33)

where P1,i is the path of nodes from 1 to i (in the tree, and including 1 and i), Pj,ρ(i) is
the path of nodes from j to ρ(i) if j ∈ P1,i \ {i}, and we set

∏
h∈Pj,ρ(i) βh = 1 if j = i.

Note that v1, . . . , vn are independent Gaussian distributed and vi ∼ N(αρ(i), κ
2
ρ(i)) where

κ0 = σ0. Hence we immediately obtain from (33) that

σi,j =
∑

h0∈P1,i∩P1,j

κ2ρ(h0)

[ ∏

h1∈Ph0,ρ(i)
βh1

][ ∏

h2∈Ph0,ρ(j)
βh2

]
. (34)
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Finally, because of the simple one-to-one linear relationship between (v1, . . . , vn) and
(s1, . . . , sn), (24) is straightforwardly derived.

Appendix B: Estimating equations based on moment relations

Assume |c(i)| 6= 1, i = 1, . . . , n; this condition is in general satisfied in wavelet applica-
tions. Using mean value relations for the full parametrization (4) we describe a simple
and fast procedure which provides consistent estimates for the parameters under (15)
as the number of wavelet trees tends to infinity. Let nr denote the number of nodes on
level r ∈ {1, . . . , l}.

First, by (11), (12) and (16), for each level r = 0, . . . , l − 1, there is a one-to-one
correspondence between (µ(r), σ2(r)) and (η(2)(r), η(4)(r)), where

µ(r) = log
(
η(2)(r)

)
− σ2(r)/2,

σ2(r) = log
(
η(4)(r)/3

)
− 2 log

(
η(2)(r)

)
.

Combining these relations with unbiased estimates given by

η̂(a)(r) =
1

knr

k∑

t=1

∑

i:`(i)=r

∑

j∈c(i)

(
w

(t)
j

)a
, a = 2, 4, r < l,

we obtain consistent estimates

µ̂(r) = log
(
η̂(2)(r)

)
− σ̂2(r)/2, (35)

σ̂2(r) = log
(
η̂(4)(r)/3

)
− 2 log

(
η̂(2)(r)

)
, r < l, (36)

Second, by (11)-(14), for each node h ≥ 1 with c(h) 6= ∅,

βh =
log
(
η
(2,2)
h

)
− 2 log

(
η
(2)
h

)

log
(
ξ
(2,2)
h,j

)
− log

(
η
(2)
h

)
− log

(
η
(2)
ρ(h)

)

whenever j ∈ c(h). This combined with (15) and (17), the unbiased estimates given
above, and the consistent estimates

ξ̂(2,2)(r) =
1

knr

k∑

t=1

∑

i:`(i)=r

∑

j∈c(i)

(
w

(t)
i

)2(
w

(t)
j

)2

and

η̂(2,2)(r) =
1

knr

k∑

t=1

∑

i:`(i)=r

2

|c(i)|(|c(i)| − 1)

∑

j1,j2∈c(i)
j1<j2

(
w

(t)
j1

)2(
w

(t)
j2

)2

21



provide consistent estimates

β̂(r) =
log
[
η̂(2,2)(r)

]
− 2 log

[
η̂(2)(r)

]

log
[
ξ̂(2,2)(r)

]
− log

[
η̂(2)(r)

]
− log

[
η̂(2)(r − 1)

] (37)

for r = 0, . . . , l − 1. Finally, using (9) and (35)-(37), we obtain consistent estimates
(α̂h, κ̂

2
h) =

(
α̂(r), κ̂2(r)

)
for 0 ≤ r = `(h) < l.

Remark 1 The estimating equation (35) does not guarantee that σ̂2(r) > 0; in fact,
for small wavelet datasets, we have observed that σ̂2(r) may be negative. For σ̂2(r) to
be positive is equivalent to require that

η̂(4)(r) > 3
(
η̂(2)(r)

)2
. (38)

As η(4) is the fourth moment and η(2) the second moment of the same random variable,
(38) is a much stronger condition than the usual condition for variance estimation,
namely with 3 replaced by 1.

Remark 2 The estimation procedure is immediately modified to GLG submodels. In
case of the homogeneous GLG model, define

η(2) = exp
(
µ0 + σ20

)
,

η(4) = 3 exp
(
2µ0 + 2σ20

)
,

and in accordance with (11)-(14) corresponding unbiased estimates

η̂(a) =

∑
h≥1: c(h)6=∅ η̂

(a)
h

c
, a = 2, 4,

Thereby

µ̂0 = log
(
η̂(2)
)
− σ̂2/2, σ̂2 = log

(
η̂(4)/3

)
− 2 log

(
η̂(2)
)
,

provide consistent estimates.

Appendix C: EM-algorithm for the marginal likelihoods

The EM-algorithm (Dempster, Laird & Rubin 1977, Gao & Song 2011) is an iterative
estimation procedure which applies for steps 1–2 in Section 3.2.2 as described below.

We start by noticing that the conditional density of s1 given w1 is

p(s1|w1, µ0, σ0) =
p(s1, w1|µ0, σ20)

q(w1|µ0, σ20)
∝ exp

(
−1

2

[
w2
1

exp(s1)
+ s1 +

(s1 − µ0)2
σ20

])
(39)
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where in the expression on the right hand side we have omitted a factor which does not
depend on the argument s1 of the conditional density. Note also that for `(i) = r < l,
the conditional density of si,c(i) given wi,c(i) is

p(si,c(i)|wi,c(i), µ(r − 1), σ2(r − 1), α(r), β(r), κ2(r))

=
p(si,c(i),wi,c(i)|µ(r − 1), σ2(r − 1), α(r), β(r), κ2(r))

q(wi,c(i)|µ(r − 1), σ2(r − 1), α(r), β(r), κ2(r))

∝ exp

(
− 1

2

{[
w2
i

exp(si)
+ si +

(si − µ(r − 1))2

σ2(r − 1)

]
+

∑

j∈c(i)

[
w2
j

exp(sj)
+ sj +

(sj − α(r)− β(r)si)
2

κ2(r)

]})
. (40)

In step 1, suppose (µ̃0, σ̃
2
0) is the current estimate. We consider the conditional expec-

tation with respect to (39) when (µ0, σ
2
0) is replaced by (µ̃0, σ̃

2
0). Then the next estimate

for (µ0, σ
2
0) is the maximum point for the conditional expectation of the log-likelihood

which is based on both w̄1 and s̄1; this log-likelihood is given by

k∑

t=1

log p(s
(t)
1 , w

(t)
1 |µ0, σ20) ≡ −1

2

k∑

t=1

[
log(σ20) +

(s
(t)
1 − µ0)2
σ20

]

where ≡ means that an additive term which is not depending on (µ0, σ
2
0) has been

omitted in the right hand side expression, cf. (18). It follows immediately that this
maximum point is given by

µ̂0 =
1

k

k∑

t=1

E
[
s
(t)
1 |w

(t)
1 , µ̃0, σ̃

2
0

]
,

σ̂20 =

[
1

k

k∑

t=1

E

[(
s
(t)
1

)2
|w(t)

1 , µ̃0, σ̃
2
0

]]
− µ̂20,

where the conditional expectation is calculated using (39). We do not have a closed
expression for the marginal density nor its moments. Since the joint density is the
product of a Gaussian density and a smooth function, the Gauss-Hermite quadrature rule
(see e.g. Press, Teukolsky, Vetterling & Flannery (2002)) is well-suited for approximating
the integrals using few quadrature nodes. The iteration is repeated with (µ̃0, σ̃

2
0) =

(µ̂0, σ̂
2
0) until convergence is effectively obtained, whereby a final estimate (µ̂0, σ̂

2
0) is

returned.
In step 2, suppose (α̃(r), κ̃2(r)) is the current estimate, which we use together with

the estimate (µ̂(r− 1), σ̂2(r− 1)) to obtain the next estimate for (α(r), κ(r)): Replacing
(µ(r−1), σ2(r−1), α(r), β(r), κ(r)) by (µ̂(r−1), σ̂2(r−1), α̃(r), β̃(r), κ̃(r)), this estimate
is the maximum point for the conditional expectation with respect to (40) of each term
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in the following sum:

k∑

t=1

∑

i:`(i)=r

log p(s
(t)
i,c(i),w

(t)
i,c(i)|µ̂(r − 1), σ̂2(r − 1), α̃(r), β̃(r), κ̃2(r))

≡ −1

2

k∑

t=1

∑

i:`(i)=r

∑

j∈c(i)

[
log(κ2(r)) +

(sj − α(r)− β(r)si)
2

κ2(r)

]

where additive terms which do not depend on (α(r), κ(r)) have been omitted, cf. (21).
Now, calculate s(r) defined as the average of the following conditional means:

s(r) =
1

knr−1

k∑

t=1

∑

i:`(i)=r

E
[
s
(t)
i |w

(t)
i,c(i), µ̂(r − 1), σ̂2(r − 1), α̃(r), β̃(r), κ̃2(r)

]
.

It is easily seen that the maximum point is given by

β̂(r) =

k∑

t=1

∑

i:`(i)=r

∑

j∈c(i)
E
[
s
(t)
j (s

(t)
i − s(r))|w

(t)
i,c(i), µ̂(r − 1), σ̂2(r − 1), α̃(r), β̃(r), κ̃2(r)

]

k∑

t=1

∑

i:`(i)=r

|c(i)| E
[
(s

(t)
i − s(r))2|w

(t)
i,c(i), µ̂(r − 1), σ̂2(r − 1), α̃(r), β̃(r), κ̃2(r)

]
,

α̂(r) = s(r)− β̂is(r),

κ̂2(r) =

[
1

knr−1

k∑

t=1

∑

i:`(i)=r

1

|c(i)|
∑

j∈c(i)

E
[(
s
(t)
j − β̂(r)s

(t)
i

)2|w(t)
i,c(i), µ̂(r − 1), σ̂2(r − 1), α̃(r), β̃(r), κ̃2(r)

]]
− α̂(r)2.

The iteration is repeated with (α̃(r), κ̃
2(r)) = (α̂(r), κ̂2(r)) until convergence is effectively

obtained, whereby a final estimate (α̂(r), κ̂2(r)) is returned.

Appendix D: Conditional expectation of noisy observations
under the GLG model

Let the situation be as in Section 5.2 and consider the GLG model. The joint density
of (si, vi) is found just as in the noise-free case in Section 3.2.1,

p(si, vi|µρ(i), σ2ρ(i)) = p(vi|si)p(si|µρ(i), σ2ρ(i)) =
exp
(
−1

2

[
v2i

exp(si)+σ2
ε

+
(si−µρ(i))2

σ2
ρ(i)

])

2πσρ(i)
√

exp(si) + σ2ε

and the marginal density of the wavelet with noise is

q(vi|µρ(i), σ2ρ(i)) =

∫ ∞

−∞
p(si, vi|µρ(i), σ2ρ(i)) dsi.

24



We do not have a closed form expression for this integral, but due to the form of the
integrant we approximate the integral with the Gauss-Hermite quadrature rule, see e.g.
Press et al. (2002). The conditional density of si given vi is

p(si|vi, µρ(i), σ2ρ(i)) =
p(si, vi|µρ(i), σ2ρ(i))
q(vi|µρ(i), σ2ρ(i))

=
exp
(
−1

2

[
v2i

exp(si)+σ2
ε

+
(si−µρ(i))2

σ2
ρ(i)

])

c(vi|µρ(i), σ2ρ(i))
√

exp(si) + σ2ε

where c(vi|µρ(i), σ2ρ(i)) = 2πσρ(i)q(vi|µρ(i), σ2ρ(i)). Furthermore, from well-known results
about the bivariate normal distribution we obtain

E[wi|si, vi, θ] = Corr[wi, vi|si]
√

Var[wi|si]
Var[vi|si]

vi =
Var[wi|si]
Var[vi|si]

vi =
exp(si)

exp(si) + σ2ε
vi.

Hence

E[wi|vi, θ] = E
[
E[wi|si, vi, θ]

∣∣vi, θ
]

= vi E

[
exp(si)

exp(si) + σ2ε

∣∣∣∣vi, θ
]

whereby we obtain (26).
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