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Abstract

A task with ideal execution time L such as the execution of a computer pro-
gram or the transmission of a file on a data link may fail, and the task then
needs to be restarted. The task is handled by a complex system with features
similar to the ones in classical reliability: failures may be mitigated by using
server redundancy in parallel or k-out-of-n arrangements, standbys may be
cold or warm, one or more repairmen may take care of failed components,
etc. The total task time X (including restarts and pauses in failed states) is
investigated with particular emphasis on the tail P(X > x). A general alter-
nating Markov renewal model is proposed and an asymptotic exponential form
P(X > x) ∼ Ce−γx identified for the case of a deterministic task time L ≡ `.
The rate γ is given by equating the spectral radius of a certain matrix to 1,
and the asymptotic form of γ = γ(`) as ` → ∞ is derived, leading to the
asymptotics of P(X > x) for random task times L. A main finding is that X is
always heavy-tailed if L has unbounded support. The case where the Markov
renewal model is derived by lumping in a continuous-time finite Markov pro-
cess with exponential holding times is given special attention, and the study
includes analysis of the effect of processing rates that differ with state or time.

Keywords: Alternating renewal process, computer reliability, data transmis-
sion, failure rate, fault-tolerant computing, heavy tails, Markov renewal equa-
tion, matrix perturbation, phase-type distribution, restart, tail asymptotics,
Perron-Frobenius theory, phase-type distribution, spectral radius, Tauberian
theorem.
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1 Introduction

This paper studies some systems typically identical to those of interest in Reliability
Theory and Availability ([4], [5], [19]). The system consists of a large number of
components and at a given time it has a state depending on the characteristics of
the components (operating, under repair, in cold or hot standby, rebooting etc.). In
brief, a finite state space E is partitioned into two subspaces, D and U (Down/Up,
or Operating/Failed, etc.). Individual components may be failed and under repair
also in an Up state, but the system as a whole can only operate in the Up states
and is paused upon exit from there to remain in the Down states until all necessary
repairs have been undertaken.

In classical reliability theory one is interested in the length of time the system
is in some Up state (the longer without failure, the better). Repair time is of less
importance. Availability is concerned with the fraction of time that the system is in
an Up state, taking into account the multiplicity of processors (thus the availability
fraction could be greater than 1). In this paper we focus on the processing of a task
of length L (the task time) which can only finish processing after the system has
been in the set U of Up states for a time greater than L (L may be random or
constant, L = `). If during processing the system fails and goes to a Down state, the
performed work is lost and when entering an Up state again, the processing has to
be restarted from scratch. That is, each time the system leaves U and goes to D, it
must start over when reentering U . The quantity of interest is the total task time X.

The study of total task times in problems of this type have a long tradition in
many specific and distinct failure recovery schemes. In particular in the resume
(also referred to as preemptive resume) scenario, if there is a processor failure while
a job is being executed, after repair is implemented the job can continue where it
left off. In the replace situation (also referred to as preemptive repeat different),
if a job fails, it is replaced by a different job from the same distribution. Here, no
details concerning the previous job are necessary in order to continue. For these
two schemes, see Kulkarni et al. [14], [15]. Further models and methods of failure
recovery are in Chlebus et al. [9] for restartable processors and in De Prisco et al. [10]
(stage checkpointing)

As indicated above, we are here concerned with restart (also referred to as
preemptive repeat identical). There are many examples where this is relevant. The
obvious one alluded to above involves execution of a program on some computer. If
the computer fails, and the intermediate results are not saved externally (e.g., by
checkpointing), then the job must restart from the beginning. As another example,
one might wish to copy a file from a remote system using some standard protocol
as FTP or HTTP. The time it takes to copy a file is proportional to its length. A
transmission error immediately aborts the copy and discards the partially received
data, forcing the user to restart the copy from the beginning. Yet another example
would be receiving ‘customer service’ by telephone. Often, while dealing with a
particular service agent, the connection is broken. Then the customer must redial
the service center, and invariably (after waiting in a queue) ends up talking to a
different agent, and having to explain everything from the beginning.

Computing expected values and transforms is usually easy in any of the models
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mentioned above. Also the important problem of tail behaviour, that is, the probabil-
ity of long delays, has been succesfully attacked in a number of the above references.
However, for the restart policy it resisted detailed analysis until the recent work of
Sheahan et al. [18] and Asmussen et at. [2] where the tail of H was found in a variety
of combinations of tail behavior of F and G. A main and surprising finding was that
the tail of H is always heavy-tailed if F has unbounded support. The consequence
is that delays can be very severe in the restart setting. For further recent work in
this direction, see Jelenković et al. [11], [12].

2 Statement of main results

We now proceed to a more precise description of the model. Without the task being
processed (equivalently, with task time T ≡ 0), the system is assumed to develop
according to an alternating Markov renewal process with state space E = U ∪D and
imbedded Markov chain at jump times ξ0, ξ1, . . . If ξ0 = u ∈ U , the first sojourn in
state ξ0 terminates at time Tu and then state ξ1 ∈ D is entered, and if ξ0 = d ∈ D,
the first sojourn in state ξ0 terminates at time Td where state ξ1 ∈ U is entered.
When it is unimportant to specify whether states are in U or in D, they are just
denoted by i, j . . .; when a state in E is denoted by u, it is silently understood that
u ∈ U , and similarly for d ∈ D.

The transition rules are thus specified by the set of probability measures

Fdu(t) = Pd
(
Td ≤ t, ξ1 = u) , d ∈ D, u ∈ U ,

Fud(t) = Pd
(
Ti ≤ t, ξ1 = d

)
, u ∈ U , d ∈ D ,

Fij = 0 when i, j are either both in U or both in D. In particular, the transition
probabilities pij of the Markov chain ξ are given by pdu = Fdu(∞), pud = Fud(∞),
pij = 0 when i, j are both in either U or in D, and we have

Fd(t) = Pd(Td ≤ t) =
∑

u∈U
Fdu(t) , Fu(t) = Pu(Tu ≤ t) =

∑

d∈D
Fud(t) .

The term alternating comes from only transitions from U to D and vice versa being
possible, not ones within U or D. At the time Tu or Td of the first state space change,
the process repeats itself with new starting value ξ1. See [1, pp. 206–7] for more detail
on the basics of Markov renewal processes.

The model for how the task is handled is that processing only occurs in an up
state u of the Markov renewal process and then the processing rate is ρu(t) at time
t < Tu for a suitable stochastic process ρu. Thus, if the task length is L ≡ ` and
ξ0 = u ∈ U , the task finishes processing in the first Markov renewal interval [0, Tu)
at time

τu(`) = inf
{
t > 0 :

∫ t

0

ρu(s) ds = `
}

if τu(`) < Tu. Otherwise, no processing takes place in the down state d ∈ D entered
after Tu, and at the time where the next state ξ2 in U is entered, the whole process
is restarted with the same processing time ` but in Markov state ξ2. No specific
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assumptions are made at the moment on the dependence between Tu, ρu, ξ1, but to
avoid trivialities, we need P

(
τu(`) < Tu

)
> 0 for at least one u ∈ U , ensuring that

the task will eventually be finished.
The main example of processing rate modeling is of course ρu(t) ≡ 1 for all u

and t, and this may safely be used as basis for intuition for quite a while. We return
to time-varying rates in Section 7.

Our main example of the Markov renewal set-up comes from continuous-time
finite Markov processes modeling the time evolution of models in classical reliability
theory ([4], [5], [19]). We present this in Section 3. However, there are others, e.g.
vanilla restart with repair. Here we can take U ,D as one-point sets U = {u},
D = {d}, and ρu(t) ≡ 1. Then Fu can be seen as the distribution of either the
operating time or the failure time (denoted G in [2]), Fd the distribution of the repair
time, and the Markov renewal model allows for incorporating general distributions
of Fu, Fd, not just exponential ones.

Our main result on the general set-up with deterministic task length is the fol-
lowing:

Theorem 2.1. Consider a deterministic task length L = ` and denote by R(α) the
E × E matrix with entries

rdu(α) = Ed
[
eαTd ; ξ1 = u

]
, d ∈ D, u ∈ U ,

rud(α) = Eu
[
eαTu ; τu(`) ≥ Td , ξ1 = d

]
, u ∈ U , d ∈ D ,

all other rij(α) = 0. Assume there exists γ = γ(`) such that R(γ) is irreducible with
spectral radius 1. Then Pi(X > x) ∼ Cie

−γx as x→∞, with Ci = Ci(`) specified in
Corollary 4.1 below.

The assumption that γ exists is automatic is essentially a condition on light tails
of the Td, for example that each Td is gamma-like. By this we mean that the density
exists and has asymptotic form

bta−1e−δy (2.1)

We discuss this in more detail in Section 4. The case of heavy tails of some Td is not
included by Theorem 2.1 but can be treated as well. For example, we have:

Theorem 2.2. Consider a deterministic task length L = ` and assume that each
Td has a subexponential density, more precisely that there exists a subexponential
density ϕ(y) such that for all d P(Td ∈ ·) is absolutely continuous for large y with
a density of asymptotic form cdϕ(y). Then Pi(X > x) ∼ CiΦ(x) as x → ∞, with
Ci = Ci(`) specified in (6.4) below and Φ(x) =

∫∞
x
ϕ(y) dy.

[See (6.2) below for the definition of a subexponential density. The constants Ci
are obviously not the same as in Theorem 2.1; similar slight abuse of notation occurs
throughout the paper].

For a random task length L, conditioning on L = ` gives

Pi(X > x) =

∫ ∞

0

Pi(X > x |L = `)P(L ∈ d`) . (2.2)
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Since now ` is a variable (and not constant, as previously assumed), we write γ(`)
rather than `, R(α, `) rather than R(α) to stress the dependence on both variables.
In (2.2), Pi(X > x |L = `) has an asymptotic exponential form as x → ∞ by
Theorem 2.1. Further, the rate γ(`) goes to 0 as ` → ∞ since R(0,∞) equals the
spectral radius one mtarix P . We thus obtain the following easy but notable result:

Corollary 2.3. If the task length L has unbounded support, the distribution of the
total task time X is heavy-tailed in the sense that eδxP(X > x)→∞ for all δ > 0.

The key step for obtaining more precise results turns out to be to identify the
asymptotics of γ(`) as `→∞. Our result is:

Theorem 2.4. Assume that the assumptions of Theorem 2.1 on R(α, `) hold for
all large `, and that for some function ϕ(`) it holds that

k∗ud(`) = P
(
Tu > τu(`), ξ1 = d

)
∼ kudϕ(`) (2.3)

as ` → ∞ for some set of constants such that kud > 0 for at least one pair u ∈ U ,
d ∈ D. Then

γ(`) ∼ µϕ(`) as `→∞, where µ =

∑

u∈U ,d∈D
kud

∑

i∈E
πiEiTi

(2.4)

and π = (πi)i∈E = (πi)i∈U∪D is the stationary distribution of the Markov chain ξ,
that is, the invariant probability vector for the matrix P = R(0,∞).

Remark 2.5. In practice, ϕ(`) will be found by first determining the growth rate
of the h∗ud(`) = P

(
Tu > τu(`), ξ1 = d

)
and taking ϕ as the largest one. ♦

Given Theorem 2.4, it is easy to adapt the calculations of [2] to get the tail of X,
in more or less sharp forms depending on the form of the distribution of L. For
example:

Corollary 2.6. Assume that L is Gamma-like as in (2.1), that Pu(τu(`)→∞) = 1
for all u and that the assumptions of Theorem 2.4 hold with ϕ(`)t = e−q` for some q.
Then

Pi(X > x) ∼ C
loga−1 x

xδ/q

with C given in (5.7) below.

The paper is organised as follows. Section 3 presents some main examples and a
general class of models is described where the Markov renewal model is derived by
lumping in a continuous-time finite Markov process with exponential holding times.
This case provided our main motivation, but the Markov renewal conversion is neces-
sary because of non-Markovian features of the Restart mechanism. Section 4 contains
the proof of Theorem 2.1, where the main ingredient is a suitable set of Markov re-
newal equations. Also the form of the knowns and unknowns are specialized to the
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Markov model. Section 5 contains the proof of Theorem 2.4. Perron-Frobenius the-
ory for nonnegative matrices plays a main role (see [1, I.6] for a short introduction
and [6], [17] for more extensive treatments). However, the proof is by bare-hand ar-
guments rather than general perturbation theory. The proof of Theorem 2.2 is given
in Section 6; it involves discussion of Markov renewal equations with heavy tails, a
less established topic than the light tailed case. Non-constant processing rates ρu(t)
are studied in Section 7 and leads into matrix formalism and differential equations
somewhat similar to the theory of fluid reward models and multivariate phase-type
distributions. Finally, Section 8 sketches via an example how non-exponential dis-
tributions may be incorporated in the Markov model, and some preliminaries and
technical steps are deferred to the Appendix.

The paper only contains one numerical example (a more extensive set will be
presented elsewhere). Nevertheless, it should be stressed that our aim is computa-
tional. In particular, we have chosen a finite state set-up leading to explicit and
numerically implementable matrix formulas rather than a general state one where
one would need to impose many not easily verifiable technical conditions, operators
would take the role of matrices, etc.

3 From Markov to semi-Markov models

In many examples, the Markov renewal structure may be derived from embedding
into a larger Markov process J(t) with state space E∗ = U∗ ∪D∗. In a state u ∈ U∗,
the task is processed at rate ru and no processing can take place in a state d ∈ D∗.
We then take U ⊆ U∗ as the subset of states that can be entered from D and D ⊆ D∗
as the subset of states that can be entered from U . If ξ0 = J(0) = u ∈ U , we further
let Tu = inf{T > 0 : J(t) ∈ D∗} (and similarly for Td) and ρu(t) = rJ(t).

It should be noted that in this Markovian scheme, the Fu, Fd become phase-
type (PH) and the Fud, Fdu defective PH, so that standard matrix-analytic formulas
apply to rewrite the expressions in the general set-up in terms of matrix expressions
(matrix inverses and matrix-exponentials). More detail is given later.

The Markovian imbedding scheme is illustrated in the following examples, where
the states in U are dark green, the ones in U∗ \ U light green, and similar dark and
light red coloring is used for the states in D and D∗ \ D

Example 3.1. Consider a system with two exponential parallel servers, hot backup
and two repairmen. The failure rate of a server is β, the repair rate is λ, and a
task can be (re)started if at least one server is up. We can take E∗ = {2, 1, 0}, with
J(t) = i meaning that i servers are up (and thus 2− i down, i.e.under repair).

0 1 2
2λ

β

λ

2β

Figure 1: Parallel servers.

We have U∗ = {1, 2}, U = {1}, D∗ = D = {0}; note that 2 6∈ U since that even
if the first service may be started in state 2, none of the following ones will be so
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because a failed period (a sojourn in state 0) cannot be terminated by a jump to 2.
The rates are r1 = 1, r2 = 2 if both servers can work on the task and r1 = r2 = 1 if
only one can (hot back-up).

With only one repairman, 2λ should be changed to λ, and with cold back-up, 2β
should be changed to β. Everything else remains unchanged. ♦

Example 3.2. Consider the system in Example 3.1 with the modification that 2
servers have to be up before a service can start. We then take E∗ = {2, 1+, 1−, 0},
with 0, 2 having the same meaning as before, and 1− meaning that there is one
repaired server and one under repair, 1+ that there is one operating and one under
repair. Assuming that a server that is repaired but waiting for the other to be
repaired before going in to operation cannot fail, we have the transition diagram in
Fig. 2.

0

1−

1+

2

2λ λ

β λ

β

Figure 2: Start requires both servers up.

We have U∗ = {2, 1+}, U = {2}, D∗ = {0, 1−}, D = {0}. Again depending on
the interpretation, we may take r1+ = r2 = 1 or r1+ = 1, r2 = 2. ♦

Example 3.3. Consider again the system in Example 3.1, this time modified such
that the two servers a, b are heterogeneous, i.e. with failure rates βa, βb and repair
rates λa, λb. We take E∗ = {0, 1a, 1b, 2}, with 0,2 having the same meaning as
before and 1a meaning that server a is up and server b down, and vice versa for
1b. Cf. Figure 3(A) for the case of homogeneous rates. We have U∗ = {2, 1a, 1b},
U = {1a, 1b}, D∗ = D = {0}.

0

1a

1b

2

λa

βa

λb

βb

λa

βa

λb

βb

(A)

0

1a

1b

2a

2b
λb

βb

λa

βa

λb

βb

λa

βa

(B)

Figure 3: Heterogeneous parallel servers. (A) homogeneous service rates, (B) heteroge-
neous service rates.
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Non-preemptive service and heterogeneous service rates ra 6= rb for the servers
can be handled by splitting state 2 into two states 2a, 2b, cf. Figure 3(B). Then
r2a = r1a = ra, r2b = r1b = rb. ♦

4 Theorem 2.1: proof and amendments

Proof of Theorem 2.1. For i ∈ E , let Zi(x) = Pi(X > x). If i = d ∈ D, then service
starts at the time Td of exit from d, so that the whole of Td contributes to the total
task time X and for X > x to occur, only delay (x− Td)+ needs to be accumulated
after Td. Conditioning on y = Td, considering the cases y > x and y ≤ x separately,
and partitioning according to the possible values u = ξ1 ∈ U gives

Zd(x) = zd(x) +
∑

u∈U

∫ x

0

Zu(x− y) F̃du(dy)

where zd(x) = Pd(Td > x) and F̃du = Fdu. If i = u ∈ U , then the task will be
terminated before y = Tu if y > τu(`) so that X > x if and only if τu(`) > x. This
gives

Zu(x) = zu(x) +
∑

d∈D

∫ x

0

Zd(x− y)P
(
Tu ∈ dy, τu(`) > y, ξ1 = d

)

where zu(x) = P
(
Tu > τu(`) > x

)
. Recalling that transitions within U or within D

need not be taken into account and letting

F̃ud(t) = P
(
Tu ≤ t, τu(`) > Tu, ξ1 = d

)
,

this can be summarised as the set

Zi(x) = zi(x) +
∑

j∈E

∫ x

0

Zj(x− y) F̃ij(dy) , i ∈ E , (4.1)

of Markov renewal equations where F̃ij ≡ 0 if ij are both in U or both in D.
That the Zi(x) decay exponentially at rate γ then then follows immediately from
assumption on R(α) via the generalisation of the key renewal theorem stated in
Lemma A.1. In more detail, that result also gives the form of the Ci which we next
state separately.

Corollary 4.1. Let ν = (νi)i∈E , h = (hi)i∈E be the left, resp. right, eigenvectors of
R(γ) corresponding to the eigenvalue γ. Then Ci = hiC1/C2 where

C1 =
1

γ

∑

u∈U
νu

∫ ∞

0

E
[
(eγτu(`) − 1)1

{
τu(`) ≤ y

} ∣∣Tu = y
]
Fu(dy) (4.2)

+
1

γ

∑

d∈D
νd

∫ ∞

0

[eγy − 1]Fd(dy) (4.3)

C2 =
∑

u∈U ,d∈D
νuhd

∫ ∞

0

yeγy P
(
τu(`) ≥ y

∣∣Tu = y
)
Fud(dy) (4.4)

+
∑

d∈D,u∈U
νhhu

∫ ∞

0

yeγy Fdu(dy) (4.5)
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Proof. For d ∈ D, integration by parts gives that

γ

∫ ∞

0

eγxzd(x) dx = γ

∫ ∞

0

eγxP(Td > x) dx

reduces to the integral in (4.3). For u ∈ U ,

γ

∫ ∞

0

eγxzu(x) dx = γ

∫ ∞

0

eγxP(Tu ≥ τu(`) > x) dx

=

∫ ∞

0

Hu(dy)

∫ ∞

0

γeγxP
(
τu(`) ∈ (x, y]

∣∣Tu = y
)

dx

=

∫ ∞

0

Hu(dy)

∫ ∞

0

γeγxP
(
τu(`)1

{
τu(`) ≤ y

}
> x

∣∣Tu = y
)

dx

=

∫ ∞

0

Hu(dy)E
[
eγτu(`)1{τu(`)≤y} − 1

∣∣Tu = y
]
.

Considering the cases τu(`) ≤ y and τu(`) > y separately gives the integral in (4.2).
Inserting in (A1.1) gives the expression for C1. The one for C2 follows from (A1.2)
by similar manipulations.

Remark 4.2. In the simplest case ρu(t) ≡ 1, the integral in (4.2) reduces to

(eγ` − 1)

∫ ∞

`

Fu(dy) = (eγ` − 1)P(Tu > `)

and the one in (4.4) to
∫ `

0

yeγy Fdu(dy) = E
[
Tue

γTu ; Tu ≤ `, ξ1 = d
]
. ♦

Remark 4.3. The expressions for γ are implicit even for simple restart ([2]), so
in the present generality, numerical evaluation seems inevitable. This has two steps.
The first is computing the elements of R(α). How difficult this is depends on the
specific model parameters (but see Section 7 below). The next step is then evaluating
eigenvalues of R(α) and finding the roots of the equation 1 = spr(R(α)) which can
be done using standard software.

The dimension of the matrices can be reduced from E × E to U × U or D × D
by noting that [spr(R(α))]2 = spr(R(α)2), and hence the equation determining γ is
(in obvious block notation)

1 = spr
(
RUD(γ)RDU(γ)

)
= spr

(
RDU(γ)RUD(γ)

)
. ♦

We proceed to discuss Theorem 2.1 in the setting of the Markov model of Sec-
tion 3. In the following, we will use the partitioning

Q =

(
QU∗U∗ QU∗D∗
QD∗U∗ QD∗D∗

)

of the generator Q of the Markov process J on E∗ = U∗ ∪ D∗. Recall the definition
of a phase-type (PH) distribution and its parameters commonly denoted as rate
matrix, initial vector and exit vector given in, e.g., [1, III.4]. Let further eu denote
the U∗-column vector with 1 at entry u ∈ U∗ and 0 otherwise (and similarly for ed),
and e the column vector with 1 at all entries (of dimension U∗ or D∗ depending on
the context).
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Proposition 4.4. In the Markov model,

• Fud is defective PH with rate matrix QU∗U∗, initial vector eTu and exit vector
QU∗D∗ed;

• Fdu is defective PH with rate matrix QD∗D∗, initial vector eTd and exit vector
QD∗U∗eu;

• Fu is PH with rate matrix QU∗U∗, initial vector eTu and exit vector QU∗D∗e;

• Fd is PH with rate matrix QD∗D∗, initial vector eTd and exit vector QD∗U∗e.

Remark 4.5. The implication of Proposition 4.4 is that standard matrix-analytic
machinery becomes available to rewrite many expressions considered so far in terms
of matrices (facilitating computer implementation). For example,

zd(x) = P(Td > x) = eTd eQD∗D∗xe , rdu(α) = eTd
(
−αI −QD∗D∗

)−1
QD∗U∗eu .

Similarly, with constant processing rate ρu(t) ≡ 1, we have τu(`) = ` and so

rud(α) = E
[
eαTu ; Tu < `, ξ1 = d

]
=

∫ `

0

eαyeTueQU∗U∗yQU∗D∗ed dy

= eTu
(
−αI −QU∗U∗

)−1(
eα`eQU∗U∗` − I

)
QD∗U∗eu

We return in Section 7 to the question of how to evaluate such quantities in more
general settings than ρu(t) ≡ 1. ♦

We also have

Proposition 4.6. In the Markov model γ always exists and is unique.

Proof. From general results on phase-type distributions based on Perron-Frobenius
theory, the tail of Fdu has asymptotic form cdux

nude−α
∗x for suitable constants α∗,

nud, cdu (if QDD is irreducible, −α∗ is the eigenvalue of maximal real part and all
nud = 0). Thus the rdu(α) are defined for α < α∗ and some have limit ∞ as α ↑ α∗.
Further, letting ρ∗ = maxu∈U∗ ρu, rud(α) can be bounded by E[eαTu ; Tu ≤ `/ρ∗] which
is finite for all α. Thus spr

(
R(α)

)
is defined for all α ∈ [0, α∗) and by dominated

convergence, it is continuous in that domain. The limit at α = 0 is < 0 because R(0)
is a proper subtransition matrix (some row sums are < 1 because of the condition
Tu < τu(`) imposed), and the limit as α ↑ α∗ is ∞ by Lemma A.2. Also that
lemma gives that spr

(
R(α)

)
is strictly increasing in α. Putting these facts together

completes the proof.

5 Theorem 2.4: proof and amendments

Let h(`) be the right Perron-Frobenus eigenvector ofR
(
γ(`), `

)
corresponding to the

eigenvalue 1 and normalized by πh(`) = 1. Since γ(`)→ 0 and hence R
(
γ(`), `

)
→

P as `→∞, one expects the following lemma to hold in view of Pe = e, πe = 1;
we include the proof since it is short.
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Lemma 5.1. h(`)→ e as `→∞.

Proof. Assume that h(`n)→ e fails for some sequence {`n}. The assumption πh(`) =
1 and π1 > 0 for all i ensures that the sequence {h(`n)} is relatively compact, so if
passing to a subsequence if necessary we may assume that h(`n)→ e+f with f 6= 0.
From R

(
γ(`), `

)
h(`n) = h(`n) and R

(
γ(`), `

)
→ P we then get P (e+ f) = e+ f .

Since P is a transition matrix, we have Pe = e and so f is an eigenvector of P
corresponding to the eigenvalue 1. Thus f = ce for some c by the Perron-Frobenius
theorem, and

1 = πh(`n)→ π(e+ f) = 1 + cπe = 1 + c

then gives c = 0, a contradiction.

Proof of Theorem 2.4. LetK∗(`) denote the E ×E matrix with udth element k∗ud(`)
and the U × U -, D × U - and D ×D blocks identically 0, Let further A(α, `) be the
matrix with elements

aud(α, `) =

∫ `

0

(eαy − 1− αy)Hud(dy) , adu(α, `) =

∫ ∞

0

(eαy − 1− αy)Hud(dy)

for u ∈ U , d ∈ D and all other aij(α, `) = 0, let M ∗(`) be the matrix with elements

m∗ud(`) =

∫ `

0

Hud(dy) , m∗du(`) =

∫ ∞

0

y Hud(dy)

for u ∈ U , d ∈ D and all other mij(α, `; 1) = 0, and let M = lim`→∞M (`), i.e. M
is the matrix with elements

mud =

∫ ∞

0

y Hud(dy) = E[Tu; ξ1 = d] , mdu =

∫ ∞

0

y Hud(dy) = E[Td; ξ1 = u]

and all other mij = 0. We then have the identity

A(α, `) = R(α, `)− P +K∗(`)− αM ∗(`) . (5.1)

Write for convenience h(`) = e+ γ(`)n(`). Taking α = γ(`) in (5.1) and multi-
pying by h(`) to the right, we obtain

O
(
γ(`)2

)
= e+ γ(`)n(`)− Pe− γ(`)Pn(`)

+K∗(`)e+ γ(`)K∗(`)n(`)− γ(`)M ∗(`)e− γ(`)2M ∗(`)n(`)

Noting that Pe = e and πP = π, that γ(`)n(`) → 0 by Lemma 5.1 and that
πn(`) = 0 because of πh(`) = 1, it follows by multiplication by π to the left that

o
(
γ(`)

)
= πK∗(`)e+ γ(`)πK∗(`)e− γ(`)πM ∗(`)e ,

o(1) =
1

γ(`)
πK∗(`)e+ πK∗(`)n(`)− πM ∗(`)e

Since πM ∗(`)e→ πMe and K∗(`) = o(1) by (2.3) , this gives

πMe = lim
`→∞

[ϕ(`)

γ(`)

πK∗(`)e

ϕ(`)
+ o(1)

]
= lim

`→∞

ϕ(`)

γ(`)
πKe

where K = limK∗(`)/ϕ(`) is given by (2.3). Hence

lim
`→∞

γ(`)

ϕ(`)
=
πK(`)e

πMe
= µ .

11



Corollary 5.2. Consider the Markov model with ρu(t) ≡ 1, assume that QU∗U∗
is irreducible, let −δ be the eigenvalue with maximal real part and hU∗ ,νU∗ the
corresponding right and left eigenvectors normalized by νU∗hU∗ = 1. Then γ(`) ∼
µe−δ` as `→∞, where

µ =
(πU∗hU∗) · (νU∗e)

πU∗(−QU∗U∗)−1e+ πD∗(−QD∗D∗)−1e

with π∗ = (πU∗ πD∗) the stationary distribution of Q.

Proof. By Perron-Frobenius theory, −δ is a simple eigenvalue and

k∗ud(`) = P
(
Tu > τu(`), ξ1 = d

)
= P(Tu > `, ξ1 = d

)

= eu exp{QU∗U∗`}ed ∼ eu(hU∗νU∗)ed · e−δ`

Thus we may take ϕ(`) = e−δ` and the expression for µ then easily comes out.

Remark 5.3. The assumption of QU∗U∗ being irreducible holds in all the examples
we present. For an example where it fails, assume

U∗ = {1, 2} , D∗ = {3} , Q =



−a a 0
0 −a a
b c −b− c




with at least a, b > 0. Here the eigenvalue −a ofQU∗U∗ is not simple andQU∗U∗ is re-
ducible (1 cannot be reached from 2). Nevertheless, the assumptions of Theorem 2.4
hold since QU∗U∗ is the rate matrix of an Erlang(2, a) distribution and so

P1(T1 > `, ξ1 = 3) = P1(T1 > `) = a`e−a` + e−a` ,

P2(T2 > `, ξ1 = 3) = P2(T2 > `) = e−a` .

I.e., we may take ϕ(`) = `e−a` and get k∗13 = a, k∗23 = 0. In general, dealing with
reducibility and eigenvalues that are not simple lead into the Jordan canonical form;
we omit the details. ♦

Proof of Corollary 5.2. We use once more formula (2.2) for a random task length L,
stating that

Pi(X > x) =

∫ ∞

0

Pi(X > x |L = `)P(L ∈ d`) . (5.2)

It is shown in [2] that here it is permissible to insert the approximations in Theo-
rem 2.4, 2.4, leading to

Pi(X > x) ∼
∫ ∞

`0

hiC1/C2 exp{−µe−q`} ae−δ` d` . (5.3)

Here hi, C1, C2 depend on `. Now hi → 1 by Lemma 5.1 and similarly νi → πi as
` → ∞. It then follows from the assumption Pu(τ(`) → ∞) = 1 that C1, C2 have
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limits

D1 =
∑

u∈U
πu · 1 · 0 +

∑

d∈D
πdETd =

∑

d∈D
πdETd (5.4)

D2 =
∑

u∈U ,d∈D
πu · 1

∫ ∞

0

y · 1 · 1Fud(dy) +
∑

d∈D,u∈U
πd · 1

∫ ∞

0

y · 1Fdu(dy) (5.5)

=
∑

i∈E
πiEiTi (5.6)

The asymptotics of the integral in (5.3) is determined in Lemma A.3, and the result
follows with

C =
Γ(δ/q)D1

µδ/qqaD2

. (5.7)

Remark 5.4. Given Theorem 2.1, the asymptotics of P(X > x) can easily be found
in a variety of combinations of the forms of ϕ(`) and the distribution of L. To this
end, simply insert in the integral estimates of [2] (note that in many cases only
logarithmic asymptotics comes out). We omit the lengthy statement of all of the
available results, but remark that the case where ϕ(`) and the distribution of L are
somewhat alike is particularly nice. More precisely, with the assumption

P(L ∈ d`) = µϕ′(`)
(
µϕ(`)

)β−1
L0

(
ϕ(`)

)

on the density of L where β > 0 and L0 is slowly varying at 0, a Tauberian argument
gives

P(X > x) ∼ Γ(β)D1

µβD2

L0(1/x)

xβ
. ♦

Example 5.5. The asymptotic parameter, γ, depends heavily on the type of system
under examination. But it is still of interest to get some idea of how it behaves. A
detailed study of this set of problems will be presented elsewhere, but we consider
here the simplest system, a single server (ON state) that has an exponential failure
rate of β, and a single repairman (DOWN state) with exponential repair rate, λ.

In this case, the equation spr
(
R(α)

)
= 1 reduces to the root finding formula,

f(α = γ) =
λ

(λ− α)

β[1− e−`(β−α)]

(β − α)
− 1 = 0.

From Figure 4 we see that γ depends heavily on both ` and λ. The property that
γ(0|λ, β) = λ is an artifact of the fact that the repair time distribution is expo-
nential(λ), and for δ = `β � 1 the probability that the system will fail one more
time is of order δ. One expects in general that the behavior of γ near ` = 0 should
be dominated by the asymptotic failure distribution, namely πd exp(QDD t) e. For
large `, the exponential decay of γ given by Theorem 2.4 is confirmed by the figure
at least for the simple system examples given. ♦
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Lemma A.3 Let I =

∫ ∞

0

exp{−µe−qℓx} ℓa−1e−δℓ dℓ . Then I ∼ Γ(δ/q)

µδ/qqa
loga−1 x

xδ/q

as x → ∞.

Proof. Using the substitution y = µe−qℓx, we can rewrite I as

∫ µx

0

e−y
( log x+ logµ− log y

q

)a−1( y

µx

)δ/q dy

qy
=

1

µδ/qqa
log x

xδ/q
I1

where

I1 =

∫ ∞

0

ω(x, y)α−1yδ/q−1e−y dy , ω(x, y) = 1 + log µ/ logx− log y/ logx .

Now for x ≥ e and ε > 0, we have
∣∣ω(x, y)

∣∣ ≤ ω∗(y) where ω∗(y) = dmax(yε, y−ε)

for some d = dε. Choosing ε such that ε|α−1| < α, ω∗(y)α−1yδ/q−1e−y is integrable,
and since ω(x, y) → 1 as x → ∞ with y fixed, the dominated convergence theorem
implies that I1 → Γ(δ/q), concluding the proof. ✷

B A Simple Computational Example

The asymptotic parameter, γ, depends heavily on the type of system under exami-
nation. But it is still of interest to get some idea of how it behaves. Here we examine
the simplest system, a single server (ON state) that has an exponential failure rate
of β, and a single repairman (DOWN state) with exponential repair rate, λ. In this

0 1 2 3 4
ell0

1

2

3

4
Γ

Β#1.0

Λ#0.5

Λ#1.0

Λ#2.0

Λ#%

Figure 6: γ(ℓ|λ, β) as a function of ℓ for λ ∈ {0.5, 1.0, 2.0, ∞} and
β = 1, for the simplest system of one UP and one DOWN state.
For this system, γ(0|λ, β) = λ.

22

Figure 4: γ(` |λ, β) as a function of ` for λ ∈ {0.5, 1.0, 2.0, ∞} and β = 1,
for the simplest system of one UP and one DOWN state. For this system,
γ(0|λ, β) = λ.

6 Theorem 2.2: proof and amendments

For Theorem 2.2, one needs a Markov renewal version of the key renewal theorem
with defective heavy tails. This appears, however, not to be in the literature. One
may note in this connection that already for an ordinary renewal equation

Z(x) = z(x) +

∫ ∞

0

Z(x− y)F (dy) (6.1)

(with only one unknown function Z), such a result is relatively new and was only
given fairly recently in Asmussen, Foss & Korshunov [3]. The details of this analysis
are quite technical and one needs to go somewhat beyond the ordinary subexponen-
tial setting by imposing conditions not only on the tail of F but also on the local
behavior. This involves the definition of a distribution F to have a subexponential
density, namely that there exists x̂ <∞ such that F has a density f(x) on [x̂ <∞)
and that

f ∗2(x) = 2

∫ x̂

0

f(x− y)F (dy) +

∫ x−x̂

x̂

f(x− y)f(y) dy ∼ 2f(x) , x→∞. (6.2)

A complete and rigorous treatment of the relevant version of the Markov key
renewal theorem will be presented elsewhere, with Lemma 6.1 stated below without
proof being the main extension of [3], but we present here the basic intuition. If θ =∫∞

0
F (dx) < 1 in the simple case of (6.1), the idea in [3] is to use the convolution

structure of the renewal equation to view Z(x) as the density of the sum of a
geometric sum of r.v.’s with distribution F/θ and a r.v W with density z(x)/

∫
z.

Three cases arise according to the balance between the heaviness of z and the tail
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of F . The one corresponding to the present case is z(x) being heavier than the
density f of F , and here the contribution from the geometric sum vanishes, giving
Z(x) ∼ z(x)/

∫
z.

In the setting of Theorem 2.2, the representation in [1], Prop. 4.4 p. 209, of the
solution

(
Zi(x)

)
i∈E to the set of Markov renewal equations (4.1) can be written as

Zi(x) =
∞∑

n=0

∑

j∈E

∫ x

0

zj(x− y)Pi
(
ξn(`) = j, Sn(`) ∈ dy

)
(6.3)

with the following notational conventions: N is defined as the Markov renewal epoch
at which the task is processed, ∆ is some extra absorbing state ∆, and ξ(`) is a
Markov chain with state space E∪{∆} such that ξn(`) = ξn for n < N and ξn(`) = ∆
for n ≥ N . Further, Sn(`) = T ∗0 + · · · + T ∗n for n < N , Sn(`) =∞ for n ≥ N where
given the Markov chain ξ(`), the T ∗k are independent with T ∗k distributed as Ti on
the event ξk(`) = i (the definition of Sn(`) for n ≥ N is redundant but one may
take, e.g., Sn(`) =∞. We need the following extension of Propositions 7, 8 of [3]:

Lemma 6.1. Let G1, . . . , GA be a finite set of distributions such that each Ga admits
a subexponential density ga(x) with ga(x) ∼ caϕ(x) for some subexponential density
ϕ(x). Then for any n1, . . . , nk

(
gn1

1 ∗ · · · ∗ gnAA
)
(x) ∼ (n1c1 + · · ·+ cAnA)ϕ(x) ,

and for any ε > 0, there exists Cε such that
(
gn1

1 ∗ · · · ∗ gnAA
)
(x) ≤ Cε(1 + ε)n1+···+nAϕ(x) ,

Now the transition probabilities pij(`) of ξ(`) are given by p∆∆(`)(`) = 1, pdu(`) =
pdu,

pud(`) = Pu
(
Td < τu(`), ξ1 = d) , pu∆ = 1−

∑

d∈D
pud(`) = Pu

(
Td ≥ τu(`)

)

all other pij(`) = 0. Since ∆ is absorbing, spr
(
P (`)

)
< 1 and so Perron-Frobenius

theory gives the existence of b < 1 such that the n-step transition probabilities pnij(`)
decay at rate at most bn. For j 6= ∆ one has Pi

(
ξn(`) = j

)
= pnij(`) and letting Wd

be a r.v. with density z∗j (y) = zj(y)/zj where zj =
∫∞

0
zj(y) dy, we can rewrite (6.3)

as

Zi(x) =
∞∑

n=0

∑

j∈E
pnij(`)zjE

[
(gn,j ∗ z∗j )(x)

]

where gn,j is the conditional density of Sn(`) given ξ0 = i, ξ1, . . . , ξn−1. By the first
part of Lemma 6.1, gn,j(x) ∼ cnϕ(x) for some (random) cn. Further, the zd(x)
are heavier than ϕ(x) (that Φ(x)/ϕ(x) → ∞ is a standard estimate in the heavy-
tailed area), and so (gn,j ∗ z∗j )(x) ∼ z∗j (x) by Proposition 7 of [3]. Choosing ε with
(1 + ε)b < 1, we can then use the second part of Lemma 6.1 and a dominated
convergence argument to conclude that

Zi(x) ∼
∞∑

n=0

∑

j∈E
pnij(`)zj z

∗
j (x) ∼

∞∑

n=0

∑

j∈E
pnij(`)cdΦ(x) .
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This completes the proof of Theorem 2.2, with the expression

Ci = ei
(
I − P (`)

)−1
c (6.4)

for the Ci where c is the vector with j-th entry cd for i = d ∈ D and 0 for i =
u ∈ U .

Example 6.2. Consider as in Section 2 vanilla restart with repair, U = {u},
D = {d}, and ρu(t) ≡ 1. Then Fu is the distribution of the failure time (denoted G
so far), Fd the distribution of the repair time, and with heavy-tailed Fd, Theorem 2.2
immediately gives that the total task time X has tail proportional to F (x).

A particular case of a heavy-tailed Fd could arise if repair means rebooting of the
processor, such that the ideal time for rebooting is B but that rebooting may fail at
Poisson(β) times and then itself needs to be restarted. This means that given B = b,
Td is the restart total task time with exponential(β) failure and task length b, so
that by [2] F d ∼ C(b)e−η(b)x, with the values of C(b), η(b) given there. For a random
B with unbounded suport, Td becomes heavy-tailed. For example, for a Gamma-like
B we have that (again by reference to [2])

F d(t) ∼ cα,δ
logα−1 x

xηα,δ

with cα,δ, ηα,δ specified in [2]. Thus Fd is regularly varying and Theorem 2.2 applies.

7 Time-varying processing rates

As is clear from the formulas presented so far, a main problem for numerical imple-
mentation beyond the simplest case ρu(t) ≡ ρ is evaluation of quantities like

gud(`) = P
(
Tu > τu(`), ξ1 = d

)
= P

(∫ Tu

0

ρu(t) dt > ` , ξ1 = d
)
.

Example 7.1. A simple example is obtained by letting the server speed depend on
time. E.g. the server slowing down with time could be modeled by the service rate
being proportional to t−α with 0 < α < 1, and then τu(`) is proportional to t1−α.

Another tractable and more interesting case is what we call the independent
Markov rate model where the server speed is determined by an independent external
environment. . This is defined in terms of a set of Markov process I = {I(t)}t≥0 with
state space {1, . . . ,m} and a set of rates r1, . . . , rm, such that ρu(t) = rI(t). The basic
assumption is that I is independent of the Markov renewal process. We denote the
rate matrix by A and the initial distribution by α. A natural choice of α is the
stationary distribution for I, and dependence of the rates on u can be obtained by
taking I complicated enough. Write ∆r for the diagonal matrix with the ri on the
diagonal.
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Proposition 7.2. Consider the independent Markov model with all ri > 0 and
assume that Tu is independent of ξ1 and exponential(δ). Then

gud(`) = pudα exp{B(δ)`}e

where B(δ) = ∆−1
r A−

δ

2

(
∆−1
r ee

T + eeT∆−1
r

)
.

Proof. Fix u, d and define f(x) as the row vector with elements

fj(x) = Pα
(∫ Tu

0

ρu(t) dt > x, I
(
τu(x)

)
= j
)
.

We shall identify fj(x+ h) up to o(h) terms and thereby derive a differential equa-
tion for f(x), giving f(x) = αeB(δ)x from which the result follows by letting x = `,
summing over j (corresponding to multiplication by e) and using the assumed in-
dependence of ξ1 to extract the transition probability pud.

For
∫ Tu

0
ρu(t) dt > x+ h to occur, we must have τu(x) < Tu. The contribution to

fj(x+ h) from the event I
(
τu(x+ h)

)
= I
(
τu(x)

)
= j is therefore

fj(x)
(
1 + ajjh/rj

)
P
(
Tu > τu(x) + h/rj |Tu > τu(x)

)
+ o(h)

= fj(x)
(
1 + ajjh/rj − δh/rj

)
+ o(1) ,

where the o(h) terms takes care of, e.g., the possibility of jumps out of j and back in
the time interval

(
τu(x), τu(x + h)

]
. Consider next the contribution from the event

I
(
τu(x)

)
= k, I

(
τu(x + h)

)
= j and a single jump from k to j in the time interval(

τu(x), τu(x + h)
]
. This jump must occur before τu(x) + h/rk, and its position is

then approximately at τu(x) + Uh/rk where U is an independent uniform(0, 1) r.v.
Passage to x+h must therefore occur at time τu(x) +Uh/rk + (1−U)h/rj, and the
probability that Tu survives from τu(x) to there is approximately

E
{
−δ[Uh/rk + (1− U)h/rj

]}
= 1− hδ

2
(1/rk + 1/rj) .

The asked for contribution is thus
∑

k 6=j
fk(x)

(
akjh/rk − h

δ

2
(1/rk + 1/rj)

)
. (7.1)

Alltogether,

fj(x+ h) = fj(x) +
m∑

k=1

fk(x)
(
akjh/rk − h

δ

2
(1/rk + 1/rj)

)
+ o(h) ,

f ′j(x) =
m∑

k=1

fk(x)
(
akj/rk −

δ

2
(1/rk + 1/rj)

)
.

In matrix notation, this means f ′(x) = f(x)B(δ) which together with f(0) = α
gives the desired conclusions.
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Remark 7.3. The assumption of Tu being exponential is easily generalized to a PH
distribution at the expense of the differential equations and the form of B become
somewhat more complicated. We omit the details.

We next turn to the Markov model of Section 3, where the rate generating process
is internal rather than external. That is, the role of I is taking by the J-process of
Section 3.

Proposition 7.4. Consider the Markov model with rv > 0 for all v ∈ U . Then

gud(`) = eTu exp
{
∆−1
r QU∗U∗`

}
(−QU∗U∗)−1QU∗D∗ed .

Proof. Define f(x) as the row vector with elements

fv(x) = Pu
(∫ Tu

0

rJ(t) dt > x, J
(
τu(x−)

)
= v
)
, v ∈ U .

Then f ′(x) = f(x)∆−1
r QU∗U∗ and thus f(x) = eTu exp

{
∆−1
r QU∗U∗x

}
. Indeed, the

only difference from the proof of Proposition 7.2 is that the δ/2 term in (7.1) does
not enter because the possibility Tu ∈

(
τu(x), τu(x+h)

]
is taken care of by the rows

of QU∗U∗ not summing to 0 (what is missing is the rates of entering D∗). Now just
note that

Pu
(∫ Tu

0

ρu(t) dt > `, ξ1 = d
∣∣∣ J
(
τu(`−)

)
= v
)

=

∫ ∞

τu(`)

eTv exp{QU∗U∗
(
t− τu(`)

)}
QU∗D∗ed dt = eTv (−QU∗U∗)−1QU∗D∗ed

Proposition 7.5. Consider the Markov model with rv > 0 for all v ∈ U . Then

rud(α, `) = eTu

(
I − exp

{
∆−1
r

(
QU∗U∗ + αI

)
`
})

(−QU∗U∗ − αI)−1QU∗D∗ed .

Proof. We have

rud(α, `) = E[eαTu ; ξ1 = d]− E
[
eαTu ;

∫ Tu

0

rJ(t) dt > `, ξ1 = d
]

= eTu (−QU∗U∗ − αI)−1QU∗D∗ed − E
[
eαTu ;

∫ Tu

0

rJ(t) dt > `, ξ1 = d
]
.

The idea is now to note the identity

eαTu = exp
{
ατu(`)

}
· exp

{
α
(
Tu − τu(`)

)}

(valid on the set
{
Tu > τu(`)

}
), take care of the first factor by the differential

equation approach and the second by the conditioning argument in the proof of
Proposition 7.4.
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So, define this time f(x) as the row vector with elements

fv(x) = Eu
[
exp
{
ατu(x)

}
;

∫ Tu

0

rJ(t) dt > x, J
(
τu(x−)

)
= v
]
, v ∈ U .

Now

exp
{
ατu(x+ h)

}
= exp

{
ατu(x)

}
· exp{αh/rk} ≈ exp

{
ατu(x)

}
· (1 + αh/rk)

on the set
{
Tu > τu(x+ h), J

(
τu(x)

)
= k
}
. This gives

f ′(x) = f(x)∆−1
r (QU∗U∗ + αI) , f(x) = eTu exp

{
∆−1
r (QU∗U∗ + αI)x

}
.

Further,

Eu
[
exp
{
α
(
Tu − τu(`)

)}
,

∫ Tu

0

ρu(t) dt > `, ξ1 = d
∣∣ J
(
τu(`−)

)
= v
]

=

∫ ∞

τu(`)

exp
{
α
(
t− τu(`)

)}
eTv exp{QU∗U∗

(
t− τu(`)

)}
QU∗D∗ed dt

= eTv (−QU∗U∗ − αI)−1QU∗D∗ed .

The rest of the proof is easy manipulations.

Remark 7.6. In Propositions 7.2–7.5, the assumption of strictly positive rates can
be dispensed with by working with a reduced state space formed only by the states
having rates > 0. Consider for example Proposition 7.2 and assume ri > 0 for
i = 1, . . . , n, ri = 0 for i = n + 1, . . . ,m with 1 ≤ n < m. The fi(x) then only need
to be defined for i = 1, . . . , n. Dividing A as

A =

(
A11 A12

A21 A22

)
,

where A11 is n × n, A12 n × (m − n) etc., the rate of starting an excursion in
{n+ 1, . . . ,m} from i and ending it by a jump to j is

n∑

k=n+1

ajk

∫ ∞

0

eke
A22tej dt = ajkek(−A22)−1ej ,

and so Proposition 7.2 holds if B(δ) is modified to

∆−1
r; 11

(
A11 −A11(A22)−1A21

)
− δ

2

(
∆−1
r; 11ee

T + eeT∆−1
r; 11

)
,

in obvious block notation for ∆−1
r; 11.

If in the Markov model D consists of a single state, Proposition 7.4 gives the tail
probability of

∫ Tu
0
rJ(t) dt. This is a ‘fluid reward’, and with the extension sketched

in Remark 7.6, Proposition 7.4 reduces to an well-known expression for the marginal
distributions in the Kulkarni class of multivariate PH distributions, [13].
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8 Phase-type modeling

Standard Markov models assume exponential distributions of failure times, repair
times etc. This may seem intrinsically inherent in the Markovian set-up because of
the memoryless property of the exponential distribution, but there is is fact a simple
approach going far beyond this by using PH distributions. We shall not go into
the general formulation but only consider a basic examples, the Erlang distribution
Ep = Ep(λ) with p = 1, 2, . . . stages defined as the sum of p i.i.d. exponential(µ) r.v.’s
(the stages). The density is λptp−1e−λt/Γ(p) where Γ(p) = (p − 1)!. The Erlang is
therefore just a Gamma with integer shape parameter. However, the important fact is
the probabilistic interpretation in terms of the stages which we model as a Markovian
movement between stages 1, 2 and the final one, completion, with transition rate λ
for each of the two transitions. In some example the stages may have a physical
interpretation; e.g., stage 1 may be the real repair and stage 2 checking or warm-up.
Usually, the Erlang(p) distribution is, however, mainly used in a descriptive way to
allow for including non-exponential distributions in a Markovian set-up.

We will consider an elaborate example of the use of the Erlang distribution
which from the general view of the paper also illustrates how identical Markov
processes may lead to different Markov renewal schemes. We look at a system with 3
identical components, each with exponential(λ) operating times, and two repairmen
with Ep(µ) repair times. A Markov state of the whole system is specified with the
number i = 0, 1, 2, 3 of failed components and the stage(s) in which the servers are
currently operating. In Fig. 6, state 2:12 indicates that 2 components are failed and
one server working in stage 1, the other in stage 2. In state 1:2 only one component
is failed, i.e. under repair, and the repairman working on it is in stage 2. In state
3:11, all 3 components are failed, one waiting for repair and the servers working on
the other two are both in stage 1; etc. The system may be parallel as in Figure 5, in
which case U∗ = {0,1:1,1:2,2:11,2:12,2:22} or, e.g., 2-out-of-3 as in Figure 6 so that
U∗ = {0,1:1,1:2}.

3:11

3:12

3:22

2:11

2:12

2:22

1:1

1:2

0

2µ µ

µ 2µ

λ

2µ

λ

µ

µ

λ 2µ

2λ

µ

2λ µ

3λ

Figure 5: E2 repair times, parallel.
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3:11
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3:22

2:11

2:12

2:22

1:1

1:2

0

2µ µ

µ 2µ

λ

2µ

λ

µ

µ

λ 2µ

2λ

µ

2λ µ

3λ

Figure 6: E2 repair times, 2-out-of-3.
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A Some lemmas

The following result is given in [1, Th.VII.4.6]:

Lemma A.1. Consider a Markov renewal equation

Zi(x) = zi(x) +
∑

j∈E

∫ x

0

Zj(x− y) F̃ij(dy) , i ∈ E ,

with E finite and the matrix
(
‖F̃ij‖

)
irreducible. Let rij =

∫∞
0

eγu F̃ij(du), suppose
that for some real γ the matrix R = (rij) has spectral radius 1, and choose ν, h
with νA = ν, Ah = h, νi > 0, hi > 0, i ∈ E. Then Zi(x) ∼ hiC1/C2 where

C1 =

p∑

j=1

νj

∫ ∞

0

eγxzj(x) dx , (A1.1)

C2 =

p∑

k,j=1

νkhj

∫ ∞

0

xeγx F̃kj(dx) . (A1.2)

The following lemma in unsurprising given the Perron-Frobenius theory, but
included here in this precise form for the sake of easy reference:

Lemma A.2. Let for k = 1, 2 A(k) =
(
aij(k)

)
be irreducible non-negative matrices

and let γ(k) = spr
(
A(k)

)
. Assume that A(1) ≥ A(2) and that ai′j′(1) > ai′j′(2)+b >

0 for at least one pair i′j′ and some b > 0. Then γ(1) ≥ c(b)γ(2) for some constant
c(b) > 1 depending only on A(2) and satisfying c(b)→∞ as b→∞.

Proof. Irreducibility of A(2) ensures that for some n and all ij there exists a path
i0i1 · · · in−1in with i0 = i, in = j, all aik−1ik(2) > 0 and ik−1ik = i′j′ for some k′.
Hence

aij(1) > aij(2) + b
n∏

k=1, k 6=k′
aik−1ik(2) > aij(2)

(
1 + bc1(i, j)

)
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for some c1(i, j) > 0. Thus A(1)n ≥ c(b)nA(2)n where c(b) =
(
1 + infi,j c1(i, j)

)n.
But with π(1) the positive left (row) eigenvector of A(1) corresponding to γ(1) and
h(1) the positive right (column) eigenvector of A(2) corresponding to γ(2), we have

π(2)A(1)nmh(1) ∼ γ(1)nmπ(2)h(1) , π(2)A(2)nmh(1) ∼ γ(2)nmπ(2)h(1)

which in view of A(1)n ≥ c(b)nA(2)n and π(2)h(1) > 0 is only possible if γ(1) ≥
c(b)γ(2).

Lemma A.3. Let I =

∫ ∞

0

exp{−µe−q`x} `a−1e−δ` d` . Then I ∼ Γ(δ/q)

µδ/qqa
loga−1 x

xδ/q
as

x→∞.

Proof. Using the substitution y = µe−q`x, we can rewrite I as
∫ µx

0

e−y
( log x+ log µ− log y

q

)a−1( y

µx

)δ/q dy

qy
=

1

µδ/qqa
log x

xδ/q
I1

where

I1 =

∫ ∞

0

ω(x, y)α−1yδ/q−1e−y dy , ω(x, y) = 1 + log µ/ log x− log y/ log x .

Now for x ≥ e and ε > 0, we have
∣∣ω(x, y)

∣∣ ≤ ω∗(y) where ω∗(y) = dmax(yε, y−ε)
for some d = dε. Choosing ε such that ε|α− 1| < α, ω∗(y)α−1yδ/q−1e−y is integrable,
and since ω(x, y)→ 1 as x→∞ with y fixed, the dominated convergence theorem
implies that I1 → Γ(δ/q), concluding the proof.
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