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Abstract

We present a framework for fingerprint matching based on marked point process mod-
els. An efficient Monte Carlo algorithm is developed to calculate the marginal likelihood
ratio for the hypothesis that two observed prints originate from the same finger against the
hypothesis that they originate from different fingers. Our model achieves good performance
on an NIST-FBI fingerprint database of 258 matched fingerprint pairs.

Keywords: Bayesian alignment; complex normal distribution; forensic identification; like-
lihood ratio; marked point processes; von Mises distribution; weight of evidence.

1 Introduction

Fingerprint evidence has been used for identification purposes for over one hundred years.
Despite this, there has been very little scientific research on the discriminatory power and error
rate associated with fingerprint identification. Within the last ten years there has been a push
to move fingerprint evidence towards a solid probabilistic framework, culminating in the recent
paper by Neumann et al. (2012).

We discuss a novel approach for fingerprint matching using marked Poisson point processes.
We develop an efficient Monte Carlo algorithm to calculate the likelihood ratio for the prose-
cution hypothesis that two observed prints originate from the same finger against the defence
hypothesis that they originate from different fingers. Hill et al. (2012) have also considered
marked Poisson point process models for fingerprints, albeit for another purpose: namely, the
reconstruction of fingerprint ridges from sweat pore point patterns.

Fingerprint evidence is based on the similarity of two or more pictures, see Fig. 1. It is
difficult to represent all the information from these pictures in a mathematically convenient
form. Thus most fingerprint models, including the one in Neumann et al. (2012), consider only
a subset of the information: namely, the points on the image where a ridge either ends or
bifurcates. These points, called minutiae, generally contain sufficient information to uniquely
identify an individual (Maltoni, 2009; Yager and Amin, 2004). A typical full fingerprint contains
100–200 minutiae, while a low quality crime scene fingermark may contain only one dozen
(Garris and McCabe, 2000).

Lauritzen et al. (2012) note the similarity between minutia matching and the alignment
problems often studied in bioinformatics. Our model exploits ideas from the model for unlabelled
point set matching in Green and Mardia (2006) and applies them to the problem of fingerprint
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(a) Exemplar fingerprint (b) Zoomed section (c) Enhanced & labelled

Figure 1: A typical exemplar quality fingerprint from Garris and McCabe (2000). The high-
lighted points in (c) are minutiae: circles are ridge endings and squares are bifurcations.

matching. Our model could be used for an automated fingerprint identification system, or it
could support a courtroom presentation of fingerprint evidence.

The paper is composed as follows. After a few preliminary specifications in Section 2 we
develop a generic marked Poisson point process model in Section 3 and a specific parametric
version in Section 4. In Section 5 we describe our method for calculating the likelihood ratio
and in Section 6 we perform an analysis using the methodology on both simulated and real
data. In the appendix we give further technical details of our computational procedures.

2 Preliminaries and notation

2.1 Likelihood representation of fingerprint evidence

As in Neumann et al. (2012) we discuss the situation where we wish to compare a high-quality
fingerprint A taken under controlled circumstances, with a fingermark B found on a crime scene.
We consider two hypotheses

Hp : A and B originate from the same finger,

Hd : A and B originate from different fingers, (1)

where Hp is referred to as the prosecution hypothesis and Hd as the defence hypothesis. Fol-
lowing a tradition that goes at least back to Lindley (1977), we follow standards in modern
evaluation of DNA and other types of forensic evidence (Balding, 2005; Aitken and Taroni,
2004) and quantify the weight-of-evidence by calculating a likelihood ratio between Hp and Hd,

Λ =
pr(A,B |Hp)

pr(A,B |Hd)
. (2)

The likelihood ratio is based on probabilistic models for the generation of the fingerprint and
fingermark that shall be developed in the sequel.

2.2 Representation of fingerprints

Each minutia m consists of a location, an orientation, and a type: ridge ending, bifurcation, or
unobserved; see Fig. 1c. We represent the location with a point in the complex plane C and the
orientation with a point on the complex unit circle S1. The type is represented by a number in
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{−1, 0, 1}, where −1 denotes a ridge ending, 1 a bifurcation, and 0 an unobserved type. Thus
m is an element of the product space M = C × S1 × {−1, 0, 1}. We let rm, sm, and tm denote
the projection of m onto the location space, orientation space, and type space respectively.

A fingerprint A or a fingermark B is represented by a finite set of elements of M. We call this
representation a minutia configuration. Since A and B are observed in arbitrary and different
coordinate systems, the observed minutiae are subjected to similarity transformations, which
consist of translations, rotations, and scalings. These can be simply represented by algebraic
operations with complex numbers,

(rm, sm, tm) 7→ (ψrm + τ, ψsm/|ψ|, tm).

2.3 Basic distributions

We shall use the bivariate complex normal distribution, which describes a complex random
vector whose real and imaginary parts are jointly normal with a specific covariance structure
(Goodman, 1963). The density with respect to the Lebesgue measure is

ϕ2(r;µ,Σ) = exp{−(r − µ)TΣ−1(r − µ)}/(π2|Σ|),

where r and µ are two-dimensional complex numbers, Σ is a Hermitian positive definite 2 × 2
complex matrix with determinant |Σ|, the overline denotes the complex conjugate, and T denotes
the vector transpose. The standard case of µ = 0 and Σ equal to the identity matrix will be
denoted ϕ2(r). When we wish to make the two arguments explicit we will write ϕ2(r1, r2;µ,Σ)
for r1, r2 ∈ C. The univariate density will be denoted ϕ(r;µ, σ2) where r, µ ∈ C and σ2 > 0,
with the standard case denoted ϕ(r).

The von Mises distribution vM (ν0, κ) on the complex unit circle S1 with position ν0 and
precision κ > 0 (Mardia and Jupp, 1999) has density

υ(s; ν0, κ) = I0(κ)−1 exp{κ<(sν0)}

with respect to ν, the uniform distribution on S1, where <(z) = (z + z)/2 is the real part of z.
The normalization constant I0(κ) is the modified Bessel function of the first kind and order zero
(Olver et al., 2010, chapter 10). The von Mises distribution can be obtained from a univariate
complex Normal distribution ϕ(s; ν0, 2/κ) (or equivalently ϕ(s;κν0/2, 1)) by conditioning on
|s| = 1.

Kent (1977) shows that the von Mises distribution is infinitely divisible on S1 and thus it
makes sense to define the root von Mises distribution rvM (ν0, κ) by

XY ∼ vM (ν0, κ) whenever X,Y are independent and X,Y ∼ rvM (ν0, κ) .

The density of the root von Mises distribution is determined by a series expansion. We refrain
from giving the details as we shall not need them.

3 A generic marked point process model

3.1 Model specification

We consider the observed minutia configurations A,B ⊂ M as thinned and displaced copies
of a latent minutia configuration. In this paper, we use the word latent as a synonym for
unobservable. This contrasts with a common usage in fingerprint forensics where a latent
fingerprint refers to a fingermark which is difficult to see with the naked eye, but can still be
observed via specialized techniques.
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Both the observed and the latent minutia configurations are modelled as marked point
processes. We assume that different fingers have independent latent minutiae configurations,
whether those fingers belong to the same or different individuals. Thus we can rephrase our
two model hypotheses (1) as

Hp : A and B originate from a common latent minutia configuration M ⊂M,

Hd : A and B originate from independent latent minutia configurations M,M ′ ⊂M.

In the notation of marked point processes, each minutia m ∈ M = C × S1 × {−1, 0, 1} is
a marked point. The projection of m onto the location space C, denoted rm, is called a point
and the projection onto S1 × {−1, 0, 1}, denoted (sm, tm), is called a mark. The points form a
finite Poisson point process on the complex plane with intensity function ρ : C → [0,∞) such
that ρ0 =

∫
C ρ(r) dr is positive and finite. The marks are assumed to be independently and

identically distributed and independent of the points. The marks have density g with respect
to the product measure µ = ν × #, where # is the counting measure on {−1, 0, 1}. For the
latent minutiae only the types {−1, 1} have meaning so we must insist that g(s, 0) = 0 for any
s ∈ S1.

We write the resulting marked Poisson point process as M ∼ mppp(ρ, g). The cardinality
of M is Poisson distributed with mean ρ0, and, conditionally on the cardinality |M | of M , the
points are independent and identically distributed with density ρ/ρ0.

The observed fingerprint A is obtained from the latent minutia configuration M through
three basic operations, thinning, displacement, and mapping, as follows:

A1: thinning. Only a subset of the latent minutiae are observed, resulting in MA1 = {m ∈
M : IA(m) = 1}, where the indicators IA(m) are Bernoulli variables with success probabilities
δA(rm). Here δA : C → [0, 1] is a Borel function which we refer to as the selection function for
A. We then have

MA1 ∼ mppp(ρA1, gA1) where ρA1(r) = ρ(r)δA(r), gA1 = g.

A2: displacement. The locations rm in MA1 are subjected to additive errors em ∈ C with
density fA, the orientations sm are subjected to multiplicative errors vm ∈ S1 with density
hA, and the types are subjected to multiplicative classification errors cm ∈ {−1, 0, 1} with
distribution dA so that cm = 1 corresponds to a correct classification, cm = 0 to the type
being unobserved, and cm = −1 represents a misclassification. This results in MA2 = {(rm +
em, vmsm, cmtm) : m ∈MA1}. Consequently, MA2 ∼ mppp(ρA2, gA2), where

ρA2(r) = fA ∗ ρA1(r) =

∫

C
fA(e)ρA1(r − e) de

is obtained by usual convolution in C. The mark density is

gA2(s, t) =
∑

u∈{−1,1}
dA(ut)hA ∗ gA1(s, u) =

∑

u∈{−1,1}
dA(ut)

∫

S1
hA(v)gA1(sv, u) dν(v).

A3: mapping. Finally, the marked points are subjected to a similarity transformation to
obtain

A = {(ψArm + τA, ψAsm/|ψA|, tm) : m ∈MA2}, (3)

with (τA, ψA) ∈ C×(C\{0}). Thus A ∼ mppp(ρA3, gA3) where ρA3(r) = ρA2{(r−τA)/ψA}/|ψA|2
and gA3(s, t) = gA2(sψA/|ψA|, t).

The model for B is specified analogously: B is the mppp derived from a latent minutia
configuration M ′ by three similar steps B1–B3 obtained by replacing A with B everywhere,
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i.e. B ∼ mppp(ρB3, gB3) with intensity function and the mark density defined as above, but
using a new function δB, new indicators IB(m), new distributions fB, hB, dB, new error terms
e′m, v

′
m, c

′
m, and new parameters τB, ψB.

Finally, we make the following independence assumptions. Under Hd we have M and M ′

are independent and identically distributed, while under Hp, M = M ′. In both cases they
have distribution mppp(ρ, g). Conditional on M and M ′, all the variables IA(m), em, vm, cm for
m ∈M , and IB(m), e′m, v

′
m, c

′
m for m ∈M ′ are mutually independent with distributions which

do not depend on M and M ′.

3.2 Density under the defence hypothesis

The functions ρ, g, δA, δB, fA, fB, hA, hB, dA, dB depend on some set of parameters denoted Θ;
we describe a specific choice of these functions in Section 4. In the following we suppress the
dependence on Θ for ease of presentation.

In order to obtain the densities for observed minutiae configurations we introduce the prob-
ability distribution ζ = mppp(ϕ, 1/3) as a dominating measure. Using the fact that

∫

C
ρA3(r) dr =

∫

C
ρA2(r) dr =

∫

C
ρA1(r) dr =

∫

C
ρ(r)δA(r) dr,

the marginal density of A with respect to ζ becomes

pr(A |Θ) = c(A) exp

{
−
∫

C
ρ(r)δA(r) dr

}∏

a∈A
ρA3(ra)gA3(sa, ta), (4)

where
c(A) = 3|A| exp(1)

∏

a∈A
ϕ(ra)

−1

depends only on the data, see e.g. Møller and Waagepetersen (2004, p. 25). Similarly, the density
pr(B |Θ) of B with respect to ζ is obtained by replacing A by B everywhere in (4). Under Hd,
the fingerprint A and fingermark B are independent and thus the density with respect to ζ × ζ
is simply the product

pr(A,B |Θ, Hd) = c(A)c(B) exp

{
−
∫

C
ρ(r)δA(r) dr −

∫

C
ρ(r)δB(r) dr

}

×
{∏

a∈A
ρA3(ra)gA3(sa, ta)

}{∏

b∈B
ρB3(rb)gB3(sb, tb)

}
. (5)

3.3 Density under the prosecution hypothesis

The marginal densities of A and B are identical under both Hd and Hp, but to obtain the joint
density of (A,B) under Hp we need to account for missing information, namely the matching
of marked points in A and B. To handle this, we first partition M into four parts

M11 = {m ∈M : IA(m) = 1, IB(m) = 1}, M10 = {m ∈M : IA(m) = 1, IB(m) = 0},
M01 = {m ∈M : IA(m) = 0, IA(m) = 1}, M00 = {m ∈M : IA(m) = 0, IB(m) = 0},

which are independent and disjoint marked Poisson point processes, all with mark density g,
and with intensity functions for the locations is

ρ11(r) = ρ(r)δA(r)δB(r), ρ10(r) = ρ(r)δA(r){1− δB(r)},
ρ01(r) = ρ(r){1− δA(r)}δB(r), ρ00(r) = ρ(r){1− δA(r)}{1− δB(r)},
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respectively, see Møller and Waagepetersen (2004, p.23). Note that MA1 = M11 ∪M10 and
MB1 = M11 ∪M01, so M00 will play no role in the sequel. This partitioning is illustrated in
Fig. 2.

M

MA1 MB1

M00

M11

M10

M01

Figure 2: Partitioning the latent minutiae into those that are observed in A only (M10), B only
(M01), both (M11), and neither (M00). The dots indicate minutiae locations.

Applying steps A2–A3 to M10 yields M103 ∼ mppp(ρ103, gA3), where

ρ103(r) = fA ∗ ρ10{(r − τA)/ψA}/|ψA|2. (6)

Similarly, applying steps B2–B3 to M01 yields M013 ∼ mppp(ρ013, gB3) with

ρ013(r) = fB ∗ ρ01{(r − τB)/ψB}/|ψB|2. (7)

Finally, for each m ∈M11 we apply steps A2–A3 to yield a marked point a(m), and separately
steps B2–B3 to yield a marked point b(m). The set of paired marked points

M113 = {(a(m), b(m)) : m ∈M11}

forms an mppp with paired points in C×C and corresponding marks in (S1×{−1, 0, 1})2. These
points have intensity function

ρ113(ra, rb) =

∫

C
ρ11(r)fA{(ra − τA)/ψA − r}fB{(rb − τB)/ψB − r}/|ψAψB|2 dr. (8)

The marks are independent and identically distributed with density

g113(sa, ta, sb, tb) =
∑

u∈{−1,1}
dA(uta)dB(utb)

∫

S1
g(s, u)hA

(
sasψA
|ψA|

)
hB

(
sbsψB
|ψB|

)
dν(s) (9)

with respect to µ× µ, and they are independent of the points.
The distribution of M113 is dominated by ζ2 = mppp(ϕ2, 1/9), the mppp whose points form

a Poisson point process on C×C with intensity function ϕ2 and whose marks are independently
uniformly distributed on (S1 × {−1, 0, 1})2 and independent of the points. From (8) we have

∫

C×C
ρ113(ra, rb) dradrb =

∫

C
ρ11(r) dr,
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and hence the density of M113 with respect to ζ2 is

pr(M113 |Θ, Hp) = c2(M113) exp

{
−
∫

C
ρ11(r) dr

} ∏

(a,b)∈M113

ρ113(ra, rb)g113(sa, ta, sb, tb),

where
c2(M113) = 9|M113| exp(1)

∏

(a,b)∈M113

{ϕ(ra)ϕ(rb)}−1.

Observing that c(M103)c(M013)c2(M113) = exp(1)c(A)c(B), the density for (M103,M013,M113)
with respect to ζ × ζ × ζ2 is

pr(M103,M013,M113 |Θ, Hp) = c(A)c(B) exp

[
1−

∫

C
ρ(r) {δA(r) + δB(r)− δA(r)δB(r)} dr

]

×





∏

a∈M103

ρ103(ra)gA3(sa, ta)








∏

b∈M013

ρ013(rb)gB3(sb, tb)





×





∏

(a,b)∈M113

ρ113(ra, rb)g113(sa, ta, sb, tb)



 .

(10)

The three marked point processes (M103,M013,M113) can be identified with a labelled bi-
partite graph (A,B, ξ) of maximum degree one with partitioned vertex set (A,B) and edge set
ξ. Specifically, we have the transformation

A = M103 ∪ΠA(M113), B = M013 ∪ΠB(M113), ξ = {〈a, b〉 : (a, b) ∈M113},

where we use the notation 〈a, b〉 for elements of ξ, which consist of edges between marked points,
whereas the elements of (a, b) ∈M113 are the marked points themselves. Furthermore, we have
the inverse transformation

M103 = A \ΠA(ξ), M013 = B \ΠB(ξ), M113 = {(a, b) : 〈a, b〉 ∈ ξ},

where ΠA projects to a marked point set on M via

ΠA(M113) = {a : (a, b) ∈M113 for some b ∈M}.

We slightly abuse notation by also writing

ΠA(ξ) = {a : 〈a, b〉 ∈ ξ for some b ∈M}.

The projector ΠB is defined analogously.
We let Ξ(A,B) denote the space of all possible values for ξ, i.e. all possible edge sets for the

vertex sets A and B. The cardinality of Ξ(A,B) is

|Ξ(A,B)| =
min(nA,nB)∑

nξ=0

nA!

nξ!(nA − nξ)!
nB!

nξ!(nB − nξ)!
nξ!,

where nA, nB, and nξ denote the cardinality of A,B, and M113, respectively. This reflects
choosing nξ points each from A and B to be matched and considering all nξ! edge sets between
those points.
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Let pr(A,B, ξ |Θ, Hp) denote the density of (A,B, ξ) with respect to ζ̃, where for fixed
(A,B), ζ̃ is the counting measure on Ξ(A,B), i.e. it holds for C ⊆ Ξ(A,B) that

dζ̃(A,B,C) = |C| dζ(A)dζ(B).

Note that
∑

ξ∈Ξ(A,B) dζ̃(A,B, ξ) = dζ(A)dζ(B), and thus the marginal density pr(A,B |Θ, Hp)
of the observed points with respect to ζ × ζ is

pr(A,B |Θ, Hp) =
∑

ξ∈Ξ(A,B)

pr(A,B, ξ |Θ, Hp). (11)

Now let λ denote the distribution of (A,B, ξ) induced by ζ × ζ × ζ2, i.e. λ is the measure
ζ × ζ × ζ2 transformed by the bijection (M103,M013,M113) → (A,B, ξ). Using the expansion
for the Poisson process measure (Møller and Waagepetersen, 2004, proposition 3.1), a long but
straightforward calculation shows that dλ(A,B, ξ)/dζ̃ = exp(−1), whence

pr(A,B, ξ |Θ, Hp) = exp(−1)pr(M103,M013,M113 |Θ, Hp). (12)

4 Parametric models

4.1 Model specification

To complete the specification of our basic point process model we need to specify parametric
models for the basic elements (ρ, g, δA, δB, fA, fB, hA, hB, dA, dB) introduced in Section 3 that
define our marked Poisson point processes and the corresponding likelihood ratios. Clearly there
are many possibilities. Below we specify a simple choice to be used in the present paper with
the purpose of illustrating and investigating the methodology. We shall return to the potential
for improving this choice later. Forbes (2014) provides a more detailed discussion of the issue.

We assume the intensity ρ and mark density g of M are

ρ(r) = ρ0ϕ(r; τ0, σ
2
0), g(s, t) = |t|

√
χ|t|+t(1− χ)|t|−t,

where ρ0 > 0 and χ ∈ (0, 1) is the probability that a minutia is a bifurcation. Note that
g(s, 1) = χ, g(s, 0) = 0, and g(s,−1) = 1 − χ. Without loss of generality, we assume that
τ0 = 0, since this parameter can be absorbed into τA and τB, cf. (3). Similarly, we assume
that σ0 = 1, since this parameter can be absorbed into ψA and ψB. Due to the latent mark
distribution g(s, t) being uniform over s, we have

gA1(s, t) = g(s, t), gA2(s, t) = gA3(s, t) = dA(t)χ+ dA(−t)(1− χ),

and similarly for B.
Thinning. We assume the selection probabilities are constant with δA(r) = δA ∈ (0, 1) and

δB(r) = δB ∈ (0, 1) so that the intensities after thinning become

ρA1(r) = ρ0δAϕ(r), ρB1(r) = ρ0δBϕ(r).

Displacement. We assume the error distributions of the minutia locations and types are

fA(r) = fB(r) = ϕ(r; 0, ω2), dA(c) = dB(c) = I(c = 1)ε+ I(c = 0)(1− ε)
for some ε ∈ (0, 1), where I is the indicator function. Thus we assume that there are no type
misclassifications, though we allow types to be unobserved. These error functions imply

ρA2(r) = ρ0δAϕ(r; 0, 1 + ω2), ρB2(r) = ρ0δBϕ(r; 0, 1 + ω2),

gA2(s, t) = gB2(s, t) = (1− |t|)ε+ |t|(1− ε)g(s, t).
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The error distributions of the orientations hA = hB = h are root von Mises distributions
rvM (1, κ) as defined in Section 2.3.

Mapping. After mapping we have

ρA3(r) = ρ0δAϕ{r; τA, (1 + ω2)|ψA|2}, ρB3(r) = ρ0δBϕ{r; τB, (1 + ω2)|ψB|2},
gA3(s, t) = gB3(s, t) = (1− |t|)ε+ |t|(1− ε)g(s, t).

We let ψ = ψAψB/(|ψA||ψB|); then ψ specifies the relative rotation of A with respect to B. For
simplicity we assume in the following that the minutia configurations are represented on the
same scale so that |ψA| = |ψB|. further let σ2 = (1 + ω2)|ψA|2 = (1 + ω2)|ψB|2.

4.2 Density under the defence hypothesis

For the defence likelihood (5) we have

pr(A,B |Θ, Hd) = c̃(A)c̃(B) exp {−ρ0(δA + δB)} ρnA+nB
0 δnAA δnBB

× χn
(1)
A +n

(1)
B (1− χ)n

(−1)
A +n

(−1)
B

{∏

a∈A
ϕ(ra; τA, σ

2)

}{∏

b∈B
ϕ(rb; τB, σ

2)

}
, (13)

where n
(t)
A =

∑
a∈A I(ta = t) for each t ∈ { − 1, 0, 1}, c̃(A) = c(A)εn

(0)
A (1 − ε)n(−1)

A +n
(1)
A , and

similarly for n
(t)
B and c̃(B).

4.3 Density under the prosecution hypothesis

The transformed intensities (6), (7), and (8) become

ρ103(ra) = ρ0δA(1− δB)ϕ(ra; τA, σ
2), ρ013(rb) = ρ0(1− δA)δBϕ(rb; τB, σ

2),

ρ113(ra, rb) = ρ0δAδBϕ2(ra, rb; τA, τB,ΣAB), ΣAB = σ2

(
1 ψ/(1 + ω2)

ψ/(1 + ω2) 1

)
. (14)

The mark density (9) becomes

g113(sa, ta, sb, tb) = gA2(sa, ta)gB2(sb, tb)T (ta, tb) exp{κ<(sasbψ)}/I0(κ),

where

T (ta, tb) = (1 + tatb)
{

24χ|ta|+ta+|tb|+tb(1− χ)|ta|−ta+|tb|−tb
}−tatb/4

. (15)

Note that T (ta, tb) = 1 if tatb = 0, T (ta, tb) = 0 if tatb = −1, T (1, 1) = 1/χ, and T (−1,−1) =
1/(1− χ). Combining these basic elements with (10) and (12), we obtain

pr(A,B, ξ |Θ, Hp) = c̃(A)c̃(B) exp {−ρ0 (δA + δB − δAδB)} ρnA+nB−nξ
0

× χn
(1)
A +n

(1)
B −n

(1)
ξ (1− χ)n

(−1)
A +n

(−1)
B −n(−1)

ξ δnAA δnBB (1− δA)nB−nξ(1− δB)nA−nξ

×





∏

a∈A\ΠA(ξ)

ϕ(ra; τA, σ
2)









∏

b∈B\ΠB(ξ)

ϕ(rb; τB, σ
2)





×


 ∏

〈a,b〉∈ξ
ϕ2(ra, rb; τA, τB,ΣAB)

exp{κ<(sasbψ)}
I0(κ)


 ,

(16)

where n
(t)
ξ =

∑
〈a,b〉∈ξ I(ta = tb = t).
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4.4 Variability of parameters

The densities in the parametric models specified above depend on

Θ = (ρ0, χ, ε, δA, δB, τA, τB, σ, ψ, ω, κ),

where ρ0 > 0, χ, ε, δA, δB ∈ (0, 1), τA, τB ∈ C, σ > 0, ψ ∈ S1, ω > 0, and κ > 0 are variation
independent parameters. As τA and τB are complex numbers there are thirteen real parameters
in total. Of these, ρ0 and χ relate to the latent minutiae and are common to all fingerprints and
fingermarks under consideration. We shall assume the same for ε, ω, and κ. The parameters ρ0,
χ, ω, and κ will be replaced by point estimates and hence treated as being known; we suppress
the dependence on these parameters in the following. Similarly ε is considered fixed; it only
enters via the factors c̃(A) and c̃(B) which are common to both hypotheses and hence these
cancel in the likelihood ratio so ε can be ignored. This would also be true if we had separate
observation probabilities εA and εB for the prints and marks. The remaining parameters

θ = (δA, δB, τA, τB, σ, ψ)

vary from one fingerprint or fingermark to the next, according to suitable prior distributions
to be specified below. In this way, our approach takes inspiration both from empirical Bayes
methods and random effect models.

We follow Dawid and Lauritzen (2000) and ensure that we use compatible prior distribu-
tions for the competing models Hd and Hp. Our compatibility condition is that the marginal
distributions agree, which leads to the constraint

∫
pr(A | θ){pr(θ |Hp)− pr(θ |Hd)}dθ

for arbitrary values of A. For the parametric model described in Section 4, the constraint
becomes

∫
{pr(δA, τA, σ |Hp)− pr(δA, τA, σ |Hd)}

× exp(−ρ0δA)

{
δA
σ2

exp

(
−|τA|

2 − 2|τAr1|+ |r2|2
σ2

)}nA
d(δA, τA, σ) = 0

for all r1, r2 ∈ C, and all non-negative integers nA. The fundamental lemma of the calcu-
lus of variations then implies pr(δA, τA, σ |Hp) = pr(δA, τA, σ |Hd) almost everywhere. Thus
δA, δB, τA, τB, and σ must have common priors under Hd and Hp. The remaining parameter ψ
does not enter under Hd and is thus unconstrained by this consideration.

For our likelihood pr(A,B |Hp) to be invariant under scale transformations, we must require
that

pr(A,B, ξ | θ,Hp)pr(λτA, λτB, λσ, ψ) d(λτA, λτB, λσ, ψ)

to be independent of the value of λ > 0. Thus, for the likelihood to be invariant under translation
and rotation as well, by (16) the prior density must be of the form

pr(τA, τB, σ, ψ |Hp) = σ−5.

A similar argument shows that pr(τA, τB, σ, ψ |Hd) = σ−5. This prior density is improper,
i.e. not integrable over the entire parameter domain. Normally such a prior may result in
a meaningless likelihood ratio. However, in our case the improper prior is common to both
models Hd and Hp under consideration and the marginal likelihood ratio is equal to the limit of
likelihood ratios determined by integrals over the same large box in numerator and denominator.
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Under both Hp and Hd, we also assume the following. The fingerprint selection probabil-
ity δA has a conjugate beta distribution with parameters (αδ, βδ). Assuming that we have a
database that is representative for minutiae in a fingerprint, these parameters can be estimated
reliably. The fingermark selection probability δB has a uniform distribution on (0, 1), as it will
refer to a fingermark that is not taken from a well-defined population of marks. Finally we
assume that δA, δB, τA, τB, σ, and ψ are mutually independent.

Thus the joint prior density of the varying parameters is the same under both Hp and Hd,
and equal to

pr(θ) = pr(θ |Hd) = pr(θ |Hp) =
Γ(αδ + βδ)

Γ(αδ)Γ(βδ)
δαδ−1
A (1− δA)βδ−1σ−5, (17)

where Γ(·) is the Gamma function. We have suppressed the dependence of pr(θ) on the hyper-
parameters αδ and βδ.

Our final model contains the unknown parameters ρ0, χ, ω, κ, αδ, βδ. In the developments
below we shall consider these parameters as fixed and equal to values estimated from a database
of fingerprints and fingermarks as described further in Section 6.3 below.

5 Calculating the likelihood ratio

5.1 Defining the likelihood ratio

We can in principle obtain our desired likelihood ratio (2) by summing (16) over ξ, taking its
expectation, and dividing by the expectation of (13), where the expectations are with respect
to θ. However, under Hp the number of terms in the sum (11) is too large to compute by brute
force. For example, for nA = nB = 100, |Ξ(A,B)| is approximately equal to 10165. We therefore
proceed under Hp by approximating the expectations and the sum using a Monte Carlo sampler
to be further discussed below.

Though some may prefer to call Λ a Bayes factor, integrated likelihood ratio, or marginal
likelihood ratio, we use the term likelihood ratio to conform with standard terminology in
forensic science.

5.2 Integrating the density under Hd

Under Hd we can analytically integrate pr(A,B | θ,Hd)pr(θ) over θ as follows. First,
∫

C2

∏

a∈A
ϕ(ra; τA, σ

2) dτA =
π1−nA

nA
σ2(1−nA) exp

(
−SA/σ2

)
,

where SA =
∑

a∈A ‖ra − rA•‖2 is the sum of squared deviations from the average rA• =
n−1
A

∑
a∈A ra; the integral over τB is analogous. Second, we can integrate over δA using

∫ 1

0
e−ρ0δAδαδ+nA−1

A (1− δA)βδ−1 dδA = e−ρ0
Γ(αδ + nA)Γ(βδ)

Γ(αδ + βδ + nA)
1F1(βδ, αδ + βδ + nA, ρ0),

where 1F1 is the confluent hypergeometric function (Olver et al., 2010, chapter 13). Third, for
δB, we have ∫ 1

0
e−ρ0δBδnBB dδB = e−ρ0

1

nB + 1
1F1(1, nB + 2, ρ0).

Fourth, the integral over σ is proportional to a gamma density for σ−2:
∫ ∞

0
σ−2nA−2nB−1 exp

{
−(SA + SB)/σ2

}
dσ = Γ(nA + nB) (SA + SB)−nA−nB /2.

11



Combining these integrals with (11) and (17), the marginal likelihood under Hd is

pr(A,B |Hd) = c̃(A)c̃(B)e−2ρ0π2χn
(1)
A +n

(1)
B (1− χ)n

(−1)
A +n

(−1)
B

{
ρ0

π(SA + SB)

}nA+nB

× Γ(αδ + βδ)Γ(αδ + nA)Γ(nA + nB)

2Γ(αδ)Γ(αδ + βδ + nA)nAnB(nB + 1)
1F1(βδ, αδ + βδ + nA, ρ0)1F1(1, nB + 2, ρ0).

5.3 Approximating the likelihood under Hp

We are interested in calculating the likelihood ratio Λ = pr(A,B |Hp)/pr(A,B |Hd), cf. Sec-
tion 2.1, for assessing the strength of the evidence for Hp. We cannot analytically obtain
pr(A,B |Hp) because the required sums and integrals are intractable. Instead we approximate
the likelihood ratio using a Markov chain Monte Carlo procedure. There are a variety of possi-
ble methods but we have chosen Chib’s method (Chib, 1995; Chib and Jeliazkov, 2001). Other
possibilities were investigated in Forbes (2014), who found Chib’s method to be superior for our
specific purpose. Chib’s method uses the simple relation

pr(A,B |Hp) =
pr(A,B, θ∗, ξ∗ |Hp)

pr(θ∗, ξ∗ |A,B,Hp)
,

which holds for any fixed values θ∗ of θ and ξ∗ of ξ. The numerator is simply the product of (16)
and (17). Thus we can approximate pr(A,B |Hp) by approximating the denominator, which
can be rewritten as

pr(θ∗, ξ∗ |A,B,Hp) = pr(δ∗A |A,B,Hp)× pr(δ∗B | δ∗A, A,B,Hp)× pr(τ∗A, τ
∗
B | δ∗A, δ∗B, A,B,Hp)

× pr(σ∗ | δ∗A, δ∗B, τ∗A, τ∗B, A,B,Hp)× pr(ψ∗ | δ∗A, δ∗B, τ∗A, τ∗B, σ∗, A,B,Hp)

× pr(ξ∗ | δ∗A, δ∗B, τ∗A, τ∗B, σ∗, ψ∗, A,B,Hp).

Each of the factors on the right-hand side can be approximated with a suitable sample average
of the appropriate full conditional posterior density. The accuracy of these approximations
increases with the posterior probability of (θ∗, ξ∗). Our method of selecting these values and
performing the approximations is detailed in the appendix.

For the final term pr(ξ∗ | θ∗, A,B,Hp), notice the following. Given a matching ξ ∈ Ξ(A,B)
and a β ∈ B, let the sub-matching ξ<β ∈ Ξ(A,B) be given by

ξ<β = {〈a, b〉 ∈ ξ : b ∈ B, b < β},

where the inequality is with respect to some arbitrary total ordering on B. Given any m ∈ M
and φ ∈M \ (A ∪B), we define ΠA,m : Ξ(A,B)→M by

ΠA,m(ξ) =

{
a if 〈a,m〉 ∈ ξ,
φ otherwise,

(18)

which is well-defined because ξ is the edge set of a bipartite graph with maximum degree one,
and hence each vertex m is incident with at most one edge 〈a,m〉 ∈ ξ.

With this notation, we can write

pr(ξ∗ | θ∗, A,B,Hp) =
∏

β∈B
E
{

pr(ξ∗ | ξ∗<β, ξ∗>β, θ∗, A,B,Hp)
∣∣ ξ∗≤β, θ∗, A,B,Hp

}
(19)
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where the expectation is over the sub-match ξ∗>β. Notice that the possible values of ξ∗ | ξ∗<β, ξ∗>β
differ only by which minutia is matched to β. By ignoring terms independent of the match of
β, we see from (14)–(16) that

pr(ξ∗ | ξ∗<β, ξ∗>β, θ∗, A,B,Hp) ∝ exp [w {ΠA,β(ξ∗), β | θ∗}] I{ΠA,β(ξ∗) /∈ ΠA(ξ∗<β ∪ ξ∗>β)} (20)

where w is

w(a, b | θ) = I(a ∈ A)I(b ∈ B)

[
<
(
κsaψsb + 2

ω2 + 1

(ω2 + 1)2 − 1
ψ
ra − τA
σ

rb − τB
σ

)

− 1

(ω2 + 1)2 − 1

( |ra − τA|2
σ2

+
|rb − τB|2

σ2

)
+ log

{
T (ta, tb)(ω

2 + 1)2

ρ0I0(κ)(1− δA)(1− δB)ω2(ω2 + 2)

}]
.

(21)

The normalization constant of (20) can be obtained by summing over the support, which is
ξ∗<β ∪ ξ∗>β and ξ∗<β ∪ ξ∗>β ∪ {〈a, β〉} for each a ∈ A.

Thus we can evaluate and normalize (20), and therefore we can approximate (19) by ap-
proximating each expectation with a sample average. Further details are given in the appendix.

5.4 Sampling procedure

We use a Metropolis-within-Gibbs sampler to generate joint samples of (θ, ξ) from the posterior
distribution pr(A,B, ξ | θ,Hp)pr(θ), the product of (16) and (17). Our method is detailed
in the appendix. Briefly, we alternate between updating δA, δB, (τA, τB), σ, ψ, and ξ. We
use Gibbs updates for everything except ξ: for δA and δB this involves a rejection sampler,
while the other updates are straightforward. For ξ, Green and Mardia (2006) propose using
a Metropolis–Hastings sampler which creates or breaks a single, random matched pair at each
iteration. However, we have developed a different sampler for ξ which considers all matches for
a given minutia simultaneously and computes the probability of each match. Empirically our
sampler appears to converge faster than the sampler in Green and Mardia.

6 Data analysis

6.1 Datasets

To investigate the feasibility of our model and algorithm for fingerprint analysis we now apply
these to real and simulated data examples.

The real dataset originates from a small database provided by the National Institute for
Standards and Technology (NIST) and the Federal Bureau of Investigation (FBI) (Garris and
McCabe, 2000). This database consists of 258 fingermarks and their corresponding exemplar
fingerprints. The exemplar fingerprints A are all of high quality, and the fingermarks B are
of significantly lower quality. The fingerprint/fingermark pairs are partitioned into three sets
based on the quality of the fingermarks: 88 pairs are of relatively good quality, 85 are bad, and
85 are ugly; see Fig. 3. All fingermarks and fingerprint images have their minutiae hand-labelled
by expert fingerprint examiners. This dataset is used for estimation of unknown parameters,
for model criticism, and for evaluating the performance of the calculated likelihood ratio.

For reference we also apply our method to data which are simulated from the model using
the parameters estimated from the database as described below. We generated 258 finger-
print/fingermark pairs according to the model described in Section 4 and Section 4.4. To ease
the comparison with the real database, we also partitioned the simulated data into a good set
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Figure 3: Example fingermarks from Garris and McCabe (2000). From left to right, the finger-
mark qualities are good, bad, and ugly.

consists of those 88 pairs with the highest number of fingermark minutiae nB, a bad set con-
taining the next 85 pairs, and an ugly set containing those 85 pairs with the lowest nB. By
comparing our results on the NIST database to our results on the simulated data we are able
to distinguish model inadequacies from algorithm errors or performance issues.

6.2 Model criticism

The question of model accuracy was investigated in Forbes (2014, chapter 7); it is apparent that
some of the model features are oversimplified and the data behaviour deviates from the assump-
tions. For example, our model assumes the minutia are independently thinned with constant
thinning frequency, have independent orientations, and have independent spatial observation
errors. In fact, the thinning, orientations, and location distortions appear to be correlated
amongst nearby minutiae. We abstain from giving the details here and choose to proceed with
the simple model despite its apparent shortcomings.

6.3 Parameter estimation

We must find point estimates for the fixed parameters αδ, βδ, ρ0, χ, ω, and κ. As our real dataset
contains matched fingerprint/fingermark pairs which conform with the prosecution hypothesis,
we estimate all parameters under Hp.

The estimates are difficult to find without knowing the correct matching ξ. Unfortunately
our dataset contains only 258 paired minutia configurations without matching the corresponding
minutiae within a configuration; that is, it contains Ai and Bi but not ξi for i = 1 . . . 258. Previ-
ous research (Mikalyan and Bigun, 2012) attempted to ameliorate this by running an automated
matching algorithm on the dataset. However, we found the quality of these matchings to be
extremely poor and instead we manually found and recorded what we believe to be the correct
minutia matchings ξ̌ for each of the 258 fingerprint/fingermark pairs in the dataset (Garris and
McCabe, 2000). With this matching ξ̌ fixed, we proceeded with the parameter estimation. We
emphasize that ξ̌ is only used for estimation of the unknown parameters of the model and not
otherwise for the calculation of likelihood ratios.

We estimate the fixed parameters by maximizing the likelihood function under Hp and based
on matching-augmented data (Ai, Bi, ξ̌i), i.e.

258∏

i=1

{∫
pr(Ai, Bi, ξ̌i, θi |Hp) dθi

}
=

258∏

i=1

pr(Ai, Bi, ξ̌i |Hp;αδ, βδ, ρ0, χ, ω, κ),
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where pr(Ai, Bi, ξ̌i, θ |Hp) is the product of (16) and (17), and where the fixed parameters have
been suppressed on the left-hand side of this equation. Each integrand on the left-hand side
further factorizes into

pr(Ai, Bi, ξ̌i, θ |Hp) =f0(Ai, Bi, ξ̌i)× f1(Ai, Bi, ξ̌i, δA, δB;αδ, βδ, ρ0)

× f2(Ai, Bi, ξ̌i;χ)× f3(Ai, Bi, ξ̌i, τA, τB, σ, ψ;ω, κ).

Here f0 is independent of the parameters we are estimating and thus of no importance. Further

f1(A,B, ξ̌, δA, δB;αδ, βδ, ρ0) = exp {−ρ0 (δA + δB − δAδB)} Γ(αδ + βδ)

Γ(αδ)Γ(βδ)

× ρnA+nB−nξ
0 δαδ+nA−1

A δnBB (1− δA)βδ+nB−nξ−1(1− δB)nA−nξ ,

f2(A,B, ξ̌;χ) = χn
(1)
A +n

(1)
B −n

(1)
ξ (1− χ)n

(−1)
A +n

(−1)
B −n(−1)

ξ ,

and

f3(A,B, ξ̌, τA, τB, σ, ψ;ω, κ) = σ−2(nA+nB)−5

{
(ω2 + 1)2

(ω2 + 1)2 − 1

}nξ
I0(κ)−nξ

× exp



−


 ∑

a∈A\ΠA(ξ)

|ra − τA|2
σ2


−


 ∑

b∈B\ΠB(ξ)

|rb − τB|2
σ2







× exp




∑

〈a,b〉∈ξ
<
(
κsaψsb + 2

ω2 + 1

(ω2 + 1)2 − 1
ψ
ra − τA
σ

rb − τB
σ

)


× exp



−

(ω2 + 1)2

(ω2 + 1)2 − 1

∑

〈a,b〉∈ξ

( |ra − τA|2
σ2

+
|rb − τB|2

σ2

)
 .

Since (αδ, βδ, ρ0) only enter into f1, the estimates for these parameters are the maximizers
of

258∏

i=1

{∫
f1(Ai, Bi, ξ̌i, δAi, δBi;αδ, βδ, ρ0) d(δAi, δBi)

}
.

The integral over δB can be obtained analytically as in Section 5.2. The integral over δA can be
found numerically, and the resulting function can also be maximized numerically. We used the
R package pracma for the integrals and the standard R function optim for the optimization.
The resulting estimates are α̂δ =14·67, β̂δ =3·30, and ρ̂0 =132·74.

Similarly, χ only enters into f2 and can be found by directly maximizing
∑258

i=1 log f2(Ai, Bi, ξ̌i;χ),
yielding a linear equation for χ with the solution χ̂ =0·38.

We estimate ω and κ by maximizing the third factor in the likelihood function

258∏

i=1

{∫
f3(Ai, Bi, ξ̌i, τAi, τBi, σi, ψi;ω, κ) d(τAi, τBi, σi, ψi)

}
.

This function is too complicated to maximize using standard numerical techniques. We resort
to a stochastic expectation-maximization algorithm (Celeux and Diebolt, 1985) based on the
Monte Carlo Markov chain procedure described in the appendix. We fix αδ, βδ, ρ0, and χ to
their estimated values above. Starting from some initial values for ω and κ, we generate a
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posterior sample (τAi, τBi, σi, ψi) for each fingerprint/fingermark pair i = 1, . . . , 258. We then
maximize

258∏

i=1

f3(Ai, Bi, ξ̌i, τAi, τBi, σi, ψi;ω, κ)

over ω and κ. The maximizing value for x = (ω2 +1)2/{(ω2 +1)2−1} is a root of the polynomial
equation

(R2
2 − 4R2

3)x3 + (4R2
3 − 2R1R2 −R2

2)x2 + (R2
1 + 2R1R2 −R2

3)x−R2
1 = 0,

where R1 =
∑258

i=1 |ξ̌i|, R2 =
∑258

i=1

{
σ−2
i

∑
〈a,b〉∈ξ̌i

∣∣ra − τAi|2 + |rb − τBi|2
)}
, and

R3 =
258∑

i=1


σ−2

i

∑

〈a,b〉∈ξ̌i

<
{

(ra − τAi)ψi(rb − τBi)
}

 .

This can be solved using the cubic formula. The maximizing value for κ solves

R1
I1(κ)

I0(κ)
=

258∑

i=1




∑

〈a,b〉∈ξ̌i

<
(
saψisb

)


 ,

where I1 is the modified Bessel function of the first kind and first order. The ratio I1(κ)/I0(κ)
is always between zero and one, so this equation is simple to solve numerically.

We repeat the process of generating new values of (τAi, τBi, σi, ψi) and updating ω and κ until
the latter stabilize. After they stabilize we run 500 more iterations while saving the maximizing
values of ω and κ. Our point estimates for ω and κ are the average of these maximizing values,
yielding ω̂ =0·047 and κ̂ =35.

6.4 Results

The Monte Carlo Markov chain algorithm was programmed in C# version 4·51. We chose
this language due to its multi-thread support for multiple parallel fingerprint comparisons and
advanced data visualization capabilities. Our algorithm generates approximately 5000 joint
samples of θ and ξ per thread per second on a 3GHz Intel Xeon processor.

For both simulated and real data we set the initial value of ξ to the empty match. Within
2000 iterations the variable traces appeared to be stationary. We used 5000 samples for burn-in
and generated another 5000 samples to estimate the likelihood ratio. In our experience this
sample size is sufficient to reduce the Monte Carlo error in the log likelihood ratio estimate to
less than 0·2.

We computed the log likelihood ratio for all possible 258× 258 fingerprint/fingermark pairs
in our simulated dataset. The log likelihood ratios for the 258 pairs that originate from the
same finger are shown in the blue histogram with solid lines at the top of Fig. 4. The remaining
258× 257 log likelihood ratios (the false matches) are shown in the red histogram with dashed
lines. The inset receiver-operating characteristic curve describes our discrimination of true
matches from false matches based on any chosen cutoff point for the log likelihood ratio.

The other three histograms subdivide the pairs into the 88×258 pairs where the fingermark
is good, the 85 × 258 pairs where the fingermark is bad, and the 85 × 258 pairs where the
fingermark is ugly. We achieve perfect separation for the good and bad fingermarks, and worse
separation for ugly fingermarks, reflecting that these have fewer minutiae and thus are less
informative.
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The same type of histograms for our real dataset are displayed in Fig. 5. The discrimination
here is not as good as for the simulated data; this could be another indication that our model
does not completely describe the variability in real fingermarks.

Similarly, the likelihood ratios appear to be slightly more extreme than they should be for
the false pairings; for example, the maximal value of log10 Λ is equal to 12·2, which appears too
high to occur by chance, and higher than the similar value for simulated data, which is 9·6.

7 Discussion

We have described a marked Poisson point process model for paired minutia configurations in
fingerprints and fingermarks, and the corresponding matching between these minutia configura-
tions. We can efficiently sample from the distribution of the unknown matching and parameters
in this model using a Markov chain Monte Carlo method. The resulting sample can be used
to compute likelihood ratios for comparing the hypothesis that the two configurations originate
from the same finger against the hypothesis that they originate from different fingers.

The method provides excellent discrimination on simulated data. Using the method on a
specific NIST-FBI database indicate that the model yields good discrimination between these
two hypotheses as long as the fingermark is of reasonable quality. However, some inaccuracies
are apparent for the simplistic model discussed in the present paper, in particular concerning
the model for selection of observed fingermarks which appears to be non-constant; also, the
minutiae do tend to occur along fingerprint ridges which means that orientations of nearby
minutiae are not independent, as assumed.

This may result in the likelihood ratios calculated to be more extreme than what can be
justified. The ratios can still be used as a sensible model based method for discrimination
between true and false matches, but they would have to be calibrated against a large real
dataset along the lines described in Forbes (2014, chapter 9) before they can be interpreted as
an accurate measure of the strength of evidence. In any case, we believe the framework can be
used to establish a sound and model-based foundation for the analysis of fingerprint evidence.
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Appendix

Overview of the sampling procedures

Chib’s method as discussed in Section 5.3, including our choice of θ∗ and ξ∗, is detailed in
Algorithm 1. The Metropolis-within-Gibbs sampler discussed in Section 5.4 is described in
Algorithm 2. To generate our samples, we use Marsaglia and Tsang (2000b) for Gaussian
variables, Marsaglia and Tsang (2000a) for Gamma variables, Dagpunar (1978) for truncated
Gamma variables, Cheng (1978) for Beta variables, and Best and Fisher (1979) for von Mises
variables. For those variables whose full conditionals are not one of the above type, we give
a detailed sampling algorithm below. All samplers use Marsaglia (2003) as source of pseudo-
random integers.

17



−60 −40 −20 0 20 40 60 80 100
0

0.05

0.1

0.15

log10 of likelihood ratio for full dataset

D
en

si
ty

0 0.20.40.60.8 1
0

0.2
0.4
0.6
0.8

1

−60 −40 −20 0 20 40 60 80 100
0

0.05

0.1

0.15

log10 of likelihood ratio for good subset

D
en

si
ty

0 0.20.40.60.8 1
0

0.2
0.4
0.6
0.8

1

−60 −40 −20 0 20 40 60 80 100
0

0.05

0.1

0.15

log10 of likelihood ratio for bad subset

D
en

si
ty

0 0.20.40.60.8 1
0

0.2
0.4
0.6
0.8

1

−60 −40 −20 0 20 40 60 80 100
0

0.05

0.1

0.15

log10 of likelihood ratio for ugly subset

D
en

si
ty

0 0.20.40.60.8 1
0

0.2
0.4
0.6
0.8

1

Figure 4: Histogram of the log-likelihood ratios for simulated data. Log-likelihood ratios cor-
responding to false matches are dashed and red, and true matches are solid and blue. Inset is
a receiver-operating characteristic curve with the rate of false positives (i.e., the type 1 error
rate) on the x-axis and the rate of true positives (i.e., one minus the type 2 error rate) on the
y-axis.
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Figure 5: Histogram of the log-likelihood ratios for NIST-FBI data. Log-likelihood ratios cor-
responding to false matches are dashed and red, and true matches are solid and blue. Inset is
a receiver-operating characteristic curve with the rate of false positives (i.e., the type 1 error
rate) on the x-axis and the rate of true positives (i.e., one minus the type 2 error rate) on the
y-axis.
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Algorithm 1: Chib’s method for approximating pr(A,B |Hp).

/* All samples Si are generated by holding the starred variables constant

while sampling the non-starred variables as described in Algorithm 2.

*/

r ← 1;
Generate sample S1 of size N from δA, δB, τA, τB, σ, ψ, ξ |A,B,Hp;

δ∗A ← ÊS1(δA);
Generate sample S2 of size N from δB, τA, τB, σ, ψ, ξ | δ∗A, A,B,Hp;

δ∗B ← ÊS2(δB);

r ← r × ÊS2{pr(δ∗A | δB, τA, τB, σ, ψ, ξ, A,B,Hp)};
Generate sample S3 of size N from τA, τB, σ, ψ, ξ | δ∗A, δ∗B, A,B,Hp;

(τ∗A, τ
∗
B)← ÊS3(τA, τB);

r ← r × ÊS3{pr(δ∗B | δ∗A, τA, τB, σ, ψ, ξ, A,B,Hp)};
Generate sample S4 of size N from σ, ψ, ξ | δ∗A, δ∗B, τ∗A, τ∗B, A,B,Hp;

σ∗ ← ÊS4(σ);

r ← r × ÊS4{pr(τ∗A, τ
∗
B | δ∗A, δ∗B, σ, ψ, ξ, A,B,Hp)};

Generate sample S5 of size N from ψ, ξ | δ∗A, δ∗B, τ∗A, τ∗B, σ∗, A,B,Hp;

ψ∗ ← ÊS5(ψ);

r ← r × ÊS5{pr(σ∗ | δ∗A, δ∗B, τ∗A, τ∗B, ψ, ξ, A,B,Hp)};
Generate sample S6 of size N from ξ | δ∗A, δ∗B, τ∗A, τ∗B, σ∗, ψ∗, A,B,Hp;

r ← r × ÊS6{pr(ψ∗ | δ∗A, δ∗B, τ∗A, τ∗B, σ∗, ξ, A,B,Hp)};
ξ∗ ← argmaxξ{pr(θ∗, ξ, A,B,Hp)}; /* An efficient method for finding the

maximizer over ξ is given in Forbes (2014, chapter 3) */

for β ∈ B do
Generate sample Sβ of size Nξ from ξ | ξ≤β = ξ∗≤β, θ

∗, A,B,Hp;

r ← r × ÊSβ {pr (ξ | ξ<β, ξ>β, θ∗, A,B,Hp)}; /* See (20) */

return r, an estimate of pr(A,B |Hp);

Algorithm 2: Metropolis-within-Gibbs sampler for the posterior of θ and ξ.

Input: θ0, ξ0 set to some initial value
for n = 1, . . . , N do

δnA ← Sample
(
δA |A,B, δn−1

B , τn−1
A , τn−1

B , σn−1, ψn−1, ξn−1
)
;

δnB ← Sample
(
δB |A,B, δnA, τn−1

A , τn−1
B , σn−1, ψn−1, ξn−1

)
;

(τnA, τ
n
B)← Sample

(
τA, τB |A,B, δnA, δnB, σn−1, ψn−1, ξn−1

)
;

σn ← Sample
(
σ |A,B, δnA, δnB, τnA, τnB, ψn−1, ξn−1

)
;

ψn ← Sample
(
ψ |A,B, δnA, δnB, τnA, τnB, σn, ξn−1

)
;

ξn ← ξn−1;
for j = 1, . . . , nA do

/* Sample repeatedly to reduce autocorrelation */

ξn ← Sample (ξ |A,B, δnA, δnB, τnA, τnB, σn, ψn, ξn);

20



Sampling δA, δB

Define the distribution D(α, β, λ) to have density

fD(δ) ∝ δα−1(1− δ)β−1e−λδ

for δ ∈ (0, 1), where α > 0, β > 0, and λ ∈ R. If λ = 0 this is a Beta distribution, and if β = 1
it is a Gamma distribution right-truncated at one. The full conditionals for δA and δB are

δA ∼ D(αδ + nA, βδ + nB − nξ, ρ0 − ρ0δB), δB ∼ D(nB, nA − nξ, ρ0 − ρ0δA).

We describe an algorithm to sample from D in Algorithm 3.

Algorithm 3: Rejection sampler for D(α, β, λ).

if λ = 0 then
δ ← Sample (Gamma(α, β) | δ ≤ 1);

else
δ0 ← argmax{xα−1(1− x)β−1e−λx : x ∈ [0, 1]};
if δ0 > 0.5 and λ < (α− 1)/(1− δ0) then

δ ← 1− Sample (D(β, α,−λ));
else

repeat
δ ← Sample (Gamma{α, λ+ (β − 1)/(1− δ0)} | δ ≤ 1);
U ← Sample (Uniform(0, 1));

until U1/(β−1) < (1− δ)δ1 exp{(δ − δ0)/(1− δ0)};
return δ;

Briefly, let δ0 be the mode of D, which can be easily computed by applying the quadratic
formula to d log fD(δ)/dδ = 0. To sample from D, first notice that log(1−δ) ≈ 1−δ0−δ/(1−δ0)
for small δ0 (δ0 ≤ 0.5 in Algorithm 3), and hence (1 − δ)β−1 ≈ C exp{−(β − 1)δ/(1 − δ0)}
where C is a constant independent of δ. Plugging this approximation into fD(δ) yields a
Gamma{α, (β − 1)/(1 − δ0) + λ} density right-truncated at one. Thus when δ0 ≤ 0.5, we can
use rejection sampling with proposals drawn from this distribution. Similarly, when the mode
δ0 ≥ 0.5, let δ̃ = 1− δ so that δ̃ ∼ D(β − 1, α− 1,−λ) with mode δ̃0 = 1− δ0. Using the same
approximation as before, we can use rejection sampling on δ̃ with a Gamma(β, (α−1)/(1−δ̃0)−λ)
proposal, right-truncated at one, provided (α − 1)/(1 − δ̃0) − λ > 0. In practice we achieve
acceptance rates greater than 0.9.

Sampling τA, τB

The full conditional is bivariate complex normal with mean (Kd +nξΣ
−1
AB)−1(Kdrd +nξΣ

−1
ABrp)

and inverse variance Kd + nξΣ
−1
AB, where

rd =

(
n−1
A

∑
a∈A ra

n−1
B

∑
b∈B rb

)
, rp =

1

nξ

∑

〈a,b〉∈ξ

(
ra
rb

)
, Kd = σ−2

(
nA 0
0 nB

)
.

Sampling σ

We make the change of variables u = σ−2. The improper prior pr(σ) = σ−5 becomes pr(u) ∝ u.
The full conditional of u is a Gamma distribution with shape parameter nA+nB+2 and inverse
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scale parameter

∑

a∈A\ΠA(ξ)

|ra − τA|2 +
∑

b∈B\ΠB(ξ)

|rb − τB|2

+
(ω2 + 1)2

(ω2 + 1)2 − 1

∑

〈a,b〉∈ξ

[
|ra − τA|2 + |rb − τB|2 −

2

ω2 + 1
<
{

(ra − τA)(rb − τB)ψ
}]

.

Sampling ψ

The full conditional of ψ is a von Mises distribution with location parameter ν0/|ν0| and con-
centration parameter |ν0|, where

ν0 =
∑

〈a,b〉∈ξ
κsasb + 2

ω2 + 1

(ω2 + 1)2 − 1

ra − τA
σ

rb − τB
σ

.

Sampling ξ

Finally we sample the matching ξ. A possible Metropolis–Hastings sampler for ξ is described
in Green and Mardia (2006). They propose creating or breaking a single, random matched
pair at each iteration. In contrast, our Algorithm 4 considers all matches for a given minutia
simultaneously and computes the probability of each match.

We need one more piece of notation. In analogy with ΠA,m in (18), for each m ∈M, define
ΠB,m : Ξ(A,B)→M by ΠB,m(ξ) = b if 〈m, b〉 ∈ ξ for some b ∈ B, and φ otherwise.

We will sample ξ with the help of an auxiliary random variable β that takes values uniformly
on B. Consider the following transition kernel for moving in the augmented state space from
(ξ, β) to (ξ′, β′):

q(ξ′, β′ | ξ, β) ∝ pr(ξ′ | θ,A,B,Hp)I
[
ξ′ \ {〈ΠA,β(ξ′), β〉} = ξ \ {〈ΠA,β(ξ), β〉}

]
,

where pr(ξ′ | θ,A,B,Hp) is proportional to (16). This transition kernel allows transitions to any
ξ′ ∈ Ξ(A,B) which differs from ξ only in its match for β. The states ξ′ which are accessible
from the state ξ are illustrated in Fig. 6. We can move from any state ξ to any other state ξ′

a β

(a) Add

a

a0

β

(b) Swap on A

β

a0

(c) Remove

β

b

a

(d) Swap on B

a

a0 b

β

(e) Add/remove (f) No change

Figure 6: Illustration of which states for ξ′ are accessible from a given state ξ. Dashed edges
are removed matches, solid edges are added matches. Edges that are common to both ξ′ and ξ
are not shown. We write a for ΠA,β(ξ′), a0 for ΠA,β(ξ) and b for ΠB,a(ξ), assuming that none
of these are equal to φ. Hence 〈a0, β〉 ∈ ξ, 〈a, b〉 ∈ ξ, and 〈a, β〉 ∈ ξ′.

in at most nB steps, so the Markov chain with this transition kernel is irreducible. Clearly it is
also aperiodic and therefore ergodic. Its stationary distribution is pr(ξ | θ,A,B,Hp) as desired.

The densities of the allowed states have many terms in common. By ignoring these common
terms, we obtain from (20)

q(ξ′, β′ | ξ, β) ∝ exp[w(a, β | θ)− w{a,ΠB,a(ξ) | θ}],
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where a = ΠA,β(ξ′) and w is given by (21). Thus the proposal function can be computed very
quickly, and it can be normalized over ξ by simply summing over the permitted moves. There
are nA + 1 such moves, one for each possible value of a ∈ A∪φ. The full algorithm is described
in Algorithm 4.

Algorithm 4: Sampler for ξ using the auxiliary variable β.

Input: Previous value ξ
β ← Sample (Uniform over B);
ξ′ ← ξ \ {〈ΠA,β(ξ), β〉} # remove the old match of β;
α← Sample (pr(a) ∝ exp[w(a, β | θ)− w{a,ΠB,a(ξ) | θ}]) for a ∈ A ∪ φ;
if α = φ then

return ξ′;
else

return ξ′ ∪ {〈α, β〉};
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