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Abstract

The field of this thesis is deformation quantization, and we consider mainly sym-
plectic manifolds equipped with a star product.

After reviewing basics in complex geometry, we introduce quantization, focus-
ing on geometric quantization and deformation quantization. The latter is defined
as a star product on a Poisson manifold that is in general non-commutative and
corresponds to the composition of the quantized observables.

While in general it is difficult to express a star product globally on a curved
manifold in an explicit way, we consider a case where this is possible, namely that
of a Kähler manifold. Gammelgaard gave an explicit formula for a class of star
products in this setting. We review his construction, which is combinatorial and
based on a certain family of graphs and extend it, to provide the graph formalism
with the notions of composition and differentiation.

We shall focus our attention on symplectic manifolds equipped with a family
of star products, indexed by a parameter space. In this situation we can define a
connection in the trivial bundle over the parameter space with fibres the formal
smooth functions on the manifold, which relates the star products in the family
and is called a formal connection. We study the question of classifying such formal
connections. To each star product we can associate a certain cohomology class
called the characteristic class. It turns out that a formal connection exists if and
only if all the star products in the family have the same characteristic class, and that
formal connections form an affine space over the derivations of the star products.
Moreover, if the parameter space for the family of star products has trivial first
cohomology, we obtain that any two flat formal connections are gauge equivalent
via a self-equivalence of the family of star products.

Afterwards we study the problem of trivializing a formal connection, that is
to define a differential operator on the manifold which makes any section of the
bundle parallel with respect to the connection. To approach the problem we use
the graph formalism described above to encode it in graph terms. This allows us
to express the equations determining a trivialization of the formal connection com-
pletely in graph terms, and solving them amounts to finding a linear combination
of graphs whose derivative is equal to a given expression. We shall also look at an-
other approach to the problem that is more calculative. Moreover we use the graph
formalism to give a set of recursive equations determining the formal connection
for a given family of star products.

Dansk resumé

Denne afhandling beskæftiger sig med deformationskvantisering. Vi betragter ho-
vedsageligt symplektiske mangfoldigheder med et stjerneprodukt.

Vi gennemgår det grundlæggende stof inden for kompleks geometri, og der-
efter introducerer vi kvantisering, med fokus på geometrisk kvantisering og de-
formationskvantisering. Det sidste er defineret ved at give et stjerneprodukt på en
Poisson-mangfoldighed, hvilket som regel er ikke-kommutativt og svarer til sam-
mensætning af de kvantiserede observable.
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Helt generelt er det svært at udtrykke et stjerneprodukt eksplicit, men vi kigger
på et tilfælde, hvor det er muligt, nemlig på en Kähler-mangfoldighed. Gammel-
gaard gav et eksplicit udtryk for et stjerneprodukt i dette tilfælde. Vi gennemgår
hans konstruktion, som er kombinatorisk og baseret på en vis familie grafer, og vi
udvider dette kombinatoriske sprog til at indeholde begreber som sammensætning
af operatorer og differentiation.

Vi fokuserer vores analyse på de symplektiske mangfoldigheder, som er givet
en familie stjerneprodukter, parametriserede af et parameterrum. I denne situation
kan vi definere en forbindelse i det trivielle bundt over parameterrummet, hvis fi-
bre er de formelle glatte funktioner på mangfoldigheden. Denne forbindelse kaldes
for en formel forbindelse. Vi kigger på spørgsmålet om klassificering af sådanne
formelle forbindelser. Vi kan vise, at en formel forbindelse findes, hvis og kun hvis
alle stjerneprodukter i familien har den samme karakteristiske klasse, og at de for-
melle forbindelser udgør et affint rum over mængden bestående af derivationerne
af disse stjerneprodukter.

Dernæst undersøger vi trivialiseringer af en formel forbindelse. En trivialise-
ring er en differentialoperator, som gør ethvert snit af bundtet parallelt med hen-
syn til forbindelsen. Vi prøver at finde sådan en trivialisering ved hjælp af den
ovennævnte grafformalisme. På den måde kan vi udtrykke problemet helt kom-
binatorisk med grafer. For at løse problemet skal man finde en linearkombination
af grafer, som når den bliver afledt giver et bestemt udtryk. Vi skal også kigge på
en anden metode, som er baseret på beregninger. Endeligt bruger vi vores graf-
formalisme til at give en række rekursive ligninger, som bestemmer den formelle
forbindelse for en familie af stjerneprodukter.
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1

Introduction

The main subject of this dissertation is deformation quantization, with a focus on
formal connections on symplectic manifolds equipped with a family of star products.

Quantization and the Hitchin connection

Let us introduce the broad area in which we are working, namely quantization.
Edward Witten proposed in the paper [Wit89] that quantum Chern-Simons the-

ory should form the two-dimensional part of a topological quantum field theory
(TQFT) in 2 + 1 dimensions. The study of geometric quantization of the moduli
space M of flat SU(n)-connections on a surface Σ arose from there. This moduli
space has a natural symplectic structure ω and admits a prequantum line bundle,
which is a Hermitian line bundle L with a compatible connection, whose curvature
is given by the symplectic form.

The Teichmüller space T of the surface Σ parametrizes complex structures on
the moduli space, so for each point σ ∈ T and each natural number k, called the
level of quantization, we have the quantum state space of geometric quantization,
which is the space

Qk(σ) = H0(Mσ;L⊗k)

of holomorphic sections of the k-th tensor power of the prequantum line bundle.
These form the fibres of a vector bundle Q over T , called the Verlinde bundle,
and it was shown independently by Hitchin in [Hit90] and Axelrod, Della Pietra
and Witten in [ADPW91] that this bundle admits a natural projectively flat connec-
tion, which we shall call the Hitchin connection. Consequently, the quantum spaces
associated with different complex structures are identified, as projective spaces,
through the parallel transport of this connection.

Formal connections

On a Poisson manifold M, a deformation quantization, or star product, is a C[[h]]-
linear product in the space C∞(M)[[h]] that is associative, gives to the pointwise

1



2 1. Introduction

product modulo h, and such that the part of degree 1 in h of its commutator is a
multiple of the Poisson bracket.

Andersen in [And06] has studied the asymptotic relationship between Toeplitz
operators and the Hitchin connection, and in [And12] he has extended his asymp-
totic analysis of the relationship between the Hitchin connection and the Toeplitz
operators to higher orders, which led him to define the following notion.

Definition. If M is a symplectic manifold equipped with a smooth family of star
products parametrized by a manifold T , a formal connection on M is a connection
in the bundle T × C∞(M)[[h]]→ T of the form:

DV f = V[ f ] + A(V)( f ), (1.1)

where A is a smooth 1-form on T with values in differential operators on M such
that A = 0 (mod h), f is a smooth section of the bundle, V is any smooth vector
field on T , and V[ f ] denotes the derivative of f along V.

The formal connection is compatible with the family of star products {?σ}σ∈T , if
it is a derivation of the products at any point in the base space T :

DV( f ?σ g) = DV( f ) ?σ g + f ?σ DV(g), (1.2)

for any σ ∈ T and any smooth functions f and g on M.

On a Kähler manifold M we always have the family of the so called Berezin-
Toeplitz star products ?BT , which can be constructed using the theory of Toeplitz
operators.

Definition. Let M be a symplectic manifold with a family of compatible almost
complex structures parametrized by a complex manifold T , so that for any σ ∈ T ,
the manifold Mσ is a Kähler manifold, and let {?BT

σ }σ∈T be the associated family
of Berezin-Toeplitz star products. A formal Hitchin connection on M is a formal
connection that is compatible with this family of star products and that is flat.

Andersen in [And12] studied a particular formal Hitchin connection that is
associated to the Hitchin connection from geometric quantization, and he showed
that the projective flatness of the Hitchin connection implies the flatness of the
formal Hitchin connection he defined. In [And12] and together with Gammelgaard
[AG11], Andersen gave an explicit expression for the 1-form Ã(V) for the formal
Hitchin connection associated to the Hitchin connection:

Ã(V)( f ) = −V[F] f + V[F] ?BT f + h(E(V)( f )− H(V) ?BT f ), (1.3)

where E is a 1-form on T with values in differential operators on M, H is a 1-
form with values in C∞(M) such that H(V) = E(V)(1), and F indicated the Ricci
potential for the family.

Andersen noticed that any formal Hitchin connection can be used to identify
these deformation quantizations and obtain a mapping class group equivariant
deformation quantization on the moduli space, provided that certain cohomology
groups of the mapping class group vanish.

We aim to give a result of classification of formal connections. It turns out that a
formal connection exists if the characteristic class of the star products in the family
is constant in cohomology, which is one of our main results.
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Theorem. Fix ∇ a symplectic connection for (M, ω) and let {?σ}σ∈T be a smooth family
of natural star products on M parametrized by a manifold T . There exists a compatible
formal connection compatible with the family of star products if and only if the characteristic
class of the star products is constant.

To show this, we do a construction inspired by Fedosov’s geometrical construc-
tion of a star product [Fed94], which ties the star products of the family together.

This result specializes to the case of a symplectic manifold equipped with
a smooth family of compatible Kähler structures, where we take the family of
Berezin-Toeplitz star products associated with them. In that situation we get the
following result, granting the existence of a formal Hitchin connection up to order
one in the formal parameter.

Theorem. Let (M, ω) be a compact, symplectic manifold, and let T be a complex manifold
parametrizing a family of compatible Kähler structures Iσ on M, for σ ∈ T . The family of
Berezin-Toeplitz star products associated with the family has constant characteristic class,
and therefore it admits a formal connection.

Classification of formal connections

Let (M, ω) be a symplectic manifold with a family of star products {?σ}σ∈T that are
parametrized by T , and let us denote with Der0(M, ?σ) the space of the derivations
of the star product ?σ that are trivial modulo h.

We shall see that the space of the formal connections compatible with the family
of star products on M form an affine space over the space of 1-forms on T with
values in Der0(M, ?σ).

Theorem. Let M be a symplectic manifold equipped with a smooth family of star products
{?σ}σ∈T parametrized by T . The space F (M, ?σ) of the formal connections on M that
are compatible with the family of star products is an affine space over the space of 1-forms
on T with values in the derivations of the star product that are trivial modulo h, and it can
then be written as:

F (M, ?σ) = D0 + Ω1(T , Der0(M, ?)),

for a fixed formal connection D0.

Furthermore, if we assume that H1(M; R) vanishes, we have that all derivations
of a star product on M are inner, therefore they are parametrized by an element in
C̃∞

h (M), the space of formal functions on M modulo the constant functions, which
allows us to refine the previous result to the following.

Theorem. If M satisfies that H1(M; R) = 0, the space F (M, ?σ) of the formal connec-
tions on M that are compatible with the family of star products is an affine space over the
1-forms on T with values in C̃∞

h (M):

F (M, ?σ) ∼= D0 + Ω1(T , C̃∞
h (M)),

for a fixed formal connection D0.
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Gauge transformations of formal connections

We study gauge transformations in the space of formal connections F (M, ?σ). The
transformations we look at are differential self-equivalences of the family of star
products, since the connections should still act as derivations when we transform
them. If we assume that the parameter space T of the family of star products has
trivial first cohomology, we obtain the following result.

Theorem. Let M be a symplectic manifold with a family of star products {?σ}σ∈T
parametrized by a smooth manifold T such that H1(T ; R) = 0. Let D, D′ ∈ F (M, ?σ)
be formal connections for the family and let us assume that they are flat. Then they are
gauge equivalent via a self-equivalence of the family of star products P ∈ C∞(T ,Dh(M)),
meaning that

D′V = P−1DV P, (1.4)

for any vector field V on T .

In particular, Andersen showed that the formal Hitchin connection associated
to the Hitchin connection is flat whenever the Hitchin connection in geometric
quantization is projectively flat. This implies the following corollary.

Corollary. Let T be a smooth manifold with H1(T ; R) = 0. If there exists a formal
Hitchin connection D in the bundle Ch on T , then it is unique up to gauge equivalence.

The formal Hitchin connection at low orders

As mentioned above, a formal connection compatible with a family of star products
is required to be a derivation of them. In the case our main example of a formal
connection, namely the formal Hitchin connection defined by Andersen, which is
associated to the Hitchin connection in geometric quantization, we know that it is
a derivation of the Berezin-Toeplitz star product, which was proved by Andersen
[And12] by using a correspondence between geometric and deformation quantiza-
tion through Toeplitz operators, but this result of course assumes the existence of a
Hitchin connection in geometric quantization, which puts several requirements on
the objects involved in the construction, among the others the fact that the family
of Kähler structures has to be holomorphic and rigid. We shall see that these are
quite strong requirements.

On the other hand, the explicit expression (1.3) that Andersen obtained makes
sense in a more general situation, and therefore we can ask whether that expres-
sion in general gives a derivation of the Berezin-Toeplitz star product. This is a
difficult question, because it involves the coefficients of the star product, which are
in general difficult to understand. But we can give an affirmative answer if we only
look at low degrees in the formal parameter.

Moreover it is easy to check that the same expression (1.3) defines a flat for-
mal connection, therefore we have the conclusion that the expression obtained by
Andersen gives a formal Hitchin connection up to order one.

Proposition. Let M be a symplectic manifold with a family of compatible Kähler struc-
tures parametrized by a complex manifold T . Then the expression (1.3) defines a formal
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connection that, up to order one in the formal parameter, is a derivation of the family of
Berezin-Toeplitz star products on M, and that is flat up to order one in the formal param-
eter. Therefore it defines up to order one a formal Hitchin connection in the sense of our
definition above.

A combinatorial approach to deformation quantization

Deformation quantization on Kähler manifolds was studied initially, among the
others, by Berezin in [Ber74], where he gave integral formulae for a star product
though with strong assumptions on the Kähler manifold.

A later important result in deformation quantization for this type of manifold
is due to Karabegov, who showed in [Kar96] the existence of a star products in
this setting, and gave a classification of formal deformation quantizations with
separation of variables by showing that they bijectively correspond to closed formal
(1, 1)-forms on the manifold. Such a form ω, called a Karabegov form can be written
as:

ω = ω−1
1
h
+ ω0 + ω1h + ω2h2 + . . . , (1.5)

where each ωi is a closed 2-form on M of type (1, 1), and ω−1 is the symplectic
form of M.

Around the same time Schlichenmaier [Sch00] gave a geometric but implicit
construction of a deformation quantization on any compact Kähler manifold, by
means of the asymptotic expansion of products of Toeplitz operators in geometric
quantization, which is used to uniquely identify the star product.

In the symplectic setting a construction of star product is due to Fedosov, who in
the paper [Fed94] constructed a canonical star product on any symplectic manifold.

The first result giving an explicit construction of a deformation quantization
on a general Kähler manifold is due to Reshetikhin and Takhtajan in [RT00] and
is based on interpreting Berezin’s integral formulae formally and studying their
asymptotical behaviour. The resulting explicit formula expresses the star prod-
uct combinatorially in terms of certain graphs that get interpreted as differential
operators.

Gammelgaard in [Gam14] gave an explicit combinatorial formula for defor-
mation quantizations a Kähler manifold, which expresses the star products with
separation of variables that were classified by Karabegov as a linear combination
of differential operators associated to graphs, in a way that the coefficients of the
linear combination are easily computable. To do so he defined a class of graphs
denoted A2 and to each graph he associated a partition function Γω

G , which en-
codes the way the star product differentiates the two function of which we wish to
compute the star product.

Theorem (Gammelgaard). On a Kähler manifold M, the unique formal deformation
quantization with Karabegov form ω is given by the local formula

f ?ω g = ∑
G∈A2

1
|Aut(G)|Γ

ω
G( f , g)hw(G),
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for any functions f and g on M, where Γω
G is the partition function associated to the graph

G.

In this thesis we apply Gammelgaard’s work to give a combinatorial interpre-
tation of the formal Hitchin connection associated to the Hitchin connection of
geometric quantization and to express the problem of trivializing it in a combina-
torial way. The graph language we develop allows us to make sense of composition
and differentiation of graphs, and thereby interpret the differential equation that
has to be solved (in local coordinates) as a relation between linear combinations of
graphs. For instance, given two differential operators A1, A2 and their expressions
as a linear combination of graphs, we can express their composition through an
operation on graphs that is called fusion. That is, the composed differential opera-
tors A1 A2 has a graph expression given obtained by fusing the graphs for the two
initial operators.

Compatible formal connection in graph language

We can use this graph language to express what it means for a formal connection to
be compatible with a family of star products. We get a result which gives us a set of
recursive equations that a 1-form A has to satisfy in order for the formal connection
DV = V + A(V) to be compatible with a family of Karabegov star products.

Proposition. The formal 1-form A defines a formal connection if and only if it satisfies
the following equations for any k ≥ 1, for any vector field V on T and any two smooth
functions f and g.

Ak(V)( f g)− Ak(V)( f )g− f Ak(V)(g) = ∑
G∈Lc

2,k

1
C(G)

V[ΛG]( f , g)

−
k

∑
i=1

(
Ak−i(V)( ∑

G∈Lc
2,i

1
C(G)

ΛG( f , g))

− ∑
G∈Lc

2,i

1
C(G)

ΛG(Ak−i(V)( f ), g)− ∑
G∈Lc

2,i

1
C(G)

ΛG( f , Ak−i(V)(g))
)

.

The formal Hitchin connection in graph language

Using similar considerations we could prove the following result, which expresses
the formal Hitchin connection associated to the Hitchin connection from geometric
quantization completely in terms of graphs. In a similar fashion to the previous
result, we identify a certain class of graphs denoted Lc

2,1 that encode the ways
that the star products coefficients differentiate the arguments, and one more graph
denoted G0, that corresponds to the Laplace operator. To each of them we asso-
ciate a partition function ΛG. The theorem shows how we can use these partition
functions to express the formal Hitchin connection.

Theorem. Let M be a symplectic manifold with a family of Kähler structures which is
parametrized by a complex manifold T , and let F denote the Ricci potential for the family
of complex structures. Let DV be the formal Hitchin connection (associated to the Hitchin
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connection of geometric quantization) in the bundle C∞(M)[[h]] × T over T , which is
expressed in the form DV = V + Ã(V), for Ã as in (1.3). Then Ã can be completely
expressed in terms of graphs via the equations:

Ã1(V)( f ) = ∑
G∈Lc

2,1

1
C(G)

ΛG(V[F], f )− i
2

V[ΛG0 ]( f ) + ∑
G∈Lc

2,1

V[ΛG](F, f ),

Ãk(V)( f ) = ∑
G∈Lc

2,k

1
C(G)

ΛG(V[F], f )

+ ∑
G∈Lc

2,k−1

1
C(G)

ΛG(−
1
2

∆G̃(V)(F) +
n
2

V[F], f ), for k ≥ 2.

Trivialization of the formal Hitchin connection

When we have a formal connection in the bundle T × C∞(M)[[h]] over T , we can
look at a formal trivialization of the connection: that is a smooth map P : T →
Dh(M) which modulo h is the identity, and which satisfies DV(P( f )) = 0 for all
vector fields V on T and all f ∈ C∞(M)[[h]].

Andersen and Gammelgaard could produce a formal trivialization of the for-
mal Hitchin connection associated to the Hitchin connection of geometric quanti-
zation up to order one. In this thesis we show an approach to solve this problem at
higher and possible all degrees, by formulating it in the graph-theoretical language
mentioned above. The following result shows how we can write the equation de-
termining P as a system of recursive equations of graphs.

Theorem. Let DV be the formal Hitchin connection (associated to the Hitchin connection
of geometric quantization) in the bundle C∞(M)[[h]]× T over T , which is expressed in
the form DV = V + Ã(V). A smooth map P : T → Dh(M) is a formal trivialization for
D if it satisfies the following recursive sequence of relations expressed in graph theoretical
language:

P0 = empty graph

V[Pk] = −Ã1(V)(Pk−1)− Ã2(V)(Pk−2)− · · · − Ãk(V)(P0)

= − ∑
G∈Lc

2,1

1
C(G)

ΛG(V[F], Pk−1) +
i
2

V[ΛG0 ](Pk−1)−
1
2 ∑

G∈Lc
2,1

V[ΛG](F, Pk−1)

− ∑
G∈Lc

2,2

1
C(G)

ΛG(V[F], Pk−2)− ∑
G∈Lc

2,1

1
C(G)

ΛG(−
1
2

∆G̃(V)(F) +
n
2

V[F], Pk−2)

− . . .

− ∑
G∈Lc

2,k

1
C(G)

ΛG(V[F], Id)− ∑
G∈Lc

2,k−1

1
C(G)

ΛG(−
1
2

∆G̃(V)(F) +
n
2

V[F], Id).

for k ≥ 1.
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Trivialization on abelian varieties

An interesting example is that of principally polarised abelian variety, which are
manifolds written in the form

M = V/Λ,

where V is a real vector space with a symplectic form ω fulfilling some addi-
tional conditions, and Λ is a discrete lattice of maximal rank. They are symplectic
manifolds, and as usual we can consider a complex manifold T parametrizing the
Kähler structures Iσ on M that are compatible with ω for σ ∈ T .

Andersen studied this case in [And05] and later in [AB11] together with Blaa-
vand, and gave an expression for a formal Hitchin connection for these manifolds,
which is particularly simple:

DV f = V[ f ]− h
4

∆G̃(V)( f ).

The equations that we obtain for the trivialization problem simplify in this case,
and this allows us to find a trivialization of the formal connection to all degrees,
which has the following form:

P = ∑
k∈N

hk ∆k

4kk!
= exp

(
h

∆
4

)
.

Comparing the result obtained here with the formulae in [And05] and [AB11],
we see that they match, taking into account the different normalizations.

1.1 Organization of the thesis

The thesis is organized as follows:
Chapter 2 provides a brief exposition of basic notions of complex differential

geometry that we are going to need in what follows. It is mostly meant as a
reference and to establish notation.

Chapter 3 introduces quantization and gives some physical background for its
study. In this chapter we give an overview of quantization in general, but at the
same time we give also a more detailed treatment of geometric quantization follow-
ing the approach used by Andersen in [And12] and introduce Toeplitz operators.
We also introduce polarizations and discuss some of their properties.

In Chapter 4 we switch to a different approach to quantization, namely defor-
mation quantization, which is our main focus in this thesis. Deformation quan-
tization is based on the definition of certain products called star products, which
we shall introduce and study in detail. In particular we focus our attention to a
certain type of star products, namely those that are differential and with separation
of variables. We review Karabegov’s classification of such products and define the
Berezin-Toeplitz star product, which is a particular product that is in some sense
natural to consider on a Kähler manifold.

Chapter 5 is devoted to the construction of the Hitchin connection. This con-
nection was first defined by Hitchin [Hit90], but here we review the construction
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proposed by Andersen in [And12]. To do so we introduce different objects, and
discuss their properties.

In the following Chapter 6 we go back to star products and focus our attention
to differential products with separation of variables on a Kähler manifold. Un-
like the general situation with star products, those belonging to this class can be
described explicitly in a combinatorial fashion by using graphs. We review Gam-
melgaard’s construction [Gam14] of this combinatorial description, which allows
to represent each star product of Karabegov’s classification as a linear combination
of differential operators associated to certain graphs.

Chapter 7 is about formal connections and contains some of the main results of
this thesis. The formal Hitchin connection was introduced by Andersen translat-
ing the Hitchin connection to the setting of deformation quantization. Andersen’s
work is mainly focused on this particular formal connection since it is related to
the problem of quantization, but actually formal connections can be studied in-
dependently from this, forgetting the fact that they originate from this problem.
Following this approach we give a description of the space of formal connections
and give a necessary and sufficient condition on the star product for the existence
of formal connections compatible with it. Moreover, if the parameter space for the
family of star products has trivial first cohomology, we show that any two flat for-
mal connections are gauge equivalent via a self-equivalence of the family of star
products.

Chapter 8 gives account for the trivialization problem for the formal Hitchin
connection associated to the Hitchin connection of geometric quantization. We
show two different approaches to the problem: the first one is based on the graph
language of Chapter 6, where we try making sense of what it means to “differ-
entiate” a graph, in a fashion corresponding to differentiation of the associated
partition function. This way we are able to formulate the problem purely in graph
terms. The second approach is more calculative and gives us as a by-product some
relations that the coefficients of the star products satisfy. Moreover we give a solu-
tion to the trivialization problem at all degrees for a class of abelian varieties.





2

Complex geometry

This chapter introduces briefly some basic notions of complex geometry that will
be needed in the rest of the dissertation. Even if it is expected that the reader
is familiar with most of the content of this chapter, its presence can serve as a
reference and to establish notation. For a more extended treatment the reader is
referred for example to [Wel08], [BN06], [DS08], [Mor07], and [Esp12].

2.1 Symplectic manifolds

Definition 2.1. A symplectic manifold (M, ω) is the data of a smooth manifold M
of even dimension together with a non-degenerate differential 2-form ω, called
symplectic form.

Recall that non-degenerate means that, at each point p ∈ M, the form ωp is non-
degenerate, and hence a symplectic form ω defines an isomorphism iω : TM →
T∗M between the tangent and cotangent bundles, given by contraction in the first
entry: X 7→ iXω. We can use this isomorphism to define the bivector field:

ω̃ = −(i−1
ω ⊗ i−1

ω )(ω),

which satisfies the identity ω · ω̃ = ω̃ ·ω = Id, where the dot indicated contraction
of tensors in their entries closest to the dot, which is relevant when working with
non-symmetric tensors. For example when we write ω · ω̃ we mean that the right-
most entry of ω is contracted with the left-most one of ω̃.

It is inherent in the definition of differential form that ω is skew-symmetric,
and since it is invertible at each point, this implies that the dimension of M is
even, since skew-symmetric matrices in odd dimension are singular. A symplectic
manifold of dimension m gets a canonical orientation from ωm, and a canonical
volume form that is usually normalized as ωm

m! .
On a symplectic manifold we have two important families of vector fields: the

symplectic and the Hamiltonian ones, as we shall see in the following definitions.

Definition 2.2. Let (M, ω) be a symplectic manifold and X a vector field on it. We
say that X is symplectic if its (local) flow preserves ω or, in other words:

LXω = 0.

11
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Note that by the Cartan identity we have:

LXω = iXdω + d(iXω) = d(iXω),

since ω is a closed form. It follows that, for a symplectic vector field X, the form
iXω is closed.

If f ∈ C∞(M) is a smooth function on M, then its differential d f is a section of
the cotangent bundle, and if we compose it with the inverse of iω we get a section
of the tangent bundle, or a vector field, which plays an very important role in
symplectic geometry:

Definition 2.3. Let (M, ω) be a symplectic manifold and f a smooth function on
it. The Hamiltonian vector field of f , denoted X f , is characterized by:

iX f ω = d f .

Generally we say that a vector field X on M is Hamiltonian is iXω is exact.

Saying that X is Hamiltonian is of course equivalent to requiring ω(X f , Y) =
d f (Y) = Y f satisfied for any vector field Y. This can be expressed in terms of ω̃ by
requiring X f = d f · ω̃. The set of the Hamiltonian vector fields on M is denoted by
Γham(TM).

Clearly, if X is Hamiltonian, then it is symplectic, since the exact form iXω is
closed. The space of symplectic vector fields modulo the Hamiltonian vector fields
is then isomorphic to the space of closed one-forms modulo the exact ones, and
so to H1(M; R). We have also, by the Poincaré Lemma, that any symplectic vector
field locally is Hamiltonian.

2.1.1 Physical motivation

Let us here attempt to informally give a motivation for studying such a geometric
structure, namely its use in encoding the time evolution of a classical mechanical
system.

Symplectic manifolds arise naturally in classical mechanics as the representa-
tion of the phase space of a closed mechanical system. The phase space is a set of
observables of a physical system, where each point normally represents a specific
position and specific momentum. The energy of the system, which is preserved,
is represented by a real-valued differentiable smooth function H : M → R called
Hamiltonian. The symplectic form and the Hamiltonian allow one to obtain a vector
field describing the flow of the system, and this vector field is precisely the Hamil-
tonian vector field associated to H, i.e. the vector field VH satisfying dH = ω(VH , ·).
It is immediate to check that the preservation of the Hamiltonian along flow lines
corresponds to the form ω being alternating, dH(VH) = ω(VH , VH) = 0. In the
physical interpretation, we want the form ω not to vary along the flow lines VH ,
i.e. that its Lie derivative is zero. By the Cartan’s formula this is equivalent to ω
being closed.
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2.2 Poisson structure

Definition 2.4. A Poisson algebra A is an algebra (over R or C) equipped with a
bilinear map

{·, ·} : A× A→ A,

called Poisson bracket, which is anti-symmetric and satisfies:

• the Jacobi identity: {x, {y, z}}+ {y, {z, x}}+ {z, {x, y}} = 0,

• the derivation rule: {x, yz} = {x, y}z + y{x, z},

for any x, y, z ∈ A.

Definition 2.5. A Poisson manifold is a smooth manifold M together with a Poisson
bracket on the algebra of smooth functions C∞(M).

It is easy to check that, if (M, ω) is a symplectic manifold, then the assignment

{ f , g} = d f · ω̃ · g = −ω(X f , Xg) = ω(Xg, X f ), (2.1)

for f , g ∈ C∞(M) defines a Poisson structure on M.

Remark 2.6. The tensor ω̃ is the Poisson tensor of this structure, and the Jacobi
identity corresponds to the vanishing of dω.

In general for a Poisson manifold one can see that the derivation rule for the
bracket implies that the bracket is given by an anti-symmetric bivector field, called
the Poisson tensor, as in (2.1). If the Poisson structure is induced by a symplectic
structure, then the Poisson tensor is non-degenerate, but in general it can be de-
generate. In fact the Poisson tensor is non-degenerate if and only if the Poisson
structure is induced by a symplectic structure.

On a Poisson manifold, the following identity holds for any smooth functions
f and g:

[X f , Xg] = X{ f ,g},

and therefore the map

C∞(M)→ Γham(TM)

f 7→ X f ,

sending a smooth function on M to its Hamiltonian vector field defines a homo-
morphism of Lie algebras from the smooth functions on M (equipped with the
Poisson bracket) and the Hamiltonian vector fields (with the commutator).

2.3 Almost complex manifolds

An almost complex structure is an endomorphism of the tangent bundle that plays
a similar role of the imaginary unit for the complex numbers.

Definition 2.7. Let M be a smooth manifold of even dimension 2m. An almost com-
plex structure I ∈ C∞(M, End(TM)) on M is a smooth section of the endomorphism
bundle of TM such that I2 = − Id.
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This structure turns the tangent bundle TM into a complex vector bundle TMI
where multiplication by i is given by the endomorphism I.

The complexified tangent bundle of M is the complexification of TM:

TMC = TM⊗R C,

and the almost complex structure induces a natural decomposition of the complex-
ified tangent bundle:

TMC = T′MI ⊕ T′′MI ,

where the two summands are the eigenspaces of the endomorphism I respectively
for the eigenvalues i and −i:

T′MI = ker(I − i Id), T′′MI = ker(I + i Id).

A section of the first subspace are said to be a vector fields of type (1, 0), and a
section of the second subspace is a vector field of type (0, 1).

The decomposition is explicitly given by the projections to the two subspaces:

π1,0
I =

1
2
(Id−iI), π0,1

I =
1
2
(Id+iI).

Let us introduce the notation
X = X′I + X′′I

for the decomposition of a vector field X on M.
The conjugation map on TMC identifies T′MI and T′′MI as real vector bundles.

We can act on the cotangent bundle TM∗ via I by:

(Iα)X = α(IX),

for a vector field X and a covector α, and we get a decomposition of the cotangent
bundles similarly to above:

TM∗C = T′M∗I ⊕ T′′M∗I ,

where the two summands are again the eigenspaces for i and −i. One can see
with an easy computation that T′M∗I is the subbundle of TM∗C consisting of the
forms that vanish on T′′MI . As we have splittings for the complexified tangent
and cotangent bundle, we obtain a splitting of the tensor bundles of M, as direct
sums of the tensor products of the subbundles corresponding to the eigenvalues of
i. If we denote

Λp,q(TM∗I ) = Λp(T′M∗I )⊗Λq(T′′M∗I ),

then we can write:
Λk(TM∗I ) =

⊕
p+q=k

Λp,q(TM∗I ).

This induces a splitting of complex-valued differential k-forms:

Ωk(M) =
⊕

p+q=k

Ωp,q
I (M),
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where Ωp,q
I (M) = C∞(M, TM∗I ) is the space of complex-valued differential forms

of type (p, q). Given a k-form α, we write its component of type (p, q) as α(p,q).
We have projection maps

π(p,q) : Ωp+q(M)→ Ωp,q
I (M),

which can be composed with the differential

d : Ωp+q(M)→ Ωp+q+1(M)

in the appropriate degree and form the operators:

∂I : Ωp,q
I (M)→ Ωp+1,q

I (M) ∂I = π(p+1,q) ◦ d,

∂̄I : Ωp,q
I (M)→ Ωp,q+1

I (M) ∂̄I = π(p,q+1) ◦ d.

2.4 Complex structures

A complex structure on a space M is a maximal atlas of smooth charts ϕj : Uj →
U′j ⊂ Cm, such that the transition maps:

ϕkj = ϕk ◦ ϕ−1
j : ϕj(Uk ∩Uj)→ ϕk(Uk ∩Uj)

are holomorphic, meaning that each component of the transition map is holomor-
phic in each coordinate.

One can see immediately that, if a manifold M admits a complex structure, it
also admits an almost complex structure: if we have local holomorphic coordinates
zk = xk + iyk with corresponding coordinate vector fields Xk and Yk, the almost
complex structure is given by:

I(Xk) = Yk, I(Yk) = −Xk,

which is independent of the coordinate chosen because the transition maps are
holomorphic. Because of this the tangent bundle is a complex vector bundle. Note
also that the coordinates for the tangent bundle have holomorphic transition maps,
therefore the bundle TMI is a holomorphic vector bundle.

If an almost complex structure is induced by a complex structure, it is called in-
tegrable. It turns out that this property for an almost complex structure is equivalent
to a tensorial condition, which is quite surprising. If one considers the expression:

NI(X, Y) := [IX, IY]− [X, Y]− I[IX, Y]− I[X, IY], (2.2)

it can be verified that it defines an anti-symmetric tensor on M, which is called the
Nijenhuis tensor or torsion of I. An easy computation shows that, if I is an integrable
almost complex structure, then it is torsion-free, in the sense that NI vanishes. The
opposite implication is a famous result by Newlander and Nirenberg [NN57].

Theorem 2.8 (Newlander-Nirenberg). Any torsion-free almost complex structure is in-
duced by a unique complex structure.
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The following proposition gives equivalent statements to the integrability of an
almost complex structure:

Proposition 2.9. Let I be an almost complex structure on M. The following statements
are equivalent:

1. The structure is torsion-free, i.e. the Nijenhuis tensor NI vanishes.

2. The bundle T′MI is preserved by the Lie bracket.

3. The exterior differential is decomposed as d = ∂I + ∂̄I .

Note that the third equivalent property implies the following identities:

∂2
I = 0 ∂̄2

I = 0 ∂I ∂̄I = −∂̄I∂I .

2.5 Compatible almost complex structure

Definition 2.10. Let (M, ω) be a symplectic manifold and let I be an almost com-
plex structure on M. We say that ω and I are compatible if

g(X, Y) := ω(X, IY) (2.3)

defines a Riemannian metric on M, or, in other words, the bilinear form g is sym-
metric and positive definite.

Similarly, if on a manifold M we have three structures: a Riemannian metric g,
an almost complex structure I and a symplectic form ω, then the triple (I, g, ω) is
said to be compatible if it satisfies the relation (2.3), and in this case each of the
three structures is determined by the other two.

If we assume that g is a symmetric bilinear form, then we have the following:

ω(IX, IY) = g(IX, Y) = g(Y, IX) = ω(Y, I2X) = −ω(Y, X) = ω(X, Y),

i.e. ω is I-invariant. A similar computation shows that the converse is also true,
therefore we have that g is symmetric if and only if ω is I-invariant, and equiv-
alently, if g is I-invariant. A consequence of this is that both g and ω have type
(1, 1).

From the bilinear form g we can define as usual an isomorphism

ig : TM→ TM∗,

and one can check that ig and iω are related by: iω = ig ◦ I. From the fact that g
and ω have type (1, 1) it follows that these two isomorphisms exchange types. As
done for ω, we can define the inverse metric tensor by

g̃ = (i−1
g ⊗ i−1

g )(g),

which gives a symmetric bivector field satisfying the relation g · g̃ = g̃ · g. This
bivector field is related to the bivector field associated to ω by the relation ω̃ = I · g̃.
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2.6 First Chern Class

Looking at the equation (2.3), we see that for each compatible almost complex
structure on M we can uniquely identify a Riemannian metric on the symplectic
manifold. It can also be proven that, on a symplectic manifold, the space of com-
patible almost complex structures is non-empty and contractible (see for example
[MS95] for more details.

Definition 2.11. On an almost complex manifold M with almost complex structure
I, the canonical line bundle KI is defined by

KI = ΛmT′M∗I .

The first Chern class of a symplectic manifold (M, ω) can then be defined by

c1(M, ω) = c1(M, I) = −c1(KI) ∈ H2(M; Z), (2.4)

i.e. the opposite of the first Chern class of the canonical line bundle, for any almost
complex structure I compatible with ω.

The first Chern class is an element of H2(M; Z), and from it we can obtain
the second Stiefel-Whitney class by reducing modulo 2: it is denoted w2(M) and is
a class in H2(M; Z/2). The second Stiefel-Whitney class does not depend on the
symplectic structure and is thereby a topological invariant of M.

Let L be any complex line bundle on M. If we take the image of the first Chern
class of L under the homomorphism

H2(M; Z)→ H2(M; R),

we obtain the real first Chern class of L, which is denoted c̃1(M, ω). If ∇ is any
connection on L, then we have that:

c̃1(L) =
i

2π
[F∇],

where F∇ denotes the curvature of the connection.

2.7 Kähler structure

In this section we review Kähler manifolds, where we have three structures inter-
playing with each other: a symplectic, a Riemannian and a complex structure.

Definition 2.12. A Kähler manifold is a symplectic manifold (M, ω) together with a
compatible almost complex structure I that is integrable.

The metric g(X, Y) = ω(X, IY) that we obtain because of compatibility is called
the Kähler metric. The form ω takes the name of Kähler form.

Note that, to make a symplectic manifold into a Kähler manifold amounts to
choosing an integrable and compatible almost complex structure. We will later
consider the situation of a manifold with a fixed symplectic structure and a family
of Kähler structures on it, which will be determined by a family of integrable and
compatible almost complex structures on it.
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As the manifold has a Riemannian metric, we can consider the Levi-Civita con-
nection ∇ on it, which is the unique connection in the tangent bundle satisfying
the following:

1. ∇ is torsion-free, i.e. ∇XY−∇YX− [X, Y] = 0 for all vector fields X, Y.

2. ∇ is compatible with the metric, in the sense that ∇g = 0, or

X(g(Y, Z)) = g(∇XY, Z) + g(Y,∇XZ),

for any vector fields X, Y and Z.

Remark 2.13. Let us note an important property of Kähler manifolds: the complex
structure I is parallel with respect with the Levi-Civita connection, in the sense that
∇I = 0, or:

∇X(IY) = I∇XY, (2.5)

for any smooth vector fields X and Y. Therefore the Kähler form ω is also parallel
with respect to this connection, since it satisfies (2.3) that relates it with I.

Another consequence of (2.5) is that the Levi-Civita connection preserves types,
and therefore it preserves the subbundles T′MI and T′′MI of the complexified
tangent bundle. We can then restrict the connection ∇ to a connection on T′MI
that is compatible with the Hermitian and the holomorphic structures, which we
will denote with the same symbol when it is clear which bundle we are looking at.

2.7.1 Kähler coordinates

We are interested in studying quantization on Kähler manifolds also because the
presence of this structure guarantees the existence of certain coordinates that have
very good properties, which simplify greatly the computations. The following
result establishes the existence of such coordinates, which take the name of geodesic
coordinates or Kähler coordinates. The reader is referred to [Wel08] for a proof and
further discussion.

Proposition 2.14. Let M be a Kähler manifold of complex dimension m, and let p ∈ M
be a point. Then there exist a neighbourhood of p where there are complex coordinates
z1, . . . , zm such that the corresponding coordinate vector fields Z1, . . . , Zm satisfy the fol-
lowing relations:

g(Zi, Z̄j) = δij ∇Zi = 0, (2.6)

at the point p.

2.7.2 Kähler curvature

On a Kähler manifold we have the Kähler curvature, which corresponds to the usual
notion of curvature of the Levi-Civita connection ∇: the curvature tensor of the
complex bilinear extension of ∇ to TMC is the complex trilinear extension of the
usual curvature tensor R of M to TMC:

R(X, Y)Z = ∇X∇YZ−∇Y∇XZ−∇[X,Y]Z. (2.7)
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The Kähler curvature is then a 2-form with values in the endomorphism bundle
of the tangent bundle End(TM). The tensor R satisfies the usual symmetries, but
now, more generally, for complex vector fields X, Y, Z, U, V:

R(X, Y) = −R(Y, X),

R(X, Y)Z + R(Y, Z)X + R(Z, X)Y = 0,

and:

〈R(X, Y)U, V〉 = −〈R(X, Y)V, U〉,
〈R(X, Y)U, V〉 = 〈R(U, V)X, Y〉.

Let us note that the fact that the almost complex structure I on a Kähler mani-
fold is parallel (2.5) implies that the curvature commutes with it:

R(X, Y)IZ = IR(X, Y)Z,

and therefore the curvature endomorphism preserves types. If we combine this
equation with the symmetries above, then we get:

〈R(X, Y)IU, IV〉 = 〈R(IX, IY)U, V〉 = 〈R(X, Y)U, V〉. (2.8)

Moreover for the subbundles T′MI and T′′MI we have that:

R(X, Y)(T′MI) ⊆ T′MI , R(X, Y)(T′′MI) ⊆ T′′MI .

2.8 Divergence

Let M be a Kähler manifold, and X a vector field on it. The divergence δX of X is
defined in terms of inner multiplication with the volume form ωm

m! by the following
formula:

δX
ωm

m!
= d

(
iX

ωm

m!

)
.

While the divergence of X does not depend on the Levi-Civita connection, one can
show that it is possible to compute it with the formula:

δX = Tr∇X.

Nevertheless the divergence is independent of the complex and the Riemannnian
structure. The formula above can be generalized to tensors as follows, when
X1, . . . , Xn are vector fields on M in the following way:

δ(X1 ⊗ · · · ⊗ Xn) = δ(X1)X2 ⊗ · · ·Xn + ∑
j

X2 ⊗ · · · ⊗ ∇X1 Xj ⊗ · · · ⊗ Xn.

This map
δ : C∞(M, TMn)→ C∞(M, TMn−1)

is also called divergence and does depend on the Riemannian and complex struc-
ture.
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The divergence can be further extended to sections of the endomorphism bun-
dle of the tangent bundle: if α is a 1-form in Ω1(M) and X is a vector field, then
we define

δ(X⊗ α) = δ(X)α +∇Xα,

obtaining a map
δ : C∞(M, End(TM))→ Ω1(M).

2.9 The Ricci curvature and the Ricci potential

The Ricci curvature will play an important role in what follows.

Definition 2.15. The Ricci tensor r is a symmetric bilinear form defined by:

r(X, Y) = Tr [Z 7→ R(Z, X)Y] .

To the Ricci tensor we can associate an endomorphism of the tangent bundle by
raising an index: if we still denote the endomorphism by r, we have: 〈r(X), Y〉 :=
r(X, Y). Note that the Ricci tensor is I-invariant, as follows from the following
proposition.

Proposition 2.16. Let M be a Kähler manifold, and let us consider an orthonormal frame
of the form: (X1, IX1, . . . , Xm, IXm). Then the Ricci tensor can be written as follows:

r(X, Y) =
m

∑
i=1

R(Xi, IXi)IX

Proof. Let us compute, for vector fields X and Y:

r(X, Y) = ∑〈R(Xi, X)Y, Xi〉+ ∑〈R(IXi, X)Y, IXi〉
= ∑〈R(Xi, X)IY, IXi〉 −∑〈R(IXi, X)IY, Xi〉
= ∑〈R(X, Xi)IXi, IY〉 −∑〈R(IXi, X)Xi, IY〉
= −∑〈R(Xi, IXi)X, IY〉
= ∑〈R(Xi, IXi)IX, Y〉

Therefore we can conclude that r(IX, IY) = r(X, Y). As a consequence, in
correspondence of the Ricci tensor we can then define the Ricci form ρ, which is a
real (1, 1)-form:

ρ(X, Y) = r(IX, Y).

The Ricci form is skew-symmetric. Because of the symmetries of the Kähler
curvature we have that the Ricci form is related to the Kähler form as follows:

ρ = −R(ω),

where we denote by R the curvature operator, that is an endomorphism of Λ(1,1)TM∗I
obtained from the Kähler curvature by raising an index.

Recall that on a complex manifold M closed forms are locally exact with respect
to the operator ∂∂̄, meaning that, if α ∈ Ω(p,q)(M) is a closed form of type (p, q)
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and U ⊆ M is an open contractible subset, then there exists β ∈ Ωp−1,q−1(U) such
that:

α|U = ∂∂̄β,

by the complex Poincaré Lemma.
When we are in the Kähler setting and M is compact, then we have a global

version of this statement that can be proved by using Hodge theory.
Let now assume that M is a compact Kähler manifold. If α and β are differential

forms on M, the metric g induces a pointwise inner product which we denote by
g(α, β). This can be used to define an inner product on forms in the following way:

〈α, β〉 =
∫

M
g(α, β)

ωm

m!
. (2.9)

In Hodge theory one defines the Hodge star operator, which is the unique bundle
isomorphism

∗ : ΛkTM∗ → Λ2m−kTM∗

that satisfies:

α ∧ ∗β = g(α, β)
ωm

m!
for any differential forms α and β on M.

If d∗ and ∂̄∗ denote the adjoints of respectively d and ∂̄ with respect to this inner
product, we have that they can be expressed in terms of the Hodge star operator
in the following way:

d∗ = − ∗ d ∗ and ∂̄∗ = − ∗ ∂̄ ∗ . (2.10)

The operators ∆ and �̄ can then be expressed in terms of these operators:

∆ = dd∗ + d∗d and �̄ = ∂̄∂̄∗ + ∂̄∗∂̄. (2.11)

The forms in the kernel of ∆ (respectively �̄) are called ∆-harmonic (�̄-harmonic).
The following result shows that a form on a Kähler manifold is ∆-harmonic if

and only if it is �̄-harmonic. The reader is referred to [Wel08] for a proof.

Theorem 2.17. If M is a Kähler manifold, then the operators ∆ and �̄ are related by:
∆ = 2�̄.

If we use this result we can easily compute the Laplacian of a function on a
Kähler manifold by:

∆ f = −2iδX′f . (2.12)

To obtain this formula we can observe that the divergence of vector field is related
to the adjoint of the differential by the formula:

δX = −d∗ig(X), (2.13)

that holds for any vector field X. Therefore we can compute:

δX′f = −iδIX′f = id∗∂̄ f = i(∂∗ + ∂̄∗)∂̄ f = i∂̄∗∂̄ f = i�̄ f =
i
2

∆ f ,
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where we use the fact that ∂∗∂̄ = 0 when the manifold is Kähler. This computation
proves the formula (2.12) above.

An immediate calculation shows that the Kähler form is harmonic, and this is
proved via the definition of the star operator and (2.10).

Remark 2.18. The fact that every cohomology class in Hk(M, C) is represented in
a unique way by a harmonic form is a classical result proved, for example, in Wells
[Wel08]. The same holds for cohomology classes in Hp,q(M, C), and therefore we
have a well defined notion of harmonic part of a closed form α ∈ Ωk(M) (respec-
tively Ωp,q(M)), which is the unique harmonic representative of the cohomology
class [α] in Hk(M, C) (respectively Hp,q(M, C).

As a consequence, by using harmonic representative one can get the following
Hodge decomposition of the cohomology:

Hk(M, C) =
⊕

p+q=k

Hp,q(M, C). (2.14)

The following proposition is also proved by Hodge theory techniques (see Besse
[Bes87]).

Proposition 2.19. If α is an exact form in Hp,q(M, C), then there exists a form β in
Hp−1,q−1(M, C) such that

α = 2i∂∂̄β.

The Ricci form ρ is a real, closed (1, 1)-form on M, and therefore its difference
from its harmonic part ρH is a real, exact (1, 1)-form. We can then apply the
proposition above to find a real smooth function F ∈ C∞(M) such that:

ρ = ρH + 2i∂∂̄F. (2.15)

The function F is called the Ricci potential and it is determined up to an additive
constant, if the manifold M is compact. If we require that its integral over M is
zero, then the Ricci potential is uniquely determined.

2.10 Differential operators

Definition 2.20. Let E and F be vector bundles over a M. A differential operator from
smooth sections of E to smooth sections of F is a linear map:

C∞(M; E)→ C∞(M; F),

which with a choice of local coordinates can be written as a polynomial in the
partial derivatives with coefficients in smooth functions. A differential operator is
of order at most n if it has a local representation with no terms of degree higher than
n in the partial derivatives.

We say that a differential operator is of finite order if it is of order at most n for
some n ∈N, and the space of the differential operators of finite order from smooth
sections of E to smooth sections of F is denoted D(M, E, F), or just D(M, E), if
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E = F. The definition immediately specializes to the case in which the vector
bundles both coincide with the trivial line bundle R, in which case we just talk
about differential operators on M and denote their space by D(M).

In this thesis we will be mostly interested in the study of the differential opera-
tors for which the two vector bundles coincide with a power of a certain line bundle
over M that we shall define precisely in the next chapter, namely the prequantum
line bundle Lk.

Example 2.21. On the power of the prequantum line bundle Lk we have the Levi-
Civita connection ∇. If X1, . . . , Xn are smooth vector fields, then we can define the
differential operator inductively on n by:

∇n
X1,...,Xn

= ∇X1∇
n−1
X2,...,Xn

s−
n

∑
j=2
∇X2,...,∇X1 Xj ,...,Xn s, (2.16)

for n ≥ 2 and ∇1
X1

s = ∇X1 s. It amounts to an easy calculation to check that these
expressions are tensorial in the vector fields, and therefore we get a map

∇n : C∞(M, TMm)→ D(M,Ln).

2.10.1 Symbols of differential operators

To any differential operator D ∈ D(M,Lk) of order at most n, we can assign the
principal symbol σP(D) ∈ C∞(M, Sn(TM)), which is a symmetric section of the n-th
tensor power of the tangent bundle. If the principal symbol vanishes, then D is of
order at most n− 1.

To define symbols of all orders we need to use additional structure, namely the
covariant derivative in our situation. Given differential operator D ∈ D(M,Lk) of
order at most n and with principal symbol σP(D) ∈ C∞(M, Sn(TM)), we look at the
differential operator D −∇n

Sn
, where Sn is just another notation for the principal

symbol. This differential operator is of order at most n − 1, since its principal
symbol vanishes. If we regard D−∇n

Sn
as a differential operator of order at most

n − 1, we have its principal symbol in C∞(M, Sn−1(TM)), which we denote by
Sn−1. By iterating this process we can write uniquely D in the form:

D = ∇n
Sn

+∇n−1
Sn−1

+ · · ·+∇S1 + S0,

and Sk ∈ C∞(M, Sk(TM)) is the symbol of order k of D, and it gives rise to a symbol
map

σk : D(M,Lk)→ C∞(M, Sk(TM)).

Note that the values of all the symbol maps determine completely a differential
operator of finite order.

2.10.2 Inner product

We shall later consider the adjoints of differential operators with respect to the
inner product defined here. If M is a compact manifold, then we can define an
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inner product on smooth sections of Lk by

〈s1, s2〉 :=
∫

M
h(s1, s2)

ωm

m!
, (2.17)

for any smooth smooth sections s1 and s2. For any complex vector field X on M
we have then that the adjoint of ∇X is:

(∇X)
∗ = −∇X̄ − δX̄. (2.18)

2.11 Hochschild cohomology

We shall later on consider the Hochschild cohomology of the algebra of smooth
functions on our manifold with a star product on it. Hence let us recall here the
basic construction of this cohomology theory. For further details we refer the reader
to Weinstein and Xu [WX98].

Let N be an associative algebra (not necessarily commutative) over R or C. To
construct the Hochschild cohomology of N with values in N we shall first define
what the cochains are: for p ∈N, a p-Hochschild cochain is a p-linear map

Np = N × · · · × N → N.

These cochains form a complex C·(N, N) with the Hochschild coboundary operator
∂ : Cp(N, N)→ Cp+1(N, N), defined by:

(∂C)(u0, . . . , up) = u0C(u1, . . . , up)

+
p

∑
r=1

(−1)rC(u0, . . . , ur−1ur, . . . , up) + (−1)p−1C(u0, . . . , up−1)up,

for any cochain C ∈ Cp(N, N).

Example 2.22. We can see that on a 1-cochain F the coboundary operator gives:

(∂F)(u, v) = uF(v)− F(uv) + F(u)v,

and on a 2-cochain C it gives:

(∂C)(u, v, w) = uC(v, w)− C(uv, w) + C(u, vw)− C(u, v)w.

As usual, a cocycle is a p-cochain C such that ∂C = 0, and we say that C is a
coboundary if there exists a (p− 1)-cochain Q such that C = ∂Q.

In our study of Hochschild cohomology we shall limit ourselves to the case in
which the algebra N is C∞(M)[[h]] for a manifold M, i.e. formal power series of
smooth functions on M. We are going to consider a star product on the algebra
N, which is a particular non-commutative product that we introduce in Chapter 4.
For the time being it is not important how such a product is defined, as here we
are only interested in the algebraic aspect of the construction. Let us make these
assumptions for the rest of the section.
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We say that a p-cochain C is differential if it is given by a differential operator
in each argument, and k-differential if it is differential and each argument is a dif-
ferential operator of order at most k. A cochain vanishes on constant if it gives zero
when at least one of the arguments is a constant function on M. Note that the
coboundary of a differential cochain is also differential.

We are now ready to define Hochschild cohomology.

Definition 2.23. The p-th differential Hochschild cohomology of N is the following
space:

Hp
diff(N, N) =

ker(∂ : Cp
diff(N, N)→ Cp+1

diff (N, N))

Im(∂ : Cp−1
diff (N, N)→ Cp

diff(N, N))
,

where Cp
diff(N, N) denotes the space of differential Hochschild p-cochains.

If C and D are respectively a p-cochain and a q-cochain, then we can define a
(p + q)-cochain by:

C⊗ D(u1, . . . , up+q) = C(u1, . . . , up)D(up+1, . . . , up+q),

and in the tensor product complex we have the coboundary map that is expressed
by:

∂(C⊗ D) = ∂C⊗ D + (−1)pC⊗ ∂D.

Note that a k-differential operator D can be seen as a differential k-cochain. If
k = 1, i.e. D is a vector field, then ∂D = 0, while for k ≥ 2 we can see by applying
the Leibniz rule several time that the coboundary ∂D is a (k − 1)-bi-differential
operator.
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Quantization

In this chapter we shall give some basic introductory ideas about what quantiza-
tion is and what it aims to do. We will look at geometric quantization in some
detail, introducing the prequantum condition, polarizations and quantum spaces.
We will then mention Toeplitz operators and the Hitchin connection, which will be
studied in further detail in the following chapters. Similarly we will briefly intro-
duce deformation quantization, which is going to be the main object of study of
the next chapter and indeed of most of the remaining part of this dissertation.

3.1 The idea of quantization

The theory of quantization aims at giving a precise formulation in mathematical
terms of the correspondence between classical and quantum mechanics. In classi-
cal mechanics we can describe a physical system with a triple (M, {·, ·}, H) of an
even-dimensional Poisson manifold, the phase-space, together with a smooth func-
tion H on M, the Hamiltonian function. These data describe completely a classical
system: a point in the manifold corresponds to a physical state and an observable
corresponds to a smooth function on M. The time evolution of such an observable
is described by the equation:

d f
dt

= {H, f }.

A quantum mechanics system is described by a complex Hilbert space H and a
Hamiltonian operator Ĥ. Now a physical state is a vector in H, and the physical
observables are self-adjoint operators on L(H), the space of linear operators on H.
In this formalism, the equation describing the time evolution of the system is:

d f̂
dt

=
i
h̄

[
Ĥ, f̂

]
,

where the square bracket is the commutator.
The aim of quantization is to “translate” a classical system into a quantum

one, in a well defined mathematical way, in the sense of associating a quantum
observable to a classical one.

27
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In mathematical terms, a quantization scheme has to satisfy the following: it
associates a (projective) Hilbert space Q to any symplectic manifold (M, ω) and
a self adjoint operator Q( f ) on Q to any smooth function f in M, such that the
association f 7→ Q( f ) is linear, and Q(1) = Id. Moreover we require that

[Q( f ), Q(g)] = ih̄Q({ f , g}), (3.1)

for any smooth functions f and g, and lastly it should reproduce the canonical
quantization in the case M is R2m, with symplectic form

ω = ∑ dpi ∧ dqi.

It turns out that a quantization scheme satisfying all these requirements does
not exist (see [AE05]), so we have to loosen some of them. One way of going
around this problem is to restrict the set of observables we want to quantize, for
instance only certain smooth functions (or observables). This has the side effect
of limiting the number of quantizable functions in the quantization schemes that
we shall consider here. Another approach is to replace the constant h̄ in (3.1) with
a variable h and interpret the requirement as something that should only hold
asymptotically as h goes to zero, thereby replacing that equation with:

[Q( f ), Q(g)] = ihQ({ f , g}) + O(h2) as h→ 0. (3.2)

In what follows we are going to discuss two different approaches to the quan-
tization problem: geometric quantization and deformation quantization. The first ap-
proach is based on the idea of constructing the Hilbert space of quantum states as
sections of a certain line bundle over the classical phase space. The latter is based
on a different idea: introducing a new product on the space of classical observables,
deforming it and reflecting the inherently non-commutative nature of the products
in the quantum operators.

For a more extensive treatment of the general theory of quantization we refer
the reader to [Woo97]. We shall now review the main points in the constructions
of geometric quantization before we switch our focus to deformation quantization,
which is the main object of study of this dissertation.

3.2 Geometric quantization

The Hilbert space in geometric quantization consists of the sections of a certain
Hermitian line bundle over the phase space. The first step of the construction is
called prequantization.

3.2.1 Prequantization

Let (M, ω) be the symplectic manifold of dimension 2m representing the classical
phase space.

Definition 3.1. A prequantum line bundle over a symplectic manifold (M, ω) is the
data of a complex line bundle L with a Hermitian metric h and a compatible con-
nection ∇ whose curvature satisfies:

F∇ = −iω.
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We say that a symplectic manifold is prequantizable if there exists a prequantum
line bundle over it. This is not the case for every symplectic manifold; the following
lemma gives a condition equivalent to being prequantizable.

Lemma 3.2. A symplectic manifold (M, ω) is prequantizable if and only if it satisfies the
prequantum condition, namely:[ ω

2π

]
∈ Im(H2(M; Z)→ H2(M; R)).

A proof of this lemma can be found in [Woo97], Proposition 8.3.1.
Note that the prequantum condition is clearly necessary, because the first Chern

class of a prequantum line bundle is c̃1(L) =
[

ω
2π

]
.

Let us now proceed to the construction of a Hilbert space: for any natural
number k we define:

Pk = C∞(M,Lk)

to be the Hilbert space of quantum states, where we set the inner product:

〈s1, s2〉 =
∫

M
h(s1, s2)

ωm

m!
,

where h is the Hermitian metric on L.
For a classical observable f ∈ C∞(M) and k ∈ N, we define the quantum

observable to be the prequantum operator

Pk : C∞(M)→ Pk

f 7→ i
k
∇X f + f ,

acting on Pk. The prequantum operator is self-adjoint, as it can easily be checked,
and it satisfies

[Pk( f ), Pk(g)] =
i
k

Pk({ f , g}). (3.3)

The natural number k is called the level of the quantization. It corresponds to a
discrete version of the inverse h−1 of the formal parameter, as it can be seen by
comparison the equations (3.1) and (3.3).

The previous considerations show that prequantization satisfies all the require-
ment for quantization, with one exception: prequantization fails to reproduce the
canonical quantization of R2m. To realize why prequantization cannot satisfy this
requirement, we can see that the Hilbert space that it produces depends on twice
as many variables as it would be expected from the canonical quantization, namely
2m. The way to solve this is to find a way of “choosing” half of the variables, and
this is done by picking a polarization on M.

The term polarization is inspired by the physical phenomenon of polarization,
where one selects only the waves that oscillate with a specific orientation from an
electromagnetic radiation. In our mathematical formalism, we can choose polar-
izations in several ways, as explained in [Woo97]. In what follows we shall only
concentrate on a specific type of them, namely complex polarizations.
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3.2.2 Complex polarizations

Let (M, ω) denote our symplectic manifold that is prequantizable, and let us choose
an almost complex structure I on it that is compatible and integrable, so that we
obtain a Kähler manifold, which we denote by MI . As pointed out earlier in Sec-
tion 2.5, the Kähler form ω has type (1, 1), and therefore it gives a holomorphic
structure to the prequantum line bundle L on M. Now we can use the complex
structure to choose in a rather “natural” way a subset of half of the coordinates: let
us define the space of quantum spaces to be the space of holomorphic sections of
the tensor power of the line bundle:

Qk(I) = H0(MI ;Lk) = {s ∈ Pk | ∇Xs = 0, ∀ X ∈ T′′MI}.

Note that this defines a subspace of the prequantum space Pk, and moreover Qk(I)
is finite dimensional whenever the manifold M is compact, and its dimension is n,
which is what we wanted to obtain. On the other hand, one sees that the prequan-
tum operators do not generally preserve holomorphic sections, therefore when we
apply them to an observable we might get a section which does not belong to our
space.

One way of approaching this issue is to reduce our set of quantizable functions.
In fact, the prequantum operator Pf preserves the space Qk(I) if and only if f
satisfies:

[X f , T′′MI ] ⊆ T′′MI .

If we decide only to quantize the functions that satisfy the previous relation, then
the spaces Qk(I) will be preserved. On the other hand, if we choose this approach
we are limiting our set of quantizable functions strongly, because the requirement
implies that the Hamiltonian vector field for a quantizable function f is a Killing
vector field of the Kähler metric, and therefore the space of quantizable functions
will be at most of finite dimension and often trivial (see [Woo97]).

We shall take a different approach to the issue: let us note that the space Qk(I)
is a closed subspace of Pk, as proved for instance in [Woo97], and therefore the
orthogonal projection

πk(I) : Pk → Qk(I)

is well defined. Given a classical observable f ∈ C∞(M) we can then define its
quantization by the formula:

Qk,I( f ) = πk(I) ◦ Pk( f ). (3.4)

The quantum operators that we obtain this way will not generally form an algebra,
but they satisfy (3.2) when M is compact, since:∥∥∥∥[Qk,I( f ), Qk,I(g)]− i

k
Qk,I({ f , g})

∥∥∥∥ = O(k−2) as k→ ∞, (3.5)

where the norm is the operator norm on Qk(I). The fact that the last equation is
true is part of the theory of Toeplitz operators, which we shall look at in greater
detail in Chapter 5.

The Hilbert space we obtain in this quantization scheme has the right dimen-
sion, but still one needs to apply a correction to get the right answers, when we
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compare with the results in examples from quantum mechanics. In the case of the
one dimensional harmonic oscillator, this quantization scheme fails to produce the
right answer by a shift, and to solve this issue one can apply what is called meta-
plectic correction, which we shall not treat in this dissertation. We refer the reader
to [Gam10] for further details on this aspect.

3.2.3 Toeplitz operators

Definition 3.3. Let f ∈ C∞(M). The Toeplitz operator T(k)
f : Pk → Qk is the map

defined by

T(k)
f (s) = π(k)( f s),

mapping a smooth section s on Lk to its projection to the subspace of holomorphic
sections.

Even if this is not evident from the notation, a Toeplitz operator depends on the
complex structure on the manifold. Note that the definition of these operators does
not require the manifold to be compact, but in case this is true, Bordemann, Mein-
renken and Schlichenmaier [BMS94] proved interesting and strong results about
the asymptotic properties of Toeplitz operator: therefore let us put ourselves in
this assumption from now on.

The space Pk is equipped with the operator norm associated with the Hermitian
inner product

〈s, r〉 =
∫

M
h(s, r)

ωm

m!
,

and the Toeplitz operators restrict to endomorphisms of the finite-dimensional sub-
space Qk.

The following results says that the if we consider all the Toeplitz operators
associated to a function we get a faithful representation of it.

Theorem 3.4. Let f ∈ C∞(M) be a smooth function on M. Then if we take the limit of
the operator norm of its Toeplitz operators we get:

lim
k→∞

∥∥∥T(k)
f

∥∥∥ = ‖ f ‖∞ ,

and this limit is approached from below.

This theorem has been proved by Bordemann, Meinrenken and Schlichenmaier
[BMS94].

Note that the Toeplitz operators do not form an algebra, since the composition
of two of them does not give a Toeplitz operator in general. Nevertheless, if we
look at the product of two Toeplitz operators asymptotically, then we see that it can
be approximated by operators of the same kind.

We shall say more about this when we discuss the Berezin-Toeplitz deforma-
tion quantization in Chapter 4, but for the time being we just state the following
theorem about the commutator of two Toeplitz operators.
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Theorem 3.5. The Toeplitz operators satisfy∥∥∥∥[T(k)
f , T(k)

g

]
− i

k
T(k)
{ f ,g}

∥∥∥∥ = O(k−2) as k→ ∞,

for any smooth functions f , g ∈ C∞(M).

It follows that the Toeplitz operators satisfy (3.1) in the precise meaning of the
theorem. The quantization scheme that uses the Toeplitz operators to quantize ob-
servables is called Berezin-Toeplitz quantization, and coincides with the quantum
operators from geometric quantization that we defined in Chapter 3.

When M is a compact manifold, the Toeplitz operators are related to the quan-
tum operators Qk by the following theorem.

Theorem 3.6 (Tuynman). If M is compact, the quantum operators are Toeplitz operators
and satisfy

Qk( f ) = T(k)
α( f ,k),

for

α( f , k) =
1
2k

∆ f + f

for any smooth function f ∈ C∞(M) and k ∈N.

Note that it was shown in general in [BMS94] that the maps T(k) are surjective
for any level k on a compact manifold. Tuynman’s result gives us an explicit ex-
pression for the family of functions fk whose Toeplitz operators are the quantum
operators Qk.

As an easy consequence of Tuynman’s theorem and Theorem 3.5, the quantum
operators also satisfy the condition (3.1).

Theorem 3.7. The quantum operators satisfy∥∥∥∥[Qk( f ), Qk(g)]− i
k

Qk({ f , g})
∥∥∥∥ = O(k−2) as k→ ∞,

for any smooth functions f , g ∈ C∞(M).

Proposition 3.8. If X ∈ C∞(M, T′M) is a smooth section of the holomorphic tangent
bundle on M, then we have

πk(∇Xs) = −T(k)
δ(X)

s,

for any smooth section s ∈ Pk.

Proof. The result follows by partial integration. If s′ ∈ Qk is any holomorphic
section, then

X[h(s, s′)] = h(∇Xs, s′) + h(s,∇X̄s′) = h(∇Xs, s′),

since s′ is holomorphic and X̄ is antiholomorphic.
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3.3 The Hitchin connection

The choice of a complex polarization involves the choice of the Kähler structure I,
therefore the resulting quantum spaces Qk(I) will be dependent on that choice as
well. This is of course not justified from a physical perspective.

The Hitchin connection is a construction that aims to handle this apparent
choice-dependence. For any Kähler structure I we see the spaces Qk(I) as the
fibres of a vector bundle over the space of Kähler structures. The strategy is to try
to relate the fibres through the parallel transport of this connection. If the connec-
tion is flat, then the fibres can be identified in a canonical way.

We shall see in detail the construction of the Hitchin connection in Chapter 5.

3.4 Deformation quantization

Deformation quantization takes a different approach from that of geometric quan-
tization: instead of trying to construct a Hilbert space of quantum states, in de-
formation quantization we construct a deformation of the algebra of the smooth
functions, i.e. the classical observables. To do so, one looks at a family of star
products {?h}h∈R, on the algebra C∞(M). The family is parametrized by the real
parameter h, in such a way that the star product corresponds with the pointwise
product for h = 0. The product of two observables f and g can be written as a
power series in h:

f ?h g = ∑
i∈N

ci( f , g)hi, (3.6)

with c0( f , g) = f g.
While we shall postpone the precise definition of a star product to the next

chapter, we can already see a correspondence between deformation quantization
and geometric quantization: if we think in terms of quantum operators, the star
product corresponds to the composition of them:

Q f Qg = Q f ?hg,

therefore it is non-commutative. Looking at (3.2), we see that it gives a relation
between the star-commutator and the Poisson bracket at first order in h, which is
expressed by the equation:

c1( f , g)− c1(g, f ) = i{ f , g}.

When working with deformation quantization we can neglect completely the con-
struction of the Hilbert space of quantum states, and only define observables using
the star product, as done in [BFF+78].

The question of whether (3.6) is convergent is usually not answered in the gen-
eral study of deformation quantization: there we take a different approach, and
regard h solely as a formal parameter, thereby considering the former expression
as a formal power series. Note that in this way we are enlarging the algebra of
smooth functions on which the star product is defined to the algebra C∞(M)[[h]]
of the formal smooth functions.



34 3. Quantization

Having in mind geometric quantization, we can construct a certain star product,
the Berezin-Toeplitz one, by using the theory of Toeplitz operators, as showed by
Schlichenmaier in [Sch11].

3.5 The formal Hitchin connection

Similarly to what we noted for geometric quantization, to construct star products
like the Berezin-Toeplitz one we have to make a choice of a complex structure on
the manifold, because the construction of this kind of star products relies on the
presence of a Kähler structure. Again, the fact that we have to make a choice
does not make sense physically, since the resulting quantization should not be
dependent on any choice of extra structure.

Andersen [And12] proposed a way to approach this problem in a similar fash-
ion to what one does when connecting the quantum spaces of geometric quantiza-
tion with the Hitchin connection. In fact he introduced a formal Hitchin connection in
the vector bundle with fibres C∞(M)[[h]] over the base space parametrizing Kähler
structures on M, which we shall define in a precise way in Chapter 7. The goal is to
use the parallel transport of this connection to identify the different star products.

We shall look at the construction of the formal Hitchin connection and formal
connections in general in Chapter 7.
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Deformation quantization

The idea of deformation quantization, due to Bayen, Flato and others [BFF+78],
is to deform the algebra of functions C∞(M) (where the product is the pointwise
product of functions) into a non-commutative one. To do this one defines a new
product, called star product. Star product is used as a synonym of deformation
quantization.

4.1 Star products

Let M be a Poisson manifold. Recall that C[[h]] denotes the ring of formal power
series with complex coefficients, and similarly C∞

h (M) = C∞(M)[[h]] is the algebra
of formal functions on M, which are formal power series with coefficients in C∞(M).
C∞

h (M) is then an algebra over C[[h]], and we can extend the Poisson bracket lin-
early to make it into a Poisson algebra. This allows us to formulate the following
definition.

Definition 4.1. Let (M, {·, ·}) be a Poisson manifold. A (formal) star product (or de-
formation quantization) on M is C[[h]]-bilinear map ? : C∞

h (M)× C∞
h (M) → C∞

h (M)
written as

f ? g =
∞

∑
k=0

ck( f , g)hk,

where ck : C∞(M)× C∞(M) → C∞(M), for k ∈ N, are bilinear maps called coeffi-
cients. A star product is required to satisfy the following conditions:

1. associativity: ( f1 ? f2) ? f3 = f1 ? ( f2 ? f3),

2. c0( f1, f2) = f1 f2,

3. c1( f1, f2)− c1( f2, f1) = i{ f1, f2},
for all f1, f2, f3 ∈ C∞(M).

As remarked earlier, deformation quantization takes the formal point of view,
meaning that the star product is defined on the algebra of formal functions and we
do not look at convergence matters. Nevertheless we shall still call the product a
star product, omitting the word “formal” for simplicity.

35
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Remark 4.2. There are several different conventions in literature about the multi-
plicative constant in front of the Poisson bracket in (3). For instance Schlichenmaier
[Sch11] uses the opposite constant −i. In this thesis we follow the convention of
the definition above.

We see that the failure of the star product to be commutative is measured by
the Poisson bracket. It is often useful to impose some extra conditions on star
products.

Definition 4.3. A star product is said to be differential if the coefficients ck are
bidifferential operators, in the sense that, for a fixed f ∈ C∞(M), both ck( f , ·) and
ck(·, f ) are differential operators for all k ∈ N. It is null on constants if f ? 1 =
1 ? f = f for all f ∈ C∞(M) (or, equivalently, if ck(1, f ) = ck( f , 1) = 0 for all k ≥ 1).

In this thesis we shall always assume that star products are null on constants,
and this corresponds to the fact that the constant function 1 is the unit in the algebra
of formal functions on M with the star product.

Remark 4.4. A star product is said to be local, if

supp ck( f , g) ⊆ supp f ∩ supp g,

for any f , g ∈ C∞(M), and in this case the global star product defines a star product
on the algebra C∞(U) for any open subset U ⊆ M.

It can be proven that a local star product is differential, which is not a trivial
fact (see [CGDW80]).

Definition 4.5. A differential star product is said to be with separation of variables (of
anti-Wick type) if f ? h = f h and h ? g = hg for any locally defined functions f and
g with f holomorphic and g anti-holomorphic, and any function h.

Remark. Several papers in literature (e.g. [KS01]) consider the opposite notion
to the definition of separation of variables we have defined above, namely star
products where f ? h = f h and h ? g = hg for any locally defined functions f and g
with f anti-holomorphic and g holomorphic, and any function h. These products
are usually called of Wick type, and consequently, our products with separation of
variables are also called of anti-Wick type.

The following proposition is an immediate consequence of the definition.

Proposition 4.6. A differential star product ? is with separation of variables if and only if
the bidifferential operators ck, for k ≥ 1 only differentiate in anti-holomorphic derivatives
in the first argument and only holomorphic derivatives in the second argument.

4.2 Equivalence

Definition 4.7. Two star products ?, ?′ on M are said to be equivalent if there is a
formal power series of linear maps

T =
∞

∑
k=0

Tk Tk : C∞
h (M)→ C∞

h (M), k ∈N,

such that T0 = Id and T( f1) ?
′ T( f2) = T( f1 ? f2), for f1, f2 smooth functions on M.
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If the operators Tk are differential for every k, then the equivalence is called
differential. An equivalence of two differential star product needs to be a differential
equivalence, as showed in [GR99]. On the other hand, a star product equivalent to
a product with separation of variables need not have the same property.

4.3 Existence of deformation quantizations

The problem of the existence of a star product is far from being trivial. In the
symplectic case we have a classification of a family of star products, namely those
that are differential and have separation of variables. These products can be written
down explicitly, as we shall see in Chapter 6.

Originally the problem of existence of deformation quantizations in the sym-
plectic case was solved by De Wilde and Lecomte in [DWL83] with a cohomological
approach. Fedosov [Fed94] gave a more geometrical construction of star products,
and a classification, which we shall look at further on, when we will study formal
connections in Chapter 7.

In the general Poisson case, the question of existence was settled by Kontsevich,
and is the Formality theorem [Kon03].

4.4 Classification of natural star products

We shall now introduce a particular type of differential star products that will be
used later in Chapter 7.

Definition 4.8. A natural star product ? = ∑k∈N ck on a Poisson manifold M is a
differential star product null on constants such that the k-th coefficient is a bidif-
ferential operator of order at most k in each argument.

Remark 4.9. All the star products that we have considered so far that are con-
structed explicitly are natural, including:

• star products with separation of variables on a Kähler manifold (e.g. the
Berezin-Toeplitz star product,

• star products arising from the Fedosov construction (see Chapter 7 for de-
tails),

• star products constructed by Kontsevich’s formality [Kon03].

Gutt and Rawnsley in [GR03] gave a classification of natural star products on a
symplectic manifold. The following theorem is the main classification result they
obtained.

Theorem 4.10. A natural star product ? on a symplectic manifold (M, ω) determines
uniquely:

• a symplectic connection ∇,

• a formal series of closed 2-forms α ∈ hΛ2(M)[[h]],
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• a formal series
E = ∑

k≥1
Erhr,

of differential operators such that

Eru =
r+1

∑
k=2

(
E(k)

r

)i1 ...ik ∇k
i1 ...ik u,

where, for any r, the E(k)
r are symmetric k-tensors.

Moreover the star product satisfies:

f ? g = exp(−E)((exp E f ) ?∇,α (exp Eg)),

where ?∇,α denotes the Fedosov star product corresponding to ∇ and α, which we shall
construct later in this chapter.

4.5 Characteristic class

In this section we review Fedosov’s construction of the characteristic class for a star
product, following the presentation by Waldmann in [Wal07].

Let (M, ω) be a symplectic manifold of dimension m = 2n. To any tangent
space Tx M, for x ∈ M, we have the associated Weyl algebra.

Recall that a multi-index is a tuple

α = (α1, . . . , αm) ∈Nm.

The length of a multi-index is |α| = α1 + · · ·+ αm and we can extend the factorial
to multi-indices by: α! = α1! · · · αm!. We use the notation yα = (y1)α1 · · · (ym)αm .

Definition 4.11. The formal Weyl algebra Wx associated to Tx M, for x ∈ M, is an
associative C-algebra with unit whose elements are formal power series in h with
formal polynomials on Tx M as coefficients. This means that an element in the
algebra has the form:

a(y, h) = ∑
k∈N

hkak,αyα,

where (y1, . . . , ym) are local coordinates on Tx M, α = (α1, . . . , αm) is a multi-index.

The formal Weyl algebra is equipped with the following Moyal-Weyl star product:

a ◦MW b =
∞

∑
k=0

(
ih
2

)k 1
k!

πi1 j1 · · ·πik jk ∂ka
∂yi1 · · · ∂yik

∂kb
∂yi1 · · · ∂yik

. (4.1)

Let W = ∪x∈MWx. This defines a bundle of algebras over M, which is called the
Weyl bundle. The space of smooth sections of this bundle, ΓW, gives an associative
algebra with fibre-wise multiplication. This space of section can be thought of as
a “quantized tangent bundle” of M. One can check that the fibrewise product
that we have defined gives a deformation quantization with respect to the Poisson
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structure given by fibrewise Poisson bracket, with constant symplectic structure in
each tangent space.

Note that the centre of ΓW is formed by the elements that do not contain any
yi, and therefore is naturally identified with C∞(M)[[h]].

We can use the Weyl algebra to define a filtration. Let us assign degrees to the
yi’s by deg yi = 1 for any i, and deg h = 2.

C∞(M)[[h]] ⊂ Γ(W1) ⊂ · · · ⊂ Γ(Wi) ⊂ · · · ⊂ Γ(W).

A differential form on M with values in W is a section of W ⊗ΛqT∗M, and can be
expressed as:

a(x, y, h, dx) = ∑ hkak,i1,...,ip ,j1,...,jq yi1 . . . yip dxj1 ∧ · · · ∧ dxjq ,

in local coordinates, where the coefficients ak,i1,...,ip ,j1,...,jq are symmetric in the i’s
and anti-symmetric in the j’s.

Note that the fibrewise commutator in ΓW extends to W ⊗ΛqT∗M. We can use
the exterior derivative to define an operator δ on W-valued differential forms in
the following way:

δ(a) = ∑
i

dxi ∧ ∂a
∂yi , for all a ∈W ⊗ΛqT∗M.

This operator can be also written as

δ(a) = −
[

i
h

ωijdyidxj, a
]

,

where the commutator is with respect to the Moyal-Weyl star product, and we can
note that the operator δ does not involve derivatives with respect to x.

The operator δ can also be seen in a different way: if we consider the algebra of
differential forms (Ω(M, W(TM)) with values in W(TM), we can define two com-
muting derivations δ and δ∗ by considering the identity morphism TM→ TM as a
section of TM⊗ T∗M. We can now insert the TM-part into either ΛT∗M or W(TM)
and multiply the T∗M-part with the other factor, using the pointwise product on
W(TM). The operator δ corresponds to the latter case, while δ∗ corresponds to the
former. The symplectic form ω ∈ Ω2(M) on M can be seen as a section of

T∗M⊗ T∗M ⊂ ΛT∗M⊗W(TM),

which we denote by ω̃. The derivation δ can then be also written as

δ = − i
h

ad(ω̃),

where ad refers to the adjoint action with respect to the Moyal-Weyl product ◦MW .

Definition 4.12. A symplectic connection on a symplectic manifold (M, ω) is a linear
connection ∇ that is torsion-free and such that ω is parallel with respect to it,
meaning that ∇ω = 0.
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Let us fix a symplectic connection ∇ on M. Its curvature tensor is contracted
with ω to yield an element R ∈ Ω2(M, W(TM)). Moreover, this connection yields a
covariant derivative d∇ on Ω(M, TM), which we dualize and extend – as a deriva-
tion with respect to ◦MW – to Ω(M, W(TM)). It turns out that d∇ commutes with
δ and squares to − i

h ad(R).
Fedosov’s idea is to find an appropriate r ∈ Ω1(M, W(TM)) such that the total

operator

Dr := −δ + d∇ +
i
h

ad(r) (4.2)

squares to zero. Note that Dr defines a connection on W. This connection is clearly
a derivation of the Moyal-Weyl product defined above, meaning that the following
relation holds:

Dr(a ◦MW b) = Dr(a) ◦MW b + a ◦MW Dr(b).

We can now compute the square to Dr, which gives:

D2
r =

i
h

ad
(
−ω− δr + R + d∇r +

i
h

r ◦MW r
)

,

where the tensor R is defined by

R =
1
4

Rijklyiyjdxk ∧ dxl ,

where Rijkl is the curvature tensor of the symplectic connection.
Hence the flatness of Dr is equivalent to the fact that

α = −ω− δr + R + d∇r +
i
h

r ◦MW r (4.3)

is central. In fact a connection written in the form (4.2) is called abelian if α is a
scalar 2-form, meaning that α ∈ Ω2(M)[[h]]. If this is the case for a connection Dr,
then by the Bianchi identity we have that dα = Drα = 0, as shown in Lemma 6.4.12
of [Wal07], and so α is closed (i.e. α ∈ Z2(M)[[h]]) and is called the Weyl curvature.

The following theorem shows how to construct the appropriate r to plug into
Dr.

Theorem 4.13. (Fedosov) Let ∇ be a symplectic connection on M and

α = ω + hα1 + h2α2 + · · · ∈ Z2(M)[[h]]

be a closed formal 2-form that is a perturbation of the symplectic form. Then there exists
a unique r ∈ W2 ⊗ΛT∗M, such that the Dr given by (4.2) is an abelian connection with
Weyl curvature α and δ∗r = 0.

The connection given by the theorem is called the Fedosov connection.

Definition 4.14. The characteristic class of a star product ? is the class

cl(?) = [α] ∈ H2(M; R)[[h]],

where α is the Weyl curvature of the corresponding Fedosov connection Dr.
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We denote with H2(M; R) the de Rham second cohomology, and H2(M)[[h]]
is formal power series with de Rham classes as coefficients, called formal de Rham
classes.

Note that if M is contractible, then H2(M) is trivial and there is only one dif-
ferential star product up to equivalence. A consequence of this is that locally all
differential star products are equivalent to the Moyal–Weyl product. For a more
extended treatment of classification results, we refer the reader to [Del95], [GR99],
[Fed94].

Theorem 4.13 is proved in [Wal07, 6.4.14], and here we shall briefly describe the
main ideas that go into the proof.

Proof. Recall that we have defined the total degree of an element of

Ω(M, W(TM))[[h]]

to be the polynomial degree in W(TM) plus two times the degree in h. One checks
that δ decreases this degree, while d∇ and ◦MW preserve it. We denote the homo-
geneous part of total degree k of an element X by X(k).

One can then decompose the equation for δr into the homogeneous pieces with
respect to the total degree. By induction, one shows that

R(k) + (d∇r)(k) +
i
h
(r ◦MW r)(k) + α(k)

is closed with respect to δ. Since the cohomology of δ vanishes in all relevant
ranges, the equation

δX = R(k) + (d∇r)(k) +
i
h
(r ◦MW r)(k) + α(k)

has a solution, which is moreover unique once we impose δ∗r = 0. So we can
iteratively construct r by adding the solution to these equations as its homogeneous
part of total degree k.

4.6 Fedosov star product

To obtain the Fedosov star product, we build up on the construction seen in the
previous section. The next step is to show that every element f ∈ C∞(M)[[h]] can
be uniquely extended to an element

τ( f ) ∈ Ω0(M, W(TM))[[h]]

which is constant with respect to the operator Dr. Again, the proof amounts to
breaking up the equation Drτ( f ) = 0 into its homogeneous pieces with respect to
the total degree. We can rewrite the equation as

δ(τ( f )) = d∇(τ( f )) +
i
h
[ad(r), f ],

and check inductively that the right hand side is closed with respect to δ, hence we
can solve the equation. The requirement for τ( f ) is that:

τ( f ) ∈ Ω0(M, W(TM))[[h]]
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determines the equation in each step uniquely. The element τ( f ) is also uniquely
characterised by Drτ( f ) = 0 and σ(τ( f )) = f , where σ is the natural projection

σ : Ω(M, W(TM))[[h]]→ C∞(M)[[h]].

We are now ready to define the Fedosov star product ?∇,α associated to the closed
formal 2-form α and to the symplectic connection ∇ on M, which is given by the
following formula:

f ?∇,α g := σ(τ( f ) ◦MW τ(g)). (4.4)

Since Dr is a derivation with respect to ◦MW , this defines an associative product
and one checks inductively that one actually obtains a natural star product, i.e.
?∇,α is given by bidifferential operators that at order hk have order at most k in
each argument.

4.7 Karabegov’s classification

Karabegov provides us with a classification of formal star products with separation
of variables (of Wick type) on Kähler manifolds. The classification is based on
a deformation of the structure of the manifold, i.e. the Kähler form, and it is
important to note that it gives a bijection with the actual star products not up to
equivalence, as it will be explained in this section.

Let M be a Kähler manifold with Kähler metric g, and let us denote the Kähler
form by ω−1.

Definition 4.15. A formal deformation of the Kähler form ω−1 is a formal 2-form

ω = ω−1
1
h
+ ω0 + ω1h + ω2h2 + . . . , (4.5)

where each ωi is a closed 2-form on M of type (1, 1).

Karabegov’s classification [Kar96] assigns to every star product ? with separa-
tion of variables (of Wick type) on M a formal deformation of the Kähler form
in the following way. Let U ⊂ M be a contractible open subset of M, with lo-
cal holomorphic coordinates z1, . . . , zm. Then there exists a set of formal functions
Ψ1, . . . , Ψm on U, written as:

Ψk = Ψk
−1

1
h
+ Ψk

0 + Ψk
1h + . . . ,

satisfying the equations:
Ψk ? zj − zl ? Ψk = δkl .

Then the formal 2-form ω is defined by:

ω|U = −i∂̄

(
m

∑
k=1

Ψkdzk

)
. (4.6)

As showed by Karabegov [Kar96], the resulting 2-form is independent of the choice
of the local coordinates and of the formal functions Ψk. The local expressions for
the 2-forms can be pasted together giving a globally defined 2-form ω which takes
the name of Karabegov form of the star product ?, denoted Kar(?).
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Theorem 4.16 (Karabegov). A differential star product null on constants and with
separation of variables (of Wick type) on a Kähler manifold is totally determined by its
Karabegov form.

Let us note that, even though Karabegov’s result is stated and proved in [Kar96]
for star products of Wick type, one can get the corresponding result for star prod-
ucts of anti-Wick type by considering the opposite star product. We can define the
opposite star product by f ?op g = g ? f , for any star product, and this gives a star
product on the same manifold with opposite symplectic form.

As mentioned, the Karabegov form identifies the product completely, not up
to equivalence. Given a formal deformation ω of the Kähler form, then there is a
unique star product with separation of variables satisfying:

Kar(?) = ω.

We call any product that is classified this way a Karabegov star product. Karabegov
proved in [Kar98] that the Karabegov form of a product is related to the charac-
teristic class. The relation originally obtained by Karabegov contained a sign error,
which was later corrected in [KS01], giving the following relation1

cl(?) =
[Kar(?)]

2π
− c̃1(M)

2
,

where c̃1(M) is the real first Chern class of the manifold. It is then clear that
two star products with separation of variables are equivalent if and only if their
Karabegov classes are the same in cohomology.

4.8 The Berezin-Toeplitz deformation quantization

We conclude this chapter by introducing the Berezin-Toeplitz star product, which
is related with geometric quantization and Toeplitz operators.

The statement of Theorem 3.5 can be generalised to describe asymptotically the
product of two Toeplitz operators, and it turns out that this produces functions
that satisfy the properties of the coefficients of a star product, which is called the
Berezin-Toeplitz star product. On a compact Kähler manifold M that satisfies the
hypotheses of Theorem 5.18, the star product is characterized by the following
result, proved by Schlichenmaier [Sch00].

Theorem 4.17 (Schlichenmaier). There exists a unique star product ?BT for M, called
the Berezin-Toeplitz star product, and expressed by:

f1 ?
BT f2 =

∞

∑
k=0

c(k)( f1, f2)hk,

with c(k)( f1, f2) ∈ C∞(M) in such a way that, for all f1, f2 ∈ C∞(M) and for any positive
integer L the following holds:∥∥∥∥∥T(k)

f1,σT(k)
f2,σ −

L

∑
l=0

T(k)

c(l)σ ( f1, f2),σ
k−l

∥∥∥∥∥ = O(k−(L+1)).

1Recall that in our convention (2.4) the first Chern class of a symplectic manifold is the opposite of
the first Chern class of the canonical line bundle.
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Karabegov and Schlichenmaier proved furthermore [KS01] that this star prod-
uct is differential and null on constants. Hawkins proved in [Haw00] that the
characteristic class of this star product is:

cl(?BT) =
[ω]

2πh
− c̃1(M)

2

Remark 4.18. Karabegov and Schlichenmaier [KS01] proved that this star product
is of Wick type, namely it has the property of separation of variables, with the role
of the holomorphic and anti-holomorphic functions switched with respect to Defi-
nition 4.5. If consider the opposite star product to the Berezin-Toeplitz star product,
we obtain a star product, which is of anti-Wick type and has the Karabegov class,
as it was proved in [KS01]:

Kar(?BT
op ) = −

ω

h
+ ρ,

where ρ is the Ricci form. We shall see in the next chapter how this star product
can be represented combinatorially with graphs.
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The Hitchin connection

We review here the construction of the Hitchin connection, in the differential geo-
metric version of Andersen in [And12]. For more details the reader is referred also
to [Woo97].

The Hitchin connection was introduced by Hitchin in [Hit90], as a connection
over the Teichmüller space in the bundle one obtains by applying geometric quanti-
zation to the moduli spaces of flat SU(n) connections. Furthermore Hitchin proved
that this connection is projectively flat. Hitchin’s construction was motivated by
Witten’s study of quantum Chern-Simons theory in 2 + 1 dimensions in [Wit89].
In [And12] Andersen proposed a differential geometric construction of the Hitchin
connection which works for a more general class of manifolds and showed its ex-
istence under certain assumptions on the manifolds.

We will begin the construction by introducing all the tools we need to define
the Hitchin connection, which will be finally constructed in Section 5.7.

Let (M, ω) be a symplectic manifold that is prequantizable, with prequantum
line bundle: (L, (·, ·),∇). Recall that the connection is compatible with the Hermi-
tian structure in the sense that, for any vector field X on M, and any two section
s1, s2 of L, we have

X(s1, s2) = (∇X(s1), s2) + (s1,∇X(s2)).

In general the curvature is a 2-form in the endomorphism bundle End(L) and,
since we are considering a line bundle, the endomorphism bundle is M×C, there-
fore the curvature can be seen as a 2-form on M with values in C.

For the time being we consider a fixed Kähler structure I on M, and define:

Pk = C∞(M,Lk),

where Lk denotes the k-th tensor power of the prequantum line bundle.
The Levi-Civita connection ∇ on M splits into ∇ = ∇1,0 +∇0,1, where

∇1,0
X = ∇X′ , ∇0,1

X = ∇X′′ .

The splitting means that, for example, if s is a smooth section of Lk, then ∇0,1s is
the derivative of s in the anti-holomorphic direction. We define then

Qk = {s ∈ Pk | ∇0,1s = 0},

45
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which is the space of the holomorphic sections of Lk.

5.1 Families of Kähler structures

Now, instead of choosing a fixed Kähler structure, we will consider a family of
them parametrized by a manifold. Let T be a smooth manifold that parametrizes
smoothly a family of Kähler structures on (M, ω). This means that we have a
smooth map

I : T → C∞(M, End(TM))

which associates to each σ ∈ T an integrable and compatible almost complex
structure on M. The requirement that the map I is smooth means that it defines a
smooth section of the pullback bundle

π∗M(End(TM))→ T ×M,

where πM : T ×M→ M denotes the canonical projection map.
If we have a symmetry group Γ acting on M, we require that is acts on T too,

and that the map I is equivariant with respect to the action.
We denote with Mσ the manifold M with Kähler structure given by ω and Iσ :=

I(σ). Note that the constructions seen previously in this section for a manifold with
a fixed Kähler structure in particular apply to Mσ for all σ ∈ T . In what follows
we will suppress the σ in the notation when this does not cause ambiguity.

As seen before, for each σ ∈ T , we use Iσ to split the complexified tangent
bundle TMC into the holomorphic and the anti-holomorphic parts, denoted re-
spectively T′Mσ and T′′Mσ.

Let V be a vector field on T : we can differentiate the family of Kähler structures
in the direction of V:

V[I] : T → C∞(M, End(TM)).

By definition, Iσ defines an almost complex structure for any σ ∈ T , and thus it
satisfies the identity I2

σ = − Id, which gives the following equation when differen-
tiated along a vector field V on T :

V[I]σ Iσ + IσV[I]σ = 0,

which shows that V[I] anti-commutes with I, and therefore V[I]σ switches types
of vectors on Mσ. So we can decompose the tangent space as:

V[I]σ = V[I]′σ + V[I]′′σ (5.1)

where V[I]′σ ∈ C∞(M, T′′M∗σ ⊗ T′Mσ) and V[I]′′σ ∈ C∞(M, T′M∗σ ⊗ T′′Mσ).

5.1.1 The canonical bundle for a family

When given a family of complex structures, we can consider the vector bundle
T̂′M over T ×M, where the fibre over a point (σ, p) is the holomorphic part of the
tangent space T′p Mσ. Let d̂ denote the external differential on the product T ×M.
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We have a Hermitian structure ĥ on the bundle T̂′M induced by the Kähler
metric, and the Levi-Civita connection gives a compatible partial connection along
M. Now we wish to extend this partial connection to a connection in the bundle:
for a section Z ∈ C∞(T ×M, T̂′M) and a vector field V on T , we define:

∇̂V Z = π1,0(V[Z]),

which means to take the holomorphic projection of the derivative of Z along V,
considering Z as a smooth family of sections of the complexified tangent bundle.

This way we have defined a connection ∇̂, and we can see that it preserves
the Hermitian structure in the direction of M, being induced by the Levi-Civita
connection. Moreover, if V is a vector field on T and X, Y are sections of the
bundle, we have:

V[h(X, Y)] = V[g(X, Ȳ)] = V[g](X, Ȳ) + g(V[X], Ȳ) + g(X, ¯V[Y])

= h(∇̂V X, Y) + h(X, ∇̂VY),

because the (1, 1)-part of V[g] vanishes. Therefore the connection ∇̂ preserves the
Hermitian structure on T̂′M.

Let us now define the line bundle

K̂ = ΛmT̂′M∗

over T ×M, which we call the canonical line bundle of the family of complex structures.
The previous discussion shows that we have a Hermitian structure and a com-
patible connection on K̂ induced by those on T̂′M, which we shall denote again
respectively ĥ and ∇̂.

The curvature of the connection ∇̂ in K̂ can be computed via a rather technical
calculation, which we shall omit. The resulting expression is given in the following
formula.

F∇̂(X, Y) = iρ(X, Y)

F∇̂(V, X) =
i
2

δ(V[I])X

F∇̂(V, W) = iϑ(V, W),

(5.2)

for vector fields X, Y on M and V, W on T , where ϑ is a two-form in Ω2(T , C∞(M))
expressed by:

ϑ(V, W) = − i
4

Tr π1,0 [V[I], W[I]] .

We refer the reader to [Gam10] for a proof of these expressions. Using these ex-
pressions for the curvature and the Bianchi identity, we can obtain a useful result
about the variation of the Ricci form.

Proposition 5.1. For a vector field V on T , the variation of the Ricci form is given by:

V[ρ] =
1
2

dδ(V[I]).
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Proof. Let X and Y be commuting vector fields on M. By the Bianchi identity for
∇̂ we have:

V[F∇̂(X, Y)] + X[F∇̂(Y, V)] + Y[F∇̂(V, X)] = 0.

We can now substitute the expressions for the curvature from (5.2) and obtain:

V[iρ(X, Y)] = X[
i
2

δ(V[I])Y]−Y[
i
2

δ(V[I])X].

Since X and Y commute, this implies that

2V[ρ](X, Y) = dδ(V[I])(X, Y),

which concludes the proof.

The following proposition is a consequence of the Bianchi identity for two vec-
tor fields on T and one vector field on M.

Proposition 5.2. Let V and W be vector fields on T . Then we have that:

dϑ(V, W) =
1
2

W[δ](V[I])− 1
2

V[δ](W[I]),

where ϑ ∈ Ω2(T , C∞(M)) is the 2-form:

ϑ(V, W) = − i
4

Tr π1,0 [V[I], W[I]] .

The proof follows the same argument as the previous proposition, using the
expressions for the curvature obtained in (5.2).

5.2 The bivector field G̃(V)

The symplectic form ω is non-degenerate, therefore we get an isomorphism from
it by contracting in the first entry:

iω : TMC → TM∗C.

Moreover iω interchanges types on Mσ, since ω is Iσ invariant. Similarly we get a
type-interchanging isomorphism

igσ : TMC → TM∗C

induced by the Kähler metric on Mσ. The two isomorphisms are related by the
equation: igσ = Iσiω.

Now we can define G̃(V) ∈ C∞(M, TMC ⊗ TMC) by

V[I] = (Id⊗iω)(G̃(V)), (5.3)

for all vector fields V, and define G(V) ∈ C∞(M, T′Mσ ⊗ T′Mσ) such that we get a
decomposition

G̃(V) = G(V) + Ḡ(V),
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where Ḡ(V) ∈ C∞(M, T′′Mσ ⊗ T′′Mσ).
Recalling the identity g = ω · I, we can obtain the variation of the Kähler metric

by differentiating it and thereby obtain:

V[g] = ω ·V[I] = ω · G̃(V) ·ω,

and the (1, 1)-part of V[g] vanishes because of the types of ω and G̃(V).
Similarly we can compute the variation of the Levi-Civita connection. It is a

tensor field:
V[∇] ∈ C∞(M, S2(TM∗)⊗ TM),

and we have the following expression for it:

2g(V[∇]XY, Z) = ∇X(V[g])(Y, Z) +∇Y(V[g])(X, Z)−∇Z(V[g])(X, Y), (5.4)

for any X, Y, Z vector fields on M. The proof of this formula can be found in Besse
[Bes87] Theorem 1.174.

5.3 Laplacian-like operators

Before defining the Hitchin connection, we need to define a certain differential
operator associated to a bivector field.

From a symmetric holomorphic bivector field Z ∈ C∞(M, S2(T′Mσ)) we can
obtain a holomorphic bundle map Z : T′M∗σ → T′Mσ by contraction, and we can
define an operator ∆Z by the composition:

C∞(M,Lk)
∇(1,0)

σ−−−→ C∞(M, T′M∗σ ⊗L)
Z⊗Id−−−→ C∞(M, T′Mσ ⊗L)

∇̃(1,0)
σ ⊗Id+ Id⊗∇(1,0)

σ−−−−−−−−−−−−→ C∞(M, T′M∗σ ⊗ T′Mσ ⊗Lk)→ C∞(M,Lk),

where ∇̃(1,0)
σ is the holomorphic part of the Levi-Civita connection, and the last

arrow is the trace.
The operator ∆Z can also be expressed as:

∆Z = ∇2
Z +∇δZ, (5.5)

using the power of the covariant derivative defined in 2.16, and its adjoint can be
expressed using the following lemma.

Lemma 5.3. Let Z be a complex, symmetric bivector field on M. The adjoint of the operator
∆Z has the expression:

(∆Z)
∗ = ∆Z̄.

Proof. We can write the bivector field as: Z = ∑j(Xj ⊗ Yj), and so the operator is
written as

∆Z = ∑
j

(
∇Xj∇Yj +∇δ(Xj)Yj

)
.
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Since Xj and Yj are complex vector fields, we have by (2.18) that

(∇Xj∇Yj)
∗ = (∇Yj)

∗(∇Xj)
∗ = (∇Ȳj

+ δ(Ȳj))(∇X̄j
+ δ(X̄j))

= ∇Ȳj
∇X̄j

+∇Ȳj
δ(X̄j) + δ(Ȳj)∇X̄j

+ δ(Ȳj)δ(X̄j).

Similarly we have:

(∇δ(Xj)Yj
)∗ = −∇Ȳj

δ(X̄j)− δ(X̄j)δ(Ȳj),

and so we get:
(∆Z)

∗ = ∑
j
∇Ȳj

δ(X̄j) + δ(Ȳj)∇X̄j
= ∆Z̄.

We shall use the operator ∆G(V) several times in the coming sections to construct
the Hitchin connection, where it will play an important role.

5.4 Holomorphic families of Kähler structures

If the manifold T has a complex structure, then it makes sense to require the family
I to be a holomorphic map from T to the space of complex structures. Keeping in
mind the splitting of V[I] given in (5.1), we can make the following definition to
make precise this requirement:

Definition 5.4. Let T be a complex manifold, and I a family of Kähler structures
on M that is parametrized T . We say that I is holomorphic if:

V′[I] = V[I]′ and V′′[I] = V[I]′′,

for any vector field V on T .

Let T be a complex manifold, parametrizing a family I of Kähler structures
on M. Since T is complex, we can use the associated integrable almost complex
structure J on it to define an almost complex structure Î on the product T ×M in
the following way:

Î(V ⊕ X) = JV ⊕ IσX,

for V ⊗ X ∈ T(σ,p)(T ×M).
The property of being holomorphic for a family of Kähler structure is related to

integrability in the way made precise by the following proposition.

Proposition 5.5. The family I is holomorphic if and only if and only if the almost complex
structure Î on T ×M is integrable.

Proof. By Theorem 2.8 it is sufficient to show that the Nijenhuis tensor for Î van-
ishes. It is clear that, if we evaluate the tensor on vectors tangent to T then it
vanishes, since the almost complex structure on T is integrable. If the family is
holomorphic, then the Nijenhuis tensor vanishes also when applied only to vectors
tangent to M, since each structure in the family is integrable. Let us consider the
only case that is left, namely when the tensor is applied to mixed vectors.
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Let X and V be vector fields respectively on M and T . Then we have that

[V, IX] = V[I]X,

and

NÎ(V
′, X) = [JV′, IX]− [V′, X]− Î[JV′, X]− Î[V′, IX]

= i[V′, IX]− Î[V′, IX] = iV′[I]X− IV′[I]X

= 2iπ0,1V′[I]X.

One can do a similar computation to obtain: NÎ(V
′′, X) = −2iπ1,0V′′[I]X, and

therefore we see that the Nijenhuis tensor vanishes if and only if

π0,1V′[I]X = 0 and 2iπ1,0V′′[I]X = 0,

completing the proof.

In the case where the family of Kähler structures is holomorphic we have the
following lemma about the variation of the family at second order.

Lemma 5.6. If I is a holomorphic family of Kähler structures, then

W ′′V′[I] =
i
2
[
V′[I], W ′′[I]

]
, (5.6)

for any vector fields V and W on T such that V′ and W ′′ commute.

Proof. Since I is holomorphic we have that

V′[I]π1,0 = V[I]′π1,0 = 0,

and therefore we obtain, by differentiating along W ′′:

W ′′V′[I]π1,0 =
i
2

V′[I]W ′′[I].

Similarly as above, we have the equation: W ′′[I]π0,1 = 0, which we can differentiate
along V′ to obtain:

V′W ′′[I]π0,1 = − i
2

W ′′[I]V′[I].

If we add the two relations and use the fact that V′ and W ′′ commute, we obtain
the relation we wanted.

When we assume that the family I is holomorphic we have also the following
useful fact about the bivector field G̃(V) defined in (5.3) for any vector field V:

G̃(V′) = V′[I] · ω̃ = V[I]′ · ω̃ = G(V).

Similarly we can obtain:

G̃(V′′) = V′′[I] · ω̃ = V[I]′′ · ω̃ = Ḡ(V).
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5.5 The rigidity condition

In this section we should study the notion of rigidity for a family of Kähler struc-
tures on a manifold. This condition is a rather strong requirement, and it will turn
out to be very important in order to construct the Hitchin connection.

Definition 5.7. We say that the family I of Kähler structures on M is rigid if

∇X′′G(V) = 0, (5.7)

for all vector fields V on T and X on M.

In other words, the family I is rigid if G(V) is a holomorphic section of S2(T′M),
for any vector field V on T .

Let us see an example of a rigid family of holomorphic Kähler structures.

Example 5.8. Let (M, ω) be R2 with the standard symplectic form ω = dx ∧ dy,
and let T = Rn. Consider the following family of complex structures, for σ ∈ T :

Iσ

(
∂

∂x

)
= A(σ, x, y)

∂

∂x
+ B(σ, x, y)

∂

∂y
,

for smooth functions A, B ∈ C∞(T ×M). By the identity I2 = − Id we have:

Iσ

(
∂

∂y

)
= −

(
1 + A2(σ, x, y)

B(σ, x, y)

)
∂

∂x
− A(σ, x, y)

∂

∂y
,

and one can verify that ω is I-invariant, and that g = ω · I is a positive definite
bilinear form if B is positive.

Let us assume that B is constant with respect to σ ∈ T . Given a vector field V
on T we have:

V[I] = V[A]
∂

∂x
−
(

2AV[A]

B
∂

∂x
+ V[A]

∂

∂y

)
dy.

Recall the relation defining G̃(V):

V[I] = G̃(V) ·ω,

which gives:

G̃(V) = −2V[A]
∂

∂x
∂

∂y
− 2

AV[A]

B
∂2

∂x2 .

We can then compute

G(V) = −2i
V[A]

B
∂2

∂z2 ,

for z = x + iy, from which we see that our family of Kähler structures is rigid if
and only if the following two equations are satisfied:

0 = −V[A]
∂B
∂y

+ B
∂V[A]

∂y

0 = V[A]
∂B
∂x
− B

∂V[A]

∂x
.
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We note that the following expressions for A and B give a solution:

B(x, y) = B0(x, y)

A(σ, x, y) = A0(x, y) +
n

∑
i=1

σiB0(x, y),

where A0 and B0 are any functions on M. This means that for any initial Kähler
structure

I0

(
∂

∂x

)
= A0(x, y)

∂

∂x
+ B0(x, y)

∂

∂y

we get a rigid family of Kähler structures on M = R2, parametrised by Rn.

If we differentiate the rigidity condition (5.7) along T , we get the following
result.

Proposition 5.9. Any rigid and holomorphic family of Kähler structures satisfies

S(G(V) · ∇G(W)) = S(G(W) · ∇G(V)), (5.8)

for any vector fields V and W on T , where S denotes the symmetrization of the tensors.

Before proving the proposition, let us check the following lemma about the
variation of the Levi-Civita connection.

Lemma 5.10. Let M be a manifold with a family of rigid and holomorphic family of Kähler
structures, and let V and Z be vector fields respectively on T and M. For σ ∈ T , let us
take a vector field X of type (1, 0) on Mσ. Then we have the following expression for the
variation of the Levi-Civita connection:

V′[∇]Z′′X =
i
2

Z ·ω · ∇X(G(V)). (5.9)

Proof. We observe that equation (5.4) implies the following relation:

2g(V′[∇]Z′′X, U) = ∇Z′′(V
′[g])(X, U) +∇X(V′[g])(Z′′, U)−∇U(V′[g])(Z′′, X).

In our setting the first added on the right hand side vanishes, because the family
is holomorphic and rigid, and the last one is also zero because V′[g] has no (1, 1)
part. Hence we get:

V′[∇]Z′′X · g ·U =
1
2
∇X(V′[g])(Z′′, U) =

i
2

Z ·ω · ∇X(G(V)) · g ·U,

and from this we obtain the relation we wanted.

Proof of Proposition 5.9. Let us consider two vector fields V and W on T such that
[V′, W ′] = 0, and let U and Z be vector fields on M. Let us take σ ∈ T and choose
two vector fields X and Y of type (1, 0) on Mσ, seen as a complex manifold with
the structure coming from the rigid family I.

By the previous lemma we have that:

V′[∇]Z′′X =
i
2

Z ·ω · ∇X(G(V)),
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and if we write locally G(W) as ∑j Xj ⊗Yj, then we get:

V′[∇]Z′′(G(W)) = ∑
j

V′[∇]Z′′Xj ⊗Yj + ∑
j

Xj ⊗V′[∇]Z′′Yj

=
i
2 ∑

j
Z ·ω · ∇Xj(G(V))⊗Yj +

i
2 ∑

j
Xj ⊗ Z ·ω · ∇Yj(G(V))

=
3i
2

Z ·ω · S(G(W) · ∇G(V))− i
2

Z ·ω · G(W) · ∇G(V),

(5.10)

where we can check the last equality by writing the symmetrization and using the
symmetry of G(W).

Remembering that the family is rigid we have that ∇Z′′G(W) = 0, and we can
differentiate this along V′ to obtain:

0 = V′[∇]Z′′(G(W))− i
2

Z ·ω · G(V)∇G(W) +∇Z′′(V
′[G(W)]).

We can replace in (5.10) and get:

3Z ·ω · S(G(W) · ∇G(V))

= Z ·ω · G(V)∇G(W) + Z ·ω · G(W)∇G(V) + 2i∇Z′′(V
′[G(W)]), (5.11)

which is symmetric in V and W because:

W ′[G(V)] = −W ′V′[g̃] = −V′W ′[g̃] = V′[G(W)].

This shows that the left hand side of (5.11) is also symmetric in V and W, which
concludes the proof.

The following results is a consequence of the proposition.

Proposition 5.11. If the manifold M has a rigid and holomorphic family of Kähler struc-
tures, then the following equality holds:

∇2
G(V)G(W) +∇δG(V)G(W) + 2S(G(V) · ∇δG(W))

= ∇2
G(W)G(V) +∇δG(W)G(V) + 2S(G(W) · ∇δG(V)),

for any smooth vector fields V and W on T .

This is proved by taking the divergence of (5.8).
We shall now put aside the notion of rigidity and explore how the Ricci potential

behaves in presence of a family of Kähler structures.

5.6 Families of Ricci potentials

In this section we shall consider a compact manifold M with a family of Kähler
structures I parametrized by a complex manifold T .
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Let us introduce the notation:

C∞
0 (M, R) =

{
f ∈ C∞(M, R) |

∫
M

f ωm = 0
}

,

for the set of smooth real functions on M with zero average. We denote with F the
smooth function T → C∞(M, R), such that Fσ is the Ricci potential of the manifold
Mσ, which means that is satisfies:

Ricσ = RicH
σ +2i∂σ ∂̄σFσ, (5.12)

where Ricσ ∈ Ω1,1(Mσ) and RicH
σ is its harmonic part. The existence of such a

potential is guaranteed by Hodge theory as seen in Section 2.9. A smooth map
F : T → C∞

0 (M, R) satisfying (5.12) for all σ ∈ T is called a smooth family of Ricci
potentials.

Clearly we can take a normalized smooth family of Ricci potential F̂ by im-
posing F̂σ ∈ C∞

0 (M, R) for every σ ∈ T . This family has the property of being
equivariant with respect to the action of a symmetry group acting by symplecto-
morphisms on M, since the action will preserve the symplectic (Kähler) form.

Let us now assume that there exists n ∈ Z such that the first real Chern class of
(M, ω) has the form:

c̃1(M, ω) = n
[ ω

2π

]
.

Note that c1(M, ω) = −c1(Kσ), and therefore the first real Chern class is also
represented by ρ

2π . We can then rewrite (5.12) as:

ρ = nω + 2i∂∂̄F, (5.13)

since the Kähler form is harmonic.

Proposition 5.12. Let M be a compact symplectic manifold such that H1(M; R) = 0,
whose first real Chern class satisfies: c̃1(M, ω) = n

[
ω
2π

]
. Let I be a holomorphic family

of Kähler structures on M. Let F be any smooth family of Ricci potentials on T . Then the
variation of the potentials satisfies:

− ∂̄V′[F] =
i
4

δ(V′[I]) +
i
2

dF ·V′[I], (5.14)

for any vector field V on T .

Proof. Let us differentiate (5.13) with respect to V′:

V′[ρ] = −d(dF ·V′[I]) + 2i∂∂̄V′[F].

If we apply Proposition 5.1 on the left side of the equality we get:

dδ(V′[I]) + 2d(dF ·V′[I])− 4id∂̄V′[F] = 0.

If we now look at the form

δ(V′[I]) + 2dF ·V′[I]− 4i∂̄V′[F],

we have that it is closed by the previous equation, and hence exact because we
assume that the first cohomology is trivial. We also see that it is a form of type
(0, 1), since I is holomorphic, and therefore it has to be zero, being exact, which
concludes the proof.
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The next result about the divergence of V[I] follows from Proposition 5.12.

Proposition 5.13. Let M be a compact symplectic manifold such that H1(M; R) = 0,
whose first real Chern class satisfies: c̃1(M, ω) = n

[
ω
2π

]
. Let I be a holomorphic family of

Kähler structures on M. Let F be any smooth family of Ricci potentials on T . Then

δ(V[I])X = 4iV′X′′[F]− 4iV′′X′[F],

for any vector fields V on T and X on M.

Proof. Let us pair the one-form examined earlier in the proof of Proposition 5.12
with the vector field X, and use (5.14). This way we can write:

δ(V′[I])X = 4iX′′V′[F]− 2(V′[I]X)F = 4iV′X′′[F].

By conjugating the first and the last term of the equality we get:

δ(V′′[I])X = −4iV′′X′[F].

Therefore we can compute:

δ(V[I])X = δ(V′[I])X + δ(V′′[I])X = 4iV′X′′[F]− 4iV′′X′[F],

which is what we wanted to obtain.

5.7 Construction of the Hitchin connection

We are now ready to define the Hitchin connection. We are going to do this in
the framework of geometric quantization, and we follow the differential geometric
construction proposed by Andersen in [And12]. The construction is done under
the following assumptions.

Consider a compact, symplectic manifold (M, ω), equipped with a prequantum
line bundle L, and assume that H1(M, R) = 0, and that the real first Chern class
of (M, ω) is given by

c̃1(M, ω) = n
[ ω

2π

]
, (5.15)

for some n ∈ Z. Further, assume that I is a rigid and holomorphic family of Kähler
structures on (M, ω) parametrized by a complex manifold T .

The prequantum space Pk = C∞(M,Lk) forms the fibre of a trivial, infinite-rank
vector bundle over T ,

P̂k = T × Pk. (5.16)

Let ∇t denote the trivial connection on this bundle.

Definition 5.14. A Hitchin connection in the bundle P̂k is a connection of the form

∇ = ∇t + a, (5.17)

where a ∈ Ω1(T ,D(M,Lk)) is a one-form on T with values in the space of differ-
ential operators on sections of Lk, such that ∇ preserves the quantum subspaces

Qk(σ) = H0(Mσ,Lk)

of holomorphic sections of the k-th power of the prequantum line bundle, inside
each fibre of P̂k.
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The existence of a Hitchin connection in the bundle P̂k implies that the sub-
spaces Qk(σ) form a subbundle, because it can be trivialized locally through par-
allel transport by ∇.

To prove the existence of such a connection, we first look at the bundle P̂k from
a slightly different perspective: consider the pullback

L̂ = π∗M(L)

of the line bundle L along the projection

πM : T ×M→ M.

Sections of P̂k are in one-to-one correspondence with sections of L̂k, and the con-
nection on Lk defines a partial connection on L̂ along the directions of M. We can
easily extend this to a full connection ∇̂k on L̂k: for any section s of L̂k and any
vector field V on T , we define

∇̂k
V(s) = ∇t

V(s) = V[s],

simply expressing differentiation in the direction of V, in which L̂k is trivial.
The bundle L̂k has a Hermitian structure, which is induced from L, and ∇̂k

easily seen to be compatible with this. It is easy to check that the curvature of this
connection has the expression given in the proposition below.

Proposition 5.15. The curvature of the connection ∇̂k is

F∇̂k = −ikπ∗M(ω),

where πM is the projection T ×M→ M.

Then we see that the curvature of ∇̂k has type (1, 1) on T ×M, and so it defines
a holomorphic structure on L̂k. Since ∇̂k only has curvature in directions along M
we can prove the following result.

Proposition 5.16. The connection ∇̂k preserves the fibrewise subspaces Qk(σ) of P̂k if
and only if the one-form a satisfies

∇(0,1)a(V)s +
i
2

ω · G(V) · ∇s = 0, (5.18)

for any vector field V on T , any point σ ∈ T and any section s ∈ Qk(σ).

Proof. Let V and X be vector fields on T and M, respectively. It is easily calculated
that

[X′′, V] = − i
2

V[I]X =
i
2

X ·ω · G̃(V). (5.19)

Consider a point σ ∈ T , and suppose that s ∈ Qk(σ). Let ŝ be any extension of s
to a smooth section of the bundle P̂k over T . Then we have that ∇̂X′′ ŝ = 0 at the
point σ, and we obtain:

∇̂k
X′′∇V ŝ = ∇̂X′′∇̂k

V ŝ + ∇̂X′′ a(V)ŝ

= R∇̂k (X′′, V)ŝ + ∇̂k
V∇̂X′′ ŝ + ∇̂[X′′ ,V] ŝ + ∇̂X′′ a(V)ŝ

=
i
2

X ·ω · G(V) · ∇̂ŝ + ∇̂X′′ a(V)ŝ,

(5.20)
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at the point σ, where the curvature term vanishes by Proposition 5.16. Finally, it is
clear that (∇V ŝ)σ ∈ Qk(σ) if and only if the left-hand side of (5.20) vanishes at σ,
and the proposition follows.

If we can find a one-form a satisfying (5.18), then it follows that ∇ preserves the
fibrewise subspaces Qk of the bundle P̂k. In this case, these subspaces must form
a smooth subbunble Q̂k as we have observed earlier, which is trivialized by the
parallel transport of the connection ∇, and furthermore, ∇ induces a connection
in this subbundle.

We shall now prove a proposition about G(V) which we can use to produce a
form a satisfying the condition of (5.18).

Proposition 5.17. The operator ∆G(V) satisfies:

∇0,1∆G(V)s = −2ikω · G(V) · ∇s− iρ · G(V) · ∇s− ikω · δ(G(V))s, (5.21)

for and any (local) holomorphic section s of Lk.

Proof. Fix a vector field V and a point σ ∈ T . The statement of the proposition is
local on M, and since the family of complex structures is rigid, the bivector field
G(V) is holomorphic and can therefore be expressed locally as

G(V) = ∑
j

Xj ⊗Yj,

for Xj and Yj local holomorphic vector fields on Mσ. With this notation, the opera-
tor ∆G(V) has the expression

∆G(V) = ∑
j
∇Xj∇Yj +∇δ(Xj)Yj

.

For an local holomorphic section s of Lk and any local anti-holomorphic vector
field Z̄ we get that:

∇Z̄∇Xj∇Yj s = −ikω(Z̄, Xj)∇Yj s− ikω(Z̄, Yj)∇Xj s− ikω(Z̄,∇XjYj)s.

On the other hand, we have

Z̄[δ(Xj)] = Z̄[Tr(∇Xj)] = Tr∇Z̄∇Xj = Tr R(Z̄, ·)Xj = −iρ(Z̄, Xj),

and therefore:

∇Z̄∇δ(Xj)Yj
s = −ikω(Z̄, δ(Xj)Yj)s− iρ(Z̄, Xj)∇Yj s.

We can then combine the relations above and finally obtain:

∇Z̄∆G(V) = −∑
j
−ikω(Z̄, Xj)∇Yj s + iρ(Z̄, Xj)∇Yj s + ikω(Z̄, δ(Xj ⊗Yj))s,

which is what we wanted to show.
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We emphasize the importance of the rigidity condition on the family of Kähler
structures in this proposition.

If not for the last two terms of (5.21), we could use 1
4k ∆G(V) as our a(V): we

shall now see how one can try to get rid of those terms.
Let us recall that the assumption (5.15) on the first Chern class implies that

ρH = nω, since the Kähler form is harmonic. In particular, for any smooth family
of Ricci potentials Fσ, we have the identity

ρ = nω + 2i∂∂̄F. (5.22)

Inserting this in (5.18), and using the identity

∇0,1∇G(V)·dFs = −∂∂̄F · G(V) · ∇s− ikω · G(V) · dFs,

which holds for any σ ∈ T and for any holomorphic section s of Lk, we can obtain
the following equation:

∇0,1
(

∆G(V)s + 2∇G(V)·dFs
)

= −(2k + n)iω · G(V) · ∇s− ikω · δ(G(V))s− 2ikω · G(V) · dFs. (5.23)

We can easily convince ourselves that this is an improvement with respect to (5.21)
because we have replaced the second summand on the right side, which was a
first-order term, with a zero-order term.

Moreover, we can use Proposition 5.12 to get rid of the last two terms: if we
now define a one-form a ∈ Ω1(T ,D(M,Lk)) by:

a(V) =
1

4k + 2n

(
∆G(V) + 2∇G(V)·dF + 4kV′[F]

)
, (5.24)

it will satisfy our requirement (5.18).
For later use let us introduce now the following manner of writing a(V), using

the following operator b(V), with the purpose of splitting a(V) into orders.

b(V) =
1
4

(
∆G(V) + 2∇G(V)·dF − 2nV′[F]

)
a(V) =

1
k + n/2

b(V) + V′[F].

The results that we have gone through in this section allow us to prove the
following theorem, which establish the existence of the Hitchin connection in the
setting of geometric quantization.

Theorem 5.18 (Andersen). Let (M, ω) be a compact, prequantizable, symplectic manifold
which satisfies that there exists an n ∈ Z such that the first Chern class of (M, ω) is
n
[

ω
2π

]
∈ H2(M; Z) and H1(M; R) = 0. Moreover suppose that I is a rigid holomorphic

family of Kähler structures on M, parametrized by a complex manifold T . Then there exists
a Hitchin connection in the bundle Q̂k over T , given by the following expression:

∇̂V = ∇t
V +

1
4k + 2n

{∆G(V) + 2∇G(V)·dF + 4kV′[F]},

where ∇t
V is the trivial connection in P̂k, and V is any smooth vector field on T .
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Note that, if the smooth family of Ricci potential is normalized to be equivari-
ant, then the Hitchin connection defined in this theorem is also equivariant with
respect to the action of the symmetry group Γ.



6

Graph language

This chapter is concerned with reviewing Gammelgaard’s construction that allows
to express Karabegov’s star products in a combinatorial manner in local coordi-
nates, using differential operators associated to certain graphs. We shall after-
wards extend this combinatorial language to make use of this formalism to study
the problem of trivialization of formal connections in Chapter 8.

In this chapter we consider a Kähler manifold M of dimension m equipped with
a differential star product ? with separation of variables that is null on constants.
Such a star product is classified by Karabegov as seen in Chapter 4, and therefore
it has a Karabegov form Kar(?).

6.1 A family of graphs

Let us consider finite graphs consisting of vertices connected by directed edges.

Definition 6.1. A finite directed graph G is the data of a finite set of vertices VG, a
finite set of edges EG and two maps tG, hG : EG → VG named respectively tail and
head that specify respectively the vertex where the directed edge originates and the
vertex where it ends.

We can consider paths in a graph G, which are obtained following subsequent
edges along the given direction. A path which starts and ends at the same vertex is
called a cycle. Two edges are called parallel if they connect the same pair of vertices
and have the same orientation. A graph without any cycle is called acyclic.

From now on, with graph we will mean finite directed acyclic graphs. Note that
we allow parallel edges.

Definition 6.2. A half-edge in a graph is one of the two ends of an edge.

If v is a vertex in a graph G, we denote with deg+(v) the number of edges
incoming to v and call this number in-degree, and with deg−(v) the number of
edges going out from v, the out-degree. Their sum gives the total degree of the
vertex v, denoted deg(v). The vertex is a source if deg+(v) = 0, and a sink if
deg−(v) = 0.

61
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0

−1

Figure 6.1: A weighted graph with 2 external vertices and total weight 4.

Among the vertices of a graph G we distinguish an ordered subset Ext(G) of
the external vertices. The remaining vertices are called internal and form the set
Int(G) = VG \ Ext(G). The first external vertex is required to be a source, and the
last one a sink, while there are no requirements on the degree of the remaining
external vertices.

A graph is weighted if we assign an integer w(v) ∈ N ∪ {−1} called weight
to all internal vertices v ∈ Int(G). The weight w(v) is only allowed to be −1 if
deg(w) ≥ 3. The total weight of a graph G is defined by:

W(G) = |EG|+ ∑
v∈Int(G)

w(v).

Definition 6.3. An isomorphism of graphs G1 → G2 is the data of two bijections

VG1 → VG2 EG1 → EG2

preserving the way vertices are connected with edges, mapping external vertices
to external vertices preserving the ordering. If the graphs are weighted, an isomor-
phism should preserve the weight of vertices.

Definition 6.4. We denote with An(k) the set of the isomorphism classes of finite
acyclic weighted graphs with n external vertices and weight k. We denote the union
of all these graphs by:

An =
⋃
k

An(k).

6.2 The partition function of a graph

Let us consider a formal deformation of the Kähler form of M, denoted by ω as in
(4.5). We want to write the Karabegov star product with class ω graph-theoretically
using the graphs defined here. To do this we define certain partition functions
associated to graphs in our family and using them to define a product on functions
on M. Then one checks that this product satisfies the requirements to be a star
product and checks that it in fact coincides with the Karabegov star product we
wished to express.

This is done locally, on a contractible neighbourhood U of M, where we have
local holomorphic coordinates z1, . . . , zm.
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Let G ∈ An be a graph and let f1, . . . , fn ∈ C∞(M) be smooth functions. If
f ∈ C∞(M) is a smooth function and (p, q) ∈ Z×Z, we define a covariant tensor
f (p,q) of type (p, q) by:

f (p,q)
(

∂

∂zi1
, . . . ,

∂

∂zip
,

∂

∂z̄j1
, . . . ,

∂

∂z̄jq

)
=

∂p+q f
∂zi1 · · · ∂zip , ∂z̄j1 , · · · , ∂z̄jq

.

For each vertex v in the graph G, we assign to it the tensor f (p,q), where p is the
in-degree and q the out-degree of v, and

f =

{
fi if v is the i-th external vertex
−Φw if v is an internal vertex and w(v) = v,

where Φ is a formal potential on U of the Karabegov form ω defined in (4.5), which
means that

Φ =
1
h

Φ−1 + Φ0 + Φ1h + Φ2h2 + . . . ,

and ω|U = i∂∂̄Φ. Note that such a potential exists, since ω is a closed form of type
(1, 1) and we work on a contractible neighbourhood.

Definition 6.5. The partition function ΓG( f1, . . . , fn) associated to the graph G ∈ An
is the smooth function on M obtained by contracting the tensors we have associated
to each vertex using the Kälher metric, along the edges of the graph.

Note that, since the tensors are completely symmetric, the contraction is well-
defined.

6.3 Coefficients of the product

We can now use these partition functions to define the coefficients for a product
that we shall see is the star product in which we are interested. Let us define:

ck( f1, . . . , fn) = ∑
G∈An(k)

1
|Aut(G)|ΓG( f1, . . . , fn), (6.1)

Then the star product will be expressed by the formula:

f1 ? f2 =
∞

∑
k=0

ck( f1, f2)hk. (6.2)

Equivalently, if we define the operator:

c( f1, . . . , fn) = ∑
G∈An

1
|Aut(G)|ΓG( f1, . . . , fn)hw(G), (6.3)

then the statement that we shall prove is the following:

f1 ? f2 = c( f1, f2). (6.4)



64 6. Graph language

Remark 6.6. It is immediate to verify that c0( f1, f2) = f1 f2 for all smooth functions
f1, f2, since the only graph with two external vertices and weight zero is the graph
with no internal vertices and no edges. Similarly, we have only one graph with two
external vertices and total weight one, namely the graph with no internal vertices
and one edge connecting the two external vertices. The definition above associates
to this graph the partition function:

c1( f1, f2) =
m

∑
p,q=0

gqp ∂ f1

∂z̄q
∂ f2

∂zp , (6.5)

and so we obtain the relation:

c1( f1, f2)− c1( f2, f1) = i{ f1, f2},

that is satisfied by any f1, f2 ∈ C∞(M).
The product that we have defined is clearly C[[h]]-bilinear and it satisfies the

second and third requirement of Definition 4.1. We only need to show its associa-
tivity to prove that it is in fact a star product.

6.4 Another type of graph expressions

To show that the product defined here combinatorially associative, we shall write
it in a slightly different form, which makes it easier to control how the functions
are differentiated by the operators. We shall also build up on the new type of
graphs here defined to extend the combinatorial language and define notions such
as differentiation and composition of graphs in Chapter 8.

Definition 6.7. A labelling l of a graph G is the assignment of an integer in the set
{1, . . . , m} to each half-edge of the graph.

A labelled graph is a graph together with a labelling l.
A circuit structure of a graph is the data of an ordering of the incoming edges

and of the outgoing edges at each vertex of the graph.

We say that the two structures just defined above are compatible if, at each vertex
of the graph, the labels of the incoming edges and of the outgoing edges increase
with the orderings given by the circuit structure.

Let G be a graph with a labelling l. We want to count the number of circuit
structures compatible with l. The labelling can be seen as the data of two functions

αl , βl : Vg → Zm
≥0,

assigning to each vertex two multi-indices, where αl(v)i counts the number of oc-
currences of the label i ∈ {1, . . . , m} among the incoming edges at v, and similarly
βl(v)i is the number of occurrences of the label i ∈ {1, . . . , m} among the out-
going edges. The following lemma, whose proof is a straightforward calculation,
expresses the wanted quantity.

Lemma 6.8. Let G be a graph with a labelling l. The number of circuit structures compat-
ible with l is expressed by:

C(G, l) = ∏
v∈VG

αl(v)!βl(v)!.
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1

2

1

1

2

4

1

4

−1

0

Figure 6.2: A labelled graph with 2 external vertices with a compatible circuit
structure.

We say that two graphs with a labelling (respectively, a circuit structure) are
isomorphic if they are isomorphic as graphs via a map that preserves the labelling
(respectively, the circuit structure).

Definition 6.9. We denote with Lc
n,k the set of isomorphism classes of labelled

graphs with n external vertices and weight k with a compatible circuit structure.
For a unlabelled graph G, we denote with L(G) the set of isomorphism classes of
labelled graphs with a compatible circuit structure whose underlying graph is G.

We represent labelled graphs with circuit structure as in the Figure 6.2. The
vertices are represented as boxes, with the incoming edges on the left side and the
outgoing ones on the right side. The half-edges on each of the sides of a vertex
are ordered according to the circuit structure (increasing from top to bottom). This
means that sequence of the labels on each side of a vertex is increasing going
downwards. The n external vertices are drawn with a thicker line, and they are
numbered from 1 to n in case of ambiguity. A number inside an internal vertex
represents its weight.

Example 6.10. Here we display with diagrams all the labelled graphs with compat-
ible circuit structure, two external vertices and weight 2. The isomorphism classes
of the graphs displayed here form the set Lc

2,2. Following our convention, vertices
are represented by boxes, with the incoming edges on the left side and the outgoing
ones on the right. The ordering of the edges on the sides of the boxes (increasing
from the top to the bottom) represents the circuit structure. The labellings are omit-
ted from the diagrams: it is understood that every graph represented below can
be given a labelling compatible with the circuit structure. Recall that we represent
external vertices with a thicker line, and that number contained in internal vertices
is their weight. The external vertices are ordered on the unique way given by the
edge orientation.

• Graphs with no internal vertices.

• Graphs with one internal vertex of weight −1.
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−1

−1−1

−1

• Graphs with one internal vertex of weight 0.

0

For the rest of the chapter we shall consider labelled graphs with a compatible
circuit structure. To express the product in the new graph language, we associate
to a graph G ∈ Lc

2,k a new type of partition function: ΛG(·, ·) defined as follows.
Let us first consider a vertex v of the graph, with in-degree p and out-degree q, and
f1, f2 ∈ C∞(M). We associate to v an expression Ff1, f2(v) defined by:

Ff ,g(v) = −
∂p+qΦw

∂zi1 · · · ∂zip ∂z̄j1 , · · · , ∂z̄jq
,

if v ∈ Int(G) and w(v) = w, and by:

Ff ,g(v) =
∂p+q fi

∂zi1 · · · ∂zip ∂z̄j1 , · · · , ∂z̄jq
,

if v is the i-th external vertex.
We associate also an expression to edges: if e is an edge with labels p and q

(ordered along the edges orientation), then we define:

Ff1, f2(e) = gpq.

Now we are ready to define the partition function:

ΛG( f , g) = ∏
v∈VG

Ff ,g(v) ∏
e∈EG

Ff ,g(e),

for all f , g ∈ C∞(M).
We can now rewrite the operator c defined in (6.3) using the new graph lan-

guage just defined.

c( f1, . . . , fn) = ∑
G∈An

∑
l∈L(G)

∑
c∈C(G,l)

1
|Aut(G)| C(G, l)

Λl
G( f1, . . . , fn)hW(G). (6.6)
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It is a matter of counting the graphs in each equivalence class and comparing
the partition functions to realize that (6.6) defines the same operators that we had
defined previously in (6.3). This allows us to re-write the coefficients of the product
in the following way:

ci( f , g) = ∑
G∈Lc

2,i

1
C(G)

ΛG( f , g). (6.7)

6.5 The fusion of two graphs

Let us consider two graphs G1 and G2, with 2 external vertices each. Fusion is a
process that puts the two graphs together to obtain a new graph with 3 external
vertices. If we think at the partition functions associated to graphs, the partition
function of the fusion is related to the composition of the partition functions of the
two fused graphs. Let v1, v2 be the two external vertices of G1, taken in their order,
and v3, v4 be the ones of G2. To make a fusion, we cut off v2 and glue each of the
obtained loose edges of G1 to G2 obeying to one of the following rules:

• we can attach a loose edge to a vertex of G2, in any way that does not break
the compatibility of the circuit structure. This is called fusion of type A.

Figure 6.3: Local view of a fusion of type A.

• we can attach a loose edge to an edge of G2. To do so, we insert a new
internal vertex of weight −1 along this edge, and give new labels to the two
half-edges we obtain. This is called fusion of type B.

−1

Figure 6.4: Local view of a fusion of type B.

We denote with F (G1, G2) the set of the isomorphism classes of fusions of two
graphs G1 and G2.

Given a labelled graph G ∈ Lc
3,k with three external vertices, we can try to see if

it can be obtained as the fusion of two graphs G1, G2 with two external vertices. It
is not difficult to see that we can reconstruct from G the isomorphism class of G2.
The isomorphism class of G1 cannot be reconstructed completely: we can delete
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all vertices coming after the second external vertex of G (in the ordering given by
the orientation of edges), and connect the loose ends we get to an external vertex,
which is then the second external vertex of G1. But we cannot reconstruct the circuit
structure at this vertex. The rest of the structure of G1 can instead be reconstructed
from G. To take in account for this, we can introduce the following equivalence
relation: given two graphs G, G′ with two external vertices, we say that they are
equivalent (G ∼ G′) if there is an isomorphism between the two graphs preserving
the labelling at all vertices and preserving the circuit structure at all vertices except
possibly at the second external vertex. We denote with [G] the equivalence class of
G, and it amounts to an immediate computation to show that [G] consists of αl(u)
elements, if u is the second external vertex of G.

The alternative type of graph expressions that we have described in this section
allow to prove the associativity of the product whose coefficients are expressed by
(6.6). In particular we have that, if G1, G2 are graphs with two external vertices

∑
G∈[G1]

1
C(G)C(G2)

ΛG( f1, ΛG2( f2, f3)) = ∑
G∈F (G1,G2)

1
C(G)

Λ( f1, f2, f3).

This is proved by Gammelgaard in [Gam10], by carefully examining how the fusion
of two graphs works and comparing the coefficients. The conclusion is stated in
the following theorem that establishes the associativity of the product.

Theorem 6.11 (Gammelgaard). For n = 3, the operator c defined in (6.6) is associative:

c( f1, c( f2, f3)) = c( f1, f2, f3) = c(c( f1, f2), f3),

for any smooth function f1, f2, f3 on M.

Gammelgaard shows also that this product is coordinate invariant, and that the
resulting star product on M has the Karabegov form that we started from at the
beginning of the construction, ω. Therefore we have now a combinatorial way to
express any Karabegov star product in local coordinates.

6.6 Extending the graph language

We shall now introduce a new feature on the graphs that we have considered in
Section 6.4. As done there, all the graphs considered here are finite directed acyclic
weighted graphs with 2 external vertices and with labelling and compatible circuit
structures, and we shall reuse the same notation introduced in that chapter.

Our goal is to make sense of differentiating a graph, in the sense of writing in
graph language the expressions we get when applying the vector field V to the
partition functions associated to a graph.

Remark 6.12. As we shall discuss in the Chapter 8 to work on the trivialization
problem, we need to consider also graphs that do not satisfy the constraints that
we have set for them previously. In particular, we want to relax the condition that
the first external vertex has to be a source and the last one has to be a sink, and
that an internal vertex can only have weight −1 if its degree is at least 3.
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We call extended class of labelled graphs with n external vertices and total weight
k and with compatible circuit structure the set of the isomorphism classes of such
graphs (as defined in Section 6.4) where any external vertex is allowed to have
incoming and outgoing edges, and where an internal vertex of degree 2 can have
weight −1. We denote it by L′n,k.

Now we add some extra structure to the graphs, which will be used to make
sense of differentiation of a graph.

Definition 6.13. A starred graph is a graph with all the structure introduced in
Chapter 6 plus one marking (star). The star can be placed on an edge, or on a
half-edge of the graph.

To associate a partition function to a starred graph, we proceed as for the usual
graphs (as described in Section 6.4) with the following modification:

• If the star is on the edge e, then the corresponding function is

F′f1, f2
(e) = V[Ff1, f2(e)] = V[gpq],

where p and q are the labels respectively at the tail and at the head of the
edge.

• If the star is placed on a half-edge labelled ī incoming to a vertex v, then the
function associated to v is:

F′f1, f2
(v) = V

[
∂

∂zī

]
∂p+q−1Φw

∂zi1 · · · ∂zī−1∂zī+1 . . . ∂zip , ∂z̄j1 , · · · , ∂z̄jq
,

if v is an internal vertex of weight w and

F′f1, f2
(v) = V

[
∂

∂zī

]
∂p+q−1 fi

∂zi1 · · · ∂zī−1∂zī+1 . . . ∂zip , ∂z̄j1 , · · · , ∂z̄jq
,

if v is the i-th external vertex. In the case where the star is on an out-going
half-edge the definition is analogous, with V acting on the derivative ∂

∂z̄ j̄

corresponding to the label of the starred half-edge.

The partition function associated to the starred graph is then defined as usual:

ΛG( f1, f2) = ∏
v∈VG

F′f1, f2
(v) ∏

e∈EG

F′f1, f2
(e).

6.6.1 Differentiating graphs

Starred graphs can be used to make sense of what it means to “differentiate” a
graph or, better, to differentiate the partition function we associate to a graph. As
described in section 6.4, the partition function associated to a graph G is

ΛG( f1, . . . , fn) = ∏
v∈VG

Ff1,..., fn(v) ∏
e∈EG

Ff1,..., fn(e).

When we differentiate it in the direction of a vector field V, because of the Leibniz
rule, we will get a sum of terms, in each of which V hits one of the factors in the
product. Let us illustrate this with an example.
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Example 6.14. We consider now the following graph G with two external vertices.

0

1

3

2

3

4 1

Figure 6.5: The graph G with 2 external vertices.
We can now compute the partition function associated to G to get:

ΛG( f1, f2) =
∂2

∂z̄1∂z̄3 f1
∂3

∂z2∂z3∂z̄4 Φ0
∂

∂z1 f2g12g33g41.

When we differentiate ΛG in the direction of V, we get a sum of 9 terms, and in
each of them V hits one of the factors in the expression. As described above, each
of the 9 terms can be represented as a starred graph. More in detail we have the
following possibilities:

• V hits one of the derivatives ∂
∂zi or ∂

∂z̄j . This corresponds to a star on a half-
edge.

• V hits one of the metric components gpq. This is the case of a star on the
corresponding edge.

Remark 6.15. Let G be a graph. The partition function associated to sum of 3 |VG|
copies of starred graphs with underlying graph G can be expressed as a total
derivative if and only if the star is placed in all the possible 3 |VG| locations in
the graph.
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Formal connections

The idea of formal connections arises as a generalization of the formal Hitchin
connection. This connection was defined by Andersen [And12] as an adaptation
of the Hitchin connection to the language of deformation quantization. Andersen
showed that the formal Hitchin connection that he studied is flat under certain
hypotheses, and he studied the problem of the trivialization of this connection
together with Gammelgaard [AG11].

In this chapter we shall study formal connections in general on a symplectic
manifold with a family of Kähler structures on it. The main property of a formal
connection is that it has to be a derivation with respect to the star product. We
give a result about existence and describe the space of formal connections for such
a manifold.

7.1 Formal connections

Let M be a symplectic manifold and let T be a complex manifold parametrizing
Kähler structures on M. We denote with Ch the trivial bundle over T with fibres the
formal power series of smooth functions on M with formal parameter h. Namely,

Ch = T × C∞(M)[[h]].

Definition 7.1. A formal connection D is a connection in the bundle Ch over T that
can be written as

DV f = V[ f ] + A(V)( f ), (7.1)

where A is a smooth 1-form on T with values in D(M)[[h]] such that A = 0
(mod h), f is a smooth section of Ch, V is any smooth vector field on T , and V[ f ]
denotes the derivative of f along V.

The operator A(V)( f ) can be expressed as a series of differential operators as
follows:

A(V)( f ) =
∞

∑
k=0

Ak(V)( f )hk,

where each Ak is a smooth 1-form on T with values in D(M).

71
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Normally we are interested in looking at formal connections in presence of a
family of star products on the manifold, and then we require that they are compat-
ible in the following sense.

Definition 7.2. Let {?σ}σ∈T be a family of star products. We say that D is a formal
connection compatible with the family of star products if DV is a derivation of ?σ for
every V vector field and every σ ∈ T , that is, the following equality holds:

DV( f ?σ g) = DV( f ) ?σ g + f ?σ DV(g). (7.2)

When a formal connection is compatible with a family of star product as defined
above, then its parallel transport gives equivalences between the different products
in the family.

In this chapter we are going to study the space of formal connections for a
family of star products. In particular we will focus on the case where H1(M; R)
vanishes, which allows us to get global results on M.

7.2 Formal Hitchin connections

Definition 7.3. Let M be a symplectic manifold with a family of compatible almost
complex structures parametrized by a complex manifold T , so that for any σ ∈ T ,
the manifold Mσ is a Kähler manifold, and let {?BT

σ }σ∈T be the associated family
of Berezin-Toeplitz star products. A formal Hitchin connection on M is a formal
connection that is compatible with this family of star products and that is flat.

The notion of formal Hitchin connection was initially introduced by Andersen
in [And12]. Andersen considered one particular formal Hitchin connection, which
we shall construct below, that is obtained from the Hitchin connection in geometric
quantization, and he showed that it is flat if the Hitchin connection is projectively
flat.

Note that we have a more general notion of a formal Hitchin connection here,
and that the one studied by Andersen is still a formal Hitchin connection according
to our Definition 7.3. We shall refer to the formal Hitchin connection studied by
Andersen as formal Hitchin connection associated to the Hitchin connection of geomet-
ric quantization, and we shall denote its 1-form by Ã.

7.2.1 The formal Hitchin connection associated to geometric quan-
tization

The construction relies on the existence of a Hitchin connection in geometric quan-
tization, therefore we shall put ourselves in the hypotheses of Theorem 5.18. Let
(M, ω) be a compact, prequantizable, symplectic manifold which satisfies that
there exists an n ∈ Z such that the first Chern class of (M, ω) is n

[
ω
2π

]
∈ H2(M; Z)

and H1(M; R) = 0. Moreover suppose that I is a rigid holomorphic family of Käh-
ler structures on M, parametrized by a complex manifold T . Let ∇̂ be the Hitchin
connection in the bundle Q̂k whose existence is granted by the theorem.
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Here we wish to construct a formal connection in the bundle Ch that is compat-
ible with the Berezin-Toeplitz star products {?BT

σ }σ∈T and therefore gives equiva-
lences between the star products on different fibres.

The Hitchin connection ∇̂ in Q̂k induces a connection ∇̂e in the endomorphism
bundle End(Q̂k). The following result, proved in [And12], where we assume the
same hypotheses of Theorem 5.18 establishes the existence of the formal Hitchin
connection.

Theorem 7.4 (Andersen). There is a unique formal connection D, written as DV =
V + Ã(V) for any vector field V on T that satisfies

∇̂e
V T(k)

f ∼ T(k)
(DV f )(1/(2k+n)) (7.3)

for all smooth section f of Ch and all smooth vector fields V on T . Here the symbol ∼ has
the following meaning: for any positive integer L we have that∥∥∥∥∥∇̂e

V T(k)
f −

(
T(k)

V[ f ] +
L

∑
l=1

T(k)

Ã(l)
V f

1
(2k + n)l

)∥∥∥∥∥ = O(k−(L+1))

uniformly over compact subsets of T for all smooth maps f : T → C∞(M).

Andersen derived also an explicit formula for Ã:

Ã(V)( f ) = −V[F] f + V[F] ?BT f + h(E(V)( f )− H(V) ?BT f ), (7.4)

where E is a 1-form on T with values in D(M) and H is a 1-form with values
in C∞(M) such that H(V) = E(V)(1). This result has been further refined by
Andersen and Gammelgaard, who obtained an explicit formula for E in [AG11],
which will prove useful for our computations in the next chapter:

E(V)( f ) = −1
4
(∆G̃(V)( f )− 2∇G̃(V)dF( f )− 2∆G̃(V)(F) f − 2nV[F] f ). (7.5)

From this equation we immediately get an expression for H:

H(V) = E(V)(1) =
1
2
(∆G̃(V)(F) + nV[F]).

We can summarize the previous results by writing the following formula for
the formal Hitchin connection studied by Andersen:

DV f =V[ f ]− 1
4

h∆G̃(V)( f ) +
1
2

h∇G̃(V)dF( f ) + V[F] ?BT f −V[F] f

− 1
2

h(∆G̃(V)(F) ?BT f − nV[F] ?BT f − ∆G̃(V)(F) f − nV[F] f ).
(7.6)

The following lemma, proved in [And12], shows that the formal Hitchin con-
nection coming from geometric quantization is a derivation with respect to the
Berezin-Toeplitz star product, and thereby that it is a formal connection compati-
ble with this family of star products.
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Proposition 7.5. The formal operator DV is a derivation with respect to the star product
?BT

σ for each σ ∈ T , meaning that it satisfies the relation:

DV( f1 ?
BT f2) = DV( f1) ?

BT f2 + f1 ?
BT DV( f2) (7.7)

for all f1, f2 ∈ C∞(M).

The star product can be expressed as

f1 ?
BT f2 = ∑

k≥0
c(k)( f1, f2)hk.

By applying this relation in the formula above we get another expression for Ã:

ÃV( f ) = hE(V)( f )− ∑
k≥1

(
c(k)(V[F], f ) + c(k−1)(H(V), f )

)
hk,

which in particular highlights that Ã is zero modulo h.
We conclude this section by stating the result about the flatness of the formal

Hitchin connection coming from geometric quantization that was proved by An-
dersen in [And12].

Proposition 7.6. If the Hitchin connection ∇̂ in Q̂k is projectively flat, then the formal
Hitchin connection associated to it DV = V + Ã(V) in Ch is flat.

7.2.2 The formal Hitchin connection at low orders

The fact that the formal Hitchin connection obtained by Andersen is a derivation of
the Berezin-Toeplitz star product, which we saw in Proposition 7.5, was proved by
using the theory of geometric quantization and Toeplitz operators, translating those
results to the setting of deformation quantization, and thereby its validity relies
on the fact that there exists a Hitchin connection, which puts many requirements
on the objects involved, and among the other things requires that the family of
compatible Kähler structures is rigid and holomorphic.

But the explicit expression we have for the formal Hitchin connection studied
by Andersen (7.6), in terms of differential operators, makes sense in a more general
setting. Therefore we can ask ourselves to which extent that expression defines a
formal connection of the Berezin-Toeplitz star product, or in other words, whether
that expression defines a derivation of the star product.

Here we shall answer this question up to order one with a direct computation,
for which we need not assume that a Hitchin connection exists.

We include here two preliminary lemmas about properties of the coefficients
of the Berezin-Toeplitz star product. Recall that we use the notation c(k) for the
coefficients, when we consider the Berezin-Toeplitz star product.

Lemma 7.7. Let M be a symplectic manifold with a family of compatible Kähler structures
parametrized by a manifold T on it, and let c(k) denote the coefficients of the Berezin-
Toeplitz star product of Wick-type associated to the complex structure for a certain σ ∈ T .
Then we have:

V[c(1)]( f1, f2) =
1
4

(
∆G̃(V)( f1 f2)− ∆G̃(V)( f1) f2 − ∆G̃(V)( f2) f1

)
. (7.8)
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Proof. From a result of Karabegov [Kar96], we have that the degree 1 coefficient of
the Berezin-Toeplitz star product can be written as:

c(1)( f1, f2) = g(∂ f1, ∂̄ f2) = i∇X′′f2
( f1), (7.9)

for any functions f1, f2 ∈ C∞(M), where X f is the Hamiltonian vector field associ-
ated to f . By differentiating equation (7.9), we get the following relation:

V[c(1)]( f1, f2) =
1
2

d f1G̃(V)d f2. (7.10)

The operator ∆G̃(V) is written as ∆G̃(V) = ∇2
G̃(V)

+∇δG̃(V) by (5.5), so the right
hand side of (7.8) becomes:

1
4

(
∇2

G̃(V)
( f1 f2)−∇2

G̃(V)
( f1) f2 −∇2

G̃(V)
( f2) f1

)
,

since the summand of order one vanishes. We can express the symmetric bivector
field G̃(V) as ∑j(Xj⊗Yj) for vector fields Xj and Yj, and so we rewrite the previous
expression as:

1
4

(
∑

j
∇Xj∇Yj( f1 f2)− f2 ∑

j
∇Xj(∇Yj f1)− f1 ∑

j
∇Xj(∇Yj f2)

)

=
1
4 ∑

j

(
∇Yj f1∇Xj f2 +∇Xj f1∇Yj f2

)
=

1
2 ∑

j

(
∇Xj f1∇Yj f2

)
=

1
2

d f1G̃(V)d f2,

where we use the symmetry of the bivector field, and this concludes the proof.

Remark 7.8. Let us note that the expression we got for V[c(1)] also shows that it is
symmetric in the two variables.

The first lemma is about a derivation property of c(1).

Lemma 7.9. Let f1, f2, f3 ∈ C∞(M) be smooth functions. Then c(1) satisfies the following
relation:

c(1)( f1 f2, f3) = f1c(1)( f2, f3) + f2c(1)( f1, f3),

and the corresponding result holds when the product is at the second coordinate.

Proof. By (7.9) we have:

c(1)( f1 f2, f3) = g(∂( f1 f2), ∂̄ f3)

= f1g(∂( f2), ∂̄ f3) + f2g(∂( f1), ∂̄ f3)

= f1c(1)( f2, f3) + f2c(1)( f1, f3).

Note that the previous result holds for any Karabegov star product, as one can
easily verify looking at the graph theoretical expression for c1 obtained in Chapter
6.



76 7. Formal connections

We are now ready to show that the expression (7.6) always gives a derivation of
the Berezin-Toeplitz star product, up to order 1 in h. The derivation relation (7.7)
can be written as:

f1 V[?BT ] f2 = Ã(V)( f1) ?
BT f2 + f1 ?

BT Ã(V)( f2)− Ã(V)( f1 ?
BT f2), (7.11)

where V[?BT ] denotes the product with coefficients V[c(k)]. We can write this equa-
tion modulo h2, recalling that Ã0 = 0, and this way we see that the condition that
has to hold is the following, for all vector fields V on T and smooth functions f1
and f2 on M:

V[c(1)]( f1, f2) = −Ã1(V)( f1 f2) + Ã1(V)( f1) f2 + f1 Ã1(V)( f2). (7.12)

If we extract the expression for Ã1 from (7.6) we obtain:

Ã1(V)( f ) = −1
4

∆G̃(V)( f ) + c(1)(V[F], f ) + V[c(1)](F, f ),

which can be inserted into (7.12) to get:

V[c(1)]( f1, f2) =
1
4

(
∆G̃(V)( f1 f2)− f2∆G̃(V)( f1)− f1∆G̃(V)( f2)

)
,

since the summands of order one vanish. But this is precisely the result we obtained
in Proposition 7.7.

Moreover we can check that the expression (7.6) defines a formal connection
that is flat up to order one in h. This amounts to showing that its curvature van-
ishes modulo h2. Note that the only terms that we see when we compute the
curvature modulo h2 are those coming from dT Ã1, since the commutator terms in
the curvature are multiple of h2. Therefore our expression defines a flat connection
up to order one if and only if Ã1 is closed. In our discussion about trivialization
in the next chapter we will see that Ã1 is actually exact, because we can define a
0-form P1 = 1

4 ∆− c(1)(F, f ) such that V[−P1] = Ã1(V) for any vector field on T ,
as we show in Proposition 8.4. In particular we obtain that Ã1 is closed.

The discussion above can be summed up in the following proposition.

Proposition 7.10. Let M be a symplectic manifold with a family of compatible Kähler
structures parametrized by a complex manifold T . Then the expression (7.6) defines a
formal connection that, up to order one in the formal parameter, is a derivation of the
family of Berezin-Toeplitz star products on M, and that is flat up to order one in the formal
parameter. Therefore it defines up to order one a formal Hitchin connection in the sense of
Definition 7.3.

Remark 7.11. Doing the same check at higher orders becomes much more diffi-
cult, because we do not have a simple expression for higher coefficients of the star
product as we did at order one.

Instead we can take a different point of view, and start from the fact that the
formal Hitchin connection is a derivation of the Berezin-Toeplitz star product. If we
compute what that entails, we can get expressions for the variation of the higher
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coefficients of the star product. If we go through this process at order 2, we get the
following expression:

V[c(2)]( f1, f2) =

− c(2)(V[F], f1 f2) + f1c(2)(V[F], f2) + f2c(2)(V[F], f1)

+
1
4

[
∆G̃(V)c

(1)( f1, f2)− c(1)(∆G̃(V)( f1), f2)− c(1)( f1, ∆G̃(V)( f2))
]

−V[c(1)](F, c(1)( f1, f2)) + c(1)(V[c(1)](F, f1), f2) + c(1)( f1, V[c(1)](F, f2))

− c(1)(V[F], c(1)( f1, f2)) + c(1)(c(1)(V[F], f1), f2) + c(1)( f1, c(1)(V[F], f2)).
(7.13)

This will be used in Chapter 8 to calculate the equations that a trivialization of the
formal Hitchin connection has to satisfy.

7.3 Derivations of star products

We shall now put aside the formal Hitchin connection and look at formal connec-
tions in general. We aim to give a result describing the space of formal connections
on a symplectic manifold and to prove their existence under some assumptions.

We begin this study by studying the space of derivations of a star product. Let
us recall the notion we are considering: we say that a map B : C∞

h (M)→ C∞
h (M) is

a derivation of the star product if it satisfies the relation:

B( f ? g) = B( f ) ? g + f ? B(g), (7.14)

for any f , g smooth (formal) functions on M. Let us now introduce some notation
that will be useful in following results.

Definition 7.12. If ? is a star product on (M, ω), we define the star commutator by:

[ f , g]? = f ? g− g ? f ,

for f , g smooth (formal) functions on M.

Let us note that this definition makes C∞
h (M) into a Lie algebra with adjoint

representation
ad? f = [ f , ·]?.

Remark 7.13. Since the term of order 0 in the star product is the pointwise com-
mutative product, then ad? f is always divisible by the formal parameter h, and the
first term in the expansion is the Poisson bracket1, because of the properties of star
product:

ad? f (g) = h{ f , g}+ . . . .

Gutt and Rawnsley [GR99] give a characterization of self-equivalences of star
products under a cohomological condition.

1we remove the i factor in front of it by renormalizing the formal parameter, to simplify the compu-
tations



78 7. Formal connections

Proposition 7.14 (Gutt, Rawnsley). Let ? be a differential star product on a symplectic
manifold (M, ω), and suppose that H1(M; R) = 0. Then any self-equivalence A =
Id+∑k≥1 Akhk of ? is inner, namely it can be written as A = exp ad?(a) for a formal
function a ∈ C∞

h (M).

The following proposition was proved in [GR99] and shows that any derivation
of a star product on a symplectic manifold with trivial first cohomology is essentially
inner, which means that is can be expressed as the adjoint representation of a formal
smooth function. Here we include a proof by induction that shows how to construct
the required element of C∞

h (M).

Proposition 7.15. Let (M, ω) be a symplectic manifold satisfying H1(M; R) = 0, and
let ? be a star product on M. If B : C∞

h (M)→ C∞
h (M) is a derivation of the star product,

then B there exists b ∈ C∞
h (M) such that B = h−1 ad?(b).

Proof. Let us write the map B as:

B = ∑
k∈N

Bkhk

and prove the statement inductively. If we look at (7.14), it is immediate to see that
B0 satisfies:

B0( f g) = B0( f )g + f B0(g),

for any smooth functions f and g. This means that B0 is a differential operator of
order 1 and so a vector field. If we look now at the terms of the same equation that
are of order 1 in the formal parameter, then we obtain the relation:

B0(c1( f , g))− c1(B0( f ), g)− c1( f , B0(g)) = −B1( f g) + B1( f )g + f B1(g).

Since the right hand side of the equation is symmetric in f and g, so is the left hand
side and we can then symmetrize it and use property (3) from Definition 4.1 to get:

B0({ f , g})− {B0( f ), g} − { f , B0(g)}.

This means that B0 is a symplectic vector field. But we can now use our cohomo-
logical assumption to conclude that it is also Hamiltonian, and so we obtain that
there exists b0 ∈ C∞(M) so that B0 can be written as B0 = {b0, ·}. In other words
we have proved that

hB = ad?(b0) + O(h2).

Let us now assume that

hB = ad?(b(k−1)) + O(hk+1)

holds for k ∈ N where b(k−1) = b0 + b1h + · · · + bk−1hk−1 and bi is a smooth
function on M for each i. This can be rewritten as

hB = ad?(b(k−1)) + βkhk+1 + O(hk+2).

Let us denote
B′ = hB− ad?(b(k−1)) = βkhk+1 + O(hk+2). (7.15)



Derivations of star products 79

It is immediate to see that B′ is a derivation of the star product, since it is the sum
of two derivations. If we look at the right hand side of (7.15) at the order k + 1
of the formal parameter and use the derivation relation, then we obtain that the
following holds:

βk( f g) = βk( f )g + f βk(g)

for any smooth function f and g on M, showing that βk is a differential operator of
order 1, or a vector field. We can look now at the same equation at the order k + 2
of the formal parameter, and we obtain that the expression

βk(c1( f , g))− c1(βk( f ), g)− c1( f , βk(g))

is equal to terms that are all symmetric in f and g, therefore we can symmetrize as
done earlier and conclude that:

βk({ f , g})− {βk( f ), g} − { f , βk(g)},

therefore we can write βk as βk = {bk, ·}, for a bk ∈ C∞(M). Let us define b(k) =
b(k−1) + bkhk. Then we have:

[hB− ad?(b(k))]( f ) = hB( f )− (b(k−1) + bkhk) ? f + f ? (b(k−1) + bkhk),

and it is an immediate computation to check that all the terms of order less or
equal to k + 2 vanish. Therefore we can write

hB = ad?(b(k)) + O(hk+2),

concluding the inductive step and our proof.

Note that, since the star products we consider are null on constants, if b ∈
C∞

h (M) is a constant formal functions, the associated essentially inner derivation is
the null function. We shall use the notation C̃∞

h (M) to indicate the space of formal
functions on M modulo the constant ones.

Let us denote with Der(M, ?) the space of derivations of the star product ? on
M, and let Der0(M, ?) denote the subset of the derivations that are zero modulo h.

Proposition 7.16. Let (M, ω) be a symplectic manifold satisfying H1(M; R) = 0, and
let ? be a star product on M. The space of formal functions on M modulo the constants is
isomorphic to the space of derivations of ? that are zero modulo h via the map:

C̃∞
h (M)→ Der0(M, ?)

b 7→ ad∗(b).

Proof. It is immediate to check that, for any formal smooth function b ∈ C∞
h (M),

the star commutator ad∗(b) is a derivation of ?, and that it is trivial modulo h.
If we add to b any constant b0 ∈ C[[h]], then clearly ad∗(b + b0) = ad∗(b), since
the star product is null on constants, so the map is well defined on the quotient
C̃∞

h (M) and it is linear. To check injectivity we assume that ad∗(b) is trivial for
a formal smooth function b. In correspondence of h1 this means that {b, f } = 0
for all f ∈ C∞

h (M), and this implies that b is a constant. Surjectivity follows from
Proposition 7.15: if A is any derivation in Der0(M, ?), then it is divisible by h, and
A is again a derivation. So by the previous proposition, we can find b ∈ C∞

h (M)
such that h−1 A = h−1 ad∗(b), and therefore A = ad∗(b).
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7.4 The affine space of formal connections

Let D and D′ be two formal connections on M for the same family of star products
parametrized by T . It is immediate to see that

D′V − DV = A′(V)− A(V) = (A′ − A)(V).

Hence their difference is a 1-form on T with values in the derivations of the star
products of the family, and it is zero modulo h.

If M is a symplectic manifold equipped with a family of star products {?σ}σ∈T
parametrized by T , let us denote by F (M, ?σ) the space of the formal connections
that are compatible with the family.

We see that F (M, ?σ) is an affine space over the space of 1-forms on T with
values in the derivations of the star product that are zero modulo h, and thus it can
be written as:

F (M, ?σ) = D0 + Ω1(T , Der0(M, ?σ)),

for a fixed formal connection D0.
If we assume that H1(M; R) vanishes, then Proposition 7.16 tells us that all

derivations of ? are essentially inner, and therefore they are parametrized by an
element in C̃∞

h (M), the space of formal functions on M modulo the constants.
Therefore the compatible formal connections form an affine space modelled on the
1-forms on T with values in C̃∞

h (M).

F (M, ?σ) ∼= D0 + Ω1(T , C̃∞
h (M)),

also in this case for a fixed formal connection D0.

7.5 Gauge transformations of formal connections

We shall study gauge transformations in the space of formal connections F (M, ?σ).
The transformations we look at are self-equivalences of the family of star products,
since the connections should still act as derivations when we transform them. This
means that we look at P ∈ C∞(T ,Dh(M)) such that

Pσ( f ?σ g) = Pσ( f ) ?σ Pσ(g), (7.16)

for any σ ∈ T and any smooth function f and g and such that Pσ is invertible for
any σ ∈ T .

Theorem 7.17. Let M be a symplectic manifold with a family of star products {?σ}σ∈T
parametrized by a smooth manifold T such that H1(T , R) = 0. Let D, D′ ∈ F (M, ?σ)
be formal connections for the family and let us assume that they are flat. Then they are
gauge equivalent via a self-equivalence of the family of star products P ∈ C∞(T ,Dh(M)),
meaning that

D′V = P−1DV P, (7.17)

for any vector field V on T .
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Proof. As usual we can write the formal connections in the form:

DV = V + A(V)

DV = V + A′(V),

for two 1-forms A, A′ ∈ Ω(T ,Dh(M)) with values in formal differential operators
on M, and any vector field V on T . Then we can rewrite (7.17) plugging in a
section f of the bundle as:

V[ f ] + A′(V)( f ) = P−1(V + A(V))P( f )

= P−1 (V[P]( f ) + P(V[ f ]) + A(V)(P( f ))) .
(7.18)

Therefore if we apply P on both sides we get the following equation:

V[P] = PA′(V)− A(V)P. (7.19)

If we can find a P = ∑k∈N Pkhk that solves the equation, then we get the wanted
gauge transformation. To do so we proceed inductively: if we look at (7.19) modulo
h, we see that it is enough to choose a P0 such that V[P0] = 0.

Let us now assume that we have determined P(l) = ∑k≤l Pkhk such that

V[P(l)] = P(l)A′(V)− A(V)P(l) + O(hl+1).

This can be written as:

Bl+1(V)hl+1 = V[P(l)]− (P(l)A′(V)− A(V)P(l)) + O(hl+2), (7.20)

where Bl+1 is a 1-form on T with values in differential operators on M. Let us
define a 1-form αl on T with values in formal differential operators on M by
αl(V) = (P(l)A′(V) − A(V)P(l)). We want to show that αl is closed modulo h2.
At any point on T we can choose two vector fields V and W that commute. Then
we have that:

dT αl(V, W)

= V[α(W)]−W[α(V)]

= V[P(l)A′(W)− A(W)P(l)]−W[P(l)A′(V)− A(V)P(l)]

= P(l) (A′(V)A′(W)− A′(W)A′(V) + V[A′(W)]−W[A′(V)]
)

− (A(V)A(W)− A(W)A(V) + V[A(W)]−W[A(V)]) P(l)

+ hl+1(Bl+1(V)A′(W)− A(W)Bl+1(V)− Bl+1(V)A′(V) + A(V)Bl+1(V)),
(7.21)

where to obtain the last equality we substitute again the expression for V[P(l)] and
W[P(l)]. Note also that the following expression, which appears in the last line of
the equation,

Bl+1(V)A′(W)− A(W)Bl+1(V)− Bl+1(V)A′(V) + A(V)Bl+1(V)
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is multiple of h. Let us now compute the expressions for the curvature of D, which
we are assuming is flat:

0 = FD(V, W) = DV DW − DW DV − D[V,W].

The last summand vanishes because we chose commuting vector fields, hence we
get, for any section:

0 = A(V)A(W)( f )− A(W)A(V)( f )−W[A(V)( f )]

+ A(V)W[ f ] + V[A(W)( f )]− A(W)V[ f ]

= A(V)A(W)( f )− A(W)A(V)( f )−W[A(V)]( f ) + V[A(W)]( f ),

(7.22)

which is the same as:

0 = FD(V, W) = A(V)A(W)− A(W)A(V) + V[A(W)]−W[A(V)].

By computing the curvature in the same way for D′ we obtain:

0 = FD′(V, W) = A′(V)A′(W)− A′(W)A′(V) + V[A′(W)]−W[A′(V)].

By comparing with (7.21), we see that dT αl = 0 (mod hl+2), and therefore, by
(7.20), we also have that dT Bl+1 = 0 (mod hl+2). Since H1(T ; R) is trivial, we
have that the 1-form Bl+1 is exact modulo hl+2, meaning that there exists a smooth
function Pl+1 : T → D(M) such that V[Pl+1hl+1] = −Bl+1hl+1 + O(hl+2). So we
can set P(l+1) = P(l) + Pl+1hl+1 as the notation suggests. To conclude the inductive
step and the proof it is enough to show that:

V[P(l+1)]− (P(l+1)A′(V)− A(V)P(l+1)) = 0 (mod hl+2).

By expanding we get:

V[P(l)]− (P(l)A′(V)− A(V)P(l))− hl+1Bl+1 + hl+1(Pl+1 A′(V)− A(V)Pl+1),

which is a multiple of hl+2 because of how we have chosen Pl+1 and because the
expression Pl+1 A′(V)− A(V)Pl+1 is a multiple of h.

As seen earlier in Proposition 7.6, Andersen showed [And12] that the formal
Hitchin connection associated to the Hitchin connection of geometric quantization
is flat if the Hitchin connection is projectively flat. Therefore we have the following
corollary.

Corollary 7.18. Let T be a smooth manifold such that H1(T ; R) = 0. If there exists
a formal Hitchin connection D in the bundle Ch on T , then it is unique up to gauge
equivalence.

7.6 Existence of formal connections

In this section we study the problem of the existence of formal connections on a
given symplectic manifold (M, ω) equipped with a smooth family of natural star
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products parametrized by T . As we will see, this problem can be re-conducted to
a cohomological condition via Hochschild cohomology.

In fact, if we look at Definition 7.2, we can immediately obtain that, given a
family of natural star products {?σ}σ∈T , there exists a formal connection DV = V +
A(V) compatible with the family if and only if A satisfies the following relation:

A(V)( f ? g)− A(V)( f ) ? g− f ? A(V)(g) = f V[?]g, (7.23)

for any f , g : T → C∞
h (M), where we write V[?] to indicate the product whose i-th

coefficient is V[ci].
It is immediate to observe that the trivial solution, corresponding to A = 0 is

not a candidate for a formal connection, because the equation above is clearly not
satisfied in that case. It is on the contrary required some sort of interplay between
A(V) and the star product for the relation to have a chance of being true.

We note that B( f , g) = f V[?]g, for f and g depending on σ ∈ T , can be seen
as a cochain in the Hochschild cochain complex, which we introduced in Section
2.11. Hence we can interpret (7.23) as in the following proposition.

Proposition 7.19. Let (M, ω) be a symplectic manifold and let {?σ} be a family of natural
star products on M parametrized by T . The family admits a compatible formal connection
if and only if the Hochschild 2-cochain B(σ, V) = V[?σ] is exact for any σ ∈ T and
any vector field V on T , namely if and only if there exists a 1-cochain A(σ, V) such that
A(σ, V) = 0 (mod h) that satisfies the equation

dA(σ, V) = B(σ, V),

where d denotes the coboundary operator with respect to the star product ?σ.

We aim to show that B(σ, V) is exact, and thereby a formal connection compat-
ible with the family of natural star products exists, if and only if the characteristic
class across the family is constant. To prove this result we do a modified version
of Fedosov’s construction of a star product that takes into account the fact that we
have a family of products, and not only one. This way we can construct A and
show that B is exact. In the next sections we shall see in detail the steps of our
construction that leads to the proof of our main result, stated in Theorem 7.21.

Remark 7.20. If we consider the following part of the Hochschild cochain complex

B1
d−→ B2

d−→ B3,

we can note that the condition d2 = 0 is in fact equivalent to the associativity of the
star product, as one can check easily specializing the definition of the differential
to the relevant degrees of the complex:

d(C)( f , g) = c( f ? g)− c( f ) ? g− f ? c(g), for C ∈ B1,

d(B)( f , g, h) = B( f , g ? h)− B( f , g) ? h + f ? B(g, h)− B( f ? g, h), for B ∈ B2.

Theorem 7.21. Let ∇ be a symplectic connection for (M, ω), and let {?σ} be a smooth
family of star products parametrized by T . Let ασ denote the smooth family of formal
2-forms on M representing the characteristic class of the family of star products,

ασ ∈ hΩ2
T (M)[[h]].

Then the following statements are equivalent:
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1. The cohomology class of α is constant in T .

2. There is a 1-form A ∈ Ω1(T , hD(M)[[h]]) with values in formal differential opera-
tors on M such that for any vector field V on T , and any smooth functions f and g
on M the identity

f V[?]g = A(V)( f ? g)− A(V)( f ) ? g− f ? A(V)(g)

holds.

3. The family of star products admits a formal connection.

In the theorem, ? denotes the smooth family of star products on M, which is
parametrized by T and that is given by performing Fedosov’s construction fibre-
wise. The second equivalent condition in the theorem says in particular that the
variation of ? is exact in the second Hochschild cohomology of the family, which
is the condition for the existence of a formal connection that we have identified in
Proposition 7.19. Therefore we know already that the second and the third condi-
tions are equivalent. It remains to prove that the first two conditions are equivalent,
which will be the topic of the most of the remaining part of this chapter.

Remark 7.22. By the result of Gutt and Rawnsley seen in Theorem 4.10, one can
extend the result in a straight-forward manner to all natural star products, since
they are all equivalent to Fedosov star products.

7.7 Smooth families of differential forms

Suppose M and T are smooth manifolds. We will consider smooth families of
objects on M, parametrized by T . Let

ΩT (M) = C∞(T ×M, (π2)
∗(ΛT∗M)),

where π2 denotes the projection T ×M→ M, be the space of differential forms on
M parametrized by T . We denote the subspaces of differential forms of degree k
by Ωk

T (M), and we have: ⊕
k

Ωk
T (M) = ΩT (M)

A family α ∈ ΩT (M) associates to each σ ∈ T a differential form ασ on M.

Proposition 7.23. Assume that α is a family of closed differential forms in ΩT (M) and
let k be a natural number for which the map

[α·] : T → Hk(M)

b 7→ [αb]

is constant. Let b0 ∈ T be a fixed basepoint. Then there exists a smooth family of (k− 1)-
forms β ∈ Ωk−1

T (M) such that

αb − αb0 = dM(βb).
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Proof. This follows from the existence of a continuous linear map

d∗ : d(Ωk−1(M))→ Ωk−1(M),

called the anti-differential, such that dd∗γ = γ holds, and which maps smooth
families to smooth families. For M compact, d∗ might be constructed using Hodge-
theory. For arbitrary M one can use the Čech-de Rham double complex to construct
such an operator, as done in [AG14]. Apply this to the family α − α|b0 , which is
exact, to obtain β.

Equivalently, one can phrase the result as follows:

Proposition 7.24. Assume that the differential forms in ΩT (M) are closed and let k be a
natural number for which the map

[α·] : T → Hk(M)

b 7→ [αb]

is constant. Then there is β ∈ Ω1(T , Ωk−1(M)) such that dMα = 0 and dT α = dMβ.

7.8 Fibrewise Fedosov products

Having in mind the construction of the Fedosov star product seen in Chapter 4, we
do here a similar construction for the situation of a manifold with a smooth family
of star products.

Let (M, ω) be a symplectic manifold of dimension m = 2n. We consider now
the case of a family of closed 2-forms ασ on M parametrized by a manifold T and
describe a fibrewise construction of a family of Fedosov star products having these
forms as their characteristic class.

We shall complete the construction of the formal connection in the special case
where the parameter space T is just the interval [0, 1] for simplicity. Let t be the
global coordinate on the interval.

Our aim is to understand the dependence of Fedosov’s star product on the
choice of the closed 2-form. We know that star products are classified up to equiv-
alence by an element of H2(M)[[h]], namely their characteristic class, and as we
have seen earlier in Chapter 4, the characteristic class of ?∇,αt is represented by αt.

In other words, two Fedosov star products ?∇,α and ?∇,α̃ are equivalent if and
only if the classes of α and α̃ coincide in cohomology.

We assume now that αt ∈ Ω2(M)[[h]] is a 1-parameter family of closed forms
with constant cohomology class.

We also choose a primitive βt ∈ Ω1(M)[[h]], such that

d
dt

αt = dMβt

holds for all t ∈ [0, 1], by Proposition 7.23.
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Let us consider Fedosov’s construction, tensored with the de Rham algebra
(Ω([0, 1]), dt d

dt ) of the interval. This means that we first repeat Fedosov’s construc-
tion for fixed t to obtain rt ∈ Ω1(M, W(TM))[[h]], and hence an abelian connection

Drt := −δ + d∇ +
i
h

ad(rt),

as done in Chapter 4.
Our next aim is to understand the variation of Drt with respect to t. One way

to achieve this is to look for an operator

D̂st = dt
∂

∂t
+

i
h

dt ad(st),

for appropriate st ∈ Ω0
T (M, W(TM))[[h]], such that

[D̂st , Drt ] = 0

holds. Computing this yields:

i
h

dt ad
((
−δ + d∇ +

i
h

ad(rt)

)
(st) +

i
h

∂rt

∂t

)
.

Hence we need that the element

γt =

(
−δ + d∇ +

i
h

ad(rt)

)
(st) +

i
h

∂rt

∂t

is central, or in other words that γt of Ω[0,1](M)[[h]]. To impose this we consider
the equation:

δ(st) = d∇st +
i
h

(
[rt, st] +

∂rt

∂t

)
+ γt.

The following lemma gives a necessary condition for finding such an element.

Lemma 7.25. Suppose st ∈ Ω0(M, W(TM))[[h]] is such that

γt = δ(st)−
(

i
h

(
[rt, st] +

∂rt

∂t

))
is central. Then

dγt −
∂αt

∂t
= 0

holds, i.e. γt is a primitive for the family αt

This is proved by applying Dr to both sides. On the left hand side we get
dγt. On the right hand side we have several addends, but the only component in
Ω(M)[[h]] is δ( ∂rt

∂t ) =
∂αt
∂t .

The following proposition can be proved with the same argument used to de-
termine r in Fedosov’s construction.



Fibrewise Fedosov products 87

Proposition 7.26. Let βt be a primitive for αt. There is a unique

s ∈ Ω0(M, W(TM))[[h]]

such that

δ(st) =d∇st +
i
h

(
[rt, st] +

∂rt

∂t

)
+ βt,

δ∗st =0

hold. Consequently, the operator D̂st commutes with Drt .

Note that the equations above are simpler than the original ones for rt since
they are affine in st.

One can then construct an explicit operator D−1
rt such that

st = D−1
rt

(
∂rt

∂t
+ βt

)
.

We have to understand the variation of τt( f ). Recall that this element is the
(t-dependent) element of

Ω0(M, W(TM))[[h]]

that satisfies Drt τt( f ) = 0 and σ(τt( f )) = f . Let us consider X such that

Xdt = D̂st τt( f ) = dt
(

d
dt

τt( f ) +
i
h
[st, τt( f )]

)
.

Since Drt X = D̂st Drt τt( f ) = 0, X is closed with respect to Drt . Moreover

σ(X) = σ

(
d
dt

τt( f )
)
+ σ

(
i
h
[st, τt( f )]

)
= σ

(
i
h
[st, τt( f )]

)
,

where the first summand vanishes since σ and d
dt commute.

Since X is closed with respect to Drt , as a consequence of [Wal07, 6.4.19], we
obtain that X = τt(σ(X)), and therefore

d
dt

τt( f ) +
i
h
[st, τt( f )] = X = τt(σ(X)) = τtσ

(
i
h
[st, τt( f )]

)
.

If we rewrite this equality, we obtain

d
dt

τt( f ) = τtσ

(
i
h
[st, τt( f )]

)
− i

h
[st, τt( f )]. (7.24)

We are now ready to complete the proof of our theorem.

Proof. (of Theorem 7.21)
To complete the proof it is enough to show that the variation of the star product

admits a primitive in the Hochschild cochain complex if and only if the character-
istic class of the products is constant in cohomology.
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If the variation of the star product admits a primitive in the Hochschild cochain
complex, then the family admits a formal connection by Proposition 7.19, and
therefore we can use parallel transport along a path on T to construct an equiv-
alence between any two star products in the family, which then have the same
characteristic class in cohomology, by Fedosov’s result that we described in Theo-
rem 4.13.

Let us now assume that the characteristic class of the products of the family is
constant in cohomology. By the discussion above, we have a 1-parameter family
of Fedosov star products ?t := ?∇,αt parametrized by the unit interval, and the
computations above allow us to understand the variation of the family.

In fact we can compute:

d
dt
( f ?t g) = σ(

d
dt

τt( f ) ◦MW τt(g)) + σ(
d
dt

τt( f ) ◦MW τt(g)).

Plugging in the expression that we obtained for the variation of τt in (7.24), we
obtain:

d
dt
( f ?t g) = σ(τt

(
i
h
[st, τt( f )]

)
◦MW τt(g)) + σ(τt( f ) ◦MW τt

(
i
h
[st, τt(g)]

)
)

− σ(− i
h
[st, τt( f ) ◦MW τt(g)]).

It follows that if we set

At( f ) := − i
h

σ([st, τt( f )]), (7.25)

the previous equation reads as

d
dt
( f ?t g) = −At( f ) ?t g− f ?t At(g) + At( f ?t g),

which is exactly saying that At is a primitive for the variation of ?t. One has to
check that At is a differential operator, which follows by the same arguments that
show that the Fedosov star product is differential, which are explained in detail in
[Wal07, 6.4.22]. The idea is that τt( f ) can be written as a Taylor expansion of f and
[st, τt( f )] and after projecting with σ, one obtains differential operators on M.

It remains to check that At = 0 (mod h), which is one of the requirements in
the definition of a formal connection. To do so, we can look at the low orders of st
and τt( f ). If βt = ∑k βk

t hk denotes the primitive for the family of differential forms
αt, then we have that

st = hδ∗β1
t + O(h2)

and
τt( f ) = f + d f + O(h).

When we compute the Moyal-Weyl star product commutator of these two elements
in (7.25), we see that its lowest orders terms have degree 2 in h, because the star
product commutator is always multiple of h and st is multiple of h too. The factor
− i

h in (7.25) makes so that the lowest order terms in At have degree 1 in h. This
shows that the variation of the family of star products admits a primitive A ∈
Ω1(T , hD(M)[[h]]) and concludes the proof.
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7.9 Families of Karabegov products

The construction specializes to the case of a compact symplectic manifold M with
a family of compatible Kähler structures parametrized by T . Then one can choose
for any σ ∈ T the anti-differential d∗σ coming from Hodge theory with respect to
the Kähler form for σ. We can choose a family of Karabegov star products with a
characteristic class that in cohomology is independent of σ ∈ T . For instance we
can choose the unique Karabegov product with the trivial Karabegov form ωh−1

for every σ ∈ T , which is of Wick type. Then the Fedosov classes of the family ? is
constant in cohomology, and we obtain the following result.

Theorem 7.27. Let (M, ω) be a compact, symplectic manifold equipped with a family of
compatible Kähler structures parametrized by a manifold T . Let us consider a family of
Karabegov star products {?σ}σ∈T in which the Karabegov form is independent of σ in
cohomology. Then the family admits a formal connection.

In particular, if we choose the family of Berezin-Toeplitz star products, which
are Karabegov star products as seen before, we obtain that this family admits a
formal connection.

7.10 Formal connections in the graph language

On a Kähler manifold M equipped with a smooth family of Karabegov star prod-
ucts {?σ}σ∈T parametrized by T such that the characteristic class of the family is
constant, we can use the graph language of Chapter 6 to write a set of recursive
equations that the connection has to satisfy. As usual let us denote with A the
formal 1-form associated to the formal connection, with A = 0 (mod h). Then A
gives a formal connection if and only if satisfies (7.23), which means that it is a
derivation for the family of star products. We can use our combinatorial formalism
to express that equation.

Proposition 7.28. The formal 1-form A with values in formal differential operators on
M and such that A = 0 (mod h) defines a formal connection if and only if it satisfies
the following equations for any k ≥ 1, for any vector field V on T and any two smooth
functions f and g:

Ak(V)( f g)− Ak(V)( f )g− f Ak(V)(g) = ∑
G∈Lc

2,k

1
C(G)

V[ΛG]( f , g)

−
k

∑
i=1

(
Ak−i(V)( ∑

G∈Lc
2,i

1
C(G)

ΛG( f , g))

− ∑
G∈Lc

2,i

1
C(G)

ΛG(Ak−i(V)( f ), g)− ∑
G∈Lc

2,i

1
C(G)

ΛG( f , Ak−i(V)(g))
)

.
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The trivialization problem

8.1 Formal trivializations

Definition 8.1. A formal trivialization of a formal connection D is a smooth map
P : T → Dh(M) which modulo h is the identity, for all σ ∈ T , and which satisfies

DV(P( f )) = 0,

for all vector fields V on T and all f ∈ C∞
h (M).

In this chapter we shall specifically look at trivializations of the formal Hitchin
connection D that is associated to the Hitchin connection of geometric quantization
and that has the explicit expression (7.6). Recall that D is a connection in the bundle
T × C∞

h (M)→ T .
Note that the fact that D is flat is a necessary condition for the existence of

a trivialization, which otherwise cannot exist even locally. However we have the
following result, proved in [And12], which assures the existence locally on T when
the connection is flat. As mentioned, Andersen showed in [AG11] that this is the
case if the Hitchin connection from geometric quantization is projectively flat.

Proposition 8.2. Assume that D is flat and that A = 0 mod h. Then locally around any
point in T , there exists a formal trivialization. If T is contractible then there exists a formal
trivialization defined globally on T .

If we use this result on the formal Hitchin connection obtained in Theorem 7.4,
we can define a new star product:

f1 ? f2 = P−1
σ (Pσ( f1) ?

BT
σ Pσ( f2)), (8.1)

where f1, f2 are sections of Ch evaluated at σ ∈ T . One differentiates the expression
along a vector field on T and checks that the right side of the equality is actually
independent of σ ∈ T . Thus this defines a star product on M which does not
depend on σ.

91
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8.2 Trivialization at first order

In this section we shall obtain explicitly a global trivialization of the formal Hitchin
connection (7.6) up to order one, following the construction of Andersen and Gam-
melgaard [AG11]. To do so we shall use the following preliminary result that
relates the variation of the Laplace operator and the operators ∆G̃(V).

Proposition 8.3. We have the following relation between the variation of the Laplace-
Beltrami operator and ∆G̃(V):

∆G̃(V) = V[∆].

Proof. Let δ denote the divergence of a vector field, which can be expressed in terms
of the Levi-Civita connection as

δ(X) = Tr∇X.

We can observe that
δ(G̃(V)d f ) = ∆G̃(V)( f ),

for any function f ∈ C∞(M). Then we have that:

V[∆] f = V[δ(−g−1d f )] = −δ(V[g−1]d f ),

and, recalling that G̃(V) = −V[g−1], we can write:

−δ(V[g−1]d f ) = δ(G̃(V)d f ) = ∆G̃(V)( f ).

Let us denote with Pi the i-th order part of the trivialization. Then we can write
a global expression for P0 and P1, as shown in the proposition below.

Proposition 8.4 (Andersen-Gammelgaard). The family of operators

P = Id+h(
1
4

∆− c(1)(F, f )) + O(h2),

gives a formal trivialization of the formal Hitchin connection (7.6).

Proof. Looking at the condition that DV(P( f )) = 0 modulo h, one sees immedi-
ately that P0 = Id. Now we can consider the corresponding equation modulo h2,
denoting P1( f ) = f̃1:

V[ f̃1] = −Ã1(V)( f ) = +
1
4

∆G̃(V)( f )− 1
2
∇G̃(V)dF( f )− c(1)(V[F], f ).

We can differentiate the expression (7.9) for the degree 1 coefficient of the Berezin-
Toeplitz star product obtained by Karabegov and obtain:

V[c(1)]( f , g) =
1
2
∇G̃(V)d f (g).

If we apply this observation and Proposition 8.3 to the equation above we get:

V[ f̃1] = +
1
4

V[∆]( f )−V[c(1)](F, f )− c(1)(V[F], f ).
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The usual chain rule give us the following:

V[c(1)(F, f )] = V[c(1)](F, f ) + c(1)(V[F], f ),

where we note that the term with V[ f ] vanishes, because f does not depend on
σ ∈ T . Thus our equation can be written as

V[ f̃1] =
1
4

V[∆]( f )−V[c(1)(F, f )] = V[
1
4

∆ f − c(1)(F, f )],

which is what we wanted to show.

8.3 Trivialization at second order

The trivialization problem at second order requires solving the equation

DV(P( f )) = 0 mod h3.

With an immediate computation we can write this equation as follows:

V[ f̃2] = −Ã1(V)( f̃1)− Ã2(V)( f ), (8.2)

where f̃i = Pi( f ).
Since we know that the formal connection is flat, a trivialization exists, at least

locally, and can be written as an integral in a neighbourhood around any point.
To study this problem we can use two different approaches based on different

techniques, and we shall give account for them in this chapter. The first approach
is to try to find a solution through a direct calculation, in a similar fashion to what
done for the problem at order one: this approach is described in Section 8.6. The
second approach used the graph formalism introduced in Chapter 6, and is the
topic of the next section.

8.3.1 Finding P2 with graphs

We are trying to find an operator P2 satisfying the following equation:

V[P2] = −Ã1(V)P1 − Ã2(V)P0,

where P0 = Id, and

P1( f ) = +
1
4

∆( f )− c(1)(F, f ),

for all f ∈ C∞(M). To approach this problem with graphs, we try to express all
the terms on the right hand side of the equation in graph language, and then try to
transgress what we obtain, or to read it as the derivative of P2. Before doing this,
let us observe that, from the case of P1, we have the relation:

V[P1] = −Ã1(V),

and therefore we can easily check that our equation can be re-written as:

V[P2] = −V[P1]P1 − Ã2(V). (8.3)
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We already have a graph-theoretical expression for the last summand in P1,
namely c(1), in the graph language developed in Chapter 6. So we continue in the
same fashion, trying to express the other terms in a compatible language.

Let us begin with ∆, the Laplace-Beltrami operator. This can then be expressed
as the partition function associated to the following graph G0, with one external
vertex, and one internal of weight −1. Note that this graph breaks the requirements
we had in Chapter 6, since it has a vertex of weight −1 with only 2 edges.

−1

Figure 8.1: The graph G0 representing ∆.

Lemma 8.5. The Beltrami-Laplace operator ∆ is expressed graph theoretically as follows:

∆( f ) = 2i ∑
l∈L(G0)

1
C(G0)

Λl
G0
( f ), (8.4)

for any f ∈ C∞(M).

Proof. By [Bes87], we can express the operator as

∆( f ) = Λω(2i∂̄∂ f ),

where Λω(α) = 〈α, ω〉. Let us write down the partition function associated to G0
following the definition:

∑
i,j,k,l

∂2 f
∂z̄j∂zi

gikgl j ∂2Φ−1

∂zk∂z̄l
.

Note that the Kähler metric is given by a matrix with entries:

gkl =
∂2Φ−1

∂zk∂z̄l
,

and so, since ∑k gikgkl = δl
i , the partition function looks like:

∑
i,j

∂2 f
∂z̄j∂zi

gij = Λω(∂̄∂ f ) =
∆( f )

2i
.

We have now all the ingredients to re-write P1 in graph language:

P1( f ) = +
2i
4 ∑

l∈L(G0)

Λl
G0
( f )− ∑

l∈L(G1)

1
C(G)

Λl
G1
(V[F], f ). (8.5)

Recall that Ã1(V) has the following expression:

Ã2(V)( f ) = c(2)(V[F], f )− n
2

c(1)(V[F], f )− 1
2

c(1)(∆G̃(V)(F), f ).
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Hence we can easily express it in graph language, since we can write the star
product coefficients:

Ã2(V)( f ) = ∑
G∈Lc

2,2

1
C(G)

ΛG(V[F], f )− n
2 ∑
L(G1)

ΛG1(V[F], f )

− 1
2 ∑
L(G1)

ΛG1(∆G̃(V)(F), f ).
(8.6)

It is now immediate to combine the previous expressions and re-write (8.3) in
graph language:

V[ f̃2] =−V

2i
4 ∑

l∈L(G0)

Λl
G0
(·)− ∑

l∈L(G1)

1
C(G)

Λl
G1
(V[F], ·)


2i

4 ∑
l∈L(G0)

Λl
G0
(·)− ∑

l∈L(G1)

1
C(G)

Λl
G1
(V[F], ·)

 ( f )

− ∑
G∈Lc

2,2

1
C(G)

ΛG(V[F], f ) +
n
2 ∑
L(G1)

ΛG1(V[F], f )

+
1
2 ∑
L(G1)

ΛG1(∆G̃(V)(F), f ).

(8.7)

We can now examine the equation written in this form to try to understand
what kinds of graphs can appear in the expression of P2. It is useful to study what
happens to the weight of graphs under fusion.

Lemma 8.6. Let G1, G2 be graphs in the extended family, with weight respectively w1 and
w2. If G is a graph obtained by fusing them, then G has weight w1 + w2.

Proof. Let us consider the two types of fusion at a vertex separately. In fusion of
type A, we cut out the last external vertex of G1 and glue the loose ends to some
vertices of G2. Therefore the number of edges |EG| in the fused graph will be
the sum |EG1 |+ |EG2 |. The internal vertices are not altered by this kind of fusion,
therefore the result holds.

If we consider a fusion of type B, where a loose end is glued to an edge of G2, by
inserting a new internal vertex of weight −1 along that edge, we see that the total
number of edges in G is |EG1 |+ |EG2 |+ 1, and the +1 is compensated by the weight
of the new internal vertex, so that we have also in this case w(G) = w1 + w2.

Let us now study what happens to the weight of a graph under differentiation:
as mentioned, differentiating a graph G gives a sum of 3|EG| starred graph that are
isomorphic to G, modulo the location of the star. Then we can make immediately
the following observation.

Lemma 8.7. The weight of a graph does not change under differentiation.

Now that we have some control of the weight as a graph invariant under fusion
and differentiation, we can get some result restricting the structures of graphs that
can appear in the expression of P2. By examining (8.7), we see that the right hand
side of the equality only presents graphs of weights 1 and 2.
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Graph Weight
G0 1
G1 1

G ∈ Ll
2,2 2

In conclusion we have proved the following proposition.

Proposition 8.8. The graphs that appear in the expression of P2 can only have weight 1 or
2.

8.4 The formal Hitchin connection in graph language

The graph language that we have developed in this chapter allows us to express
the formal Hitchin connection (7.6) in terms of graphs. Let D be the formal Hitchin
connection expressed by:

DV( f ) = V[ f ] + Ã(V)( f ),

for any vector field V on T , where the 1-form Ã is determined explicitly in Ander-
sen and Gammelgaard’s work [AG11] and has the form that we recall here:

Ã(V)( f ) =− 1
4

h∆G̃(V)( f ) +
1
2

h∇G̃(V)dF( f ) + V[F] ?BT f −V[F] f

− 1
2

h(∆G̃(V)(F) ?BT f − nV[F] ?BT f − ∆G̃(V)(F) f − nV[F] f ).

Then Ã can be written as Ã = ∑i≥1 Ãi, where

Ã1(V)( f ) = −1
4

∆G̃(V)( f ) + c(1)(V[F], f ) + V[c(1)](F, f ),

Ãk(V)( f ) = c(k)(V[F], f )− 1
2

c(k−1)(∆G̃(V)(F), f ) +
n
2

c(k−1)(V[F], f ), for k ≥ 2.

We can see that Ãk for k ≥ 2 is completely given in terms of coefficients of the
star product, therefore we can easily express it in graph form. As to Ã1, we can
see that the only term that is not written as a coefficient of the star product or a
derivative of that is the differential operator ∆G̃(V), which can be written as V[∆]
by Proposition 8.3, and therefore can also be written in graph language by using
Lemma 8.5. Summing up, we can write Ã as follows:

Ã1(V)( f ) = ∑
G∈Lc

2,1

1
C(G)

ΛG(V[F], f )− i
2

V[ΛG0 ]( f ) + ∑
G∈Lc

2,1

V[ΛG](F, f ),

Ãk(V)( f ) = ∑
G∈Lc

2,k

1
C(G)

ΛG(V[F], f )

+ ∑
G∈Lc

2,k−1

1
C(G)

ΛG(−
1
2

∆G̃(V)(F) +
n
2

V[F], f ), for k ≥ 2.

By combining these expression we obtain a formula for the formal Hitchin connec-
tion (7.6) in which the 1-form Ã is completely written in graph language.
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8.5 The trivialization problem at all degrees

We can now generalize this approach to the trivialization problem to all degrees,
and write the equations determining the formal trivialization P in terms of graphs.
Recall that solving the trivialization problem means to find a smooth map

P = ∑
k∈N

Pkhk : T → Dh(M), (8.8)

such that P0 = Id and DV(Pσ( f )) = 0 for any σ ∈ T and any vector field V on T .
This can be rewritten in the following form by using the general expression for a
formal connection (7.1). We omit the σ dependency for notational reasons.

P0 = Id

V[Pk] = −A1(V)(Pk−1)− A2(Pk−2)− · · · − Ak(V)(Id), for k ≥ 2,
(8.9)

for any vector field V on T .
Note that we can use the graph theoretical expression for Ãk that we have ob-

tained in the previous section to formulate the trivialization problem at all degrees
in graph language. The following proposition summarizes the discussion of this
section and gives a set of recursive equations completely written in graph terms
which determine a formal trivialization for a given formal connection. Note that
each of the recursive equations involves transgressing a linear combination of ex-
tended graphs, as done for P2 in Section 8.3.1, in the sense of finding a graph whose
derivative (as defined in Section 6.6.1 is the given linear combination.

Proposition 8.9. Let DV be the formal Hitchin connection (7.6) in the bundle Ch(M)×T
over T expressed in the form DV = V + Ã(V). A smooth map P : T → Dh(M) is a
formal trivialization of D if it satisfies, for any k ∈ N, the following recursive sequence of
relations expressed in graph theoretical language:

P0 = empty graph

V[Pk] = −Ã1(V)(Pk−1)− Ã2(V)(Pk−2)− · · · − Ãk(V)(P0)

= − ∑
G∈Lc

2,1

1
C(G)

ΛG(V[F], Pk−1) +
i
2

V[ΛG0 ](Pk−1)−
1
2 ∑

G∈Lc
2,1

V[ΛG](F, Pk−1)

− ∑
G∈Lc

2,2

1
C(G)

ΛG(V[F], Pk−2)− ∑
G∈Lc

2,1

1
C(G)

ΛG(−
1
2

∆G̃(V)(F) +
n
2

V[F], Pk−2)

− . . .

− ∑
G∈Lc

2,k

1
C(G)

ΛG(V[F], Id)− ∑
G∈Lc

2,k−1

1
C(G)

ΛG(−
1
2

∆G̃(V)(F) +
n
2

V[F], Id),

(8.10)

for k ≥ 1.

8.6 Another approach to the trivialization problem

In this section we shall look at a different approach to the trivialization problem,
which mimics more closely the approach used to get the global result in order 1
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that we have treated in previously in this chapter, namely trying to solve it in a
more calculative way.

To illustrate the idea we shall present an example of a computation first, and
then look at the general procedure.

We start from the trivialization equation (8.3) at order 2. If we insert the expres-
sion we have for P1, Ã1 and Ã2, then the equation reads as:

V[ f̃2] = +
1
16

∆G̃(V)(∆ f )− 1
4

∆G̃(V)(c
(1)(F, f ))− 1

4
V[c(1)](F, ∆ f )

+ V[c(1)](F, c(1)(F, f ))− 1
4

c(1)(V[F], ∆ f ) + c(1)(V[F], c(1)(F, f ))

− c(2)(V[F], f )− n
2

c(1)(V[F], f ) +
1
2

c(1)(∆G̃(V)(F), f ).

(8.11)

If we look at the expression we have obtained for V[c(2)] in (7.13), we see there some
addends that also appear in this equation. Then we can substitute the addend

−c(2)(V[F], f ) = V[c(2)](F, f )−V[c(2)(F, f )]

using the expression from (7.13), and we note that we obtain the term V[c(2)(F, f )],
which is already transgressed. Of course we get also several extra addends from
the cited expansion, some of which cancel out, while others remain. What we wish
for is that we can find expansions for other addends appearing in (8.11) so that
every term can be transgressed.

To streamline this process we can proceed this way: we look at the right side of
(8.11) and from it we get inspiration to choose a set of functions with the idea that
f̃2 = P2( f ) can be written as a linear combination of them. If we compare this with
the previous case of P1, where we already have a solution, the functions involved
there are ∆( f ) and c(1)(F, f ), with coefficients respectively − 1

4 and −1. Then we
differentiate in direction of V all the functions we have chosen, and impose that
the obtained coefficients match the ones we see in (8.11). If the linear system for
the coefficients admits a solution, then we have found an expression for P2. In
our calculation we have considered the following operators, applied to a smooth
function f on M:

∆2 f ∆2F c(1)(F, ∆ f ) c(1)(∆F, f )

∆ f ∆F c(2)(F, f ) c(1)(c(1)(F, f ), f ) c(1)(c(1)(F, f ), F)

c(1)(c(1)( f , F), F) c(1)(c(1)( f , F), F) c(1)( f , c(1)(F, f )) c(1)(F, c(1)(F, f ))

c(1)( f , c(1)( f , F)) c(1)(F, c(1)( f , F)) ∆c(1)(F, f ) ∆c(1)( f , F)

∆ f ∆F ∆( f )F ∆(F) f

c(1)(F, f ) c(1)( f , F) ∆( f )c(1)(F, f ) ∆( f )c(1)(F, F)

We have then tried to express P2 as a linear combination of these functions.
After differentiating each of them along V, we have imposed that the coefficients
match the ones found on the right side of (8.11). Differentiating the functions in
the table we have of course obtained several extra terms, which unfortunately do
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not seem obvious to transgress. In other words, this approach did not give the
wanted result yet, and the partial conclusion we can make is that, if P2 can be
expressed with a global expression, then it contains terms that are not listed in the
table above.

Remark 8.10. As an aside, while studying the problem of transgressing the terms
in the expansion for V[c(2)] obtained in (7.13), we have studied the sum of the three
terms:

V[F]c(2)( f1, f2)− c(2)(V[F] f1, f2) + f1c(2)(V[F], f2).

To approach this in generality, let us define:

X(a, b, c) = c(2)(ab, c)− ac(2)(b, c)− bc(2)(a, c),

where a, b, c are smooth functions. One immediately notices that the expression is
symmetric in a and b, and also that, if we took the same expression with c(1) in
place of c(2), we would get 0, by Lemma 7.9. We can now use graphs to write down
an expression for X(a, b, c) in local coordinates, following (6.3):

X(a, b, c) =− ∑
i,ī,j, j̄,k,k̄

giīgjj̄gkk̄ ∂a
∂z̄i

∂b
∂z̄j

∂3Φ−1

∂zī∂z j̄∂z̄k

∂c
∂zk̄

+ ∑
i,ī,j, j̄

giīgjj̄ ∂a
∂z̄i

∂b
∂z̄j

∂2c
∂zī∂z j̄

.
(8.12)

If we examine the expression, we recognize that the two sums are partition function
associated to two graphs with 3 external vertices and weight 2 in the set A3(2), as
defined in Chapter 6.

1
2 3

4 5

−1 −1

Figure 8.2: Graphs in A3(2) (unlabelled).
Namely, we get the partition functions corresponding to the graphs 3 and 4 in

the picture, where we insert the function a, b, c at the 3 external vertices (drawn as
filled dots). Similarly, if we define the quantity:

Y(a, b, c) = c(2)(a, bc)− bc(2)(a, c)− cc(2)(a, b),

we get the partition functions corresponding to the graphs 2 and 5 in the picture.
If we look at the equation we are trying to solve, we note that terms in the

sum we are looking at here are the only ones where c(2) appears: in fact they are
X(V[F], F, f ). We see also that we have second derivatives only for f , while V[F]
and F only appear as first derivatives. It could be therefore possible to re-write
them, possibly in terms of c(1) and simplify the expression.
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8.7 Trivialization on abelian varieties

In this section we shall consider a case of the trivialization problem where we can
find a solution at all degrees, namely that of abelian varieties.

We follow the work of Andersen in [And05] and in his paper joint with Blaa-
vand [AB11], which give us an explicit formula for a formal Hitchin connection in
this setting.

Let V be a real vector space with a symplectic form ω, and let Λ be a discrete
lattice of maximal rank. We consider the quotient

M = V/Λ,

and we require that M is principally polarised, meaning that the symplectic form ω
must be integral and unimodular when restricted to Λ. Then M is called an abelian
variety.

As usual T is a complex manifold parametrizing the Kähler structures Iσ on M
that are compatible with ω for σ ∈ T . Andersen derives an expression for a formal
Hitchin connection1 on such an abelian variety, which simplifies the formula that
we got in 7.6, since in this setting the Ricci potential F is constantly zero.

Proposition 8.11. Let M be a principally polarised abelian variety and T a complex man-
ifold parametrizing the Kähler structures Iσ on M that are compatible with ω for σ ∈ T .
Then the expression below defines a formal Hitchin connection:

DV f = V[ f ]− h
4

∆G̃(V)( f ), (8.13)

for any vector field V on T and any smooth function f on M.

We note that in this setting we have that [∆, ∆G̃(V)] = 0, for any vector field V on
T . One can see this by writing the operators as matrices for a coordinate chart and
diagonalizing them. The coefficients are constant, and therefore they commute. By
Proposition 8.3, the relation above is equivalent to [∆, V[∆]] = 0. The following
lemma is a consequence of this fact.

Lemma 8.12. For any positive integer k we have:

V[∆k] = k∆k−1V[∆].

Proof. We have that

V[∆2] = V[∆]∆ + ∆V[∆] = 2∆V[∆].

If the claim holds for k, then we can write:

V[∆k+1] = V[∆]∆k + ∆V[∆k] = ∆kV[∆] + k∆∆k−1V[∆] = (k + 1)∆kV[∆],

and so we can conclude by induction.

1Here we use a different sign convention with respect to [AB11], therefore we get opposite signs for
the 1-form in the formal Hitchin connection and for the trivialization.
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If we write the equations for the trivialization problem (8.9) in the current case,
they read as:

V[Pk( f )] = V[ f̃k] = −Ã1(V)( f̃k−1) =
1
4

∆G̃(V)( f̃k−1), (8.14)

for any positive integer k, any vector field V on T and any smooth function f on
M.

For a positive integer k, let

f̃k = αk∆k( f ),

and let us substitute this expression in (8.14), we get:

αkV[∆k] f =
1
4

αk−1V[∆]∆k−1 f .

If we apply Lemma 8.12 to the equation above, we see that our expression for f̃k
provides a solution for all k by choosing:

αk =
1

4kk!
.

In other words, the trivialization of the formal Hitchin connection in the abelian
case has the form:

P = ∑
k∈N

hk ∆k

4kk!
= exp

(
h

∆
4

)
. (8.15)

We can note that this expression matches the one obtained by Andersen and Gam-
melgaard [AG11] at order one if we let the Ricci potential vanish in their formula
that we saw in Proposition 8.4.

The same expression that we got here for the trivialization was obtained by
Andersen in [And05], where it was seen as a transformation of the Berezin-Toeplitz
deformation quantization, and later in [AB11], where Andersen and Blaavand with
different methods obtained the same trivialization of the formal Hitchin connection
in the case of abelian varieties.

8.8 Remarks about the trivialization problem

Let us recapitulate the content of this chapter: we obtain partial results that are
based on the graph theoretical language that we have introduced extending the
one used by Gammelgaard [Gam14] to express the coefficients for the Berezin-
Toeplitz star product. By encoding composition and differentiation in this graph
language, we get some constraints on how the expression of the trivialization at
degree 2 can be, by limiting the class of graphs that can appear in it.

We note anyhow that this graph language is based on the choice of a set of
local coordinates, therefore it will not immediately give a global expression for the
trivialization. It is anyhow interesting to investigate further in this direction, trying
to better understand the trivialization at order 2 and higher.
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Even though our results do not give a solution of the trivialization problem,
they build a framework which will be possible to use to get further results in
that direction. The problem of finding a trivialization is now completely encoded
in graph terms. It is not evident to direct inspection which graphs one should
consider, but the combinatorial nature of this approach allows to treat this question
on a computer: implementing the problem in a mathematical software is a clear
possibility for future work on this question.

It would also be interesting to search for a global expression for the trivializa-
tion. Section 8.6 gives account for our attempts in this direction. The calculations
we carried out show a rather high degree of symmetry in the formulae we obtain.
It could be for instance interesting to better understand the c(2) terms appearing in
the expansion of V[c(2)] (described in Remark 8.10).

The results about classification of formal connections from Chapter 7 could also
be used to progress on the trivialization problem: the formal Hitchin connection
coming from geometric quantization is an example of such a connection, but pos-
sibly it is not the easiest to trivialize: one might be able to get a formal connection
easier to trivialize by transforming the one obtained by Andersen from the Hitchin
connection in geometric quantization.
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