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Abstract

We consider a dependent thinning of a regular point process with the aim of obtaining
aggregation on the large scale and regularity on the small scale in the resulting target
point process of retained points. Various parametric models for the underlying processes
are suggested and the properties of the target point process are studied. Simulation and
inference procedures are discussed when a realization of the target point process is ob-
served, depending on whether the thinned points are observed or not. The paper extends
previous work by Dietrich Stoyan on interrupted point processes.

Keywords: Boolean model, chi-square process, dependent thinning, determinantal point
process, interrupted point process, pair correlation function.

1 Introduction

In the spatial point process literature, analysis of spatial point pattern datasets are of-
ten classified into three main cases (see e.g. Cressie (1993), Diggle (2003), and Møller and
Waagepetersen (2004)):

(i) Regularity (or inhibition or repulsiveness)—modelled by Gibbs point processes (Ruelle,
1969; Lieshout, 2000; Chiu et al., 2013), Matérn hard core models of types I-III (Matérn,
1986; Møller et al., 2010), other types of hard core processes (Illian et al., 2008), and
determinantal point processes (Macchi, 1975; Lavancier et al., 2015).

(ii) Complete spatial randomness—modelled by Poisson point processes (Kingman, 1993).

(iii) Aggregation (or clustering)—modelled by Poisson cluster processes (Daley and Vere-
Jones, 2003), Cox processes (Cox, 1972), and permanental point processes (Macchi,
1975; McCullagh and Møller, 2006).

A popular and simplistic way to determine (i)-(iii) is in terms of the so-called pair correlation
function (Illian et al., 2008): Denote ρ and g the intensity and pair correlation functions
for a spatial point process defined on the d-dimensional Euclidean space Rd (with d = 2 or
d = 3 in most applications; formal definitions of ρ and g are given in Section 2.1). For ease
of presentation, we assume second order stationarity and isotropy, i.e. ρ is constant and for
any locations x1, x2 ∈ Rd, g(x1, x2) = g0(r) depends only on the distance r = ‖x1 − x2‖.
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Intuitively, ρdx is the probability that the process has a point in an infinitesimally small
region of volume (Lebesgue measure) dx, and for r = ‖x1 − x2‖ > 0, g0(r)ρ2 dx1 dx2 is the
probability that the process has a point in each of an infinitesimally small region around x1, x2

of volumes dx1, dx2. Typically, g0(r) tends to 1 as r → ∞, and we are usually interested in
the behaviour of g0(r) for small and modest values of r. We expect in case of (i), g0(r) < 1
when r is small, and g0(r) is less than or fluctuating around 1 otherwise; in case of (ii), g0 = 1;
and typically, in case of (iii), g0 > 1.

For applications the classification (i)-(iii) can be too simplistic, and there is a lack of useful
spatial point process models with, loosely speaking, aggregation on the large scale and reg-
ularity on the small scale. One suggestion of such a model is a dependent thinning of e.g.
a Poisson cluster point process where the thinning is similar to that in a Matérn hard core
process (see Andersen and Hahn (2015)) or to that in spatial birth-death constructions for
Gibbs point processes (see Kendall and Møller (2000) and Møller and Waagepetersen (2004)).
Theoretical expressions for intensity and pair correlation of such Matérn thinned point pro-
cesses have been derived by Palm theory, and their numerical evaluation can be obtained by
approximations, cf. Andersen and Hahn (2015), while the spatial birth-death constructions
are mathematical intractable. Another possibility is to consider a Gibbs point process with
a well-chosen potential that incorporates inhibition at small scales and attraction at large
scales. A famous example is the Lennard-Jones pair-potential (Ruelle, 1969), and other spe-
cific potentials of this type can be found in Goldstein et al. (2015). Unfortunately, in general
for Gibbs point processes the intensity and the pair correlation function are unknown and
simulation requires elaborate MCMC methods (Møller and Waagepetersen, 2004).

This paper discusses instead a model for a spatial point process X obtained by an independent
thinning of a spatial point process Y where the selection probabilities are given by a random
process Π = {Π(x) : x ∈ Rd} ⊆ [0, 1]: We view X and Y as random locally finite subsets of
Rd, and let

X = {x ∈ Y : Π(x) ≥ U(x)} (1)

where U = {U(x) : x ∈ Rd} consists of independent uniformly distributed random variables
between 0 and 1, and where Y,Π, U are mutually independent. Dietrich Stoyan (Stoyan, 1979;
Chiu et al., 2013) called X an interrupted point process, which we agree is a good terminology
when each Π(x) is either 0 or 1; indeed, in all Stoyan’s examples of applications, this is the
case, though the general theory presented is not making this restriction. Clearly, Π should not
be deterministic, because then the pair correlation functions for X and Y would be identical
(gX = gY ). We have in mind that a realization of X is observed within a bounded window W ,
while we treat (Π, U) as being unobserved, and Y as being or not being observed within W .
For instance, we can think of Y as describing an inhibitive behaviour of some plant locations
under optimal conditions, and X as the actual plant locations due to unobserved covariates
(e.g. light conditions, level of water underground, and quality of soil).

Our idea is that it is possible to choose models for Y from the class (i) above together
with models for Π such that X exhibits small scale regularity and large scale aggregation.
Some examples of simulated realisations of this kind of models are shown in Figure 1. Our
idea is demonstrated in Sections 3-5 and it can be briefly understood as follows. Section 2.1
establishes a simple relationship between the pair correlation functions for X and Y : For
simplicity, assume second order stationarity and isotropy of both Y and Π, whereby our
target point process X becomes second order stationary and isotropic. The (isotropic) pair
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correlation function of X is given by

gX,0(r) = M0(r)gY,0(r) (2)

where, setting 0/0 = 0,

M0(r) = M(x1, x2) =
E[Π(x1)Π(x2)]

E[Π(x1)]E[Π(x2)]
, x1, x2 ∈ Rd, (3)

depends only on r = ‖x1 − x2‖. For example, if Π is positively correlated (i.e. M0 > 1) and
Y is a determinantal point process (this process is described in Section 2.2), then gY,0 ≤ 1
and in accordance with (2) we may obtain a behaviour of gX,0 as we wish, namely that gX,0
is smaller respective larger than 1 on the small respective large scale. Examples appear later
in Figure 2.
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Figure 1: Examples of realizations within a unit square of X given by the models 1.-4. in
Section 4.3: In the first row Y is a determinantal point process, in the second row Y is a
Matérn hard core process of type II, in the first column − log Π is a χ2-process, and in the
second column Π is the characteristic function for a Boolean disc model.

We thank Ute Hahn for reminding us about Stoyan’s interrupted point process in Stoyan
(1979), Chiu et al. (2013), and Kautz et al. (2011). In Stoyan (1979) and Chiu et al. (2013) he
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considered mainly the planar case where Y is a Matérn hard core process of type II and where
Π is the characteristic function of a motion invariant random closed set whose distribution
apart from E[Π(o)] and M0(r) is unspecified (o denotes the origin in Rd). In contrast we
consider various models for both Y and Π, where e.g. our χ2-process model for − log Π seems
more realistic for applications like the example studied in Section 5.1. Moreover, we discuss
simulation and parametric inference procedures depending on whether Y is observed or is a
latent process. Finally, we notice that the paper Kautz et al. (2011) is in another direction
than ours, since they consider Y to be a Matérn cluster process (which is of class (iii) above)
and Π to be the characteristic function for a motion invariant random closed set, i.e. X
becomes of class (iii).

Our paper is organized as follows. Section 2 recalls some background material and deals with
some inhibitive point process models for Y where ρY and gY,0 are known, namely determinan-
tal point processes and Matérn hard core models of type I or II. Section 3 introduces models
for Π, based on transformed Gaussian processes and Boolean models, which combined with
the models for Y allow us to further study the behaviour of gX,0. Section 4 discusses first
simulation of (Y,Π, X), and second inference for parametric models for Y and Π, depending
on whether Y is observed or not. Finally, Section 5 fits parametric models to examples of
spatial point pattern datasets using the methodology from Section 4.

2 Preliminaries

Let the situation be as in Section 1. This section recalls the definitions and some properties of
product densities for a spatial point process in general and for determinantal point processes
and Matérn hard core models of types I-II in particular.

2.1 Product densities and assumptions

For n = 1, 2, . . ., suppose that ρ
(n)
Y : Rdn 7→ [0,∞) is a Borel function satisfying the so-called

Campbell formula

E

6=∑

x1,...,xn∈Y
f(x1, . . . , xn) =

∫
· · ·
∫
f(x1, . . . , xn)ρ

(n)
Y (x1, . . . , xn) dx1 · · · dxn (4)

for any non-negative Borel function f , where
∑6= means that x1, . . . , xn are pairwise distinct.

Then ρ
(n)
Y is called an nth order product density of Y . Such a function is apart from a Lebesgue

nullset uniquely determined by the Campbell formula. Henceforth, for ease of presentation,

we ignore nullsets. In particular, ρY = ρ
(1)
Y is the intensity function. Furthermore, setting

0/0 = 0, the pair correlation function is defined by gY (x1, x2) = ρ
(2)
Y (x1, x2)/[ρY (x1)ρY (x2)].

The usual practice is to set ρ
(n)
Y (x1, . . . , xn) = 0 if xi = xj for some i 6= j. An exception is

the case of a Poisson process Y where often one takes ρ
(2)
Y (x1, x2) = ρY (x1)ρY (x2) so that

gY (x1, x2) = 1 if ρY (x1)ρY (x2) > 0.

Recall that we assume for simplicity that Y is second order stationary and isotropic. We also
assume that the first and second order intensity functions exist. Thus we can consider the
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versions where ρY is constant and where gY (x1, x2) = gY,0(r) depends only on the distance
r = ‖x1 − x2‖. We call g0 the isotropic pair correlation function. We furthermore assume
ρY > 0 (otherwise Y is empty, which is not a case of interest).

Similarly, ρ
(n)
X and gX,0 denote the nth order product density and the isotropic pair correlation

function of X. By conditioning on Y and using (1) and (4) it is straightforwardly verified that

ρ
(n)
X exists whenever ρ

(n)
Y exists, in which case

ρ
(n)
X (x1, . . . , xn) = E[Π(x1) · · ·Π(xn)]ρ

(n)
Y (x1, . . . , xn).

Consequently, for any r ≥ 0,

ρX = qρY , gX,0(r) = M0(r)gY,0(r), (5)

where q = E[Π(o)] denotes the mean selection probability. Equation (5) is similar to results
given in Stoyan (1979).

For later purposes, denote X̄ = Y \ X the complementary set of X in Y . Then, using an
obvious notation,

ρ
(n)

X̄
(x1, . . . , xn) = E[(1−Π(x1)) · · · (1−Π(xn))]ρ

(n)
Y (x1, . . . , xn)

and hence by (3) and (5),

ρX̄ = (1− q)ρY , gX̄,0(r) =
1− 2q + q2M0(r)

(1− q)2
gY,0(r). (6)

Finally, the cross pair correlation between X and X̄ (see e.g. Møller and Waagepetersen (2004)
for a definition) is given by

gXX̄,0(r) =
q − q2M0(r)

q(1− q) gY,0(r). (7)

2.2 Determinantal point processes

Let C be a complex function defined on Rd×Rd and Y be a determinantal point process (DPP)
with kernel C. By definition this means that for any n = 1, 2, . . . and any x1, . . . , xn ∈ Rd,
ρ

(n)
Y (x1, . . . , xn) exists and is equal to the determinant of the n× n matrix with (i, j)th entry
C(xi, xj). For background material on DPPs, including conditions for their existence, see
Lavancier et al. (2015) and the references therein.

For simplicity and specificity, we assume that C is a stationary and isotropic covariance func-
tion, i.e. C(x, y) = C0(‖x−y‖) is real and non-negative definite. Clearly, Y is then a stationary
and isotropic DPP, and we write Y ∼ DPP(C0). We also assume that C0(‖x‖) is continuous
and square integrable, i.e.

∫∞
0 rd−1|C0(r)|2 dr < ∞. By Theorem 2.3 and Proposition 3.1 in

Lavancier et al. (2015), the existence of DPP(C0) is then equivalent to that ϕ0 ≤ 1, where

ϕ0(r) =

{
2
∫∞

0 C0(s) cos(2πrs) ds if d = 1
2π

rd/2−1

∫∞
0 C0(s)Jd/2−1(2πrs)sd/2 ds if d = 2, 3, . . .
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is the spectral density associated to C0 and Jd/2−1 is the Bessel function of order d/2− 1.

Observe that
ρY = C0(0) (8)

which is assumed to be strictly positive, and

gY,0(r) = 1− C0(r)2/ρ2
Y (9)

is 1 minus the squared correlation function. This implies that gY ≤ 1 which is one among
many other properties confirming that a DPP is inhibitive, cf. Lavancier et al. (2015) and
Biscio and Lavancier (2015).

2.3 Matérn hard core models of types I-II

Following Matérn (1986) we define hard core point processes as follows. Let Φ be a stationary
Poisson process on Rd with intensity ρΦ > 0, D > 0 a hard core parameter, and V = {V (x) :
x ∈ Rd} a random process of independent uniformly distributed random variables between
0 and 1, where Φ and V are independent. Denote ωd = πd/2/Γ(1 + d/2) the volume of the
d-dimensional unit ball, and kd(r,D) the volume of the intersection of two d-dimensional
balls of radii D and distance r between their centres. The Matérn hard core model of type I,
denoted YI , is given by the points in Φ which are not D-close to some other point in Φ, i.e.

YI = {x ∈ Φ : ‖x− y‖ > D whenever y ∈ Φ \ {x}}.

For the Matérn hard core model of type II, denoted YII , we interpret V (x) as the birth time
of x and let YII consist of the points x ∈ Φ such that no other D-close point in Φ is older
than x, i.e.

YII = {x ∈ Φ : ‖x− y‖ > D whenever y ∈ Φ and V (x) > V (y)}.

These hard core point processes are stationary and isotropic with intensities

ρYI = ρΦ exp
(
−ρΦωdD

d
)
, ρYII =

1− exp
(
−ρΦωdD

d
)

ωdDd
, (10)

and pair correlation functions

gYI ,0(r) = 1(r > D) exp(ρΦkd(r,D)) (11)

and

gYII ,0(r) =1[r > D]
2ωdD

d

(ωdDd − kd(r,D)) (1− exp (−ρΦωdDd))[
1− 1− exp

(
−ρΦ

(
2ωdD

d − kd(r,D)
))

(2ωdDd − kd(r,D)) (1− exp (−ρΦωdDd))
ωdD

d

]
(12)
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where 1(·) is the indicator function. Note that YI ⊆ YII and ρYI < ρYII . The pair correlation
functions in (11)-(12) are continuous except at r = D, 0 when r ≤ D, strictly decreasing for
r ∈]D, 2D[, and 1 when r ≥ 2D. Finally, note that kd(r,D) = 0 if r ≥ 2D, and

kd(r,D) =





2D − r if d = 1

2D2 arccos
(
r

2D

)
− r

2

√
4D2 − r2 if d = 2

4π
3 D

3
(

1− 3r
4D + r3

16D3

)
if d = 3

(13)

if r ≤ 2D.

3 Specific models for the selection probabilities

Section 3.1 discusses the implications of (5) in general, while Sections 3.2-3.3 consider two
classes of models for Π where explicit expressions for our main characteristics (q, ρX ,M0, gX,0)
are available.

3.1 General results and conditions

In the remainder of this paper, to exclude non-interesting cases, we focus on the following
situation. We always assume that Π(o) has a positive variance or equivalently that M0(0) > 1,
since we do not want Π to be deterministic. In addition, we always assume that ρX > 0 (or
equivalently ρY > 0 and q > 0), because otherwise X would be almost surely empty. Since it
is typically the case that an isotropic pair correlation function tends to 1 as the distance tends
to infinity, we want M0(r) to tend to 1 as r →∞, cf. (5). Therefore we are not so interested
in the case where Π(x) does not depend on the location x, since then M0 is a constant ≥ 1
and Π is deterministic if M0 = 1.

We have gX,0 = gY,0 if and only if Π is uncorrelated, cf. (3) and (5). If Π is non-negatively
correlated, i.e. M0 ≥ 1, then gX,0 ≥ gY,0, so gY,0 cannot cross 1 before gX,0 crosses 1. If Π is
positively correlated, i.e. M0 > 1, then gX,0 > gY,0. If Π can be negatively correlated, a rather
peculiar behaviour of gX,0 may happen and we shall exclude this case in our specific models.

By Cauchy-Schwartz inequality and since Π2 ≤ Π, we have for r = ‖x1 − x2‖ ≥ 0,

M0(r) =
E [Π(x1)Π(x2)]

q2
≤
√

E [Π(x1)2]
√

E [Π(xs)2]

q2
≤
√

E [Π(x1)]
√

E [Π(xs)]

q2
=

1

q
.

Combining this with (5), we obtain an upper bound: gX,0 ≤ gY,0/q.
Define τY = sup{τ ≥ 0 : gY,0(r) = 0 whenever r ≤ τ}. When τY > 0 we say that Y is a
hard-core process with hard-core parameter τY . Assume that M0(r) > 0 for all r ≥ 0; this is
satisfied for all the models of Π specified later in this paper. Then τX = τY , cf. (5). Hence X
is a hard-core process if and only if Y is a hard-core process.

At the small scale, i.e. when r ≤ τ where τ > 0 is a sufficiently small constant, we have the
following.
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(a) Assume M0 is continuous. Since M0(0) > 1, we can assume that M0(r) > 1 for r ≤ τ .
Hence, by (5), for r ≤ τ , either gX,0(r) > gY,0(r) or gX,0(r) = gY,0(r) = 0.

(b) Assume both M0 and gY,0 are continuous. Then gX,0 is continuous, and so we can assume
that gY,0 ≤ gX,0(r) < 1 for r ≤ τ . Consequently, at distance r ≤ τ , the inhibitive
behaviour of Y (quantified in terms of its pair correlation function) is preserved in X
but it cannot be stronger.

In brief we will be interested in models where Π is positively and not too weakly correlated
at the small scale.

At the large scale, basically the properties of gX depends on q and the range of correlation
of Π. If q is large, then since gX,0 ≤ gY,0/q we may have gX ≤ 1, meaning that no clustering
is created by the thinning process; an obvious example is when gY,0 ≤ 1, as e.g. in a DPP. If
q is sufficiently small, then supr gX(r) > 1 occurs in our examples of models, and we expect
this to be the situation in many other cases. However, it is not true that there always exists
q such that supr gX(r) > 1. An obvious counterexample is when Π is uncorrelated; other
counterexamples may be constructed when the variance σ2, say, of Π is such that σ2/q2 → 0
as q → 0. On the other hand, assume q is fixed and Π is non-negatively correlated, then it is
always possible to get supr gX(r) > 1 by increasing the range of correlation of Π, i.e. making
M0(r) > 1 for r sufficiently large. This is exemplified in Sections 3.2-3.3.

3.2 Transformed Gaussian processes

This section assumes − log Π is the χ2-process given by

Π(x) = exp

(
−1

2

k∑

i=1

Zi(x)2

)
, x ∈ Rd, (14)

where Zi = {Zi(x) : x ∈ Rd}, i = 1, . . . , k, are i.i.d. zero-mean real Gaussian processes with
covariance function K : Rd × Rd 7→ R.

A straightforward calculation yields E[Π(x)] = 1/(1 +K(x, x))k/2 and

M(x1, x2) =

[
(1 +K(x1, x1))(1 +K(x2, x2))

(1 +K(x1, x1))(1 +K(x2, x2))− |K(x1, x2)|2
]k/2

.

Hence, for K(x1, x1)K(x2, x2) > 0 and defining R(x1, x2) = K(x1, x2)/
√
K(x1, x1)K(x2, x2),

M(x1, x2) =

[
1− R(x1, x2)2

(1 + 1/K(x1, x1))(1 + 1/K(x2, x2))

]−k/2

is an increasing function of |R(x1, x2)|,K(x1, x1),K(x2, x2), respectively.

In the sequel we assume stationarity and isotropy of K(x1, x2) = K0(‖x1 − x2‖), whereby Π
is stationary and isotropic. Defining κ = K0(o) and R0 = K0/κ, we notice as the variance κ
increases from zero to infinity that

q = 1/(1 + κ)k/2 (15)
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decreases from 1 to 0, while for fixed r,

M0(r) =

[
1− R0(r)2

(1 + 1/κ)2

]−k/2
=
[
1− (1− q2/k)2R0(r)2

]−k/2
(16)

increases from 1 to [1−R0(r)2]−k/2. Thus there is a trade-off between how large q = ρX/ρY
and M0(r) = gX,0(r)/gY,0(r) can be.

We have that M0(r) ≥ 1 is a decreasing function of k and M0(r)→ 1 as k →∞, showing that
taking a large value of k is not appropriate if we want X to exhibit a clustering behaviour at
the large scale. Further, assume that the correlation function R0 depends on a scale parameter
s > 0, i.e. for all r ≥ 0, R0(r) = R0(r, s) = R̃0(r/s) where R̃0(r) = R0(r, 1). This is so for
most parametric models of covariance functions used in spatial statistics. Then, for any given
q ∈ (0, 1) and k ≥ 1, we have M0(r) → [1 − (1 − q2/k)2]−k/2 > 1 as s → ∞ provided R̃0 is
continuous at the origin. This combined with (5) proves that X will necessarily exhibit some
clustering behaviour at the large scale when s is sufficiently large.

The effect of the parameters is illustrated in Figure 2 which shows the pair correlation of X
when d = 2 and Y is either a DPP or a type II Matérn hard core process. Specifically, the first
row of Figure 2 corresponds to the case where Y is a DPP with a Gaussian kernel C0(r) =
ρY exp(−(r/0.015)2) and ρY = 1000, while in the second row Y is a type II Matérn hard core
process with D = 0.015 and ρΦ = 1736 whereby ρY = 1000. The selection probabilities are
given by (14) where K0 is a Gaussian covariance function with scale parameter s. A joint
realization of the restrictions of Y , Π, and X to a unit square is shown on the left hand side
of Figure 3.

3.3 Boolean and complementary Boolean models

This section specifies further models for the selection probabilities.

Let Ψ be a stationary Poisson process on Rd with intensity ρΨ, and conditional on Ψ, let ∆0

and ∆x for all x ∈ Ψ be i.i.d. positive random variables with a distribution which does not
depend on Ψ and so that E[∆d

0] < ∞. Denote Ξ the stationary Boolean model given by the
union of the d-dimensional balls centred at the points of Ψ and with radii ∆x, x ∈ Ψ. Recall
that p = P (o ∈ Ξ) is the volume fraction, and for x ∈ Rd and r = ‖x‖, CΞ(r) = P ({o, x} ⊂ Ξ)
is the so-called covariance function, where expressions for p, CΞ(r), and the void probability
P ({o, x} ∩ Ξ = ∅) are known (see e.g. Molchanov (1997)).

Specifying Π by the characteristic function of the random set Ξ or its complement Ξc, in
either case X becomes stationary and isotropic: First, if

Π(x) = 1(x ∈ Ξ), (17)

then
q = p = 1− exp

(
−ρΨωdE

[
∆d

0

])
(18)

and since E [Π(o)Π(x)] = CΞ(‖x‖), we obtain

M0(r) =
2

p
− 1

p2
+

(
1− p
p

)2

exp (ρΨE [kd(r,∆0)]) . (19)

9



0.00 0.01 0.02 0.03 0.04 0.05

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

0.00 0.01 0.02 0.03 0.04 0.05

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

0.00 0.05 0.10 0.15

0.
0

0.
5

1.
0

1.
5

0.00 0.01 0.02 0.03 0.04 0.05

0.
0

0.
5

1.
0

1.
5

0.00 0.01 0.02 0.03 0.04 0.05

0.
0

0.
5

1.
0

1.
5

0.00 0.02 0.04 0.06 0.08 0.10

0.
0

0.
5

1.
0

1.
5

Figure 2: Pair correlation functions of Y (dashed line) and X (solid lines) when Y is a DPP
with a Gaussian kernel (first row) or a Matérn hard core process of type II (second row) and
− log Π is the χ2-process given by (14) when K0 is a Gaussian covariance function with scale
parameter s. First column: k = 1, s = 0.05, and from top to bottom q = 0.4, 0.5, 0.6, 0.7, 0.8;
second column: q = 0.5, s = 0.05, and from top to bottom k = 1, 2, 3, 5, 10; third column:
q = 0.5, k = 1, and from top to bottom s = 0.5, 0.2, 0.1, 0.05, 0.03.

Second, if Π(x) = 1(x 6∈ Ξ), then by (6),

q = 1− p = exp
(
−ρΨωdE

[
∆d

0

])
(20)

and
M0(r) = exp (ρΨE [kd(r,∆0)]) . (21)

Equations (18)-(21) become explicit in the particular case of a fixed deterministic radius
∆0 > 0. When ∆0 is random, E [kd(r,∆0)] may be evaluated by a numeric method using (13).
We consider later the case where ∆0 follows a Beta-distribution with parameters α and β;
then E

[
∆d

0

]
= B(α+ d, β)/B(α, β) is given in terms of the beta-function.

Note that M0(r) → 1/q > 1 as E
[
∆d

0

]
→ ∞, showing that X will necessarily exhibit some

clustering behaviour at the large scale if the Boolean model has large radii. The pair correlation
function of X is represented in Figure 4 for different values of the parameters in the situation
where Y is either a Gaussian DPP or a type II Matérn hard core process as in Figure 2, and
Π is given by (17) with a deterministic radius ∆0. A joint realization of the restrictions of Y ,
Π and X to a unit square is shown on the right-hand side of Figure 3.

Finally, we notice that another tractable model for Π is the characteristic function for a
random closed set given by the excursion set for a Gaussian process, where a relation between

10
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Figure 3: Realization of Y (union of all points) and X (black points) within a unit square
when Y is a Matérn hard core process of type II with ρY = 1000 and D = 0.015. Left:
Corresponding realization of Π (the grayscale from white to black corresponds to values from
0 to 1) when − log Π is the χ2-process given by (14) when k = 1 and K0 is the Gaussian
covariance function with scale parameter s = 0.1. Right: Corresponding realization of Π
represented by the characteristic function for the union of gray discs within the unit square
and specified by the Boolean disc model with fixed radius ∆0 = 0.05, cf. (17). For both plots
q = 0.5.

M0 and the covariance function of the Gaussian process can be established, see Chiu et al.
(2013) and the references therein.

4 Simulation and inference

In the sequel W ⊂ Rd denotes a bounded region (e.g. an observation window). Section 4.1
concerns simulation of (Y,Π, X) on W and conditional simulation of Π given a realization
of X on W . Section 4.2 deals with parametric inference methods depending on whether we
observe both X and Y on W or only X on W , and Section 4.3 discusses a simulation study
for these two cases.

4.1 Simulation and conditional simulation

Simulating X within W is straightforward from its definition (1) as long as we are able to
simulate the restrictions of Y and Π to W . Concerning our examples of Y , an algorithm
to generate a DPP within a rectangular window is detailed in Lavancier et al. (2015) while
a Matérn hard core process of type I or II is easily simulated within any bounded region.
For both models, some simulation routines are available in the spatstat library (Baddeley
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Figure 4: Pair correlation functions of Y (dashed line) and X (solid line) when Y is a DPP
with a Gaussian kernel (first row) or a Matérn hard core process of type II (second row) and
Π is the Boolean inclusion probability model given by (17) with a deterministic radius ∆0.
First column: ∆0 = 0.03 and from top to bottom q = 0.4, 0.5, 0.6, 0.7, 0.8; Second column:
q = 0.5 and from top to bottom ∆0 = 0.1, 0.05, 0.03, 0.02, 0.015, 0.01.

and Turner, 2005) of R (R Core Team, 2014). Concerning Π, simulating the model in Sec-
tion 3.2 amounts to simulate a centered Gaussian process with prescribed covariance function,
which is for instance implemented in the RandomFields library (Schlather et al., 2015), while
generating a Boolean disc model for the example of Section 3.3 is straightforward.

Suppose we have fitted a model for Π, based on the observation of X on W (e.g. using the
method described in Section 4.2), and we are interested in the conditional simulation of Π
(possibly restricted to W ) given the observed point pattern XW = xW . This amounts to
simulate according to the distribution of Π given XW = xW . The conditional distribution of
XW given Π and YW admits the probability mass function

p(xW |Π, YW ) = 1(xW ⊆ YW )

{ ∏

u∈xW
Π(u)

}


∏

v∈YW \xW
(1−Π(v))



 , (22)
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so the conditional distribution of Π given XW = xW is

P(Π ∈ F |XW = xW ) ∝ E


1(Π ∈ F, xW ⊆ YW )

{ ∏

u∈xW
Π(u)

}


∏

v∈YW \xW
(1−Π(v))






 ,

(23)
where the constant of proportionality depends only on xW . The conditional simulation of
Π given XW = xW would thus require some Monte Carlo based algorithm such as the
Metropolis-Hastings algorithm in order to approximate the expectation in (23). This is in
general prohibitively time consuming and we do not consider this conditional simulation in
the following.

A simpler setting occurs when both X and Y are observed on W . Let X̄W = YW \XW . Since
Y and Π are independent, the conditional distribution of Π given XW = xW and X̄W = x̄W
is

P(Π ∈ F |XW = xW , X̄W = x̄W ) ∝ E

[
1(Π ∈ F )

{ ∏

u∈xW
Π(u)

}{ ∏

v∈x̄W
(1−Π(v))

}]
. (24)

The expectation in (24) is simpler than that in (23) but in general some Monte Carlo based
algorithm is still needed for conditional simulation. We detail two convenient situations below.

The first case occurs when Π is given by the Boolean model (17). Then simulating according to
(24) just reduces to the conditional simulation of a Boolean random set Ξ given that xW ⊆ Ξ
and x̄W ∩ Ξ = ∅. This case of conditional simulation is well known, see Lantuéjoul (2002).

In the second case, − log Π is the square of a stationary and isotropic Gaussian process given
by (14) with k = 1. Then conditional simulation of Π based on (24) amounts to generate
the Gaussian process Z given XW = xW and X̄W = x̄W , which can be conducted in two
steps. In the first step, as described below generate (Z(y1), . . . , Z(yn)) given that XW = xW ,
X̄W = x̄W , and YW = xW ∪ x̄W = {y1, . . . , yn}, say. In the second step, simulate Z on W ,
conditional on the values of Z(yi), i = 1, . . . , n, generated in the first step. This second step
can be done by double kriging as explained in Lantuéjoul (2002) and this is implemented
in the RandomFields library of R. For the first step, denote the number of points in xW by
nx = n(xW ), and similarly let nx̄ = n(x̄W ) so that n = nx + nx̄, and let Γ be the n × n
matrix with generic element K0(‖yi − yj‖). Assuming Γ is invertible, we deduce from (24)
that the target law admits a density in Rn of the form f(z) = c exp(−U(z)), where c > 0,
z = (z1, . . . , zn), and

U(z) =
1

2

nx∑

i=1

z2
i −

n∑

i=nx+1

log(1− e−
1
2
z2
i ) +

1

2
zΓ−1z′,

where z′ is the transpose of z. The conditional simulation of (Z(y1), . . . , Z(yn)) can then be
done by a Metropolis within Gibbs sampler as follows, where N (0, κ) denotes the centered
normal distribution with variance κ = K0(0):

1. generate z = (z1, . . . , zn) as n independent N (0, κ)-distributed random variables;

2. for i = 1 to n

let z̃i ∼ N (0, κ), z̃ = (z1, . . . , zi−1, z̃i, zi+1, . . . , zn), and δ = U(z̃)− U(z);
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if δ < 0 then set z = z̃;

if δ > 0 then with probability exp(−δ) set z = z̃;

3. repeat 2. and start sampling when the chain has effectively reached equilibrium.

4.2 Inference methods

First, assume that we observe both XW = xW and YW = yW , with xW ⊆ yW , and let
x̄W = yW \ xW . Fitting a parametric model for Y in this setting is a standard problem of
spatial statistics; see Lavancier et al. (2015) if Y is a determinantal point process; or Illian et al.
(2008) if Y is a Matérn hard core point process of type I or II. For estimation of parameters
related to Π, assume that M0(r) = M0(r|q, θΠ) apart from q depends on a parameter θΠ. A
natural idea is to base the estimation on the conditional distribution of XW given YW = yW ,
which has probability mass function

p(xW |yW ) = E



{ ∏

u∈xW
Π(u)

}


∏

v∈yW \xW
(1−Π(v))






 . (25)

Since (25) is in general intractable, we consider instead composite likelihoods for marginal
distributions of XW given YW = yW , noticing that conditional on YW = yW ,

• a point u ∈ yW is in xW with probability E[Π(u)] = q, and in x̄W with probability 1−q,
• for a pair of distinct points {u, v} ⊆ yW ,

– {u, v} ⊆ xW with probability E {Π(u)Π(v)} = q2M0(‖v − u‖|q, θΠ),

– {u, v} ⊆ x̄W with probability E {(1−Π(u))(1−Π(v))} = 1 − 2q + q2M0(‖v −
u‖|q, θΠ),

– u ∈ xW and v ∈ x̄W with probability E {Π(u)(1−Π(v))} = q−q2M0(‖v−u‖|q, θΠ).

Conditional on YW = yW , we define the first order composite likelihood CL1(xW |yW ; q) as
the product of the marginal selection/deletion probabilities for each of the points in yW , i.e.

CL1(xW |yW ; q) = qn(xW )(1− q)n(x̄W ), (26)

and the second order composite likelihood CL2(xW |yW ; q, θΠ) by the product over all un-
ordered pairs of points in yW , considering the probability whether those points have been
retained or deleted, i.e.

CL2(xW |yW ; q, θΠ) =


 ∏

{u,v}⊆xW
q2M0(‖v − u‖|q, θΠ)





 ∏

{u,v}⊆x̄W

{
1− 2q + q2M0(‖v − u‖|q, θΠ)

}


[ ∏

u∈xW ,v∈x̄W

{
q − q2M0(‖v − u‖|q, θΠ)

}
]
. (27)

Maximizing (26) yields the natural estimate

q̂ = n(xW )/n(yW ). (28)
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Inserting this into (27), the maximization of CL2(xW |yW ; q̂, θΠ) then provides an estimate
for the remaining parameter θΠ.

Second, assume that we observe XW = xW and we want to fit a parametric model for Y
and Π based on this observation. The likelihood of XW is given by the mean value of the
conditional density (22) with respect to the distribution of (Π, Y ) on W . This mean value
makes likelihood inference infeasible unless we use elaborate Monte Carlo procedures. Instead
we consider estimation based on the intensity and pair correlation function for X. Here one
possibility is composite likelihoods (see Møller and Waagepetersen (2007) and the references
therein) and another is minimum contrast estimation procedures. Below we concentrate on
the latter.

Assume that gY,0(r) = gY,0(r|θY ) depends on a parameter θY and as beforeM0(r) = M0(r|q, θΠ)
depends on q and θΠ. A natural and unbiased estimate of the intensity ρX is ρ̂X = n(xW )/|W |,
i.e. the observed number of points divided by the Lebesgue measure of W . Given an estimate
q̂ of q, the relation (5) provides the estimate ρ̂Y = q̂ρ̂X of ρY . The estimation problem thereby
reduces to estimating (q, θY , θΠ). By (5), this can be achieved by minimum contrast estimation
based on the pair correlation function of X:

(q̂, θ̂Y , θ̂Π) = argmin
q,θY ,θΠ

∫ ru

rl

{M0(r|q, θΠ)cgY,0(r|θY )c − ĝX,0(r)c}2 dr (29)

where 0 ≤ rl < ru and c > 0 are user-specified parameters and ĝX,0 is a non-parametric kernel
estimate of gX,0 based on the data xW (we use the default estimate provided by spatstat).
For a rectangular observation window W with minimal side length `, we chose after some
experimentation, c = 1, rl = `/100 and ru = `/4.

Alternatively, Ripley’s K-function can be used instead of the pair correlation function in
(29), where we choose rl and ru as above but let c = 0.5 (following Diggle (2003)). For
the models considered in this paper, the theoretical K-function, given for d = 2 by K(r) =
2π
∫ r

0 tgX,0(t)dt, has to be approximated by numerical methods.

Moreover, the minimum contrast estimates obtained from the pair correlation and the K-
function can be combined to provide a better estimate. We refer to Lavancier and Rochet
(2015) for details and consider just the example of two estimators q̂g and q̂K for q. Then the
idea is to seek the weights (λ1, λ2) ∈ R2 with λ1 + λ2 = 1 such that the linear combination
λ1q̂g + λ2q̂K has a minimal mean square error. The solution is (λ1, λ2)> = Σ−11/(1>Σ−11),
where Σ is the mean square error matrix of (q̂g, q̂K) and 1 = (1, 1)>. An adaptive choice is
obtained by replacing Σ by an estimate Σ̂ in the previous formula, where Σ̂ can be obtained by
parametric bootstrap. This ‘average’ approach may also be used to combine several estimates
for different values of c in (29). From our experience, this does not improve significantly on our
basic choice of c suggested above and we do not consider this generalization in the following.

4.3 Simulation study

We carried out a simulation study for the following four models when d = 2 and W is a unit
square:

1. Y is a DPP with Gaussian kernel C0(r) = ρY e−(r/α)2
, where ρY = 1000 and α =

0.015, and − log Π is a squared zero-mean Gaussian process given by (14) with k = 1,
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correlation function R0(r) = e−(r/s)2
where s = 0.05, and variance κ deduced from (15)

with q = 0.5.

2. Y is a DPP as above and Π is the characteristic function for the Boolean model given
by (17) with deterministic radius ∆0 = 0.05 and where ρΨ is deduced from (18) with
q = 0.5.

3. Y is a Matérn hard core process of type II with hardcore distance D = 0.015 and
ρΦ = 1736 yielding ρYII = 1000, cf. (10), while Π is as in model 1.

4. Y is as in model 3., and Π is as in model 2.

In each case, 100 independent realizations of X were generated on the unit square. Some
examples are shown in Figure 1.

First, we assumed that X and Y are both observed. We did not fit a parametric model for
Y , which is a standard inference problem as explained in Section 4.2, but we estimated q and
θΠ by the composite likelihood method detailed in the same section, where θΠ = s in models
1. and 3., and θΠ = ∆0 in models 2. and 4. The value k = 1 in models 1. and 3. was assumed
to be fixed. Since the estimation of q in this setting is easy, see (28), we only report in Table 1
some summary statistics for θ̂Π. The results demonstrate good performances of the maximum
composite likelihood estimator.

Second, we assumed that only X is observed. The hardcore distance D in models 3. and
4. was then estimated by the minimal pairwise distance observed in X, the value k = 1 in
models 1. and 3. was assumed to be fixed, and the other parameters were fitted as explained
in Section 4.2, either from the pair correlation function, or from the K-function, or from an
optimal linear combination of the former and the latter. The performances of the estimators
are summarized in Table 2 except for ρ̂X and D̂ which are standard estimators. For the first
model, the estimation of s from the K-function sometimes failed because the optimization
procedure did not find a minimum. In those circumstances, the figures in Table 2 marked
with an asterisk are computed from only 90% of the simulated point patterns. Overall, the
estimation based on the pair correlation function g seems more reliable than the estimation
based on K, cf. Table 2. The average estimator (AV ) based on an optimal linear combination
always outperforms the two previous methods in terms of the mean square error. The weights
used for the combination are reported in Table 2.

Model 1 (ŝ) Model 2 (∆̂0) Model 3 (ŝ) Model 4 (∆̂0)
Mean sd MSE Mean sd MSE Mean sd MSE Mean sd MSE

0.05 0.006 3.69×10−5 0.05 0.004 1.59×10−5 0.05 0.005 3.05×10−5 0.05 0.004 1.56×10−5

Table 1: Empirical means, standard deviations (sd), and mean square error (MSE) of maxi-
mum composite likelihood estimates for the parameters of the model for Π, when X and Y
are observed within a unit square. The results are based on 100 simulated datasets for each
of the four models of Section 4.3.
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g K AV
Model Mean sd MSE Mean sd MSE Mean sd MSE Weight

1 q̂ 0.48 0.15 0.023 0.49 0.21 0.045 0.48 0.14 0.021 (0.8,0.2)
α̂ 0.016 0.0030 9.6×10−6 0.014 0.0039 15.6×10−6 0.015 0.0028 8.1×10−6 (0.7,0.3)
ŝ 0.053 0.018 3×10−4 0.059∗ 0.049∗ 24∗×10−4 0.053 0.018 3×10−4 (1,0)

2 q̂ 0.52 0.055 0.003 0.50 0.116 0.013 0.52 0.055 0.003 (1,0)
α̂ 0.015 0.0014 2×10−6 0.015 0.0038 14×10−6 0.015 0.0014 2×10−6 (1,0)

∆̂0 0.052 0.017 3×10−4 0.056 0.034 12×10−4 0.052 0.017 3×10−4 (1,0)

3 q̂ 0.66 0.05 0.029 0.51 0.16 0.025 0.58 0.09 0.015 (0.4,0.6)
ŝ 0.07 0.04 0.0019 0.08 0.09 0.0098 0.07 0.04 0.0019 (1,0)

4 q̂ 0.56 0.050 0.0066 0.50 0.077 0.0058 0.53 0.061 0.0045 (0.5,0.5)

∆̂0 0.058 0.009 1.5×10−4 0.052 0.022 4.9×10−4 0.058 0.009 1.5×10−4 (1,0)

Table 2: Empirical means, standard deviations (sd), and mean square error (MSE) of param-
eter estimates based on 100 simulated datasets for the four models of Section 4.3, when only
X is observed within a unit square and different minimum contrast estimation procedures are
used.

5 Data examples

This section illustrates how our statistical methodology applies for two real datasets when Y
is observed (Section 5.1) or not (Section 5.2).

5.1 Allogny dataset

Figure 5 shows the position of 910 oak trees in a 125 × 188m region at Allogny, France,
where the 256 solid points correspond to ”splited oaks”, damaged by frost shake, and the 654
remaining trees (”sound oaks”) are represented by small circles. This dataset is available in
the ads library (Pélissier and Goreaud, 2015). It has been analyzed in Goreaud and Pélissier
(2003) and in Illian et al. (2008), where the question was to decide whether frost shake is
a clustered phenomenon, as the empirical pair correlation function of the splited oaks in
Figure 5 may suggest. To the best of our knowledge, a parametric model for the dataset has
yet not been proposed and analyzed.

We apply our model to this dataset where X represents the splited oaks and Y is the unmarked
point pattern composed of the splited and the sound oaks. In this application, the inclusion
probabilities given by Π have a natural interpretation in terms of unobserved environmental
conditions that locally favor frost shake. Specifically, following the procedure explained in
Section 4.2, we fit a parametric model to Π by the composite likelihood method. We are in
particularly interested here by the conditional simulation of Π given the observation of the
sound oaks and the splited oaks.

Both models presented in Sections 3.2-3.3 can be considered for Π. However we think that
a Boolean model is too simple to explain the clustering behaviour of splited trees and we
therefore assume that − log Π is a squared stationary and isotropic Gaussian process given by
(14) with k = 1 and R0 being a Whittle-Matérn correlation function with shape parameter
ν > 0 and scale parameter s > 0 (see Lavancier et al. (2015)). The estimate of q is q̂ =
256/910 = 0.28 whereby (15) gives κ̂ = 11.8, and by maximizing (27) using a grid of values
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Figure 5: Left: Allogny dataset of sound oaks (circles) and splited oaks (solid points). Middle:
splited oaks only. Right: non-parametric estimate of the pair correlation function for all trees
(solid curve), the sound oaks (dotted-dashed curve), and the splited oaks (dashed curve).

for ν and substituting q by q̂, we obtain ŝ = 7.8 and ν̂ = 0.5, in which case R0 becomes the
exponential correlation function. The goodness of fit is assessed by comparing non-parametric
estimates of the K, F , G, and J functions (see e.g. Møller and Waagepetersen (2004)) for the
splited oaks with 95% pointwise envelopes of the same functions obtained from simulations
of the fitted model. Here, in accordance with our inference procedure, the simulation of new
splited oaks is done conditionally on the tree locations, meaning that only Π is simulated.
The results are reported in Figure 6. Furthermore, the same comparison is done for the sound
oaks in Figure 7. Figures 6-7 show that the goodness of fit is acceptable.
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Figure 6: From left to right non-parametric estimates of the K, F , G, and J functions for the
splited oaks (solid lines) along with simulated 95% pointwise envelopes obtained under the
fitted model of Section 5.1 (dashed lines).

Next, assuming Π follows the fitted model, we simulate Π conditional on the splited oaks and
the sound oaks, using the two steps procedure detailed in Section 4.1. Figure 8 shows two
such realizations of Π and an approximation of the conditional expectation obtained from the
average over 100 independent realizations of Π. The white and lighter areas in these grayscale
plots correspond to regions where frost shake seems unlikely to happen. The two simulated
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Figure 7: From left to right non-parametric estimates of the K, F , G, and J functions for the
sound oaks (solid lines) along with simulated 95% pointwise envelopes obtained under the
fitted model of Section 5.1 (dashed lines).

realizations illustrate the ‘roughness’ of Π due to the underlying exponential covariance func-
tion. As expected, the conditional expectation of Π is large in the neighborhoods of splited
oaks.

Figure 8: Typical simulations (left and middle) and approximated expectation (right) of Π
under the fitted model of Section 5.1, conditional on the splited oaks and the sound oaks.

5.2 Ponderosa dataset

Figure 9 shows the location of 108 ponderosa pine trees in a 120× 120m area of the Klamath
National Forest in Northern California. This dataset is available in the spatstat library and
was studied in Getis and Franklin (1987). By a descriptive second-order analysis, the authors
identified different types of clustering between the trees, depending on the scale. In particular
they noticed that “there are clusters of points and an apparent inhibition effect”.

We fit our model to this dataset where Y is assumed to be a DPP and Π to follow (14) with a
Gaussian covariance function or (17) where ∆0 is deterministic. Three parametric families of
kernels were considered for the DPP: the Gaussian covariance functions, the Whittle-Matérn
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Figure 9: Left: Ponderosa dataset. Right: Non-parametric estimate of its pair correlation
function.

covariance functions (see Lavancier et al. (2015)), and the Bessel-type covariance functions
(see Biscio and Lavancier (2015)). These covariance functions depend on the intensity ρY
(which is equal to the variance), on a scale parameter α and for the Whittle-Matérn and
Bessel-type covariance functions on an extra shape parameter, denoted ν and σ, respectively.
The Gaussian kernels family is in fact a limiting case of the two others families when ν,
respectively σ, tends to infinity. It is well known that the identification of both α and ν
(respectively σ) is difficult, even when Y is fully observed and not thinned by Π. To estimate
all parameters, we use a minimum contrast method as explained in Section 4.2 for different
values of ν (respectively σ) on a grid and then choose the parameters giving the minimal
value of the contrast function.

Among all fitted six models, we selected the one associated to the minimal value of the contrast
function based on the pair correlation function, cf. (29). The best fit was then obtained for
Y being the DPP with a Gaussian covariance function and Π the Boolean model, where the
minimum contrast procedure together with (18)-(19) give the estimates α̂ = 5.26 (with α
being the scale parameter of the Gaussian covariance function), q̂ = 0.74, and ∆̂0 = 23.14.
Further, q̂ = 0.74 together with the natural estimate ρ̂X = 108/(120)2 = 0.0075 give ρ̂Y =
ρ̂X/q̂ = 0.01. When trying to improve the estimation of the selected model by the combination
method based of the g and K functions (described at the end of Section 4.2), the best weight
was (1,0), thus confirming the choice of the contrast function based on g for this model. The
goodness of fit is assessed by comparing the non-parametric estimates of the K, F , G, and
J functions based on the data with 95% pointwise envelopes of the same functions obtained
from simulations of the fitted model. The result is shown in Figure 10 where the fitted model
appears to provide a good fit.
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Figure 10: From left to right non-parametric estimation of the K, F , G, and J functions for
the Ponderosa dataset (solid lines) along with simulated 95% pointwise envelopes under the
fitted model of Section 5.2 (dashed lines).
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