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Abstract

We discretize a cost functional for image registration problems by deriving
Taylor expansions for the matching term. Minima of the discretized cost func-
tionals can be computed with no spatial discretization error, and the optimal
solutions are equivalent to minimal energy curves in the space of k-jets. We
show that the solutions convergence to optimal solutions of the original cost
functional as the number of particles increases with a convergence rate of
O(hd+k) where h is a resolution parameter. The effect of this approach over
traditional particle methods is illustrated on synthetic examples and real im-
ages.

1 Introduction

The goal of image registration is to place differing images of the same object (e.g.
MRI scans) into a shared coordinate system so that they may be compared. One
common means of doing this is to deform one image until it matches the other.
Typical numerical schemes for implementing this task are particle methods, where
particles are used as a finite dimensional representation of a diffeomorphism. If the
particles are initialized on a regular grid of resolution h, then the solutions can be
O(hd) accurate at best where d is the dimension of the image domain. Improving this
order of accuracy is non-trivial because traditional higher-order numerical schemes
are designed on fixed meshes (e.g. higher order finite differences).

In this paper we seek to improve this order of accuracy by considering a more
sophisticated class of particles. We will find that by equipping the particles with
jet-data, one can achieve registrations with higher orders of accuracy. One impact of
the use of higher-order particles is that the improved accuracy per particle permits
the use of fewer particles for a desired total accuracy.

1.1 Organization of the paper

We will introduce the higher-order accurate image registration framework through
the following steps:
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1. We will introduce the hierarchy of jet-particles.

2. We will pose an image registration problem as an optimal control problem on
an infinite dimensional space.

3. We will pose a sequence of deformed problems which are easier to solve.

4. We will reduce the deformed optimization problems to optimization problems
involving computation of finite dimensional ODEs (i.e. an infinite dimensional
reduction).

5. We will prove that the sequence of computed solutions to the deformed prob-
lems converges to the solution of the original problem at a rate O(hd+k), where
k ≥ 0 depends on the order of the jet-particles used.

Finally, we will display the results of numerical experiments comparing the use of
0-th, 1-st, and 2-nd order jet-particles.

2 Previous work

In this section we attempt a sparse and incomplete overview of large deformation
diffeomorphic metric mapping (LDDMM) from its origins in the 1990s, to its recent
marriage with geometric mechanics (2000s-present).

2.1 Matching with LDDMM

The notion of seeking deformations for the sake of image registration goes back a
long way, see [SDP13, You10] and references therein. One of the first attempts was
to consider diffeomorphisms of the form ϕ(x) = x+f(x) for some map f : Rd → Rd.
When f is “small”, ϕ is a diffeomorphism, but this can fail when f is “large” [You10,
Chapter 7].

This breakdown for large f is a result of the fact that the space of diffeomor-
phisms is a nonlinear space. One of the early obstacles in diffeomorphic image regis-
tration entailed dealing with this nonlinearity. A key insight in getting a handle on
the nonlinearity of the diffeomorphisms was to consider the linear space of vector
fields. Given a time-dependent vector field v(t), one can integrate it to obtain a
diffeomorphism ϕt, which is called the flow of v [CRM96]. This insight was used to
obtain diffeomorphisms for imaging applications by posing an optimal control prob-
lem on the space of vector-fields, and then integrating the flow of the optimal vector
field to obtain a diffeomorphism. The well-posedness of this approach was studied in
[Tro95, DGM98], where the cost functional (i.e. the norm) was identified as a funda-
mental choice in ensuring well-posedness and controlling properties of the resulting
diffeomorphisms. A particle method based upon [DGM98] was implemented for the
purpose of medical imaging in [JM00]. The completeness of the Euler-Lagrange
equations in [DGM98] was studied thoroughly in [TY05], where the image data was
allowed to be of a fairly general type (i.e. any entity upon which diffeomorphism act
smoothly). The analytic safe-guards provided by [DGM98] and [TY05] where then
utilized in [BMTY05], where a number of examples where numerically investigated.
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2.2 Connections with geometric mechanics

Very soon after these early investigations, connections with geometric mechanics
began to form. The cost functional chosen in [JM00] was the H1-norm of the vector-
fields. Coincedentally, this is the cost functional the of the n-dimensional Camassa-
Holm equation (see for example [HM05] and references therein). In 1-dimension,
the particle solutions in [JM00] are identical to the peakon solutions discovered
in [CH93], and the numerical scheme reduces to that of [HR06]. The convergence
of [JM00] was proven using geometric techniques in [CDTM12]. As images appear
as advected quantities, the use of momentum maps became a useful conceptual
technique for geometers to understand the numerical scheme of [BMTY05]. The
identification of numerous mathematical terms in [BMTY05] as momentum maps
was performed in [BGBHR11].

2.3 Jet particles

The particle method implemented in [JM00] allowed only for deformations whose
Jacobian was an indentity matrix at each of the particle locations. These deforma-
tions can be thought of as “local translations” (See figure 1 (a).). Motivated by a
desire to create more general deformations [SNDP13] introduced a hierarchy of par-
ticles which advect jet-data. We call the particles jet-particles in this paper. The first
order jet-particles modify the Jacobian matrix at the particle locations and allow
for “locally linear” transformations such as local scalings and local rotations (See
figures 1(b-e).). Second order jet-particles allow for deformations which are “locally
quadratic” (i.e. transformations with nontrivial Hessians. See figures 1(f-h).). The
geometric and hierarchal structure of [SNDP13] was investigated in [Jac13] where
the Lie groupoid structure of jet-particles was linked to the Lie group structure of the
diffeomorphism group, thus making the case for jet-particles as multi-scale represen-
tations of diffeomorphisms. Independently, an incompressible version of this idea was
invented for the purpose of incompressible fluid modelling in [DJR13]. Solutions to
this fluid model were numerically computed in [CHJM14] based upon the regularized
Euler fluid equations developed in [MM13b] and expressions for matrix-valued repro-
ducing kernels derived in [MG14]. The final section of [CHJM14] provides formulas
which illustrate how jet-particles in the kth level of the hierarchy yield deformations
which are approximated by particles in the (k − 1)th level of the hierarchy. The
approximation being accurate to an order O(hk) where h > 0 is some measure of
particle spacing. This approximation is more or less equivalent to the approximation
of a partial differential operator by a finite difference, and it will serve as one of the
main tools used in this paper in producing higher-order accurate numerical schemes.
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Figure 1: Deformations of initially square grids. (a) 0-th order, (b-e) 1-st order, (f-h) 2-nd
order. A single jet-particle is located at the blue dots before moving with the flows to the
red crosses. Grids are colored by log-Jacobian determinant.

3 LDDMM

Let M be a manifold and let V ⊂ X(M) be a subspace of the vector-fields on M
equipped with an inner-product 〈·, ·〉V : V × V → R. Let GV ⊂ Diff(Rn) be the
corresponding topological Lie group to which V integrates [You10, Chapter 8]. To
do image registration we try to assemble “small” diffeomorphism by minimizing a
cost function on the space of curve in GV . The standard cost function takes a time-
dependent diffeomorphism, ϕt, and outputs a real number. Mathematically, the cost
function is often take to be a map EGV

: C1([0, 1] : GV )→ R given by

EGV
[ϕ(·)] :=

1

2

∫ 1

0

`(v(t))dt+ F (ϕ1),

where v(t) ∈ V is the Eulerian velocity field v(t, x) = ∂tϕt(ϕ
−1
t (x)) and ` is a

“control-cost”. Explicitly, ϕt ∈ GV is obtained from v(t) ∈ V via the initial value
problem {

d
dt
ϕt = v(t) ◦ ϕt,

ϕ0 = id.
(3.1)

One then obtains extremizers of EGV
by solving the Euler-Lagrange equations onGV .

However, GV is a non-commutative group, and can be very difficult to work with. It
is typical to express EGV

as a cost function on the vector-space V and incorporate
(3.1) as a constraint. This means optimizing a cost function E : C1([0, 1], V ) → R
with respect to constrained variations. Any extremizer, v(·), of E must necessarily
satisfy a symmetry reduced form of the Euler-Lagrange equations, known as the
Euler-Poincaré equation. In essence, the Euler-Poincaré equations are nothing but
the Euler-Lagrange equations pulled to the space V . For a generic `, the Euler-
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Poincaré equations take the form

d

dt

(
δ`

δv

)
+ ad∗v

(
δ`

δv

)
= 0. (3.2)

We suggest [MR99] for further information on the Euler-Poincaré equations. Equa-
tion (3.2) is an evolution equation, which allows us to search over the space of initial
conditions (i.e. V ) in place of optimizing over space of curves (i.e. C1([0, 1];V )).
Explicitly, this is done by considering the map evolEP : V → C1([0, 1];V ) which
sends each v0 ∈ V to the curve v(·) ∈ C1([0, 1];V ) obtained by integrating (3.2)
with initial condition v0. We can then pre-compose E with evolEP to produce the
function

e := E ◦ evolEP : V → R.

The initial condition v∗ ∈ V minimizes e if and only the solution v(·) = evolEP (v∗)
of (3.2) minimizes E. Generally, solutions to (3.2) are extremizers of E, and one
must appeal to higher-order variations in order to obtain sufficient conditions for an
extremizer to be a minimizer. However, we will not do pursue these matters in this
article.

3.1 Overview of the problem and our solution

Particle methods are typically used to approximate a diffeomorphism in the following
way. We usually compute all quantities with respect to an initial condition where all
the particles lie on a grid/mesh and prove convergence as the mesh width, h, tends
to 0. However, it would be nice to have an order of accuracy as well.

PROBLEM: Can we solve for a minimizer of E with a
convergence rate of O(hp) for some p ∈ N?

Our strategy for tackling this problem is to approximate E with a sequence of
O(hp)-accurate curve energies Eh for which we can compute the minimizers exactly
up to time discretization (i.e. the computed solutions have no spatial discretization
error). More specifically, the meshsize will determine a continous sequence of sub-
groups Gh ⊂ G. We will approximate the matching functional F , with a Gh-invariant
functional Fh : GV → R such that for a fixed ϕ ∈ GV

F (ϕ)− Fh(ϕ) = O(hp)

for some p ∈ N. We find the curve energies to be O(hp) accurate as well, and this
accuracy will transfer to the solutions for a sufficiently wide range of scenarios.

4 Reduction theory

In this section we review subgroup reduction of a class of optimization problems
using Clebsch variables. In the Hamiltonian context, Clebsch variables are also called
symplectic variables, and constitute a Poisson map ψ : T ∗Rn → P . This is useful
when 2n < dim(P ), since solutions to certain Hamiltonian equations on P can

5



be derived by solving Hamiltonian equations on T ∗Rn first [MW83, Wei83]. The
Lagrangian version of this idea was further developed in the context of equations
with hydrodynamic background in [HM05]. It is this later perspective which we shall
take in this paper, since problem setup is stated in Lagrangian form.

Let G be a group and Gs ⊂ G be a subgroup. We will denote the homogenous
space of right cosets by Q = G/Gs, and we will denote the corresponding principal
bundle projection by π : G → Q. Note that G naturally acts on Q through the
formula g · π(g̃) = π(g · g̃). Given this action, the corresponding (left) momentum
map, J : T ∗Q→ g∗, is defined by the condtio

〈J(q, p), ξ〉 = 〈p, ξ · q〉 for all ξ ∈ g.

Let L : TG → R be the Lagrangian and let F : G → R. We wish to minimize
the curve energy or “action”

E[g(·)] =

∫ 1

0

L(g(t), ġ(t))dt+ F (g(1)) (4.1)

over the space of curves g(t) ∈ G on the interval [0, 1] with g(0) = id. That is to
say E : C1

id([0, 1];G) → R where C1
id([0, 1];G) denotes the space of C1 curves in

G originating from the identity. Extremization of E means taking a variation in
C1
id([0, 1];G), which is a variation of a curve with a fixed end-point at t = 0 but not

at t = 1. It is simple to show that any solution must satisfy the boundary value
problem

{
d
dt

(
∂L
∂ġ

)
− ∂L

∂g
= 0

g(0) = id, ∂L
∂ġ

∣∣
t=1

+ dF (g(1)) = 0.
(4.2)

If the dimension ofG is large, integrating this equation can be troublesome. However,
in the presence of a Gs-symmetry a reduction can be applied to reduce the problem
to a boundary value problem on Q.

Throughout this section we will assume that F is Gs invariant. As a result there
exists a function f : Q→ R defined by the condition

f(q) = F (g) for all q ∈ Q , g ∈ G such that q = π(g).

More succinctly, f = F ◦ π. We will also assume that L(g, ġ) is G-invariant, and
comes from a reduced Lagrangian function ` : g → R. Finally, we will assume that
the Legendre transformation, δ`

δξ
: g → g∗, is invertible. The reduced Hamiltonian

h : g∗ → R is then given by

h(µ) =

〈
µ,
δ`

δξ

−1

(µ)

〉
− `
(
δ`

δξ

−1

(µ)

)
.

Theorem 4.1 (see also [BGBHR11]). Let H = h ◦ J : T ∗Q → R. If the curve
(q, p)(t) ∈ T ∗Q satisfies

{
q̇ = ∂H

∂p
, ṗ = −∂H

∂q

q(0) = π(id), p(1) + df(q(1)) = 0.
(4.3)
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then the curve g(t) obtained by integrating the initial value problem

ġ(t) = ξ(t) · g(t), ξ = (δ`/δξ)−1(J(q, p)), g(0) = id

satisfies (4.2).

Proof. We can replace E with the (equivalent) curve energy E2 : C([0, 1]; g) → R
given by

E2[ξ] =

∫ 1

0

`(ξ(t))dt+ F (g(1)) (4.4)

where g(1) ∈ G is implicitly obtained through the reconstruction equation dg
dt

= ξ · g
which we view as a constraint. Minimizers of E2 are related to minimizers of E
through the reconstruction equation as well.

We are now going to use the Gs symmetry of (4.4) to reduce the dimensionality of
the problem. The Gs invariance of F implies the existence of a function f : Q→ R
such that F = f ◦ π. Therefore, we may equivalently express E2 as the energy
functional

E2[ξ] =

∫ 1

0

`(ξ(t))dt+ f(q(1)) (4.5)

where q(1) is obtained through the reconstruction equation q̇(t) = ξ(t) ·q(t) with the
initial condition q(0) = πs(id). Again, the dynamic constraint q̇ = ξ · q makes this
a constrained optimization problem. We may take the dual of this constrained opti-
mization problem by using Lagrange multipliers to get an equivalent unconstrained
optimization problem [BV04]. In our case, the dual problem is that of extremizing
the (unconstrained) curve energy E3 : C1([0, 1]; g× T ∗Q)→ R given by

E3[ξ, q, p] =

∫ 1

0

`(ξ(t)) + 〈p(t), q̇(t)− ξ(t) · q(t)〉dt+ f(q(1)).

Using the definition of J we can re-write this as

E3[ξ, q, p] =

∫ 1

0

`(ξ) + 〈p, q̇〉 − 〈J(q, p), ξ〉dt+ f(q(1)).

We find that stationarity with respect to arbitrary variations of ξ implies

δ`

δξ
= J(q(t), p(t)). (4.6)

We may view (4.6) as a constraint which defines ξ in terms of the q’s and p’s.
Explicitly, (4.6) tell us

ξ =
δ`

δξ

−1

(J(q, p)).

We can substitute this into the previous curve energy to eliminate the variable ξ
and express E3 solely in terms if p and q. We thus obtain the curve energy

E4[q, p] =

∫ 1

0

`

(
δ`

δξ

−1

(J(q, p))

)
+
〈
p, q̇〉 − 〈J(q, p),

δ`

δξ

−1

(J(q, p))
〉
dt

+ f(q(1)).
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Observing that

H(q, p) = h(J(q, p)) =
〈
J(q, p),

δ`

δξ

−1

(J(q, p))
〉
− `
(
δ`

δξ

−1

(J(q, p))

)

we can write E4 as

E4[q, p] =

∫ 1

0

〈p, q̇〉 −H(q, p)dt+ f(q(1)).

By taking arbitrary variations of q and p we find that extremization of E4 implies
the desired result.

Theorem 4.1 allows us to minimize curve energies using the following gradient
descent algorithm.

Algorithm for general Lie groups

1. Solve for (q(t), p(t)) ∈ T ∗Q in (4.3).

2. Set ξ(t) = (δ`/δξ)−1 · J(q(t), p(t))

3. Obtain g(t) ∈ G as a solution to the initial value problem, ġ = ξ · g ,
g(0) = id.

4. Evaluate cost function, and backward compute the adjoint equations
[Son98] to compute the gradient of the cost function with respect to
a new initial condition.

5. If the gradient is below some tolerance, ε, then stop. Otherwise use
the gradient to create a new initial condition and return to step 1.

The resulting curve g(t) ∈ G will minimize the original curve energy given in
equation (4.1). Moreover, all the minimizers of the original problem are obtained in
this way. Again, the advantage of this method is that the bulk of the computation
is performed on the lower dimensional space T ∗Q rather than TG.

In the next sections we will consider the case where G is a diffeomorphism group,
and Gs is a subgroup such that Q = G/Gs is the (finite-dimensional) space of jet-
particles.

5 Jets as Homogenous spaces

In order to invoke the findings of the previous section, we must find a way to char-
acterize the space of jet-particles as a homogenous space (i.e. a group modulo a
subgroup). This is the content of proposition 5.1, the main result in this section.

Let Λ ⊂ M be a finite set of distinct points in M . If f is any k-differentiable
map from a neighborhood of Λ, the k-jet of f is denoted J (k)

Λ (f), and in coordinates
is represented by the coefficients of the kth order Taylor expansions of f about each
of the points in Λ. We call J (k)

Λ the “k-th order Jet functor about Λ”. This is indeed
a functor, and can be applied to any k-differentiable map from subsets of M which
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contain Λ, including real valued functions, diffeomorphisms, and curves supported
on Λ [KMS99, Chapter IV].

Let G = Diff(M) and let e ∈ G denote the identity transformation on M . We
can consider the subgroup

G
(0)
Λ := {ψ ∈ G | ψ(x) = x ∀x ∈ Λ}

and the normal subgroups

G
(k)
Λ := {ψ ∈ G(0)

Λ | J
(k)
Λ ψ = J (k)

Λ e}

Moreover, the Lie algebra of G(k)
Λ is

g
(k)
Λ = {η(k)

Λ ∈ X(M) | J (k)
Λ η

(k)
Λ = J (k)

Λ (0)}.

In other words, g
(k)
Λ is the sub-algebra of X(M) consisting of vector fields with

vanishing partial derivatives up to order k at the points of Λ.

Proposition 5.1. The functor, J (k)
Λ , is the principal bundle projection from G to

Q(k) = G/G
(k)
Λ .

Proof. This is merely the definition of J (k)
Λ , and a more thorough description of this

statement can be found in [KMS93]. Nonetheless, we will attempt a skeletal proof
here.

If ϕ2 = ϕ1 ◦ ψ for some ψ ∈ G
(k)
Λ then J k

Λ (ϕ2) = J k
Λ (ϕ1 ◦ ψ). However, ψ

has absolutely no impact on the kth order Taylor expansion because the Taylor
expansion of ψ is trivial to kth order. Thus J (k)

Λ (ϕ1) = J (k)
Λ (ϕ2) and so J (k)

Λ is a
well defined map on the coset space Q(k). Conversely, for each element q ∈ Q(k) one
can show that the inverse image (J (k)

Λ )−1(q) is composed of a single G(k)
Λ orbit and

no more.

For example if Λ consists of only two distinct points then

Q(0) = {(y1, y2) ∈M2 | y1 6= y2},
Q(1) = {(f1, f2) ∈ Fr(M)2 | πFr(f1) 6= πFr(f2)}.

where πFr : Fr(M)→M is the frame bundle of M .

Proposition 5.2. J (k)
Λ (G

(0)
Λ ) is a (finite dimensional) Lie group, and the functor

J (k)
Λ restricted to G(0)

Λ is a group homomorphism. Moreover J (k)
Λ (G

(0)
Λ ) is a normal

subgroup of J (k)
Λ (G

(l)
Λ ) for all l ∈ N.

Corollary 5.3. The space Q(k) is a (finite-dimensional) principal bundle with struc-
ture group J (k)

Λ (G
(0)
Λ ).

For k = 0 this structure group is trivial. At k = 1 this structure group is
identifiable with GL(d) where d = dim(M).
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6 An O(hp) accurate algorithm

In this section we describe the basic strategy for using jet-particles to get high order
accuracy in solutions to LDDMM problems posed on M = Rd. The algorithm uses
uses a O(hp) approximation to the matching term which is G(k)

Λ invariant. We then
invoke Theorem 4.1 to reduce the problem to a finite dimensional boundary problem
on Q(k) which we solve to obtain an approximation of the solution to the original
problem.

We will assume that the problem is defined on a reproducing kernel Hilbert
space (RKHS), which we denote by V ⊂ X(Rn) and whose kernel we denote by
K : Rd × Rd → R [You10, Chapter 9]. Moreover, we will assume V satisfies the
admissibility condition

‖v‖V ≤ ‖v‖k,∞ (6.1)

for all v ∈ V . We will denote the topological group which integrates V by GV .
To make precise what we mean by “an O(hp) approximation” to a matching term

we will recall the “big O” notation.

Definition 6.1. Let F : GV → R, and let Fh : GV → R depend on a parameter
h > 0. We say that Fh is an O(hp)-approximation to F if

lim
h→0

(
F (x)− Fh(x)

hp

)
<∞

for all x ∈ Rd. Moreover, O(hp) will serve as a place-holder for an arbitrary function
within the equivalence class of all functions of h which vanish at a rate of hp or faster
as h→ 0. Under this notation Fh is an O(hp) approximation of F if F = Fh+O(hp).

To illustrate how we may produce O(hp)-approximations to matching functions
we will consider the following example.

Example Let I0, I1 ∈ Ck(Rd; [0, 1]) be two greyscale images with compact support.
We can consider the matching functional F : Diff(Rd)→ R given by

F (ϕ) =
1

σ
‖I0 − (I1 ◦ ϕ)‖2

L2
=

1

σ

∫

Rd

|I0(x)− I1(ϕ(x))|2dx.

As I0 and I1 each have compact support, the integral term can be restricted to a
compact domain. We will continue to write our integrals as integrations over Rd,
but we will exploit this compactification when we need to.

Consider the regular lattice Λh = Zdh whereopon for sufficiently small h > 0 the
L2-integral can be approximated to order O(hd) with a Riemann sum

F
(0)
h (ϕ) =

∑

x∈Λh

hd(I0(x)− I1(ϕ(x)))2

While the order of the set Λh is infinite, the sum over Λh used to compute Fh has only
finitely many non-zero terms to consider because I0 and I1 have compact support.
Moreover, Fh is G(0)

Λh
invariant because it only depends on ϕ(x) for x ∈ Λh.
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An O(hd+2) approximation is given by

F
(2)
h (q) =

∑

x∈Λh

hd(I0(x)− I1(ϕ(x)))2

+
∑

α

hd+2

12

[
(∂αI0(x)− ∂βI1(ϕ(x))∂αϕ

β(x))2
]

+
hd+2

12

[(
I0(x)− I1(ϕ(x))

)
(∂2
αI0(x)

− ∂βγI1(ϕ(x))∂αϕ
β(x)∂αϕ

γ(x)− ∂γI1(ϕ(x))∂ααϕ
γ(x))

]

and we can observe that F (2)
h is G(2)

Λh
invariant because F (2)(ϕ) only depends on the

2nd order Taylor expansion of ϕ centered at each x ∈ Λh. ♦
Given a G(k)

Λh
-invariant O(hp)-approximation Fh : Diff(Rd)→ R to the matching

term F we may consider the alternative curve energy

Eh[ϕ] =
1

2

∫ 1

0

‖v(t)‖2
V + Fh(ϕ1),

where v(t) ∈ V is the Eulerian velocity field v(t, x) = ∂tϕt(ϕ
−1
t (x)). For a fixed curve

ϕt, we observe that Eh is an O(hp)-approximation to E. One might surmise that
the extremizers of Eh provide good approximations of the extremizers of E. This is
important because Eh is G(k)

Λh
-invariant, and we can invoke Theorem 4.1 to solve for

extremizers of Eh, but we can not do this for E. Fortunately, for many choices of Fh
the minimizers of Eh will converge to those of E and we even have a convergence
rate.

Theorem 6.2. Let F : GV → R be C2 with respect to some topology.1 Let Fh :
GV → R be C2 and an O(hp)-approximation for F . Consider the curve energies
E,Eh : C([0, 1], V )→ R

E[v(·)] =
1

2

∫ 1

0

‖v(t)‖V dt+ F (ϕ1)

Eh[v(·)] =
1

2

∫ 1

0

‖v(t)‖V dt+ Fh(ϕ1).

where ϕ1 ∈ GV is the Lie integration of v(t). Let v∗ minimize

e = E ◦ evolEP : V → R

If the Hessian, D2e, is a bounded positive definite operator on V at v∗ and the
solution of (3.2) exhibits C2 dependents upon the initial velocity field, then there
exists a minimizer v∗h of

eh = Eh ◦ evolEP : V → R

which is an O(hp)-approximation of v∗.
1 We will assume that there exists some regular Lie group, which is large enough to contain GV

as a set. We will then use the topology of this regular Lie group rather than the topology of GV

induced by V . For example if M = Rd one may consider the groups defined in [MM13a].
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We will employ the following well-known result to approximate vector-fields in
V with finite linear combinations of the RKHS kernel K.

Lemma 6.3. Assume V satisfies the admissibility assumption (6.1). Consider the
subspace of vector-fields

V
(k)
h = {v ∈ X(Rd) | v =

∑

y∈Λh,|α|≤k
αy∂αK(x− y)}.

The set W = ∪h>0V
(0)
h is dense in V with respect to 〈·, ·〉V .

Proof. Let {hj > 0} be a sequence such that limj→∞(hj) = 0. Let v ∈ V be
orthogonal to W . Thus 〈v, w〉V = 0 for all w ∈ W . That is to say v(x) = 0 for all
x ∈ Λhj and all j ∈ N. However, any point y ∈ Rn is the limit of a sequence {xj ∈
Λhj}. Since all members of V are continuous, it must be the case that v = 0.

A direct corollary is that W (k) = ∪h>0V
(k)
h is dense in V since V (0)

h ⊂ V
(k)
h for

any k ∈ N. Lemma 6.3 will allow us to approximate our cost functional on V .

Lemma 6.4. Let hj be a sequence of positive real numbers which converges to 0. Let
v, δv ∈ V and vj, δvj ∈ Vhj be such that vj → v and δvj → δv. Then ( d

dε

`
)
∣∣
ε=0
ehj(vj+

ε`δvj)→ ( d
dε

`
)
∣∣
ε=0
e(v + ε`δv) and ` is only limited by the smoothness of E and Ehj .

Proof. We will deal first with the case where ` = 0. Thus we seek to prove that
ehj(vj) converges to e(v). Lemma 6.3 implies that such sequences of vj’s exists and
(6.1) implies that vj converges to v with respect to ‖ · ‖k,∞. Let ϕthj denote the
diffeomorphisms obtained by integrating the solutions of algorithm 2 equations with
respect to the initial condition vhj . We have that ϕthj → ϕt as j →∞ from [You10,
11.11] because they are each optimal trajectories (i.e. solutions of the Euler-Lagrange
equations). This shows convergence. The differentiability of e and ehj yeilds `-th
order convergence as well by the same argument.

Corollary 6.5. If v∗ ∈ V minimizes e, then there exists a sequence of extremizers,
v∗hj ∈ V

(k)
hj

, of ehj which converges to v∗.

Proof of Theorem 6.2. Note that ∆e(v) := e(v)− eh(v) = F (ϕ)− Fh(ϕ). We desire
to prove that ∆e is a C2 function on V ⊂ X(M). If G is a regular Lie group
which contains the same underlying set as GV then integration of (3.2) is a smooth
map [KM96] (see the footnote on page 11). As ∆e(v∗) = F (ϕ∗) − Fh(ϕ

∗), and
F, Fh ∈ C2(G) we observe that ∆e is C2 at v∗ ∈ V ⊂ X(M). Moreover, we know
that ∆e(v) = F (ϕ) − Fh(ϕ) = O(hp). We can discard of the “big O” notation and
write

e(v)− eh(v) = A(v)hp +B(v, h)

where A ∈ C2(X(M)) is independent of h and ∂khB = 0 for k ≤ p. By Corollary 6.5,
there exists a sequence of minimizers of eh, denoted by vh, which are parametrized
by h and converge to the extremizer v∗ of e as h → 0. By the Morse Lemma
(suitably generalized to Hilbert Manifolds [Tro83, GM83]) there exists a smooth
coordinate chart around v∗, Φ : U → V , such that Φ(v∗) = v∗ and ẽ(v∗ + w) =

12



ẽ(v∗) +D2
v∗ ẽ(w,w), where ẽ := e ◦Φ. If v∗h minimizes eh then ṽ∗h = Φ(v∗h) minimizes

ẽh := eh ◦ Φ. If we define w̃ = ṽ∗ − ṽ∗h then we observe

0 = δẽh(ṽ
∗
h) = δẽ(ṽ∗h) + δÃ(ṽ∗h)h

p + δB̃(ṽ, h)

= δẽ(v∗) + δ2ẽ(v∗)(w̃, ·) + δÃ(ṽ∗h)h
p + δB̃(ṽ, h).

Moreover δẽ(v∗) = 0 because v∗ extremizes ẽ. Thus we observe

δ2ẽ(v∗)(w̃, · ) = −δÃ(ṽ∗h)h
p + δB̃(ṽ, h)

We can observe that the Hessian δ2ẽ(v∗) is related to the Hessian δe via pre-
composition by the linear operator DΦ(v∗), which is a bounded. Thus the Hessian
δ2ẽ(v∗) is a bounded operator from U into V ∗. By assumption, this Hessian is non-
degenerate, and thus invertible. Thus we observe w̃ = −[δ2ẽ(v∗)]−1 ·

(
δÃ(ṽ∗h)h

p +

δB̃(ṽ, h)
)
. In other words, v∗ = ṽ∗h + O(hp). So there exists functions C(v) and

D(v, h) such that v∗ = v∗h + C(v)hp + D(v, h) where ∂khD = 0 for k ≤ p. Thus we
find

v∗ = Φ−1(v∗) = Φ−1(ṽ∗h + C(v)hp +D(v, h))

= Φ−1(ṽ∗h) +DΦ−1(ṽ∗h) · (C(v)hp +D(v, h)) +O(h2p)

= v∗h +O(hp).

The assumption that the Hessian of the curve energy be non-degenerate is gener-
ally difficult to check in practice. We can still invoke this theorem in specific examples
because the minimizer of

E(v) =
1

2

∫ 1

0

‖v(t)‖2
V dt , v(t) = evoltEP (v)

is v∗ = 0, and the Hessian is just the twice the identity on V . We can view all
relevant examples as perturbations of this curve energy, and use the continuity of
the Hessian operator to invoke Theorem 6.2.

Setting G = GV , Q = Q(k) = GV /G
(k)
Λh

in algorithm 1, we obtain the special case
of algorithm 1 given by

Algorithm 2:

1. Solve for (q(t), p(t)) ∈ T ∗Q(k) in (4.3).

2. Set u(t) = K ∗ J(q(t), p(t)).

3. Obtain ϕt ∈ GV through the reconstruction formula ϕ̇t(x) = u(ϕ(x))
for all x ∈M .

4. Evaluate cost function, and backward compute the adjoint equations
to compute the gradient of the cost function with respect to a new
initial condition.

5. If the gradient is below some tolerance, ε, then stop. Otherwise use
the gradient to create a new initial condition and return to step 1.
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Here J(q, p) is a summation of Dirac-delta distributions, and distributional derivates
of Dirac-deltas. Thus the convolution K ∗ J(q, p) can be computed in closed form.
For detailed equations of motion see the appendix.

The example we will be considering in this paper is where d = 2, k = 2. By
theorem 6.2 we should be able to approximate minimizers of E with O(h4) accuracy
in the V -norm.

7 Numerical Results

Here we will illustrate the deformations encoded by jet-particles of various orders.
We will numerically verify theorem 6.2 by testing the O(hd+k) convergence rate of
the matching functional approximation for k = 0, 2, and we will show that the second
order approximation F

(k)
h , k = 2 allows matching of second order image features.

We will use simple examples to describe the different capabilities of higher order
jet-particles over lower order jet-particles. We do this by illustrating structures that
cannot be matched with low numbers of regular 0-th order landmarks, but can still
be matched successfully with 1-st and 2-nd order jet-particles. These effects imply
more precise matching of small scale features on larger images where more spatial
derivatives can be leveraged.

The results are obtained using the jetflows code available http://www.github.
com/nefan/jetflows. The package include scripts for producing the figures dis-
played in this section. The flow equations are integrated forward and backward
using SciPy’s odeint solver (http://scipy.org) and the optimization is performed
with a quasi-Newton BFGS optimizer. The algorithm uses isotropic Gaussian ker-
nels. The images are pre-smoothed with a Gaussian filter, and image derivatives are
computed as analytic gradients of a B-spline interpolation of the smoothed images.

7.1 Jet Deformations

Figure 1 shows the deformations encoded by 0-th, 1-st and 2-nd order jet-particles
on initially square grids. Note the locally affine deformations arising from the 0-th
and 1-st order jet-particles. Up to rotation of the axes, the three 1-st order examples
in the figure constitute a basis of the 4 dimensional space of 1-st order jet-particles
with fixed lower-order components. Likewise, up to rotation, the three 2-nd order
examples constitute a basis for the 6 dimensional space of 2-nd order jet-particles.

7.2 Matching Functional Approximation

We here illustrate and test the convergence rate of the matching functional approx-
imations. In figure 2 (page 15), the approximations F (p)

h are compared for p = 0, 2
and varying grid sizes on three synthetic images supported on the unit square. The
first two images (a,b) are generated by first and second order polynomials, respec-
tively, while the last image (c) is generated by a trigonometric function and it can
therefore only be approximated by a truncated Taylor expansion. The second order
approximation F (2)

h models F locally with a second order polynomial and it is thus
expected that the error should vanish on the images (a,b). As the mesh width h
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(a) f(x, y) = x+ y
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(b) f(x, y) = (x+ y)2
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(c) f(x, y) = sin(6πx) + x2

Figure 2: Convergence of matching functional F (k)
h , k = 0, 2. Top row: (a) linear, (b)

quadratic, and (c) non-polynomial images. Lower rows, horz. axis: decreasing h (increasing
nr. of sample points); vert. axis: F (k)

h (solid, left axis) and convergence rate (dashed, right
axis). With linear and quadratic images, the error is vanishing with k = 2 and using only
one sample point. Average convergence rates, k = 0: quadratic; k = 2: quartic as expected.
(c, top row) sample points for k = 3 (23 sample points per axis, h = 2−3).

decreases, we expect to observe O(h2) convergence rate for the zeroth order approx-
imation F

(0)
h on all three images. Likewise, we expect a convergence rate of O(h4)

for F (2)
h on image (c).

In accordance with these expectations, we see the vanishing error for F (2)
h on

(a,b) and decreasing error on (c) (lower row, solid green lines). The non-monotonic
convergence seen on (c) is a result of the polynomial approximation being integrated
over a compact domain. The zeroth order approximation F (0)

h likewise decreases with
h2 convergence rate (lower row, dashed blue lines). The convergence rate of F (2)

h on
image (c) stabilizes at approximately h4 until it decreases due to numerical errors
introduced when the error approaches the machine precision.

7.3 Matching Simple Structures

With the following set of examples, we wish to illustrate the effects of including
second order information in the matching term approximation. We visualize this
using simple test images. In all examples, we will employ the approximations F (k)

h

for k = 0, 2. In addition, we will match using only zeroth and first order information
with a matching term that results from dropping the second order terms from F

(2)
h .

While this approximation does not arise naturally from a Taylor expansion of F , it
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Figure 3: Matching moving images (b–d) to fixed image (a) using four jet-particles (blue
points). Enlarged fixed image and moving images after warping (e–h). Corresponding de-
formations of an initially square grid (i–l). (b/f/j) Order 0; (c/g/k) order 1; (d/h/l) order 2.
Red crosses mark location of jet-particles in moving images after matching, green boxes
deformed by the warp Jacobian at the particle positions. Moving images at the red crosses
should match fixed image at blue dots; second row images should match the fixed im-
age (a/e).

allows visualization of the differences between including first and second order image
information in the match.

In figure 3, a bar (moving image) is matched to a square (fixed image). The figure
shows how four jet-particles move from their positions on a grid in the fixed image
(a) to positions in the moving image that contain features matching the fixed image
up to the order of the approximation. For zeroth order (b), only pointwise intensity
is matched and the jet-particles move vertically (red crosses) resulting in only a
slight deformation. With first order matching (c), the jet-particles locally rotate the
domain (warp Jacobian matrices shown with green boxes) to account for the image
gradient at the corners of the square. This produces a diamond-like shape. With
second order (d), the corners are matched and the jet-particles move towards the
corners of the moving image bar. The middle row shows the warped moving images
enlarged. The second order match (h) is close to the fixed image (a) while both first
and zeroth order fail to produce satisfying matches.

Figure 4 shows the result of matching images differing by an affine transformation
with either one 1-st order jet or multiple 0-th order jet-particles. While three 0-th

16



0
50

10
0

15
0

20
0

25
0

30
0

05010
0

15
0

20
0

25
0

30
0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

(a)

0
50

10
0

15
0

20
0

25
0

30
0

05010
0

15
0

20
0

25
0

30
0

0.
00

0.
15

0.
30

0.
45

0.
60

0.
75

0.
90

(b)

0
50

10
0

15
0

20
0

25
0

30
0

05010
0

15
0

20
0

25
0

30
0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

(c)

0
50

10
0

15
0

20
0

25
0

30
0

05010
0

15
0

20
0

25
0

30
0

0.
00

0.
15

0.
30

0.
45

0.
60

0.
75

0.
90

(d)

10
0

12
0

14
0

16
0

18
0

20
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

19
0

(e)

12
0

13
0

14
0

15
0

16
0

17
0

13
0

13
5

14
0

14
5

15
0

15
5

16
0

16
5

17
0

17
5

(f)

Figure 4: First order (linear/affine) deformations of an image can be matched with mul-
tiple 0-th order jet-particles (a,b) or one 1-st order jet-particle (c,d). A rotated bar (b/d)
is matched to a bar (a/c). The warps that transform the moving images (b/d) to the fixed
images (a/c) are applied to initially square grids in (e/f). Red circles are deformed with
warp derivative at the particle positions.

order jet-particles can approximate a first order deformation in 2D, four particles
are used to produce a symmetric picture. The warp Jacobians deform the initially
square green boxes displayed at the jet positions. The resulting warps in both cases
approximate an affine transformation.

With translation only, including second order information in the match does not
change the result as illustrated in figure 5 where the match is performed on an image
and a translated version of the image.

7.4 Real image data

We illustrate the effect of the increased order on real images by matching two mid-
sagittal slices of 3D MRI from the MGH10 dataset2. In figure 6, red boxes mark
the ventricle area of the brain on which the matching is performed. We perform
the match with 9 jet-particles (3 per axis), 16 jet-particles (4 per axis) and 64 jet-
particles (8 per axis) and k = 0, 2. With 9 2-nd order jet-particles (e), the moving
image (d) approaches the fixed (b). A visually good match is obtained with 16 or
more jet-particles. 9 and 16 0-th order jet-particles are not sufficient to correctly en-
code the expansion of the ventricle. With 64 0-th order jet-particles, the transformed
image is close the results of the second order matches.

2http://www.mindboggle.info/papers/evaluation_NeuroImage2009/data/MGH10.php
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Figure 5: Without higher order features, 2nd order jet-particles do not change the match:
A blob (a) is translated and matched in moving images (b,d) with red crosses marking posi-
tions of jet-particles after match. Grids (c,e) illustrate the deformations that are equivalent
for 0th order (b,c) and 2nd order (d,e).
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(f) 2nd order, 16 jet-
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particles
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(i) 0th order, 16 jet-
particles
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Figure 6: 2D registration of MRI slices, (a-b) fixed image, (c-d) moving image, red boxes:
regions to be matched. Lower rows: matching results using 2nd order jet-particles (e-g),
0th order jet-particles (h-j). Images in lower rows should be close to (b). With 9 2nd order
jet-particles (3 per axis), the moving image approaches the fixed. The match is visually
good with 16 jet-particles (4 per axis). The ventricle region can equivalently be inflated
with 64 0th order jet-particles.
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8 Conclusion and Future Work

A priori, the LDDMM framework of image registration poses an optimization prob-
lem on the space of Diffeomorphism. Here, we introduced a family of discretized
cost functions on a finite dimensional phase space that can be minimized numeri-
cally. The solutions of the discretized problem can be related to solutions of the full
infinite-dimensional problem with O(hd+k) accuracy, where h is a grid spacing and
k is the order of approximation.

We provided numerical examples of deformations parametrized by 0-th, 1-st, and
2-nd order jet-particles, and we show examples of the higher order convergence of the
similarity measure. The higher-order similarity measure allows matching of higher
order features, and we use this fact to register various shapes and images with low
numbers of jet-particles.

A Ck image requires much less information than a of C0 images. Heuristically,
the impact of this for computation is that we may use different techniques to approx-
imate and advect smooth images with a sparse set of parameters. The higher-order
accuracy schemes here constitutes a particular example of using reduction by sym-
metry to remove redundant information, and specialize advection to the data at
hand. In this case, we reduce the dimensionality from infinite to finite for a given
discretization, and we specialize the discretization to C2 images.

While the applicability of this specialization is limited to images of sufficient
regularity, the bigger point of this article is the notion of tailoring discretizations
to data. This approach is applicable for reducing the dimensionality of data beyond
images. For example, accurate discretizations of curves with tangents, surfaces with
tangent planes, and higher-order tensors can be derived with corresponding reduc-
tion in dimensionality. The present framework thus points to a general approach for
higher-order accurate discretizations of general classes of matching problems. Future
work will constitute testing these areas of wider applicability.

Acknowledgments

Henry O. Jacobs is supported by the European Research Council Advanced Grant
267382 FCCA. Stefan Sommer is supported by the Danish Council for Independent
Research with the project “Image Based Quantification of Anatomical Change”.
The research was in addition supported by the Centre for Stochastic Geometry and
Advanced Bioimaging, funded by a grant from the Villum Foundation.

A Equations of motion

The equations of motion are expressible as Hamiltonian equations with respect to
a non-canonical Poisson bracket. If we denote q(0) simply by q and p(0) simply by p
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then the Hamiltonian is

H(q, p, µ(1), µ(2)) = 1
2
piαpjβK

αβ(qi − qj)− piα[µ
(1)
j ] γ

β ∂γK
αβ(qi − qj)

+ piα[µ
(2)
j ] γδ

β ∂δγK
αβ(qi − qj)− 1

2
[µ

(1)
i ] δ

α [µ
(1)
j ] γ

β ∂δγK
αβ(qi − qj)

+ [µ
(1)
i ] ε

α [µ
(2)
j ] γδ

β ∂εγδK
αβ(qi − qj)

+ 1
2
[µ

(2)
i ] εφ

α [µ
(2)
j ] γδ

β ∂γδεφK
αβ(qi − qj)

Where Kαβ(x) = δαβe−‖x‖
2/2σ2 . Hamiton’s equations are then given in short by

q̇ =
∂H

∂p
(A.1)

ṗ = −∂H
∂q

(A.2)

ξ =
∂H

∂µ
(A.3)

µ̇ = − ad∗ξ(µ). (A.4)

More explicitly, equation (A.1) is given by

q̇αi = pjβK
αβ(qi − qj)− [µ

(1)
j ] γ

β ∂γK
αβ(qi − qj) + [µ

(2)
j ] γδ

β ∂γδK
αβ(qi − qj)

equation (A.2) is given by the sum

ṗiα = T 00
iα + T 01

iα + T 02
iα + T 12

iα + T 11
iα + T 22

iα

Where we define the six terms in this sum as

T 00
iα =− piγpjβ∂αKγβ(qi − qj),
T 01
iα =(piδ[µ

(1)
j ] γ

β − pjδ[µ
(1)
i ] γ

β )∂γαK
δβ(qi − qj),

T 02
iα =− (piε[µ

(2)
j ] γδ

β + pjε[µ
(2)
i ] γδ

β )∂γδαK
εβ(qi − qj),

T 12
iα =− ([µ

(1)
i ] ε

φ [µ
(2)
j ] γδ

β − [µ
(1)
j ] ε

φ [µ
(2)
i ] γδ

β )∂εγδαK
φβ(qi − qj),

T 11
iα =[µ

(1)
i ] δε [µ

(1)
j ] γ

β ∂δγαK
εβ(qi − qj),

T 22
iα =− [µ

(2)
i ] εφζ [µ

(2)
j ] γδ

β ∂εδγφαK
ζβ(qi − qj).

Next, we calculate the quantities ξ(i) = ∂H/∂µ(i) for i = 1, 2 of equation (A.3)
to be

[ξ
(1)
i ]αβ = pj,γ∂βK

αγ(qi − qj)− [µ
(1)
j ] γδ ∂βγK

αδ(qi − qj) + [µ
(2)
j ] γδε ∂βγδK

αε(qi − qj)
[ξ

(2)
i ]αβγ = pjδ∂βγK

αδ(qi − qj)− [µ
(1)
j ] εδ ∂εβγK

αδ(qi − qj) + [µ
(2)
j ] φδε ∂βγφδK

αε(qi − qj)

which allows us to compute µ̇(i) in equation (A.4) as

[µ̇
(1)
i ] β

α = [µ
(1)
i ] γ

α [ξ
(1)
i ]βγ − [µ

(1)
i ] β

γ [ξ
(1)
i ]γα

+ [µ
(2)
i ] δγ

α [ξ
(2)
i ]βδγ − [µ

(2)
i ] βγδ [ξ

(2)
i ]δαγ − [µ

(2)
i ] γβδ [ξ

(2)
i ]δγα

[µ̇i
(2)] βγ

α = [µ
(2)
i ] δγ

α [ξ
(1)
i ]βδ + [µ

(2)
i ] βδ

α [ξ
(1)
i ]γδ − [µ

(2)
i ] βγδ [ξ

(1)
i ]δα
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A.1 Computing q̇ as a function of ξ

The action of ξ on q is given by ξ · q. We set q̇ = ξ · q. We’ve already calculated q̇(0).
We need only calculate q̇(1) and q̇(2). Componentwise we calculate these to be

[q̇(1)]αβ = [ξ(1)]αγ[q
(1)]γβ

[q̇(2)]αβγ = [ξ(2)]αδε · [q(1)]δβ · [q(1)]εγ + [ξ(1)]αδ · [q(2)]δβγ

B First variation equations

The first variation equations are equivalent to applying the tangent functor to our
evolutions. We find the velocites:

d

dt
δqαi = δpjβK

αβ(qi − qj) + pjβ(δqγi − δqγj )∂γK
αβ(qi − qj)

− [δµ
(1)
j ] γ

β ∂γK
αβ(qi − qj)− [µ

(1)
j ] γ

β ∂γδK
αβ(qi − qj)(δqδi − δqδj )

+ [δµ
(2)
j ] γδ

β ∂γδK
αβ(qi − qj) + [µ

(2)
j ] γδ

β ∂γδεK
αβ(qi − qj)(δqεi − δqεj)

[δξ
(1)
i ]αβ = δpjγ∂βK

γα(qi − qj) + pjγ(δq
δ
i − δqδj )∂δβKαγ(qi − qj)

− [δµ
(1)
j ] γδ ∂βγK

αδ(qi − qj)− [µ
(1)
j ] γδ (δqεi − δqεj)∂βγεKαδ(qi − qj)

+ [δµ
(2)
j ] γδ

φ ∂βγδK
αφ(qi − qj) + [µ

(2)
j ] γδ

φ (δqεi − δqεj)∂βγδεKαφ(qi − qj)
[δξ

(2)
i ]αβγ = δpjδ∂βγK

αδ(ij) + pjε(δq
δ
i − δqδj )∂βγδKαε(ij)

− [δµ
(1)
j ] δε ∂βγδK

αε(ij)− [µ
(1)
j ] δ

φ (δqεi − δqεj)∂βγδεKαφ(ij)

+ [δµ
(2)
j ] δε

φ ∂βγδεK
αφ(ij) + [µ

(2)
j ] δε

λ (δqφi − δqφj )∂βγδεφK
αλ(ij)

and the momenta:

d

dt
δpiα = δT 00

iα + δT 01
iα + δT 02

iα + δT 12
iα + δT 11

iα + δT 22
iα .

The first-variation equation for µ(1) is

d

dt
[δµ(1)] β

α = [δµ(1)] γ
α [ξ(1)]βγ + [µ(1)] γ

α [δξ(1)]βγ

− [δµ(1)] β
γ [ξ(1)]γα − [µ(1)] β

γ [δξ(1)]γα

+ [δµ(2)] δγ
α [ξ(2)]βδγ + [µ(2)] δγ

α [δξ(2)]βδγ

− [δµ(2)] βγδ [ξ(2)]δαγ − [µ(2)] βγδ [δξ(2)]δαγ

− [δµ(2)] γβδ [ξ(2)]δγα − [µ(2)] γβδ [δξ(2)]δγα

and finally

d

dt
[δµ(2)] βγ

α = [δµ(2)] δγ
α [ξ(1)]βδ + [µ(2)] δγ

α [δξ(1)]βδ

+ [δµ(2)] βδ
α [ξ(1)]γδ + [µ(2)] βδ

α [δξ(1)]γδ

− [δµ(2)] βγδ [ξ(1)]δα − [µ(2)] βγδ [δξ(1)]δα
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where the δT ’s are given by

δT 00
iα = − δpiγpjβ∂αKγβ(qi − qj)− piγδpjβ∂αKγβ(qi − qj)

− piγpjβ∂αδKγβ(qi − qj)(δqδi − δqδj )
δT 01

iα = − δpjδ[µ(1)
i ] γ

β ∂γαK
δβ(ij)− pjδ[δµ(1)

i ] γ
β ∂γαK

δβ(ij)

− pjδ[µ(1)
i ] γ

β (δqεi − δqεj)∂εγαKδβ(ij)

+ δpiδ[µ
(1)
j ] γ

β ∂γαK
δβ(ij) + piδ[δµ

(1)
j ] γ

β ∂γαK
δβ(ij)

+ piδ[µ
(1)
j ] γ

β (δqεi − δqεj)∂εγαKδβ(ij)

δT 02
iα = − δpiε[µ(2)

j ] γδ
β ∂γδαK

εβ(ij)− piε[δµ(2)
j ] γδ

β ∂γδαK
εβ(ij)

− piε[µ(2)
j ] γδ

β (δqφi − δqφj )∂γδφαK
εβ(ij)

− δpjε[µ(2)
i ] γδ

β ∂γδαK
εβ(ij)− pjε[δµ(2)

i ] γδ
β ∂γδαK

εβ(ij)

− pjε[µ(2)
i ] γδ

β (δqφi − δqφj )∂γδφαK
εβ(ij)

δT 12
iα = − [δµ

(1)
i ] ε

φ [µ
(2)
j ] γδ

β ∂εγδαK
φβ(ij)

− [µ
(1)
i ] ε

φ [δµ
(2)
j ] γδ

β ∂εγδαK
φβ(ij)

− [µ
(1)
i ] ε

φ [µ
(2)
j ] γδ

β (δqζi − δqζj )∂ζεγδαKφβ(ij)

+ [δµ
(1)
j ] ε

φ [µ
(2)
i ] γδ

β ∂εγδαK
φβ(ij)

+ [µ
(1)
j ] ε

φ [δµ
(2)
i ] γδ

β ∂εγδαK
φβ(ij)

+ [µ
(1)
j ] ε

φ [µ
(2)
i ] γδ

β (δqζi − δqζj )∂ζεγδαKφβ(ij)

δT 11
iα = ([δµ

(1)
i ] δε [µ

(1)
j ] γ

β + [µ
(1)
i ] δε [δµ

(1)
j ] γ

β )∂δγαK
εβ(ij)

+ [µ
(1)
i ] δε [µ

(1)
j ] γ

β (δqφi − δqφj )∂φδγαK
εβ(ij)

δT 22
iα = − ([δµ

(2)
i ] εφζ [µ

(2)
j ] γδ

β + [µ
(2)
i ] εφζ [δµ

(2)
j ] γδ

β )∂εδγφαK
ζβ(ij)

− [µ
(2)
i ] εφζ [µ

(2)
j ] γδ

β (δqλi − δqλj )∂λεδγφαK
ζβ(ij)

Finally, we compute the variation equations for δq(1) and δq(2) to be

δ[q̇
(1)
i ]αβ = [δξ

(1)
i ]αγ[q

(1)
i ]γβ + [ξ

(1)
i ]αγ[δq

(1)
i ]γβ

δ[q̇(2)]αβγ = [δξ(2)]αδε · [q(1)]δβ · [q(1)]εγ + [ξ(2)]αδε · [δq(1)]δβ · [q(1)]εγ

+ [ξ(2)]αδε · [q(1)]δβ · [δq(1)]εγ + [δξ(1)]αδ · [q(2)]δβγ + [ξ(1)]αδ · [δq(2)]δβγ

C Computation of the adjoint equations

Given any ODE on M given by ẋ = f(x) we may consider the equations of motion
for variations, given by d

dt
δx = Txf · δx. In particular, Txf is a linear operator over

the point x which has a dual operator. The adjoint equations are and ODE on T ∗M
given by

dλ

dt
= −T ∗xf · λ.
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This is useful for us in the following way. Given an integral curve, x(t), and a vari-
ation in the initial condition, δx0, we see that the quantity 〈λ(t), δx(t)〉 is constant
when δx(t) satisfies the first variation equation with initial condition δx0 and λ(t)
satisfies the adjoint equation. In our case we are able to compute the gradient of
the energy with respect to varying an initial condition in this way. More explicitly,
we should be able to express Txf as a matrix M(x)BA so that the first variation
equations are

d

dt
δxA = M(x)ABδx

B

and the adjoint equations can be written as

λ̇A = −λBM(x)BA

where λA is the covector associated to the A-th coordinate and M(x)BA is the
coefficient for δxA in the equation for d

dt
δB. More specifically, the elements of MB

A

is the partial derivative of δḂ with respect to δA. So we compute all these (36)
quantities below.

∂[δq̇
(0)
i ]α

∂[δq
(0)
j ]β

=
(
pkγ∂βK

αγ(jk)− [µ
(1)
k ] γδ ∂γβK

αδ(jk) + [µ
(2)
k ] γδε ∂γδβK

αε(jk)
)
δji

− pjγ∂βKαγ(ij) + [µ
(1)
j ] γδ ∂γβK

αδ(ij)− [µ
(2)
j ] γδε ∂γδβK

αε(ij),

∂[δq̇
(0)
i ]α

∂[δq
(1)
j ]βγ

= 0,
∂[δq̇

(0)
i ]α

∂[δq(2)]βγδ
= 0,

∂[δq̇
(0)
i ]α]

∂[δp
(0)
j ]β

= Kαβ(ij),
∂[δq̇

(0)
i ]α

∂[δµ
(1)
j ] γ

β

= −∂γKαβ(ij),
∂[δq̇

(0)
i ]α

∂[δµ
(2)
j ] γδ

β

= ∂γδK
αβ(ij),

∂[δq̇
(1)
i ]αβ

∂[δq
(0)
j ]γ

=
∂[δξ

(1)
i ]αδ

∂[δq
(0)
j ]γ

[q
(1)
i ]δβ ,

∂[δq̇
(1)
i ]αβ

∂[δq
(1)
j ]γδ

= [ξ
(1)
i ]αγδ

δ
βδ

j
i , ,

∂[δq̇
(1)
i ]αβ

∂[δq
(2)
j ]γδε

= 0,

∂[δq̇
(1)
i ]αβ

∂[δp
(0)
j ]γ

=
∂[δξ

(1)
i ]αδ

∂[δp
(0)
j ]γ

[q
(1)
i ]δβ ,

∂[δq̇
(1)
i ]αβ

∂[δµ
(1)
j ] δ

γ

=
∂[δξ

(1)
i ]αε

∂[δµ
(1)
j ] δ

γ

[q
(1)
i ]εβ,

∂[δq̇
(1)
i ]αβ

∂[δµ
(2)
j ] δε

γ

=
∂[δξ

(1)
i ]αφ

∂[δµ
(2)
j ] δε

γ

[q
(1)
i ]φβ,

∂[δq̇
(2)
i ]αβγ

∂[δq
(0)
j ]δ

=
∂[δξ

(2)
i ]αφε

∂[δq
(0)
j ]δ

[q
(1)
i ]φβ[q

(1)
i ]εγ +

∂[δξ
(1)
i ]αε

∂[δq
(0)
j ]δ

[q
(2)
i ]εβγ,

∂[δq̇
(2)
i ]αβγ

∂[δq
(1)
j ]δε

= ([ξ
(2)
i ]αδφ[q

(1)
i ]φγδ

ε
β + [ξ

(2)
i ]αφδ[q

(1)
i ]φβδ

ε
γ)δ

j
i ,

∂[δq̇
(2)
i ]αβγ

∂[δq
(2)
j ]δεφ

= [ξ
(1)
i ]αδδ

ε
βδ

φ
γ δ

j
i ,
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∂[δq̇
(2)
i ]αβγ

∂[δp
(0)
j ]δ

=
∂[δξ

(2)
i ]αφε

∂[δp
(1)
j ]δ

[q
(1)
i ]φβ[q

(1)
i ]εγ +

∂[δξ
(1)
i ]αε

∂[δp
(0)
j ]δ

[q
(2)
i ]εβγ,

∂[δq̇
(2)
i ]αβγ

∂[δµ
(1)
j ] εδ

=
∂[δξ

(2)
i ]αφζ

∂[δµ
(1)
j ] εδ

[q
(1)
i ]φβ[q

(1)
i ]ζγ +

∂[δξ
(1)
i ]αφ

∂[δµ
(1)
j ] εδ

[q
(2)
i ]φβγ,

∂[δq̇
(2)
i ]αβγ

∂[δµ
(2)
j ] εφδ

=
∂[δξ

(2)
i ]αζλ

∂[δµ
(2)
j ] εφδ

[q
(1)
i ]ζβ[q

(1)
i ]λγ +

∂[δξ
(1)
i ]αζ

∂[δµ
(2)
j ] εφδ

[q
(2)
i ]ζβγ,

∂[δṗ
(0)
i ]α

∂[δq
(0)
j ]β

=
∂[δT 00

i ]α

∂[δq
(0)
j ]β

+
∂[δT 01

i ]α

∂[δq
(0)
j ]β

+
∂[δT 11

i ]α

∂[δq
(0)
j ]β

+
∂[δT 12

i ]α

∂[δq
(0)
j ]β

+
∂[δT 02

i ]α

∂[δq
(0)
j ]β

+
∂[δT 22

i ]α

∂[δq
(0)
j ]β

,

∂[δṗ
(0)
i ]α

∂[δq
(1)
j ]βγ

= 0,
∂[δṗ

(0)
i ]α

∂[δq
(2)
j ]βγδ

= 0,

∂[δṗ
(0)
i ]α

∂[δp
(0)
j ]β

=
∂[δT 00

i ]α

∂[δp
(0)
j ]β

+
∂[δT 01

i ]α

∂[δp
(0)
j ]β

+
∂[δT 02

i ]α

∂[δp
(0)
j ]β

,

∂[δṗ
(0)
i ]α

∂[δµ
(1)
j ] γ

β

=
∂[δT 01

i ]α

∂[δµ
(1)
j ] γ

β

+
∂[δT 11

i ]α

∂[δµ
(1)
j ] γ

β

+
∂[δT 12

i ]α

∂[δµ
(1)
j ] γ

β

,

∂[δṗ
(0)
i ]α

∂[δµ
(2)
j ] γδ

β

=
∂[δT 02

i ]α

∂[δµ
(2)
j ] γδ

β

+
∂[δT 12

i ]α

∂[δµ
(2)
j ] γδ

β

+
∂[δT 22

i ]α

∂[δµ
(2)
j ] γδ

β

,

∂[δµ̇
(1)
i ] β

α

∂[δq
(0)
j ]γ

= [µ
(1)
i ] δ

α

∂[δξ
(1)
i ]βδ

∂[δq
(0)
j ]γ

− [µ
(1)
i ] βδ

∂[δξ
(1)
i ]δα

∂[δq
(0)
j ]γ

+ [µ
(2)
i ] δε

α

∂[δξ
(2)
i ]βδε

∂[δq
(0)
j ]γ

− [µ
(2)
i ] βεδ

∂[δξ
(2)
i ]δαε

∂[δq
(0)
j ]γ

− [µ
(2)
i ] εβδ

∂[δξ
(2)
i ]δεα

∂[δq
(0)
j ]γ

,

∂[δµ̇
(1)
i ] β

α

∂[δq
(1)
j ]γ

= 0,
∂[δµ̇

(1)
i ] β

α

∂[δq
(2)
j ]γ

= 0,
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∂[δµ̇
(1)
i ] β

α

∂[δp
(0)
j ]γ

= [µ
(1)
i ] δ

α

∂[δξ
(1)
i ]βδ

∂[δp
(0)
j ]γ

− [µ
(1)
i ] βδ

∂[δξ
(1)
i ]δα

∂[δp
(0)
j ]γ

+ [µ
(2)
i ] δε

α

∂[δξ
(2)
i ]βδε

∂[δp
(0)
j ]γ

− [µ
(2)
i ] βεδ

∂[δξ
(2)
i ]δαε

∂[δp
(0)
j ]γ

− [µ
(2)
i ] εβδ

∂[δξ
(2)
i ]δεα

∂[δp
(0)
j ]γ

,

∂[δµ̇
(1)
i ] β

α

∂[δµ
(1)
j ] δ

γ

= δji δ
γ
α[ξ

(1)
i ]βδ + [µ

(1)
i ] ε

α

∂[δξ
(1)
i ]βε

∂[δµ
(1)
j ] δ

γ

− δji δβδ [ξ
(1)
i ]γα − [µ

(1)
i ] βε

∂[δξ
(1)
i ]εα

∂[δµ
(1)
j ] δ

γ

+ [µ
(2)
i ] εφ

α

∂[δξ
(2)
i ]βεφ

∂[δµ
(1)
j ] δ

γ

− [µ
(2)
i ] βε

φ

∂[δξ
(2)
i ]φαε

∂[δµ
(1)
j ] δ

γ

− [µ
(2)
i ] εβ

φ

∂[δξ
(2)
i ]φεα

∂[δµ
(1)
j ] δ

γ

,

∂[δµ̇
(1)
i ] β

α

∂[δµ
(2)
j ] δε

γ

= [µ
(1)
i ] φ

α

∂[δξ
(1)
i ]βφ

∂[δµ
(2)
j ] δε

γ

− [µ
(1)
i ] β

φ

∂[δξ
(1)
i ]φα

∂[δµ
(2)
j ] δε

γ

+ δji δ
γ
α[ξ

(2)
i ]βδε,

+ [µ
(2)
i ] φλ

α

∂[δξ
(2)
i ]βφλ

∂[δµ
(2)
j ] δε

γ

− δji δβδ [ξ
(2)
i ]γαε

− [µ
(2)
i ] βλ

φ

∂[δξ
(2)
i ]φαλ

∂[δµ
(2)
j ] δε

γ

− δji δβε [ξ
(2)
i ]γδλ − [µ

(2)
i ] λβ

φ

∂[δξ
(2)
i ]φλα

∂[δµ
(2)
j ] δε

γ

,

∂[δµ̇
(2)
i ] βγ

α

∂[δq
(0)
j ]δ

= [µ
(2)
i ] εγ

α

∂[δξ
(1)
i ]βε

∂[δq
(0)
j ]δ

+ [µ
(2)
i ] βε

α

∂[δξ
(1)
i ]γε

∂[δq
(0)
j ]δ

− [µ
(2)
i ] βγε

∂[δξ
(1)
i ]εα

∂[δq
(0)
j ]δ

∂[δµ̇(2)] βγ
α

∂[δq(1)]δε
= 0,

∂[δµ̇(2)] βγ
α

∂[δq(2)]δεφ
= 0,

∂[δµ̇
(2)
i ] βγ

α

∂[δp
(0)
j ]δ

= [µ
(2)
i ] εγ

α

∂[δξ
(1)
i ]βε

∂[δp
(0)
j ]δ

+ [µ
(2)
i ] βε

α

∂[δξ
(1)
i ]γε

∂[δp
(0)
j ]δ

− [µ
(2)
i ] βγε

∂[δξ
(1)
i ]εα

∂[δp
(0)
j ]δ

∂[δµ̇
(2)
i ] βγ

α

∂[δµ
(1)
j ] εδ

= [µ
(2)
i ] φγ

α

∂[δξ
(1)
i ]βφ

∂[δµ
(1)
j ] εδ

+ [µ
(2)
i ] βφ

α

∂[δξ
(1)
i ]γφ

∂[δµ
(1)
j ] εδ

− [µ
(2)
i ] βγ

φ

∂[δξ
(1)
i ]φα

∂[δµ
(1)
j ] εδ

∂[δµ̇
(2)
i ] βγ

α

∂[δµ
(2)
j ] εφδ

= δji δ
γ
φδ

δ
α[ξ

(1)
i ]βε + [µ

(2)
i ] λγ

α

∂[δξ
(1)
i ]βλ

∂[δµ
(2)
j ] εφδ

+ δji δ
δ
αδ

β
ε [ξ

(1)
i ]γφ

+ [µ
(2)
i ] βλ

α

∂[δξ
(1)
i ]γλ

∂[δµ
(2)
j ] εφδ

− δji δβε δγφ[ξ
(1)
i ]δα − [µ

(2)
i ] βγ

λ

∂[δξ
(1)
i ]λα

∂[δµ
(2)
j ] εφδ
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∂[δT 00
i ]α

∂[δq
(0)
j ]β

= − pjγpkδ∂αβKγδ(jk)δij + piγpjδ∂αβK
γδ(ij),

∂[δT 01
i ]α

∂[δq
(0)
j ]β

= δji (pjδ[µ
(1)
k ] γε − pkδ[µ(1)

j ] γε )∂αβγK
δε(jk)

− (piδ[µ
(1)
j ] γε − pjδ[µ(1)

i ] γε )∂βγαK
δε(ij)

∂[δT 02
i ]α

∂[δq
(0)
j ]β

=(piε[µ
(2)
j ] γδ

φ + pjε[µ
(2)
i ] γδ

φ )∂γδβαK
εφ(ij)

− δji (pjε[µ(2)
k ] γδ

φ + pkε[µ
(2)
j ] γδ

φ )∂γδβαK
εφ(jk)

∂[δT 12
i ]α

∂[δq
(0)
j ]β

= δij([µ
(1)
k ] ε

φ [µ
(2)
j ] γδ

λ − [µ
(1)
j ] ε

φ [µ
(2)
k ] γδ

λ )∂βεγδαK
φλ(jk)

− ([µ
(1)
j ] ε

φ [µ
(2)
i ] γδ

λ − [µ
(1)
i ] ε

φ [µ
(2)
j ] γδ

λ )∂βεγδαK
φλ(ij)

∂[δT 11
i ]α

∂[δq
(0)
j ]β

= δji [µ
(1)
j ] δε [µ

(1)
k ] γ

φ ∂βγδαK
εφ(jk)− [µ

(1)
i ] δε [µ

(1)
j ] γ

φ ∂βδγαK
εφ(ij)

∂[δT 22
i ]α

∂[δq
(0)
j ]β

= − δji [µ(2)
j ] εφ

λ [µ
(2)
k ] γδζ ∂βεδγφαK

λζ(jk) + [µ
(2)
i ] εφ

λ [µ
(2)
j ] γδζ ∂βεδγφαK

λζ(ij)

∂δT 00
iα

∂[δp
(0)
j ]β

= − δji pkγ∂αKβγ(jk)− piγ∂αKγβ(ij)

∂δT 01
iα

∂[δp
(0)
j ]β

= − [µ
(1)
i ] γδ ∂γαK

βδ(ij) + δji [µ
(1)
k ] γδ ∂γαK

βδ(jk)

∂δT 02
iα

∂[δp
(0)
j ]β

= − δji [µ(2)
k ] γδε ∂γδαK

βε(jk)− [µ
(2)
i ] γδε ∂γδαK

βε(ij)

∂[δT 01
i ]α

∂[δµ
(1)
j ] γ

β

= − δji pkδ∂γαKδβ(jk) + piδ∂γαK
δβ(ij)

∂[δT 11
i ]α

∂[δµ
(1)
j ] γ

β

= (δji [µ
(1)
k ] δε ∂γδαK

βε(jk) + [µ
(1)
i ] δε ∂δγαK

εβ(ij)

∂[δT 12
i ]α

∂[δµ
(1)
j ] γ

β

= − δji [µ(2)
k ] εδ

φ ∂γεδαK
βφ(jk) + [µ

(2)
i ] εδ

φ ∂γεδαK
βφ(ij)

∂[δT 02
i ]α

∂[δµ
(2)
j ] γδ

β

= − (δji [µ
(2)
k ] γδε ∂γδαK

βε(jk) + [µ
(2)
i ] γδε ∂γδαK

βε(ij))

∂[δT 12
i ]α

∂[δµ
(2)
j ] γδ

β

= δji [µ
(1)
k ] ε

φ ∂εγδαK
φβ(jk)− [µ

(1)
i ] ε

φ ∂εγδαK
φβ(ij)

∂[δT 22
i ]α

∂[δµ
(2)
j ] γδ

β

= − δji [µ(2)
k ] εφζ ∂γφεδαK

βζ(jk)− [µ
(2)
i ] εφζ ∂εδγφαK

ζβ(ij)
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∂[δξ
(1)
i ]αβ

∂[δq
(0)
j ]γ

=
(
pkδ∂βγK

αδ(jk)− [µ
(1)
k ] δε ∂βγδK

αε(jk) + [µ
(2)
k ] εδ

φ ∂βγδεK
αφ(jk)

)
δij

− pjδ∂βγKαδ(ij) + [µ
(1)
j ] δε ∂βγδK

αε(ij)− [µ
(2)
j ] εδ

φ ∂βγδεK
αφ(ij)

∂[δξ
(1)
i ]αβ

∂[δq
(1)
j ]γδ

= 0,
∂[δξ

(1)
i ]αβ

∂[δq
(2)
j ]γδε

= 0,
∂[δξ

(1)
i ]αβ

∂[δp
(0)
j ]γ

= ∂βK
γα(ij)

∂[δξ
(1)
i ]αβ

∂[δµ
(1)
j ] δ

γ

= −∂δβKγα(ij) ,
∂[δξ

(1)
i ]αβ

∂[δµ
(2)
j ] δε

γ

= ∂εδβK
γα(ij)

∂[ξ
(2)
i ]αβγ

∂[q
(0)
j ]δ

=
[
[p

(0)
k ]ε∂βγδK

αε(jk)− [µ
(1)
k ] ε

φ ∂βγδεK
αφ(jk) + [µ

(2)
k ] εφ

λ ∂βγδεφK
αλ(jk)

]
δij

− [p
(0)
j ]ε∂βγδK

αε(ij) + [µ
(1)
j ] ε

φ ∂βγδεK
αφ(ij)− [µ

(2)
j ] εφ

λ ∂βγδεφK
αλ(ij),

∂[ξ
(2)
i ]αβγ

∂[q
(1)
j ]δε

= 0,
∂[ξ

(2)
i ]αβγ

∂[q
(2)
j ]δεφ

= 0,
∂[ξ

(2)
i ]αβγ

∂[p
(0)
j ]δ

= ∂βγK
αδ(ij)

∂[ξ
(2)
i ]αβγ

∂[µ
(1)
j ] εδ

= −∂βγεKαδ(ij),
∂[ξ

(2)
i ]αβγ

∂[µ
(2)
j ] εφδ

= ∂βγεφK
αδ(ij)

The adjoint equation are then given by

d

dt
[λ
q
(0)
i

]α = − [λ
q
(0)
j

]β
∂[δq̇

(0)
j ]β

∂[δq
(0)
i ]α

− [λ
q
(1)
j

] γ
β

∂[δq̇
(1)
j ]βγ

∂[δq
(0)
i ]α

− [λ
q
(2)
j

] γδ
β

∂[δq̇
(2)
j ]βγδ

∂[δq
(0)
i ]α

− [λ
p
(0)
j

]β
∂[δṗ

(0)
j ]β

∂[δq
(0)
i ]α

− [λ
µ
(1)
j

]βγ
∂[δµ̇

(1)
j ] γ

β

∂[δq
(0)
i ]α

− [λ
µ
(2)
j

]βγδ
∂[δµ̇

(2)
j ] γδ

β

∂[δq
(0)
i ]α
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