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Abstract

We classify all irreducible weight modules for a quantized enveloping
algebra U,y (g) at most ¢ € C* when the simple Lie algebra g is not of type
G2. More precisely, our classificiation is carried out when q is either an
odd root of unity or transcendental over Q.

By a weight module we mean a finitely generated Ugz-module which
has finite dimensional weight spaces and is a sum of those. Our approach
follows the procedures used by S. Fernando and O. Mathieu to solve the
corresponding problem for semisimple complex Lie algebra modules. To
achieve this we have to overcome a number of obstacles not present in the
classical case.

In the process we also construct twisting functors rigerously for quan-
tum group modules, study twisted Verma modules and show that these
admit a Jantzen filtration with corresponding Jantzen sum formula.

Resumé

Vi klassificerer alle irreducible veegtmoduler for en kvantiseret indhyld-
ningsalgebra Ug(g) for de fleste ¢ € C* nar Lie algebraen g ikke er af type
G2. Vi klassificerer de irreducible moduler nar ¢ er en ulige enhedsrod og
nar q er transcendent over Q.

Nar vi skriver veegtmodul mener vi et endelig frembragt Uz;-modul
som har endelig dimensionelle vaegtrum og som er en sum af disse. Vores
fremgangsmade folger fremgangsmaderne som S. Fernando og O. Mathieu
har brugt til at lgse det tilsvarende problem for semisimple Lie algebra
moduler. For at opna dette mé vi lgse adskillige problemer som ikke
opstar i det klassiske tilfeelde.

I processen konstruerer vi ogsa twisting funktorer stringent for kvante-
gruppemoduler, undersgger tvistede Verma moduler og viser at disse har
en Jantzen filtration med tilhgrende Jantzen sum formel.



Introduction and overview of the dissertation

This dissertation is the collection of three papers in the following called PO, P1
and P2. PO refers to the paper “Twisting functors for quantum group modules”.
P1 and P2 refer to the papers “Irreducible quantum group modules with finite
dimensional weight spaces” I and II, respectively. Each paper has its own page
numbering and numbering of lemmas, propositions, theorems etc. To help the
reader there is a header on each page with the title of the paper. The papers are
all posted at arXiv.org and have been submitted to journals. The arXiv numbers
of the papers can be seen in the references at the end of this introduction.

Let g be a semi-simple Lie algebra and let U, = Uy(g) be the corresponding
quantized enveloping algebra as defined in [Jan96, Chapter 4]. The main goal of
the dissertation is to classify all simple weight Uj,-modules. By a weight module
we mean a module that is a sum of its weight spaces with all weight spaces being
finite dimensional. We achieve the desired classification in the case when ¢ is an
odd root of unity in P1 and in the case when ¢ is transcendental in P2.

In the classical case i.e. for semi-simple Lie algebras the corresponding
problem was solved by S. Fernando and O. Mathieu in the papers [Fer90]
and [Mat00]. Some of the work in these two papers can be translated directly to
the quantized enveloping algebra world but several results need to be proved in
different ways. In the first paper PO we do some detailed calculations necessary
for the rest of the results. Furthermore in this part we define Arkhipov’s twisting
functors for modules over the quantized enveloping algebra in both the root of
unity and non-root of unity cases. We then use the twisting functors to construct
so-called twisted Verma modules. In the classical case H. H. Andersen and N.
Lauritzen describe these in [ALO03]. Then in the non-root of unity case we show
that we can construct a Jantzen-type filtration of the twisted Verma modules in
analogy with [ALO3, Theorem 7.1]. This is shown in [And03] for integral weights.
Here we show it for any (not necessarily integral) weight. In the following we
won’t need the twisted Verma modules but we do need the Jantzen filtrations
(whose construction in our approach relies on those twists) for ordinary Verma
modules with arbitrary weights in the classification of the so called admissible
simple modules. For ordinary (not twisted) Verma modules this is not a new
result. An entirely different proof can be found in [Jos95, Section 4.1.2-4.1.3|.
The results of PO were presented in the author’s progress report in connection
with his qualifying exam in June 2013. The progress report was approved and
the author recieved his masters degree in mathematics on the basis of the report
and the following oral exam. The paper has been slightly rewritten since then.

We distinguish in most sections between whether ¢ is a root of unity or not.
In the paper P1 we show (for roots of unity and non roots of unity respectively)
how to reduce the classification of simple weight modules to the classification of
two classes of modules: Simple finite dimensional modules over a subalgebra of
U, corresponding to the quantized enveloping algebra of a reductive Lie algebra
and so called simple ’torsion free modules’ over the quantized enveloping algebra
of a simple Lie algebra. This involves very crucially defining, for a root 3 of the
root system @, the concept of a module being S-finite or S-free. A module M
is S-finite if all root vectors corresponding to 8 (defined in P1) act nilpotently
on M. On the other hand a module is S-free if all root vectors corresponding
to B act injectively on M. This is in analogy with the procedures in [Fer90]
but we have to approach some of the proofs differently. For example in [Fer90]



many results are shown that depends on roots without specifying a specific
set of simple roots and positive roots. Then in later results a clever choice of
base for the root system is chosen. When defining the quantized enveloping
algebra U, of a Lie algebra g we first fix a set of simple roots and define U,
by generators and relations by using the corresponding simple root vectors as
generators and requiring some relations between them. So we can not later make
a different choice of basis like in [Fer90]. In the dissertation we solve this problem
by considering certain twists of modules by braid operators corresponding to
appropiate elements of the Weyl group W. Another related problem is that for
a positive root B that is not simple we don’t a priori have root vectors Eg and
Fg. We can construct root vectors for all 8 € ® but the construction involves a
choice of a reduced expression of wy — the longest element in W. For another
reduced expression we get, possibly different root vectors. Fortunately, the results
where we need general root vectors turn out not to depend on the choice but of
course we need to verify that this is the case so there is something extra to show
here compared to the classical case.

For some other results Fernando uses algebraic geometric arguments and
these can not be directly quantized. Instead we use concrete calculations for
root vectors. To do these calculations we rely on formulas proved by G. Lusztig
in [Lus90] in rank 2. The rank 2 case where g is of type G is different from all
the other finite types in that there are three lengths of roots. In the dissertation
we have ignored type Gs entirely. To make the classification complete one
would of course need to consider Go as well and this particular case should in
principle be doable by similar methods, although the calculations get possibly
very tedious. Especially since in [Lus90] the commutation formulas needed
in some of the results of the dissertation are only calculated for types other
than Gs. So the results in the dissertation are about all other finite types i.e.
type An, Bn,Cy, Dy, Eg, E7, Eg, Fy, n € Z~o. The author has not made any
calculations for G5 and has instead focused on all the other cases.

Since the finite dimensional simple modules are well known the above reduc-
tion leaves us with the problem to classify the simple torsion free U,(g)-modules
when g is a simple Lie algebra. In the root of unity case the classification of
torsion free modules can further be reduced to the classification of the classical
(Lie algebra) simple torsion free modules and some finite dimensional simple
modules so in this case we can reduce completely to the classical case treated
in [Mat00]. We do this in P1. The reduction involves defining an analog of the
coherent families defined in [Mat00]. A coherent family in [Mat00] is a huge
g-module having weight spaces of all possible weights and with some requirement
on a trace being polynomial in some parameter, see [Mat00, Section 4]. We define
the analog of this for the quantized enveloping algebra. We then show that every
infinite dimensional admissible simple module is a submodule of an appropiate
semisimple coherent family. Torsion free simple modules are a specific case of
admissible infinite dimensional simple modules. We then show that every one of
these 'quantized coherent families’ is a tensor product of some finite dimensional
module and a Frobenius twist of an appropiate classical coherent family. In this
way we have reduced to the classical case.

In the non-root of unity case we can’t use the same trick to reduce to the
classical case so we have to do some more work. This is done in P2. We
follow the procedure in [Mat00]. Namely, for a given admissible simple infinite
dimensional module L we construct a so called semisimple irreducible coherent



family EXT(L) containing L as a submodule and then we show that each
such semisimple irreducible coherent family contains an infinite dimensional
admissible simple highest weight module L()\) with highest weight some A
such that EXT (L) 2 EXT(L(N)). We thus reduce the classification of infinite
dimensional admissible simple modules to the classification of infinite dimensional
admissible simple highest weight modules. We show that these exist only in type
A and C and we classify the weights A such that L(\) is admissible. The final
problem is then, given an infinite dimensional admissible simple highest weight
module L(\), to find out precisely which submodules of EXT (L())) are torsion
free. We complete the classification by doing this in type A and C seperately.

In the case when ¢ is not a root of unity we don’t define the concept of a
general coherent family. Instead we define directly the module EXT (L) given
a specific admissible infinite dimensional simple module L. We then proceed
like in [Mat00] to show the analogies of the results in [Mat00]. Especially in
the final classification in type A and C there are major differences between
our approach and the one in [Mat00]. Here we do very concrete calculations
involving specific chosen root vectors to show for a specific weight A and a specific
’set of commuting roots’ ¥ precisely which ’twists’ of L(\) g, are torsion free.
In [Mat00] the final classification in type A and C can be done by looking at
weight spaces. That is Mathieu classifies for a given irreducible coherent family
M for which t € h*/Q, M]t] is simple and torsion free. Here b is a Cartan
subalgebra of g, @ = Z® C h* is the root lattice and M[t] = ® et M. The
modules in the dissertation which are analogs of the irreducible coherent families
are EXT (L) where L is an infinite dimensional admissible simple module. These
modules are 'larger’ than their classical analogs. Let X be the set of weights
(defined in all 3 papers) and let Q = Z® denote the root lattice. We show in
an example in P2 that we can have a torsion free module and a simple highest
weight module both included in EXT(L()))[t] where t = ¢© € X/q9. So just
looking at weight spaces of EXT (L())) will not be enough in our case. Instead
we concretely calculate the actions of most simple root vectors on the "twists’ of
L(\)py, defined to construct EXT(L(A)) and show which twists give rise to a
simple torsion free module.

A more detailed overview of the contents of each paper is given in their
individual introductions.
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List of notation

Here we make a list of some of the notation used in the three papers of the
dissertation. We refer to the papers by PO, P1 and P2. PO refers to the paper
“Twisting functors for quantum group modules”. P1 and P2 refer to the papers
“Irreducible quantum group modules with finite dimensional weight spaces” 1
and II, respectively.

N Here N contains 0. N=1{0,1,2,...}.

g A semi-simple Lie algebra. In some sections
we require g to be simple.

P The root system for g.

I={ay,...,an} A fixed set of simple roots for ®.

RN The positive/negative roots of ® respectively
corresponding to the fixed set of simple roots.

Q The root lattice QQ = Z®.

W, s; The Weyl group corresponding to g. s; is the
simple reflection s; := sq;.

Wo The longest element in W.

¢l A standard W-invariant bilinear form on h*.

- 0.0~ G

A The integral lattice consisting of elements y €

b* such that (u|a) € Z for all o € II.

A A=Z[v,v71].

U, = Uy(g) The quantized enveloping algebra over Q(v).
v v = ’U%

Ua Lusztig’s A-form. The A-subalgebra of U,

generated by the divided powers E&n), Fé"),
n€Nand K a eIl

Ko Kase] _ Kovg W - K oo

[ r C]’ ce Z’ reN [ T C] - H;:l - Uzl_v;.iv .

Cc* C* = C\{0}.

Ug, g C* The quantized enveloping algebra over C, U, =
Ua®4 C, where C, is an A-algebra by sending
v to g € C*.

(ale)
o o =4q 2 .
U, , U2, Uf U, is generated by F™ neN, U} is gener-

ated by E{, n € N. UY is generated by Kt
and [K‘;;C], ceZ,reN.

Ty In PO: The twisting functor corresponding to a
w € W, see Definition 3.5 in PO. In P1 and P2:
The braid operator corresponding to w € W.

R, In PO: The braid operator corresponding to
weW.

Sw The semiregular bimodule corresponding to a
w € W, see Section 1 in PO.

Sy (F) Su(F) = Uy /U, where U, gy is the Ore lo-

calization in the Ore set {F™|n € N}. See
Section 3 in PO.



[(w)
Let Fg be a root vector cor-
responding to 8

wt M
M)
L(N)
ch M
w.A

11}]\47 Vi

M™(A)
DM, M a U,-module

—n)
Fy

F

The length of w € W.

Choose a reduced expression of wgy, wy =
iy Siy. Set B = i ---8i;_, () and
Fg, = T&,ilA..Sij_l(Faij)7 je{l,...,N}. Then
3 = B, for some j € {1,...,N} and Fj = Fpg,
is a root vector corresponding to 8. If 5 ¢ I1
then this construction depends on the reduced
expression chosen for wy.

Ifx € (Uy), and y € (Uy), then [z,y], =
zy — v~ W)y,

ad(Fg)(u) = [[...[u,Fply.. ], Fply and

ad(Fg)(u) == [Fp,[...,[Fp,u]y...]], where
the ’v-commutator’ is taken ¢ times from the
left and right respectively, see Definition 2.11
in PO.

ad(F{)(w) = ([]])""ad(F})(u) and
ad(F{")(u) = ([i]!)""ad(F})(u), see Propo-
sition 2.12 and the comments after in
Po.

The Ore localization of U, in the set {Fj|r €
N}.

Ay ={pe A0 < (u,av) <, for all « € IT}.
The set of weights: The set of algebra homo-
morphisms U — C. After Section 3 in P1
we restrict to type 1 modules so in this case
X = A;xb* (see Lemma 3.3 and the comments
after in P1).

The weights of a given Uz;-module M.

The Verma module with highest weight A € X.
The unique simple quotient of M (\).

The character of a module M. See the com-
ments after Definition 3.6 in P0.

The dot-action of w € W on A € X, see the
comments after Definition 3.6 in PO.

Twist of a Ug-module M by w € W. See
Definition 3.4 in PO, Definition 1.2 in P1 or
Definition 1.2 in P2.

A twisted Verma module. M¥(A\) =
TwM(w=1.)), see Definition 3.8 in PO.

D is the duality functor on U, — Mod, see the
comments after Definition 3.8 in PO.

In the non root of unity case Fﬁ(fn) = [n]p!Fy",
see Section 4 in P0. In the root of unity case
see the comment after Lemma 5.2 in P1.

See Definition 1.3 in P1.



MWl ged

Iy,

Ug(rs)

Supp(L, ), Supp,gs(L, 1)

Supp(L)
C(L)

¢F2,V-M
@Fg,b-M
M

T*

MSS

EXT(L)

MWP = {m € M|dim <Eg")\n € N> m <
o} if 3 € &t and MP = {m ¢
M| dim (FU)jn € N)m < oo} if 8 € @ The
definition is independent of the choice of root
vector Eg or F_g, see Definition 2.5 in P1 and
the comments after.

A Ug-module M is B-finite if Ml = M (see
Proposition 2.2 and Proposition 3.6 in P1).
A U -module M is B-free if MIF = 0.

Fy = {8 € ®MP = M}, Ty = {B €
®| Ml = 0}, see Definition 2.7 in P1.

p is a parabolic Lie subalgebra of g. p=[®u
where [ is the Levi part and u is the nilpotent
part. u™ is the nilpotent part of the opposite
parabolic subalgebra p~. See the comments
before Definition 2.12 in P1.

See the comments before Definition 2.12 in P1.

See the comments after Proposition 2.17 in P1.
If N is a Uy(I)-module then M(X) = U, ®y, (p)
N, see Definition 2.12 in P1.

If N is a Uy(l)-module then L(N) is the
unique simple submodule of M(N), see Propo-
sition 2.16 in P1.

If M is a Ugmodule then M* = {m €
Mlzm = e(x)m,xz € Ug(u)}, see Defini-
tion 2.13 in P1.

A set of commuting roots, see Definition 5.5
in P1 or Definition 4.13 in P2.

An Ore subset corresponding to X, see Corol-
lary 5.8 in P1 (for ¢ an odd root of unity) or
Definition 4.19 in P2 (for ¢ a non root of unity).
The Ore localization of U, in the Ore set Fx.
See Definition 6.5 in P1.

See Definition 4.21 in P2.

The cone corresponding to a simple module L,
see Definition 5.12 in P1 and Definition 4.1 in
P2.

See Definition 5.9 in P1.

See Definition 4.19 in P2.

See Definition 5.16 in P1.

T* = h*/Q, see Definition 6.2 in P1.

The semisimple module with the same compo-
sition factors as M.

See Proposition 6.7 in P1 (root of unity case)
or the comments before Lemma 5.4 in P2 (non
root of unity case).






Twisting functors for quantum group modules

Dennis Hasselstrgm Pedersen

Abstract

We construct twisting functors for quantum group modules. First over
the field Q(v) but later over any Z[v,v™']-algebra. The main results in
this paper are a rigerous definition of these functors, a proof that they
satisfy braid relations and applications to Verma modules.

Keywords: Quantum Groups; Quantized Enveloping Algebra; Twisting Func-
tors; Representation Theory; Jantzen Filtration; Twisted Verma Modules

1 Introduction

Twisting functors were first introduced by S. Arkhipov (as a preprint in 2001
and published in [Ark04]). H. Andersen quantized the construction of twisting
functors in [And03]. Each twisting functor T, is defined via a so called semi-
regular bimodule SY’. By the definition in [And03] its right module structure is
not clear. Our first goal is to demonstrate that Sy’ is in fact a bimodule. We
verify this by constructing an explicit isomorphism to an inductively defined
right module. The calculations are in fact rather complicated and involve several
manipulations with root vectors, see Section [2] below. At the same time these
calculations will be essential in [Ped15a] and [Ped15b].

Once we have established the definition of the twisting functors we prove
that they satisfy braid relations, see Proposition In the ordinary (i.e.
non-quantum) case the corresponding result was obtained by O. Khomenko and
V. Mazorchuck in [KMO05]. Our approach is similar but again the quantum case
involves new difficulties, see Section [3] This section also contains an explicit
proof of the fact that, for the longest word wo € W, the twisting functor T,
takes a Verma module to its dual, see Theorem [3.9]

The above results have several applications in the representation theory of
quantum group: They enable us to construct so called twisted Verma modules
and Jantzen filtrations of (twisted) Verma modules with arbitrary (non-integral)
weights and to derive the sum formula for these. In turn this simplifies the
linkage principle in quantum category Oy, q being a non-root of unity in an
arbitrary field.

1.1 Acknowledgements

I would like to thank my advisor Henning H. Andersen for great supervision and
many helpful comments and discussions. The authors research was supported by
the center of excellence grant ’Center for Quantum Geometry of Moduli Spaces’
from the Danish National Research Foundation (DNRF95).



TWISTING FUNCTORS FOR QUANTUM GROUP MODULES

1.2 Notation

In this paper we work with a quantum group over a semisimple Lie algebra g
defined as in [Jan96]. Let ® (resp. ® and ®~) denote the roots (resp. positive
and negative roots) and let IT = {a1,...,a,} denote the simple roots. The
quantum group has generators {E,, F, K,|a € II} with relations as found
in [Jan96]. Let @ = Z® denote the root lattice. Let (a;;) be the cartan
matrix for g and let (-|-) be the standard invariant bilinear form. Let A =
spany {w1,...,wn} C h* be the integral lattice where w; € h* is the fundamental
weights defined by (w;|a;) = d;;. At first we work with the quantum group
U, (g) defined over Q(v) but later we will specialize to an abitrary field and any
nonzero ¢ in the field. This is done by considering Lusztig’s A-form U, where
A =Zv,v7 1, see Section For any A-algebra R; Ugr = Uy ® 4 R. We will later
need the automorphism w of U, and the antipode S defined as in [Jan96| along
with the definition of quantum numbers [n]z and quantum binomial coefficients.
We use the notation E(") = [%, and similarly for . The Weyl group W is
generated by the simple reflections s; = s4,. As usual we define for a weight
1 € A the weight space (U,), := {u € U,|Kou = v(®®y for all a € IT}. For a
p € Q, K, is defined as follows: K, =[] K% if p =Y} ; aja;. There is a
braid group action on the quantum group U, usually denoted by T, where s; is
the reflection with respect to the simple root a;. In this paper we will reserve
the T for twisting functors so we will call this braid group action R instead.
That is we have automorphisms R,, such that

RSiEOéi = Faz‘KOti
Ry Eo, = > (-1)'v EV)E. ES), if i # j
r+s=—a;;

R, Fo, =— K. 'E,,

Ry Foy= Y (1), FWF, F) ifi#j
r+s=—a;;
Ry, K, =K, )-
Our definition of braid operators follows the definition in [Jan96]. Note that
this definition differs slightly from the original definition in [Lus90] (cf. [Jan96,

Warning 8.14]).
The inverse to R, is given by

R'E,, =— K. 'F,,
R'Eay= Y (Z1)°0, EQ)Ea EQ), ifi# ]
r+s=—a;;
R'F,, = — Eo K,
R Fo,= ) (FU)%, FFoFY) ifi# ]
r+s=—a;;
R Ky =Ko -
For w € W with a reduced expression s;, - - s;,., Ry, is defined as Rs, -+ Ry, .
This is independent of the reduced expression of w. An important property of the

braid operators is that if a;,, i, € Il and w(a;, ) = ay, then Ry, (Fy, ) = Fa,, -
These properties are proved in Chapter 8 in [Jan96].
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For a reduced expression s;, - --s;, of wy we can make an ordering of all the
positive roots by defining

6j = Sil"‘Si_j_l(OZi_j), j:].,,N

In this way we get {31,...,8x} = ®+. We could just as well have used the
opposite reduced expression wg = S;, - - Si,. In the following we will sometimes
use the numbering s;, - - - s;,, and sometimes the numbering s; - - - s;,. Note that
ifw = s;, ---5;, and we expand this to a reduced expression s;, - -+ 5; 85, - Sy
we get {S1,..., 8} = 2T Nw(®~). We can define 'root vectors’ Fg,,j =1,..., N
by

F,BJ' = Rsil T Rsij_l (FOéz] )

Note that this definition depends on the chosen reduced expression. For a
different reduced expression we might get different root vectors. As mentioned
above if 3 € II then the root vector Fj3 defined above is the same as the generator
with the same notation (cf. e.g [Jan96l, Proposition 8.20]) so the notation is not
ambigious in this case. Let w € W and let s;_ ---s;, be a reduced expression
of w. Define Fg, by choosing a reduced expression s;, ---s;.54,,, -+ sn of wp
starting with the reduced expression s;, ---s; of w™!. We define a subspace
U, (w) of U, as follows:

U, (w) := spang,) {Fgl1 - Fgrla; € N}

where Fig, = R, -+ Rs, | (Faj) as before. The definition of U, (w) seems to
depend on the reduced expression of w. But the subspace is independent of the
chosen reduced expression. This is shown in [Jan96, Proposition 8.22]. We will
show below that U, (w) is a subalgebra of U, and that

Sil

U, (w) = spang,,, {Fg - Fglla; € N} .

For a subalgebra N C U, we define N* = @, N, (i.e. the graded dual)
with the action given by (uf)(z) = f(zu) for v € U,, f € N*, x € N. We
define ’the semiregular bimodule’ S := Uy ®;;—(,,y U, (w)*. Proving that this
is a U,-bimodule will be the first main result of this paper. We will show that
there exists a right module structure on S} such that as a right module S}’ is

isomorphic to Uy (w)* @ ) Us-

2 Calculations with root vectors

Let A = Z[v,v™!]. Lusztigs A-form is defined to be the A subalgebra of U,
generated by the divided powers ES” and F™ for n € N and K g
We want to define U, (w) = span, {Fé‘lll) . F{g(:r)|ai € N} where the Fpg,

are defined from a reduced expression of w like earlier. We have U, (wg) = U, so

we want a similar property over A: U, (wo) = U, where U, is the A-subalgebra
generated by {Fén) |n € Ny =1,...,n}. This is shown very similar to the way
it is shown for U, in [Jan96].

Lemma 2.1 Assume g does not contain any Ga components:
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1. The subspace U (w) := span 4 {Fﬁ(fl) e Fﬁ(f")|ai € N} depends only on w,
not on the reduced expression chosen for w.

2. Let a and B be two distinct simple roots. If w is the longest element in the
subgroup of W generated by s, and sp then the span defined as before is

the subalgebra of U generated by Féa) and Fléb), a,beN.

Proof. Claim 2. is shown on a case by case basis. We will show first that the
second claim implies the first.

We show this by induction on [(w). If {(w) < 1 then there is only one reduced
expression of w and there is nothing to show. Assume /(w) > 1 and that w
has two reduced expressions w = 54, 8a, "+ * Sa, and W = 8,5, - - 5,. We can
assume that we can get from one of the reduced expression to the other by an
elementary braid move (sq8g--- = 8350 - -). Set @ = oy and v = 1.

If a =, set w’ = sq,w. Then the subspace spanned by the elements as in
the lemma is for both expressions equal to:

Y F | R, (Us () (1)

a>0

If o # ~y then the elementary move must take place at the beginning of the reduced
expression for both reduced expressions. Let w” be the longest element generated
by s, and s, then we must have w = w”w’ for some w’ with I(w”) + I(w') =
I(w) and the reduced expression for w’ in both reduced expressions are equal
whereas the reduced expressions for w” are the two possible combinations for
the two different reduced expressions. So the span of the products is given by
U, (w)Ry (U, (w”)) which is independent of the reduced expression by the
second claim.

We turn to the proof of the second claim: First assume we are in the simply
laced case. Then w = 545854 = $35453. Lets work with the reduced expression
545354. The other situation is symmetric by changing the role of o and 5. We
want to show that

B = <Fé”1),FB("2)|n1,n2 € N>A = span, {F§a1>F;ngﬁ<“3)|ai € N} =V (2)

where Fc(vi)ﬁ =R, (Fg,a)). By [Lus90] section 5 we have that Féi_)ﬁ e U} for all
a € N and we see that

k / s, ,—tr—s T S
FSOFEF) = 3" (~1)0 " FE)
t,s>0

()
Fs
where the restrictions on the sum is s+t = k' and s+t = k. Lusztig calculates for
the E,’s but just use the anti-automorphism § (defined in Section 1 of [Lus90])
on the results to get the corresponding formulas for the F'’s. Also we get the (—1)°
from the fact that (using the notation of [Lus90]) E12 = —Rq,(E,,) because of

the difference in the definition of the braid operators. Since F (gj_)ﬁ € U, we have
that V' C B. If we show that V is invariant by multiplication from the left with
F and Fﬁ(a) for all @ € N then we must have B C V. For F\% this is clear.
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For F[gk), k € N we use the formula above:

FP R ECEE) = 37 (1) F R O RO

S,,— r+s r s a t a
_ Z (—1)% d(tr+ )+dta2F(§ )FéﬁﬁFéngﬁ( )Fﬁ( 3)

s, —d(tr+s a s+ag||t+as r s+as t+a
_ (_1)Ud<t+)+dtz[ i H t }FQ)FQQZ)FEH)-
We see that F[gk)V CVsoV=B8B.
In the non simply laced case we have to use the formulas in [Lus90] section
5.3 (d)-(i) but the idea of the proof is the same. If there were similar formulas
for the G5 case it would be possible to show the same here. I do not know if
similar formulas can be found in this case. The important part is just that if

you 'v-commute’ two of the 'root vectors’ Fﬁ(f) and Féf ) you get something that
is still in Uy. O

Lemma 2.2
Uy (wo) =Uy

Proof. It is clear that U, (wo) C U, . We want to show that Fo(lk)Ug (wg) C
Ua(wp) for all « € TI.

U (wp) is independent of the chosen reduced expression so we can choose
a reduced expression for wq such that s, is the last factor. Then the first root
vector Fj, is equal to F,,. Then it is clear that F,gk)UX (wo) C Uy (wp). Since
this was for an abitrary simple root « the proof is finished. (This argument is
sketched in the appendix of [Lus90].) O

Corollary 2.3 We get a basis of U, by the products of the form Féi“) e FE?VN)
where ay,...,any € N.
Corollary 2.4 U, (w) =U, (w) NUa.
Proof. Assume the length of w is r and define for k = (ky,..., k) € N"
(k) _ k1) . gp(kr)
FO = pib) gk

It is clear that U (w) C U, (w)NU4. Assume z € U, (w)NU4. Since z € U, (w)
we have constants ¢, € Q(v), k € N” such that

T = Z ckF(k).

keNr
Assume the length of wg is N and denote for n € NV, F(") like above for w.

Uy (w)NUax C U, (wo) NUA = Uy (wo) (Uy (wo) C U, (wo) NUA clearly and
U (wo) is invariant under multiplication by U} .) so there exists b, € A, n € NV

such that
=Y bF®.
keNN
But then we have two expressions of z in U, (w) expressed as a linear combina-
tion of basis elements. So we must have that the multindieces by are zero on
coordinates > 7 and that all the ¢ are actually in A. This proves the corollary.[]
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Definition 2.5 Let x € (U,), and y € (Uy,)~ then
[z, yly = 2y — v~ M ya,
Proposition 2.6 For z1 € (Uy)u,, 2 € (Uy)u, and y € (Uy), we have

[T122, Y]o = z1[T2,Y]w + U_('Ylu"’)[xu Yoo

and
[yvm1x2]v = ,U*("/|M1)x1[y, xZ}v + [yaxl]vxZ

Proof. Direct calculation. O

We have the following which corresponds to the Jacobi identity. Note that
setting v = 1 recovers the usual Jacobi identity for the commutator.

Proposition 2.7 for x € (Uy)u, y € (Uy)y and z € (Uy,)~ we have

(£, 9]v, 2]o = [, [y, 2Jo]o—v~ F [y, [z, 2]p]s+o~CIE+D) (vw\m _ v—(um) [z, 2]oy

Proof. Direct calculation. |

For use in the theorem below define:

Definition 2.8 Let A = Z[v,v™1] and let A’ be the localization of A in [2]
(and/or [3]) if the Lie algebra contains any B,,C, or Fy part (resp. any G
part). Let w € W have a reduced expression s;, ---s;,. Define B; and Fg,,
i=1,--,r as above: B; = s; -+ s;;_,(i;) and Fp, = R, ~-~Rsij71(Faij).
We define

U, (w) = span {Fgl1 g

...,aTEN}

This subspace is independent of the reduced expression for w. This can be proved
in the same way as Lemma using the rank 2 calculations done in [Lus90].

The main tool that will be used in this project is the following theorem
from [DP93, thm 9.3] originally from [LS91, Proposition 5.5.2]:

Theorem 2.9 Let Fjg, and Fp, be defined as above. Leti < j. Let A = Z[v,v™"]
and let A’ be the localization of A in [2] (and/or [3]) if the Lie algebra contains
any B,,,C,, or Fy part (resp. any Ga part). Then
(s, Fa.Jo = Fg, Fg, — v %19 By, Fy, € span,y, {FB’If --'FEJ:J}

Proof. We shall provide the details of the proof sketched in [DP93]. The rank
2 case is handled in [Lus90]. Note that in [Lus90] we see that when p = 2 (in
his notation) we get second divided powers and when p = 3 we get third divided
powers. This is one reason why we need to be able to divide by [2] and [3].

So we assume the rank 2 case is proven. In particular we can assume there is no
G2 component. Letk € N, k < j. Then [Fp , Fp,| = R, --- R, [Rs, -+ Rs,
so we can assume in the above that ¢ = 1. We can then assume that ;7 > 2
because otherwise we would be in the rank 2 case. We will show by induction
over | € N that

(Faij )7 F@ik]v

Si ’ —1

[Fp,. Fp,Jv = F, F, — v~ P Fy Fy, € spany, {Fgf -~-F§fjf}
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for all 1 < ¢t < [. The induction start [ = 2 is the rank 2 case. Assume the
induction hypothesis that

[FBH Fﬁl]ﬂ = FﬁtFﬁl - v_(ﬂllﬂt)FﬁlFﬁt € span 4/ {ng Y tht:j}

for ¢ < 1. We need to prove the result for I 4 1. We have i1 = si, -+ 84, (i, )-
Now define ¢ = ¢; and j = ¢j41. Set w = s;, - 8;,_,. S0 Bi41 = ws; () and
Fg,., = RyR,(Fy,). Define o = a;,. We need to show that

[RuRs,(Fa,), Faly € span,, {Fg; . Fg;} .

We divide into cases:

Case 1) (aj|a;) = 0: In this case Ry Rs, (Fo,) = Ruw(Fy,). Since s;s; = s;s;
there is a reduced expression for wq starting with s;, - - - s;_15;5;. So the induction
hypothesis gives us that [Ry(Fq, ), Fa, ] can be expressed by linear combinations
of ordered monomials involving only Fg, --- Fp, ,.

Case 2) (a;|a;) = —1 and {(ws;) > l(w): In this case ws;s;(a;) = w(ey) >
0 so there is a reduced expression for wy starting with s;, ---s;_,5;5;8; =
84y - 84,_,8;5i5j. So we have by induction that [R,(Fy,), Fal, is a linear
combination of ordered monimials only involving Fpg, - - - Fg,_,.

Observe that we have

F,@l+1 :RwRSi (Faj)
=Ry, (Fa, Fa, — 0Fs, Fy,)
:Rw (Foéj)Fgl — 'L)Fgl Rw(Fa_,»)
:[Rw(Faj)7Fﬁl]U
so by Proposition 2.7 we get

[Fﬁurl ) Foc]v :[[Rw(Faj)v Fﬁz]va Foz]u
[Rw(Faj)= [FﬁmFa]v]v — y~(wle)lB) [Fg,, [Rw(Faj)7 Fa]v]v
+ o~ Biletwl@)) (y=1 — 4) [Ry(Fa,), FaloFa-

By induction (and Proposition [Ruw(Fa, ), [Fp,, Falolo and [Fp,, [Ry (Fa,), Falolo
are linear combinations of ordered monomials containing only Fjg,,...,Fs,_, so
we have proved this case.

Case 3) (iloj) = —1 and l(ws;) < l(w): In this case write u = ws;. We
claim I(us;) > l(u). Assume I(us;) < I(u) then

lw) +2 =l ws;sj) = l(usjs;s;) = lus;s;s;) < l(u) +2=1(w)+1

A contradiction. So there is a reduced expression of wq starting with us;. We
have Fg,,, = Ry R, (Fa;) = Ru(Fa,) so we get

[FﬁH»l ) Fa]v = [Ru(Faq)7 Fa]v

Now we claim that either u™'(a) = a; or u=!(a) < 0: Indeed w™!(a) < 0 so
u™(a) is < 0 unless w™!(a) = —a; in which case we get u™1(a) = s;w™ (o) =
sj(—aj) = aj. If @ = u(a;) we get

[Ru(Fa')v Fa]v = Ru([FamFaj]v) = RU(RSJ‘ (Fal)) = Rw(Fai) = FB:

i
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In the other case we know from induction that
[R“(Faq)vFa]v S U;/ (Ufl)

Now Uy (u™t) C Uy (sju™) = Uy (w™!) so we get that [Ry(F,,), Fals can
be expressed as a linear combination of monomials involving F,, = Fjs, and

the terms Fp, - -- Fjs,_,. Assume that a monomial of the form F*Fg? .- Fg'"!

appears with nonzero coefficient. The weights of the left and right hand side
must agree so we have ws; (o) + a = 22;12 arBr + ma or

ws;(a;) Zakﬂk +(m—-1a
Since w™(B) <0 for k=1,2,...1—1 (and a = $31) we get
i +aj = w tws;(ay) Zakw +(m - 1w Ha) <0.
Which is a contradiction.

Case 4) (o, o)) = —1, (vi]ej) = =2 and l(ws;) > l(w): Here we get
Fg ., = Ry R, (Faj) = Rw(Faj Fai*UQFaiFaj) = Rw(Fozj)FBz *UQFﬁz Rw(aj) = [Rw(Faj)a FBz]v

From here the proof goes exactly as in case 2.
Case 5) (o, ) = —2, and l(ws;) > l(w): First of all since I(ws;) > I(w)
we can deduce that [(ws;s;js;s;) = l(w) + 4: We have —fj+1 + 2ws;s;(a;) =

ws;s;j8i(aj) = w(ay;) > 0 showing that we must have ws;s;(a;) > 0.
We have

F .y = RuRs,(Fo,) = Ru(Fa, FSY = vFy Fo, Foy, +0°FCF,,)
We claim that we have

1
Rsi (Foéj) = m (RSiRS]’ (Fai)FOéi - FaiRSist (Foél))

This is shown by a direct calculation. First note that

Ry Ry (Fu,) = R, 'Ry R, Ry (Fu,) = R, (Fa,) = Fo, Fo, =V’ Fy, Fo,

Sj

So
RsiRSj(Fai)Fai_FaiRsiRs]-( a; ) Fa]Fo% 2FaiFajFai_FaiFajFai +U2F§iFaj
=Fo, F3 —v[2|Fs,Fo,Fo, + vV’ F2 F,,
:[2]R5i(Fai)'
Therefore
F61+1 :[ ] (R Rsstj( Ozz)Fﬁz FﬂszRsZng( a@))
:@[RwRSiRSj (Fai)7Fﬂl]U
1
:ﬁ[[Rw(Faj)vFﬁz]vv FBL]U
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By Proposition 2.7 and the above we get

[RuRe, R, (Fo), Faly =[[Ru (Fa, ), Fp o, Folu
=[Ru(Fa,), [Fs Falulo = v [Fas [Ru(Fa, ). Falu)o
+v2*(o‘wl) (1}72 — 1}2) [Rw(Faj)a FOL]’UFﬁl

which by induction is a linear combination of ordered monomials involving only
Fp,, ..., Fg,. Using Proposition [2.7] again we get
[2][Fﬂz+1 ) Fa]v :[[RsziRSj (Fa )7 Fﬁl]m Fa]v

i

:[RwRSist (Fai)’ [FBmFa]v]v - [FB” [Rszist (Fai)» Fa]v]v

which by induction and the above is a linear combination of ordered monomials
involving only Fjg,,..., Fg,.

Case 6) (qs|a;) = =2, l(ws;) < I(w) and [(ws;s;) < l(ws;): Set u = ws;s;.
We claim [(us;) = I(us;) > l(u). Indeed suppose the contrary then [(w) +2 =
lwsisj) = l(us;s;8i85) < l(u)+4 = I(w)+2. We reason like in case 3): We have
Fp., = RyRs,(Fy,) = RyRs Ry, Ry, (Fo,) = Ru(Fy,). Now either u™!(a) = ay,
uHa) = si(a;) or uH(a) < 0. If u=(a) < 0 we get by induction that
[Fa, Ru(Fy,)]v is in Uy, (u™) € Uy (w™') and by essentially the same weight
argument as in case 3) we are done.

If o = u(ey;) then

[Ru(Fozj)a Fa]v :[Ru(Faj)7 Ru(Faz‘)]U

=Ry(Fo,Fa; = v°Fo, Fy,)
. RuRsi(Fozj) if <Oéj7a;/> =-1
| RuBs,Rs,(Fo,) if (oj,q)) =2

3

So [Fa, Ru(Fa,)]e € Uy (sisjsiu™') = Uy (s;w™"). Assume we have a monomial
of the form F(TFE; e Fg}‘ with m nonzero in the expression of [R,(Fy,), Fulo-
Then '

l
wsi(o) =Y apf + (m —1)a
k=2
and we get
l
a; =Y apsiw™ (By) + (m — D)s;w™" (a) <0.
k=2

A contradiction.
If & = us;(aj) then
[Ru(Faj)7 Fa]v :Ru[Faj P Rsi (Focj )]v
:RH(FO&J R% (FO/]) - /U72R5i (Fa;)FO/J)
:RU(RSiRSj R, (Faj)Rs (Faj) - U_QRSi (Faj)RSiRSj R, (Faj))

i

Which is in Uy, (s;s;s;u™) = Uy (s;w™!) by the rank 2 case. By the same
weight argument as above we are done.
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Case 7) (ailaj) = =2, l(ws;) < l(w) and I(ws;s;) > l(ws;): Set u = ws;.
Like in case 3) we get that either u™!(a) = a; or u™!(a) < 0. If @ = u(a;):
[F.1 Falv = Ru[Rs, Ry, (Fa,), Fa,lo € Ugi (sisju™") = Uy (s;w™")

And by a weight argument as above we are done.

If u=(a) < 0 then o = 3/ for some i € {1,...,1—2} where the /s are defined
as above but using a reduced expression of u. Set 8,_; = u(e;), ] = us;j(a;)
and 3, = us;si(a;) = ws;i(a;) = Pry1. Then

[FBZ+1,FQ]U = [F5{+1’F5d” S UX,(SiSju_l) = UX/(Siw_l)
by induction and by a weight argument as above we are done. [

Lemma 2.10 Let wo = s, -+ 84 and let Fg, = R
{1,...,N} with I <r. Then

spang,) {F - Fglla; € N} = spang,, { - Fgrla; € N}

and the subspace is invariant under multiplication from the left by Fg,, i =
l...,r.

. -RSiF1 (Faij) letl,r e

Siy :

Proof. If r — [ = 0 the lemma obviously holds. Assume r — [ > 0. For
ke N~ k= (k,...,k.) let FF = Fg; Fg: We will prove the statement
that F* € spang,) {Fgf o Fgtla; € N} by induction over k;+---+k,. If k =0
the statement holds. We have

F* = Fg Fy  Fgt - F

J 5 Bj+1

By induction ng_ngﬁf . Fg: € spang,) {Fg: o Fgtla; € N} so if we show

that ngFg: . Fgll € spang,) {Fg: o Fglla; € N} for all b;, 1 = I,...r then
we have shown the first inclusion.

We use downwards induction on j and induction on by +---+b,.. If j =7
then this is obviously true. If j < r we use theorem [2.9] to conclude that

Fp, Fy, — v~ 1% Fg g, GSpan@@){ iy gfjjlazeN}

If b, = 0 the induction over j finishes the claim. We get now if b, # 0

Fy, Fyr - Fot = o180 (Fﬂ Fp, Fhr=t o Fh o spht. --Fg;)

where ¥ € spang,, {Fg: R ngill la; € N}. By the induction on b, + - -- + ¥

Fﬂngzfl . ngl € spang,) {FBT - Fglla; € N} and the induction on j en-

sures that ZFg:fl e Fg; € spang, {Fgr - Fglla; € N} since X contains only

elements generated by Fjg__, --- Fj
We have now shown that

spangy,) {Fgll o Fgrlag € N} C spang,) {Fg: o Fglla; € N}

e

The other inclusion is shown symmetrically. In the process we also proved
that the subspace is invariant under left multiplication by Fj,. ([l

10
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Remark The above lemma shows that U, (w) is an algebra.

Definition 2.11 Let 8 € ®* and let Fg be a root vector corresponding to [3.
Let uw € Uy. Define ad(Fj)(u) == [[...[u, Fgly...Jv, Fgly and ad(Fj)(u) =
[Fg,[...,[Fg,uly...]]u where the v-commutator’ is taken i times from the left
and right respectively.

Proposition 2.12 Let u € (Ua),, B € @ and Fg a corresponding root vector.
Set r = {u,BY). Then in Us we have the identity

ad(F})(u) = [i]s! i:(—1)%;“*”*">Fﬁ<n>upgi*")
n=0
and
ad(F)(u) = [i]! Xi:(—1)"vg(l_i_T)Fﬂ(i_")uFB(n)
n=0
Proof. This is proved by induction. For ¢ = 0 this is clear. The induction step
for the first claim:
[i]! i:( IDICAED 20T o Sl F
n=0

—r—2i 1 n n(l—i—r n i—n
— 0y 2 [t S (1)
n=0
:[Z]g'Z( 1)n,UZ(1 i— T)[Z+1_W}Fﬁ(n)uFéi+l_")
n=0
_ ['L]B'Z( 1)nvg(1 i—r)— r72i[n+l]Fén+1)uFﬁ(ifn)
n=0
i+1 ' |
S P (o3l 1 ) 0 ) P
n=0
i+1 ‘
z[i—l—l]/g!z:( 1)"1};( i T)F[gn)uFé”l*")_
n=0

The other claim is shown similarly by induction. (|

So we can define ad(Fﬁ(i))(u) = ([1]") " ad(Fj)(u) € Ua and Q&(Fﬁ(l))(u) =
([i])~tad(Fj)(u) € Ua.
Proposition 2.13 Let a € N, u € (Ua), and r = (u,3Y). In Us we have the
identities

a
ul =3 "o pE) ad(F) ()
i=0

_Z Z a(TJFl F(a 1) d(F(Z))( )

11
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and

Flga)uzzvl(gz a)(r+1i) d(F(z))( )Fﬂ(afz)
1=0

=3 (1) ad (B (w) FS Y

Proof. This is proved by induction. For ¢ = 0 this is obvious. The induction
step for the first claim:

[a + l]BuF[ga'H) :uFB(a)Fg

a
=Y oI ETD ad(F5Y) (u) Fa

_ Z v’gifa)(TJri)frf%[a +1— i]ﬁFﬁ(aJrlfi) ad(Fé”)(’U/)

1=0
F 2o  1ES Y ad(E ) ()

=0

(i—a—1)(r+1i)—1i . a+1—1 %

Z =0 11— i P ad(F) (u)
1=0

a+1 )
+ ’Uézfa 1) (r+i— 1)[] F(a+1 %) d(F( ))( )

i=1

at+1
Z (i—a—1)(r+1) ( [a_|_ 1_ i],B +’Ug+1_i[i]> Fﬂ(a-‘rl—z) ad(Fél))(u)
=0

a+1
sz a—1)( T+2)F(a+1 %) d(F[,(;))(’U/)

So the induction step for the first identity is done. The three other identities are
shown similarly by induction. (|

Let s;, ...s;y be areduced expression of wg and construct root vectors Fg,,
i=1,...,N. In the rest of the section Fj, refers to the root vectors constructed
as such. In particular we have an ordering of the root vectors.

Proposition 2.14 Let 1 <i < j < N and a,b € Z~y.
[ng,ng]v € spang, {Fg; . ~~F§jj|al eN,a; <a,a; < b} .

Proof. From Theorem we get the a = 1, b = 1 case. We will prove the
general case by 2 inductions.
If j —i =1 then [Fp,, F§ ], = 0 for all a. We will use induction over j — .
We have by Proposition @ that

[Fﬁ]7ng]7) = Uf((ail)ﬁimj)ng_l[FBjaFﬁi]v + [F5j7F/8i]Ung_1'
The first term is in the correct subspace by Theorem [2.9] On the second we use
the fact that [F,, Fjg,], only contains factors Fg' ---F, 5:__11 and the induction

12



TWISTING FUNCTORS FOR QUANTUM GROUP MODULES

over j — 1 as well as induction over a to conclude that we can commute the Fg;l
to the correct place and be in the correct subspace.
Now just make a similar kind of induction on 7 — j and b to get the result
that
b i a;
[y F& ), € spang,,) {Fﬂ <P € N,a; < a,a; < b} . O

Corollary 2.15 Let 1 <i< j < N and a,b € Z~yp.
[F[gf),Fﬂ(f)]v € span 4 {Flgfh) : ..F/gjj)|al €N, q; <a,a; < b}.

Proof. Proposition tells us that there exists ¢ € Q(v) such that

k
aj)

J

®) gl _ (af) (
(B3, Falo = D enk - F
k

with a¥ < a and a? < b for all k. But since [Féf),Fﬁ(?)]v € U, there exists
by, € A such that

() pla)y _ (af) (ak)
[Fa, Bl = 3 bkF o By
k
Now we have two expressions of [Fﬁ(f), Fﬁ(?)}v in terms of a basis of Ug,). So we
must have that the ¢;’s are equal to the by’s. Hence ¢, € A for all k& ([l

Lemma 2.16 Letn € N. Let 1 < j <k < N.
ad(FS))(F§”) = 0 and ad(F5))(FSY) = 0 for i > 0.

Proof. We will prove the first assertion. The second is proved completely similar.
We can assume [3; = 1 because

@Oy ply = (4) (n)
ad(FY)(FSY) = Ty, -+ T, (ad(FO (T, T, (FE))).
So we assume (3; = 81 =: f € Il and « := B = s;, ... si,_, (as,) € PT. We have

ad(Fg)(F{™) € span 4 {Fﬁ(;”) e Fﬁ(‘:’“)|al eN,a, < n} ,

hence the same must be true for ad(F/gi))(Fo(é")). By homogenity if the monomial

F 6(32) - F g‘:k) appears with nonzero coefficient then we must have

k
Bena=Y ab,

s=2

or equivalently
k—1
(n—ap)a = Zasﬂs —1p.
s=2

Use sg on this to get
s—1
(n—ar)sg(a) = D asss(Bs) +ib.
s=2

13
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By the way the f,’s are chosen sg(8s) > 0 for 1 < s < k. So this implies that
a positive multiple (n — a;) of a positive root must have i as coefficient. If
we choose i greater than nd where d is the maximal possible coefficient of a
simple root in any positive root then this is not possible. Hence we must have
for i > nd that ad(F§”)(FS") = 0. O

In the next lemma we will need to work with inverse powers of some of the
Fg’s. We know from e.g. [And03] that {F¢|a € N}, a € II is a multiplicative
set so we can take the Ore localization in this set. Since R,, is an algebra
isomorphism of U, we can also take the Ore localization in one of the ’root
vectors” Fjg;. We will denote the Ore localization in Fg by Uy (r).

Lemma 2.17 Let 3 € ®* and Fp a root vector. Let u € (U,), be such that

?mvi(Fé)(u) =0 fori>0. Let a € N and set r = (u,3Y). Then in the algebra
Uy(ry) we get

_ —ar—(a lia+i71 —i—a_ 3 i
uF =3y et [ . LFBZ Yad(F5) (u)
i>0

and if v’ € (Uy),, is such that ad(Fj)(u') = 0 fori >0
—a —ar—(a i|o+ i—1 % —i—a
Fyou =3 vp et [ . ] ad(Fp)(u/) Fy e
i>0 B
Proof. First we want to show that
ad(Fg)(u)F, ZUET g lad(Ff) (u). (3)
k=1

Remember that ;a(Fg)(u) = 0 for k big enough so this is a finite sum. This is
shown by downwards induction on . If 7 is big enough this is 0 = 0. We have

Faad(F})(u) = ad(F3™) () +v;"~ P ad(Fj) (u) Fs
SO

ad(F}) (u)Fy ' =F5 ad(F) (w)Fy '+ 03" 2 F;  ad(F)) (u)

Z P lad ad(F§)(u) +v5" ' Fy ad(Fg)(u)
k=i+1

_ZU_T 2kF—k+l 1 d(Fk)( )

Setting ¢ = 0 in the above we get the induction start:

Z,Ufr 2kF k—1_3 d(Fﬂ)( )

k>0

For the induction step assume

_ —ar—(a 1ia+i71 —a—i_ 3/ i
uF e =3 p ot [ . LFﬂa Tad(FE) (u).
i>0

14
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Then
—ar—(a 7 — 1
’U,Fﬁiail :Zvﬁ (a+1) |:a+z :| F a—1i d(FB)( )Fﬁl
i>0 B
_vaarf(aJrl)i a+i—1 F a— zzvfr 2k p—k+i-1 d(Fk)( )
- B i B B
i>0 B k>i

7

,sz—wl)r (a+1)i—2k {aﬂ—l} FyeFad () (u)
8

k>0 i=0
k anla+i—1
—Zv_(a-HT (a+2)k <Zvﬁ—(a+1)l+ak{ . :| )F—a 1—k d(Fk)( )
E>0 i=0 B

The induction is finished by observing that

k

—(a+1)itak | @ +1— —(a+1)i+ak ila+ i ati|@ +i—1
3 R R il CIO I bl

=0
. k .
ek Caitak|@ Tt —a(i—D)4ak |0 +i—1
S aeE DA wet |

i=1 i=1
k a+i = a+i
_ _ak —aitak —aitak
SR M SN I S B
i=1 B =0 B
_lat+k
= 5'
The other identity is shown similarly by induction. ]

Definition 2.18 Let 8 € &1 and let 8 be Fs a root vector. We define forn € N
m U’U(Fg)

FS™ = [n)lFg "
-1
; (=n) _ ((n)
i.€. FB = (FB ) .

Corollary 2.19 Let § € @ and Fp a root vector. Let u € (U,),, be such that

;&(Fél))(u) =0 fori>0. Let a € N and set r = (u,8). Then in the algebra
Uy(ry) we get

uly VFyt =g R p ) prlad (55 (u)
i>0

and if u' € (Uy), is such that ad(F, (z))( "Y=0fori>0

— 1)r— 2 [ —i— —
( a)F Zv (a+1)r—(a+2)i d(F/g))(U/)F;g a)FB 1

1>0
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3 Twisting functors

In this paper we are following the paper [And03| closely. The definition of
twisting functors for quantum group modules given later and the ideas in this
section are mostly coming from this paper.

We will start by showing that the semiregular bimodule S}’ is a bimodule
isomorphic to Uy (w)* @~ () Uy as a right module.

Recall how U,(w), S¥ and S,(F) are defined: Let s;, ---s;, be a reduced

expression for w and Fg, = Ry, -+ Ry, | (Fa,ij) as usual then

U, (w) = spang,, {Fgf o Fgrla; € N} )
S,Z)U = U’u ®U;(w) U,U_(’LU)*
and for F € U, such that {F*|a € N} is a multiplicative set
So(F) = Uyry /Uy

where U, (r) denotes the Ore localization in the multiplicative set {F*|a € N}.
In the following proposition we will define a left U, isomorphism between
S and 8, (Fs,) ®u, S where w' = s;, w. We will need some notation. Let
m € N. We denote by £ € (Q(v)[Fgs,])* the linear function defined by
,(,f)(Fgr) = dmqe. We will drop the (r) from the notation in most of the
following. For g € U, (w’)* we define fy, - g to be the linear function defined by:
For x € Uy (w'), (fm - 9)(xF§ ) = fm(F§ )g(x). From the definition of U, (w)
and because we are taking graded dual every f € U, (w)* is a linear combination
of functions on the form f,, - g for some m € N and g € U, (w’) (by induction
this implies that every function in U, (w) is a linear combination of functions of

the form fr(,lr) e f,(fg . fr(nll) for some my,...,m, € N). Note that the definition
of f,, makes sense for m < 0 but then f,, = 0.

Proposition 3.1 Assume w = s;, -+ 8;, = s;,w', where k is the length of w,
then as a left U, module

Sy 2 8u(Fa) @u, S}’
by the following left U, isomorphism
ok 2 57 = Su(Fa,) ©u, S
defined by:
Pr(u® fm-g) =uF;™" ' Kp @ (1®g), uecUy,meN,geU, (w)".

The inverse to gy is the left U,-homomorphism ¢y, : Sy(Fp,) ®u, S¥ — S¥
given by:

Ur(uF; " @(10g)) = v "HPUK IR fr 19, u € U,m eN,g €U, (w')*.

Proof. The question is if ¢y is welldefined. Let f = f,, - g. We need to show
that the recipe for uFjg, ® f is the same as the recipe for u® Fj, f for j = 1,... k.
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For j = k this is easy to see. Assume from now on that j < k. We need to figure
out what Fjp, f is. We have by Proposition m (setting r = (B;, 8Y))

(Fp, [)(@Fg, ) = f(xFj, Fg;)
/ N (i—a)(ri) [a}
(m ; " ‘g

< - oy ™+ {m“hfmﬂ : (éﬁ(Fék)(Fﬂj)g)> (zF,)

7
=0

55<Fék><F@j>F§;i>

3y {m - z] 5 e (ga( Fi)( Fﬁj)g) (¢F5)

7
i>0
SO
—m(r4i) |M + 1
P d = e " e (53 5)0).
>0

Note that the sum is finite because of Lemma
On the other hand we have that uFs, ® f is sent to (using Lemma [2.17)

uFp Fy ™ K, @ (1@ g)

—(m+1D)r—(m+2)i m—+1 i—m—
=W T B, ), @ 019 )

X (3
>0

—mr—mi m+ —i—m— T2
—uy o™ LFBk UK, ad(F,)(Fay) @ (16 g).

>0

Using the fact that éﬁ(F %.)(Fs,;) can be moved over the first and the second
tensor we see that the two expressions uFg, @ f and u ® Fp, f are sent to the
same.

So ¢y, is a welldefined homomorphism. It is clear from the construction that
g is a U, homomorphism.

We also need to prove that ¢y, is welldefined. We prove that uFj; "Fg,®(1®g)

is sent to the same as uF; " @ (1® Fjp, g) by induction over k—j. If j =k —1 we
see from Lemma“ and Theorem [2.9| that Fp, ,Fg“ =v —(aBk| Bk~ 1)F E
and therefore uf, "Fg ,®(1® g) is sent to

v(mﬂk—ﬁj|ﬂk)+(mﬁkIBk—l)uKl;leﬂk_l ® frno1-g

— U(mﬁk‘F(m_l)kalﬁk)uKﬁ_kl ® Fs,_, (fr—1-9)-
Note that because we have éE(Fék)(Fﬁj) =0foralli > 1weget g, _,(frm-1-9) =
v~ Bealm=18x) £ | . (Fp, ., g). Using this we see that uFg"Fg, , ®@(1®g)is
sent to the same as ul; ™ ® (1® Fg, ,g).

Now assume j — k > 1. To calculate what uFy " Fp, @ (1® g) is sent to we
need to calculate Fjy ™ Fjg;. By Lemma w

mr (m+1): m+l_1 m—i
By By, = v By B = Y 0| LF ad(F}, ) ().

)
i>1

17
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So

uFy " Fp @ (1®g) = u(vE"FBjF[;cm

_ Zvﬁ—(m-i-l)i |:m +.Z' — 1:| ﬂFB—km—zgd(Fék)(u)> ® (1 ® g).

c 1
i>1

By the induction over k—j (remember that éa(Fék)(u) is a linear combination
of ordered monomials involving only the elements F,, --- F, ) this is sent to
the same as

m-+i—1
7

. —m —(m+41):
u | vg"Fp, Fg ®(1®g)—2@5( +){

i>1

LFﬁkmi ® (1® ad(Fj, )(u)g)
which is sent to

U (,UZLT+2mFBj K@Tkl ® fm—l g

_ m+i)—(m+1)i [m+1—1 T
_Kﬁ;@ZUZ( )= (m+1) [ . ]B®fm+i—1'(ad(F5k)(U)g)>

; 1
i>1

= v%muK[;kl (Uém_l)rFﬂj & fmfl g

-1® ng(m_l)i {m +,i B 1] , & fmgi-1- (Exﬁ(FéQ(u)g))

‘ (3
1>1

_ v(m5k|f8k)qukl ® fin—1 - (Fﬁjg)'

But this is what uF ™ ® (1 ® Fp,g) is sent to. We have shown by induction
that vy, is well defined. It is easy to check that ¢y is the inverse to ¢g. O

Proposition 3.2 Let s;, ---s;, be a reduced expression of w € W. There exists
an isomorphism of left U,-modules

Sy = 8,(Fs,) ®u, -+ ®u, Su(Fg,)

Proof. The proof is by induction of the length of w. Note that S¢ = U, @ k* =
U, so Proposition with w’ = e gives the induction start.

Assume the length of w is » > 1. By Proposition we have Sy =
S,(Fs,) ®u, S*. By induction S* = §,(Fs,_,) ®u, --- ®u, Sy(Fs,). This
finishes the proof. ([l

We can now define a right action on S by the isomorphism in Proposition 3.2}
By first glance this might depend on the chosen reduced expression for w. But
the next proposition proves that this right action does not depend on the reduced
expression chosen.

Proposition 3.3 As a right U, module S¥ = U, (w)* ®u, U,.

18
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Proof. All isomorphisms written in this proof are considered to be right U,
isomorphisms. This is proved in a very similar way to Proposition We will
sketch the proof here.

Forl € {1,. N} define S!, = (U!)*®:1 U, where U}, = spang,, {F - Fgrla; € N}.
Note that S1 = U, (w)* ®y, U,. We want to show that (U!)* Qur Uy =
SHL @y, Sy (Fp,). If we prove this we will have S} 2 S2 @y, S, (Fp,) = ------ =
Sy(Fs,) Qu, « - Qu, Su(Fp,) = S¥ as a right module and we are done.

Let r = (3;,6)). From Proposition we have

a

i—a)(r+i) | @ a—i i
FoFg =3 o )L‘LFm ad(F%,)(Fs,)
=0

and by Lemma [2.17] we have

—a —ar—(a+1 a+1—1 i ia
5O, =Y vy )1{ ]ﬁ ad(F},)(Fp, ) F5 '™
l

)
1>0

We define the right homomorphism ¢; from (U})* @y U, to SIH @y, S,y (Fa,)
by
0i(g - fry ©u) = (g®1) @ K F3 ™ .
Like in the previous propisition we can use the above formulas to show that this

is well defined and we can define an inverse like in the previous proposition only
reversed. The inverse is:

Yi((g®1)® Fﬂ—Lm—lu) — U—((m+1)/3z|ﬁz)g fm ® K@lu. 0

So we have now that S}’ is a bimodule isomorphic to Uy, ®;;- () Uy (w)* as
a left module and isomorphic to U, (w)* AU (w) U, as a right module. We want
to examine the isomorphism between these two modules. For example what is
the left action of Ko on f®1 € (U (w))" @y () Us-

Assume f = fi) .- £{1) ie. that fOEG -~ F§") = Omy.ar - Oy a,- Then
we get via the isomorphism (U (w))* @,y Us = Su(Fp,) ®u, -~ ®u, Su(F,)
that f ® u is sent to

Kg Fy™ @ @ Kg Fy™ .

We want to investigate what this is sent to under the isomorphism S, (Fg,) ®u,
- ®u, Su(Fp,) = Uy @y () (Uy (w))". To do this we need to commute u with

v

Fﬂzmlfl, then Fﬁ;mrl and so on. So we need to find @ and mf,...,m. such
that

KgTFﬂ_TmT Kﬁl m1 1u:ﬂKngﬁ:mT_1~~KﬁlF ™

or equivalently
m 1+l — mr-&-l =1 _ pma+lp—1 pmetlp-—1~
uFp VUK Fg K = Fgt T K FT K .
Assume we have found such @ and m/f, ..., m. then the above tensor is sent to

UZ:§;1((77L/+1)/3i|/3i)a ® f~
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where f = f,(,:,) e ffnl,l) So in conclusion we have that f®@u € (Uy (w))* @y () Us

maps to v2i=1 (M VBB f e U, v (w) (Uy (w))" where f and @ are defined
as above.
We have a similar result the other way: u® f € U, ®;-,,) (Uy (w))* maps

to v~ Zim (DB T © F e (U (w))* Oy () Uv- So if we want to figure
out the left action of u on a tensor f ® 1 we need to first use the isomorpism
(Uy (W)* @y () Uv = Uy @y () (Uy (w))* then use u on this and then use
the isomorphism Uy, ®;— ) (Uy (w))* = (Uy (w))* @y, Uy back again.

In particular if u = K, we have f = f and @ = v2=i=1((m:+DBIB) | Note
that it f = £+ f) then the grading of f is 37_, miB; so Ko(f ®1) =

VOB £ @ K, for f € (U, (w))?.

Definition 3.4 Let w € W. For a U,-module M define a ’twisted’ version of
M called M. The underlying space is M but the action on M is given by:
Forme M and uw € U,

u-m = Ry-1(u)m.

Note that if w,s € W and l(sw) > l(w) then *(* M) = ** M since for u € U,
and m € *(YM): u-m = Rs(u) -m = Ry—1(Rs(u))m = R(gp)-1 (u)m.

Definition 3.5 The twisting functor T,, associated to an element w € W is the
following:
Ty : Uy—Mod — U, —Mod is an endofunctor on U, —Mod. For a U,-module
M:
TwM ="(S) ®u, M).

Definition 3.6 Let M be a U,-module and X : U? — Q(v) a character (i.e. an
algebra homomorphism into Q(v)). Then

My = {m € M|Vu € U, um = \(u)m}.

Let X denote the set of characters. Let wt M denote all the weights of M,

i.e. wtM = {\ € X|My # 0}. We define for n € A the character v* by

vH(Ky) = v We also define vg =0 We say that M only has integral

weights if all its weights are of the form v* for some p € A.

W acts on X by the following: For A € X define w\ by
(wA)(u) = A(Ry-1 (u).

Note that wot = v@ (),

We will also need the dot action. It is defined as such: For a weight y € X
and w € W, w.u = v"Pw(v’u) where p = %Zﬁeq)ﬁ as usual. The Verma
module M(\) for A € X is defined as M(\) = U, ®yzo Q(v)x where Q(v)x
is the onedimensional module with trivial U;}" action and U? action by A (i.e.
K, -1=XK,)). M()) is a highest weight module generated by vy =1® 1.

Note that R,-1 sends a weight space of weight u to the weight space of
weight w(p) since if we have a vector m with weight p in a module M we get in
M that

Ko -m =Ry (Ko)m = Ky 1(qym = 0@ (@) — elwi)y,
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We define the character of a U,-module M as usual: The character is a
map ch M : X — N given by ch M(u) = dim M,,. Let e* be the delta function
et () = 0. We will write ch M as the formal infinite sum

ch M =" dim M,e".
pnex

For more details see e.g. [Hum08|. Note that if we define w(3_, aue) =
> a,e” ™ then ch ¥ M = w(ch M) by the above considerations.

Proposition 3.7
ch Ty, M(\) = ch M(w.\)

Proof. To determine the character of T,,M(\) we would like to find a basis.
We will do this by looking at some vectorspace isomporphisms to a space where
we can easily find a basis. Then use the isomorphisms back again to determine
what the basis looks like in Ty, M (X). So assume w = s, ---8;, is a reduced
expression for w. Expand to a reduced expression s, ---s;,,5;, -+ 8; for

wo. Let Uy’ = spang, {F“”rl o Fgila; € N}. Set k = Q(v). We have the

ﬂT+1
canonical vector space isomorphisms

Uy (W) @y () Uv @u, Up @20 by ZU ()" @y () Un @0 b
=U, (w)* @, Uy @ k.

The map from the last vectorspace to the first is easily seen to be fRQUR1 — f®
u®1®l = feuduy, f €Uy (w)",ue Uy and vy =181 € Uy @20 ky = M(A)
is a highest weight vector in M ().

So we see that a basis of Ty, M (A) ="(U, (w)* ®- () Uv ®u, M) is given
by the following: Choose a basis { f;}icr for U, (w)* and a basis {u;};cs for U".
Then a basis for T, M ()) is given by

{fi @ uj ® vatierjes-

So we can find the weights of T, M (\) by examining the weights of f @ u® vy
for f € U, (w)* and u € UY. By the remarks before this proposition we have
that K, (f ® 1) = 00+ Zi=Bile) f @ K, for f € U, (w)?, so for such f and for
u € (UY)yn the weight of f @ u® vy is vV TATEi=1 5\ After the twist with w
the weight is v +t#)w.\. The weights v and p are exactly such that w(y) < 0
and w(p) < 0 so we see that the weights of T, M ()\) are {vFw.\|u < 0} each
with multiplicity P(u) where P is Kostant’s partition function. This proves that
the character is the same as the character for the Verma module M (w.)\). O

Definition 3.8 Let A € X and M (X\) the Verma module with highest weight \.
Let w e W. We define
MY(\) =Ty, M(w™t.N).

Recall the duality functor D : U, — Mod — U, — Mod. For a U, module
M, DM = Hom(M,Q(v)) is the graded dual module with action given by
(xf)(m) = f(S(w(m))) for x € Uy, f € DM and m € M. By this definition we
have ch DM = ch M and D(DM) = M.
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Theorem 3.9 Let wy be the longest element in the Weyl group. Let A € X.
Then
Two M (X) 2 DM (wp.)\)

Proof. We will show that DT,,, M (wo.\) & M (X) by showing that DT,,, M (wo.)\)
is a highest weight module with highest weight \. We already know that the char-
acters are equal by Proposition so all we need to show is that DT,,, M (wo.\)
has a highest weight vector of weight A that generates the whole module over
U,. Consider the function gy € DM™°()\) given by:

B - o 1 ifaN:"':al:O
FoaN 1®...®F ay 1®'Uw =
gx( BN 1 o-2) 0 otherwise.

We claim that Fﬁ_]\fN_l ®R...0 Fﬁ_lal_1 ® Vy.x With a; € N defines a basis for
M™0 () so this defines a function on M™° (). In the proof of Proposition [3.7] we
see that a basis is given by f ® 1 ® vy € U, (wg) @ U, @ M(\) = Ty, M(N). We
know that elements of the form £ - - £ defines a basis of (U, ) =U, (wo)*.
Under the isomorphisms of Proposition f,gl]\j\,) e ,gf ® 1 ® vyy,.a 1s sent to

Koy Fp ™ @ 0Kp, Fy ™ ' Quug s € Su(Fiy ), - @, So(Fp, ) ®u, M (wo.A).

If we commute all the K’s to the right to the vy we get some non-zero multiple
of
— —1 — —1
F[ﬂNmN R ® Fﬁlml ® Vg A

So we have shown that {Fﬁ_]\:””_1 R ® Fﬁ_lml_1 ® Vwy.a|mi € N} is a basis of
Mwo()).

The action on a dual module DM is given by uf(v') = f(S(w(u)u’)). Re-
member that the action on M™°(\) is twisted by R, so we get that

ugA(FB*N“N*@. ) .@F*l“l*l@va,A) = gA(RwO(S(w(u)))Fgle*@. ) .®F*1“1*1®vwo,A).
In particular for u = K, we get

Kuga(Fg i @ @ Fp ™ @ vuea) = 93 Kup(u Fad ¥ @ ® F5 " 7 @ vu.0)
= 0 (w0 A) (K () )9 (Fg ¥ T @ .. @ Fy™ 7! @ vy, 2)

where
N N
¢ = (wo(p)| Y asi + Y Bi)-
i=1 i=1

we have
N 3. N . —
0 (wo-N) (K o () —p(Wo () 2252, aiBit3250, Bi) (v wo (V")) (Ko ()
— (ol Ly aifit20) = (elwo () (2 )) (K,
=y (w0l Ty asbite)y, (el \ (K )
=p(wo(WI Ly aifitp)y=(olwo(w) \ (K )
—y(wo T B \(K,).

22



TWISTING FUNCTORS FOR QUANTUM GROUP MODULES

Setting the a;’s equal to zero we get A(K,). So gy has weight A. We want to
show that g, generates DM™°(\) over U,.

Let M € N¥, M = (my,...,my). An element in DM®°(})) is a linear
combination of elements of the form gy; defined by:

gu(F 7 @ @ Fr™ 7 @ vwgn) = Gaymy - Sanmy -

This is because of the way the dual module is defined (as the graded dual). We
want to show that gp; € U,gy by using induction over mi + - --my. Note that
9(0,....0) = gx so this gives the induction start. Assume M = (my,...,mn) €
N¥. Let j be such that my = --- = mjy1 = 0 and m; > 0. By induction
we get for M’ = (0,...,0,m; — 1,m;_1,...,mq) that gar € U,gr. Now let
u; = w(S™H(R,,) (Fp,))). Then

ujg)\(F,B_J\?N_l ®...Q F/g_lal_l & Uwo)\) = gA(FﬁjFﬁ_]\?N_l ®...® Fﬁ_lal_l & 'Uwo.)\)'
From Lemma we get for 7 > j (setting k = (85, 5,))

a+i—1

—a __ —ak p—a —ak—(a+1)i
Fi, Fp* = v ™ Fp + > vy { ;

} Fy%ad(Fj ) (u).
i>1

r

But gp; is zero on every F/;;N_l ®...Q F_l‘“_1 ® Vy,.x Where one of the a;’s
with ¢ > 7 is strictly greater than zero. This coupled with the observation above
gives us that

ung/(Fﬁij71 ® oo ® Fﬁjalil ® UwO.A)

(ajfl)fl

:gM,(UCF/;;N*@...@ng ®...®F;" ' @ vy,.)

=g (Fpi ' @ @ F™ T @ @ Fp™ ! @ vy )

where c¢ is some constant coming from the commutations. We see that gy =
v~ “u;gnr which finishes the induction step.

So in conclusion we have that DM™°()) is a highest weight module with
highest weight A. So we have a surjection from M (\) to DM™°()\). But since the
two modules have the same character and the weight spaces are finite dimensional
the surjection must be an isomorphism. O

Proposition 3.10 Let M be a U,-module, 3 € ®* and let w € W. Assume
Si, * 8y 5 a reduced expression of w and Fg = Ry, -+ Rs, (F,) for some
a € II such that l(sqw) > l(w) (so we have w(B) = «). Then

w(Sv(FB) ®u, M) = 5,(Fa) ®u, M.
Proof. Define the map ¢ : S,(Fo) @ "M — “(S,(Fp) @ M) by
p(uF,™ @m) = Ry (u)Fg™ ®@m.

This is obivously a U,-homomorphism if it is welldefined and it is a bijection
because R,,-1 is a U,-isomorphism. We have to check that if uF[™ = u'F, ™
then Ry,-1(u)Fg™ = Ry-1(v)F;™ and that p(uF,"u' @ m) = p(ul,™ &
Ry-1(u/)m) but wF;™ = «'F;™ if and only if F™'u = F™/. Using the
isomorhpism R,,-1 on this we get F§* R,-1(u) = Ff'R,-1(u') which implies
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Ry-1(W)Fg™ = Ry (u’)Fﬁ_m/. For the other equation: Since we only have the
definition of ¢ on elements on the form uF,; ™ ®m assume F, "u' = uFy ™. This
is equivalent to u/F* = F/™u. Use R,,—1 on this to get wal(u’)F[}71 = F§'u or
equivalently Fjy™ R,-1(u) = Ry (@)F;™. Now we can calculate:
p(uFy ™' @ m) =p(uiFy, ™ @ m)

=R, (uﬂ)Fgﬁ ®m

=Ry-1(u) Ry (W) F; ™ @m

=Ry-1(u)F™ @ Ry-1(u')m = p(uF,™ @ Ry-1(u)m). O

Proposition 3.11 w € W. If s is a simple reflection such that sw > w then
Tsw =Ts0T,.

Proof. Let a be the simple root corresponding to the simple reflection s. By
Proposition [3.2] we get for M a U,-module:

TowM =*"(S3" @u, M) =*(Sy(Ry-1(Fa)) ®u, Sy ®@u, M)
Y (Sy(Ry-1(Fa)) ®u, Sy ®u, M))
Sv(Fa) ®UU w(S:;D ®UU M))

~S

S

—~~

12

where the last isomorphism is the one from Proposition [3.10} O

4 Twisting functors over Lusztigs A-form

We want to define twisting functors so they make sense to apply to U4 modules.
Note first that the maps Rs send Uy to Ujg.
Recall that for n € N with n > 0 and Fj3 a root vector we have defined in

UU(Fﬁ) )
F{™ = )l (1)

: (—n) _ ()"
ie. Fﬁ = (FB ) .

Definition 4.1 Let s be a simple reflection corresponding to a simple root
a. Let S be the Uga-sub-bimodule of S5 = S,(F,) generated by the elements

(FS™En e N
Note that S5 ®4 Q(v) = S2.

Proposition 4.2 In U,(sly) let E, K, F be the usual generators and define as
in [Lus90] the elements

Then
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Proof. This is proved by induction over . We define as in [Jan96]

K;c Kv® — K ly—e
1177 o—ot

i = |

v—v~
From [Jan96] we get EFsTt = FSHLE + [s + 1]F*[K, —s] so

F'E = FEF 14 [s+1|FYK; —s|F*7 ! = EF 14 [s+1][K; —2—s|F ~°~2

and multiplying with [s]! we get
FEOF ' =FEFCI)F L [K; -2 — s]F(s DL

This is the induction start. The rest is the induction step. In the process you
have to use that

[z([r—t][K;rtst} " [K;rti15t][K?—3—t]> _ [K;ritl}

or equivalently that
[r—t][K;r —s—t]+ [t][K;—s — t] = [F][K;r — s — 2t].
This can be shown by a direct calculation. O

We could have proved this in the other way around instead too to get

Proposition 4.3

B p(=s) p=1 _ Z st p-1 {K; sH+t—1r+ 2} oy
t
t=0
The above and Corollary shows that S4(F') is a bimodule. We can now
define the twisting functor 7 corresponding to s:

Definition 4.4 Let s be a simple reflection corresponding to a simple root c.
The twisting functor T2 : Uy -Mod — Ua-Mod is defined by: Let M be a Uy
module, then

T (M) = *(Sa(Fa) ®u, M).

S

Note that TA(M) ®4 Q(v) = Ts(M ®4 Q(v)) so that if M is a Q(v) module
then T4 =T, on M.

We want to define the twisting functor for every w € W such that if w has
a reduced expression w = s;, ---s;, then T2 = Iy, oo TS"}I. As before we
define a ’semiregular bimodule’ SY = Uy By~ (w) Ua (w)* and show this is a
bimodule isomorphic to Sa(F3,) Qu, -+ Qu, Sa(Fa,).

Theorem 4.5 SY := UA@U;(w)UX (w)* is a bimodule isomorphic to Sa(Fg,.)®u ,
- ®u, Sa(Fg,) and the functors TA, s € 11 satisfy braid relations.

Proof. Note that U, (w) can be seen as an A-submodule of U, (w) and similarly
U, (w)* can be seen as a submodule of U, (w)*. So we have an injective A
homomorphism

w w
SY — 5.
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Assume the length of w is r and w = s;,w’, l(w') = r — 1. We want to show
that the isomorphism ¢, from Proposition [3.2 restricts to an isomorphism
SE — Sa(Fp,) ®u, S4 -

Assume f € U, (w) is such that f = g- f/, meaning that f(xFé?)) = g(x)0m n,
(x € U4 (w'), n € N) where g € U, (w')*. Then f! = [m|g,!fm where f,, is
defined like in Proposition [3.2] and for u € Uy we have therefore

pr(u® f)=uFy ™F 0 (10g)

which can be seen to lie in S4(Fs,) Qu, 5}4"/. The inverse also restricts to a map
to the right space:

Ur(uFs, M F @ (19 g)) = (ulm]s, [F; ™ @ (19 g))
:[m]ﬁr!u 02y fm g
=u® fi, -9

The maps are well defined because they are restrictions of well defined maps and
it is easy to see that they are inverse to each other.

As in the generic case we get a right module action on S% in this way.
This is the right action coming from S}’ restricted to S%. So now we have
SYW = Sa(Fs,.) ®u, -+ Qu, Sa(Fp,). Showing that the twisting functors then
satisfy braid relations is done in the same way as in Proposition [3.11 (I

Now we can define T} = T o+ o T3 if w = s; -+, is a reduced
expression of w. By the previous theorem there is no ambiguity in this definition
since the TA’s satisfy braid relations.

It is now possible for any A algebra R to define twisting functors Ugr-Mod—
Ugr-Mod. Just tensor over A with R.

Fx. let R = C with v 1. Sa(Fj)®4C is just the normal S* = Uy, ,)/U via
the isomorphism uF éfn)F 5 '91— ﬂyﬁ_"_l where % is given by the isomorphism
between U, ®4 C and U~.

Theorem 4.6 Let R be an A-algebra with v € A being sent to ¢ € R\{0}. Let
A :U% — R be an R-algebra homomorphism and let Mr(\) = Ug ®yzo Ry be the

Ur Verma module with highest weight A\ where Ry is the rank 1 free Ugo-module
with UEO acting trivially and UY acting as X. Let D : Up — Ug be the duality
functor on Ugr — Mod induced from the duality functor on Us — Ua. Then

TE Mr(X\) 2 DMp(wo.\).

Proof. The proof is the almost the same as the proof of Theorem We have
by Corollary (setting k = (B;,5,))

Fo, Fy Y F; = q D@8 plo pripy N7 g (DRt plmad prigq(757) (u).
Jj=1

Define for M = (my,...,mn) € N the function

_ _ _ _ 1 far=my...any =mpn
FUo p-le  @F 9 p-lgy ) =
gu ( B B i pr &Y o)) 0 otherwise .
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Note that g(o,... 0) = gx from Theorem In particular it has weight A. We want
to show that DM °(A) = Ugrg(o,...,0)- We use induction on the number of nonzero
entries in M. Assume j is such that my =--- =m;11 = 0 and m; =n > 0.
Let M’ = (0, ey 0,0,7’2’1]‘_1, Ce ,ml). By induction am € URg(O,...,O)~

Set u = w(S_l(RI_U;(FB(?)))). Then

ugar (F5 M F7 @ @ FS "V F; @ vy,.0)
=g (FyVFS " F @@ B FR @ vy, 0)
1 an) e Can)
e B B 66 R
J

_ . n—1(—an) p—1 (=a;) p—1 (—a1) p—1
=g (q l[n]ﬂ!Fﬁj Fo M F @ @ FgFy “F3l @@ Fg "V Fg ! @ vyyn)
J

c 1 —a — n —aj — —a -
=g nWﬂ-!Fﬁ(w N)FBNI ® FﬁjFéj )Fﬁjl & F/§H I)Fﬂll ® Vo 2)

n

_ {QM' (qané;aN)FB—Nl R ® [aj]ﬂjFB(;(aj_n))FB_jl R ® F[gl_al)Fﬂ_ll ® 'Uwo)\) ifn < a

0 otherwise
for some appropiate integers ci, ..., ¢, € Z. gp is nonzero on this only when
n = a;j. So we get in conclusion that ugy; = v~ gps. This finishes the induction
step. U

5 sly calculations

Assume g = sly. Let 7 € N. Let M4(v") be the Uy (sly) Verma module with
highest weight v" € Z i.e. Ma(v") =Ugx ®U§o A, where A, is the free Ufo—
module of rank 1 with UJ acting trivially and K - 1 = ¢". Inspired by [And03]
we see that in sl we have for r € Z the homomorphism ¢ : M4 (v") = DM4(v")
given by:

Let {w; = F®w} be a basis for M4 ()\) where wy is a highest weight vector
in Ma(v") and let {w}} be the dual basis in DM4(A). Then

) = (1)
Checking that this is indeed a homomorphism of U4 algebras is a straightforward
calculation.
By Theorem we see that DM4(v") = M5(v"). In the following section
we will try to say something about the composition factors of a Verma module
so it is natural to consider first slo Verma modules.

Definition 5.1 Let g =sly. Let r € N. Then Hs(v") is defined to be the free
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Ua(sla)-module of rank r + 1 with basis ey, ..., e, defined as follows:
K — 2
Ke; =v" %e¢;, [ t’ C} e; = [T tZ + c] e

E(”)Q |:Z:|€i_n, n €N
n
F(n)ei = {T 7: l] €itn, NEN

fori=0,...,7r. Wheree.g=0=¢ex,.
Lemma 5.2 Let g = sly. Let r € N. Then we have a short exact sequence:
0— DM4(v™""2) = Ma(v") = Hu(v") — 0.

)
Proof. We use the fact that DM 4(v™""2) = TAM(v") by Theorem Let
e; = F®Ww, where wy is a heighest weight vector in M4 (v"). We will construct
a Uy-homomorphism span 4 {e;|i > r} — DMa(—r — 2). Let 7 be as defined
in [Jan96] Chapter 4. Note that in Usgy S(7(F)) is invertible so we can consider
S and 7 as automorphisms of Uy (r). We define a map by

erti — (=1)" TS (r(FT ) )wg

Note that for sly Ry = S o7 ow. Using this and the formula in Proposition [1.2]
it is straightforward to check that this is a Us-homomorphism. (]

If we specialize to an A-algebra R with R being a field where v is sent to a
non-root of unity ¢ € R we get that Mg(¢*) = Ur ®u, Ma(v*) is simple for
k < 0. So in the above with » € N, DMg(q~""2) = Mr(q¢~""2) = Lr(q~"2)
and actually we see also that Hr(q") = Lr(¢"). So there is an exact sequence

0— Lr(¢~""%) — Mg(q") = Lr(q") — 0.

So the composition factors in Mg(q") are Lg(q") and Lr(q~""2) = Lg(s.q")
where s is the simple reflection in the Weyl group of sls.

6 Jantzen filtration

In this section we will work with the field C and send v to a non root of unity
g € C*. We define Uy = Uy ®4 C; where C, is the A-algebra C with v being
sent to ¢g. These results compare to the results in [And03| and [AL03].

Let A be a weight i.e. an algebra homomorphism U — C and let M(\) =
U, ®qu0 Cy be the Verma module of highest weight A\. Consider the local
ring B = C[X](x_1) and the quantum group Up = Us ®4 B. We define
AX : U — B to be the weight defined by (AX)(K,) = A(K,)X and we define
Mp(AX) =Up ®U§0 B, x to be the Verma module with highest weight AX.

Note that Mp(AX) ® g C =2 M (\) when we consider C as a B-algebra via the
specialization X — 1
For a simple root «; € II we define Mp ;(AX) := Ug(i) ®,;20 Bax, where
B

Ug(i) is the subalgebra generated by U5" and F,,. We define Mg\ =
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5i((Up(t) ®UB(S y UB(54)*) ®uy i) MB,i(si-A)) where the module (Up(4) ®UB(‘3 )
Ug(si)*) is a Up(i)-bimodule isomorphic to Sp,i(Fa,) = (Up(4))(r,,)/Us(i) by

similar arguments as earlier.

Proposition 6.1 There exists a nonzero homomorphism ¢ : Mp(AX) — M} (AX)

which is an isomorphism if ¢° \(K,) € :I:qZ>O and otherwise we have a short
exact sequence

0— Mp(AX) 5 Mir(AX) = M(sa.\) = 0

where we have identified the cokernel M7 (sq.AX)/(X — 1)Mp(sq.AX) with
M(sq.M).
Furthermore there exists a nonzero homomorphism v : M (AX) — Mp(AX)

which is an isomorphism if ¢°A\(Ko) € :I:qZ>O and otherwise we have a short
exact sequence

0 — Mir(AX) 5 Mp(AX) = M(\)/M(sa.)) — 0.
Proof. We will first define a map from Mp ;(AX) to
Mg ;(AX) = ((Up(0)(r.) /UB (i) @up Mp,i(sa-AX)) -
Setting A = AX define
O(FMuy) = an FCVFTY @ g, v
where

no1—ty/ _ 1y/ —
an:( l)nq;nn+1)>\ an )‘ q) _q; >‘( ) )

So we need to check that this is a homomorphism: First of all for y € Q.

K, - an FSME @, v =an K, (0 FCWET @ v, 0
Zq("+1)(5a(“)‘o‘)(sa.)\')(Ksﬂ(#))Fé_”)Fa_l ® Vs, \
:q*(nﬂ)(ula)q*(p\sa(u))q(p\u)/\/(KM)Fé*n)Fgl ® v, N
Zq_("+1)(“|a)q_(p_“|”)q(p|“))\’(K#)FC(Y_”)Fa_l ® Vs, N
=g "IN (K )FCYF @ g,

:S"(K/AFc(yn)UA’)-
We have
Ey - anFSVETY @ v, v =an R, (B, )FSWET @ vy, v
= — ayFoa Ko FUMET @ g, v
=— qi("Jrl)sa.X(Ka)[n]aanF(Sf”Jrl)F(;l ® Vs, N
== qo" N (K3 ) [laan FEVFC @ vg, 0

and
17nK _ nflel
QO(EO(FO(C )U)\/) = (F(gznl) 9o e’ q(il a 11/\')
Go — qo
n)\l K _ n—l)\/ Ka -1
— (aanc(y—n-i-l)F—l qa ( ) qo:l ( ) ) ® vy
do — qo
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so we see that w(EaFén)vN) =E,- @(F(gn)v)\r). Clearly @(EalFlin)v)\/) =0=
E, - anFo(fn)Fa_1 ® vy for any simple o/ # o so what we have left is F,,: By
Proposition [£.3]
Fy-a,FSVE @ ug

=a, R, (Fo)FCVETY @ v, n

= —a, K ' E,FCVEY @ v,

= —a, K F" VE K yin4 2] @ v, x

n+2 '/\l K _ ,—n—2 .)\/ K
= — anq;Q(n+2) SopA/(K(;l) qa Sa ( ai qo;—l Sa ( a)
a T Ya

N (K1) — q" N (Kq)
Qa - q;l

—1
F(’(Kfnfl)Fafl ® Vs N

= —a,q; "IN (K,) ) Sl e R

and

SD(FaFc(yn)UA) =[n+ 1]a§0(Fo(¢n+1)”/\)
:[n + l]a&n_;_lF(ginil)Fail & vy

so we see that @(FQF(&")UA) =F, ~¢(F(§é")v)\)‘

Now note that if A(K,) &€ £¢} then X — 1 does not divide a,, for any n € N
implying that a, is a unit. So when A\(K,) & +qY, ¢ is an isomorphism. If
MKy) = eq), for some ¢ € {£1} and r € N we see that X — 1 divides a,, for any
n > r so the image of ¢ is

spang {Fo(t_")Fa ® vs,,.a|n < r} + (X — 1) spang {Fé_")Fa_1 ® Vg, N > r} .
Thus the cokernel M3 ;(\)/Im ¢ is equal to
spanpg {Fé_”)Fojl ® vs, n|n > r} /(X —1)spang {F,g_”)Foé_1 ® vs,, a0 > r}

which is seen to be isomorphic to My, (s;.\') /(X — 1)Mp (s;.\).

If \(K,) € ¢ then obviously we can define an inverse to ¢, 1 : Mg (X)) —
Mp(N). If N(K,) = eq" for some ¢ € {£1} and some r € N we define
Y My (N) = Mp,(\) by

(-n) -1 X =D o
Y(F,VFE  Qus, ) = —F Yo
an
(note that for all A and all n € N, (X — 1)? fa, so % € B). This implies
potp = (X —1)id and ¢ o o = (X — 1)id. Using that ¢ is a Us-homomorphism
we show that 1 is: For u € U, and v € M3 ,(\'):

(X = Dip(uv) = P(up(ip(v)) = P(e(up(v))) = (X = Dug(v).

Since B is a domain this implies 9 (uv) = uth(v).
We see that X — 1 divides % for any n < r so the image of ¢ is

n

(X —1)spang {Fé")vﬂn < 7"} + spang {Fo(t")vﬂn > r} .
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Thus the cokernel Mp ;(A)/Im1 is equal to

spang { F{oyln <1} /(X = 1) spang { F{uxln <}
which is seen to be isomorphic to
Mp i(N)/Mp.i(s4.)).
Now we induce to the whole quantum group: We have that
Mp(X') =Up ®uy) Mpi(N)
and
Mg (XN) =" ((UB ®Up(si) Un(8:)") @up Up @20 Bx)

=% ((UB ®us (i) UB (1) ®Up(s,) UB(8i)") @20 Bx)

=UB ®uyi) ™ ((UB(i) ®up(si) UB(8:)") ®yzo B,\,)

=Up ®ug(i) M (V)

so by inducing to Ug-modules using the functor Up @y, ;) — we get a map
¢ Mg(N) - MZ(N) and a map ¢ : MF(N) — Mp()\). This functor
is exact on Mp;(\) and M7 ,(\) so the proposition follows from the above
calculations. 7 ]

Proposition 6.2 Let X : U,? — C be a weight. Set N = AX. Let w € W and
a € II such that w(a) > 0. There exists a nonzero homomorphism ¢ : ME(N') —

Mpg®~(X') that is an isomorphism if ¢° X(Ky(a)) & :I:qg>O and otherwise we have
the short exact sequence

0 — MEWN) S Mps(N) = M"(Sw(a)-A) = 0

where the cokernel My (5y(a)-A)/(X — 1)Mpg°* (Sw(a)-A") is identified with
M“’(sw(a).)\),
Furthermore there exists a nonzero homomorphism ) : Mp** (AX) — MK (AX)

which is an isomorphism if ¢° N( Ky (o)) & :I:qg>0 and otherwise we have a short
exact sequence

0 — ME=(X) 5 MEN) = MP(A)/M® (S4y(a)-A) — 0.

Proof. Let 4 = w™'.\ and ¢/ = pX then from Proposition we get a
homomorphism Mp(p') — Mz (') and a homomorphism M7Z*(p') — Mp(y').
Observe that
" (Ky) =w P A(K,)
=w™ ! (¢"\)(Ka)
:q(ﬁlw(a))/\(Kw(a))
= (qp)\) (Kw(a))
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so Mp(p') = Mg (1) and Mp (u') — Mp(p') are isomorphisms if (¢°X) (K (a)) &
:I:qg>0 and otherwise we have the short exact sequences

0— Mp(p') —» Mg (') — M(p') =0

and
0— My (p')— Mp(p') = M(u')/M(sq.p") — 0.

Now we use the twisting functor T,, on the homomorphisms Mp(y') —
M7 (') and Mg (1) — Mp(p') to get homomorphisms ¢ : My (X) — Mg (A)
and 9 : Mg*(\) = MJ(N\) (using the fact that T,, o Ts, = T\s,, ). We are done
if we show that T, is exact on Verma modules. But

TwMB(/-M) —_w ((Ug (w)* ®U§(w) UB) ®UB UB ®U§0 BN’)
Y ((Ug(w)* ®U§(w) Ug) ®U§° B#/)

b (Ug (w)" @y~ w) Up ®c Bu/)

I

IR

as vectorspaces and Up modules. Observing that Uy is free over Uy (w) we get
the exactness. g

Fix a weight A : U — C and a w € W. Define *(w) := T Nw(®~) = {f €
Ot |w=1(B) < 0} and &+ (\) := {8 € ®T|¢"\(Kj) € £¢%}. Choose a reduced
expression of wg = s;, - - - 8;,, such that w =s;, ---s;. Set

—ws;, -8, (), ifj<n
B = e
wsg, -85, (), if j > n.

Then &+ = {f1,...,8n} and T (w) = {B1,...,Bn}. We denote by ¥'5(\) the
composite

P prea ax) P LAY ppeeo o x)

ME(AX)
where the homomorphisms are the ones from Proposition [6.2) i.e. the first n
homomorphisms are the i’s and the last N — n homomorphisms are the ¢’s
from Proposition [6.22 We denote by ¥*()) the Ug-homomorphism M™(AX) —
M0 (AX) induced by tensoring the above Up-homomorphism with C considered
as a B module by X — 1.
In analogy with Theorem 7.1 in [AL03] and Proposition 4.1 in [And03] we
have

Theorem 6.3 Let X : Ug — C be a weight. Let w € W. Then there ex-
ists a filtration of M¥(\), MY(X\) D> M¥(\)! D -+ D M¥(\)" such that
MY (\)/M*(A\)! =2 Im U¥(\) C M¥*()\) and

T

> ch MU (M) = > (ch M(X) — ch M(sg.\))

i=1 BEDF(N)ND+ (w)

+ Z ch M(sg.\).
Be@T(M\ @t (w)
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Proof. Set M’ = AX. Define for i € N
MEN) = {m e MEN)[THA)(m) € (X — 1)’ Mg*"(N)}.

Set M¥(\)" = m(M%(N)?*) where m: M¥(X\) — M® () is the canonical homo-
morphism from M}E(A) to MpE(N)/(X — 1)MpE(X) = M™(X). This defines a
filtration of M (\). We have M*(A\)V*1 = 0 so the filtration is finite.

Let p : Ug — C be a weight. Set u' = pX. The maps ¥ (A) restrict to weight
spaces. Denote the restriction %' (\),r. Let WiE(N) : ME(A) — M™°(A)u
be the restriction of ¥%(\) to the y/ weight space. We have a nondegenerate
bilinear form (—, —) on M (), given by (z,y) = (¥E(N)(x)) (y). It is nonde-
generate since ¥(A) is injective. Let v : B — C be the (X — 1)-adic valuation
e, v(b)=mif b= (X —-1)™V, (X —1)1b. We have by [HumO8, Lemma 5.6]
(originally Lemma 5.1 in [Jan79])

> dim(M;),, = v(det WH(A),).

j>1

Clearly v(det UE(N),) = Zjvzl v(det ¢ (A),) and the result follows when we
show:
v(det o¥' (X)) = dimc (coker ¢ (X)) .

Fix ¢ := ¢¥'()\),s and let M and N be the domain and codomain respectively.
M and N are free B modules of finite rank. Let d be the rank. We can choose
bases myq,...,mg and ny,...,ng such that o(m;) = a;n;, i =1,...,d for some
a; € B. Set C = coker ¢ = @le B/(a;) and set Cc = C ®p (B/(X —1)B) =
C ®p C where C is considered a B-module by X — 1. Note that

C, if (X —1)|a;
B a;) ® C=
/as) @z {0, otherwise
so dimg¢ Cc = #{i|lv(a;) > 0}. Since there exists a ¢ : N — M such that
poth = (X —1)id we get v(a;) < 1 for all i. So then dime Cc = v(det ) and
the claim has been shown. a

7 Linkage principle

Let R be a field that is an A-algebra and ¢ € R the nonzero element that v
is sent to. As usual we can define the Verma modules: Assume \ : U% — R
is & homomorphism. Then we define Mz(\) = Ugr ®U§o R, where R is the
onedimensional R-module with trivial action from U E and U}% acting as A. There
is a unique simple quotient L (\) of Mg(A).

Let o = o; € II. Consider the parabolic Verma module Mg ;(\) =
Ur(4) Byzo Ry, where Ug(i) is the submodule generated by Uz" and F,,. We
get a map Mg ;(\) — M;}l()\) = *((Ur () ®ug(s:) Ur(5:1)") ®ugi) MR,i(s.1))
where the module (Ur (i) ®uy(s,) Ur(8:)*) is a Ur(i)-bimodule by the similar
arguments as earlier. Inducing to the whole quantum group and using T, we

get a homomorphism
Mg (X) = Mg (X)
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So we can construct a sequence of homomorphisms 1, ..., N
MrO\) B My () B X MEo(N) = DMR(N).

We denote the composition by ¥. Note that the image of ¥ must be the
unique simple quotient Lr(\) of Mpg(A) since every map M(A) — DM())
maps to the unique simple quotient of M (\) (by the usual arguments e.g. like
in [Hum08, Theorem 3.3]).

First we want to consider some facts about the map ¢ : MF(X) — Mg (X).
Let M, () denote the Ugr(sl(2)) Verma module with highest weight A\(K,). We
will use the notation M, () for the parabolic Ur(z) Verma module Ug (%) ®yzo
Ry. The map ¢ was constructed by first inducing the map of parabolic modules
and then using the twisting functor T5,.

Assume the sequence of Ug(sly) modules M, (A\) = M2(A) = Qa(N\) — 0 is
exact (i.e. Qn(A) is the cokernel of the map M, (A) — M2())). Inflating to the
parabolic situation we get an exact sequence M, (\) — M (\) — Qp,(A) = 0
where @, (A) is just the inflation of Q.(A) to the corresponding parabolic
module.

Inducing from a parabolic module to the whole module is done by applying
the functor M — Ugr ®@p;y M. This is right exact so we get the exact sequence
Mg(\) — MIS%()\) — Qr(A) = 0 where Qr(A) = Ug QUR(4) Qp., (N).

Assume we have a finite filtration of Q. ()\):

O:QOCQI C"'CQr:Qa()\)
such that Q;1+1/Q; = Lo(p;). So we have after inflating:

0= Qp,,,O C qu,l c---C Qpa,r = Qpa()\)

such that Qp,.i+1/Qpa.i = Lp,, (14:)-
That is we have short exact sequences of the form

0— onmi - Qpaai+1 - Lpa (:ub) — 0.

Since induction is right exact we get the exact sequence

Qr,i = Qryit1 = Ly, (i) = 0

where Qg; is the induced module of @, ; and Ly, (y;) is the induced module

Of Lpa (l’l’l)'
Starting from the top we have

Qrr—1 = Qr(A) = Ly, (ptr—1) = 0

so we see that the composition factors of Q7 ()\) are contained in the set of
composition factors of L, (. _,) and the composition factors of Qr,—1. By
induction we get then that the composition factors of Qg ,—1 are composition
factors of Ly, (1), ¢ =0,...,7—2. The conclusion is that we can get a restriction
on the composition factors of Qr(\) by examining the composition factors of
induced simple modules.

Let L = L, (1) be a simple parabolic module and let L be the induction of
L. Then because induction is right excact we have

Mg(p) — L — 0.
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So the composition factors of L are composition factors of Mg(u). This gives us
a restriction on the composition factors of Mg (\):

Use the above with w~!.)\ in place of A and use the twisting functor T on
the exact sequence Mp(w™t.\) = M3 (w™tA) = Qr(w™1.X) = 0 to get

Mg (A) = ME*(A) = Qr(A) =0

where Q%°(\) = TH(Qr(w™'.1)). Add the kernel to get the 4-term exact
sequence
0— Kg*(\) = Mg(A) = Mg*(\) = QR*(A\) =0

Since ch M (A) = ch ME®(A) we must have ch KE*(X) = ch Q% (A).
So we have a sequence of homomorphisms ¢;

Mp\) B M\ BB MEo(\) = DMR()N)
and these maps each fit into a 4-term exact sequence
0— Kg°(A\) = ME(A) = MES(A) = QR°(A) =0

where ch K¥°(X) = chQ%°()\). In particular M (X) — Mg*()) is an isomor-
phism if the corresponding sly map M, (w=t.\) = DM, (w=t.\) (= MS(w=1.\))
is an isomorphism. If the sls map is not an isomorphism then we have a restric-
tion on the composition factors that can get killed by the map Mpg(w=t.\) —
M3, (w™t.\) by the above. To get to the map ME(\) — MEs(\) we use T,
which is right exact so we get a restriction on the composition factors killed by
MpP(XN) — ME(N) too:

Fix a. From the above we know that a composition factor of Qr(}\) is a
composition factor of L, (u) for some p where L, (1) is a composition factor of
M, ()\). Use this for w™!.\ and use T,,. So we get that a composition factor of
Q% (N) is a composition factor of Ty, Ly, (1) with p as before. Since T, is right
exact we have that

TwMp(p) = TwLp, (1) — 0
is exact. Since ch T, Mg(p) = ch Mp(w.u) we see that a composition factor of
Q% (M) must be a composition factor of a Verma module Mg (w.u) where p is
such that L, (u) is a composition factor of M, (w=1.\).

Definition 7.1 We define a partial order on weights. We say p < X if p= '\ =
q=i=1 %% for some a; € N where p= : UY — C is the weight with u='(K,) =
w(K;Y) for all o € 0.

For a weight v of the form v = ¢2i=1 %% with a; € N we call St a; the
height of v.

Note that for a Verma module M(\) we have p < A for all u € wt M(\)
where wt M () denotes the weights of M(\).

Definition 7.2 Let u, A € A. Define i Tr A to be the partial order induced by
the following: p is less than A if there exists a w € W, a € Il and v € A such
that p = w.v < X and Lo (v) is a composition factor of My (w=1.\).

i.e. TR A if there exists a sequence of weights = pi1, ..., ity = X such that
w; is related to piy1 as above.

We have established the following:
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Proposition 7.3 If Lr(u) is a composition factor of Mr(\) then uTr \.

Proof. Choose a reduced expression of wy and construct the maps ¢; as above.
If Lr(p) is a composition factor of Mg(A) it must be killed by one of the maps
; since the image of ¥ is Lr(\). So Lr(p) must be a composition factor of
one of the modules Q%(\). We make an induction on the height of p=!A. If
p~*X = 1 then A\ = p and we are done. Otherwise we see that Lr(u) is a
composition factor of one of the Q% (\)’s. But every composition factor of Q% (\)
is a composition factor of M (v) where v T A and v < A. Since v < A the height
of p~'v is less then the height of =\ so we are done by induction. ]

In the non-root of unity case 1T is equivalent to the usual strong linkage: pu is
strongly linked to A if there exists a sequence p; with p = pg < po < -+ < pp = A
and p; = $g,.pi+1 for some positive roots §; (remember that if 5 = w(«) then

— —1
sg = wsqw ™).

In the nonroot of unity case we see that M, (w~1.\) is simple if

q”w_l.)\(KQ) g j:qf”.

Otherwise there is one composition factor in M, (w~1.)\) apart from L, (w=1.)),
namely Lo (sqw™1.)\). So the composition factors of Q% are composition factors
of Mr(wsqw™X) = Mp(su(a)-A). Actually Q% = ME*(sy(a)-A) in this case:
Lets consider the construction of the maps ; in the above. We start with
the map M, (\) — Mg ()\) and then inflate to M, (\) — M, _()). In the case

where ¢ is not a root of unity it is easy to see that if ¢g?\(K,) & :i:qé>0 then this
is an isomorphism and otherwise the kernel (and the cokernel) is isomorphic to
M, (s.X) which is a simple module. So after inducing we get the 4 term exact
sequence

0 — Mg(s.A) = Mr(\) = Mi(A) = Mp(s.A) =0

since induction is exact on Verma modules. Use these observations on w~'.\ and
the fact that T, is exact on Verma modules and we get a map My (X) — MpE*(N)
which is an isomorphism if ¢"A\(K,) & +¢%>° and otherwise we have the 4-term
exact sequence

0—= ME(s.A) = MgE(AN) = ME*(N) = ME*(s.A) =0

Theorem 7.4 Let R be a field (any characteristic) and let ¢ € R be a non-root
of unity. R is an A-algebra by sending v to q. Let X : Ug — R be an algebra
homomorphism.

Mg(N) has finite Jordan-Holder length and if Lgr(u) is a composition factor
of Mr(X) then pu 1 X where 1 is the usual strong linkage.

Proof. This will be proved by induction over 1. If \ is anti-dominant (i.e.
g" AN K,) ¢ iqg” for all a € II) then we get that all the maps ; are iso-
morphisms and so Mg(\) is simple. Now assume A is not anti-dominant. A
composition factor Lg(u) must be killed by one of the ¢;’s so must be a com-
postion factor of Q% for some w. By the above calculations we see that if
PA(Ko) & £¢57° then Mg (X)) — Mg® (M) is an isomorphism and otherwise

% = Mp®*(54.A). By induction all the Verma modules with highest weight s
strongly linked to A has finite length and the composition factors are strongly
linked to p. This finishes the induction. (]
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[rreducible quantum group modules with finite
dimensional weight spaces. I

Dennis Hasselstrgm Pedersen

Abstract

In this paper we classify all simple weight modules for a quantum group
U, at a complex odd root of unity ¢ when the Lie algebra is not of type
G>. By a weight module we mean a finitely generated Us;-module which
has finite dimensional weight spaces and is a sum of those. Our approach
follows the procedures used by S. Fernando [Fer90] and O. Mathieu [Mat00]
to solve the corresponding problem for semisimple complex Lie algebras.

1 Introduction and notation

Let g be a simple complex Lie algebra not of type Gs. Let ¢ € C be a nonzero
element and let U, := U,(g) be the quantum group over C with ¢ as the quantum
parameter (defined below). We want to classify all simple weight modules for
U,. In the papers [Fer90] and [Mat00] this is done for g-modules. Fernando
proves in the paper [Fer90] that the classification of simple g weight modules
essentially boils down to classifying two classes of simple modules: The finite
dimensional simple modules and the so called ’torsion free’ simple modules. The
classification of finite dimensional modules is well known in the classical case
(as well as in the quantum group case) so the remaining problem is to classify
the torsion free simple modules. Olivier Mathieu classifies these in the classical
case in [Mat00]. The classification uses the concept of g coherent families which
are huge g modules with weight vectors for every possible weight, see [Mat00l
Section 4]. Mathieu shows that every torsion free simple module is a submodule
of a unique irreducible semisimple coherent family and each of these irreducible
semisimple coherent families contains a so-called admissible simple highest weight
module as well. This reduces the classification to the classification of admissible
simple highest weight modules.

1.1 Main results

In this paper we will first carry out the reduction done by Fernando to the
quantum group case for ¢ a non-root-of-unity and ¢ an odd root of unity. Then
we carry out the classification of torsion free simple module in the root of unity
case. The corresponding classification of torsion free simple modules for generic
¢ turns out to be much harder. We leave this to a subsequent paper [Ped15a.
We will follow closely the methods described in the two above mentioned
papers. Many of the results can be directly translated from the classical case
but in several cases we have to approach the problem a little differently. One of
the first differences we encounter is the fact that in [Fer90] concepts are defined
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by using the root system without first choosing a base. Then later a base is
chosen in an appropiate way. In the quantum group case we define the quantized
enveloping algebra by first choosing a base of the root system and then defining
the simple root vectors F,, F,, etc. This means that we can’t later change the
basis like in [Fer90]. The solution is to consider ’twists’ of modules by Weyl
group elements cf. definition 2.1} Another difference is the fact that we do not
a priori have root vectors Eg for any positive root 3 unless 3 is simple. Root
vectors can be constructed but the construction involves a choice of a reduced
expression for the longest element of the Weyl group wy. The root vectors
constructed depend on this choice. So if we want to use root vectors to define
our terms we should prove that our definitions are independent of the choice
of the root vectors. Once the root vectors are defined we continue like in the
classical case with some differences. Notably the proof of Proposition [2.11] is
different. Here we reduce the problem to rank 2 calculations in the quantized
enveloping algebra. This is also the main reason we exclude g of type G5 in this
paper.

In the root of unity case the classification of simple weight modules reduces
completely to the classical case as seen in Section [5] We use the same procedure
as in [Mat00] to reduce the problem to classifying coherent families and then
we show that all irreducible coherent families in the root of unity case can be
constructed via classical g coherent families.

1.2 Acknowledgements

I would like to thank my advisor Henning H. Andersen for great supervision and
many helpful comments and discussions and Jacob Greenstein for introducing
me to this problem when I was visiting him at UC Riverside in the fall of 2013.
The authors research was supported by the center of excellence grant ’Center
for Quantum Geometry of Moduli Spaces’ from the Danish National Research
Foundation (DNRF95).

1.3 Notation

We will fix some notation: We denote by g a fixed simple Lie algebra over
the complex numbers C. We assume g is not of type G5 to avoid unpleasant
computations.

Fix a triangular decomposition of g: Let h be a maximal toral subalgebra
and let ® C h* be the roots of g relative to h. Choose a simple system of roots
I={ay,...,an} C ®. Let T (resp. &) be the positive (resp. negative) roots.
Let g* be the positive and negative part of g corresponding to the simple system
II. Sog=g" ®hDgt. Let W be the Weyl group generated by the simple
reflections s; := s,,. For a w € W let I(w) be the length of W i.e. the smallest
amount of simple reflections such that w = s;, ---s;, . Let (-|-) be a standard

W-invariant bilinear form on h* and {(«a, V) = 2((,80‘”;)) Since (+|-) is standard we

have (a]a) = 2 for any short root a € ®. Let @ = spany {a1,...,a,} denote the
root lattice and A = spany {ws,...,w,} C b* the integral lattice where w; € h*
are the fundamental weights defined by (w;|a;) = d;;.

Let U, = U,(g) be the corresponding quantized enveloping algebra defined
over Q(v) as defined in [Jan96] with generators E,, F,, KX, o € II and certain
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relations which can be found in Chapter 4 of [Jan96]. We define v, = v(@®)/2
(i.e. vo = v if v is a short root and v, = v? if a is a long root) and for n € Z,
[n], = ”::U“:ln. Let [n]q := [n]o, = % We omit the subscripts when it

is clear from the context. For later use we also define the quantum binomial
coefficients: For r € N and a € Z:

ﬁ la-1[a—r+1]

N [r]!

where [r]! := [r][r —1]---[2][1]. Let A = Z[v,v~!] and let U4 be Lusztigs A-
form defined in [Lus90], i.e. the A subalgebra generated by the divided powers
E( = g BV = L F" and K, a e TL.

T [nla! [n]a!
Let ¢ € C be a nonzero complex number and set U, = Ugq ®4 C; where C,; is
the A-module equal to C as a vector space where v is sent to ¢. In the following
sections we will distinguish between whether ¢ is a root of unity or not.

We have a triangular decomposition of Lusztigs A-form Uy = U, @ U @ U}
with U} the A subalgebra generated by {Fén)|a €Il,n € N} in Uga, UJ the A

subalgebra generated by {E(&”) o € II,n € N} in Uy and UY the A subalgebra
generated by {KI! [Kj"’ |l € I, c € Z,7 € N} in Ua where

vh — o’

[Ka;c] = ﬁ KovgH ™7 — Kgtvg et
E .

Jj=1

For later use we also define [K,;r] = [K‘f"“]. We have the corresponding
triangular decomposition of Uy: Uy = Uy @ UY ® U with U = Uy ®4 C, and
Ul =Uj®aC,.

For a ¢ € C* = C\{0} define mq as the image of [¢] in C. We will omit
the subscript from the notation when it is clear from the context. We define
gs € C and [n]g € C as the image of vg € A and [n]g € A, respectively abusing
notation. Similarly, we will abuse notation and write [K:;C] also for the image
of [K;‘;C} € Uy in U,. Define for pe Q, K, =[] K& if p=3""" | a;a; with
a; € 7.

There is a braid group action on U, which we will describe now. We use the
definition from [Jan96l Chapter 8]. The definition is slightly different from the
original in [Lus90, Theorem 3.1] (see [Jan96, Warning 8.14]). For each simple
reflection s; there is a braid operator that we will denote by T, satisfying the
following: T, : U, — U, is a Q(v) automorphism and for i # j € {1,...,n}

Tsi (K/L) :Ksi(ll)
TSz‘ (Eai) = FOéiKOéi
TSi (FOéi) - K(;ilEai
ety
T, (Eqa,) = Z (_1)l”o_¢iZE¢(3¢:_z)Eangi)
=0
_<aj7a;/> P . .
Ty, (Fa,) = Z (—1)i FOF, FI=.

Qi O
=0
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The inverse T, I is given by conjugating with the Q-algebra anti-automorphism
U from [Lus90, section 1.1] defined as follows:

i i

U(Eq,) = Ea,, U(Fa,) =Fa,, V(K,.)=K.' V@) =o.

The braid operators T, satisfy braid relations so we can define T, for any w € W
Choose a reduced expression of w: w = s;, ---s;,. Then T3, = 50y Ty, i
independent of the chosen reduced expression by [Lus90, Theorem 3.2]. We have
Tw(K,) = K- Furthermore T, restricts to an automorphism 7'y, : Ua — Ua.

Let wq be the longest element in W and let s;, - - - s;,, be a reduced expression
of wy. We define root vectors Eg and Fj for any 8 € &1 by the following: First
of all set

Bj = si, -8, (ay,), fori=1,...,N.
Then &+ = {B1,...,8n}. Set

Eg, =T

fi Siy

"Ts,v. (Ea,».)

ij—1 i j

and
FBj = ,Tsil e Tsij_l (Foéz] )

In this way we have defined root vectors for each 8 € ®+. These root vectors
depend on the reduced expression chosen for wy above. For a different reduced
expression we might get different root vectors. It is a fact that if g € II then
the root vectors Eg and Fp defined above are the same as the generators with
the same notation (cf. e.g. [Jan96l Proposition 8.20]) so the notation is not
ambigious in this case. By “Let Eg be a root vector” we just mean a root vector
constructed as above for some reduced expression of wy.

1.4 Basic definitions

Definition 1.1 Let M be a Ug-module and X : U) — C a character (i.e. an
algebra homomorphism into C). Then the weight space M)y is defined as

My ={m € M|Vu € U,?,um = Mu)m}.

Let X denote the set of characters of Ug. Let wt M denote all the weights of M,
i.e. wt M ={\ € X|Myx #0}. If q is not a root of unity we define for p € A the
character ¢* by ¢*(Kga) = ¢ for any o € TI. We also define qg = q%“. We

say that M only has integral weights if 1(Ky) € +q% for any a € I, u € wt M.

If ¢ is not a root of unity then Ug is isomorphic to C[Xlil, ..., X1 and X can
be identified with (C*)" by sending p € X to (u(Ka,),-- -, #(Kqy, )). When ¢
is a root of unity the situation is a bit more complex. We will show later that
when ¢ is a root of unity X can be identified with S x A; x h* where S is the set
of homomorphisms @ — {£1} and A; is a finite set depending on the order I of
the root of unity. There is an action of W on X. For A € X define wA by

(wA)(u) = A(Top-1(u)).

Note that wgH = ¢*(#).
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Definition 1.2 Let M be a Uy-module and w € W. Define the twisted module
WM by the following:
As a vector space Y M = M but the action is given by twisting with w™"': For
me VM and u € Uy:
w-m = Ty-1(u)m.

We also define "M to be the inverse twist, i.e. for m € "M, u € Ug:
w-m =T, (u)m.
Hence for any Uy-module M, (M) = M =*(YM).

Note that wt“M = w(wt M) and that (¥ M) = “*' M for w,w’ € W with
l(ww') = l(w) + l(w") because the braid operators T, satisfy braid relations.
Also (W' M) = w'w L.

Definition 1.3 We define the category F = F(g) as the full subcategory of
U, — Mod such that for every M € F we have

1. M 1is finitely generated as a Uz-module.

2. M =@,.x Mx and dim M) < oo.

Note that the assignment M — *M is an endofunctor on F (in fact an auto-
equivalence).

The goal of this paper is to classify all the simple modules in F in the case
where g € C is a root of unity. Our first step is a reduction to so called torsion
free simple modules, see Definition 2.8 This reduction actually works for generic
g as well and we treat that case first, see Section Then in Section [3] we
prove the corresponding reduction when ¢ is a root of 1. To handle the torsion
free simple modules we need some detailed calculations - found in [Ped15b] and
recalled in Section[d]- on the commutation relations among quantum root vectors.
Then we prove the classification of torsion free simple modules in Section [5 and
Section [6] The classification for generic ¢ turns out to be somewhat harder and
will be the subject of a subsequent paper [Ped15al.

2 Nonroot of unity case: Reduction

In this section we fix a non-root-of-unity ¢ € C*.

Definition 2.1 Let M € F and let B be a root. M is called 5-finite if for
all A € wt M we have that ¢"°X N wt M is a finite set. Here ¢"P is the set
{q"®|i € N} and ¢*P X just means pointwise multiplication of characters.

As an example consider a highest weight module M. For any positive root
B € ®F, M is -finite. If M is a Verma module then M is not S-finite for any
negative root § € ®7.

Proposition 2.2 Let M € F and 3 a positive root. Let Eg be any choice of a
root vector corresponding to B. Then the following are equivalent

1. M is B-finite.
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2. For allm e M, Egm =0 forr >0

Proof. Note that EgMy C Mysy. This shows that 1. implies 2.. Now assume
2. and assume M is not S-finite. Then we must have a A € wt M, an increasing
sequence {j; }ien C N, weights p; = ¢7# X € wt M and weight vectors 0 # m; €
M,,, such that Egm; = 0. If \(Kp) = *q for some j € Z then we can asssume
without loss of generality that j € N since otherwise we can replace A by ¢7+%
for some sufficiently large j;.

Now consider the subalgebra D of U, generated by Eg, Kgﬂ and Fg where Fg
is the corresponding root vector to Eg (i.e. if Eg = T,,(Ey,) then Fg = T3, (Fy,)).
This is a subalgebra isomorphic to Uy, (slz). For each i we get a Uy, (sl2)-module
Dm,; with highest weight p;. We claim that in each of those modules we have a
weight vector v; € Dmy; of weight \:

To prove the claim it is enough to show that F/ éj i)mi # 0 since F3 decreases the

weight by 3 (i.e. FgM, C M,-5,). To show this we show that Eéj")Fﬁ(ji)mi # 0.
In the following we will use Kac’s formula:

(") m(s) _ (s—j) [KB:2] —r — 8| (r—j)
EJFS =) Fj [ j ]EB :
7>0

This is a well known formula that can be found in e.g. [Jan96, Lemma 1.7]
(although in this reference it is written in a slightly different form).

Go) pGi), Gi—s) | 18325 = 2Ji| (ji—s)
EJVFg mi_ZFB { . E§m;

s>0
Kg; 0
:[ o }mi
Ji
gy i (K) — e (Kp) T
:H P m;
=1 9 — 4p
B 2ji+1—t —2ji+t—1 —
L q T TINK) — g T ONER) !
:H P my.
=1 95 — 4p

This is zero if and only if A\(Kj3) = iqﬁ_%_l"'t for some t = 1,...,5;. Note
that the power of ¢ is negative in all cases here so this is not the case by the
assumption above. So F) /gj i)mi # 0 and we are done proving the claim. So we
have 0 # v; € Dm; of weight A for i € N.

—1
Consider the Uy, (sly) element Cg = F3Eg + 9sKptas Ky~

-1
5 Th t
@0 en Cg acts on

Dm,; by the scalar

qapi(Kp) + a5 (K )™
(456 —q5") '
If Cj3 acts in the same way on Dm; and Dm;, then we must have either
pwi(Kg) = px(Kpg) (ie. i = j) or pi(Kp) = q5°p;(Kg)~". The second case
implies that A\(Kg) = £¢;* for some a € N which we have ruled out above. So

the vectors v; are linearly independent. Hence M contains an infinite set of
linearly independent vectors of weight A. This contradicts the fact that M € F.OJ
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Proposition 2.3 Let 8 be a positive root and Eg a root vector corresponding to
B. Let M € F. The set MPsl = {m € M|dim (Eg) m < oo} is a U,-submodule
of M.

Proof. Assume first that § is a simple root. We want to show that for v € MPs]
we have for each v € U,, uv € M!Es]. Tt is enough to show this for u = F,,
u = K, and u = E, for all simple roots a. If u = K, there is nothing to show
since K, acts diagonally on M. If u = F,, for a # (3 there is nothing to show
since Eg and F,, commute. If & = 8 then we get the result from the identity

EME, = F,ED + EC YKy —1]

found in e.g. [Jan96, section 4.4|. Finally if u = F, and a # 3 then from the
rank 2 calculations in [Lus90, section 5.3] we get:

o If («|B) =0:
My _ (r)
EV'E, = E.E.

o If (a|8) =—1:
EYEq = q"BoEY) + qEassEy Y

where Ea+lB = TSC¥ (Eﬁ)

o If (¢|3) = —2 and («, 8Y) = —2:
ES Eo = ¢ BoEY) + ¢ EaisES ™) + ¢*Eagra By 7

where E g := T, (Eg) and Ezgiq =T, Ty, (Ey).
e If (a|8) = —2 and {(a, 3Y) = —1: In this case we get from the calculations

in [Lus90, section 5.3| that

EoEY) = ¢ EY Eq + ¢*EY "V Eass

where Eqp = Ts,(Eq).

After using the Q-algebra anti automorphism ¥ from [Lus90) section 1.1]
we get
(Mg _ 2r (r) 4 2 (r=1)
Ey'Ea =q"EEy" +¢ E, . sE;

where Ef,, 5 = V(Ea1p) = Ts_ﬁ1 (Eq).
In all cases we get that if E{”m = 0 for n >> 0 then E/(B")Eam =0 for n >> 0.
This proves that uv € {m € M|dim (Eg) m < oo} in this case also.

If 8 is not simple then Eg = Ty, (E,/) for some simple root o' and some

w € W. Since Ty, is an automorphism we have T,(U,) = U, so instead of proving
the claim for u = E,, K, and F, we can show it for u = T3, (E,), Ty (K, ) and
Tw(Fy) so the claim follows from the calculations above. O

Lemma 2.4 Let Eg and E’ﬁ be two choices of root vectors. Then MEs] = M!Es]
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Proof. Suppose we have two root vectors Eg and E,/@ By Proposition and
Propositionwe have dim <E’ﬁ> m < oo for all m € MEsl so MIEsl ¢ NP5l
Symmetrically we have also M (Bs]  MIEs], (I

Definition 2.5 Let 3 be a positive root and Eg a root vector corresponding to
B. Define MP! = {m € M|dim (Eg) m < oo}.

By Lemma [2.4] this definition is independent of the chosen root vector.

Everything here that is done for a positive root 5 can be done for a negative
root just by replacing the E’s with F’s, i.e. for a negative root g € &,
MWl = {m € M|dim (F_g)m < oo} and so on.

Definition 2.6 Let M € F. Let 3 € ®. M is called B-free if MPl = 0.

Note that M is S-finite if and only if M = M so S-free is, in a way, the
opposite of being [-finite. Suppose L € F is a simple module and 3 a root.
Then by Proposition 2.3] L is either S-finite or S-free.

Definition 2.7 Let M € F. Define Fpy = {8 € ®|M is f-finite} and Ty =
{B € ®|M is B-free}. For later use we also define Fy; := Fay N (—Fy) and
T3 =Ty N (=Tw) to be the symmetrical parts of Far and Thy.

Note that ® = F, UT}, for a simple module L and this is a disjoint union.

Definition 2.8 A module M is called torsion free if Ty = .

Proposition 2.9 Let L be a simple module and 3 a root. L is B-free if and
only if " wt L C wt L.

Proof. Assume L is S-free and 8 € ®T. Let Eg be a corresponding root vector.
The proof is similar for 5 € &~ but with F" instead of E. Then for all0 # m € L,
Eg)m # 0. If A € wt L then there exists 0 # my € L and since E[gr)mA € Lyrox
the implication follows. For the other way assume ¢"° wt L C wt L. Then L is
clearly not S-finite. Since L is simple L must then be §-free. (I

Proposition 2.10 Let L € F be a simple module. Ty, is a closed subset of the
roots ®. That is if B,y €Ty and B+~ € ®. Then f+~v € Ty.

Proof. Since L is B-free we have ¢""¥ wt L C wt L and since L is 7 free we get
further ¢"¢"% wt L C wt L so therefore ¢N®+7) wt I € wt L hence L is (8 + 7)
free. O

Proposition 2.11 Let M € F be a U,-module. Fy; is a closed subset of ®.
That is if B,v € Far and B+ v € @ then B+ v € Fyy.

Proof. Let o, 8 € Fy; with a+ 8 € ®. We have to show that a+ 3 € F);. First
let us show the claim if the root system @ is a rank 2 root system. In this case the
claim will follow from the rank 2 calculations in [Lus90]. Assume II = {a1, a2}
Assume first that we have o € Il and 3 € ®T. We show below that we can always
reduce to this situation. We can assume a = a1 by renumbering if neccesary.
We now have 5 possibilites:

Case 0) (a1, a9) =0 is clear.
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Case 1): (a1]|ag) = —1. The only possibility for 3 € ®* such that a + § is a
root is = az. Set Enyp = Ts, (E,) then Lusztig shows in [Lus90, section 5.5]

that
k

E(k) _ Z(_l)tq_tEék_t)Eék)Eét)~
t=0

The difference in the definition of the braid operators between [Jan96] and [Lus90]
means that we have to multiply the formula in [Lus90] by (—1)* since (using the
notation of [Lus90|) E1o = —Eq+p. Let m € M. Then there exists a T € N such
that Eg)m =0 for t > T since M is -finite. Let m; = Eg)m, t=0,1,...,T.
For each m; there is a K; € N such that E&k)mt = 0 for k > K; since M
is a-finite. Set K = max{T, Ky, ..., Ky} then the above identity shows that
EX) ym=0for k> K

Case 2): (a1, ay) = —2. In this case 8 = ay is the only possibility to choose
B € @t such that a + 3 € ®. Set Entp = T, (Ep) then by [Lus90l section 5.5]:

k
E(k) _ Z(_l)tq—ZtE(gk—t)Eék)E((lt)
t=0

and the same argument as above works.
Case 3): (a2,0y) = —2 and B = as. Set Eqyp = T3(E,) then

k

Byls =3 (-0'a "BV EL B

t=0

and the argument follows like in case 1) and 2).

Case 4): {ag,a)) = —2 and 8 = a1 + aa. In this case set Eg = Fy 10, =
Ty (Eo,) and Eoyg = Eoaytas = TasTa, (Ea,). We want a property similar to
the one in the other cases. We want to show that there exists ¢; € Q(g) such
that

(k) ZC E k: t)E(k)

2041 “+ao T a1+tan

E(t)

We will use notation like in [Lus90] so set F1 = E,,, F12 = Ea,+a, and
FEi10 = E2a1+a2- Let kK € N. By 5.3 (h) in [LHSQOI

k s
BB = (0t T e Sy ([ o) iy e
=1 s=0 i=1

SO

k—1 s
k k k s s—s(k—s)—s(t—s i k—s s k—s
B — 1)k (E; B = 3 (1yrgesthor-at >(n<q2 +1>) B B >)

5=0 i=1
, -1
where ¢ = (qk Hle(qm + 1))

We will show by induction over s < k that there exists a; € Q(gq) such that

s
k—s s k—s % k k—i
B BB =Y a BB B,
=0
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The induction start s = 0 is obvious. Now observe that again from 5.3 (h)
in [Lus90] we have for s < k:

S (R
i=1

i=1

So
s -1 s—1
k—s s s s—s(k—s i s k n k—n n s—n
R )| CER I R WEE e R R )
=1 n=0

where b, € Q(q) are the coefficients above. Hence

s—1
k—s s k—s s s k k—s sin k—n n k—n
By VEENT = ()b B BTV Y (-1 By B BT
n=0
for some coefficients b and b, € Q(q). This identity completes the induction over
s.
So to sum up we have proven that there exists ¢; € Q(g) such that

(k) (k—t) (k)
E2a1+0t2 Z Ct E t)Ea1+0¢2 E(tl)

(Note for later use in the root of unity case that the ¢; are in the localization of
Z[q,q" 1] in the elements (¢** + 1) for i € N which are nonzero unless ¢ is an /th
root of unity with [ even). Now the proof goes as above.

The above 5 cases are the only possible cases with the above assumptions
since we have excluded Gs.

We will now show how to reduce the problem to rank 2. Assume 3,7 € F)y
and 8+ v € &. We will first show:

e There exists a w € W such that w(8) € IT and w(y) € ®7.

Let wo = s, - - si)y be a reduced expression and let 8; = s, -+ 54, (v, ).
Then ®* = {f3,...,8n}. Assume first that both 8 and v are positive. Then
B8 = B; and v = B, for some j and r. Without loss of generality we can assume
J <. Then we can set w = s;,_, ---8;, in this case. If 8 and « are both negative
then wq(B) and wp(7y) are both positive and we can do as before. Assume 5 < 0
and v > 0. Assume § = —f; and v = S, for some j and r. Without loss of
generality we can assume j < r. Then set w = s;; ---s;,. The claim has been
shown.

Next we will show:

e There exists a w € W such that w(f) and w(y) is contained in a rank 2
subsystem of the roots.

If (Bly) < O then there exists a simple system IT' of ® such that 8 and v
are in II’. But since all simple system of a root system are W conjugate
the claim follows. Assume (8|y) > 0. Then (8+v,7Y) > (v|7Y) = 2 so

10
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sy(B+v)=B+v—(B+7,7")y<B—7. So S —risaroot in this case. Since
we have excluded G5 this means that the v string through 3 is 8 —-, 8, 8+~ and
therefore (8 + v,7") = 2 or equivalently (3,7") =0. So (8 —7]7) = —(v]v) < 0.
Hence there is a simple system of roots II’ such that v, 83—~ € II'. So there exists
w such that w(vy) and w(B — 7) are simple roots. Since w(B) = w(y) + w(S —7)
we see that w(f) and w(y) are contained in a rank 2 subsystem of ®. So the
second claim is proven.

Note that “ M is w(8) and w(y) finite: Since wt* M = w(wt M) we have that
a pu € wt M is of the form p = w(\) for some X € wt M. Now ¢ ynwt M =
w(gVP ANwt M) is finite because M was B-finite. All in all we get that for some w
we have w(f+7) € Fuwys. But since Fuwjps = w(Fyy) this shows that S+ € Fy,.00

Let L be a simple module. Since F, and T, are both closed subsets of ® we
get from [Fer90, Lemma 4.16] that Py, := Fy, UT} is a parabolic subset of the
roots - i.e. PpU(—Pp) = ® and Py, is a closed subset of ®.

Since Pr, U (—Pr) = ® we must have for some w € W, &+ C w(Pr). From
now on we will assume ®* C Pp since otherwise we can just describe the
module L and then untwist once we have described this module. So we assume
P, =&+ U (II') where II’ C II and where (II') denotes the subset of ® generated
by I, i.e. (II') = ZII' N ®.

Let p be the parabolic Lie algebra corresponding to Pr, i.e. p = h@®56PL 93
and let [ and u be the Levi part and the nilpotent part of p respectively i.e.
l=ha @BGPE gs and u = ®5EPL\P‘Z gs. We can define Uy(p), Uy(l) and
U, (u). Furthermore we can define U, (u~) where u™ is the nilpotent part of the
opposite parabolic p~ corresponding to (—Pr). We have U, (p) = Uy([)U,(u) and
Ua(g) = Ugu)Up(p).

Here is how we define the above subalgebras: (Defined like in [Pul06])
Assume P;, = & U (I'). Let w/, be the longest element in the Weyl group W'
corresponding to II". Let wy be the longest element in W. Set w = wq(wf)~!.
Choose a reduced expression wg = s;, * 85, 84, * * * 8i,, such that wf = s;, -+ s;, .
Let {Eg, F3|3 € @1} be the root vectors defined by this reduced expression.

Set

Btl:Bt+k:ESi1"'Sit71(ait)7 t:177h
Bgzﬁt:sjl'”sjt—l(ajt)a t=1,...,k

This means that

Flgtl :TﬁTsil .Tsit,l(Fait)’ t:1,7h

Fop =T, Ty, (Fay,), t=1,..k
and similarly for the E’s.

We define
U, (p) = <E K, F > :
lp) Pir B BB 1 N peQii=1,.h
U, (1) = <E K, F >
a(h) e P

and

Uyu) = (B2 )

i=1,..k

11
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Similarly we define Uy(u™) = <Fﬁ?> . All of these are subalgebras

i=1,...,h
of U,(g) are independent of the chosen reduced expression of wy and w}. Fur-
thermore U,(p) and U,(l) are Hopf subalgebras of U,(g) as stated in [Pul06),
Proposition 5 and Lemma 2].

There is a @ grading on U, with deg F, = o, deg F,, = —c and deg KBH =0
as described in e.g. [Jan96) section 4.7]. This induces a grading on U;E and on
U,(u) and U, (u™). We will define U, (u)>° and U,(u~)<° to be the subalgebras
consisting of elements with nonzero degree (i.e. the augmentation ideals).

Definition 2.12 Let p be a standard parabolic sub Lie algebra of g and let I, u
and u~ be defined as above. Let N be a Uy(l)-module. We define

M(N) = Uq(g) ®Uq(p) N>

where N is considered as a Uy(p)-module with Uy(u) acting trivially, i.e. through
the coidentity € : U, (u) — C sending everything of nonzero degree to zero.

Definition 2.13 If M is a U,(g)-module we define
M"={m e M|zm = ¢e(x)m, x € Uy(u)}.
Proposition 2.14 Let M be a Uy(g)-module. M" is a Uy(I)-module.

Proof. We will show that for u € Uy(l), U, (u)”>% N U,(g)U,(u)>° # 0. This is
true by simple grading considerations. We know that U, (u)>%u C U, (1)U, (u) =
Uy(DU4(w)>% + Uy(1). But the degree of a homogeneous element v'u € Uy
with v’ € U,(u)”? cannot be in ZII" since that would mean v’ € Uy(l). So
Uy(w)>% C U, (U, (u)>°. O

Proposition 2.15 Let N be a Uy(l)-module and let M be a Uy(g)-module. There
are natural vector space isomorphisms

O =y nN: HOHqu(g)(M(N),M) = HOHqu([)(N, Mu).

Proof. If f : M(N) — M is a Uy(g)-module map then ®(f) : N — M" is
defined by ®(f) = f*o (1 ®idy), where 1 ® idy : N = M(N)* is given by
n—1®mnand f*: M(N)* — M*" is the restriction of f to M(N)".

The inverse map ¥ is given by: For g: N — M", ¥(g)(u ® n) = ug(n). It is
easy to check that ® and ¥ are inverse to each other. (I

Proposition 2.16 If X is a simple Uy(l)-module then M(X) has a unique
simple quotient L(X).

Proof. The proof is exactly the same as the proof of Proposition 3.3 in [Fer90]:
Suppose M is a submodule of M(X). If 0 #v € M N (1 ® X) then Upw =
U,U,(Dv=U,(1®X) = M(X) so MN(1®X) =0 for every proper submodule
M. Let N be the sum of all proper submodules. N is proper since NN(1®X) = 0
and maximal since it is the sum of all proper submodules. O

Let F(I) denote the full subcategory of U, (I)-modules that consists of modules
that are finitely generated over U, and are weight modules with finite dimensional
weight spaces.

12
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Proposition 2.17 The maps L : N — L(N) and F : V — V' determine
a bijective correspondence between the simple modules in F(I) and the simple
modules M in F(g) that have M* # 0. L and F are inverse to each other.

The second part of the proof is just a quantum version of the proof of Proposi-
tion 3.8 in [Fer90]. The first part is shown a little differently here.

Proof. First we will show that if V' is a simple U,(g)-module with V* # 0 then
V* is a simple U, (l)-module: Assume 0 # Vi C V* is a Uy([l)-submodule of
V¥, We will show that V3 = V*. Since V is a simple U,(g)-module we have
V =Uq(g)Vi. Now as a vector space we have

V =Uy(g)V1 = Ug(u™)Ug(DUq(w)V1 = U,

We are done if we show U, (u™)<V¥NV* = 0. Observe that U, (u™)<V*isa
U, (1) module since U, (U, (u™)<% = U, (u™)<U,(l). Assume v € V* and assume
we have a v’ € Uy(u™)<? such that u'v € V*. We can assume u’' € (U, (u™)<?),
for some v € Q and v € V,, for some p € X. Assume u'v # 0. Then since V is
simple there exists a u € U, such that wu'v = v but by weight considerations
we must have u € (Uy)—, C Uy(p7)Uy(u)>° so uv/v = 0 since v'v € V. A
contradiction.

Now assume N is a simple U, () module. L(N)* is simple by the above. Let
® be the isomorphism from Proposition and consider ®(p) : N — L(N)*
where p : M(N) — L(N) is the cannocial projection from M(N) to L(N). Since
® is an isomorphism the map ®(p) is nonzero. Since N is simple by assumption
and L(N)" is simple by the above we get that ®(p) is an isomorphism.

Suppose V is a simple U,(g)-module such that V* is nonzero. Let f =
®-1(id) : M(V*) — V where id : V* — V* is the identity map. Then f is
nonzero and therefore surjective because V' is simple. But since L(V") is the
unique simple quotient of M (V") we get L(V*) =V. O

u

Let p be a standard parabolic subalgebra of g and define U, (p), [, Uy([) etc.
as above. Let ®' be the roots corresponding to [ i.e. such that [ = h @ @B@, 93
Then for 3 € ®' and a U,(I)-module M we define S-finite, S-free, MW ete. as
above. The definitions, lemmas and propositions above still hold in this case as
long as we require 3 € ®' so that we actually have root vectors Eg, Fg e Uy(D).
We define Tys := {8 € ®'|M¥l = 0} and Fy := {B € ®'|MP] = M} ie. as
before but only for roots in ®".

By now we have reduced the problem of classifying simple modules in F(g)
somewhat. If L € F is a simple module we know that there exists some w such
that ®+ C Pup. Define [, U,(I) from L etc. as above, then ®' = (II') = F; UT}
where II' is the subset of simple roots such that P, = ®* U (II'). From the
above we get then that * L is completely determined by the simple U, (I)-module
("L)*. So we have reduced the problem to looking at simple U, (I)-modules N
satisfying ®' = F3 UTy.

13
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We claim that II" = I}, Ull7, such that FY = (Y, ) and T = (I}, )
and such that none of the simple roots in H};;j are connected to any simple root
from H/Tg,- Suppose a € F§ is a simple root and suppose o € II' is a simple root
that is connected to « in the Dynkin diagram. So o+ o’ is a root. There are two
possibilities. Either o +a' € Fy or o+« € Tx. If a4+ o € Fy: Since Fy is
symmetric we have —a € FR, and since Fy is closed o = a+a' +(—a) € Fy. If
a+a' €Ty and o € T then we get similarly o € T which is a contradiction.
So o € Fy. We have shown that if o € Fy then any simple root connected to
« is in Fly also. So Fy and T contains different connected components of the
Dynkin diagram for ®'.

Let 7 = C([) @gFﬁ, D hFﬁ[ and t = 73, & bTﬁ; Define

Uq(T) = <Ea7KQ7Kﬁ7Fa>O¢€H,F5 ,Be@\‘b’
N

and
Uy(t) = <E0”K0“Fa>a€1_[frs .
N
Then by construction Uy(g) = U, (T)®cUq(t) as a vector space via u ®ug — u1us
for uy € Uy(7) and ug € Uy(t).

To continue we want to use a result similar to [Lem69] Theorem 1 which
says that there is a 1-1 correspondence between simple U, (l)-modules and simple
(Uq(D)o modules. Since Lemire’s result is for Lie algebras we will prove the
same for quantum group modules but the proofs are essentially the same. In the
following [ is the Levi part of some standard parabolic subalgebra p and Ugy([) is
defined as above. Note in particular that the results work for [ = g by choosing
p = g. For easier notation we will set Cy; := (Uy(1))o.

Lemma 2.18 Let V be a simple U,(I)-module and X a weight of V.. Then V is
a simple Cy-module.

Proof. It is enough to show that for v € V), nonzero we have V) = C,v but this
follows since Vi = (Uy(Nv)x = (B, Ug(1),v)x = Ug(l)ov O

Lemma 2.19 Assume Vi and Va are simple Uy(l)-modules. Let A € wt V1 and
assume (V1)x = (V2)x as Cy-modules. Then V4 =2 Vs.

Proof. Let 0 # v; € (V;)a, @ = 1,2. Then (V;)\ = Cy/ Annc, (v;) as Cg-modules
since (V) is simple (Lemma . Let M = Anng, (v1), then M is a maximal
left ideal in C, since C,/M is simple. We will show that there exists a unique
maximal ideal M’ of U,(I) containing M. Let M" = U,()M. Then M" # U,()
because M # C, and so there is a maximal ideal M’ containing M". To
show uniqueness we will show that Uy(l)/M" has a unique maximal submodule
(and therefore a unique simple quotient). Clearly Uy(I)/M" = ., (Uy(1)/M"),.
Let N be a submodule of Uy(l)/M". Then N = @, N N (Uy(l)/M"),. Since
(U, (0/M")\ = (Cy/M) = (V1) is a simple Cj-module we have either N N
(Ug()/M")x = (Ug(1)/M")x or NN (Uy(I)/M")x = 0. In the first case we have
1+ M" € N and so N = Uy(I)/M". So all proper submodules of Ugy(l)/M" have
NN (Uy(1)/M")x = 0. Let Ny be the sum of all proper submodules. Then this
is the unique maximal submodule of U,(l)/M"”. So there is a unique maximal
submodule M’ of U,(I) containing M.
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Set M; = Anng,(v;). Then from the above we get unique maximal left
ideals M of U,(l) containing M;. By the uniqueness we have M; = Anny, (y(v;)
and we have V; = U,(I)/M]. Let ¢ : Cy/M; — Cy;/Ms be the isomorphism
between (V1)x and (V2)x and suppose ¢(1 + M;) = z + M. Then define
O : Uy, /M{ — Uy/Mj by &(u+ M{) = ux + M;. Then @ is a U,(I)-isomorphism
because ® is a nonzero homomorphism between two simple modules. O

Lemma 2.20 Let A € X. Let N be a simple Cq-module such that K,n =
AMKo)n, for alla € IT and n € N. Then there exists a simple Uy(l)-module V
such that N 2 Vy as a Cy-module.

Proof. Let 0 #n € N and set M = Annc,(n). Then there exists a maximal
left ideal M’ of Uy(I) like in the proof of Lemma Set V = Uy(l)/M’. This
is a simple module since M’ is maximal. We claim that V) = N as Cy-modules.
This follows from the fact that C, N M’ = M:

M c CyN M’ by definition. Take any x € C, N M’ and assume = ¢ M. Since
M is maximal in C; we must have y € C, such that yz —1 € M hence 1 € M.
This is a contradiction. So M = C, N M. O

It now follows that we have just like Theorem 1 in [Lem69] the theorem:

Theorem 2.21 Let A\ € X. There is a 1 — 1 correspondence between simple
Uy (D)-modules V' with weight Vy # 0 and simple Cy modules with weight X given
by: For V a Uy(I)-module, Vy is the corresponding simple Cq-module.

The next lemma we will prove is the equivalent of Lemma 4.5 in [Fer90]. The
proof goes in almost exactly the same way.

Lemma 2.22 Let L be a simple Uy(l)-module. Let Uy(t) and Uy(T) be defined
as above. There exists a simple Uy(T)-module L1 and a simple U,(t)-module
Ly such that L = Ly ®c Lo as a Ug(l) = Uy(1) ®@c Uy(t) module. Furthermore
if 11/ . = Ui, H/(Ti)i where H/(Tg)i are the different connected components in
H/Ti set t; = g1y, © b(ry), and Uy(t;) = <Fa,Ka,Ea>a6Hsz)_. Then Uy(t) =
L)
Uy(t1) ®c - -+ ®c Uy(ts) and there exists simple Uy (t;)-modules (La); such that
Ly = (L)1 ®c -+ - ®c¢ (La)s as Uy(t) Q¢ - - - @c Uy (ts)-modules.

Proof. Let A be one of the weights of L. Then we know that F := L) is a
simple finite dimensional Cj-module. Let R (respectively Ry and Ry) denote the
image of C, (respectively U, (7)o and U,(t)o) in Endc(E). Since E is simple we
have R = End¢(FE). Since R E # 0 there exists a nontrivial R;-submodule of
resg1 F and since F is finite dimensional there exists a simple Ri-submodule Ey
of resg1 E. The simplicity of E; implies that the representation R; — Endc¢(E1)
is surjective. The kernel of Ry — End¢(F;) must be Anng, (E7). But if this is
nonzero then since £ = RFE; = RoFq and since R; and Ry commutes we see
that Anng(F) will be nonzero which is a contradiction since R = End¢(FE). So
R; = End¢(Ey) is simple. Similarly there exists a simple Ry-module Es and
Ry = Endc(E») is simple. Now as in the proof of Lemma 4.5 in [Fer90] we
get R > Ry ® Ry (using [ANT44] Theorem 7.1D]). Since R = End¢(F) it has
exactly one simple module up to isomorphism. This implies that £ = F Q¢ Fo
as R-modules.

IR 1
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Now set Ly = Uy(7)E1 and Ly = Uy(t)Es. We have Ly = E = E; ®c Ep =
(L1 ®c L2)x and by Theorem this implies that L = L, ®c Lo.

The second part of the lemma is proved in the same way. The only thing we
used about U, (1) and U, (t) was that U,(l) = U,(7)U,(t) and that U,(7)o and
Uqy(t)o commutes. The same is true for Uy (t) and the Uy (t;)’s. O

To summarize we have the following equivalent of Theorem 4.18 in [Fer90]:

Theorem 2.23 Suppose L € F is a simple Uy(g) module. Let w € W be such
that Pwy, is standard parabolic. With notation as above: (YL)* is a simple
Uqy(1)-module and this module decomposes into a tensor product Xg, @c X
where Xgn is a finite dimensional simple Uq(T)-module and Xg is a torsion
free Uy(t)-module. Furthermore if t = 1 @ --- ® t;, as a sum of ideals then
Xi = X1 ®c -+ Q¢ X for some simple Uy(t;)-modules.

Given the pair (Xgn, Xg) and the w € W defined above then L can be
recovered as U L(Xg, ®c Xg))-

So the problem of classifying simple modules in F is reduced to the problem of
classifying finite dimensional simple modules of U, (7) and classifying torsion free
simple modules of U, (t) where t is a simple Lie algebra. In the next section we
will show that we can make the same reduction if ¢ is an odd root of unity. The
procedure is similar but there are some differences, e.g. because the sly theory
is a little different.

3 Root of unity case: Reduction

We will now consider the root of unity case. In this section g € C will be assumed
to be a primitive I’th root of unity where [ is odd.

Lemma 3.1 Let A € X and a € II. Then A\(K,) = £¢* for some k € {0,...,1—
1}.

Proof. By Section 6.4 in [Lus90] we have the following relation in Uga:

[ i A R |

Since [ljl]q = 0 when ¢ is an [’th root of unity we must have that either

0o TINKL) — I Ke) Tt =0 or ¢t FA(KL) — ¢ETIAN(K,) T = 0 for some k €
{1,...,1—1}. Writing out what these equations imply we get that \(K,) = £¢*
for some k € {0,...,1 —1}. O

Definition 3.2
A ={AeA0< (N V)<, Vaell}

Lemma 3.3 Let A\ : U(? — C be an algebra homomorphism. Then X\ is com-

pletely determined by its values on K, and [K;“O] with o € II. Choosing a
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homomorphism o : Q — {£1}, an element \° € A; and an element \' € b*
determines a homomorphism A € X as follows: For a € I1:

MK, =o(a)qg™’1®)
K0
)\({ ; }) :<)\1,av>.
All algebra homomorphisms A : U(? — C are of this form, i.e. X =8 x A; x b*
in this case, where S is the set of homomorphisms o : Q — {£1}.

Proof. We will use the relations for Uy from Section 6.4 of [Lus90]. Let g € II. If
c—i+1  i—l—cp—1
A(Kg) = dthen A(K5"') = d~" and the value on [ = []¢_, 229 K

i=1 ah—ag"
54
for 0 <t <l is also determined. The relations

Kg;c Kgie+1 c Kg;c
R R B

l l -1

determine the values on [Kf "'C] for all ¢ € Z if the value on [K’; ;0] and the value

on Kg is known. Finally if ¢ = rl 4t with 0 <t <[ we have

0
T

—(r!)lzgi {Kﬂ}_sq {Kﬂ;t—rl}

So determining the value on Kz and [K/;;O} determines the value on all of U, g.

If 0, A% A! is chosen as above it is easy to check that the relations from
Section 6.4 in [Lus90] are satisfied. That all characters are of this form follows
from Lemma [3.11 U

It can be noted in the above that A' = AoFr’ |y where Fr’ : U(g) — U,(g)/ (K, — 1|a € II)
is the Frobenius map from [KL02]. We will restrict to modules of type 1 meaning
o(a) =1 for all @ € TI in the above. It is standard how to get from modules of
type 1 to modules of any other type o (cf. e.g. [Jan96, Section 5.1-5.4]).
Since we restrict to modules of type 1 we will assume from now on that
X = A; x b*. A weight A\ € X will also be written as (A%, A!) € A; x b*.

Lemma 3.4 Let A € X with \° and \' defined as in Lemma . Let f € @,
ceZ,

Kgie+1], X[ +1 if (\,8Y)+c=-1 mod!
A({ }) B {/\([K’}c]) otherwise .

17
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Proof. Set a = (A% 8Y). By (b4) in Section 6.4 of [Lus90]

(e )
(e,
[aJrcfl]

-1 iszerounlessa+c—1=—-1 mod!l. fa+c—1=—1 mod [ then
B

— +c a+c—1 _ -1 _
a+c¢=0 modl and so 5" =1and ["7] ]qﬁ_[l_l]qﬁ_l, O

For a character A € X and a u € QQ we define g"\ as follows:

("N () =g MDA = g8 I A(K)

(5T

With this notation we get for a module M that Eg)MA C Myray and FéT)MA C
M-+ . Note also that (¢"PA)! = A1 + 3.
We use the same definitions as in Section

Definition 3.5 Let M € F and let 3 € ®. We call M B-finite if ¢"P XN wt M
is a finite set for all A € wt M where ¢"°PX = {¢"®\|r € N}.

The weight vectors Eg and Fj3 for positive 3 that are not simple are defined
just as before by choosing a reduced expression of wg. By [Lus90l Section 5.6]

the divided powers Eg) = [T]Iﬂ!Eg, r € N are all contained in U, and by abuse

of notation we use the same symbol for the corresponding elements in Uj,.

Proposition 3.6 Let M € F and let 5 be a positive root. Let Eg be any choice
of root vector corresponding to 5. Then the following are equivalent:

1. M is B-finite.
2. For allme M, Eé”szforr >>0

)M,\ C Myrs 5. Assume 2. and suppose M

Proof. Clearly 1. implies 2. since Eg
is not (3 finite.
We must have a A € wt M, an increasing sequence {j; }ien, weights pu; =

@PN € wt M and weight vectors m; € M, such that Egh)mi = 0 for all
r € N\{0}. We can assume without loss of generality that if A ([KB;OD € Z then

A ([Kﬁ;O]) € Z~q by Lemma |

Now consider the subalgebra Dg of U, generated by Eg), Kéd and F'" for
r € N where Fj is the root vector corresponding to Eg (i.e. if Eg = T,,(Ey,)
then Fjg = T,,(Fy,)). For each i we get a Dg-module Dgm,; with highest weight
wi. We claim that in each of these modules we have at least one weight vector
with one of the weights X\, ¢ ?\, ..., ¢~ =P8\, So we want to show for each m;
that at least one of the vectors Fﬁ(“)mi, Fﬁ(“ﬂ)mi7 . FB(“H*D

, m; 1S nonzero.
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We must have that one of the numbers j;, ..., j; +1—1 is congruent to 0 modulo
l. Lets call this number k. Say k = rl. Now we have

(k) (k). _ (k—s) £ 25 = 2K| (k—s)
By Fym; =) F} [ ) By m;

s>0
rl

r—1
1 Kp;—sl
o IJO { l ]mi

1r 1
:ﬁH(ci—s)mi
'S

=0
&
= mi
r

where ¢; = p; ([K’;;O]). To show that this is nonzero we must show that
c¢i € {0,....,7r —1}. If X ([Kf”o]) is not an integer then this is automatically

fullfilled. Otherwise we know j; = rl—t for some ¢t = 0,...,1—1. So y; = "=\
and by Lemma [3.4]

oo (] - () A [ v

Since there are infinitely many m;’s we must have infinitely many weight
vectors {v;} of weight one of the weights A, A\ — 3,..., A — (I — 1)8.

To show that they are linearly independent let vq,...,v, be a finite set of
)

the above weight vectors. They are all of the form F ﬁ(k m; for some i and some

k;. Assume v, is the vector where the power k,, is maximal. Then Eék")vi =0

for i # n and Eék")vn # 0. It follows by induction on n that the set {vq,.

c Rt}
is linearly independent. (]

We define Ml = {m € M|dim <Eg)|r € N> m < oo}. Proposition and

Lemma carry over with the same proof. In particular M7 is independent of
the choice of root vector Eg. Again we call M B-free if M (6] = 0. Again we can
show everything with F’s instead of E’s if 8 is negative.

Propositions and carry over with almost identical proofs. Setting
I =1 in the propositions and their proofs below would make the proofs identical.

Proposition 3.7 Let M € F be a simple module and 3 a root. Then M is
B-free if and only if ¢"P wt M C wt M.

Proof. Assume f3 is positive. If ¢"2 wt M C wt M then M is clearly not $-finite
and since M is simple we have by Proposition that M is S-free in this case.
For the other way assume M is $-free and assume we have a weight vector

0 #m € M, such that Egl)m = 0 for some r € N. For any 7 € N, [itrl]ﬁ # 0 so

(rl+i) i+ rl] (1) n(r)
By m= . Ey'Ey 'm=0
t g
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But this implies that m € M which contradicts the assumption that M is
B-free. If [ is negative we do the same with F’s instead of E’s. O

Proposition 3.8 Let L € F be a simple module. Ty, is a closed subset of .

Proof. Assume 3, € T;, with S+~ € ®. Then since 8 € T1,, ¢"¥ wt L C wt L.
Since v € Ty, we get then ¢"7"¢™"P wt L € wt L so ¢+ wt L € wt L. O

Proposition 3.9 Let L € F be a simple module. Fy, and Ty, are closed subsets
of ® and ® = Fr, UTy, (disjoint union).

Proof. T}, is closed by Proposition |3.8] F7y, is closed by the same proof as the
proof of Proposition[2.11} Note that the constants in the proof of Proposition [2.11]
that are inverted are all nonzero even when ¢ is a ['th root of unity as long as [
is odd. 0

We define Py, like in Section [2] and we assume like above that Pr, is standard
parabolic by considering * L for an appropiate w € W. The subalgebras U, (p),
Uqg(D), Ug(u), Ug(u™) ete. are defined as above but this time with divided powers.
For example we have

Uap) = (ES K FLY)
a(P) Bi > T8 [ i=1 . N.p€Qui=1,....hreN

and so on. Now the rest of the lemmas and proposition carry over with the same

proofs as before and we have the following equivalent of Theorem [2.23}

Theorem 3.10 Suppose L € F is a simple Uy(g) module. Let w € W be such
that Pwy, is standard parabolic. With notation as above: (YL)" is a simple
U, (I)-module and this module decomposes into a tensor product Xg, ®c X
where Xgy is a finite dimensional simple Uy(T)-module and Xy, is a torsion
free simple Uy(t)-module. Furthermore if t = t1 & --- & t5 as a sum of ideals
then Xp = X1 ®c - ®c Xs as Ug(th) ® -+ - @ Uy(ts)-module for some simple
Uq(4;)-modules X;, i =1,...,s.

Given the pair (Xan, Xr) and the w € W defined above then L can be
recovered as (L(Xg, @c Xg)).

So in the root of unity case we have also that to classify simple modules in
F we just have to classify finite dimensional modules of U,(7) and ’torsion free’
modules over U,(t), where t can be assumed to be a simple Lie algebra.

4 Uy formulas

In this section we recall from [Ped15b| some formulas for commuting root vectors
with each other that will be used later. Note that in [Ped15b] the braid operators
that we here call T,, are denoted by R,. In [Ped15b| T, denotes twisting
functors.

Recall that A = Z[v,v™!] where v is an indeterminate and U, is the A-

subspace of U, generated by the divided powers E&n), o(tn), n € Nand K,, K;!.
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Definition 4.1 Let x € (U,), and y € (Uy,), then we define
[, yly 1= zy — v~ Hya

Theorem 4.2 Suppose we have a reduced expression of wy = Si, -~ - iy and
define root vectors Fg,,...,Fgy. Leti < j. Let A= Z[v,v™'] and let A’ be the
localization of A in [2] if the Lie algebra contains any By, Cy, or Fy part. Then

[Fa,,Fp,]o = Fg, Fs, — v~ P1P) g Fy. € span,, {ng:f e Fai“}

Bi+1
Proof. |[LS91l Proposition 5.5.2]. Detailed proof also in [Ped15bl Theorem 2.9].00

Definition 4.3 Define ad(Fé)(Fa) =..[Fa,Falv .. ]v, Fplo and ;a(Fé)(Fa) =
[Fa,[---s[Fs, Falv - - -|]v where the commutator is taken i times from the left and
right respectively.

Proposition 4.4 Let u € (Ua),, 8 € @+ and Fz a corresponding root vector.
Set r = {u,BY). Then in Ua we have the identity

ad(Fj)(u) = [i]a! > (1) os D F upf ™

and
- i . : n n(l—i—r i—n n
ad(F3)(u) = [i)5! Y (~1)"op T FS T up(Y
n=0
Proof. Proposition 1.8 in [Ped15b]. O

So we can define ad(Fﬁi))(u) = ([1]") "' ad(F})(u) € Ua and ;a(Fél))(u) =
([i])~tad(Fj)(u) € Ua.
Proposition 4.5 Let a € N, u € (Ua), and r = (u, BY). In Us we have the
identities
uf§ =3 "o pE) ad(F) ()
=0

_Z z a(TJrZ F(a 1) d(F(Z))( )

and
F(a)u 721)(1 a)(r+i) 3 ad(F (U)( )Féa_i)
o Z 1 g(r+z)—z ad(FB(z))(u)Fﬂ(a—z)
Proof. Proposition 1.9 in [Ped15b]. O
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Proposition 4.6 For z1 € (Ua)u,, 2 € (Ua)u, and y € (Ua) we have

[y, w122)y = @1 [y, waly + 0~ O [y, 2] s
and
2122, ylo = v~ O 2y (29, ], + 21, ylowa
Proof. Direct calculation. ]
Let s;, ... s;, be a reduced expression of wg and construct root vectors Fjg,,
t=1,...,N. In the next lemma Fj, refers to the root vectors constructed as
such. In particular we have an ordering of the root vectors.
Lemma 4.7 Letn € N. Let 1 <j <k <N.
ad(FS))(F§”) = 0 and ad(FS))(FSY) = 0 for i > 0.
Proof. Lemma 1.11 in [Ped15b]. O

5 Ore localization and twists of localized modules

In this section g will be a complex primitive I’th root of unity with [ odd. Recall
that we will assume X = A; x bh* in this case restricting to modules of type 1.
For an element A\ € X we define A\’ € A; and \' € h* as in Lemma such
that M(K,) = q()‘ola) and )\([KC[;O]) = (A, aY) for o € IT and we will also write
A= (A% e X.

Lemma 5.1 Let 8 be a positive root and Fgz a corresponding root vector. The

set
{(rF{V|r e N}y = {(Fé“) Ir € N}

is an Ore subset of U,.

Proof. We can assume 3 is simple since otherwise Fg = T, (F,) for some o € II
and some w € W and T,,(U,) = U,. Since T!Fﬁ(rl)k!Fﬁ(kl) = (r+ k)!Fﬁ(THkl) the
set is multiplicative and does not contain 0. We will show the Ore property for
each generator of U,. First consider o € II a simple root not equal to 3. Let
n € N. We have the following identities for » > 1 (cf. Proposition

rl n n rl
rESVE =B F{
rFSVKE =K EY

(n) (rl) _ (rl) (n)
FVr\Eg ™ =rlFy  Fy
r=1 ki4l _ ‘
+3°3 il — k= )ESTHMO R aq(B0) (R
k=0 i=ki+1
where ¢; = q;(u_@ﬁ >)r(r —1)---(r — k). Finally we have the sly identities for
0<i<lI:

(1) 2(n) _ ga(n) g ()
T!FB FB fFﬂ T‘!Fﬁ
@D () D) (), N (ri—1) (1—t) (i—t) | 830 — 7l
EyrFyY =r PV ES 4 (e - 1) FSTV RSV B { . L.
t=1

So we have shown that it is an Ore set. O
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We will denote the Ore localization of U, in the above set by Uy(p,). For a
Ug-module M we define M(p,) := Uy(r,) ®U M. We write the inverse of F(Tl)

r €N as Fé, ™ e F[g ™ =yl (r!Fﬁ(r )> € Uy(ry)-
Lemma 5.2 Let A = (A%, A\Y) € Ay x b*, B € ®T and let Fg be a corre-

sponding root vector. Let Iy be the left Uyp,y-ideal Uypy{(u — Mu))u €
UL?}. Then there exists, for each b € C, an automorphzsm of Uq(ry)-modules

1/’1{\15,17 2 Ugrgy /I %-Uq(pﬁ')/j()\ov)\l_;'_blg) such that for uw € Uy, and i € N,
w%,,,i(u 1) = Ff(;zl)uFﬁ(zl) + Lo a14ig) and the map b — wf‘,ﬂ7b(u + 1) is
0 y1

polynomial in b. Furthermore w%;‘ +b0) o w}ﬁwb = w}ﬁ’b%, for b,b" € C.
Proof. If 8 is not simple then Fz = T,,(F,) for some simple root o € II.
Then we define ¥, , (1) = T (U, (T (u))) where T (F ") = F{™ and
Tw(Fé_l)) = Fﬁ(_l). So we assume from now on that 5 € IL.

We define Tpfﬁﬂ,b on generators: For a € II\{f} and n € N
Ui, o (ESY) =ESY
Vi, o (FLY) =F{Y

b — i((lBY)=4) L (—kl—1) o(kl+1—i) @)\ (n)
Y (1 00) X R ) )

k>0 +1 i=ki+1
V(o) =AELY)
b, o) =L

U, 4 (Ep) =Ep + bFs VEY V[, 8Y) + 15

-1
_ 5 ity [0, BY _
Uiy o(BY) =By + 0y 0 S FOESY [< " >} + SO0, 8Y) + 1)

t=1 B
U p(KE) =MEKEY).

The sum given in the formula for F is finite by Lemma It is easy to check
that ’(/)Fﬁ’i(u + 1)) = Flg Dy éll) + I()\(J’)\1+b13) for i € N and it is seen from the

formulas that b — 1/’?7571,@ + I,) is polynomial. So w;\%b satisfies the generating
relations of U, for b € N hence it satisfies the generating relations for all b € C
because w%ﬁ’b(u) is polynomial in b. Similarly we can show the rest of the claims

by using the fact that b — wl’\mﬁ)b(u) is polynomial. a
We will define a twist of the action of a Uy(p,)-module:

Definition 5.3 Let M be a Uy(p,)-module. We define g, p.M to be the module
equal to M as a vector space with action twisted via Y, p: For m € M we denote
the corresponding element in Vg, p-M by Yr, p.m. Let A = (A0 \Y) € wt M and
assume m € My. We have a homomorphism of Uy(r,)-modules  : Uq(pﬂ)/l,\ —
M defined by sending u + Ix in Uypy)/Ix to um. We define for u € Uy(p,):

wr,pm = vr,0 (1050 @)

where uw = u + I()\07)\1_bﬁ) S Uq(F,;)/I()\O,Al—bB)-
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Lemma 5.4 Let M be a Uyp,)-module. Let r € Z.
Yy M 22 M.
Furthermore for X = (A%, A') € wt M we have as (Uy(g,))o-modules

¢F[3,T~M)\ = M(AO,AI—T‘['?)'

Proof. The isomorphism in both cases is given by ¥ g, ».m Flgrl)m. Using
the fact that w%o”:‘lfrﬂ) (u+Tpox—pp) = Féfrl)uFﬁ(rl) + I, it is easy to show
that this is a homomorphism and the inverse is given by multiplying by Fé_rl).D

Definition 5.5 Let ¥ C ®. Then ¥ is called a set of commuting roots if there
exists an ordering of the roots in X; ¥ = {B1,...,Bs} such that for some reduced
expression of wy and corresponding construction of the root vectors Fig we have:
[F,, Fp,lg =0 for 1 <i < j<s.

For any subset I C I, let Q; be the subgroup of Q generated by I, ®; the
root system generated by I , ®F = &t N ®; and o = fCIJ;r,

We have the following equivalent of Lemma 4.1 in [Mat00]:

Lemma 5.6 1. Let I CII and let « € I. There exists a set of commuting
roots ¥ C fID}" with o € ¥/ such that X/ is a basis of Q.

2. Let J,F be subsets of Il with F # II. Let &' C ®\®7F .. be a set of
commuting roots which is a basis of Q. There exists a set of commuting
roots > which is a basis of Q such that ¥’ C X C <I>+\<I>}

Proof. The first part of the proof is just combinatorics of the root system so
it is identical to the first part of the proof of Lemma 4.1 in [Mat00]: Let us
first prove assertion 2.: If J is empty we can choose a € II\F' and replace J
and ¥’ by {a}. So assume from now on that J # (. Set J' = J\F, p = |J/|,
q =|J|. Let Ji,...,Ji be the connected components of J and set J/ = J' N J;,
F,=FnJ,and &, =3XN®d,,, for any 1 <4 < k. Since &' C ®; is a basis
of Q, each X is a basis of Q,. Since Xj lies in ®J \®F,, the set J; = J;\F;
is not empty. Hence J' meets every connected component of J. Therefore we
can write J = {a1,..., a4} in such a way that J' = {a1,...,a,} and, for any s
with p+ 1 < s < ¢, ay is connected to «; for some i < s. Since II is connected
we can write IINJ = {ag41,...,a,} in such a way that, for any s > g+ 1, o is
connected to «; for some ¢ with 1 <i < s. So Il = {aq,...,a,} such that for
s > p we have that a; is connected to some a; with 1 <17 < s.

Let ¥ = {f1,...,84}. We will define fB441,..., 5 inductively such that for

each s > ¢, {B1,..., (s} is a commuting set of roots which is a basis of ®;, . a,}-
So assume we have defined 1, ..., 8. Let ws be the longest word in Sq,, .- ., Sa.
and let w,y1 be the longest word in s4,, ..., 8q,,,. Choose a reduced expression

of ws such that the corresponding root vectors {Fjs} satisfies [Fj;, F,]q = 0
for i« < j. Choose a reduced expression of ws,y 1 = wsw’ starting with the
above reduced expression of ws. Let N, be the length of w, and N,41 be the

length of wsy1. So we get an ordering of the roots generated by {aq,...,as11}:
Q)?al’~~~7as+1} = {717 ce oy YNgy YN+15- -+ a’yN5+1} with q)j{al,...,as} = {717 oo u’yNs}

Consider vy, 11 = ws(asq1). Since ws only consists of the simple reflections
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corresponding to a1, ...,as we must have that vy 11 = as41 + Zle m;oy; for
some coefficients m; € N. So {$1,..., Bs,Yn, 11} is a basis of ®¢,, . 4. .,3. From
Theorem we get for 1 <i<s
[F’YN5+17FB1']L1 € spanc {F:/lzz T F’lYlNN; a; € N}} :
But since {v1,...,7n.} = (I)Eral,...,as} and since Yn, 11 = Qsp1 + Yy My We
get [F’YN5+17FBi]q =0.

All that is left is to show that yn,+1 & ®r. By the above we must have that
asy1 is connected to some «; € J'. We will show that the coefficient of «; in
YN, +1 is nonzero. Otherwise (yn,41|a;) < 0 and 0 Yy, 41 + i € Pray a1}
and by Theorem 1 in [Pap94], yn,4+1 + o; = ~; for some 1 < j < s. This is
impossible since yn, 11 + @; & i, .. a,}- S0 we can set 3,41 = Yy, 41 and the
induction step is finished.

To prove assertion 1. it can be assumed that I = II. Thus assertion 1. follows
from assertion 2. with J = {a} and F = 0. O

.....

Lemma 5.7 Let ¥ = {B1,...,08,} be a set of commuting roots with correspond-
ing root vectors Fg,,..., Fg_, then Fﬁ(ll), R Fléi) commute.

Proof. Calculating in U, for i < j we get using Proposition [£.0]
1

O pmy _ l 11 _
o B e = e o B =0
hence v(t5:115) FV FO— F F = 0in U Since [F, B{V], = ¢ G100 PP B -
Féj) Féi) = Fﬁ(f)Féi) — Fﬁ(i) F/gl) we have proved the lemma. O

Corollary 5.8 Let X = {S1,...,0,} be a set of commuting roots with corre-
sponding root vectors Fg, ..., Fg . The set

s ::{rllFlg?l) .- ~rn!F[§:"l)|r1, .o,y €N}
DAY n\"™
:{(FB(1)) . (Fén)) |r1,...,m € N}
is an Ore subset of U,.

Proof. This follows from Lemma [5.7] and Lemma [5.11 O

We let Uy(r,) denote the Ore localization of U, in the Ore subset Fy. For a
Ugmodule M we define Mg, = Uypy,) @u, M.

Definition 5.9 Let X = {81,...,08,} be a set of commuting roots that is a basis
of Q with a corresponding Ore subset Fs,. Let v € h*, v =" a;; for some
a; € C. For a Uy(p,)-module M we define ¥p,, ,.M = ngl,al o 0Yp, a,-M.

Corollary 5.10 Let 3 be a set of commuting roots that is a basis of Q. Let
p € Q and let M be a Uy(py)-module. Then

Vg - M =M
as Uy(py,)-modules. Also for A = (A%, ') € wt M :
'(/}FEW'M/\ = M()\o’)\le/J)

as (Ug(ry))o-modules.
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Proof. Since ¥ is a basis of @ we can write = 5 v agf for some ag € Z.
So the corollary follows from Lemma O

Definition 5.11 A module M € F is called admissible if its weights are con-
tained in a single coset of (A} X b*)/(A; X Q) and if the dimensions of the weight
spaces are uniformly bounded. M 1is called admissible of degree d if d is the
mazximal dimension of the weight spaces in M.

Of course all finite dimensional simple modules are admissible but the inter-
esting admissible modules are the infinite dimensional admissible simple modules.
In particular simple torsion free modules in F are admissible. We show later
that each infinite dimensional simple module L gives rise to a ’coherent family’
EXT (L) containing at least one simple highest weight module that is admissible
of the same degree.

We need the equivalent of Lemma 3.3 in [Mat00]. Some of the proofs leading
up to this are more or less the same as in [Mat00] but for completenes we include
it here as well.

Definition 5.12 A cone C is a finitely generated submonoid of the root lattice
Q containing 0. If L is a simple module define the cone of L, C(L), to be the
submonoid of Q generated by T7,.

Lemma 5.13 Let L € F be an infinite dimensional simple module. Then the
group generated by the submonoid C(L) is Q.

Compare [Mat00] Lemma 3.1

Proof. First consider the case where T, N (—Fr) = (. Then in this case we
have ® =T} U F}. Since F} and T} contain different connected components of
the Dynkin diagram and since L is simple and infinite we must have & = T}
and therefore C(L) = Q.

Next assume 17, N (—Fp) # 0. By Lemma 4.16 in [Fer90] P, = T} U Fp,
and P, = Ty U F} are two opposite parabolic subsystems of ®. So we have
that Tp, N (—=Fr) and (—7p) N Fr, must be the roots corresponding to the
nilradicals v* of two opposite parabolic subalgebras p* of g. Since we have
g=0"+0"+[o", 0] we get that T, N (—FL) generates Q. Since C(L) contains
Tr, N (—Fp) it generates Q. O

Definition 5.14 Let x > 0 be a real number. Define p;(x) = Card By(x) where

Bi(z) = {p € 1Q\/(ulp) < 2} and 1Q = {lp € Qlp € Q}.
Let M € F be a weight module with all weights lying in a single coset of
(A; x b*)/(A; x Q) say (0,\1) + (A; x Q). The density of M is

8(M) = lim inf pu(x) "1 > dim M, 0 1)
pOEA, pt€B ()

For a cone C we define §(C) = liminf, , p1(x)~! Card(C N By(z)) =
liminf, o pi(z) =t Card(IC N By(x)) where IC = {lc € Q|c € C}.

Lemma 5.15 There exists a real number € > 0 such that 6;(L) > € for all
infinite dimensional simple modules L.
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Proof. Note that since ¢! ?)\ C wt L for all A € wt L we have &;(L) > §(C(L)).

Since C(L) is the cone generated by Ty, and Tr, C ® (a finite set) there can
only be finitely many different cones.

Since there are only finitely many different cones attached to infinite simple
dimensional modules and since any cone C' that generates @ has §(C) > 0 we
conclude via Lemma that there exists an € > 0 such that §;(L) > ¢ for all
infinite dimensional simple modules. [

Definition 5.16 Let M be a g-module. We can make M into a Ug-module by
the Frobenius homomorphism: We define MY to be the U,-module equal to M
as a vector space and with the action defined as follows: Form € M, a € 11,

Kflm =m
E.,m =0
E((Xl)m =esm
Fom =0
Fél)m :fam

where e,, is a root vector of g of weight o and f, is such that [eq, fo] = ha. The
above defines an action of Uy on M by Theorem 1.1 in [KL0Z].

Proposition 5.17 Let A = (\°, A1) € X and let L()\) be the unique simple
highest weight module with weight X\. Then L(\) = Le(A) @ L((A°,0)) where
Lc(A\Y) denotes the unique simple g-module of highest weight \*.

Proof. The proof of Theorem 3.1 in [AM15] works here in exactly the same
way. ([l

Lemma 5.18 Let M € F be an admissible module. Then M has finite Jordan-
Hélder length.

Proof. As M is admissible, we have §;(M) < oo. For any exact sequence
0— Ml — M2 — M3 — 0, we have (Sl(MQ) > 51(M1) + 5[(M3) Let Y be the
set of all u € A such that | (u, V)| < 1 for all @ € II. By Proposition
and the classification of classical simple finite dimensional g-modules any finite
dimensional U,-module L has L0 ,1) # 0 for some p® € A; and some put €Y.
It follows like in [Mat00, Lemma 3.3] that the length of M is finite and bounded
by A+6(M)/e where A =73" ocp, 1ey dim Mo 1) and € is the constant from
Lemma O

Lemma 5.19 Let M be an admissible module. Let ¥ C ®T be a set of com-
muting roots and Fx, a corresponding Ore subset. Assume —X C Thy. Then for
A=A\ e X:

dim(MFZ)/\ = };ré%}é{dlm M()\07)\1+M)}

and if dim My = max,czs{dim Mo xi4,y} then (Mpg)x = My as (Ug)o-
modules.
In particular if ¥ C Thr as well then Mg, = M as Uy-modules.

Compare to Lemma 4.4(ii) in [Mat00].
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Proof. We have ¥ = {1,...,0,} for some f1,...,5, € ®. Let Fg,,..., Fp,
be corresponding ¢g-commuting root vectors. Let A € X and set

d= max{dlmM()\o Ap) }
WEL
Let V be a finite dimensional subspace of (Mpg,)x. Then there exists a ho-
mogenous element s € Fx such that sV C M. Let v € ZY be the degree of
5. So sV C My hence dimsV < d. Since s acts injectively on Mg, we have

dimV < d. Now the first claim follows because F B(il) acts injectively on Mg,
for all g € X.

We have an injective Ug-homomorphism from M to Mg, sending m € M to
1® m € Mp, that restricts to a (Uy)o-homomorphism from My to (Mg ). If
dim M = d then this is surjective as well. So it is an isomorphism. The last
claim follows because +3 C Ty, implies dim My = dim My for any p € ZI%;
so My = (Mg, )y for any A € X. Since M is a weight module this implies that
M = MFp,, as Uj-modules. ]

Lemma 5.20 Let L € F be a simple Uy(sly) module. Then the weight spaces
of L are all 1-dimensional.

Proof. For sl, there is only one simple root a and we will denote the root
vectors E, and F, by E and F respectively. Similarly K*' = KF!. Consider
the Casimir element C = EF + % Let A € wt L and let ¢ € C be an
eigenvalue of C' on Ly. Consider the eigenspace L(c) = {v € L|Cv = cv}. Then
FOE® acts on this space since C' commutes with all elements from U, (sly).
Choose an eigenvector vy € L(c) for FWE®, We will show by mductlon that
EM F(™Myg € Coy for all n € N. The induction start n = 0 is obivous. Let n € N
and assume n =i + 7l with 0 < ¢ <. If i # 0 then [n] # 0 and we have:

<E“”P*”%m::T%Eﬂﬂ”’DIEFP“"’Dvo
n

1 1K 4 gK! .
_ 1 gy (C_Q(Q) Fo1y,

[n]? q—q1)2
. 1 E(n=1) p(n—1) q(’\o‘a)+1_2n+q2n_1_(/\0\@)
P o (g—q1)? vo

where « is the simple root. So the claim follows by induction. In the case that
i =0 we have

1
EM™ ™y, :;E(”_l)E(l)F(”)vo

l
1 K;2t—rl—1
:7E(’r‘lfl) § F(’r‘lft) ) E(lft)
r = t Yo

l

1 K;l—rl

TE(rl—l)ZF(rl—l)F(l—t)E(l—t)|: ! r}vo
t=0

:%E(rlfl)F(rl 1) <F(l l)+ZF1 g {(Aola)Jrl—rl} +<)\1’av>+1r> o

t
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Since g is an eigenvector for F() E(®) we have only left to consider the action
of FWE® for 1 <i < l. But we can show like above that F() E(My, € Cvg by

using that C = FE + %.
Now since L is simple we must have that Ly is a simple (U,)o-module
(Lemma 2.18). So L, is generated by vg. Since EMEF™yg € Cog for all n € C

we get dim Ly = 1. O

Lemma 5.21 Let L be a simple infinite dimensional admissible module. Let
B € (T7)". Then there exists a b € C such that g, p.Lr, contains a simple
admissible U,-submodule L' with Tr, C Ty, and 8 & Ty.

Proof. By Lemma [5.19 L = Lp, as U-modules so we will write L instead of
LF, when taking twist. The Uy(p,)-module structure on L coming from the
isomorphism. Let Dg be the subalgebra of U, generated by Eén), Kéﬂ, F 5(”),
n € N. Then Dy is isomorphic to the algebra Uy, (sl2). Let v € L and consider
the Dg-module Dgv. Since L is admissible so is Dgv. So Dgv has a simple
Dg-submodule V' by Lemma [5.18]

Let v € V be a weight vector such that Egv = 0 (such a v always exists since

EY = 0). Assume ) is the weight of v. By Lemma |5.20) F(l)E(l)v = cv for some
B & Y s s
ceC.

Then by (the proof of) Lemma we get

FYEDvp, v

-1 y
B (1=t) m(i—t) [{(Aos BY)
=V fy b <c+b E Fﬁ Eﬁ [ .

t=1

:’(/Jpﬁ’b. (C + b(<)\1,ﬂv> +1-— b)) V.

+b((A1,8Y) +1— b)) v
B

Since C is algebraically closed the polynomial in b, c+b({\1, 8Y)+1—b) has a
zero. Assume from now on that b € C is chosen such that c+b({A1, 8Y)+1-b) = 0.

Thus tp, 5.L contains an element v’ = g, p.v such that Fﬁ(l)Eg)v’ =0

)

and since F/gl acts injectively on v, p.L, we have Egl)v’ =0. Set V={me

Yy oI ES ' m = 0,N >> 0} = (g, 5.L). By Propositionthis is a Uy-
submodule of the Ug-module g, 5.L. It is nonzero since v € V. By Lemma
V has a simple U,-submodule L'.

We have left to show that 77, C Tr. Assume v € Tp. Then ¢™ wt L' C
wt L' by Proposition But since wt L' C {(A%, A1 =b8)|(A\°, A1) € wt L} we get
for some v € wt L, {(¢°, 1 — b8+ rvy)|r € N} C {(A\°, At —b8)|(A\°,\}) e wt L}
or equivalently ¢"Yv C wt L. But this shows that v ¢ I, and since L is a simple
Ug-module this implies that v € Tr,. By construction we have g & Tp. O

Lemma 5.22 Let L € F be a simple module. Then there exists a w € W such
that w(FL\F3) C @1 and w(T\T§) C ¢~

Proof. Lemma 4.16 in [Fer90] tells us that there exists a basis B of the root
system ® such that the antisymmetrical part, F7,\F}, of Fy, is contained in the
positive roots CIJE corresponding to the basis B and the antisymmetrical part,
Tr\T}, of Ty, is contained in the negative roots ®5 corresponding to the basis.
Since all bases of a root system are W-conjugate the claim follows. O

29



IRREDUCIBLE QUANTUM GROUP MODULES WITH FINITE DIMENSIONAL WEIGHT
SPACES. 1

Lemma 5.23 Let L be an infinite dimensional admissible simple module. Let
w € W be such that w(FL\F;) C ®T. Let o € II be such that —a € w(TL) (such
an « always exists). Then there exists a commuting set of roots 3 with « € ¥
which is a basis of Q such that =% C w(TL).

Proof. Set L' =" L. Since w(Ty) = Twy = Ty, we will just work with L. Then
FL’\FE’ C ®+.

Note that it is always possible to choose a simple root o € —T} since L’
is infinite dimensional: If this was not possible we would have &~ C Ff,. But
since Fr/\F;, C ®* this implies F, = ®.

Set F' = F}, N1I. Since L’ is infinite dimensional F # II. By Lemma 2.
applied with J = {a} = ¥’ there exists a commuting set of roots ¥ that is a basis
of @ such that ¥ C ®+\®L. Since Fr/\F;, C &+ we have &~ =T}, U (F},)".
To show —% C Ty, we show (®~\®%) N F;, = 0 or equivalently (F},)~ C ®5.

Assume S € F§, N+, g = Y acr Ga®, o € N. The height of 3 is the sum
> acti Ga- We will show by induction on the height of 5 that —f € ®. If the
height of 5 is 1 then 3 is a simple root and so 5 € F'. Clearly —3 € ®}. in this
case. Assume the height of § is greater than 1. Let o € II be a simple root such
that 8 — o’ is a root. There are two possibilities: —a/ € Ty, or o/ € F},.

In the first case where —a/ € Ty we must have —f+a’ € F}, since if —f+a’ €
Tr, then —8 = (=8 + &) — & € T because Ty is closed (Proposition .
So f—a' € F}, and § € F},. Since Fp is closed (Proposition we get
—o/ = (8 — &) — B € F, which is a contradiction. So the first case (—a/ € Ty1)
is impossible.

In the second case since F. is closed we get (8 —a') € Fr- i.e. f—a' € F},.
By the induction —(8 — a’) € ®% and since —3 = —( — o) — &/ we are done.l

6 Coherent families

As in the above section ¢ is a complex primitive {’th root of unity with [ odd in
this section. For A € X we write A = (A%, A!) like above.

Lemma 6.1 Let M, N € F be semisimple Us-modules. If ™ = oV then
M=N.

Proof. Theorem 7.19 in |[Lam01] states that this is true for modules over a
finite dimensional algebra. So we will reduce to the case of modules over
a finite dimensional algebra. Let L be a composition factor of M and A a
weight of L. Then the multiplicity of the U,-composition factor L in M is the
multiplicity of the (U,)o-composition factor Ly in My by Theorem M, is
a finite dimensional (Uy)o-module. Let I be the kernel of the homomorphism
(U)o — Endc(M)) given by the action of (Uy)o. Then (U,)o/I is a finite
dimensional C algebra and M) is a module over (U,)o/I. Furthermore since
Tr™ (A, u) = 0 for all u € I the trace of an element u € (U)o is the same as
the trace of u 4 I € (U,)o/I on My as a (U,)o/I-module. So if Tr™ = Tr" the
multiplicity of Ly in M, and N) are the same and hence the multiplicity of L
in M is the same as in V. O

Definition 6.2
T =h"/Q.

30



IRREDUCIBLE QUANTUM GROUP MODULES WITH FINITE DIMENSIONAL WEIGHT
SPACES. 1

By Corollary it makes sense to write ¢, ;.M for t € T™ up to isomor-
phism for a Uy(p)-module M.

Definition 6.3 A (quantized) coherent family is a Ug-module M such that for
all p e Ay:

o dim M, ) = dim M, for all v,V € b*.
e For allu € (Uy)o, the map h* > v Tru|nm,, ,, is polynomial.

For a coherent family M and t € T* define

M= @ Mo,

noeA; ,utet

M s called irreducible if there exists a t € T* such that M[t] is a simple
U,-module.

Lemma 6.4 Let M be a coherent family. Let u € Ay. Then the set Q of all
weights v € b* such that the (Ug)o-module M, .y is simple is a Zariski open
subset of h*.

If M is irreducible then Q@ # 0 if M,y # 0 for any v € b* (equivalently for
all v e h*).

Proof. If M, ,) = 0 for all v € h* then Q = ). Assume dim M, ) =d >0
for all v € b*. If M is irreducible there exists t € T* such that M(t] is a
simple U;-module. Then for v € t, M, .y = M[t](,,.) is a simple U;-module by
Theorem So in this case Q # 0.

Now the proof goes exactly like in [Mat00, Lemma 4.7]: The (U,)o-module
M,y is simple if and only if the bilinear map B, : (Uy)o % (Ug)o 3 (u,v) —
Tr(uv|s,, ,,) has maximal rank d*. For any finite dimensional subspace E C
(Uy)o the set Qg of all v such that B, |g has rank d? is open. Therefore Q = UgQp
is open. O

Definition 6.5 Let L be an admissible Uy;-module and let j1 € A;.
Supp(L, p) = {v € h*|dim L(,, .,y > 0}
and
SUppPess (L, i) = {v € Supp(L, p)| dim Ly, .,y is mazimal in {dim L, .|V € h*}}.
Definition 6.6 Let M be an admissible module. Define M** to be the unique

(up to isomorphism) semisimple module with the same composition factors as
M

Let V' be a Uj-module such that V = @,.; Vi for some index set I and some
admissible Ug-modules V;. Then V** = @, ; V.

Proposition 6.7 Let L be an infinite dimensional admissible simple U,-module.

Then there exists a unique (up to isomorphism) semisimple irreducible coherent
family EXT (L) containing L.
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Proof. Let w € W be such that w(FL\F;) C @' and ¥ a set of commuting
roots that is a basis of @ such that =3 C w(Ty) (Exists by Lemma and
Lemma [5.23]) with corresponding Ore subset Fy. Set

EXT(L) = (@ w(¢Fz,t'(wL)FE)> :

teT*

For each t € T* choose a representative vy € t. As a (U,

q(Fs) )O—module

5XT(L) = @ E(sz,l/t'(wL)FE)SS .

teT*

Define Y := {p € A;| Supp(“'L, 1) # 0}. For each pp € Y let A, € Suppees ('L, p1).
By Corollary

L)p, = @ @dJFz,V-((wL)Fz)(HvM)

HEY veQ

as (Uq(ry))o-modules.

So we have the following (U,

EXT(L @ @ @ sz) vt ((Y L)Fz)(uv/\u))ss

REY teT* veQ

N@ @ ’(/}FE’ )Fz)(u)\,l,))ss~

HEY vEh*

(Fy))o-module isomorphisms:

Let u € (Uy)o and p € Y. Then we see from the above and Lemma that

A _
Trulexr),,, =Tr LZJ%‘;,J_)M (T3 1(“))|(“’L)(H,A“)‘

By Lemma this is polynomial in v — A, hence also polynomial in v. We know
that this polynomial is determined in all v such that v — A, € Supp.e (L, it).
SUppegs (L, ) is Zariski dense in h* because A\, — NX C Supp(L, 1) and ¥ is a
basis of Q. So Tr is determined on all of EXT (L) by L. For any (u,v) € X we
have

dim SXT(L)(M/\M_;'_V) = dlm (wFEW.((wL)FE)(M’/\“))SS
= dim((wL)FE)(uv\“)

so EXT(L) is a coherent family.

Assume M is a semibimple irreducible coherent family containing L. Let
uweY. By Lemma 4| the set ; of v € b* such that EXT(L)(,,,) is simple
and the set {23 of v € h* such that M, ,) is simple are non-empty open subsets
of b* (21 # 0 because EXT (L) () = L) for v € Supp. (L, p1)). So their
intersection 27 N Qs is open and non-empty (since any Zariski open set of h*
is Zariski dense in h*). Since Supp.. (L, pt) is Zariski dense we get that there
exists a v € Q1 N Qo N Suppeg (L, ) such that M, .y and EXT(L)(,,.) are
simple. Since L, ,) C M,y and L,y C EXT(L) (4 we get M, ) =
Ly = EXT(L)(u,y- This is true for any (u,v) such that v € Supp.g (L, ).
Let u € (Ug)o and p € Y. Then we see that Trulexr(r),,, = Trulr,,, =
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Tru|am,,,, for any v € Suppe(L, ). Since Suppeg(L, p) is Zariski dense
this implies Tru|g;(7—(L)(Hyu) = Tru|pm,,, for all v € b*. So by Lemma
EXT(L)(u) = M(uw) as (Ug)o-modules for any (u,v) € wt EXT(L).

Then by Theorem we get that M = EXT (L) ® N for some coherent
family N with the property that A, ,) = 0 for any (u,v) € X such that
Supp(L, 1) # 0. Since M is irreducible there exists a t € T* such that the
U,-module M[t] is simple. We have M[t] = EXT(L)[t] ® N[t]. Since M]t] is
simple and EXT (L)[t] # 0 we get that N[t] = 0. Since N is a coherent family
this implies that N'=0. So M = EXT(L).

So we have left to show that EX7T (L) is irreducible. Let Fjg,, ..., Fp, be the
root vectors corresponding to ¥ = {f1,...,3,} and Eg,,..., Eg, the correspond-
ing E-root vectors. Let i € Y. As above we choose a A, € Supp.e("L). The
elements F,éi)E[(ili)’ i=1,...,nact on Yy, ((“L)Fy) () by 25—y PF 5 (V)ui s
for some uf‘J € Uy(Fy) and some polynomials pﬁj :h* - Cso

T O g0
Pp = Hdet F,Bi E i |wF27V‘((wL)F2)(u,>\M)
=1

is a nonzero polynomial in v by (the proof of) Lemma 5.2l Set p = HueY Dp-

Let Q be the set of non-zero points for p. By [Mat00, Lemma 5.2 i)] the
set T(€2) := (,cq(p + €2) is non-empty. So there exists a v € h* such that

p(v+ pt) # 0 for any pu! € Q. For such a v we see that Fgl)Eél) act bijectively
on

@ @ wF):W'((wL)FE)(M,/\“-i-Ml) :wFEW'(wL)FE'

HEY pteQ

Since Flgi) act injectively on ¢p, ,.(YL)p, this implies that Eé? act injec-
tively on ¥py, . ("L)p,. Let L1 C ¢p, ,.(YL)p, be a simple Ug-submodule
of Y¥p, ».(L)p,. By the above we have £% C T},,. So by Proposition we
get Ty, = ®. Define EXT(L1) = (P,er- (1/JFE7t.(L1)FZ))SS. Then as above this
is a coherent family. Let X € wtLy. Then EXTN 4+ Q] = (L1)r, = L1 by
Lemma so EXT(Ly) is an irreducible coherent family.

Let 1 € A; be such that Supp(Lq, 1) # 0. Suppegs(L1, 1) is Zariski dense in
bh* 80 SUpPPegs (L1, ) N Q2 # 0. Let v/ € Q1 N Suppegg (L, ). Then (Ly)(,,) =
(Yrew-("L)Fs) (- Then as above (with M = EXT(L) and L replaced by
L) we get EXT(L) 2 EXT(L1) ® N for some semisimple coherent family N
with N,y = 0 for any (u,v) € X such that Supp(Li, i) # 0. Since EXT (L)
contains L we get that L = M’ @ M" for some U,-modules M’ C EXT(Ly)
and M"” C N. Since L is simple and since there exists a y € A; such that
Supp(L, 1) # 0 and Supp(L1, i) # @ we must have M” =0 and L = M’'. But
then we have proved that the irreducible coherent family EX7(L1) contains L.
Hence EXT(L) 2 EXT (L) by the above and EXT (L) is irreducible. O

Theorem 6.8 Let L be an admissible infinite dimensional simple module. Then
there exists a w € W and a A € X such that PEXT (L) contains an infinite
dimensional simple highest weight module L(\) and YEXT (L) = EXT(L(N)).

Proof. Let w € W be such that w(FL\F;) C @ and w(T,\T§) C &~ and let
¥ be a set of commuting roots that is a basis of @ such that —¥ C w(7) (Exists
by Lemma and Lemma [5.23)). Let Fx be a corresponding Ore subset. Then
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EXT(L) = <@ W(wpz,t.(wL)Fg)

teT*

SO

wEXT(L) = (@ (¢F27t.(wL)FE)> = EXT(VL).

teT*

Set L' = L. We will show by induction on |T}| that there exists a A € X
such that L(\) is infinite dimensional and EXT (L) =2 EXT(L(N)):

If |T;,| = 0 then L’ is itself an infinite dimensional highest weight module.
Assume |T};| > 0. Then T}, N1II # 0 because if this was not the case then
®* C Fy/ since Fy, is closed. But @ C Fy, implies |T}| = 0.

Let a € T/, N1I. Then a € T}, since Tp \T;, C ®~. So —a € Tr/. Then
by Lemma |5.21] there exists a b € C such that ¢, ;. contains a simple
Ug-submodule L" with Ty C T and o € Tr. By Lemma- 15.23| there exists a
set of commuting roots X that is a basis of ) such that « € ¥ and —X C T}.
Then by the above there exists a v = ba such that 1/’F2,V-LIFE contains a simple
Uy-submodule L” with Ty,» C Ty and « ¢ Tp». L” is infinite dimensional since
—X CTpr and EXT (L") =2 EXT(L') by Proposition

By induction there exists a A € X such that L()) is infinite dimensional and
EXT(L") =2 EXT(L(N)). O

The twists we have defined for quantum group modules are analogues of the
twists that can be made of normal Lie algebra modules as described in [Mat00].
In the next proposition we will use these Lie algebra module twists denoted by
1% given a set of commuting roots ¥ and a v € T™ (see Section 4 in [Mat00]). For
Al € b* let Le(A!) denote the simple highest weight Lie algebra g-module with
highest weight Al. Let eg, fs denote root vectors in g such that [egs, f5] = hg.

Proposition 6.9 Let \!' € h* be such that Lc(M\Y) is admissible. Let 3 be a
set of commuting roots that is a basis of Q with fz acting injectively on Lc(A')
Jor each B € ©. Let \° € A;. Define M = (B, crp- fg.Lc(/\l)fz)[l] ® L((X\°,0)).
Then M is an irreducible coherent family containing the simple highest weight

module L((\°,\1)).

Proof. M contains L((A°,A')) by Proposition [5.17,
Set Mc =@, cp- f4Le(M) g So M = (M) @ L((X°,0)). Let p € A
and u € (Uy)o. We need to show that the map v — Tru|aq, ,, is polynomial.

My =P ((M«:)[l])

® L((A°, 0))g-n(4,0)

neA q"(0,v)
=P (Mme) +) & LI(A°,0))g-1(0)
nelA
7 [1]
@( o {(Mc) ) ®L((>‘O’O))q‘”(u,0)'
nelA

34



IRREDUCIBLE QUANTUM GROUP MODULES WITH FINITE DIMENSIONAL WEIGHT
SPACES. 1

The action on (f&.(Mc)o ) ® L()\O) is just the action on ((M«;)o)[l] ® L(A\°)
twisted with the automorphism v’ — f{u'fs” on the first tensor factor where
u' = Fr(u) (Fr is the Frobenius twist defined in [KL02, Theorem 1.1]). The
map v’ — féu' fg” is of the form )", p;(v)u, for some polynomials p; and some

€ (Uc)o where Ug := U(g) is the classical universal enveloping algebra of g.
Composing a polynomial map with the map A = A + 7 is still polynomial. So
the trace is a finite sum of polynomials in A which is still polynomial.

Let u, be the small quantum group as defined in [AM15] i.e. the subalgebra
of U, generated by E,, KI!, F,, a € II. Then L((\°,0)) restricted to u, is a
simple u,-module by [AM15 Section 3.2].

By [Mat00, Lemma 5.3 i)] and [Mat00, Proposition 5.4] there exists a t € T™*
such that Mc[t] is simple. Then M[t] = (Mc[t])" @ L((A\°,0)) is simple: Let
0+ vy ®v; € L((A°,0)) ® (Mc[t]). Then

Uqg(vo ® 1) Uuq(vo®v1)
Ug(L((A°,0)) ® v1)
((AO,O)) ® Uy
=L((\°,0)) ® (Ucv))"
=L((\°,0)) @ (Mc[t)"

since L((A°,0)) is a simple u,-module and since Mc[t] is a simple Ug-module.[]

Corollary 6.10 (@%T* (2L )" ® L(()\O,O))) > EXT (LA, A1))).
Proof. This follows by the uniqueness of EXT(L(A)). O

Corollary 6.11 Let L be an infinite dimensional admissible simple module.
8Ss

Then EXT (L) is of the form ((M)[l] ® L(()\O,O))> for some g coherent family

M (in the sense of [Mat00]).

Proof. By Theorem|[6.8|there exists aw € W and a A € X such that “EXT (L) =
EXT(L())). By Corollary EXT(L(N) = (M ® L((A°,0)))" for some g
coherent family M. By [Mat00, Proposition 6.2] and the fact that L((\°,0))
is finite dimensional we see that * (M ® L((A\°,0)))"" = (M ® L((\°,0)))" for
all we W. ]

So in the root of unity case the classification of torsion free modules reduces
to the classification of classical torsion free modules. By Proposition [6.7] a
torsion free module is a submodule of a semisimple irreducible coherent family
so the problem reduces to classifying semisimple irreducible coherent families.
By Corollary the classification of these coherent families reduces to the
classification in the classical case.
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[rreducible quantum group modules with finite
dimensional weight spaces. II

Dennis Hasselstrgm Pedersen

Abstract

We classify the simple quantum group modules with finite dimensional
weight spaces when the quantum parameter g is transcendental and the
Lie algebra is not of type G2. This is part 2 of the story. The first part
being [Ped15al. In [PedI5al the classification is reduced to the classification
of torsion free simple modules. In this paper we follow the procedures
of [Mat00] to reduce the classification to the classification of infinite
dimensional admissible simple highest weight modules. We then classify
the infinite dimensional admissible simple highest weight modules and
show among other things that they only exist for types A and C. Finally
we complete the classification of simple torsion free modules for types A
and C completing the classification of the simple torsion free modules.
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1 Introduction

This is part 2 of the classification of simple quantum group modules with finite
dimensional weight spaces. In this paper we focus on the non root of unity case.
Let g be a simple Lie algebra. Let ¢ € C be a non root of unity and let U,
be the quantized enveloping algebra over C with ¢ as the quantum parameter
(defined below). We want to classify all simple weight modules for U, with finite
dimensional weight spaces. In the papers [Fer90] and [Mat00] this is done for
g-modules. Fernando proves in [Fer90] that the classification of simple g weight
modules with finite dimensional weight spaces essentially boils down to classifying
two classes of simple modules: Finite dimensional simple modules over a reductive
Lie algebra and so called ’torsion free’ simple modules over a simple Lie algebra.
The classification of finite dimensional modules is well known in the classical
case (as well as the quantum group case) so the remaining problem is to classify
the torsion free simple modules. O. Mathieu classifies all torsion free g-modules
in [Mat00]. The classification uses the concept of a g coherent family which
are huge g modules with weight vectors for every possible weight, see [Mat00l
Section 4]. Mathieu shows that every torsion free simple module is a submodule
of a unique irreducible semisimple coherent family [Mat00, Proposition 4.8] and
each of these irreducible semisimple coherent families contains an admissible
simple highest weight module as well [Mat00, Proposition 6.2 ii)]. This reduces
the classification to the classification of admissible simple highest weight modules.
In this paper we will follow closely the methods described in [Mat00]. We will
focus only on the case when ¢ is not a root of unity. The root of unity case
is studied in [PedI5al. Some of the results of [Mat00] translate directly to the
quantum group case but in several cases there are obstructions that need to be
handled differently. In particular the case by case classification in types A and
C is done differently. This is because our analog of EXT (L) given an admissible
simple infinite dimensional module L is slightly different from the classical case
see e.g. Section [7] The proof when reducing to types A and C in [Fer90]
and [Mat00] uses some algebraic geometry to show that torsion free modules
can only exist in types A and C. In this paper we show that infinite dimensional
admissible simple highest weight modules only exist in types A and C and use
this fact to show that torsion free modules can not exist for modules other than
types A and C. For this we have to restrict to transcendental ¢q. Specifically
we use Theorem [8:1] If this theorem is true for a general non-root-of-unity ¢
we can remove this restriction. The author is not aware of such a result in the
litterature.

1.1 Main results

To classify simple weight modules with finite dimensional modules we follow the
procedures of S. Fernando and O. Mathieu in [Fer90] and [Mat00]. The analog
of the reduction done in [Fer9(] is taken care of in the quantum group case
in [Pedibal so what remains is to classify the torsion free modules. We will first
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recall some results from [Ped15a] and [Ped15D] concerning the reduction and some
formulas for commutating root vectors. This is recalled in Section [2]and Section 3}
In Section [ we do some prelimary calculations concerning Ore localization and
certain "twists’ of modules necessary to define the ’Coherent families’ of Section 5}
Here we don’t define the concept of a general coherent family but instead directly
define the analog of coherent irreducible semisimple extensions EXT (L) of an
admissible simple infinite dimensional module L. In analog with the classical
case we show that for any admissible simple infinite dimensional module L,
EXT (L) contains a submodule isomorphic to a simple highest weight module,
see Theorem [5.12] We also prove a result in the other direction: If g is such that
there exists a simple infinite dimensional admissible module L then there exists
a torsion free U,(g)-module, see Theorem So the existence of torsion free
modules over the quantized enveloping algebra of a specific g is equivalent to
the existence of an admissible infinite dimensional highest weight simple module
over Uy(g). Using this we show that torsion free modules exist only for types
A and C in the Sections [8] [8:2] B3] B.4] and [B.5] where we also classify the
admissible simple highest weight modules which are infinite dimensional. Finally
in Section [9] and Section [I0] we complete the classification in types A and C,
respectively, by showing exactly which submodules of EXT(L())) are torsion
free for a A of a specific form see Theorem [9.8 and Theorem

1.2 Acknowledgements

I would like to thank my advisor Henning H. Andersen for great supervision and
many helpful comments and discussions and Jacob Greenstein for introducing
me to this problem when I was visiting him at UC Riverside in the fall of 2013.
The authors research was supported by the center of excellence grant ’Center
for Quantum Geometry of Moduli Spaces’ from the Danish National Research
Foundation (DNRF95).

1.3 Notation

We will fix some notation: We denote by g a fixed simple Lie algebra over
the complex numbers C. We assume g is not of type G2 to avoid unpleasant
computations.

Fix a triangular decomposition of g: g =g~ © h® g*: Let h be a maximal
toral subalgebra and let ® C h* be the roots of g relative to h. Choose a simple
system of roots 1T = {a,...,a,} C ®. Let ® (resp. ®~) be the positive (resp.
negative) roots. Let g* be the positive and negative part of g corresponding
to the simple system II. Let W be the Weyl group generated by the simple
reflections s; := s,,. For a w € W let {(w) be the length of W i.e. the smallest
amount of simple reflections such that w = s;, ---s;, . Let (-|-) be a standard

W-invariant bilinear form on h* and (a, 3Y) = 2((5]!5)) Since (-|-) is standard we

have (a]a) = 2 for any short root a € ® and since g is not of type G2 we have
(8]8) = 4 for any long root 8 € ®. Let Q = spany {aq,...,a,} denote the root
lattice and A = spany {ws,...,wy} C b* the integral lattice where w; € h* is the
fundamental weights defined by (w;|a;) = d;;.

Let U, = U,(g) be the corresponding quantized enveloping algebra defined
over Q(v), see e.g. [Jan96] with generators E,, F,, KI', o € II and certain

a )
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relations which can be found in chapter 4 of [Jan96]. We define v, = v(®l®)/2
(i.e. vo = v if v is a short root and v, = v? if a is a long root) and for n € Z,

[n], = ”::U“:ln. Let [n]q := [n]o, = % We omit the subscripts when it

is clear from the context. For later use we also define the quantum binomial
coefficients: For r € N and a € Z:

al _la]la—1]---[a—7r+1]
rl, [r]!

where [r]! := [r][r — 1]---[2][1]. Let A = Z[v,v~!] and let U4 be Lusztigs
A-form, i.e. the A subalgebra generated by the divided powers Eén) = [n]la!EZ,
F{" = L F" and K£!, o 11

[n]al

Let ¢ € C* = C\{0} be a nonzero complex number that is not a root of unity
and set Uy = Uy ®4 C4 where C, is the A-algebra C where v is sent to q.
We have a triangular decomposition of Lusztigs A-form Uy = U, @ U @ U}

with Uy = <F,§")|oz €Tlne N> €Uy, Ul = <Eg">|a cTlne N> € U, and
Uy = <K§1, [Keil|a € M, c € Z,r € N> where

T

— (e}
vl —vg?

. r —j+1 1, —ctj—1
[ch] HKavg It Koyt

T .
j=1

We have the corresponding triangular decomposition of Uy: Uy = Uy @ U @ U
with U = U3 ®4 Cq and U2 = U @4 Cq.

For a ¢ € C* define [‘ﬂq as the image of [‘;]U in C,. We will omit the
subscript from the notation when it is clear from the context. ¢z € C and
[n]g € C are defined as the image of vg € A and [n]g € A, respectively abusing
notation. Similarly, we will abuse notation and write [Kj;c] also for the image
of [X2] € Us in U,. Define for p € Q, K, =[], K& if p = 31 a;o; with
a; € 7.

There is a braid group action on U, which we will describe now. We use the
definition from [Jan96l Chapter 8]. The definition is slightly different from the
original in [Lus90, Theorem 3.1] (see [Jan96l, Warning 8.14]). For each simple
reflection s; there is a braid operator that we will denote by T, satisfying the
following: T, : U, — U, is a Q(v) automorphism. For i # j € {1,...,n}

T, (Ku) :Ksz'(u)
TSi (EOti) = Faz‘KOti
Tsi(FOM,) - Kr;,;lEth‘,
7<aj)a;/> . . . .
T, (Eaj> = Z (_1)17);;E££_7’)Eaj E((:i)
i=0
—(aj,0i)
TS7‘, (Fag) = Z (71)ZU21E((;1)E0¢9 E((erliz)
i=0
The inverse T ! is given by conjugating with the Q-algebra anti-automorphism
VU from [Lus90, section 1.1] defined as follows:

“IJ(EOé') :Eaiﬂ \Il(Faz) :Faia \IJ(Ka ) :K;i17 \Ij(q) =4q.

i i
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The braid operators T, satisfy braid relations so we can define T, for any w € W:
Choose a reduced expression of w: w = s;, -+ s;,. Then T, =T, ---Ts, and
T, is independent of the chosen reduced expresswn see e.g. [Lus90) Theorem 3. 2].
We have T, (K,,) = Ky u)- The braid group operators restrict to automorphisms
Uas — Ua and extend to automorphisms Uy, — U,

Let M be a Uj;-module and X : Ug — C a character (i.e. an algebra
homomorphism into C). Then

My = {m € M|Vu € U] ,um = Mu)m}.

Let X denote the set of characters U — C. Since (? ~ CIXTEL,. .., X2 we
can identify X with (C*)™ by UY 3 A »—> ANEKay), -3 A(Ka,)) € ((C*)”

1.4 Basic definitions
Definition 1.1 Let wt M denote all the weights of M, i.e. wtM = {\ €
X|My # 0}.

For yu € A and b € C* define the character b* by b*(Ky) = b o € TI. In

particular for b= q we get ¢"(Ky) = ¢ . We say that M only has integral
weights if N(K,) € &q% for all A € wt M, « € 1.

There is an action of W on X. For A € X define wA by

(wA)(u) = A(Tp-1(u))
Note that wgt = ¢g@#).

Definition 1.2 Let M be a U;-module and w € W. Define the twisted module
WM by the following:
As a vector space Y M = M but the action is given by twisting with w™"': For
m €M and u € Uy:
w-m = Ty-1(u)m.

We also define "M to be the inverse twist, i.e. for m € "M, u € Ug:
u-m="T__ L (w)ym.
Hence for any Uy-module (Y M) = M =" ("M).

Note that wt“M = w(wt M) and that “(* M) = “*' M for w,w' € W with
l(ww') = l(w) + [(w') because the braid operators T, satisfy braid relations.
Also @(W' M) = w'w

Definition 1.3 We define the category F = F(g) as the full subcategory of
Uy — Mod such that for every M € F we have

1. M is finitely generated as a Ugz-module.

2. M =@, x Mx and dim M) < occ.

Note that the assignment M +— “M is an endofunctor on F (in fact an
auto-equivalence).

Let wg be the longest element in W and let s;, - - - s;,, be a reduced expression
of wy. We define root vectors Eg and Fj for any 8 € ®* by the following:
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First of all set
Bj = si, - si;_, (aq,), fori=1,...,N
Then &+ = {B1,...,8n}. Set

Eﬂj = Tsil e Tsij_l (EO!ZJ)
and

FB TS711 "'Tsij,l(Faij)

In this way we have defined root vectors for each 3 € ®*. These root vectors
depend on the reduced expression chosen for wy above. For a different reduced
expression we might get different root vectors. It is a fact that if 5 € II then
the root vectors g and Fg defined above are the same as the generators with
the same notation (cf. e.g. [Jan96l Proposition 8.20]) so the notation is not
ambigious in this case. By “Let Eg be a root vector” we will just mean a root
vector constructed as above for some reduced expression of wy.

=

2 Reductions

We recall the following results from [Ped15al.

Proposition 2.1 Let 8 be a positive root and Eg, Fig oot vectors corresponding
to 8. Let M € F. The sets MPl = {m € M|dim (Eg)m < oo} and MI=F =
{m € M|dim (Fg)m < oo} are submodules of M and independent of the chosen
root vectors Eg, Fg.

Proof. This is shown for Eg in Proposition 2.3 and Lemma 2.4 in [Ped15a] and
the proofs are the same for Fjg. O

Definition 2.2 Let M € F. Let 3 € ®. M is called 3-free if MP! = 0 and
B-finite if M1P = M.

Suppose L € F is a simple module and 3 a root. Then by Proposition L
is either B-finite or S-free.

Definition 2.3 Let M € F. Define Fyr = {8 € ®|M is B-finite} and Ty =
{8 € ®|M is B-free}. For later use we also define Fy; := Fay N (—Fy) and
Trr =Ty N (=Thr) to be the symmetrical parts of Fpr and Thy.

Note that ® = F, UT}, for a simple module L and this is a disjoint union.
Definition 2.4 A module M is called torsion free if Ty = .

Proposition 2.5 Let L € F be a simple module and B a root. L is B-free if
and only if ¢"P wt L C wt L.

Proof. Proposition 2.9 in [Ped15al. O

Proposition 2.6 Let L € F be a simple module. Tr, and Fr, are closed subsets
of Q. That is, if B,y € Fy, (resp. 8,7y € Tr,) and B+~ € ® then f+v € Fy,
(resp. B+~ €TL).
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Proof. Proposition 2.10 and Proposition 2.11 in [Ped15al. O

Theorem 2.7 Let A € X. There is a 1 — 1 correspondence between simple
U,-modules with weight A and simple (Uy)o-modules with weight X given by: For
V' a Uy-module, Vy is the corresponding simple (Uy,)o-module.

Proof. Theorem 2.21 in [Ped15a]. O

Theorem 2.8 Let L € F be a simple Uy(g)-module. Then there exists aw € W,
subalgebras Uq(p), Uq (1), Ug(w), Ug(u™) of Uy with Ug = Uq(u™)Uq(p), Ug(p) =
Us(NUq(u) and a simple Uy(l)-module N such that L is the unique simple
quotient of Uy ®u, () N where N is considered a Uy(p)-module with Uy(u) acting
trivially.

Furthermore there exists subalgebras Uy, Uypin of Uy(l) such that Uy(l) =
Usr @ Upin, and simple Uy, and Uy, modules Xy and Xy, where X gy 15
finite dimensional and Xy, is torsion free such that N = Xy @ Xgyr as a
Ugr @ Ugin-module.

Uy, is the quantized enveloping algebra of a semisimple Lie algebra t =
P Dt where ty, ..., t. are some simple Lie algebras. There exists simple
torsion free Uy(t;)-modules X;, i = 1,...,r such that Xy, = X1 ®---® X, as
Uy(t1) ® -+ - ®@ Uy (t,)-modules.

Proof. Theorem 2.23 in [Ped15al. O

So the problem of classifying simple modules in F is reduced to the problem
of classifying finite dimensional simple modules and classifying simple torsion
free modules of U,(t) where t is a simple Lie algebra.

3 Uy calculations

In this section we recall from [Ped15b| some formulas for commuting root vectors
with each other that will be used later on. Recall that A = Z[v,v™!] where v
is an indeterminate and Uy is the A-subspace of U, generated by the divided
powers E&n) and F(i"), n € N.

Definition 3.1 Let x € (Uy), and y € (Uy), then we define

[z, y]q =2y — ¢ “yz

Theorem 3.2 Suppose we have a reduced expression of wy = Si, - -+ Si, and
define root vectors Fg,, ..., Fg\. Leti < j. Let A=7Z[q,q" '] and let A’ be the
localization of A in [2] if the Lie algebra contains any By, Cy, or Fy part. Then

[Fﬁ_mFﬁi}q = FﬁjFﬁi - qi(ﬂiw]‘)FﬁiFﬁj € span 4/ {FZJ:I "'FaHl}

1 Bi+1

Proof. [LS91l Proposition 5.5.2]. A proof following [DP93, Theorem 9.3| can

also be found in [Ped15bl Theorem 2.9]. O
Definition 3.3 Letu € Us and B € ®*. Define ad(Fp)(u) := [[... [u, Fgly - . .]g, Fplq
and ;L(vi(Fé)(u) = [Fa,[...,[Fs,ulq...]]q where the commutator is taken i times

from the left and right respectively.
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Proposition 3.4 Let a € N, uw € (Ua), and r = (u, BY). In Us we have the
identities
a - i—a)(r+i) | @ a—1 i
uFg =30 ><+>[i]ﬁpﬁ ad(F})(u)
i=0

- i, a(r+i)—i|Q a—i_ 3/ i
=3 (~1)igr L_LFB ad(F})(u)
=0

Proof. Proposition 2.13 in [Ped15b]. O

Let s;, ...s;y be areduced expression of wy and construct root vectors Fg,,
i=1,...,N. In the next lemma Fjg, refers to the root vectors constructed as
such. In particular we have an ordering of the root vectors.

Lemma 3.5 Let n € N. Lﬂe/t1§j<k:§N.
ad(Féj)(Fé‘k) =0 and ad(Fék)(ng) =0 fori>0.

Proof. Lemma 2.16 in [Ped15b]. O

4 Ore localization and twists of localized modules

In this section we present some results towards classifying simple torsion free
modules following [Mat00].

We need the equivalent of Lemma 3.3 in [Mat00]. The proofs are essentially
the same but for completeness we include most of the proofs here.

Definition 4.1 A cone C is a finitely generated submonoid of the root lattice
Q containing 0. If L is a simple module define the cone of L, C(L), to be the
submonoid of Q generated by T7,.

Lemma 4.2 Let L € F be an infinite dimensional simple module. Then the
group generated by the submonoid C(L) is Q.

Compare [Mat00] Lemma 3.1

Proof. First consider the case where T, N (—Fr) = 0. Then in this case we
have ® =T} U F}. We claim that 7} and F7} correspond to different connected
components of the Dynkin diagram: Suppose o € F} is a simple root and
suppose o € II is a simple root that is connected to « in the Dynkin diagram.
So a+a' is a root. There are two possibilities. Either a+a’ € Fy, or a+a’ € Ty,.
If o + o' € Fr: Since F} is symmetric we have —a € F} and since F7, is closed
(Proposition 2.6) o/ = a+ o' + (—a) € Fr. If a+a’ € Ty, and o € Ty, then
we get similarly o € T, which is a contradiction. So o/ € F;. We have shown
that if o € F, then any simple root connected to « is in Fy, also. So Fp, and
T, contains different connected components of the Dynkin diagram. Since L is
simple and infinite we must have ® = T} and therefore C(L) = Q.

Next assume 77, N (—Fp) # 0. By Lemma 4.16 in [Fer90] P, = T} U FY,
and P, = Ty U F} are two opposite parabolic subsystems of ®. So we have
that T, N (—=F) and (—7p) N Fr, must be the roots corresponding to the
nilradicals v* of two opposite parabolic subalgebras p* of g. Since we have
g=10v"+0" +[o", 0] we get that T, N (—FL) generates Q. Since C(L) contains
Tr, N (—Fp) it generates Q. O
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We define p and ¢ like in [Mat00, Section 3|:
Definition 4.3 Let © > 0 be a real number. Define p(x) = Card B(x) where

B(z) = {n € QI (ulp) < =}
Let M be a weight module with support lying in a single Q-coset, say ¢\ =
{g" N € Q}. The density of M is 6(M) = liminf, o p(z)~* 2 pe () dim Mou
For a cone C we define §(C) = liminf,_,,,p(x)~* Card(C N B(z))

Lemma 4.4 There exists a real number € > 0 such that §(L) > € for all infinite
dimensional simple modules L.

Proof. Note that since ¢“(®)\ C wt L for all A\ € wt L we have 6(L) > §(C(L)).

Since C(L) is the cone generated by T, and Tp, C ® (a finite set) there can
only be finitely many different cones.

Since there are only finitely many different cones attached to infinite simple
dimensional modules and since any cone C' that generates @ has §(C) > 0 we
conclude via Lemma that there exists an € > 0 such that §(L) > ¢ for all
infinite dimensional simple modules. O

Definition 4.5 A module M € F is called admissible if its weights are contained
in a single coset of X/q2 and if the dimensions of the weight spaces are uniformly
bounded. M 1is called admissible of degree d if d is the maximal dimension of the
weight spaces in M.

Of course all finite dimensional simple modules are admissible but the inter-
esting admissible modules are the infinite dimensional simple ones. In particular
simple torsion free modules are admissible. We show later that each infinite
dimensional admissible simple module L gives rise to a ’coherent family’ EXT (L)
containing at least one torsion free module and at least one simple highest weight
module that is admissible of the same degree.

Lemma 4.6 Let M € F be an admissible module. Then M has finite Jordan-
Hélder length.

Proof. The length of M is bounded by A + d(M)/e where A =), . dim M)
and Y = {v € X|v = o¢",|{p, V)| < 1,0(K,) € {£1} for all a € II}.
Check [Mat00, Lemma 3.3] for details. Here we use the fact that finite di-
mensional simple quantum group modules have the same character as their
corresponding Lie algebra simple modules. This is proved for transcenden-
tal ¢ in [Jan96l, Theorem 5.15] and for general non-roots-of-unity in [APW9Il
Corollary 7.7]. O

Lemma 4.7 Let 8 be a positive root and let Fg be a corresponding root vector.
The set {Fg|n € N} is an Ore subset of Uy.

Proof. A proof can be found in [And03| for § a simple root. If 3 is not
simple then Fjp is defined as T, (F,) for some w € W and some « € II. Since
S := {F?|n € N} is an Ore subset of U, we get for any n € N and u € U, that

FRU;NuS # 0.
Let u’ € U, and set v =T, ' (), then from the above
0 # Tw(F2)Tw(Uq) N Ty (u)Tw(S) = FFU; Nu'Ty(S).
Since T, (S) = {F§|n € N} we have proved the lemma. O
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We denote the Ore localization of U, in the above set by Uy(r,)-

Lemma 4.8 Let p be Laurent polynomial. If

p(g™,....q™) =0
forallry,...,r, € N then p=0.

Proof. If n = 1 we have a Laurent polynomial of one variable with infinitely
many zero-points so p = 0. Let n > 1, then for constant r; € N, p( mo— e, —)
is a Laurent polynomial in n — 1 variables equal to zero in (¢"2,...,q¢"™) for all
ra,...,rn € N so by induction p(¢™,ca,...,c,) = 0 for all o, ..., c,. Now for
arbitrary co,...,c, € C* we get p(—,ca,...,¢,) is a Laurent polynomial in one
variable that is zero for all ¢"*, r1 € N hence p(cy,...,¢,) =0 for all ¢; € C*.OJ

The next lemma is crucial for the rest of the results in this paper. We will
use this result again and again.

Lemma 4.9 Let 3 € ®T and let F be a corresponding root vector. There exists
automorphisms ¢, b Ugry) — Uqy(ry) for each b € C* such that pp, 4i(u) =
Fl;luFé for i € Z and such that for u € Uy, the map C* — Uy(py), b
©Fsb(u) is of the form b p(b) for some Laurent polynomial p € Uypyy (X, X1
Furthermore for b,/ € C*, PFsb O PFg b = PFg b -

Proof. We can assume [ is simple since if Fg = T,,(F,) for some o € II then
we can just define the homomorphism on T, ( Oé), w(KEYH, T, (F,) for a € T
i.e. in this case we define ¢r, ,(u) = Tw(parb(Ty (u))) where we extend T, to
a homomorphism Ty, : Uyr. ) = Uq(ry) by Tw(F,, ) = Fy 1

So S is assumed simple. For b € C* define bg = b(mﬁ)/2 ie. bg =0bif B is
short and bs = b*> when f3 is long. We will define the map on the generators
E,, Ky, F, for a € II. If & = 8 the map is defined as follows:

@Fﬁ,b(Fﬁil) :Fétl

e K3) 1K

(bs — b5 ')(asbs ' Ks — a5 bsK5")
(45 —q5")? '

o1, 0(Ep) =Ep + Fy'

Assume a # . Let r = (o, 8Y). Note that ad(FETH)(Fa) = 0 because this
is one of the defining relations of U,. We define the map as follows:

SDF[f,b(Ka) :bﬁTKoz =bH- (a‘B)Ka
QDFﬁvb(Ea) :Ea-

—b lqt 1 B
S Fytad(F})(Fa)
q,é’

. ; b polgt—t .
Note that if b = ¢/ for some j € Z then [[;_, % = m,@ Since the
B 4p

map b — @p, p(u) is of the form b — 37 pi(b)u; with p; Laurent polynomial
in b for each generator of Uy it is of this form for all u € U,. It’s easy to check

10
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that op, p(u) = FﬁﬂuFé when b = ¢', i € N. So ¢p, , satisfies the generating
relations of U, for b = ¢*, i € N. By Lemma ¢ F,,p must satisfy the generating
relations for all b € C.

Consider the last claim of the lemma: Let u € U, then by the above
b+ ¢r,u(u) is a Laurent polynomial and so b — @ r, sy (1) and @ r, 5(0r, e (©))
for a constant b’ € C* is a Laurent polynomial as well. Now we know from above
that for b’ = ¢’ for some j € Z and i € Z:

(ng,qi O PFg,b (U‘) :FﬁilFﬁiJU’FéFé
_pp—i—J i+j
—Fﬁ uFﬂ
=0 Fy,qiqi (1)

S0 0r, b(PFy,e (1) = Pr,pei(u) for all b € C* since both sides are Laurent
polynomials in b and they are equal in infinitely many points. In the same way
we get the result for all ¥’ € C. O

Note that if g is long then the above automorphism is a Laurent polynomial
in b2. So if b? = b3 for by, by € C* then ©Fs.b1 = PFs.by- We could have defined
another automorphism go’FB’b = PR b2/ (818) and proved the lemma above with

the modification that gag,ﬁ g (u) = Fﬁ_’uFé The author has chosen the first
05

option to avoid having to write the § in g all the time in results like Lemmam
and Corollary On the other hand this choice means that we have to take
some squareroots sometimes when doing concrete calculations involving long
roots see e.g the proof of Lemma [5.11] The choice of squareroot doesn’t matter
by the above.

We can use the formulas in Section [3| to find the value of ¢, (Fs/) and
©r,5(Ep ) for general root vectors F, Fg and Eg/, 3,5 € ®*.

Proposition 4.10 Let s;, ...s;, be a reduced expression of wy and define
root vectors Fg,...,Fgy and Eg,, ..., Eg, using this expression (i.e. Fp, =
T -T8¢j,1(Faij) and Eg, = Ts, ~-~Ts1-j,1 (Eaj)) Let1 < j< k<N and

Siq t°

setr = <5k,ﬁjv>.

i qé—tbﬁ _ qg 1bgl
i), ) J » )
pry B3 =Y = T 2 P a5,
i>0 t=1 s, qﬁj
i —t t—17—1
a5, b, — g g i~
@ng,b(F,ng) :Z( 1) qﬁzbnT—HH B k ékt B ngzad(Fék)(ng)
i>0 t=1 qﬁk 4,

ilt t—17—1

bg, —qg. b .
B; “B —
or, 0(Bs) = b5 T 2
i>0 =1 qﬁj dp,

7 ql_tb[j _q 1b—
B k Bk B ~
@FBM EﬂJ szk H k - j k F z
>0 t=1 9B qﬁk

for some w;,u; € U, (independent of b) such that u; = u; = 0 fori > 0. In
particular for any j, k € {1,...,N}:

@Fﬁj,71(F5k) = (_1)(ﬁj\ﬁk)FBk
¢F5j7—1(EBk) == EBk

11



IRREDUCIBLE QUANTUM GROUP MODULES WITH FINITE DIMENSIONAL WEIGHT
SPACES. II

Note that the sums are finite because of Lemma

Proof. By Proposition [3.4 we have for any a € N
a

n pa __ (i—a)(nr+i) |@ a—1 I n
Fj B, =Y a5, H Fa, " ad(Fg,)(F5,)

J

i=0 Bj
ay s —dy g .
i(nr+i) —a(nr+i ,6 /8_[ ﬁ ﬂ a—1 7 mn
_Z ( ) a( )H j — J j F d(Fﬁj)(F/J’k)'
t=1 qﬁg qB]
Here we use the fact that [‘ﬂﬁ =0 for ¢ > a. So

_ a, g, —ag, g .
ngang FEJ — Z q;(’n’r‘+’£) a ’n’l"Jr’L) H ﬁ7 B] — 57 57 F 7 d(FéJ)(FEk)
>0 t=1 ah, — 45,

Now using the fact that ¢p, qo(Fg,) = Fg “Fg Fg . the fact that PF, b(Fg) is
Laurent polynomial and Lemma [£.8] we get the first identity. The second identity
is shown similarly by using the second identity in Proposition

To prove the last two identities we need to calculate F 3 ‘Ey F 3, (resp.
F,BTk‘IEgJng) for any a € N. Let w = s;, ---s;,_, and w’ = s;,,, ---54_,. Then
Es, = Tw(Eaij) and Fp, = TwTs, Tw (Fa, )-

Eﬁngk =Ty (Eaij TSi,j Tw/(ngk ))
~T,T,, (-K;_l Fo, T/ (F® )) .
J ij J i
Expand Si; Siy from the right to a reduced expression Si; SinSmy  Smy_,

of wg. Do the same with Si; i1 SinSmytSm,_, t0 get a reduced expres-
SION 8., "+ " SiySmy " Smy- We claim that if we use the reduced expression

/ / !
Sijy1 " SinSmy ** Sm, to construct roots 3 ..., By and root vectors F/ﬂ; then
A _ - .
Fo o =Ts T T, - Ts,, (Famj) = Fy,, . This is easy to see since

By is positive but s;, By = wo(aum,) < 0. We have Ty, (Fg k) g . Since
k — j < N we can use what we just calculated above: (set d =k — j)

1-t _a t—1 —a

4z 4gr —dg dg
F[;/ aF,gNF : Z ql(TJrl) —a(r+1i) H B4 B — ﬂdt ﬂd F/ i d(F )(F[;;V)
i>0 =1 qu g,
SO
i q _ qt qua

_ . 7, r+z) _ ,3 /Bd B B4 Y 19 /

Fj B, F§, =Kg,TuT,,, ay g H a pra—— e Ftad(F ) (Fy )
i>0 t=1 B B

This shows the third identity. The fourth is shown similarly.
Setting b = —1 in the above formulas we get the last claim of the proposition.[]

Definition 4.11 Let M be a Uyr,)-module. We define a new module pp, p.M
(with elements @, p.m, m € M) where the module structure is given by compos-
ing with the above automorphism pp,p. — i.e. UPE, p.Mm = gopﬁ’b.gopﬁyb(u)m for
all uw € Uypyy, m € M.

12
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Note that wt pr, .M = b8 wt M where b=# is the character such that b=%(K,) =
b= (B for o € T1.

The homomorphisms from Lemma [£.9] preserve degree so we can restrict to
(Uq(Fs))o which we will do in the next lemma. The twist of a (Uy(r,))o-module
is defined in the same way as the definition above. It is an important fact of
these twists that they do not neccesarily preserve simplicity of U,-modules: If L
is a Uy(r,)-module that is simple as a Uj;-module then ¢, ;.L can be nonsimple

as a U;-module for some b € C*, see e.g. Lemma [£.23]

Lemma 4.12 Let M be a Uyr,)-module. Let i € Z. Then
SOFB,qi'M = M

as Uq(ry)-modules. Furthermore for A\ € wt M we have an isomorphism of
(Uq(Fs))o-modules:
QDFﬁ,qi‘M)\ = Mq—iﬂ)\.

Proof. The isomorphism in both cases is given by pp, 4i.m — Fém, OFgq-M —
M. The inverse is given by multiplying by FB_l By Lemma H: For u €
Ugrsys m € M; pp, gi(u) = F[;ZuFé SO UPp, gi-M = goFB,qi.FgZuFém —
FyFg 'uFym = uFjm. Thus the given map is a homomorphism. O

Definition 4.13 Let ¥ C ®*. Then ¥ is called a set of commuting roots if
there exists an ordering of the roots in X; ¥ = {f,...,Bs} such that for some
reduced expression of wy and corresponding construction of the root vectors Fg
we have: [Fg;, Fplq =0 for 1 <i<j<s.

For any subset I C 11, let Q1 be the subgroup of Q generated by I, ®; the
root system generated by I , ®F = &t N ®; and o = fCIJ;r,

The following three lemmas have exactly the same proofs as their counterparts
([Pedib5al, Lemma 5.6], [Pedlba, Lemma 5.22] and [Pedl5al, Lemma 5.23]) in
the root of unity case in [Pedl5a]. We include the proofs here as well for
completeness.

We have the following equivalent of Lemma 4.1 in [Mat00]:

Lemma 4.14 1. Let I C1II and let o € I. There exists a set of commuting
roots ¥ C ®F with o € X' such that ¥’ is a basis of Q.

2. Let J,F be subsets of Il with F # II. Let X' C ®5\®% . be a set of
commuting roots which is a basis of Qj. There exists a set of commuting
roots . which is a basis of Q) such that X' C X C CI)JF\(I);

Proof. The first part of the proof is just combinatorics of the root system so
it is identical to the first part of the proof of Lemma 4.1 in [Mat00]: Let us
first prove assertion 2.: If J is empty we can choose a € II\F' and replace J
and ¥’ by {a}. So assume from now on that J # (. Set J' = J\F, p = |J'|,
q =|J|. Let Ji,...,Ji be the connected components of J and set J/ = J' N J;,

s =FNJ,and X, =3N &y, for any 1 <4 < k. Since ¥’ C ¥ is a basis
of @y, each ¥} is a basis of Q);,. Since X} lies in @I\@E, the set J! = J;\F;
is not empty. Hence J' meets every connected component of J. Therefore we
can write J = {a1,...,aq} in such a way that J' = {a4,...,a,} and, for any s

13
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with p+ 1 < s < ¢, ay is connected to «; for some i < s. Since II is connected
we can write II\NJ = {ag41,...,a,} in such a way that for any s > ¢+ 1, a, is
connected to «; for some ¢ with 1 < i < s. So Il = {aq,...,a,} such that for
s > p we have that a; is connected to some a; with 1 <17 < s.

Let ¥/ = {f1,...,84}. We will define f441,..., 5 inductively such that for

each s > ¢, {B1,..., s} is a commuting set of roots which is a basis of ®(, . a,}-
So assume we have defined 1, ..., 8. Let ws be the longest word in Sq,, .- -, Sa.
and let wgy1 be the longest word in s4,, ..., 8q,,,. Choose a reduced expression

of ws such that the corresponding root vectors { F, };_; satisfies [F,, Fjs,], =0
for ¢ < j. Choose a reduced expression of wsy; = wew’ starting with the
above reduced expression of w,. Let N; be the length of ws and Ngi1 be the

length of wsy1. So we get an ordering of the roots generated by {aq, ..., asp1}:

(I){+a1,...,as+1} = {’YIa <3 YNgy YNg+15 - -+ a’yN5+1} with q)?al,...7a5} = {717 s anyb}

Consider vy, 11 = ws(asq1). Since ws only consists of the simple reflections
corresponding to aji, ..., as we must have that yn, 41 = asy1 + Ele m;o; for
some coefficients m; € N. So {f1,..., Bs,Yn, 11} is a basis of ®¢, . 4., ,3. From
Theorem [3.2] we get for 1 <i <s

[F’YNS-H’FBi]q € Spantc {F’;IIJ\E e F'$22|ai € N}}
But since {v1,...,7n,} = @?‘m’m’as} and since Yy, 41 = Qop1 + Y5y M We
get [F“/NS+17Fﬁi]q =0.

All that is left is to show that yn,11 & ®r. By the above we must have that
as+1 18 connected to some a; € J'. We will show that the coefficient of «; in
YN, +1 is nonzero. Otherwise (yn,41|a;) < 0 and so Yy, 41+ € Prayai1d
and by Theorem 1 in [Pap94], vn,+1 + a; = ; for some 1 < j < s. This is
impossible since yn, 11 + a@; & Pro, . a,}- S0 we can set 3,11 = vy, 41 and the
induction step is finished.

To prove assertion 1. it can be assumed that I = II. Thus assertion 1. follows
from assertion 2. with J = {a} and F = (. O

Lemma 4.15 Let L € F be a simple module. Then there exists a w € W such
that w(FL\F§) C @1 and w(T\T5) C ™.

Proof. Since L is simple we have ® = F;, UTy,. By Proposition @ Fr, and T7,
are closed subsets. Then Lemma 4.16 in [Fer90] tells us that there exists a basis
B of the root system ® such that the antisymmetrical part of F}, is contained in
the positive roots QJE corresponding to the basis B and the antisymmetrical part
of Tt is contained in the negative roots ®5 corresponding to the basis. Since all
bases of a root system are W-conjugate the claim follows. (]

Lemma 4.16 Let L be an infinite dimensional admissible simple module. Let
w € W be such that w(FL\F;) C ®*. Let o € 11 be such that —a € w(TL) (such
an a always exists). Then there exists a commuting set of roots ¥ with a € ¥
which is a basis of Q such that =X C w(TL).

Proof. Set L' =“L. Since w(Tr) = Twy, = T we will just work with L’. Then
FL/\FEI c ot.

Note that it is always possible to choose a simple root o« € —T7, since L’
is infinite dimensional: If this was not possible we would have &~ C FL,. But
since Fr \F;, C ®* this would imply F, = ®.

14
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Set F' = F;, NI Since L’ is infinite dimensional F' # II. By Lemma 2.
applied with J = {a} = ¥’ there exists a commuting set of roots ¥ that is a basis
of @ such that ¥ C @\ ®L. Since F/\F;, C &+ we have = =T, U (F},)".
To show —% C Ty, we show (®7\®5) N F;, = 0 or equivalently (Fj,)~ C ®p.

Assume € F}, N®*, B =73 1aq®, aq € N. The height of 3 is the sum
> acti Ga- We will show by induction on the height of 5 that —f € ® . If the
height of 5 is 1 then 3 is a simple root and so § € F'. Clearly —3 € ®}. in this
case. Assume the height of 3 is greater than 1. Let o € II be a simple root such
that 8 — o’ is a root. There are two possibilities: —a/ € Ty, or o/ € F},.

In the first case where —o/ € Tr, we must have —§ + o/ € F}, since if
—B+a €Ty then —8=(-0+d)—d €Tp. Sof—a' € Fj, and 8 € F},.
Since Fp/ is closed (Proposition we get —a’ = (8 —a’) — § € F, which is a
contradiction. So the first case (—a/ € Ty) is impossible.

In the second case since Fy, is closed we get =(8— o) € Frr i.e. B—a' € F},.
By the induction —(8 — ') € ® and since —f5 = —(8 — /) — &’ we are done.[]

Proposition 4.17 Let ¥ = {S1,..., 0.} be a set of commuting roots. The set
{q*Fg! - Fgrlai € N,a € Z} is an Ore subset of Uy.

Proof. We will prove it by induction over r. » = 1 is Lemma [£.7}
Let S, = {q“Fgl1 Fg:|al € Nya € Z}. Let ay,...,a, € N, a € Z and
u € Uy, then we need to show that
q Fgl - FgrUg NuS, # 0. (1)

and
Uyq"Fg! -+ Fgm 0 Spu # 0. (2)

By Lemma there exists u € U, and b € N such that
Fg§ru = uFyj . (3)

By induction
angll = ~F§:11 U,NuSr—1 #0
S0
O FgrEgt - Fg Uy N Fg S,y # 0

Since ¥ is a set of commuting roots F§"F5' - - F5™~ ! = ¢k F3* ... Fg ' F$ for
Br~ B1 Br—1 B1 Br—1" Br
some k € Z. Using this and (3) we get

0#q" T Fgr - FgrUgNuFg S,y C q*Fg' - Fg Uy NS,

where Fgr Sr—1 C S, because Fj3. gq-commutes with all the other root vectors.
is shown similarly. O

Lemma 4.18 Let v € X and let ¥ = {f1,...,5n} be a basis of Q. Then there
exists b = (by,...,by) € (C*)™ such that

v =00 b

and there are only finitely many different b € (C*)™ satisfying this.
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Proof. If v1,v2 € X satisty v1(Kp,) = v2(Kp,) for i = 1,...,n then v; = 2 be-

cause {f1, ..., Bn} isabasis of Q. Since for ay,...,a, € C*, aflag2 ceal(Kg,) =

agﬁilﬁl)agﬂiwz) - -aP1Pm) we have to solve the system in n unknown variables

L1y-.-,Tn:

xgﬁl\ﬁl)xgﬂlmﬂ . 1.(51|,3n) :V(Kﬁl)

n

w(P218n) =1 (Kp,)

n

mgﬁﬂﬁﬂx;ﬁﬂﬂb) .

a1 g (51 —y (K, ).

Let ¢; € C, j =1,...,n be such that v(Kp,) = e%. There is a choice here since
any c; + 2kmi, k € Z could be chosen instead. Consider the linear system in n
unknowns X1,..., X,

(B11B1) X1 + (B1]B2) X2+ -+ (B1]Bn) Xn =c1
(B2]B1) X1 + (B2]B2) Xa - - (B2|Bn) Xn =c2

This system has a unique solution as,...,a, € C since the matrix ((3;|5;))i,;
is invertible. So x; = e® is a solution to the above system. Any other solution
to the original system corresponds to making a different choice when taking
the logarithm of v(Kp,). So another solution would be of the form x; = e®*%:
where a}, i = 1,...,n is a solution to a system of the form:

(B11B1) X1 + (B1|B2) Xa - - (B1]Bn) X =2k mi
(B2]B81) X1+ (B2]B2) Xa -+ - (B2|Bn) Xn =2komi

for some k1, ..., k, € Z. Since A = ((;|5;))i,; is a matrix with only integer co-

efficients we have A=! = ﬁA for some A with only integer coefficients. So the
solution to the system above is integer linear combinations in i’;’z, i=1,...,n

hence {(e™,...,e%)|(a},...,al) is a solution to the above system} has fewer
than n det A elements so it is a finite set. O

r'n

In the next definition we would like to compose the ¢’s for different 5. In
particular let ¥ = {81,...,8,} be a set of commuting roots and Fg,, ..., Fg,
corresponding root vectors. Let Fy := {¢*Fg!--- Fg"|a; € N,a € Z} and let
Uq(rs,) be the Ore localization in Fy. For i < j we have

Py, S, = O,

or equivalently ¢p, . (Fp;) = (qk)_(ﬁilﬁj)Fﬂj. This implies ¢r, »(Fp,) =
b=BilBi) Fy. for b € C* because b — ©F,, b(Fp;) is Laurent polynomial. Sim-
ilarly PF,, (Fp,) = bBil) g . This shows that we can define @Fﬁ,b(Fl;l) =
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©ryp(Fp) "t for 8,8 € ¥ extending ¢, » to a homomorphism Uy gy — Uy(ry)-
Also note that the ¢’s commute because

Fﬁ:kl F/if_ijUFg; ng :qk1k2(ﬂi\ﬂj)FB—jk2 F,B_ikl uqukz(,@ilﬁj)Fg: Fgf
_—k —k k k
_F,Bj QF,Bq: 1UF/3¢1Fﬁj2

Definition 4.19 Let ¥ = {f1,...,5-} be a set of commuting roots and let
Fg,,...,Fp, be corresponding root vectors such that [Fg,, Fjg,]q =0 fori < j. Let
Uy(rs) denote the Ore localization of Uy in the Ore set Fx := {q*Fg! - Fg"|a; €
N,a € Z}. Said in words we invert Fg for all § € X.

Let M be a Ug-module. We define Mg, to be the Uy(pyy-module Uypy)@u, M.
Let b = (by,...,b.) € (C*)". Then for a Uypy,)-module N we define oy p.N to
be the twist of the module by @r, b, © -+ °QF, b,

Fori= (i1,...,i,) € Z" define ¢ = (¢"*,...,q"") € (C*)" and ¢*" = {q'|i €
7"} C (CH).

Forb = (by,...,b,) € (C*)" we set b® := b ... b8 € X. If % is a basis
of Q then the map b — b~ is surjective by Lemma but not neccesarily
mjective.

Corollary 4.20 (to Lemma |4.12)) Let ¥ be a set of commuting roots that
is a Z basis of Q, let Fx, be an Ore subset corresponding to %, let M be a
Uq(ry)-module and let i = (iy,...,i,) € Z". Then

@Fg,qi'M =~ M

as Uy(py)-modules. Furthermore for X € wt M we have an isomorphism of
(Uq(Fy))o-modules:
@F27qi.M)\ =t M(q*i)EA == Mq—u)\
where 1= 377, ;55
Proof. The corollary follows from Lemma [£.12] because X is a Z basis of Q. O

Definition 4.21 Let L be an admissible module of degree d. The essential
support of L is defined as

Suppess(L) = {/\ € wt LI dim Ly = d}

Lemma 4.22 Let M be an admissible module. Let ¥ C ®F be a set of com-
muting roots and Fx; a corresponding Ore subset. Assume —X C Thy. Then for
reX:

dim(Mp ) = f}é%)é{dim Mgur}

and if dim My = max,czs,{dim Mg } then (Mpy,)x = My as (Ug)o-modules.
In particular if ¥ C Thr as well then Mg, = M as Uy-modules.

Compare to Lemma 4.4(ii) in [Mat00].

Proof. We have ¥ = {34,...,0,} for some 8i,..., [, € T and corresponding
root vectors Fp,,...,Fp.. Let A € X and set d = max,czs{dim Myu}. Let V
be a finite dimensional subspace of (Mg ). Then there exists a homogenous
element s € Fy; such that sV C M. Let v € ZX be the degree of s. So sV C Myv

17



IRREDUCIBLE QUANTUM GROUP MODULES WITH FINITE DIMENSIONAL WEIGHT
SPACES. II

hence dim sV < d. Since s acts injectively on Mg, we have dim V' < d. Now the
first claim follows because F ﬁil acts injectively on Mg, for all 5 € X.

We have an injective Uj;-homomorphism from M to Mg, sending m € M to
1 ® m € Mp, that restricts to a (Uy)o-homomorphism from M) to (Mpgy)x. If
dim My = d then this is surjective as well. So it is an isomorphism. The last
claim follow because £% C T} implies dim My = dim My for any p € ZX; so
My =2 (Mp)» for any A € X. Since M is a weight module this implies that
M = Mp,, as Uj-modules. O

Lemma 4.23 Let L be a simple infinite dimensional admissible module. Let
RS (Tf)"‘. Then there exists a b € C* such that ©rgb-LE,; contains a simple
admissible U,-submodule L' with Ty, C Ty, and 8 & Ty,.

Proof. Since § € T} we have L = L, as U;-modules by Lemma [1.22] So we
will consider L as a Ugy(p,)-module via this isomorphism when taking twist etc.

Let Eg and Fg be root vectors corresponding to 8. Let A € wt L. Consider
FgEjg as a linear operator on Ly. Since C is algebraically closed FgEg must
have an eigenvalue cg and an eigenvector v € Ly. By (the proof of) Lemma

FgEgpr, pv = mp-(ca—(g5—a5 ") 2 (bg—b5 ") (apbs ' A(Kp)—q5 ' bsA(Kp) "

The Laurent polynomial, in b, cg — (q—q~*) 7 2(bg — bgl)(bg)\(Kg) - bgl)\(Kgl))
has a zero point ¢ € C*.

Thus ¢, ..L contains an element v" such that FzEgv' = 0 and since Fjp
acts injectively on ¢, ..L, we have Egv’ = 0. Set V = {m € <pFIs7c.L|EéVm =
0,N >> 0} = (¢p,,..L)Pl. By Proposition this is a U,-submodule of the
Ug-module ¢, ..L. It is nonzero since v € V. By Lemma V has a simple
U,-submodule L'.

We want to show that Ty, C Tp. Assume v € Ty,. Then ¢" wt L' C wt L.
But since wt L’ C ¢ # wt L we get for some v € wt L, "¢ Pv C ¢ Pwt L or
equivalently ¢""v C wt L. But this shows that v & Fy, and since L is a simple
Ug;-module this implies that v € Ty,. By construction we have 8 & Ty,. (I

5 Coherent families
For a U,-module M € F define Tr™ : X x (U,)o — C by Tr™ (A, u) = Trular, -

Lemma 5.1 Let M,N € F be semisimple Uy-modules. If M = eV then
M= N.

Proof. Theorem 7.19 in [LamOI] states that this is true for modules over a
finite dimensional algebra. So we will reduce to the case of modules over
a finite dimensional algebra. Let L be a composition factor of M and A a
weight of L. Then the multiplicity of the U,-composition factor L in M is the
multiplicity of the (Uj)o-composition factor Ly in My by Theorem M, is
a finite dimensional (U,)o-module. Let I be the kernel of the homomorphism
(Ug)o — Endc(M)) given by the action of (Uy)o. Then (Uy)o/I is a finite
dimensional C algebra and M) is a module over (U,)o/I. Furthermore since
Tr™ (N, u) = 0 for all u € T the trace of an element u € (U)o is the same as
the trace of u + I € (U,)o/I on My as a (U,)o/I-module. So if Tr™ = Tr" the
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multiplicity of Ly in M) and Ny are the same and hence the multiplicity of L
in M is the same as in N. (Il

We will use the Zariski topology on (C*)™: V is a closed set if it is the
zero-points of a Laurent polynomial p € C[X:™, ... XF1].

Proposition 5.2 Let L be an infinite dimensional admissible simple module of
degree d. Let 33 be a set of commuting roots that is a basis of Q and w € W such
that =% C w(TyL). Let Fs be a corresponding Ore subset. Let X € Supp..(L).
The set

{be(CH" ™ (Lsz’b. ((wL)FZ)w()\)) is a simple (Uy)o-module}
is a Zariski open set of (C*)™.

Proof. The (U)o-module V := ™ (QDFEV]:,. ((wL)Fz)w ) is simple if and only

()

w

if the bilinear map By (u,v) € (Ug)o x (Ug)o — Tr uv|7<w ((WL) ) >>
b 5/ win)

has maximal rank d?: The map factors through Endc (V) x Endc (V) given by
the representation (U;)o — Endc(V) on V. By, has maximal rank d? if and only
if the representation is surjective onto Endc (V') which is equivalent to V' being
simple.

For any finite dimensional subspace E C (Uy)o, the set Qg of all b such
that Bp|g has rank d? is either empty or the non-zero points of the Laurent
polynomial det M for some d* x d* minor M of the matrix (Bp(e;, ¢;)), ; where
{e;} is a basis of E. Therefore Q = UgQg is open. O

For a module M that is a direct sum of modules of finite length we define
M?** to be the unique (up to isomorphism) semisimple module with the same
composition factors as M.

Lemma 5.3 Let L be an infinite dimensional simple admissible Uy-module of
degree d, w € W and X = {f1,...,Bn} C ®T a set of commuting roots that is
a basis of Q such that =¥ C w(Ty). Let Fx be a corresponding Ore subset to
Y. Let ¢ € (C*)" and let L' be another infinite dimensional U,-module such
that L' is contained in ™ (¢pry c.(YL)ry)™ (i.e. L' is a composition factor of
" (opg,c-("L)py)). Assume that X' = {B1,...,8,} C @' is another set of
commuting roots that is a basis of Q and w' € W is such that —%' C w'(Ty/).
Let Fy: be a corresponding Ore subset.

Define a; j € Z by w(w') " (Bl) = > i1 @i i3 and define f 1 (C*)™ — (C*)"

(2

i=1 i=1

Then L’ is admissible of degree d and

by

/ SSs

v (@FE/,b-(w L/)FE/) = (@Fz,f(b)o(wL)Fz)

ss

Proof. We will show that Tr ("DFE“b'(m L/)FE’) — Ty (ers.sm)e (U Dry)
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Let A € Suppees(L). Then w(A) € Suppey(“L). As a (Uy)o-module we have

— ss ~ w w e

(w (LPFE’C.(WL)FE)) ~ Picpn (QOFthic. (( L)Fz)w()\)> (Corollary|4.20)). Let
o ss

X € Supp.(L'). Then L, is a (Uy)o-submodule of ™ (QDFE,qjc. ((wL)FE)w()\))

for some j € Z". We can assume j = 0 by replacing ¢ with ¢'c (note
that we have then (¢7')* = w (NA7!)). So L), is a (Uy)o-submodule of

— SSs
w (@F&C. ((wL)FZ)w(A)) . For any other p € Supp.(L’) there is a unique

o\
jj, € Z" such that p = (w1t ((q_Ju) ) A" and a unique j, € Z" such that

_ i 1\ 2 . . o w ss
wL ((q Jue™t) > A = p. Forsuch j,, L, is a submodule of (chZ’qjuc. (( L)Fz)w(x)>
f is bijective, f(¢*") = ¢*", f(b)* = w(w')™! (b2l> for all b € (C*)" and

for any p € Supp..(L'), f(qllu) = ¢». For a Laurent polynomial p, po f is
Laurent polynomial as well. Since ¢V is Zariski dense in (C*)" (Lemma
and f is a Laurent polynomial the set D = {¢irc € (C*)"|u € Suppey (L)} is

Zariski dense. By Proposition the (U,)o-module ™ (gopzyb. ((“’L)Fz)w(/\)

is simple for all b € Q for some Zariski open set Q of (C*)™. Since D is dense
and 2 is open D N Q) is nonempty. So there exists a pg € Suppeg(L’) such that

w (gpFE’quOC. ((wL)FE)w(A)> is simple and contains the nonzero simple (Uy)o-

module Lj, as a submodule. Thus L) =% (chz’qj,l,Uc. ((“’L)Fz)w(/\)>. We
get now from Lemma that L’ is admissible of degree d and that for every
1t € Suppegs (L),

L/H = (QDFz,qjuc' ((ML)FE)W(A))

’ ((sz,f(qu‘)C' ((wL)FE)w(A)) '

By Lemma Corollary and the definition of jj, we have for any

1 € Suppeg (L)
w’ w' 771 ~ T/
(SOFE/,qj;L' (( L )FX:/)w/()\/)) = LN.

Let u € (Uy)o. We see that for b = P

Tr ul
W(50Fz,f(b>c- ((WL)F2>W(A>

Since b — Tt ss
mee b A U|U<<PFE,f(b)c~ <(wL)Fz)w(>\)) <<PFE, (VL) ry, )w’(k’))

are both Laurent polynomials and equal on the Zariski dense subset {qJ:L |n e
Suppes(L')} they are equal for all b € (C*)™. Thus by Lemma [5.]]

ss — , ss
’ (@Fz’ﬂb)c' ((wL)Fz)w(A)) =" (WFE"b' (( LI)FW)W(X))
as (Ug)o-modules. Since (by Corollary [4.20))

B l s _ , SSs
w (QOFE/,b-(w L/)FE/) =P (‘sz"Q‘b' ((w L/)FE/)W(M)

iczm

1

) =Truly, = TT“|w<¢FE,,b.((w’L’)sz)w/u’)>.

ssand b — Tru|—
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P (erosme("Drs) T = P (WFz,qif(b)c- ((wL)Fz)w()\))
iezn
we get

8Ss

7 (ornt ) =@ (o (1))

88

= w (SDFEVf(qib)C' ((wL)FE)w()\))
iezn

_ ss
= @ b (SDFquif(b)C' ((wL)FE)w()\))
ieZn
= (ppy, fo)e- (VL) Fx)

SSs

as (Uy)o-modules. By Theorem this implies they are isomorphic as Ug-
modules as well. O

Corollary tells us that twisting with an element of the form ¢' gives us a
module isomorphic to the original module. Thus it makes sense to write ¢py, .M
for at € (C*)"/¢*" and a Uq(ry)-module M. Just choose a representative for ¢.
Any representative gives the same U, (f,,)-module up to isomorphism.

Let L be an admissible simple module. Assume for aw € W that ¥ C —w(T})
is a set of commuting roots that is a basis of @ (it is always possible to find such
w and ¥ by Lemma and Lemma and let Fy, be a corresponding Ore
subset. Let v € X. The Uj,-module

v @ PFs,b- (wL)FZ

be(C*)m: b=y

has finite length by Lemma Lemma and Lemma [4.6
We define

88

EXT(L) = @ Y (rg.t- (wL)FE)

te(C*)/q""

The definition is independent (up to isomorphism) of the chosen w, ¥ and Fy; as
suggested by the notation:

Lemma 5.4 Let L be a simple admissible module. Let w,w’' € W and assume
Y C —w(Ty), Y € —w'(Ty) are sets of commuting roots that are both a basis of
Q. Let Fx, Fy, be corresponding Ore subsets. Then

SS S8

D TlemeDr)| = D W<@Féf’t‘(W/L)Fg/)

te(C) /" te(C)" /4"

as Ug-modules.
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Proof. Obviously L is a submodule of (7 (¢py 1. (“’L)FZ))SS where1 = (1,...,1).
By Lemma [5.3| this implies that for b € (C*)”

(7 (e (8),,,)) = C om0

for some f with the property that f(¢%") = ¢%". So it makes sense to write f(¢)
for t € (C*)"/¢%". Thus

S v <“0Fé~t' (), > = D "erso (L)
te(C)m /q=" = te(C*)m/q="
= B (e ("L)p)
te(C)m/q="
since f is bijective. O

Proposition 5.5 Let L be a simple infinite dimensional admissible module. For
zeW:

EXT(PL) =" (EXT(L))
and

EXT(TL) =7 (EXT(L)).

Proof. Let w € W be such that w(FL\F;) C ®* (exists by Lemma [4.15). Let
Y be a set of commuting roots that is a basis of @ such that —% C w(TL)
(exists by Lemma [4.16]) and let Fx be a corresponding Ore subset. First we

will define EXT(L) = (@te(c*)n P (<pFZ7t.(FL)FZ)> and show that
EXT'(L) 2 EXT(L) as Uj-modules: Going through the proof of Lemma
and Lemma, and and replacing 7T,,-: and T 7;,11 with T,; ! and T, respectively

we get that Tré¥ T'(L) = T XTI) g they are isomorphic by Lemma
We will show for any o € II that

EXT (L) = 5 (EXT(L))

which implies the claim by induction over the length I(x) of 2 (where I(x) is the
smallest number of simple reflections need to write z, i.e. there is a reduced
expression & = s;, - -+ 84, )-

So let a € IT and let w and X be defined as above. Let w’ = ws,. Note that
W' (Fea L \F2, ;) C @1 and —% C Trap. We split into two cases: If [(w') < I(w)
then

SS

 (EXT(L)) =" P (e L))

te(C*)m/q™"

B (7 (era L))

te(C)m/q*"

88

1%
3

SS

1%

B (ora D))

te((C*)n/qZ"

—EXT (L)

22



IRREDUCIBLE QUANTUM GROUP MODULES WITH FINITE DIMENSIONAL WEIGHT
SPACES. II

If I(w") > l(w) we get
Sa (EXT(L)) =% (SXT/(L))

S b (@Fz,v(FL)Fz)

te(C)n/q="

= D 7 (era™TL)R)

te(C*)m /"
—EXT(*L).

SS

SS

The second claim is shown similarly. (]

Proposition 5.6 Let L be an infinite dimensional admissible simple module of
degree d. If L' is an infinite dimensional simple submodule of EXT (L) then L'
is admissible of degree d and EXT(L) =2 EXT(L').

Proof. Let w € W and let ¥ be a set of commuting roots that is a basis of @
such that ¥ C —w(Ty) (possible by Lemma and Lemma [4.16). Then by
definition

88

EXT(L) = B T(eres (“L)g,)

te(C*)m/q="
L’ being a submodule of EXT (L) implies that L’ must be a submodule of

(" (e ("D)p,))

for some ¢ € (C*)™. Let w’ € W and let ¥’ be a set of commuting roots that is a
basis of @ such that ' C —w'(Ty/). By Lemmal5.3| L’ is admissible of degree d
and there exists a bijective map f : (C*)” — (C*)" such that f(¢*") = ¢*" and

(w' <¢Fg,,b. <w/L/)FZ,)>SS ~ (7 (presme ("D )"

n

SSs

Since f(¢%")

= it makes sense to write f(t) for t € (C*)*/¢%". So writing
te =¢* c € (C*

7
)" /" we get
S8

exT()=| P W(%,t.(w’(L'))F>
te(C)" /a?" =

SSs

B T (errwr (“Lg,)

te ((C* )n/qZ"

IR

= @ ﬁ(<‘0F2)t'(wL)F>:)
te(C*)™ /="

—EXT(L)

since the assignment ¢ — f(t)t. is bijective. ([l
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Lemma 5.7 Let f € C[Xlil, ..., X1 be a nonzero Laurent polynomial. There
exists by, ..., b, € C* such that for all iy,...,i, € Z

f(qllbthlnbn) 7& 0.

Proof. Assume f = Xl_N1 - X Nng with g € C[X1,..., X,]. g has coefficients
in some finitely generated (over Q) subfield k of C. Let by,...b, be generators
of n disjoint extensions of k of degree > degg. The monomials by --- b,
0 < m; < degg are all linearly independent over k. Since ¢’ # 0 for i € Z the
same is true for the monomials (¢*1b1)™ - - - (¢*b,)™". So g(¢*1 b1, ..., q""b,) # 0,
hence f(q“by,...,q"b,) # 0. O

Theorem 5.8 Let L be an infinite dimensional admissible simple modules of
degree d. Then EXT (L) contains at least one simple torsion free module.

Proof. Let A € w(wt L). Then as a (U,)o-module

SS

EXTL) =" B vrn ("L)p),

be(C*)n

for some w € W and some Ore subset Fy corresponding to a set of com-

muting roots ¥ that is a basis of Q. Let u € (Uy)o. Then the map b —

det u|ﬁ( )) = det @FE,b(Tgl(u)ﬂ((wL) ) is Laurent polynomial.
A

‘PFz,b-((wL)FE Fs )y

Let p(b) = HBGE det EgFp W(@pz N ((wL)FE) ) p is a Laurent polynomial by the
’ by

above. By Lemmathere exists a ¢ € (C*)" such that p(b) # 0 forallb € ¢*"c
which implies that EgFjs acts injectively on the module L' :=" (g, c.(“ L) ry)
for all B € ¥. Since Fg acts injectively on the module by construction this
implies that Eg acts injectively as well. So we have £% C Ty,. Any simple
submodule V' of L' is admissible of degree d by Lemma and since Fg and Ejg
act injectively we get dim V) = d = dim L), for any A € wt L' thus V' = L’. So
L' is a simple module. Using Proposition it is easy to see that L’ is torsion
free since £ C Ty, and X is a basis of Q. O

Proposition 5.9 Let L be an infinite dimensional admissible simple module.
Let g € @*. If - € Ty, then EXT(L) contains (@tec*/qz (pFth'LFB> as a
Uq-submodule.

Proof. Let w € W and ¥ = {f,...,8,} be such that ¥ is a set of commuting
roots that is a basis of Q and —3 C w(7TL) and Fx a corresponding Ore subset
(always possible by Lemma, and Lemma [4.16)).

We have w(f) = 371, a;f3; for some a; € Z. Set x = Fg'--- Fg" € Uy(py,)-
Let Uy(s) be the Us-subalgebra generated by z in Uyry,). z is playing the role
of Fj and that is why the notation resembles the notation for Ohre localization.
The Ohre localization of U, in = does not neccesarily make sense though because
x is not neccesarily an element of U,.

Let V be the Uy(,)-submodule of (*L)g, generated by 1 ® “L. For any
t € C*/q*

Y (org, o1, 9n).V) = {@rg a1, 1an) 0 € ¥ (@rg, (o1, 1an)-(“L)py ) [v € V'}
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is a Uy(y)-submodule of m(901:27@@17___,tan).(“’L)FZ): To show this we show
that for u € Uy and ¢ € C*, ¢py (co1,.. cony(1) € Ugz). We know that
Oy (co,....con) (1) € Uq(pz)[cil] and we also see by construction that for ¢ = ¢*,
i € Z, we have ppy, (co1 . can)(u) = 2 'ua’ € Uy(,y. Choose a vector space basis
of Uy(x), {ui ier and extend to a basis {u;, v} }ier jes of Uy(ry) where I and J are
some index sets. Then for u € Uy(y) we have @py, (co1 .. con)(u) = D, uipi(c) +
> jey wip;(c) for some finite I C I and J' C J and some p;, pj € CIX*1. We
see that for j € J', p’i(¢') = 0 for all i € Z so p; = 0. Hence ppy, (car ... can)(u) =
> iep wipi(c) € Uy(yy. This shows that ™ (@py (o1, 4an).V) is a submodule of
E((,01:'27@@1’m’tan).(wL)FE). Set

SSs

V=| @D " (e V)
teC* /q”

Clearly Vis a Uy-submodule of EXT(L). We claim that V = (@,cc. gz 9rs - L ) h

as Ug-modules. We will show this using Lemma [5.1}
Note that for A € wt V and ¢ € Z we have

" (P ri (@1 ayen) V) 2 T (Vi euy)

as a (Uy)o-module by Corollary

We have wtV = (C*)P wt L = wt (@tec*/qz SOF[;,)&LF/g)H . Let A € wt L be
such that dim Ly = max;ez{dim Lgisy} then Vi) = (YL)yn) = “(La) as a
(Uq)o-module by Lemma and we have for v € (C*)P\:

SSs

Vu = @ U(SDF)L(Cal,...,can)-Vw()\))

ceC*:cw(B)=w(v=1N)

so for u € (Uy)o:

Tru|VV = Z Tr (@Fz,(cal,...,c“n)(Tgl(u))) |Vw(>\)

ceEC*:cP=r—1)

(note that ¢*(®) = w(r='\) if and only if ¢® = v=1\ since ¢*(?) = w(c?)).

Set p(c) = Tr (gpF&(Cal7,”’can)(T1;1(u))) |wa. p is Laurent polynomial in ¢
and p(q') = Trulp, _,,, forieN.

On the other hand we can show similarly that

Tru|((®tet*/qz “’FB»*'LF/B)SS),,

_ Z Tr (@Fﬁ,c(u)) |(LF/_.;)/\'

ceC*:cP=pv—1)

Similarly Tr (¢p,,(u)) |(LFB )» is Laurent polynomial in ¢ and equal to Tr u\LrwA

for ¢ = ¢, i € N. So Tr (¢r,.c(u)) |(LFﬁ))\ = p(c). We conclude that TrY =
Tr((GBtEC*/qz ergeLiy)”” soy = (@te@*/qz ‘Pan,t'LFa) as Us-modules by LemmaD
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For any A € X there is a unique simple highest weight module which we call
L(A). Tt is the unique simple quotient of the Verma module M ()) := U; ®,;>0 Cx

where C, is the 1-dimensional UqZO—module with U, ;’ acting trivially and Uq0
acting like A. Let p = % ZBG<I>+ 5. In the following we use the dot action on X.
For w € W, w.A = ¢ Pw(gP’N).

Proposition 5.10 Let A € X be such that L()\) is admissible. Let o € TI.
Assume N(Ky) € £¢". Let a = ) ‘a) If a = § choose a squareroot (K, 2)? of
AN K,). Then

o —ac Ty

o L(sq.)) is admissible.

o S L(sy.)\) is a subquotient of the Uy-module L(N\)r,

e L(sq.A) and *~L(\) are subquotients of the Us-module. ¢r, \(k,)«-L(N)F, -

Proof. A\(K,) & +¢) implies that —a C T}(») since for i € N:

i= 1)\ - )x K,
E(z () H o QOc ( ) V.

—qa

This is only zero for an i € N when \(K,) € +¢\.
Let vy € L(X) be a highest weight vector. Denote the vector g, (k. )e-Fatx €
Or A Ka) - L(AN) Ry as vs, x. This is a highest weight vector of weight s,.A: For

ueE Q:
KMUSQ)\ :KMSOFQ,)\(KQ)Q-FQU)\
=pr ey ((0AKa)) ™ M) Fovs )

:q—(u\a))\ (Ka@;a >KM> @Fa,qu(Ka)~FaU/\

:q_(u‘a)(sa)‘)(Ku)Usu-A
=50 MK ) s, A

For o' € II\{a}
Eo/ QF, ANKo)a VA = PFa MKa)s-EarVa

and for o’ = a we have by the formula in the proof of Lemma

EaSDFa,A(Ka)a~Fav)\
=PF ANKy)e- a‘PFa,qA(K,,)“'(Ea)U)\
—1Y%a a)\Koz _lKa_ ;1 Oé)‘KOt Kt;1
=5, AK.)oFa (Ea+pa1q (9aA(Ka)) o g (Ka) )w
(th — qu )
=0.

So v, x is a highest weight vector of weight s,.A hence L(s,.\) is a subquotient
of o, a(x.)e-L(N)F,. Since L(s4.A) is a subquotient of pp, \(k,)a-L(A)F, it is
admissible by Lemma
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Consider * (¢r, A(xo)e-L(A)F. /(Ugvs,.»)) and the vector

V' = F e, x4 Ugvs, x €% (05, Ay LN EL [ (Ugts, 2)) -
Then Egv’ =0 for all § € II: First of all
E v =T, N (B )V
=—K,F
=— Kyvs, » +Ugvg, 2
=0.
For g € II\{«a}
Eg-v' =T, Y (Eg)v'

<BZ> 1igr BQEES ) 0y

=0
g BN
1

=(— )ﬁa ) < > ( (8.0 >)F071E6'Usa.>\+Uq'Usa./\
—0

since E,v" = 0 and Egvs, » = 0 by the above.
So v’ is a highest weight vector and v’ has weight \: For pu € Q:

K, v =K,
:KsauFa_lvsa.)\ + qusa.)\
=q 1) 5, MK, ) Fo Mvson + Ugs,
:)‘(K,U«)Fa_lvsa./\ + qusa.)\'
So L(X) is a subquotient of * (g, A(k,)e-L(A)F, ) hence *>L(\) is a subquo-
tient of pp, A(k.)e-L(A)F,. Consider the vector
v = F oy + Ugvy € % (L) g, /(Ugvy)) -

By an argument analog to above we get Eg - v” = 0 for all 8 € II\{«} since E3
and F;! commutes and vy is a highest weight vector. We get E, - v" = 0 by
the following:

Eq " =T, (B )V
=— K, F "
=—q 2 F K. F vy + Uyvy
=0.
So v” is a highest weight vector in 5 (L(\) g, /(Usva)). v has weight s,.A:
For € Q:
K, -v" =K, ,v"
:KsuuFojlvA + Ugun
:q(sa(u)la))\([(sa“)v'/
=(q""saA) (K )v".
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Hence L(s,.A) is a subquotient of %@ L(A) g, and therefore *> L(s,.)) is a
subquotient of L(\) g . O

Lemma 5.11 Let A € X be such that L(\) is an infinite dimensional admissible
module of degree d. Let o € TI. Then

EXT(LN) = EXT(**L(N))

and if N(K,) & +q) then EXT(L(N)) contains L(sa.\) and *> L(sq.\) as Uy-
submodules, where $o.A := q P80 (qPA) = ¢S \.

Proof. Assume first that \(K,) € +¢). By Proposition the Ujz-module
Diccr gz PFut-L(N)F, contains L(sq-A), *>L(A) and *>L(sq.A) as subquotients.
By Proposition [5.9 and Proposition [5.6] this finishes the proof of the claim when
MEKa) ¢ :qu-

Assume now that \(K,) = £¢* for some k € N: If \(K,,) = ¢* it is easy to
prove that L(\) = = L()\). Assume from now on that A\(K,) = —¢*. We have

88

EXTULN)=| D eraLlMr
te(C*)/d""
for some set of commuting roots ¥ = {f1,...,5,} that is a basis of  with

=% C Ty Since ¥ is a basis of @) there exists aq,...,a, € Z such that
a=>",a;B. Let vy be a highest weight vector in L(X). We will show that
V0= Py (Ll (71),1%).Foiév>\ € 5aEXT(L(N)) is a highest weight vector of
weight A where aj = 3fi5. This will imply EXT(**L())) = EXT(L(N)) by
Proposition [5.6] The weight of vo: Let p € Q:

K, - v :Ksa(#)gony((_l)a/l7___,(_1)%).F0’tv>\

(1) (St sl gitol (i, iy )

901}?2,((71)"“1,...,(71)~4L)'Fo/”A
(1) g (gh) e I o
:)\(Kﬂ)vo.
By Proposition (4.10 ('OFB,(—l)WQﬂ)(EO‘l) = E, and @Fﬂ,(—nﬁ(Fa/) = £F,

for any o/ € IT and any 8 € ®*. So P re (—1)h (71)0,41)(E5), B8 € II\{«a} and
<pF27((_1)a/17___7(_1)QITL)(FQ) kills Fivy € L(\) because Eg and F, does. Hence Eg,

B € 11 kills v by the same argument as in the proof of Proposition [5.10] when
proving that v’ is a highest weight vector. O

Theorem 5.12 Let L be an infinite dimensional admissible simple module of
degree d. Then the Uj-module EXT (L) contains an infinite dimensional ad-
missible simple highest weight module L(\) of degree d for some weight A\ € X.
Furthermore for any x € W:

TEXT(L) =2 EXT(L).
Proof. Let w € W be such that w(Fr\F}) C ® and w(Tp\T7) C 7. Set
L' ="""L (then ™ L' = L). We will show the result first for L’ by induction
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on |T|. If |T| = 0 then L' is itself a highest weight module. Assume |T};| > 0.
Let B € T,. Then 8 € T3, since Tp/\T§, C ®~. So —83 € Tr,. Then by
Lemma there exists a b € C* such that ¢ Fﬁ)b.L};ﬁ contains a Uz-submodule
L" with Tr» C Tp and B ¢ Trr». By Proposition [5.9] and Proposition [5.6
EXT(L') =2 EXT(L") as Ujmodules. By induction EXT (L") contains an
infinite dimensional admissible simple highest weight module L()\) for some A.
So EXT(L') = EXT(L(A)) by Proposition Choose a reduced expression

si -++8; for w™l. By Proposition [5.5{and Lemma

EXT(L) 2EXT (" 'L))
=0 e XT (L)

~v ' e XT(L(N))
aesinsi2 EXT (%1 L(N))
%S EXT(L(N))

éf:XT(L(A)).

So EXT (L) contains a simple highest weight module L(\). For any x € W we
can do as above to show *EXT (L) X EXT(*L(N)) X EXT(L(N) 2 EXT(L).O

Corollary 5.13 Let L be a simple torsion free module. Then there exists a set
of commuting roots 3 that is a basis of Q with corresponding Ore subset Fy, a
A€ X and b € (C*)" such that =% C Trny and L = @ b.L(A) Fy,

Proof. By Theorem EXT(L) 2 EXT(L(N)) for some A € X. So L is a
Ug-submodule of EXT(L(A)). Let ¥ be a set of commuting roots such that
—X¥ C L(\) (exists by Lemma by setting w = e, the neutral element in W)
then

88

EXT(L(N)) = P erilMNr

te(C)m/q="

Since L is simple we must have that L is a submodule of ¢ g, b.L(A) gy, for some
b € (C*)™. By Proposition and Lemma dim (¢py b-L(A) py ), = dim Ly
for all A € wt L so we have L & ppy b.L(A) py, - O

So to classify torsion free simple modules we need to classify the admissible
infinite dimensional simple highest weight modules L()\) and then we need to
determine the t € (C*)"/¢*" such that ¢r, ¢.L(\) . is simple. Furthermore
we have that if there exists an admissible infinite dimensional simple module
then there exists a torsion free simple module. In the classical case torsion free
modules only exists if g is of type A or C so we expect the same to be true in
the quantum group case. We show this in Section [8.5

6 Classification of simple torsion free U,(sl;)-modules

In this section let g = sl;. In this case there is a single simple root a. It is
natural to identify X with C* via A — A(K,). We define F = F,, E = E,, and
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K*' = KF' Let A € C*\{£¢"} and consider the simple highest weight module

L(A\). Let 0 # vg € L(\)x. wtL = ¢~2¥X so L(\) is an admissible infinite

dimensional highest weight module. Thus EXT (L(\)) contains a torsion free

module by Theorem 5.8 Let b € C*. We will describe the action on the module

¢rp-L(A)(r) and determine exactly for which b’s ¢pp.L(A)(r) is torsion free.
Let v; = F'¢pyp.vo for all ¢ € Z. Then we have for i € Z

Fv; =v;11
Kilvi :quib:FQ)\vi
(@b — ¢~ b= (q" b=\ — ¢~ 1bA~ 1)
(g—q71)?

We see that unless b = +¢° or b = +¢'\ for some i € Z then @py.L(A)(p) is
torsion free. In this case we see that ¢r_, = @y since for all u € Uy(sly),
¢rp(u) is Laurent polynomial in b?.

So in this case EXT(L(A\)) contains a maximum of four different sim-
ple submodules which are not torsion free: We have (¢p iqi-L(N)(F))*® =
(LX) (ry)*® = L(X) @ **L(s4.A) (which can be seen directly from the calcu-
lations but also follows from Corollary and the fact that ¢p _, = ppp) and
(Prga-LN) (7)) 2 (L(sa-A)(7))** 2 L(sa-A) @ *=L(\) if A ¢ £¢”.

The weights of pp . L(A) () are b~ wt L(A)(py = ¢*2b=2)\. Suppose we want
to find a torsion free Uy (slz)-modules with integral weights. Then we just need to
find A\,b € C* such that A € +¢%>°, b & +¢% and b & +¢”\ such that b=2\ € ¢~.
For example choose a square root ¢*/2 of ¢ and set A = ¢~ and b = ¢'/2. Then
we have a torsion free module L = spang {v;|i € Z} with action given by:

EUl' =

Vi—1.

Fo; =vi1
Kv; =q~ %"y,

. _<q1/2+i g2 (g2 gty |
v (q—q1)2 v

q(g7t — ¢)?

= V1.
(¢—q1)?

In this paper we only focus on quantized enveloping algebras over C but note

that we can define, for a general field F with ¢ € F\{0} a non-root of unity, a

simple torsion free Ug(sly)-module with integral weights by the above formulas

(here Up(sly) = Ua ®4 F where F is considered an A-algebra by sending v to gq).

7 An example for U, (sl3)

In this section we will show how we can construct a specific torsion free simple
module for Uy(sl3). In Section |§| we classify all torsion free Uy (sl,,)-modules with
n > 3 so this example is of course included there. If you are only interested in
the general classification you can skip this section but the calculations in this
section gives a taste of the calculations needed in the general case in Section [9]
and they show a phenomona that does not happen in the classical case.

Let a7 and o be the two simple roots of the root system. We will consider the
set of commuting roots ¥ = {81, B2} where 81 = a1 and B2 = a1 +ag. Set Fj, :=
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Fo, and Fg, :=T,,(Fu,) = Fa, Fo, —qFa, Fa, = [Fa,, Fa,lq- We have (51|62) =
Land 0 = [Fg,, Fs,]q = Fs,Fp, — q 1 Fp, Fs, or equivalently Fg, Fg, = qFs, F, .
Let A € X be determined by A\(K,,) = ¢~ ! and A(K,,) = 1. Then M (sq,.)\)
is a submodule of M (A) and L(A) = M(A)/M(8ay.-A) = M(N)/M(g=*2 ) is
admissible of degree 1. Let £ = €2™/3. We will show that g, (¢ ¢)-L(N)r, 18 a
torsion free module. We have here a phenomona that does not happen in the
classical case: wt L(A)py = Wt @pg (e,6)-L(A) py but LAy 2 ©py (6,.6)- L) Fe
as Uj-modules since one is simple and torsion free and the other isn’t (compare
to [Mat00, Section 10] where Mathieu classifies the torsion free simple modules
by determining for a coherent family M for which cosets ¢ € h*/Q, M]t] is
torsion free).

We will show that E,, and E,, act injectively on the module ¢y (¢ ¢).L(N) .-
So we need to calculate 9r, (¢,6)(Ea,) and ¢y (c.6)(Fay)- ©re,(c,6) = PFs, £ ©
©F,, e We have

[EaUFﬂJ :Fa2 [EanFaJ - Q[EanFal]Fﬂéz

—F Kal - K0711 F qKal — qilK(;l
o e T e
:Fa2 Kal — qi‘i{al
q—4q
-1

q9—9q
- azqq P Ka,
= - qFagKal'

We can show by induction that
. i
[EOtl?FéQ]:_qQ j[j]Féz FOtzKOtl

for any j € N. Using that gopﬁz’b(Eal) is Laurent polynomial and equal to
Fy, J Eang2 for b = ¢/ we get

9, 1 b—071
SDF,ﬁbe(Eal) :ECH —q°b q— 1

Fg FoyKa,.

We have F, F, = ¢ Fp, Fg, s0 Fj 'Fp, F = q ' Fp, thus g, 5(Fg ') =bFg "
We have

b—bt

QOFapb(FOQ) :bFOtz - ?F(;ll(qFa1Faz - FoczFal)
b—bt
=bF,, + = F,'Fg,
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and
PFg, b1 ((IDF[:fZ ,b2 (Ecn ))

o, _1ba— byt
=PFq, b1 Eal —4q b2 7_1Fﬁ2 FazKal

(b1 — b7 ") (gby ' Koy — a1 KJ))
(¢q—q71)?

=E,, + F;}

bb1

by — byt
- q2b51%b1F (blFa2 + T Fa, 1Fﬂ2) b;2Ka1

(br — by ') (gby ' Ko, — Q‘lbl K.h
(q—q1)?

=FE,, + F,}

2b_1b2 by
qQ—q

2| - Fy 1F Ko,
—17— (b2_b5 )(bl—bf) —1
—gby byt F'K,
b (g—q1)? !
(b1 — by ") (qby by " Koy — ¢ thiba K Y)
(q—q71)?

=FEq, + by ' F,!

—q2b2_17b2_ b Fy

1
52 Fay Ko,

Let v, be a highest weight vector in L(A) and set vy =1® v} € L(A\)p,. We

have F,,vx = 0 by construction so we have

(b =TT = byby)
(PFE,(b1,b2)(EO¢1 )UA =b, ! ( : 1(@7)(—1(]_12)2 - 2) FoulU)\'

©Fy,(c1,e0)-L(N) Fyy is spanned by the elements FélFészg,(cl,cZ)-UAa ,j EZ
because every weight space is one-dimensional and F’ élF éz acts injectively. Since
—Jp—i i od _pp—igp—J J i
Fﬁz Fﬁl EalFBlFﬁz _FBI Fﬁz EalFﬁQF/Bl
:<PF/31 ,qi (SQF[-,Q ,qj (Eal ))
=¢Fy,(¢t,07) (Ea)
we have
Eo,Fj F} 05y (c1,00)-Un

:FélFé2 PFs,(q,¢7) (Ea1)¢F27(01»02)'U)\
:FélFé2@FE (c1, C2)'¢an(qi017qj02)(E ) U

_ —1 i— i ity -

i1 (q c1—q ic Vg~ JeT 5 g ticies) »
- J “ : (q - q_11)2 FélFézsoFE,(cl,CQ).Fal U
(qicl — q*i0;1)(q i— jcl lc o ql+30102) o

- (q —q ) Fél FéstFEy(Cl,Cz)'v)w

This is only zero when ¢; = +¢ or cicg = ¢~ 7. Set ¢; = cp = e2mi/3 —. .
Then we have shown that E,, acts injectively on @p, ¢.¢).L(N)Fy-
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Now we will show that E,, acts injectively on Fx; ¢ ¢).L(A)p;. We can show
by induction that

i . R
[Eoz: F3,) =l1Fa FY, KQ,
50 05, b(Bay) = Boy + b= Fo  F3 K] and

PFs,(b1,b2) (Eaz) =PFg, by (@Fﬁz ,b2 (Eaz))

by — by " —1p--1
:fgu2 + bgq_ilFalFlBZ Ka2 .

Thus

EO‘?Fél F[§2<PFZ,(61702)'U>\ :Fg1Fé290Fz,(qi,qf)(Ea2)‘PF>;,(cl,02)-UA
:FZhF[ggCPFL(Cl702)'50F2,(qi017qj62)(EO@)v)‘
e —q
—q

i —5 —1
—i1 @Qea—qUc i i—1
/ 102 q— q_1 2 Fg’j_lF,g’g PFs,(c1,c2) VA

. . 7]'6_1 I
:Fé1Féz<szy(ChCz)'62 1 2 FOtlF,Bz Kazlq])\

=q

We see that this is nonzero only if ¢, = ¢~/ so again setting ¢; = ¢y = £ ensures
that this is nonzero. ‘
We have shown that the U,-module ¢ gy (¢ ¢).L(A) 7y has a basis Fél Y 0Fs (6,6)-Vr
1,7 € Z and we have
o . -
Fp, Fj, Fj, 0r: (e.6)0x =F3  F3 0y (6.6)-0a
o i i
Fo, B, B, s (e.0)0x =47 Fg, F) or (¢.6) 0
o o
Eay F Fy, 0 rs (600 =C1EF Fj 0 (c.6) 0
o S0
Bay Eay Fg, F, s (6.0 08 =C2 5, Fg, " 9 (6.6) 0

for some nonzero constants C1,Cy € C*. We see that any of the basis vec-
tors Fj, Fézgopz’(g’g).w can be mapped injectively to any other basis vector

Fﬁi;FéngFD(f,g).v)\ by elements of U, so ¢py (¢,e)-L(N) . is a simple module.
The module is torsion free by Proposition [2.5

8 Classification of admissible simple highest weight
modules

8.1 Preliminaries

In this section we prove some preliminary results with the goal to classify all
admissible simple highest weight modules. We will only focus on non-integral
weights since we have the following theorem from [AMI5]:

Theorem 8.1 Assume q € C\{0} is transcendental. Let X : U] — C be a
weight such that \(K,,) = qé for some i € Z for every a €11 - i.e. A € ¢%. Say
A=g", n € Q. Let Lc(u) denote the simple highest weight g-module of highest
weight p. Then the character of L(\) and L¢(u) are equal - i.e. for any v € Q,
dim L(X) gy = dim Le ()4 p-
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Proof. [AM15], Corollary 6.3]. O

Extending to modules which are not of type 1 is done in the usual way (cf.
e.g. [Jan96, Section 5.1-5.2]). The above theorem implies that the integral
admissible simple highest weight modules can be classified from the classification
of the classical admissible simple highest weight modules when ¢ is transcendental.
Hence we need only to consider weights A\ € X such that A\(K,) & +¢” for at
least one o € II in this case. So in the rest of the paper we will restrict our
attention to the case when q is transcendental. If a similar theorem is true for any
non-root-of-unity ¢ then the results in this paper extend to all non-root-of-unities
but the author is not aware of any such result.

Theorem 8.2 Let A\ € X. Then there exists a filtration of M(\), M(X\) D
My D -+ D M, such that My is the unique mazimal submodule of M (\) and

> chM; = > ch M (s3.))
=1 B€<I>+
Q" A(Kp)e+qy™°

The filtration is called the Jantzen filtration and the formula is called the Jantzen
sum formula.

Proof. This is proved in [Jos95, Section 4.1.2-4.1.3]. A proof using twisting
functors can also be found in [Ped15b, Theorem 6.3]. O

Definition 8.3 Let A € X.
AN = {a € MA(KL) € 4}

Let v € II.
D(y)={Bedt|p= Z Mo, My > 0}

acll

Lemma 8.4 Let A € X. Let v € II be such that v € A(X\). Then —D(y) C

Proof. Let § = > cymaa € D(y). We prove by induction over ht 5 =
Y acnMa that =3 € Tpyy. If ht3 = 1 then 8 = v and —y € Ty by
Proposition [5.10]

Assume ht 3 > 1. Then 8 — o € ®* for some a € II. We have either o = ¢
or B —a € D(v). In either case we get 8 = 3 + 3" for some 3/, 8" € & with
B € D(vy) and ht 8/ < ht3. By induction —f' € Tpny. If = € Fp(y) then
—fB'= =B+ B" € Fr since @+ C Fry) and Fp(y) is closed (Proposition .
A contradiction. So —f € Tr,(y)- O

Lemma 8.5 Let v € II. D(~) generates Q.

Proof. Let (D(7v)) be the subgroup of @ generated by D(y). Assume IIN
(D(7)) #1I1. Let a & (D(7y)) be a simple root that is connected to an o/ € (D(y))
(possible since the Dynkin diagram of a simple Lie algebra is connected). Then
a+a € (D(v)). But then « = a+ o — o’ € (D(v)). A contradiction. So

(D(7) = Q. 0
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Lemma 8.6 Let A € X be a non-integral weight. Assume that L(\) is admissible.
Then A(X) is connected and |A(N)]| < 2.

Proof. Assume |A(A\)| > 2. Let a,o € A(N) be two distinct elements. We
will show that o and o' are connected. So assume (a|a’) = 0 to reach a
contradiction. L(\) is admissible of some degree d. By Lemma and
Proposition [5.6] * L(s,.A) is admissible of the same degree d (L(s4.A) is infinite
dimensional since s, A(Ky) = M(Ko) € £¢),). Let © be a set of commuting
roots that is a basis of @ such that a € ¥ and —% C Ty (Lemma .
By Proposition %o L(sq.A) is a subquotient of L(A)p,. We claim that
SUPPegs (L(A)) N Suppegs (P> L(sa-A)) # 0. If this is true then we have for v €
SupPPegs (L(A))NSUPPess (** L(8a-2)); L(A)y = (L(A) Es)v = (** L(5a-A))w as (Ug)o-
modules by Lemma But then by Theorem [2.7] L()\) 22 %= L(s,.)\) which
is clearly a contradiction by looking at the weights of the modules. So we will
prove the claim that Suppeg(L(A)) N Suppegs (= L(sq.A)) # 0:

We have —D(a’) C Tppy and —D(o/) C Tear(s,.n) = Sa(Tr(sa.n)) by
Lemma [8.4] and the fact that (a|a’) = 0. So —D(a’) C C(L(A)) N C(**L(sqa-\))
thus C(L(X)) N C(°>L(s,.\)) generate Q by Lemma This implies that
C(L(N) — C(°**L(s84.A)) = Q. The weights of L(\) and *~L(s,.\) are con-
tained in ¢®\ so a weight in the essential support of L()) (resp. **L(sq.\))
is of the form ¢ A (resp. ¢"2\) for some 1, po € Q. By the above ¢©(E(M)+m \n
qC U Llsa-X)Huz \ £ (). Since €L+ N € Suppey(L(N)) and g€ Elsa-N)Fn2 )\
SUppess (** L(84.A)) we have proved the claim.

So we have proved that any two roots of A(\) are connected. Since there are
no cycles in the Dynkin diagram of a simple Lie algebra we get A(\) =2. O

8.2 Rank 2 calculations

Following the procedure in [Mat00, Section 7] we classify admissible simple
highest weight modules in rank 2 in order to classify the modules in higher ranks.
We only consider non-integral weights because of Theorem We assume that
q is transcendental over Q.

Lemma 8.7 Assume g = slz. Let A € X be a non-integral weight. The module
L(X) is admissible if and only if ¢° \(Kp) € £q%>° for at least one root B € ®+.

Proof. It is easy to show that the Verma module M()\) is not admissible.
So ¢?A(Kg) € +¢P>° for at least one root 3 € ®* by Theorem On
the other hand suppose ¢"\(Kjg) € +¢%>0 for at least one root 8 € ®+. If
@’ AN(K) € £¢*>° for a simple root o € II then by easy calculations we see that
M (s4.)) is a submodule of M(X). If ¢°A\(K,) & +q¢%>° for both simple roots
a € II then we get that M(sg.\) is a submodule by Theorem So in both
cases we have a submodule M (sg.A) of M(A). Since L(A) is the unique simple
quotient of M (X), L(\) is a subquotient of M (X)/M(sg.A). Since M(X)/M (sg.\)
is admissible we see that L()) is admissible as well. O

Lemma 8.8 Assume g is of type Co (i.e. g =sp(4)). Let II = {aq, an} where
o is short and aw is long. Let A € X be a non-integral weight. The module L(\)
is infinite dimensional and admissible if and only if ¢° AN(Ka,), ¢° M Ko, +as) €
:l:qZ>0 and A(K02)7 A(K2041+042) € :tqlJrzZ(: iqé£2+z = iq1/2+Z )

2ai o
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Proof. Theorem implies that ¢?A\(Kg) € qg” for at least two 3 € ®*
because otherwise L(\) = M(X)/M(sp.\) for some 3 € ®F. But M(\)/M(sp.\)
is not admissible. Since ) is not integral we know ¢?A\(K,) & ¢~ for some « € II.
Suppose A\(K,,) & +¢% .- We split into cases and arrive at a contradiction in

both cases: If A(Ka,) & +¢42° then by the above ¢°A(Ka,ta,) € £¢27°,,. =

ag+az
+¢%>0 and ¢"A(Koa,+as) € £ 10, = £¢°>° which implies that ¢?A(Kq,) =
PN K20, 10 K o,) € £% = £¢%,. A contradiction.

The other case is ¢? A(Kq,) € £¢52° = +¢*%>0: In this case we get A(Ka, 4a,) &
+¢% = +¢% ., so the last root, 201 + a2, must satisfy that ¢”A(K2a,+a,) €
+£¢57°, o, = £¢°7>0. But this implies that A(Ka,)? = A(Kaa,+a: K5,)) € £¢%2
which implies that A(K,,) € £¢%. A contradiction.

So A(Ka,) € +¢*. Since X is not integral we get A(Ka,) ¢ ¢4, = +¢*%.
This implies that A(Kza,+a,) & £¢°% = £45,, 4a,- Since ¢?A(Kp) € iqg>0 for
at least two 3 € ®F we get ¢°A(K,,) € £¢%>° and ¢°A(Ka,+a,) € q%>°. This
in turn implies that A(Ka,) = A(Ka,+0,K5') € £¢%. Since A(Kq,) € £¢°% we
get AM(Ko,) € £¢'%2. Similarly A(Kaa,+as) = MKy +a: Koy ) € ¢ 22, So we
have shown the only if part.

Assume A is as required in the lemma. We will show that L(\) is admissible.
By Theorem we see that the composition factors of M(ss,.A) are L(Sq,-A)
and L(Sa;+asSa;-A) = M (wp.\) and the composition factors of M (sS4, +a,) are
L(Say+as) and L(Sa; Say+as) = M(wo.A). So

> ch M(s5.)) = ch L(50,.A) + ¢h L(Sa, 1ay-A) 4+ 2ch L(wg.\).

gedt
q"A(K;a)E:I:qZ?O

So the composition factors of the maximal submodule of M (X) are L(sq,.A),
L(S4;4as-A) and L(wg.\). The worst case scenario being multiplicity one. In
this case the character of L(\) is

ch M (X\) —ch L(sq,-A) — ch L(Sa, +a,) — ch L(wg.A) =
=ch M(X\) — ch M (S, -A) — ch M (s4,+a,-A) + ch M (wg.A)

The character of Verma modules are known and by an easy calculation it is
seen that this would imply L(\) is admissible (cf. the proof of Lemma 7.2
in [Mat00]). O

8.3 Type A, D, E

In this section we complete the classification of all simple admissible highest
weight modules when the Dynkin diagram of g is simply laced. In particular
we show that g does not admit infinite dimensional simple admissible modules
when g is of type D and E. In Section [B.5] we show that the same is the case
when g is of type B or F. Combining this and Section [8.5] we get that g admits
infinite dimensional simple admissible modules if and only if g is of type A or C.
Remember that we restrict our attention to transcendental ¢ and to non-integral
weights because of Theorem
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Definition 8.9 Let \: Uf]) — C be a weight. In the Dynkin diagram of g let any
node corresponding to o € IIN A(X) be written as o and every other as o. e.g. if
g =sl3 and |A(N)| = 1 then the graph corresponding to A would look like this:

[ ] o

We call this the colored Dynkin diagram corresponding to ).

In this way we get a ’coloring’ of the Dynkin diagram for every A.

Lemma 8.10 Let A € X be a non-integral weight such that L(\) is admissible.
If the colored Dynkin diagram of A contains

’

¢} e
e} o

Z>0
a4

as a subdiagram then ¢°P\N(Koto/) € £q

Proof. Let vy be a highest weight vector of L(\). Let s be the Lie algebra sl
with a and ' as simple roots. Let U be the subalgebra of U, generated by
Fo,Fop, K, Kf,l, E,,Ey. Then U = U, (s) as algebras and Uv), contains the
simple highest weight U, _ (s)-module L(A,s) of highest weight A (restricted to
Uy (s)) as a subquotient. Since L()) is admissible so is Uvy hence L(A, s) is

admissible. Then Lemma implies that ¢°A(Ky4qa/) € j:qg”. O

Lemma 8.11 Let A € X be a non-integral weight such that L(\) is admissible.
If the colored Dynkin diagram of \ contains

o’ oY %
o 0] [ )

as a subdiagram then L(s.\) is admissible and the colored Dynkin diagram
corresponding to so.A contains

’ "
(e [e3 @
[ ] o o

i.e. we can ‘move’ o

o and still get an admissible module.

Proof. L(sy.A) is admissible by Proposition It is easy to see that
*sa-MKy) € +£¢* (follows by Lemma since A is non-integral), that
¢°5a-MNKor) € £¢% and that ¢Ps, A\ (Ka) € £¢%>° (by Lemma [8.10)) O

Lemma 8.12 Assume g # sly. Let A € X be a non-integral weight such that
L(\) is admissible.

If A(\) = {a} then « is only connected to one other simple root o', L(sq.\)
1s admissible and the corresponding colored Dynkin diagram of sq.\ contains

’

[e% [e%
O o

as a subdiagram.
On the other hand if the colored Dynkin diagram of A contains

’

[e3% [
] o
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and o is the only root connected to o then the colored Dynkin diagram of sq.\
contains

’
@
[ ]

oRQ

as a subdiagram.

Proof. Since a € A()), L(s,.A) is admissible by Proposition [5.10} First assume
A(N) = {a}. If « is connected to two distinet roots o’ and o’ then it is easily
seen that o/,a” € A(sq.A) contradicting the fact that A(s,.A) is connected
(Lemma . It is easily seen that ¢”s, . A(K,) € +¢%>° (since A is non integral)
and ¢”so N Ko) € q7>0.

On the other hand if A(A) = {a,a'} then ¢°so MKo) = ¢PAN(Kotor) €
+q¢%>° by Lemma (]

Now we can eliminate the types that are not type A by the following theorem:

Theorem 8.13 Assume g is a simple Lie algebra of simply laced type. If there
exists an infinite dimensional admissible simple module then g is of type A.

Proof. Suppose there exists an infinite dimensional admissible simple module
then by Theoremthere exists a A € X such that L()) is an infinite admissible
simple highest weight module. By Theorem [8.1] and the classification in [Mat00]
there exists no highest weight simple admissible modules with integral weights
unless g is of type A. We need to show the same for non-integral weights.

If the Dynkin diagram is simply laced and not of type A then the Dynkin
diagram contains

[e3%
[ )

’ 1"
[e3% e}
[ ]

o2

as a subdiagram.

By Lemma[8.12] we can assume without loss of generality that [A(\)| = 2 and
by Lemma [8T1] we can assume that the colored Dynkin diagram corresponding
to A contains the following:

oQ

’ "
e

(¢} v
[e] e} [ ]

But then L(s,.\) is admissible as well by Proposition and the colored
Dynkin diagram for s,.A contains

[e3%
¢}
a/ ,y a//
[ ] o [e]
contradicting the fact that A()\) is connected. O
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Combining all the above results we get

Theorem 8.14 Let g = sl,4+1, n > 2 with simple roots ay,...,a, such that
(i|laip1) =—=1,i=1,...,n. Let A € X be a non-integral weight.

L(X) is admissible if and only if the colored Dynkin diagram of X is of one
of the following types:

aq a2 a3 Qn
O — o0 [ ] [ ]
(38 a2 a3 Qn
O — O [ ] [ ]
] [e'D) (6%:3 [a72%%
® — O o [ ]
a1 a2 as QAn
e — o [ ] [©]

Proof. By the above results these are the only possibilites. To show that L(X)
is admissible when the colored Dynkin diagram is of the above form use the
fact that by Lemma and Lemma we can assume A has colored Dynkin
diagram as follows:

g a2 [e %3 Qnp
o [ ] [} e .

Let 8; = an +az + -+ a;, i@ = 1,...,n. We see easily that Tp) =
—{B1,B2,...,Bn} and Fp = & U Oy, o 3. Let [, u, p etc. be defined
as in Section 2 of [Ped15al]. By [Ped15al Theorem 2.23] N := L(\)* is a sim-
ple finite dimensional U,(l)-module and L(\) is the unique simple quotient of
M(N) = U, @y, p) N. Since the vectors 3i,..., 3, are linearly independent
M(N) is admissible. This implies that L(\) is admissible since it is a quotient
of M(N). O

We can now make Corollary more specific in type A:

Corollary 8.15 Let g = sl,, 11, n > 2 with simple roots a,...,q, such that
(Oéi|05i+1) = —1, 1 = 1,...,n. Let ,Bj = o+ -+ g, j =1,...,n and
Y ={B1,...,Bn}. Let Fg, =Ty, --- T, ,(Fy,) and let Fx, = {q“Fgl1 Fg:\az €
N,a € Z} be the corresponding Ore subset. Then ¥ is a set of commuting roots
that is a basis of Q with corresponding Ore subset F;.

Let B; = an + -+ an—j, j=1,....,n and X = {B,...,8,}. Let F’J,_ =
Ts, - Ts, ;.1 (Fa,_ ;) and let Fx = {q“(F/g{)“1 - (Fg ) lai € Nya € Z} be
the corresponding Ore subset. Then X' is a set of commuting Toots that is a basis
of Q with corresponding Ore subset Fy.

Let L be a simple torsion free module then one of the two following claims
hold

o There exists a X € X with \(K,,) € £¢", M(Ky,) € £¢", i =2,...,n and
b € (C*)™ such that

L= SOFE,an()\)FE'

e There exists a A € X with N(K,,) € +¢", N(K,,) € £¢V, i=1,...,n—1
and b € (C*)" such that

L = SDFE/,an()\)FZw
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Proof. By Theorem EXT(L) =2 EXT(L(N)) for some X € X. If X is non-
integral then by Theorem Lemma Lemma and Proposition [5.6
there exists a A such that A\(K,,) € +¢", AM(K,,) € £¢", i = 2,...,n and
such that EXT(L(N)) 2 EXT(L(N)). By Lemma [5.4| we can choose ¥ as the
commuting set of roots that is used in the definition of EXT(L())).

If ) is integral we see by Theorem Lemma Proposition [5.6| and the
classification in [Mat00), Section 8] that EXT(L(N)) = EXT(L(N)) for a A such
that A(A) = {aq} or A(N) = {a,} (cf. e.g. [Mat00, Proposition 8.5]).

Now the result follows just like in the proof of Corollary a

In Section [J we determine all b € (C*)™ such that ¢ py b.L(A) py, is torsion free
with ¥ as above in Corollary and A such that A\(K,,) € £¢", A\(K,,) € +¢",

i = 2,...,n. By symmetry of the Dynkin diagram and Corollary this
classifies all simple torsion free modules.

8.4 Quantum Shale-Weil representation

In this section we assume g is of type C,,. Let a1,...,a, be the simple roots
such that «a; is connected to a;41 and «; is long. We will describe a specific
admissible module V' and show that V = L(w") ® L(w™) for some weights w™
with the purpose of classifying the admissible simple highest weight modules,
see Theorem Let V = C[Xy,...,X,]. We describe an action of the simple
root vectors on V: For i € {2,...,n}

—1
EalelXé"? . Xgn — _ [al][([];] ]X?1*2X§2 - Xgn

:iXil1+2xél2 . Xgn

2]
o X X =[] X7 XX X
Fo X Xom =laga Xt X7 T X

K(itllengz .. XZn :q$(2a1+1)Xillxg2 .. Xg:n

KEIX{ X592 X =g xo xge . xan,

Falengz . X’Zjn

We check that this is an action of U; by checking the generating relations.
These are tedious and kind of long calculations but just direct calculations. We
refer to the generating relations as (R1) to (R6) like in [Jan96 Section 4.3].

(R1) is clear. (R2) and (R3): Let j € {1,...,n}

—q_2a1+3%X?1_2X§2 o X On ifj=1
Ko, Boy X{' - Xiin = § —qm=2e fullg=tlpp =2 e X it j =2
_qaj71—aj%Xfl_2X2a2“'Xgn lf]>2

:q(allaj)EalKaj Xi“ X2a2 - Xgn.
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Similar for Ko, F,,. Fori € {2,...,n}

¢ g X X T X e if |j—i] > 1
aj—1—a;—1 ,Xa1_”Xf1171+1Xqi—1.__Xan fi—i—1
KoszaiX{ll o Xﬂ;n = ¢ [al] 1 i—1 % n 17 ?

qﬂj—1+1—aj+1[ai]X1a1 ...XZ{IS1+1X;M-*1 e XOn o if =1
g1 g ] XM .lel_i?“XZ@i—l . ifj=i+1
=¢ DB, Ko X{ X5 X0

Similarly for K, Fl,.
(R4):
1

[Ea1 ) Foq]Xfl ‘Xv2a2 e szbn :EOél mXthrQXQaz U ng" + FOtl

_ (_ [ar + 2)[a1 + 1] = [a1][aq

[a1][ar — 1]
2]

— 1 X ... X%
2] 1 n

a1—2 yraz a
Xl X2 ...Xnn

(2][2] [2][
—2a1—1 _ 2a1+1
S E T S Y.
9~ —q
fKal _Kl;ll Xat X
Co?—q? ! "
a a a;— a a aifla; —1 a;— a a
[Ea17Fa2]X11 _'_Xnn :[al}quXll 1X22+1"'Xn" 4 [1][[21]]F02X11 2X22 ,.-Xnn

__laflas —1far = 2] v, -5 5an41 | yan
[2] 1 2 n
[a1][a1 — 1][a; — 2]
2]

a1—3 yaz+1 an
Xy Xy X

=0.

For i > 2 clearly [Eq,, Fo, ] X{* -+ X8 = 0. Fori,j € {2,...,n}: If[i—j| > 1
clearly [E,,, Fo, ] X{" -+ X2n = 0.
Xf" coe X0 :[ai]Eainl .. Xzfzi—lX{liﬂJrl D

+1
aj—1+1 i—1 n
= @il Fapp, X9 - X300 X X

[EOéiaFOé

i+1]

Q41
=lailla; — YX{ - X P T x g2y xan
— lagla; — JX§ - X P XX

=0.

1
[Eag, Fa, ] X1 - X0 =Ea2mel+2X§‘2 e X = fag) Fo, X TIXG2 T X
— [aQ] Xa1+3Xa271 c X On [G’Q] Xa1+3Xa271 ... XOn
[2] 1 2 n [2] 1 2 n

=0.
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For 7 > 2:

[Eai;Faifl]an .. ,Xgn :[ai72]Eainl L Xaifz—lXaif1+1 . Xg"

i—2 i—1

i—1+1 i—
— (i) Fo, X X L X0

i—1

=laioffai] X7t XXX X

i—1
— [a)ai—2] Fo,_ X{ - X252 IX
=0.
For 7 > 1:
(B, Fa ]JX{ - X0 =[a; 1] Ea, X7 - XU X0 X
— Jag] Fo, X{ - X T X X

1+2 aifl
Xi

DY aﬂ’
Xn

=(lai—1]la; — 1] = [a[ai—1 — 1) XT* - XU G- X

=lai-1 —a] X7 - Xon

K, — K1
:771‘% Xt X,
q—4q

Finally we have the relations (R5) and (R6): Clearly [E,,, Eq, ] X{" --- X5 =

0 and [Fy,, Fu,|X{1 -~ X0 = 0 when [j —i| > 1.

(EigEal - [3]E22EQ1E062 + [3]E042EC¥1E3¢2 - EalEig)Xlal
1

— [a1][a1 — 1][az]az — 1]az — 2]

/

+ [B]lar + Hlaa][az][az — 1][az — 2]
— [3] [a1 + 2] [a1 + 1] [ag][ag — 1][&2 — 2]
+ a1+ 8ar + 2laallaz — oz — 2) XX

[as][as —[21]] [az — 2] ( — [a1][a1 — 1] + [3][ay + 1][a1]

a
o XOn

a
L XOn

— [Bllax + 2J[ax + 1] + a1 + 3][a1 + 2])Xi“+1X§2_3 e Xy

=0.

(EilEoQ - [2]041E041E042E041 + Eainl)Xfl e in
_ las]

[2][2]

— [2a, [a1][ar — 1][a1 — 1][a1 — 2]

([a1 + 1][a1][ar — 1][a1 — 2]

laz][a1][a1 — 1][a1 — 2]

+ a1 — 3]>X111+3X32*1 o X
=0.

42

o] (lar +1] = 2o a2 -

[
+ [a1][ar — 1][ax — 2][ay — 3])Xf1+3X§2*1 o
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For 7 > 1:
(EiiEQi+17[2]EQiECH+1EO¢7‘, + Eai+1E§i)Xih e in
=lair1]lai](Ja; + 1] — [2][a;] + a; — )X - X PP x e tx it X
=0.

(E2 E.,—[2]E

Qi1 Qi1

EpEa,\, +Eo, B2 )X{ - X0m

it+1 iyl

=lair1]lair1 — 1 ([a;] — [2[ai + 1] + [a; + 2D X - XPP X @ X002 X
=0.

(F§1Fa2 - [2]a1F(X1FazF<X1 + F F2 )Xill "'in

Q2" o

— [2]a, a1 + 2] + [a + 4)) X3 x g2t xan
1 1 2 n

(F2 Foy — [B]F2 Fo, Foy + [8|Fay Fo, F2, — Fo  F3 )X+ X007

a1+ g a1+ ap

:é ([a1 + 2][ay + 1][a1] — [3][a1][a1 + 1][a1]
+ [3][a1][ar — 1][ad]

— [a1][ar — 1][a1 — 2])X{“’1Xg2+3 .

B
il

[a1 + 2][ar + 1] — [3][a1 + 1][a4]

[

+ [3)faa]far — 1]
~ o1 = 1lar - 2]) X7 x5 X

=0.
For i > 1:
(ngFai+1_[2]FaiFai+1Fai + Fai+1Fa2i)Xfl e ng"
=laia)lai-r — 1)([a;] — [2)[a; + 1] + [a; + 2) X - X 20X X
=0.

(F2 F~7[2]Fai+1FaiFai+1+F‘F2 )Xill"'in

Qg1 Qg QT g

=lai—1][ai)([ai + 1] — [2[a;] + [a; — )X - X T X @ TIX TR
=0.

So we have shown that V is a U;(g)-module. Note that V is admissible
of degree 1 and V = Ve @ V0% where V" are even degree polynomials
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and V°? are odd degree polynomials. Furthermore we see that Veve" = L(w™)
and V°% = [(w™) where w® are the weights defined by w*(K,,) = ¢},
wH(Ky,)=1i>1and w (Ky,) =q¢ 3, w (Kao,) =q¢ 1w (Ky,) =1,0 > 2.
Veven is generated by 1 and V% is generated by X;. We will use the fact that
L(w™) is admissible in Theorem in the next section.

8.5 Type B, C, F

In this section we classify the simple highest weight admissible modules when g
is of type B, C or F. Remember that we have assumed that ¢ is transcendental.

Theorem 8.16 Let g be a simple Lie algebra not of type Go. Suppose there
exists an infinite dimensional admissible simple Uy(g)-module. Then g is of type
A orC.

Proof. If g is simply laced then Theorem [8:14] gives that g is of type A. So
assume g is not of simply laced type. Theorem and the classification in the
classical case tells us that no admissible infinite dimensional simple highest weight
modules exists with integral weights when g is not simply laced (cf. [Mat00l
Lemma 9.1]).

We have assumed that g is not of type G2 so the remaining non-simply laced
types are B, C or F. We will show that the Dynkin diagram of g can’t contain

the subdiagram
[e5] (6] a3

e <—— o o .

Assume the Dynkin diagram contains the above as a subdiagram. If there
exists a simple admissible infinite dimensional module L then there exists a
non-integral A € X such that L()) is infinite dimensional and admissible (The-
orem [5.12). Let A\ € X be a non-integral weight such that L()) is admissible.
Then by Lemma "N Ko,) € :l:q(%1 = +¢”. By Lemma and Lemma
we can assume without loss of generality that the colored Dynkin diagram of A

is of the form
[e5] [e') a3

e <—— o o .

Let s be the simple rank 3 Lie algebra of type Bs. Let U be the subalgebra
of U, generated by Eoéi,Foéi,Ki,l7 i =1,2,3. Then U = U,(s). Let Q4 :=
Z{ay, 02,3} C Q. Let vy be a highest weight vector of L(\). Then Uuvy
contains the simple highest weight U,(s)-module L(\,s) of highest weight A
(restricted to UY(s)) as a subquotient. Since L()) is admissible so is L(, 5).

Like in the proof of Lemma [B.6] we get a contradiction if we can show that
Trx,5) 50z L(say.\,s) gENETAtES Qs. Tt is easily seen that {—a; — g, —a3, —201 —
a2} C Trone) N Toez f(sey A8)0 S0 Trns) N Toez [(s,, .25 generates Qs. So
C(L(A,8))NC(°2 L(Sqy -\, 5)) generates Q5. Therefore C(L(A,s))—C/(*2 L(Sqy-A, 8)) =
Qs. The weights of L(\,s) and =2 L(sq,.), s) are contained in g%\ so a weight
in the essential support of L(A,s) (resp. **2 L(sq,.A,8)) is of the form ¢g“* A (resp.
g"2\) for some jui1, 12 € Q,. By the above g€ (L)1 \qgC 2 Lisay Ass))+uz \ £
0. Since ¢¢FA#D+r1 X  Supp,. (L())) and g€ 2 Llsaz-Ae)+r2 ) © Supp, (**2 L(s4,.), 5))
we have proved that Suppge(°*2 L(Sa,-A,6)) N Suppe(L(A, 5)) # 0. By Propo-
sition L(A,s) and o2 L(sa,.),5) are subquotients of L(\,s)r, . Let v €
SUPPess (P72 L(Sap A, 6)) N Suppegs(L(A,5)). Then by Lemma L(\s), =
(LN 8)Fa, ) = (**2L(8a,.A,5)), so by Theorem [2.7] L(),5) = **2L(54,.),5).
This is a contradiction by looking at weights of the modules.

o=
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Theorem 8.17 Let g be a simple Lie algebra of type Cy, (i.e. g =sp(2n)). Let
Qq,...,on, be the simple roots such that a; is connected to a;y1 and oy is long —
i.e. the Dynkin diagram of C,, is

Let A € X. L()\) is infinite dimensional and admissible if and only if
e MKy,)€exg" fori<i<n

i

o MKa,) € £q2,*F = £¢'+77
(] A(Kal-‘raz) S iq2272

or equivalently ¢° \(Kg) € £q¢%>° for every short root f € ®* and \(Kpz/) €
+q¢'*+2% for every long root B’ € 7.

Proof. Assume \(K,,) ¢ +¢" for some i > 1. Then by Lemma there
exists a A’ such that L()') is admissible and such that N (K,,) € ¢". Let s be
the Lie algebra sp(4) with simple roots ae and «q. Let U be the subalgebra
of Uy generated by Fu,, Fa,, Ka,, Koy, Fay, Ea,. Then U = Uy(s) as algebras
and Uvy contains the simple highest weight U,(s)-module L(),s) of highest
weight A’ (restricted to UJ (s)) as a subquotient. Since L(X’) is admissible
so is Uvy hence L(),s) is admissible. So N (K,,) € +¢" by Lemma A
contradiction. So we have proven that A\(K,,) € +¢" for 1 < i < n is a
neccesary condition. We get also from Lemma [8.8] that A\(K,,) € ¢' 2% and
CANKaytas) = PANKay+a,) € £¢%>° which shows that the two other conditions
are neccesary.

Now assume we have a weight A € X that satisfies the above. So A(K,,) =
g~ for some r € 2Z. We can assume 7 € N by Lemma5.11]and Proposition [5.6]
(if 7 < 0 replace A with s;.A, L(A) is admissible if and only if L(s;.A) is). We
have A = w )\ for some dominant integral weight Ag and L()\) is a subquotient
of L(w") ® L(X\g). Since L(w™) is admissible and L()\¢) is finite dimensional
L(w™) ® L(\o) is admissible and since L(\) is a subquotient of L(w™) ® L(\g),
L()) is admissible as well. O

Corollary 8.18 Let g be a simple Lie algebra of type C,, (i.e. g =sp(2n)). Let
a1, ...,an be the simple roots such that a; is connected to a1 and oy is long.

Let Bj = o1 +--4+0a5,j=1,...,n and ¥ = {B1,-..,Bn}. Let F/Bj =
Ty, - Ts; ,(Fa;) and let Fy = {q“Fgl1 Fg:|a1 € N,a € Z} be the correspond-
ing Ore subset. Then X is a set of commuting roots that is a basis of QQ with
corresponding Ore subset Fy;.

Let L be a simple torsion free module. Then there exists a A € X with
MNKp) € £¢" for all short B € @+ and N(K.,) € £¢' 2% for all long v € ®+ and
ab e (C*)™ such that

L= QOFE,b'L(A)FE

Proof. By Theorem there exists a A € X such that EXT (L) = EXT (L(N)).
By Proposition [5.6| L(A) is admissible and by Theorem A is as described in
the statement of the corollary. Now the result follows just like in the proof of

Corollary O
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In Section [10[ we determine all b € (C*)™ such that ¢ gy, b.L(\)m, is torsion
free (with ¥ and A as above in Corollary [8.18)). By the corollary this classifies
all simple torsion free modules for type C.

9 Classification of simple torsion free modules.
Type A.

In this section we assume g = sl,y; with n > 2. Let II = {aq,...,a,}
denote the simple roots such that (a;lai41) = —1,i=1,...,n—1. Set 3; =
s1---8j-1(a;) = a1+ -+aj, then ¥ = {f1,..., Bn} is a set of commuting roots

with corresponding root vectors Fg, = T, - Ts, ,(F,;). We will show some
commutation formulas and use these to calculate ¢, 1, on all simple root vectors.
This will allow us to determine exactly for which b € (C*)", ¢py, b.L(A)py, is
torsion free, see Theorem 0.8

Choose a reduced expression of wy starting with sy ---s, and define roots
7, --.,7yn and root vectors F, ..., F,, from this expression. Note that Fjg, =
F, fori=1,...,n

Proposition 9.1 Leti € {2,...,n} and j € {1,...,n}.

Fg,, ifj=i-1
0, otherwise

[FamFﬂj]q = {

and
Fg, KJ', ifj=i
[EamFﬂj]: Pima e .
0, otherwise.
Proof. We will show the proposition for the F’s first and then for the E’s.
Assume first that j < i — 1. Then clearly [Fy,, F3,]q = [Fa,, Fp,] = 0 since
a; is not connected to any of the simple roots oy, ..., a; appearing in ;.
Then assume j > i. We must have «; = ~y for some k > n since
{7,...,7v} = ®*. By Theorem [3.2) - [Fa,, F,]q is a linear combination of
monomials of the form Fy7}! - F3*" I For a monomial of this form to appear
with nonzero coefficient we must have
k-1
Z apyh =0 + Bj = o1 4+ - F a1 + 204 F i .
h=j+1

For this to be possible one of the positive roots s, j < s < k must be equal to
a1 +as+- -+ ayy, for some m < j but oy + s + - - - + ay, = Y by construction
and m < j < s so m # s. We conclude that this is not possible.

Finally we investigate the case when j = ¢ — 1. We have

[Fai’FBi—l]q :[T o 31 2(Fal)’ ”'Tsi—2(FUC1Z—1)}q
:Tel "'Tsl 2 ([Fmv - 1](1)
=T, T T, 1(Fa1)
=L,
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For the E’s: Assume first j < i: Since Fp, is a polynomial in Fy, ..., Fy,
E,; commutes with Fjg, when j <.
Assume then j = i: We have by the above

FBi = [Faw F,Bi—l]q
SO

[Eam Fﬁi] :[Eai7 (Faq‘,Fﬁi—l - qi(ﬂiillai)Fﬁi—lFai)}
:[Eai7Fa1]FBL 1 qFBi71[Ea¢7Fa,-]

1 —1
:L{%Fﬁz 1 qFBZ 1%
) q9—9q
. Kl )

q—q
=Fp,_, K]

Finally assume j > i: Observe first that we have

TSi+1' SJ 1 § uS a1 Us

for some m € N and some u,,u/, that are polynomials in Fy,,,,...F,;. Note
that T, (us) = us and T, (u},) = ), for all s since «; is not connected to any of
the simple roots c;1a,...05. So

TSiTSH—l te TSJ 1 - (Zu F Qg1 s)
—Zu Ts,(Faiyy)
:ZUS(FMHF —qFo, Fy L+1)

_§ usF a1 Us F,, qFO@E usF a1 Us

:TSiJrl .'.Tsj—l(Faj)Fai F TS;+1 .'.Tsj—l(Faj)'
Thus we see that
Fy, =T, ... To, -+ Ty, (Fa,)
:Tst+1 : Sg W aj) o T 1(F0¢i) —qTy, "’qu‘,_1(Fai)Tsi+1 "'ng'_l(Faj)
:T5i+1 ’ bg 1 (FaJ)Fﬁz - qF,BLTSiJrl e Tsj—l (F(XJ)
and therefore
[anFﬁj] :T81‘+1 o 'Tijl(Faj)[anFﬂi] - [EO& ’Fﬁl]T Sit+1 " Tijl(Fa])
:T9i+1 ’ ‘Tsj—l(FOég)Fﬁq 1Ka - qFﬁz 1K T Sit1 ’,TSJ'—1(FOéj)
:Fﬂi—lTSH»l T Tijl (Faj)Kz;L- - F/Bi—lTSH»l U Tijl (Faj)K(;gl
=0. O
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Proposition 9.2 Leti € {2,...,n}. Let a € Z~qg. Then

[Faivng_l]q = [a’]F[(ii{Fﬂz

and for b € C*

SDFBi—l’b(Fai) =bFy, + 7—1Fﬁ711F51'

Proof. The first claim is proved by induction over a. a = 1 is shown in
Proposition 0.1} The induction step:

Faingti = (angileai + [G]Fﬁj Fﬁi) FBi—l
:qa-‘rng;ti Fai + angz‘—lFﬁi + q_l [a]ngleﬁi

:anrngiiFai + [a + l]ng_ngi.

So we have proved the first claim. We get then for a € Z+q
¢“—q"

PFg, ,.q* (Faz‘) = Fﬁ_,leaing_l = anOéi + q-— q—l Fﬂz‘71Ff3i'

Using the fact that ¢ Fﬂi_lvb(FOéi) is Laurent polynomial in b we get the second
claim of the proposition. (Il
Proposition 9.3 Leti € {2,...,n}. Let a € Z~g. Then

[Eaiy F ) = ¢ a5 Fp,_ K
and for b € C*

,b=bt _
‘PF/si7b(Eazz) =FEq, +¢q 1bq — q_lFﬁilFﬂqzilKail'

Proof. The first claim is proved by induction over a. a = 1 is shown in
Proposition [9.1] The induction step:

Eo‘iFg;Ll = (ngEai + qa_l[a]FgleﬁFlK;f) Fg,
:nglEai + F§ Fp_ K"+ ¢"ta]Fg Fp_ K3
=F§H Bo, +4"(q7" + qla) F§ Fp_ K

=F5™ Ea, + ¢*la+ 1]F§ Fp,_ K.

This proves the first claim. We get then for a € Z~

_ 164" a7 _
PFs,;,q° (Bo;) = F,BiaEaing =FEq, +¢q 1QGFF&1F5F]K(M1.

Using the fact that ¢p, ,(Eq,) is Laurent polynomial in b we get the second
claim of the proposition. O

In our classification we don’t need to calculate ¢ ry, b(Eq,) but for complete-
ness we show what it is in this case in Proposition [0.5] To do this we need the
following proposition:
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Proposition 9.4 Let j € {2,...,n}. Then

[EalaFﬂj] = _quz T

Sj—l(FQ‘j)KOU?
fora e Zsg:

[Eal7ng] = —q2_a[a]F§;1T52 o .TS]'—I(F(X]‘)KOLI
and for b e C*:

b—b1t

@F/sj,b(Eal) =Eq, — q2b FEJITSZ e 'TSj—l(FOéj)Kal‘

Proof. Like in the proof of Proposition [0.1] we see that
m
Ty, - Ts, Fo, = Z Us Fo,uls
s=1

for some m € N and some u,, uj, that are polynomials in Fl,, ... Fy,. Note that
T, (us) = ug and Ty, (u}) = u), for all s since « is not connected to any of the
simple roots as,...a;. So

T51 TSQ Tt Tsj,lFaj :Ts1 (Z uSFaz“;)
s=1

usTs, (Fo, ).

S

M-

@
Il
—_

M-

us(FagFal - qFalFaz)u;

w
Il
—

M-

m
I i
UsFo, U Foy — qFa, E Us Fo, U
s=1

@
Il
—

|
o3

"'Tsj—l(Faj)Fal - qFalTsz : "Tsj—l(Faj)'

[EOéNFﬁj] :TS2 e 'TSj71(FOéj)[EC¥1 ) Fal] - q[EOéNFOél]TSz T Tsj— (FO!J)

Ky, — K1 Ky, — K1

ql— q—la1 — 1 ql— q_la1 Ty, - Ts; i (Fay)

Ka1 B K0711 — q2K01 + K0711
q—q!

:Tsz e Tijl (FOéj)

:TSZ T TSj—l(FOCj)
= - qTS2 o .Tsj—l(Faj)Kal'

Note that T, - - - Ts,_, (Fy,) is a polynomial in F,, ..., F,;. By Proposition
[Fai,ng]q = [Fai,ng] =0for1l < i< jand [Fa].,Fﬁj]q = Fa].ng —qingjFaj =
0 so

Ty, T

Sj—l

(Foéj)Fﬁj - qilFﬁ]TS‘Q T T9_7—1(F0¢j) :[T92 T TSJ‘—l(FOLj)a Fﬁj]q
=0.
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The second claim is by induction on a:

Eo F§ = (ng Eay — ¢l Ty - Ty, (Faj)Kal) Fj,
:nglEal —qF§ T, T, (Fa,)Ka,
— q_“[OL]ngT52 Ty, (Fay)Kay
=F§ ™ Bay — ¢ (¢ +q '[a]) F§ Ty, -+~ Ty, (Fa,) Ko,

:nglEal - qlia[a + I]ngTsz e TSj—l (Foéj)Kal .

So we get for a € Z~:

s _aqa_q—a

(PFﬁj,q“(Eocl) :F;;jaEangj =Fs, —q°q q—q1 T, '“Tsjfl(Faj)Kal‘

Using the fact that ¢ Fp, 5(Fa,) is Laurent polynomial in b we get the third claim
of the proposition. ' O

We can combine the above propositions in the following proposition
Proposition 9.5 Leti € {2,...,n}. Forb=(by,...,b,) € (C*)"

QDFZ,b(FOéi) :b;lb;ﬁ}l e b;IQOFﬁi,l,bi,I (Fai)

bi_g —b '
=b7 b b (b Fa, + ——— L Fp )
Ly, bi—bt 1
(IDFEJ)(EOH) =$Fs, .5, (Eai) = Eai +q blmF[jl Fﬂi—lKOti .
Furthermore
@Fmb(Fal) =by-- byl
and

n B B b] o b»_l B
(sz,b (Eoél) :Eal - q2 Z bjbjﬁl U bnlﬁFﬁleSQ e Tsjfl (Faj)Kal
j=2

(b1 — by ) (gby ' by Ky — g7 b1 b K
(¢—q71)? '
Proof. The first two equations follow from Proposition 9.1} Proposition [9.2] and

Proposition @ The third follows because F,, = Fp, q-commutes with all the
other root vectors Fg,, ..., Fg, (see also the discussion before Definition [4.19).

+b2_1 b;lFB—ll
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For the last equation we use Proposition [9.4}

©rsb(Eay) =PFs, b, © 0 0Fs by (Eay)

(b1 = b (g Koy — g T KL ))
:wFﬂn ’b" -0 S0F/327b2 (Eal N Fﬁll : (ql_ q_11)2 1

by — byt
:SOFB" sbn -0 QOFBgvbB (qu - quQTiFﬁlea2Kal

(b1 — by ) (qby 'by ' Koy, — g t01bo K1)

_ b2—1FB—11

(¢—q71)?
2N -1 —1bj_bj_1 -1
:Eoél —q ijbj+1 T bn mFﬁj TSz T Tijl(FOéj)KOq
=2

(br — by )(gby "+ by Ky — q by by K1)

(g—q71)2 -

_bgl...bflpﬁ—ll

n

Proposition 9.6 Let \ be a weight such that \(K,,) € +¢" fori=2,...,n
and \(K,,) € £¢". Let b= (by,...,b,) € (C*)". Leti € {2,...,n}. Then E,,
acts injectively on the Uyz-module @ry, v.L(\) ry if and only if b; & +q* and F,,
acts injectively on ry, v.-L(\) s if and only if b1 & +q~.

Proof. By Proposition and Corollary [1.20] a root vector acts injectively on
the Ug-module

(pFE7(b1,--<7bn)'L(>‘)Fz

if and only if it acts injectively on

PFs (c1g71by,onrenginby)-L(A) Py

for any 41,...,i, € Z and £q,...,&, € {£1}.

Assume there exists a 0 # v € ¢p, b.L(A)p, such that E,,v = 0. We have
v = Fgll Fg: ®v for some aq, ..., a, € Z<o and some v’ € L(\). So E,,v =0
implies

0= pryp(Ea)F5) - By @v = Fgl - Ft @ pry o(Ba )0/

where ¢ = (¢®b1,...,q*by,). So there exists a v’ € L(A) such that o, o(Eq, )V =
0. That is

(Eai + q_lcici_cilFﬁ__lFﬂilK;l> V' =0
g—q ' :

or equivalently
-1
ngEaivl — q*lciﬁ i @11

Since L(A) is a highest weight module we have some r € N such that E, v" # 0
and E 0" = 0. Fix this r. We get
1 - C;
Eg”_)F@ E,v' =EDg e, —
b ’ qa—4q

-1,/
1 BiflK(x,;’U
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and calculating the right hand side and left hand side we get

qT71 [T]Fﬁi,lK;ilEg:)vl _ q71+2rci C; Cll Fﬂi,lK(;,lEé:)U,'

q—q
So we must have
cl—¢
qrfl[r] — q71+2rci17_11
q—q

or equivalently ¢; = +¢~". Since ¢; € ¢%b; we have proved the first claim.
The other claim is shown similarly (see e.g. the calculations done in the proof
of Proposition m The calculations will be the same in this case). ]

Proposition 9.7 Let M be a weight U,-module of finite Jordan-Holder length
with finite dimensional weight spaces. Let o € 1I. If E, and F, both act
injectively on M then E, and F,, act injectively on every composition factor of
M.

Proof. Let V be a simple Uj-submodule of M. Let u be a weight of V. Then
V, is a simple (Uy)o-module by Theorem and E,F, and F, E, act injectively
on V,, by assumption. Since dim M, < oo this implies that Fi, F, and E,F, act
injectively on the (U)o module (M/V'),, = M,,/V,,. Since M/V is the sum of its
weight spaces this implies that E,F, and F,E, act injectively on M/V. This
in turn implies that E, and F, act injectively on M/V. Doing induction on the
Jordan-Holder length of M finishes the proof. O

The above proposition is true for a general simple Lie algebra g and we will use
it in the next section as well.

Theorem 9.8 Let \ be a weight such that \(K,,) € +¢" fori=2,...,n and
ANKa,) € 26N, Let b= (by,...,by) € (C*)". Then ¢y p-L(N)ry is simple and
torsion free if and only if b; € +q%, i =1,...,n and \(Ka,) by --- b, & £¢*.

Proof. By Proposition L()\) is a subquotient of

= (@Fg,()\(Kal),1,...,1)~L(>\)Fg) ~
So by Lemmawe get (using that L(X) = ** (S*L(X))) forany ¢ = (c1,...,¢p) €
)"

SS

(‘sz,C'L()‘)szS =5 (SDFE,()\(K(H)cl_lmcﬁl,cz,...7c7z)'L()\)FZ)

We have A\(K,,) = eq" for some r € N and some ¢ € {£1}. We see in the proof
of Lemma that L()\) is a subgoutient of

= (Pr(eet) L R -
e et by Lemma (using that L(X) = *> (%2L(\))) for any ¢ = (c1,...,¢n) €
(cH)r

S5 SS

(@Fg,c-L(A)Fg)SS =2 (@Fg,(aca,ecl,03,4..,cn,)'L(>‘)F>:)
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Combining the above we get

((PFE,b'L()‘)FE)SS

112

2 (P Fp(ebaset basenbn) LN ) ™
= (H (SDFZA,(,\(KM)Z);‘--~b;1,abl,bg,.,.,bn)~L(>‘)FE))

JE— SS
o (SDF&(/\(KM)bfl'“bﬁl,8b17b3,~-7bn)'LO\)FZ) ’

IR

112

Since T;,' T (Ea,) = Ea, and T;'T ! (F,,) = F., we get by Proposition
that F,, acts injectively on 5152 ((pFE (A(Kay bbby basd ).L(/\)FE) if and
s aq n 5035..4,0n

only if b; € +¢% and F,,, acts injectively on 5152 @FE7(A(KQI)bl—l.“bgl,Eb17b3,.“7bn).L()\)FE)

if and only if A\(Kq,) b1 - b, & £¢*.

Assume gy b.L(A\) Fy, is torsion free. Then all root vectors act injectively
on ¢y b-L(A)py. We claim ¢py b.L(A) gy is simple: Let V' C ¢py b.L(A) py,
be a simple module. Then V is admissible of the same degree d as L(\) by
Proposition and because all root vectors act injectively dim V. = d for all
n e Q SoV = @Fg,bu[/()\)Fg- Thus ((pFE’b.L(A)FE)SS = (PFE,boL()\)FEo Then
by the above

@Fz,b-L()\)Fz o~ S182 (QOFZ,()\(KQI)bflmb,fl,ebl,ba,..-,b )L(/\)FE> .

n

This shows that when ¢ gy b.L()) f, is torsion free we must have A\(K o, ) ~'by -+ - b, &
+¢%. By Propositionbl- Z+q%, i=1,...,n.

Assume on the other hand that b; & +q% fori € {1,...,n} and A\(Kq,)"tby -+ b, &
+¢”. By Proposition we get that the simple root vectors E,,, ..., E,, and
Foys. .., Fy, all act injectively on ¢py b.L(A)ry,. We need to show that E,, acts
injectively on the module. By the above

(PFs b L(N)py)™ =152 (@Fg,(A(Kal)bfl~~b;1,sb1,b3,...,bn)'L(A)Fz)

and the root vectors E,,, F,, act injectively on

e <@FE,<A(KQ1)b;1--~b;1,sbl,bs,...,bn>'L(/\)F2) :

Then by Proposition @ E,, act injectively on all composition factors of
QOFXJD'L()‘)FZ'

Let V be a simple Uy-submodule of ¢ry b.L(A) ;. By the above all sim-
ple root vectors act injectively on V and then like above this implies V =
©rg b-L(A) py, 1.6, @pg b-L(A)py, is simple and torsion free. O

By the comments after Corollary the above Theorem completes the
classification of simple torsion free modules in type A.

10 Classification of simple torsion free modules.
Type C.

In this section we assume g is of type C,, (i.e. g = sp,,,) with n > 2. Let II =
{a1,...,a,} denote the simple roots such that (o;|a;jy1) =—-1,i=2,...,n— 1,
(ag,a)) = —1 and (a1, ay) = —2 i.e. a1 is long and as,...,a, are short.
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Set 5 = s1---sj_1(j) = aq + -+ + o, then ¥ = {f1,...,0,} is a set of
commuting roots with corresponding root vectors Fg, = T, --- Ty, | (Fy,). We
will show some commutation formulas and use these to calculate ¢py, 1, on most
of the simple root vectors.

Choose a reduced expression of wg starting with s;---s,81---$,_1 and
define root vectors F,, ..., F,, from this expression. Note that Fj, = F.,, for
i=1,...,n. Note for use in the proposition below that for j € {1,...,n — 1},

7n+j:51"'5n51"'5j—1(aj):a1+2a2+a3+"'aj+l
and

F

Tn+j

=T, "'TsnTsf"Ts];l(Faj)
=T, - Ts,  Ts, - Ty, (Fu,).

In particular Fy, 420, = Ts, Ts, (Fay)-

Proposition 10.1 Leti € {2,...,n} and j € {1,...,n}

2] Fay 4202 ifj=1i=2
[F F ] o Fa1+2a2+a3+~~-+o¢ja ZfZ =2 and] > 2
ais 1'B5lq FBN iszi—l
0, otherwise
and
[21Fs, KL},  ifj=2=i
(B, Fg,) = Fp, K. ifj=1i>2

0, otherwise.

Proof. We will show the proposition for the F’s first and then for the E’s.
Assume first that j <4 — 1. Then clearly [Fy,, F3,]q = [Fa,, Fjg,] = 0 since q; is
not connected to any of the simple roots aq,...,a; appearing in j3;.

Then assume j > i > 2. We must have o; = 7, for some k£ > n since
{71,...,7v} = ®*. By Theorem [3.2) - [Fa,, F,]q is a linear combination of
monomials of the form Fy7}! - F3*" T For a monomial of this form to appear
with nonzero coefficient we must have

k—1
Z apyh =0 + B =a1 + - oo + 204 + i+
h=j+1

For this to be possible one of the positive roots s, j < s < k must be equal to
a1 +as + - -+ ayy, for some m < j but oy +as + - - - + ay = Y by construction
and m < j < s so m # s. We conclude that this is not possible.

Assume j =i — 1. We have

[Fai’FBi—l]q :[T81 : TS@ Z(Faz)’ o Tsi—Z(Fai—l)}q
:Tsl TSz 2 ([Fan ;1 Q)
=Ty T 15,4 (Faq)
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Assume j =2 =i. Then
[FOtvaBz]q :FazFﬁfz - Fﬁ2Fa2
=Fo,(FoyFo, — qualFaz) - (FazFa1 - ngmFaz)Faz
=(¢*Fa, F2, = q[2|Fa, Fo, Fa, + F2, Fo,)

=27, (Fa,)
:[2] 1T52T81T52(F1)
=[2]T;, 15, (Fay)
:[2] «

1120z

Assume ¢ = 2 and j = 3. Then
Foit2as4as =F5,..0
=T, Ts,Ts,Ts, (Fu,)
=T, T, Ts, Tsy (Fuy)
=T5,T5,Ts,(Fos Fooy — qF oy Fay)
=F,, Fg, — qFg, Fa,.

Finally assume ¢ = 2 and j > 3. We have

Fa1+2a2+a3+“'+0¢j :F’Yn+j 1

=Ty, - To, JTs, T, Ts, Ty, T, ,(Fa,_,)

=Ty T, ,To, -+ Ts, ,Ts, \Ts, ,Ts,(Fa,_,)

:T31 o 'T5j72T81 TSJ 3TSJ T8j72 (Faj,lFaj - qFajFaj,l)
:Tsl"'TsJ 2T51 Ts] g(Faj,g sj,l(Faj)_qu]',l(Faj)Faj72)

=Fa,Fp; — qFp; Fa,
:[FUéwFﬁj]q

using the facts that T, 1TsJ 2(Fo,_,) =Fo, yand Ty, --- Ty, Ty, - T, ,(Fa,_,) =
F,, by Proposition 8.20 in [Jan96] (The proposition is about the F root vectors
but the proposition is true for the F’s as well).

For the E’s: Assume first j < i: Since Fj, is a polynomial in F,,,..., Fy,
Eq, commutes with Fjg, when j <.

Assume then j = i: We have by the above

Fﬁq‘, = [Fam Fﬁi—l]q
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SO

[EQH Fﬁz] :[EaiV (FaiFﬁi—l - q_(Biillai)Fﬁileai)}
:[Eoc 7F047]F51 1 qOéa‘,—lFBi—l [EOéi’FOéi]

K., — K;! K, — K1
= R 1 — Qo F L T Ty
q — q— ﬁ 1 Oi—1 ﬁ 1 q — q—l
_F qOéi_lK qa, 1K 1 qai_lKai 4 qai_lK(;il
Bi—1 R
—1
o q..
_ Qi—1 _Oltz 1Fﬁ7 1K 1
q—dq
_ [Q]F/Bifle;ila ifi=2
- Fﬂifch:ila otherwise.

Finally assume j > i: Observe first that we have

m

T51'+1' S] 1 E U’S ajp1Us

for some m € N and some ug,u, that are polynomials in F,,,,.. . F,,. Note
that T, (us) = us and T, (u},) = ), for all s since «; is not connected to any of
the simple roots o ya,...a;. So

T,.T.

Sip1 " TS] 1 Sz (Zu F Qg1 s)
—Zu To,(Faiyy)

_Zus L+1 qFOtzF L+1>
m m

—ZusFaHH Ug al qF‘ozqL Zué a1 Us
(Faj)Fai F ;T

:T 3z+1.'.Tsj—1(Faj)'

Sig1 .

-T.

Sj—1

Thus we see that

Fy, =Ty, ... Ty, Ty, (Fa))
:T8i+1' SJ 1( aJ> "'TSL 1<F ) qFaLTL+1...TSj71<Faj)
:TSz‘Jrl . S] 1(FD¢J)F51 _qFﬂzTi+1 ..-Tsj—l(Faj)

and therefore
[EaﬂFﬁj] :T5i+1 T Tsj—l(Faj)[EazWFﬁi} - q[Eai7F/B”L]T Sit1 " Tsj 1 (Fa]‘)
'ng—l(Faj)Fﬁi—1K(;il 7qF5i 1K T97+1 - T, (FO& ))

:[Ti](T971+1 o -1 J
:[Ti](Fﬂi—lTSi+1 o 'T8j71 (Faj )Kc:il - Fﬂi—lTSH»l o 'T8j71 (FCVJ )Kgl)
=0
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where
2 ifi=2
r, = ne O
1 otherwise.

Proposition 10.2 Leti € {2,...,n}. Let a € Z~o. Then
[FOéi’ng_l]q = [a}ﬁi—1Fg;iFﬁi
and for b € C*

(Fu,) = b2Fa2 + b2_;72 Fﬁleﬂzv ifi=2
Py bW bF,, + b— b_lF ' Fg,  otherwise.

Proof. The first claim is proved by induction over a. a = 1 is shown in
Proposition The induction step:

Fth‘,F,(?:i = (qgi 1Fg,' 1F047‘ + [a]ﬁi 1F;31l 1F57) Fﬁa‘,—l
*q,@—H Fa+1Faz + q,B Fg- FBi + q,B_-l [a]Bi—ngz‘—lFﬁi
qgj_llFaJrlFal + [a' + 1]61 1FBL 1F51

So we have proved the first claim. We get then for a € Z~:

9%, — 95,
08 o) = P Fol = P+ o P L
T 4B

Using the fact that ¢p,  »(Fa,) is Laurent polynomial in b we get the second
claim of the proposition. O

Proposition 10.3 Leti € {2,...,n}. Let a € Z~o. Then

a—1 a—1 —1 e
[E . Fﬁa] — q [2][0’]F52 FﬂlKQQ ’ Zf1 =2
‘ ~1a] Fg;ngi_l K3, otherwise.

and for b € C*

Eo, +q712 ]bb_ Fil Fg Kl ifi=2
E., Jrqflbg_qle 1Fﬁ7 1K* otherwise.

(pFﬁi,b(Eai) = {

Proof. The first claim is proved by induction over a. a = 1 is shown in
Proposition 0.1} The induction step: For i > 2:

B F5 = (F§ o, + " Ml P57 Fa Ko )
=F§ Eo, + F§ Fo,_ K.+ q" o] F§ Fs,_ K.}
=F§" Ea, +4"(¢" + ala) F§, Fp,_ K.,
=F§" Eo, + q"[a + Ua,_, F§ Fs,_ K
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For ¢« = 2:
Eo, P = (F@EM + " ) F F K, )ng
=F5" Eoy + 21FS, Fp Ko + 0 20l B, Fp, K
—F§" Bay +¢°[2)(a~" + gla)) g, Fs, K,
=F§H Eo, + ¢*[2la+ 1]Fg, Fp, K

This proves the first claim. We get then for a € Z+

Ea, +47%q 2a7q_qq71 F_nglKgl, ifi=2

E., 'Hflqaq F 1Fgl (K!, otherwise.

¢rs, 02 (Ba;) = Fg " Eo F§, = {

Using the fact that ¢r, »(Ea,) is Laurent polynomlal in b we get the second
claim of the proposition. O

We combine the above propositions in the following proposition
Proposition 10.4 Leti € {3,...,n}. For b= (b1,...,b,) € (C*)™

@anb(Fai) :<)0F;313,1,b1-,1 (Fal)

bia—b Y
:bi—lFai + ﬁFﬁwlFBi
4, b b_ _
oreb(Ea.) =055, 4, (Fa,) = Ea, +4q lbiﬁF P K
Furthermore
-1 bo b_ 1 —1
QOF&b(Eaz) = Eaz +4q [2]172_7}7 Fﬁ1Ko¢2
and

Vg b(Fay) =ba-- by Fy,.
With similar proof as the proof of Proposition [9.6] we can show

Proposition 10.5 Let X be a weight such that N(Kg) € ¢ for all short 3 € &+
and N(K,) € £¢'*2% for all long v € ®. Let b = (by,...,by) € (C*)". E,,
acts injectively on the U,-module ¢y b.-L(N) g if and only if by & +q%. Let
i€{3,...,n}. Then E,, acts injectively on the module gy, b.L(N\) ry, if and only
if b; & £¢% and F,, acts injectively on @ry, v.-L(\) py if and only if b;—1 ¢ +q~.

Proof. By Proposition and Corollary a root vector acts injectively on
the Uz-module
PP (br.e.bn) LA s

if and only if it acts injectively on

gDFZv(Elqilbla-“vani"bn)'L(A)FE

for any iy,...,i, € Z and &1,...,&, € {£1}.
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Assume there exists a 0 # v € ¢p, b.L(A) gy, such that F,,v = 0. We have
v = Fgll Fg: ® v’ for some a1, ...,a, € Z<o and some v’ € L(A). Fp,v =0
implies

0=rsb(Fo,)Fgl - Fg» @0 = F§' - F§" @ @py e (Fo, )V

n

where ¢ = (¢“'b1,...,q%by). So there exists av’ € L(A) such that ppy, o(Fa,)v" =

0. That is .
Ci_1 —C,_
(CilFa,; =+ qu_q_zl_llelFbl) v =0

or equivalently

-1
Ci1 — C;
(F,@i1F0¢i + ci_llqu_qlllFﬂi> v =0.

Let r € N be such that Fo(éi)v/ # 0 and FC(JL,H)U’ = 0 (possible since A\(K,,) € £¢"
so —a; € Fr(y)). So the above being equal to zero implies

—1
r -1 G-1 76
OZFéL) (FBZIFQZ +Ci*17q_q71 Fﬂz) ’U/

1—c¢ 2
leFBiF(g:)> v

= TF,.FC(YT,)—l—q_T
(H 8. Fa, =

1—c¢ 3
=[] +q " —=F | Fp FO'.
(H qq1> B, Fa,

Since Fj, S0’ # 0 this is equivalent to

r_—2

r. —2 __r —
CG1=49 —4q ¢

0=q¢"—q¢"+q¢ " —q
or equivalently ¢; 1 = +¢7".
The other claims are shown similarly. O

Proposition 10.6 Let A be a weight such that \(Kg) € £¢" for all short 3 € &+
and A(K,) € £¢**%2 for all long v € ®+. Let b= (b1,...,b,) € (C*)". Then
Foy 420, acts injectively on the Ug-module @ ry b-L(N) Fy, -

Proof. We can show similarly to the above calculations in this section that

2 bf —b° P,
q2 _ q—2 1 2

By Proposition and Corollary a root vector acts injectively on the
Ug;-module

SﬁFz,b(Fal+2az) = bgFa1+2az + (1 - q2)b§b1_

<pF>:7(b1,-~7bn)'L()‘)F2

if and only if it acts injectively on

SOFE’(Elqil b1, s€nqinby) L()\)FE

for any i1,...,i, €Z and &1,...,&, € {£1}.
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Assume there exists a 0 # v € v, b.L(A) g, such that Fy, 126,v = 0. We
have v = Fg!--- Fg" ® v’ for some ai,...,a, € Z and some v' € L(X). So
Fo,+24,v = 0 implies

0= ¢rsb(Fartaa) ! - Fot @0 = gl Fg7 @ oy e(Foy 2000

where ¢ = (¢*'by,...,q*"b,). So there exists a v € L(\) and aq,...,a, € Z
such that for ¢ = (¢*b1,...,¢"by), ¥ry.c(Fa,+20,)0" = 0. That is

2 — 2
(CgFaH—Zaz +(1- qz)C§C1_2q§_ql_2Fg_llF/§?) v'=0
or equivalently

L2 =2 2
FglFa1+2a2U/ + (1 - q2>cl QﬁFﬁ(‘z)vl =0.

So to prove our claim it is enough to prove that
o 2G = @),
Fg, Foyt20, + (1 —q7)cy WFBZ v #0

for any v’ € L(A\) and any ¢; € C*.
So let v/ € L(A) and let ¢ € C*. Let » € N be such that E,(Xg)v’ #

0 and E&T;l)v’ = 0 (possible since L(A) is a highest weight module). It is
straightforward to show that for a € N:

[E(a) Fa1+2a2] = q_a+1[2]FB2Eg¢Z_1)K(;21 + q4_2aF51 Egg_Q)K(;f

92 ?

and

(B, F

2 - - - — — —
(0, FP] = *[2)Fp, Fp, ESTVEL) + ¢* 72 [2)F3 B2 K2,

a2

Using this we get

r — 62 —c? 2
E((y;r?) (FﬂlFa1+2az +(1-¢*)e 2q;_ngﬁ(2)> v’

2 1-2 o 28—’
_(QT+QT[Q](1Q)C1 Z—q?

2 r -2
- > F3 EQK 2
:q72TC;4Fgl Eé?;) K;E'UI
#0
since F, acts injectively on L(A). Thus

e — 2 2
(FﬁlFOéhLQaz +(1—q2)612q;_q1_2F[§2)) v’ 7&0 U

Theorem 10.7 Let A be a weight such that \(Kg) € £q" for all short 3 € ®
and N(K) € £¢" % for all long v € ®. Let b = (by,...,b,) € (C*)". Then
the U,-module ppy 1. L(\) Fy, is simple and torsion free if and only if b; & +q%,
i=2,...,n and b2by---b, & +q~.

60



IRREDUCIBLE QUANTUM GROUP MODULES WITH FINITE DIMENSIONAL WEIGHT
SPACES. II

Proof. Leti € {2,...,n}. By Proposition[10.5] E,, acts injectively on ¢ py. b.L(A) py,
if and only if b; & +¢%. If ppy b.-L(\) Ry is torsion free then every root vector
acts injectively. So ¢y b.L(A)ry, being torsion free implies b; ¢ +q”.

Let ¥ = {f1,..., 0, } denote the set of commuting roots with 5] = a1 + ag,
By = a1 +2az, B = ar+20+az+--+aj, j=3,...,n. Let F//B; =T, (Fs,) =
Fﬂw Féé = T51T82 (Fa1) = Fai+2a1s F,é]’ = TSl e TSnTsl T Tijz (Fa]‘—l) =
Ts,(Fp,) = Fay42a04as+-+a;, J = 3,...,n (in this case we actually have Fj;, =

J

Fﬁ;_) and Fsy the Ore subset generated by F/'g1 Yo ,Fé, . Similarly to the above
calculations in this section we can show that for ¢ € (C*)"

-1
_ —1 — 1601 —¢C _
(sz/,C(Faz) = Cn1 TGy 1022 (Faz +Q[2]Cl ! qli qil (Fé{) 1Fé§> :

Let v € L()\) and let € N be such that Fi2v # 0 and F0 v = 0 (possible
since A(K,,) € +¢"). Then we see like in the proof of Proposition that
0Py c(Fay)v = 0if and only if ¢; = +¢7" thus ¢r,, ¢.L(\)F,, is not torsion free
whenever ¢, € +¢% by Proposition and Corollary &

Set f(b) = (b3by---bn, by b3 - ba,bs, ..., by). Then by Lemma [5.3]

(Pro o LN F)™ = (05 p00) LN R, )™
If opy b-L(A) py, is torsion free then it is simple so
@Fz,b'L(/\)FE g((sz,b'L()‘)FZ)SS

= (pp,, rb)-L(N) Fy )
Eorg,1b)-LA) -

SS

We see that ¢y, b.L(\) g being torsion free implies b3bg - - - b, & +q~.

Now assume b; & +¢%,i =2,...,nand b?by - - - b, & +¢*. By Proposition
and Proposition @ E,, and F,,, 7 =3,...,n act injectively on all composition
factors of wpy b-L(A) py-

Let Ly be a simple submodule of ¢py, b.L(\) gy, and let Ly be a simple sub-
module of ©r_, #w).L(A)F, . By Proposition m F, 124, acts injectively on
©ry b-L(A) py. Now clearly {—oq — ag, —a1 — 200,03, ..., } C T, N Ty, so
C(L1) N C(Lgy) generates (). This implies that C(Ly) — C(L2) = Q. Since
(ereb- LN F)* = (05, sy L(N)Fy, )" we have wt Ly C ¢2 (b~ 1)\, k= 1,2.
Choose pi1, 2 € Q such that ¢1(b™1)®\ € Supp.(L1) and ¢*2(b~1)=\ €
SUpPess(L2). Then obviously ¢¢ 441 (b= =\ C Supp,,(L;) and ¢¢F2)+r2(b=1)= )
Suppey(L2). By the above ¢CE)tri(b=1)=)\ 0 CE2)tm2(b=HEN £ ) so
SUPPegs (L1) N Suppegs(L2) # 0. Let v € Suppegs(L1) N Suppegs(L2). By Propo-
sition L; and Lo are admissible of the same degree as L(A). So we have
as (Ug)o-modules (using that (L1), and (Ls), are simple (Uy)o-modules by
Theorem [2.7)

(L1)y = (erop- LN ), = ((erep- LN F),)"
= ((¢rp ) LN F),) " 2 (0rg 50)- LV Ey, ), = (L2)o-

By Theorem [2.7] this implies L; & Lo.
Let X" = {BY,..., B8/} denote the set of commuting roots with 8 = a1 +
20, By = as, ,6;-’ =a1+20+az3+--+a;, j=3,...,n. Let F,é’i, =
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T, Ts, (Fa, ), F[/i/é’ = Fa,, F[;/J” (Faj) = TS1T82(Fﬁj)7
j =3,...,n and Fx» the Ore subset generated by ng,, ..., F5,. Note that
Fflf/j’ = T, Ts, (Fp,) for all j € {1,...,n}. The root vectors F,, ..., Fg, act
injectively on *251L()). By Theorem and Proposition 5.5/ L(A) is a submodule
of ((ppz,,7d.(32731L()\))FE,,)és for some d € (C*)™. Then by Lemma

= T, T Ts,Toy - T,

Sj—1

(ereb- LA™ 2 (0ry gbya-(FTLN)) Py )

for some g(b) € (C*)™.
Observe that for aq1,...,a, € N:

¥ Fgm,(q1,...,q%n) (7K(11 Ea1)
=PFg,(¢o1,...,q%n) (T81T82 (FOL1+2042))

—a —an An ai
- (F”i,) S (F”,,) Ty, Ty, (Fyt20,) (F”,,) o (F”i,)
:Ts1Tsz (F[;la" to F[;nanFa1+2a2an T F,gll)

n

:T91T92 (@Fz,(q“l,.“,q“n)(F(X1+2a2)) .

Since ¢r,,, o(—Ka, Ea,) and Ty, Ty, (¢Fy,c(Fay+24,)) are both Laurent polyno-
mial in ¢ we get by Lemmathat VP (Ko Ea,) =T, Ts, (Fs,c(Fai+2a2))
for any ¢ € (C*)". Ty, Ts, (0rs.c(Fa;+2a,)) acts injectively on 5251 L()) for any
c € (C*)™ by Proposition This implies that —K,, F,, acts injectively on
Oy gbya- (P L(N)) ry,, and this implies that E,, acts injectively.

Let L3 be a simple submodule of ¢r, gmya-(*** L(N))F,,. We see that
{—a2,—a; — 2a9,03,...,a,} C Tr, NTL, so C(L2) N C(L3) generates @
({as,...,an} C Tr, because of Proposition and the fact that L3 is a com-
position factor of ¢py v.L(A\)py). Arguing as above this implies that Ly = L.
We have shown that Ly = Ly = Ls. Above we have shown that E,, acts
injectively on L3, F,, acts injectively on Lo and Fi,, Es,, Fa,, Ea,, 1 =3,...,n
act injectively on L;. In conclusion we have shown that all root vectors act injec-
tively on the simple submodule Lq of ¢ry b.L(A)py thus wt L1 = Suppeg(L1) =
q?(b™1)¥ ) and therefore L1 = pp, 1.L(\)p.. This shows that ¢y p.L(A) gy is
simple and torsion free with our assumptions on b. O

References

[AM15] Henning Haahr Andersen and Volodymyr Mazorchuk, Category O for
quantum groups, J. Eur. Math. Soc. (JEMS) 17 (2015), no. 2, 405-431.
MR 3317747

[And03] Henning Haahr Andersen, Twisted Verma modules and their quantized
analogues, Combinatorial and geometric representation theory (Seoul,
2001), Contemp. Math., vol. 325, Amer. Math. Soc., Providence, RI,
2003, pp. 1-10. MR 1988982 (2005b:17025)

[APW91] Henning Haahr Andersen, Patrick Polo, and Ke Xin Wen, Represen-
tations of quantum algebras, Invent. Math. 104 (1991), no. 1, 1-59.
MR 1094046 (92:17011)

62



IRREDUCIBLE QUANTUM GROUP MODULES WITH FINITE DIMENSIONAL WEIGHT

SPACES. II

[DP93]

[Fer90|

[Jan96]

[Jos95]

[LamO01]

[LS91]

[Lus90]

[Mat00]

[Pap94]

[Ped15al

[Ped15b]

C. DeConcini and C. Procesi, "Quantum groups” in: D-modules,
representation theory, and quantum groups, Lecture Notes in Math-
ematics, vol. 1565, Springer-Verlag, Berlin, 1993, Lectures given at
the Second C.I.M.E. Session held in Venice, June 12-20, 1992. MR
1288993 (95b:17003)

S. L. Fernando, Lie algebra modules with finite-dimensional weight
spaces. I, Trans. Amer. Math. Soc. 322 (1990), no. 2, 757-781. MR
1013330 (91¢:17006)

Jens Carsten Jantzen, Lectures on quantum groups, Graduate Studies
in Mathematics, vol. 6, American Mathematical Society, Providence,
RI, 1996. MR 1359532 (96m:17029)

Anthony Joseph, Quantum groups and their primitive ideals, Ergeb-
nisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathe-
matics and Related Areas (3)], vol. 29, Springer-Verlag, Berlin, 1995.
MR 1315966 (96d:17015)

T.Y. Lam, A first course in noncommutative rings, second ed., Grad-
uate Texts in Mathematics, vol. 131, Springer-Verlag, New York, 2001.
MR 1838439 (2002¢:16001)

Serge Levendorskii and Yan Soibelman, Algebras of functions on

compact quantum groups, Schubert cells and quantum tori, Comm.
Math. Phys. 139 (1991), no. 1, 141-170. MR 1116413 (92h:58020)

George Lusztig, Quantum groups at roots of 1, Geom. Dedicata 35
(1990), no. 1-3, 89-113. MR 1066560 (91j:17018)

Olivier Mathieu, Classification of irreducible weight modules, Ann.
Inst. Fourier (Grenoble) 50 (2000), no. 2, 537-592. MR 1775361
(2001h:17017)

Paolo Papi, A characterization of a special ordering in a root system,
Proc. Amer. Math. Soc. 120 (1994), no. 3, 661-665. MR 1169886
(94€:20056)

Dennis Hasselstrgm Pedersen, Irreducible quantum group modules with
finite dimensional weight spaces. I, arXiv:1504.07042, 2015.

, Twisting  functors for quantum group modules,

arXiv:1504.07039, 2015.

63



	Introduction
	Acknowledgements
	Notation

	Calculations with root vectors
	Twisting functors
	Twisting functors over Lusztigs A-form
	sl2 calculations
	Jantzen filtration
	Linkage principle
	Introduction and notation
	Main results
	Acknowledgements
	Notation
	Basic definitions

	Nonroot of unity case: Reduction
	Root of unity case: Reduction
	UA formulas
	Ore localization and twists of localized modules
	Coherent families
	Introduction
	Main results
	Acknowledgements
	Notation
	Basic definitions

	Reductions
	UA calculations
	Ore localization and twists of localized modules
	Coherent families
	Classification of simple torsion free Uq(sl2)-modules
	An example for Uq(sl3)
	Classification of admissible simple highest weight modules
	Preliminaries
	Rank 2 calculations
	Type A, D, E
	Quantum Shale-Weil representation
	Type B, C, F

	Classification of simple torsion free modules. Type A.
	Classification of simple torsion free modules. Type C.

