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Abstract

We consider the binary classification problem in the imbalanced case where
the number of samples from the two groups differ. The classification problem is
considered in the high dimensional case where the number of variables is much
larger than the number of samples, and where the imbalance leads to a bias in
the classification. A theoretical analysis of the independence classifier reveals
the origin of the bias and based on this we suggest two new classifiers that
can handle any imbalance ratio. The analytical results are supplemented by a
simulation study, where the suggested classifiers in some aspects outperform
multiple undersampling. For correlated data we consider the ROAD classifier
and suggest a modification of this to handle the bias from imbalanced group
sizes.

1 Introduction

During the last decade much research in the statistical community has been on
classifiers for high dimensional data where the sample size is small, see e.g. Donoho
and Jin (2009), Cai and Liu (2011) and Fan et al. (2012). Typically, this research
has not focussed on the imbalance problem where the sample sizes of the groups
differ. In real life experiments, on the other hand, imbalanced data sets are the
norm rather than the exception. Even if scientists decide to collect a balanced data
set, missing data due to for example patients dropping out of the experiment or
invalid measurements commonly leads to imbalance.

Faced with imbalance most classifiers tend to classify observations from a binary
classification problem to the majority group at the expense of the minority group.
It appears to be overlooked or neglected that this imbalance problem becomes much
more pronounced in high dimensional settings. To briefly illustrate this Table 1 gives
the mean and standard deviation of the probability of correct classification for both
groups in a few instances for the thresholded independence classifier. It is clearly
seen that even rather small imbalances seriously harm classification, pointing to the
need of correcting for all imbalances.

The imbalance problem has, however, been addressed recently in the computer
science and engineering communities. Here the focus has been on reducing to the bal-
anced case by either undersampling or oversampling. Lin et al. (2009), Yang et al.



(2014) and Liu et al. (2009) introduced Meta Imbalanced Classification Ensem-
ble (MICE), Sample Subset Optimization (SSO) and BalanceCascade, respectively.
Those are all ensemble methods, where several classifiers are build on all observa-
tions in the minority group and wisely selected subsamples of the majority group.
Chawla et al. (2002) propose a technique where the minority group is extended by
adding observations on the line segments between an existing minority observation
and its nearest neighbours. The above classifiers are studied empirically rather than
theoretically, and are all shown to handle imbalanced classification problems well.
Typically, the high dimensional situation is not addressed as a problem in itself.

The aim of the present paper is to analyse the imbalance problem in relation
to high dimensional binary classification and, building on this analysis, to suggest
classifiers that are not based on undersampling or oversampling. Ideally, we want
our classifiers to involve a small number of variables only, while maintaining a high
probability of correct classification. To this end we consider a simple classification
problem between two groups with independent normally distributed variables. The
assumption of independent variables is a simplification in relation to most data sets,
but the setting is useful for studying the imbalance problem in high dimensional
settings, and the classifiers are also of practical relevance for correlated variables.

After detecting the origin of the bias problem for imbalanced data in Section 2,
we suggest in Section 3 two new classifiers with, practically, no bias. We discuss the
properties of the suggested classifiers both theoretically and empirically. Turning
to a situation with correlated variables in Section 6, we find that the corrections
introduced for the case of independent variables can be combined with the ROAD
classifier of Fan et al. (2012) for the imbalanced case. This suggests that the in-
troduced correction methods can be helpful for a range of linear classifiers in more
general situations.

Table 1: Average probability of correct classification of the thresholded independence classifier
for a new observation from each of two groups. There are n samples from group 1 and m samples
from group 2. Each observation has 1000 variables of which only 10 have a differential expression
of size 1. Values are based on 1000 simulated data sets.

Group 1 Group 2
n o m Mean Std Mean Std

15 15 70.5 7.0 70.3 7.1
16 14 76.8 6.2 63.2 7.7
18 12 874 45 449 8.7
20 10 949 22 247 7.2

2 The bias problem for imbalanced data

The model we consider is as follows. Let xi,2,...,2, and y1,y2,...,Yn be p-
dimensional observations from group 1 and group 2, respectively. Assume all ob-
servations and variables are independent with distributions z;; ~ N(p;,0?) and
Yij ~ N(p;+ 9505, JJZ). Let z; and y; denote the sample means of variable j for each
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of the two groups, and let sij and 53213‘ be the corresponding sample variances. Define
the imbalance factor as p = (n —m)/(nm), and let f = n+m — 2 be the degrees of
freedom for the joint sample variance. We call ¢, the (scaled) differential expression.
To describe the independence classifier with thresholding we first define for j =

1,...,p
, (n—=1)s2, +(m—1)s;

K — , t:
J n+m-—2

Yj — T ’
\/s§(1/n+ 1/m)

and let w(t) be a weight function. Hard thresholding, which we use throughout
this paper, corresponds to w(t) = 1(|t| > A). The independence classifier with
thresholding allocates a new observation z to group 1 if D(z) < 0 and to group 2 if
D(z) > 0, where

P _ _
yA — T _ _
D(z)=)_ R (27 — 5(Z; +g)]w(t;). (2.1)
=1 i
The probability of correct classification for a new observation from either group

1 or group 2 is 3
@(f—D> and @(5—]3), (2.2)

TD TD
where £p = —D () = Y0, £pj, Ep = D(p+d0) =30 Epy, 75 =30 w(t;) (g —

z;)%07 /s and

Yj — _ i
{pj = —%[M — 33 + )] w(ty),
J
~ g i f 3 B
$nj = [y + 0505 = 3(% + ;)| w(ty).
J
To describe the means of these terms define

(d+6)”

L

T (05m,m) = E[*—2w(t)],

where d ~ N(0,1/n + 1/m), v ~ x*(f)/f with f = n+m —2 and t = (d +

N /u(l/n+1/m).

Proposition 1. Let £ and é% be generic terms in the sums p and fD. Then

E(&)) = 3[(1 = p)éT11(6,n,m) + pTr,1(8,n,m)],
[+ p)oTy1(8,n,m) — pTa1 (6, n,m)].

When § = 0 we simply get E(£%) = —E(£%) = 1pT51(0,n,m). For the case of no
thresholding, w(t) = 1, we get in the general case

E(&%):L[(Pﬁ-p(l/n—i—l/m)], E(é%)ZQ /

) W[(SQ—P(l/nJFl/m)]-



Proof. Letting u = (x+y—2u—10)/oc ~ NO,1/n+1/m),d= (y—z—0)/o ~
N(0,1/n+1/m) and v = s?/a* ~ x*(f)/f with f = n +m — 2, we can write

d+0
0 _

with ¢ = (d+6)/\/v(1/n+ 1/m). Had u and d been independent, £% and &%, would

have the same mean and there would be no bias problem. However, in the imbalanced
case we have

(et dpwl) and & = T2 wulo),

uld ~ N(pd, M-LW) (2.3)

We then obtain

B(&) = B[S pa+ oyuit)] = 32{ [0 4 50— )

and E(€)) is calculated in the same way.
In the case of no thresholding, w(t) = 1, we use that F(1/v) = f/(f —2) so that

E<M):(l+im>% md B(10) =5t

(% n m (%

]

The case of no differential expression (0 = 0) in the proposition shows that if
the expected number pFE(w(t)) of variables with 6 = 0 included in the classifier is
nonnegligible, then also the bias of the classifier is nonnegligible with the majority
class being strongly favoured. In the general case, with § # 0, the formulae point
to a bias in the same direction as in the § = 0 case. This is seen more directly
for the case of no thresholding. Overall, the thresholding does not remove the bias
problem for the imbalanced case. This can be seen more clearly from the left part
of Figure 1. The two dotted curves illustrate the bias for the case of no differential
expression. The figure shows the mean for a single term of £ and £p, conditional on
this term being included in the classifier. The two dashed curves show the bias when
the differential expression is one. The virtue of increasing the threshold is that we
include much fewer of the § = 0 cases and keep most of the 6 = 1 cases. There are,
however, a number of opposing effects. When the threshold is increased, the bias for
each of those null cases included actually increases. Also, since the mean of 7% is
increasing with the threshold, the effect of each of the 6 = 1 cases in the probability
(2.2) is diminished as the threshold is increased. The right part of Figure 1 relates
to the classifiers proposed in the next section.

3 Bias adjusted classifiers

In this section we describe two ways of circumventing the bias problem in the im-
balanced case. The origin of the bias problem is the lack of independence of z; + y;
and y; — Z; as stated in (2.3).
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Figure 1: The left part shows the mean of a generic term £, 5% and 7% conditionally on the term
being included, that is, given that w(t) = 1. Two cases of the differential expression are shown:
0 =0 and § = 1 shown by the subscript on the mean value sign. The right part shows the mean
value of ¢ and € for the two classifiers proposed in Section 3. The threshold here depends on the
differential expression: A =d/4/1/n+1/m — 1. In both figures n = 30 and m = 10.

The first proposal is simply to subtract the conditional mean from (2.3). Thus
we consider

2) = Z Yj S—zfj [Zj _ %(x] +7;) + g(g] — j:j)]w(tj).

Let 5%0 be minus a generic term in the sum with z; replaced by pu;, and let é%o
be a generic term with z; replaced by p; 4+ d;0,. Then, with calculations as in
Proposition 1, we find

1- . 14
E(f%o) = TpéTl,l(dy n, m), E(f%o) = Tp5T1,1(5, n, m)

Most importantly, we see here that the bias originating from those variables with
0 = 0 has been removed. However, there remains a bias for variables with § # 0,
where now the minority group is favoured.

We therefore consider a classifier on the form By(z) — € for some constant e.
Optimally, we want &g, + € = Ep, — € or € = (Ep, — £p,)/2. We estimate &g, and &g,
by a leave-one-out cross-validation and use these to correct the classifier. To this end
we define By(z; ;) to be the classifier based on the reduced sample with z; excluded
and, similarly, By(z;¥;) is based on the reduced sample with y; excluded. Define

= %[ ZBO T 1) %;Bo(yi;yi)}

Since By is a sum over all p variables, we can also write € as a sum € = Z§:1 €;, where

€; depends on the j’th coordinate of the data only. The bias adjusted independence

M|

5



classifier (BAI classifier) is now defined as

_,_E. 1 B _ p _ B _
R [Zj - 5(%’ + ;) + 5(.%’ - xj)]w(tj) - ﬁj}-
j=1 J

Defining £% and £% as the generic terms of —B(u) and B(u + d0), we see that

B(ER) = 2{ (1~ p)T1a(6m,m) -

~ 4] 1—
E(¢p) = 5{(1 +p)T11(0,n,m) + 2p1T171((5,n —1,m)

1 —p 1+ p2

T171<5,n— 1,m)—|— T171((5,n,m—1)},

14

Ti1(0,n,m — 1)},
(3.1)

where p = (n—m)/(n+1), p1 = (n—m—1)/(n+m—1) and ps = (n—m+1)/(n+m—1).
Since € is based on one less observation than By, the BAI classifier is not exactly
unbiased, but the remaining bias is of no practical concern. The bias of the BAI
classifier is illustrated in the right part of Figure 1 for the case n = 30 and m = 10.
When the differential expression 4 is less than 1.5, the bias is very small.

When calculating the probability of correct classification as in (2.2), the denom-
inator is 73 = Y7, w(t;)(§; — T;)%07 /5], that is, the same expression as 7.

We next consider a different approach for removing the bias of the independence
classifier in the imbalanced case. First, we rewrite the independence classifier as

I =71l 7 — T, 1 -
D(2) = = [_ I (o — x ) w(ts -
(2) 5 § n §_1 8? (25 — wij)w(t;) + m § S?

j=1 = i=1

(25 — yij)w(t;)]-

The origin of the bias problem, as given in (2.3), is here seen as the lack of inde-
pendence of z;; (or y;;) and g; — 7;. We suggest to solve this by removing x;; (or
yi;) when calculating the difference y; — z;. Thus let z;(:) and y;(i) be the group
averages when the i’th observation is left out, and let s7(z;) and s7(y;) be the within
group variance when either x; or y; is left out. The corresponding t-value is denoted
either t;(x;) or t;(y;). The leave one out independence classifier (LOUI classifier,
originally suggested in Jensen (2006)) is defined as

+ % Z M(zj = yij)w(t;(yi)) |-

Defining &9 and €0 as a generic term in —L(x) and L(p + 00 ), we see that
E(&) = 40Ty 1(6,n,m —1) and E(§}) = 36T11(6,n — 1,m).

The difference between these two terms is very small so that the LOUI classifier
is almost unbiased. An example is shown in the right part of Figure 1 for the case
n = 30 and m = 10.



When calculating the probability of correct classification, as in (2.2), the denom-
inator is now

N

o

e o)+ o e e

which is somewhat more complicated than for the independence classifier and the
BAI classifier.
A comparison of the two proposed classifiers BAI and LOUI is given in Section 5.

4 Distribution approximation of the error
probability

We are mostly interested in situations where the number of variables with a nonzero
differential expression is quite small, and the sample sizes n and m are not sufficiently
large for a complete separation between the variables with a nonzero differential
expression and those with no differential expression. The classifier therefore typically
includes a limited number of variables and a part of these are null variables. The
probability of correct classification given through &/7 and &/7 in (2.2) therefore
has a fairly large variance, and part of this variance stems from the variance of the
denominator 7. Actually, both £ and 7 turn out to have fairly large variances and a
strong correlation.

We want to be able to look at the mean and variance of &/7 and &/7 for var-
ious combinations of the differential expressions J; in an easy computable way for
the case of independent variables. This means that we want to use only moment
values of generic terms €9, €2 and 7°2. For this purpose we use the following rough
approximation

(77~ N(a+ 7%, 0%), P~ N(a+pr%a%), T*~T(\k).  (41)

The approximation is illustrated in Figure 2. The left subfigure shows the approxi-
mate linear relationship F(£p|T3) &~ o + 373, the center figure shows approximate
normality of £g given 73 and the right subfigure shows the Gamma approximation
to the distribution of 7%. Plots for the thresholded independence classifier and the
LOUI classifier show that the approximation also works well in these cases.

Lemma 2. Under the above approzimation (4.1) we have

£ rA—3) . T(A+3)
B(2) = avs oy o)

)=t = (5(2)).

T A—1 ™

Var (

with similar expressions for € with («, 8) replaced by (&, B)
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Figure 2: Illustration of the approximation (4.1) for the BAIT classifier. The 1000 simulated values
of ép and 7% are for the case n = 30, m = 10, § = 1 and A = 2. There are p = 1000 variables
of which k = 20 are differentiably expressed. The left subfigure shows the approximate linearity
of the conditional mean of g given 73, the center figure shows the conditional normality and the
right subfigure illustrates the Gamma approximation to the distribution of 73.

Proof. We have E({/7) = aE(1/7) + SE(7) and the first result follows from the
properties of a gamma distribution. Next,

Var(¢/7) = Var(a/T + B7) + E(w?/7%)
= (W +a®)E(1/7%) + B2E(?) 4+ 208 — [E(&/7)]%.

and the result for the variance again follows from properties of the gamma distribu-
tion. [

To use this in practice we choose the parameters in (4.1) from moment relations:

% = E(TZ), % = Var(TQ), Cov(¢,7%) = ﬂVar(TZ),

E(€) = a+ BE(T?), Var(¢) = 8% Var(r?) + .

We consider now in detail the moments for the BAI classifier. We write a generic
term of the sums g and 73 as

1 1 « (y
5%:§%O+5238(%)+523g(%)7 TR =,
=1 =1

S

where B{(z;) is a generic term in the sum By(x;;z;) and BY(y;) is a generic term
in the sum By(y;;y;). The first two moments can be simulated directly from stan-
dard normal variables x1, ..., z, and 41, ..., Ym, and calculating all the terms in £%.
However, the computational complexity can be reduced on writing variances and
covariances as sums involving at most two terms from £%. In that case we only need
to simulate @1, x2, Z(3) = > s x;/(n—3), Y1 s(z; — £(3))? (and similar y-terms),
and calculate 3, B(x1) and B{(z2) from these. To this end, and supplementing
the mean values in (3.1), we note the following simplifications.
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Proposition 3. For the case of hard thresholding we have the following moment
relations:

E(ng) = T272(6; n, m), E(Tgl) = T474(5;n,m),

1 1—p)? 1—
E(ﬁ%%) = [ + ( P) 52] Tr5(0;n,m), E(S%OTP;) = Tp5T373(6;n,m),

n-+m 4
0 L—p
E[Bo(l'l)] = — 9 (5T1’1((5;n — 1,m),
1 (1—p1)?
0 21 _ 2 e
BIBY(2)") = |14+ — o+ =P8 | Toa(Gsm — 1, m).

Proof. The proof follows the same lines as the proof of Proposition 1. The only extra
element used is that F[(u— pd)?|d] = 4/(n+m) from (2.3). The requirement of hard
thresholding is used for the simplification w(t)? = w(t). O

4.1 Mean and variance investigations

In Figures 3 and 4 we compare the independence classifier D, the BAI-classifier B
and the LOUlI-classifier L. There are k differentiable expressed variables all with the
same differential expression 6 = 1. We consider the two cases k£ = 20 and k£ = 80.
In all cases we have n = 30 and m = 10. To calculate the mean and variance of £/7
we use the approximation in Lemma 2. To this end, we must calculate moments of
generic terms £°, 50 and 7% for the chosen value of § for the expressed variables,
as well as the case 6 = 0 for the nonexpressed variables. These moments cannot be
calculated analytically, and we use 10° simulated values to estimate the moments.
Note that the mean values ji; and variances o7 do not enter the distribution of £°,

€Y and 7% so that we can fix these at zero and one, respectively.

In Figure 3 the threshold is fixed at A = 2, and we consider the dependency on
the differential expression ¢ for the k expressed variables in the range 0 < § < 1.5.
We consider the two cases k = 20 and k£ = 80, and either p = 1000 or p = 10000
variables. It is clearly seen that the independence classifier D performs much better
on the majority group than on the minority group. For both BAI and LOUI there is
practically no difference between the two groups, and also practically no difference
between BAI and LOUI for the considered range of 4. For this reason only the BAI
classifier is shown in Figure 3. Taking into account the random variation, and looking
at the case p = 10000, we will indeed encounter simulations where the classifier is
worse than a random guess unless the differential expression ¢ is large. For k = 20
and 6 = 1 this will happen in approximately 7% of the simulations. For p = 1000
variables the classifier is much more useful, although there is a considerable variation
in £/7 giving a considerable variation in the probability of correct classification.

In Figure 4 the differential expression is fixed at § = 1, and we consider the de-
pendency on the threshold A. As in Figure 3 the curves for the two classifiers BAI
and LOUI as well as the curves for the two groups for each classifier are indistin-
guisable, and only one curve is shown. Clearly, a high threshold reduces the strong
bias of the independence classifier D. Still, in most cases the median probability
of correct classification for the minority group is below 0.5. Looking for the value
of the threshold A, where the mean value of {g/7p is maximized, no clear optimal

9
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Figure 3: Performance of different classifiers for the case n = 30, m = 10 and with the threshold
A = 2. In the left part the means of the classification indices {p/7p and £p/7p are compared to
the mean of £ /75 for the case of p = 1000 variables with & = 20 having the differential expression
6, the remaining variables having no differential expression. In the right part the mean of the
classification index £g/7p is shown for different values of p and k. The value of k is shown in
the legend, and the lower and upper curves of a specific line type correspond to p = 10000 and
p = 1000, respectively. For the chosen settings of the parameters, the means of {5 /75, £ /7 and
§~ /71 are indistinguisable from the mean of {g/75. The vertical lines show plus and minus two
times the standard deviation.

--—\_F(ED/TD) o T
om - o L -
Q4
~
n o — k=20
4 ~ « || - k=80
=R 3
g o 1o LT
s E(&g/Tg) A n ’
s w
= ° o |
—
T 0
;’ O
~ |t EE) o |
| o
I T T T T T T T T T T T T T
0.0 1.0 2.0 3.0 0.0 1.0 2.0 3.0
Threshold A Threshold A

Figure 4: Performance of different classifiers for the case n = 30, m = 10 and with the differential
expression 6 = 1. In the left part the means of the classification indices £p/7p and é p/Tp are
compared to the mean of £g/7p for the case of p = 1000 variables with k& = 20 having the
differential expression § = 1, the remaining variables having no differential expression. In the right
part the mean of the classification index {g/7p is shown for different values of p and k. The value
of k is shown in the legend, and the lower and upper curves of a specific line type correspond to
p = 10000 and p = 1000, respectively. For the chosen settings of the parameters, the means of
&p/7B, &/ and &1, /11, are indistinguisable from the mean of {5 /75. The vertical lines show plus
and minus two times the standard deviation.
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choice is seen for the case of p = 10000 variables. For p = 1000 the optimal value is
between 2 and 2.5. However, the gain in mean value is partly reduced by having a
large spread of 5 /75 when the threshold is increased.

5 Simulations

In this section we report on simulations to compare the suggested classifiers BAI and
LOUT for the case of imbalanced data. We include also in the comparison a commonly
used undersamling classifier, namely EasyEnsemble from Liu et al. (2009) built on
top of the thresholded independence classifier. To write this explicitly, assume n > m
and let D(z; A) be the independence classifier from (2.1) based on a subset A of the
observations x1, ..., x, from group 1 and all the observations from group 2 and with
|A| = m. The undersampling classifier is based on

_ %ZD@;A», (5.1)

where A;,..., A, are independent random subsets. In the results in Table 2 below
we use a value of ¢ such that the probability of using all the samples in the training
of the classifier is at least 0.95.

We include the case of a fixed threshold in the comparisons, but we are mostly
interested in the situation where the threshold A is chosen suitably for each sim-
ulated data set. In the simulations we have searched for a value of A in the range
where a t-test will give between 1 and 30 false positives among p independent tests.
For any classifier H(z) we have used a leave-one-out cross-validation to choose A.
Instead of using the number of correctly classified samples we use a measure that
depends continuously on the threshold A. Define

n

£= —%ZH(mZ,xZ) and f

i=1

W Do H ),

where H(z;x;) is the classifier constructed from the reduced sample with z; left out
and H(z;y;) defined similarly. Also let 72 be the empirical variance of the terms

that enters & and f We then use ®(£/7) and @(5/7') to choose A. Since we often
see strong negative correlation between & and &, we have opted against using the
average of the two terms for selecting A. Instead we use

arg max min{®(£/7), B(£/7)}.

For the LOUI classifier it is easy to see that é = é so that it is immaterial how
the two terms are combined to choose A. We compare the above cross-validation
choice with an optimal oracle selected threshold based on the true mean values,
where we maximize min{®(&/7), ®(£/7)} in the same range of A values as in the
cross-validation approach.

The numbers in Table 2 are based on 1000 simulated data sets for each setting. It
is clear from the table that the independence classifier D has an unacceptable large

11



bias, even for the case of the optimal threshold. The bias for each of the LOUI, BAI
and EasyFEnsemble classifiers is very small, favouring the minority group in the fixed
threshold and optimal threshold cases, and favouring the majority group in the cross-
validation case. The EasyEnsemble classifier has the smallest bias, but at the same
time also the smallest probability of correct classification for both groups, making it
less optimal than the BAI and LOUI classifiers. The LOUI classifier typically has a
slightly larger probability of correct classification as compared to the BAI classifier.
However, this comes at the cost of including many more variables in the classfier.
The EasyEnsemble classifier includes even more variables than the LOUI classifier.

Generally, the fixed threshold and the cross-validation threshold gives approx-
imately the same probability of correct classification, but with the use of fewer
variables for the cross-validation approach. Also, the cross-validation approach typ-
ically lowers the negative correlation between £/7 and 3 /7. For the BAI and LOUI
classifiers the optimal threshold gives rise to a fairly large positive correlation. The
reason for this is that in many instances the threshold will be chosen close to where
the two curves for £ /7 and é /7, as a function of A, intersects, so that the two values
are almost identical.

In general, the BAI classifier is our preferred method since the bias is small, it
has a comparable good probability of correct classification, and it uses only a small
number of the variables for constructing the classifier.

5.1 Breast Cancer Data

We illustrate the imbalance bias problem with the breast cancer data from Sotiriou
et al. (2003). There are 99 women in the study divided into two groups according to
their estrogen receptor status. The ER+ group (65 women) are those women where
the cancer has receptors for estrogen, and the ER- group (34 women) are those
without receptors. In the original data there are 7650 variables, but we use here
only the subset with p = 4327 variables measured in all 99 samples. One hundred
times we split the data into a training set and a test set, the latter consisting of 20
randomly chosen observations from each group. The training set thus has 45 women
in the ER+ group and 14 in the ER- goup, an imbalance ratio around 3. The
threshold in the different classifiers is chosen through leave-one-out cross-validation,
where the range considered corresponds to an expected number of false positives out
of 4327 variables to be between 1 and 30.

In Table 3 we compare BAI, LOUI and EasyEnsemble to the thresholded inde-
pendence classifier. The table gives the percentage of correctly classified samples,
both when evaluated on the training set and on the test set. As expected, the
independence classifier shows no bias on the training set, but has a considerable
bias when evaluated on the test set. This bias is removed for all three alternatives
BAI, LOUI and EasyEnsemble. The bias correction has the consequence that on the
training set BAI, LOUI and EasyEnsemble perform best on the minority group. BAI
obtains the same performance as LOUI and EasyEnsemble using much less variables,
roughly one half of the variables used in LOUI and one third of the variables used
in EasyEnsemble. It seems slightly astonishing for this data set, that although a
large number of variables seem to be true positives, the classification error is still
around 16%.
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Table 2: Comparison of the classifiers D, LOUI, BAI and EasyEnsemble for various values of p,
n and m based on 1000 simulated data sets. There are k = 20 differential expressed variables with
0 = 1. The Fized columns have the threshold fixed at A = 2.5 when p = 1000 and A = 3 when
p = 10000. In the C'V columns the threshold is selected by leave-one-out cross-validation for each
data set, while Opt denotes the optimal threshold calculated from the true parameters.

D LOUI BAI EasyEnsemble
p n m fixed (6AY opt Fixed Ccv Opt Fixed CV Opt Fixed Ccv Opt

103 30 10

E(¢/T) 2.00 1.55 1.56 119 120 121 114 114 1.19 1.13 1.10 1.12
E(£/T) 0.32 0.58 0.81 1.25 1.14 127 118 1.14 1.25 1.14 1.08 1.16
Std(¢/7) 023 0.38 0.32 029 028 021 029 028 0.22 0.26 0.27 0.23
Cor(¢/T,€/T) —0.09 —0.10 0.08 —028 —0.15 0.42 0.06 —0.13 044 —0.17 —0.12 0.06
E(N) 285 12.3 106 68.0 51.7 55.1 285 226 222 165.8  121.7  144.6
Std(N) 4.7 9.1 5.2 7.3 340 27.0 47 141 116 11.4 74.3 65.1
103 50 10

E(&/T) 228 1.76  1.77 1.30 128 1.34 1.24 122 131 1.20 1.17 1.21
E(£/T) 0.31 0.65 0.87 1.41 128 141 135 1.30 1.39 1.24 1.20 1.26
Std(¢/7) 0.22 0.36 0.30 020 024 021 029 025 021 0.26 0.25 0.23
Cor(¢/7,€/T) —0.12 —0.08 011 —0.33 —0.11 043 0.10 —0.13 048 —0.23 —0.12 0.03
E(N) 279 11.7 109 62.3 380 50.3 279 193 221 254.0 1754  226.5
Std(N) 4.4 7.1 4.3 7.0 288 24.1 44 124  10.6 13.6  110.0 93.1
10* 30 10

E(/T) 235  1.03  0.99 0.60 0.68 0.64 055 058 0.63 0.53 0.50 0.52
E(£/T) —1.22 —0.02 0.21 0.63 0.53 0.68 058 054 0.68 0.52 0.46 0.52
Std(¢/7) 023 041 0.35 032 034 024 031 031 024 0.26 0.29 0.23
Cor(¢/1,6/T) —0.35 —0.21 015 —0.56 —021 0.58 —0.15 —0.09 058 —0.49 —0.14 0.17
E(N) 55.7 6.3 45 193.0 63.8 60.1 55.7 176 155 639.1 177.3  252.7
Std(N) 7.2 7.1 3.2 13.5  50.3 40.8 72 143 115 25.1 146.1 148.6
10* 50 10

E(/T) 277 129 1.27 0.70 0.84 0.80 0.64 072 0.77 0.59 0.59 0.61
E(£/T) —141  0.05 0.26 079 070 0.86 0.72 073 0.85 0.60 0.59 0.64
Std(¢/7) 024 042 0.35 032 031 025 030 030 025 0.28 0.30 0.25
Cor(¢/T,6/T) —0.32 —026 011 —0.44 —0.18 052 —0.02 —0.14 0.52 —0.44 —0.20 0.05
E(N) 48.8 6.1 50 157.9 542 544 488 182 16.0 1066.5 3352  480.3
Std(N) 6.7 5.5 3.0 12.0 443 36.4 6.7 143 112 30.7  250.7 277.4

Table 3: Comparison of the thresholded independence classifier, BAI, LOUI and EasyEnsemble on
the Breast Cancer data from Sotiriou et al. (2003). The data are randomly divided into a training
set with n = 45 and m = 14 observations in the two groups ER+ and ER-, and a test set with
20 observations in each group. Numbers in the table are based on 100 random splits. The row N
gives the number of variables included in the classifier and the remaining entries are percentage
correctly classified samples.

D LOUI BAI EasyEnsemble
Variable Mean Std Mean Std Mean Std Mean Std

Training ER+ 94.8 2.2 89.7 3.7 893 39 89.6 3.3
Training ER- 921 6.2 944 51 944 50 94.7 4.6

Test ER-+ 905 55 841 72 839 71 846 6.9
Test ER- 755 82 833 6.2 838 59 830 6.0
N 229 127 409 198 232 121 602 270
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6 Correlated data: BA-ROAD and LOU-ROAD

In many high dimensional settings the variables will be correlated, and classifiers
build on the independence classifier will be suboptimal. The Fisher classifier based
on an estimate of the inverse covariance matrix is not directly applicable when
p > n. As an alternative Fan et al. (2012) suggested the Regularized Optimal Affine
Discriminant (ROAD) classifier based on

p
R(z) = rilz — 3z + )],

j=1

where
r= argmin 7% (6.1)

(y—z)Tr=1,|rh <c
with 3 the p X p estimated covariance matrix, and with the tuning parameter c
chosen by cross-validation. Fan et al. (2012) introduced an efficient algorithm for
calculating r, and simulations with n = m show that ROAD performs better for
correlated data as compared to a number of alternative classifiers including the
independence classifier. However, as seen from the first two columns of table 4, in
the inbalanced case the ROAD classifier can have an appreciable bias. Inspired by
the BAI and the LOUI corrections to the independence classifier, we propose the
following adjustments to the ROAD classifier. First define

Bo,r(z) = i%‘ {Zj - %(551 +75) + g(ﬂj - 97?;')]7

j_—

where By g(z;; ;) and By g(y;; y;) are defined from By g in the same way as By (x;; ;)
and By (yi; v;) are defined from By, that is, By p is constructed from a reduced sample
with one observation left out and then evaluated on the excluded observation. The
BA-ROAD classifier is next defined as

BR(Z) = BOR(Z) — €R.
In a similar spirit we define the LOU-ROAD classifier as
LTl & 1 &
Lr(z) =5 > [E > i)z —mi) + - > i) (2 — yij)],
j=1 =1 i=1
where 7(z;) and r(y;) are calculated as in (6.1) based on the reduced sample with
either x; or y; left out.

For each of the above classifiers the probability of correct classification is evalu-

ated through élé and 72 as in (2.2). Here £ is minus the value of the classifier evalu-

ated at u, and £ is the value at pu+d0. For both of R and By we have 72 = >°F_ o212

j=173"J3"
and for Lp the formula becomes
1< 1 — 1 & 2
2= 23S )+ S )]
j=1 i=1 i=1
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We evaluate BA-ROAD and LOU-ROAD via a set of simulations. For comparison
we include the EasyEnsemble undersampling classifier built on top of ROAD, that
is, the classifier (5.1) with D replaced by R. In each simulation the value of ¢ in
(6.1) is determined by five-fold cross-validation for each of the classifiers. Also, we
include the BAI independence classifier where the threshold A is chosen by five-fold
cross-validation searching over a region with 5 to 30 expected false positives. We
consider the setting with n = 30, m = 10 and p = 1000 variables of which the
first 20 variables have differential expression 1, the remaining variables having no
differential expression. The numbers in Table 4 are based on 100 simulated values.
We consider three models for the covariance matrix >:

Model 1: Zzz = 1, Eij - 02, { 7é ju
Model 2:  %;; = 0.8/,
) 1
Model 3: ¥ = cor(zp + Mlp),
n-—+m

where f]p is the empirical variance based on the data in Golub et al. (1999), I, is
the identity matrix and Cor is the function that transforms a variance matrix to a
correlation matrix (21, has been obtained by choosing p consequtive variables where
the distribution of the correlations resembles the distribution for all variables).
First of all, Table 4 shows that ROAD itself has a considerable bias in the
imbalanced case. The bias is almost eliminated with the use of BA-ROAD, LOU-
ROAD or the EasyEnsemble-ROAD classifier. Generally, the performance of BA-
ROAD is comparable to that of ROAD in terms of the number of variables included
in the classifier. LOU-ROAD and EasyEnsemble-ROAD perform slightly better on
average, but at the cost of including many more variables than BA-ROAD. In terms

Table 4: Comparison of ROAD, BA-ROAD, LOU-ROAD, EasyEnsemble-ROAD (EE-ROAD) and
the BAT independence classifier for the case n = 30, m = 10 and p = 1000 variables of which the
first £k = 20 have differential expression 6 = 1. Values are based on 100 simulated data sets. The
variable N is the number of variables included in the classifier and Cor is the correlation between

¢/7 and £/7.

ROAD LOU-ROAD BA-ROAD EE-ROAD BAI
Model Variable Mean Std Mean Std Mean Std Mean Std Mean Std
1 §/T 1.28 033 1.06 026 092 027 116 028 1.06 0.52
&/ 0.40 025 1.05 028 084 029 112 031 134 0.55
N 24 21 138 65 35 20 147 63 15 12
Cor —0.22 —-0.10 —0.22 —-0.01 —0.00
2 §/T 0.97 027 0.63 032 057 028 077 037 1.04 0.73
&/ 0.22 031 066 035 058 032 074 035 113 0.52
N 10 11 49 57 16 18 69 71 15 9
Cor —0.26 —-0.33 —0.22 —0.11 0.10
3 &/T 145 029 122 021 113 025 123 023 1.13 048
&/ 074 025 128 029 1.12 028 121 033 121 0.61
N 28 18 116 64 34 17 105 64 16 18
Cor 0.19 0.04 0.06 —0.05 —-0.49
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of mean values the BAI independence classifier performs as good as the ROAD
based classifiers. However, it has a somewhat larger spread. A clear message from
this small simulation study is that the bias of the ROAD classifier can be handled
by using the classifiers we propose in this paper.

7 Conclusion

In this paper we have analyzed the independence classifier in order to study the
bias originating from imbalanced data sets. It has been found that a correction
for bias is needed also for minor imbalances when considering classification in the
high dimensional case. The thresholded independence classifier favours the majority
group, and in the high dimensional case this can lead to classifying practically all
observations to the majority group. The two suggested classifiers virtually remove
the bias and have almost the same error rate.

The BAI classifier performs better in the sense that it obtains the same error rate
as the LOUI classifier using much fewer variables. This can be of some practical value
when implementing a classifier as a diagnostic tool in a medical setting. Simulations
reveal that both classifiers have a slightly lower error rate than a variant of multiple
undersampling, which is currently considered among the best methods for correcting
imbalance (Blagus and Lusa, 2013). Multiple undersampling uses a high number of
variables which also makes it less attractive.

For the case of correlated variables the ROAD classifier turns out to have a bias
in the imbalanced case. We have suggested a modification of the ROAD classifier
that removes the bias, and simulations show a good performance of this classifier.
Overall, our way of correcting for bias seems of value for a broad range of linear
classifiers.
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