
Irreducible quantum

group modules with finite

dimensional weight spaces

C E NTRE

F
O

R

QUAN

T
U

M
G

E
O

M
ETR

Y
O

F
M

O
D

ULIS
P

A
C

E
S

Q

G M

PhD Dissertation

Dennis Hasselstrøm Pedersen
July 2015

Supervisor: Henning Haahr Andersen
Centre for Quantum Geometry of Moduli Spaces

Science and Technology, Aarhus University



Abstract

We classify all irreducible weight modules for a quantized enveloping

algebra Uq(g) at most q ∈ C∗ when the simple Lie algebra g is not of type

G2. More precisely, our classificiation is carried out when q is either an

odd root of unity or transcendental over Q.

By a weight module we mean a finitely generated Uq-module which

has finite dimensional weight spaces and is a sum of those. Our approach

follows the procedures used by S. Fernando and O. Mathieu to solve the

corresponding problem for semisimple complex Lie algebra modules. To

achieve this we have to overcome a number of obstacles not present in the

classical case.

In the process we also construct twisting functors rigerously for quan-

tum group modules, study twisted Verma modules and show that these

admit a Jantzen filtration with corresponding Jantzen sum formula.

Resumé

Vi klassificerer alle irreducible vægtmoduler for en kvantiseret indhyld-

ningsalgebra Uq(g) for de fleste q ∈ C∗ når Lie algebraen g ikke er af type

G2. Vi klassificerer de irreducible moduler når q er en ulige enhedsrod og

når q er transcendent over Q.

Når vi skriver vægtmodul mener vi et endelig frembragt Uq-modul

som har endelig dimensionelle vægtrum og som er en sum af disse. Vores

fremgangsmåde følger fremgangsmåderne som S. Fernando og O. Mathieu

har brugt til at løse det tilsvarende problem for semisimple Lie algebra

moduler. For at opnå dette må vi løse adskillige problemer som ikke

opstår i det klassiske tilfælde.

I processen konstruerer vi også twisting funktorer stringent for kvante-

gruppemoduler, undersøger tvistede Verma moduler og viser at disse har

en Jantzen filtration med tilhørende Jantzen sum formel.



Introduction and overview of the dissertation

This dissertation is the collection of three papers in the following called P0, P1
and P2. P0 refers to the paper “Twisting functors for quantum group modules”.
P1 and P2 refer to the papers “Irreducible quantum group modules with finite
dimensional weight spaces” I and II, respectively. Each paper has its own page
numbering and numbering of lemmas, propositions, theorems etc. To help the
reader there is a header on each page with the title of the paper. The papers are
all posted at arXiv.org and have been submitted to journals. The arXiv numbers
of the papers can be seen in the references at the end of this introduction.

Let g be a semi-simple Lie algebra and let Uq = Uq(g) be the corresponding
quantized enveloping algebra as defined in [Jan96, Chapter 4]. The main goal of
the dissertation is to classify all simple weight Uq-modules. By a weight module
we mean a module that is a sum of its weight spaces with all weight spaces being
finite dimensional. We achieve the desired classification in the case when q is an
odd root of unity in P1 and in the case when q is transcendental in P2.

In the classical case i.e. for semi-simple Lie algebras the corresponding
problem was solved by S. Fernando and O. Mathieu in the papers [Fer90]
and [Mat00]. Some of the work in these two papers can be translated directly to
the quantized enveloping algebra world but several results need to be proved in
different ways. In the first paper P0 we do some detailed calculations necessary
for the rest of the results. Furthermore in this part we define Arkhipov’s twisting
functors for modules over the quantized enveloping algebra in both the root of
unity and non-root of unity cases. We then use the twisting functors to construct
so-called twisted Verma modules. In the classical case H. H. Andersen and N.
Lauritzen describe these in [AL03]. Then in the non-root of unity case we show
that we can construct a Jantzen-type filtration of the twisted Verma modules in
analogy with [AL03, Theorem 7.1]. This is shown in [And03] for integral weights.
Here we show it for any (not necessarily integral) weight. In the following we
won’t need the twisted Verma modules but we do need the Jantzen filtrations
(whose construction in our approach relies on those twists) for ordinary Verma
modules with arbitrary weights in the classification of the so called admissible
simple modules. For ordinary (not twisted) Verma modules this is not a new
result. An entirely different proof can be found in [Jos95, Section 4.1.2-4.1.3].
The results of P0 were presented in the author’s progress report in connection
with his qualifying exam in June 2013. The progress report was approved and
the author recieved his masters degree in mathematics on the basis of the report
and the following oral exam. The paper has been slightly rewritten since then.

We distinguish in most sections between whether q is a root of unity or not.
In the paper P1 we show (for roots of unity and non roots of unity respectively)
how to reduce the classification of simple weight modules to the classification of
two classes of modules: Simple finite dimensional modules over a subalgebra of
Uq corresponding to the quantized enveloping algebra of a reductive Lie algebra
and so called simple ’torsion free modules’ over the quantized enveloping algebra
of a simple Lie algebra. This involves very crucially defining, for a root β of the
root system Φ, the concept of a module being β-finite or β-free. A module M
is β-finite if all root vectors corresponding to β (defined in P1) act nilpotently
on M . On the other hand a module is β-free if all root vectors corresponding
to β act injectively on M . This is in analogy with the procedures in [Fer90]
but we have to approach some of the proofs differently. For example in [Fer90]
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many results are shown that depends on roots without specifying a specific
set of simple roots and positive roots. Then in later results a clever choice of
base for the root system is chosen. When defining the quantized enveloping
algebra Uq of a Lie algebra g we first fix a set of simple roots and define Uq

by generators and relations by using the corresponding simple root vectors as
generators and requiring some relations between them. So we can not later make
a different choice of basis like in [Fer90]. In the dissertation we solve this problem
by considering certain twists of modules by braid operators corresponding to
appropiate elements of the Weyl group W . Another related problem is that for
a positive root β that is not simple we don’t a priori have root vectors Eβ and
Fβ . We can construct root vectors for all β ∈ Φ but the construction involves a
choice of a reduced expression of w0 — the longest element in W . For another
reduced expression we get possibly different root vectors. Fortunately, the results
where we need general root vectors turn out not to depend on the choice but of
course we need to verify that this is the case so there is something extra to show
here compared to the classical case.

For some other results Fernando uses algebraic geometric arguments and
these can not be directly quantized. Instead we use concrete calculations for
root vectors. To do these calculations we rely on formulas proved by G. Lusztig
in [Lus90] in rank 2. The rank 2 case where g is of type G2 is different from all
the other finite types in that there are three lengths of roots. In the dissertation
we have ignored type G2 entirely. To make the classification complete one
would of course need to consider G2 as well and this particular case should in
principle be doable by similar methods, although the calculations get possibly
very tedious. Especially since in [Lus90] the commutation formulas needed
in some of the results of the dissertation are only calculated for types other
than G2. So the results in the dissertation are about all other finite types i.e.
type An, Bn, Cn, Dn, E6, E7, E8, F4, n ∈ Z>0. The author has not made any
calculations for G2 and has instead focused on all the other cases.

Since the finite dimensional simple modules are well known the above reduc-
tion leaves us with the problem to classify the simple torsion free Uq(g)-modules
when g is a simple Lie algebra. In the root of unity case the classification of
torsion free modules can further be reduced to the classification of the classical
(Lie algebra) simple torsion free modules and some finite dimensional simple
modules so in this case we can reduce completely to the classical case treated
in [Mat00]. We do this in P1. The reduction involves defining an analog of the
coherent families defined in [Mat00]. A coherent family in [Mat00] is a huge
g-module having weight spaces of all possible weights and with some requirement
on a trace being polynomial in some parameter, see [Mat00, Section 4]. We define
the analog of this for the quantized enveloping algebra. We then show that every
infinite dimensional admissible simple module is a submodule of an appropiate
semisimple coherent family. Torsion free simple modules are a specific case of
admissible infinite dimensional simple modules. We then show that every one of
these ’quantized coherent families’ is a tensor product of some finite dimensional
module and a Frobenius twist of an appropiate classical coherent family. In this
way we have reduced to the classical case.

In the non-root of unity case we can’t use the same trick to reduce to the
classical case so we have to do some more work. This is done in P2. We
follow the procedure in [Mat00]. Namely, for a given admissible simple infinite
dimensional module L we construct a so called semisimple irreducible coherent
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family EXT (L) containing L as a submodule and then we show that each
such semisimple irreducible coherent family contains an infinite dimensional
admissible simple highest weight module L(λ) with highest weight some λ
such that EXT (L) ∼= EXT (L(λ)). We thus reduce the classification of infinite
dimensional admissible simple modules to the classification of infinite dimensional
admissible simple highest weight modules. We show that these exist only in type
A and C and we classify the weights λ such that L(λ) is admissible. The final
problem is then, given an infinite dimensional admissible simple highest weight
module L(λ), to find out precisely which submodules of EXT (L(λ)) are torsion
free. We complete the classification by doing this in type A and C seperately.

In the case when q is not a root of unity we don’t define the concept of a
general coherent family. Instead we define directly the module EXT (L) given
a specific admissible infinite dimensional simple module L. We then proceed
like in [Mat00] to show the analogies of the results in [Mat00]. Especially in
the final classification in type A and C there are major differences between
our approach and the one in [Mat00]. Here we do very concrete calculations
involving specific chosen root vectors to show for a specific weight λ and a specific
’set of commuting roots’ Σ precisely which ’twists’ of L(λ)FΣ

are torsion free.
In [Mat00] the final classification in type A and C can be done by looking at
weight spaces. That is Mathieu classifies for a given irreducible coherent family
M for which t ∈ h∗/Q, M[t] is simple and torsion free. Here h is a Cartan
subalgebra of g, Q = ZΦ ⊂ h∗ is the root lattice and M[t] = ⊕λ∈tMλ. The
modules in the dissertation which are analogs of the irreducible coherent families
are EXT (L) where L is an infinite dimensional admissible simple module. These
modules are ’larger’ than their classical analogs. Let X be the set of weights
(defined in all 3 papers) and let Q = ZΦ denote the root lattice. We show in
an example in P2 that we can have a torsion free module and a simple highest
weight module both included in EXT (L(λ))[t] where t = qQ ∈ X/qQ. So just
looking at weight spaces of EXT (L(λ)) will not be enough in our case. Instead
we concretely calculate the actions of most simple root vectors on the ’twists’ of
L(λ)FΣ

defined to construct EXT (L(λ)) and show which twists give rise to a
simple torsion free module.

A more detailed overview of the contents of each paper is given in their
individual introductions.
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List of notation

Here we make a list of some of the notation used in the three papers of the
dissertation. We refer to the papers by P0, P1 and P2. P0 refers to the paper
“Twisting functors for quantum group modules”. P1 and P2 refer to the papers
“Irreducible quantum group modules with finite dimensional weight spaces” I
and II, respectively.

N Here N contains 0. N = {0, 1, 2, . . . }.
g A semi-simple Lie algebra. In some sections

we require g to be simple.
Φ The root system for g.
Π = {α1, . . . , αn} A fixed set of simple roots for Φ.
Φ+, Φ− The positive/negative roots of Φ respectively

corresponding to the fixed set of simple roots.
Q The root lattice Q = ZΦ.
W , si The Weyl group corresponding to g. si is the

simple reflection si := sαi
.

w0 The longest element in W .
(·|·) A standard W -invariant bilinear form on h∗.

〈·, ·∨〉 〈α, β∨〉 = (α|β)
(β|β) .

Λ The integral lattice consisting of elements µ ∈
h∗ such that (µ|α) ∈ Z for all α ∈ Π.

A A = Z[v, v−1].
Uv = Uv(g) The quantized enveloping algebra over Q(v).

vα vα = v
(α|α)

2 .
UA Lusztig’s A-form. The A-subalgebra of Uv

generated by the divided powers E
(n)
α , F

(n)
α ,

n ∈ N and K±1
α , α ∈ Π.[

Kα;c
r

]
, c ∈ Z, r ∈ N

[
Kα;c
r

]
=

∏r
j=1

Kαvc+j−1
α −K−1

α v−c−j+1
α

v
j
α−v

−j
α

.

C∗ C∗ = C\{0}.
Uq, q ∈ C∗ The quantized enveloping algebra over C, Uq =

UA⊗ACq where Cq is an A-algebra by sending
v to q ∈ C∗.

qα qα = q
(α|α)

2 .

U−
q , U0

q , U+
q U−

q is generated by F
(n)
α , n ∈ N, U+

q is gener-

ated by E
(n)
α , n ∈ N. U0

q is generated by K±1
α

and
[
Kα;c
r

]
, c ∈ Z, r ∈ N.

Tw In P0: The twisting functor corresponding to a
w ∈W , see Definition 3.5 in P0. In P1 and P2:
The braid operator corresponding to w ∈W .

Rw In P0: The braid operator corresponding to
w ∈W .

Sw The semiregular bimodule corresponding to a
w ∈W , see Section 1 in P0.

Sv(F ) Sv(F ) = Uv(F )/Uv where Uv(F ) is the Ore lo-
calization in the Ore set {Fn|n ∈ N}. See
Section 3 in P0.



l(w) The length of w ∈W .
Let Fβ be a root vector cor-
responding to β

Choose a reduced expression of w0, w0 =
si1 · · · siN . Set βj = si1 · · · sij−1

(αij ) and
Fβj

= Tsi1 ···sij−1
(Fαij

), j ∈ {1, . . . , N}. Then

β = βj for some j ∈ {1, . . . , N} and Fβ = Fβj

is a root vector corresponding to β. If β 6∈ Π
then this construction depends on the reduced
expression chosen for w0.

[x, y]v If x ∈ (Uv)µ and y ∈ (Uv)ν then [x, y]v =
xy − v−(µ,ν)yx.

ad(F i
β)(u), ãd(F

i
β)(u) ad(F i

β)(u) := [[. . . [u, Fβ ]v . . . ]v, Fβ ]v and

ãd(F i
β)(u) := [Fβ , [. . . , [Fβ , u]v . . . ]]v where

the ’v-commutator’ is taken i times from the
left and right respectively, see Definition 2.11
in P0.

ad(F
(i)
β )(u), ãd(F

(i)
β )(u) ad(F

(i)
β )(u) = ([i]!)−1 ad(F i

β)(u) and

ãd(F
(i)
β )(u) = ([i]!)−1ãd(F i

β)(u), see Propo-
sition 2.12 and the comments after in
P0.

Uq(Fβ) The Ore localization of Uq in the set {F r
β |r ∈

N}.
Λl Λl = {µ ∈ Λ|0 ≤ 〈µ, α∨〉 < l, for all α ∈ Π}.
X The set of weights: The set of algebra homo-

morphisms U0
q → C. After Section 3 in P1

we restrict to type 1 modules so in this case
X = Λl×h∗ (see Lemma 3.3 and the comments
after in P1).

wtM The weights of a given Uq-module M .
M(λ) The Verma module with highest weight λ ∈ X.
L(λ) The unique simple quotient of M(λ).
chM The character of a module M . See the com-

ments after Definition 3.6 in P0.
w.λ The dot-action of w ∈ W on λ ∈ X, see the

comments after Definition 3.6 in P0.
wM , wM Twist of a Uq-module M by w ∈ W . See

Definition 3.4 in P0, Definition 1.2 in P1 or
Definition 1.2 in P2.

Mw(λ) A twisted Verma module. Mw(λ) =
TwM(w−1.λ), see Definition 3.8 in P0.

DM , M a Uv-module D is the duality functor on Uv −Mod, see the
comments after Definition 3.8 in P0.

F
(−n)
β In the non root of unity case F

(−n)
β = [n]β !F

−n
β ,

see Section 4 in P0. In the root of unity case
see the comment after Lemma 5.2 in P1.

F See Definition 1.3 in P1.



M [β], β ∈ Φ M [β] = {m ∈ M | dim
〈
E

(n)
β |n ∈ N

〉
m <

∞} if β ∈ Φ+ and M [β] = {m ∈

M | dim
〈
F

(n)
−β |n ∈ N

〉
m <∞} if β ∈ Φ−. The

definition is independent of the choice of root
vector Eβ or F−β , see Definition 2.5 in P1 and
the comments after.

β-finite A Uq-module M is β-finite if M [β] = M (see
Proposition 2.2 and Proposition 3.6 in P1).

β-free A Uq-module M is β-free if M [β] = 0.
TM , FM FM = {β ∈ Φ|M [β] = M}, TM = {β ∈

Φ|M [β] = 0}, see Definition 2.7 in P1.
p, l, u, u−, p− p is a parabolic Lie subalgebra of g. p = l⊕ u

where l is the Levi part and u is the nilpotent
part. u− is the nilpotent part of the opposite
parabolic subalgebra p−. See the comments
before Definition 2.12 in P1.

Uq(p), Uq(l), Uq(u),
Uq(u

−)
See the comments before Definition 2.12 in P1.

Uq(τ), Uq(t) See the comments after Proposition 2.17 in P1.
M(N) If N is a Uq(l)-module then M(X) = Uq⊗Uq(p)

N , see Definition 2.12 in P1.
L(N) If N is a Uq(l)-module then L(N) is the

unique simple submodule of M(N), see Propo-
sition 2.16 in P1.

Mu If M is a Uq-module then Mu = {m ∈
M |xm = ε(x)m, x ∈ Uq(u)}, see Defini-
tion 2.13 in P1.

Σ A set of commuting roots, see Definition 5.5
in P1 or Definition 4.13 in P2.

FΣ An Ore subset corresponding to Σ, see Corol-
lary 5.8 in P1 (for q an odd root of unity) or
Definition 4.19 in P2 (for q a non root of unity).

Uq(FΣ) The Ore localization of Uq in the Ore set FΣ.
Supp(L, µ), Suppess(L, µ) See Definition 6.5 in P1.
Supp(L) See Definition 4.21 in P2.
C(L) The cone corresponding to a simple module L,

see Definition 5.12 in P1 and Definition 4.1 in
P2.

ψFΣ,ν .M See Definition 5.9 in P1.
ϕFΣ,b.M See Definition 4.19 in P2.
M [l] See Definition 5.16 in P1.
T ∗ T ∗ = h∗/Q, see Definition 6.2 in P1.
Mss The semisimple module with the same compo-

sition factors as M .
EXT (L) See Proposition 6.7 in P1 (root of unity case)

or the comments before Lemma 5.4 in P2 (non
root of unity case).





Twisting functors for quantum group modules

Dennis Hasselstrøm Pedersen

Abstract

We construct twisting functors for quantum group modules. First over

the field Q(v) but later over any Z[v, v−1]-algebra. The main results in

this paper are a rigerous definition of these functors, a proof that they

satisfy braid relations and applications to Verma modules.

Keywords: Quantum Groups; Quantized Enveloping Algebra; Twisting Func-
tors; Representation Theory; Jantzen Filtration; Twisted Verma Modules

1 Introduction

Twisting functors were first introduced by S. Arkhipov (as a preprint in 2001
and published in [Ark04]). H. Andersen quantized the construction of twisting
functors in [And03]. Each twisting functor Tw is defined via a so called semi-
regular bimodule Swv . By the definition in [And03] its right module structure is
not clear. Our first goal is to demonstrate that Swv is in fact a bimodule. We
verify this by constructing an explicit isomorphism to an inductively defined
right module. The calculations are in fact rather complicated and involve several
manipulations with root vectors, see Section 2 below. At the same time these
calculations will be essential in [Ped15a] and [Ped15b].

Once we have established the definition of the twisting functors we prove
that they satisfy braid relations, see Proposition 3.11. In the ordinary (i.e.
non-quantum) case the corresponding result was obtained by O. Khomenko and
V. Mazorchuck in [KM05]. Our approach is similar but again the quantum case
involves new difficulties, see Section 3. This section also contains an explicit
proof of the fact that, for the longest word w0 ∈ W , the twisting functor Tw0

takes a Verma module to its dual, see Theorem 3.9,
The above results have several applications in the representation theory of

quantum group: They enable us to construct so called twisted Verma modules
and Jantzen filtrations of (twisted) Verma modules with arbitrary (non-integral)
weights and to derive the sum formula for these. In turn this simplifies the
linkage principle in quantum category Oq, q being a non-root of unity in an
arbitrary field.

1.1 Acknowledgements

I would like to thank my advisor Henning H. Andersen for great supervision and
many helpful comments and discussions. The authors research was supported by
the center of excellence grant ’Center for Quantum Geometry of Moduli Spaces’
from the Danish National Research Foundation (DNRF95).
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Twisting functors for quantum group modules

1.2 Notation

In this paper we work with a quantum group over a semisimple Lie algebra g

defined as in [Jan96]. Let Φ (resp. Φ+ and Φ−) denote the roots (resp. positive
and negative roots) and let Π = {α1, . . . , αn} denote the simple roots. The
quantum group has generators {Eα, Fα,Kα|α ∈ Π} with relations as found
in [Jan96]. Let Q = ZΦ denote the root lattice. Let (aij) be the cartan
matrix for g and let (·|·) be the standard invariant bilinear form. Let Λ =
spanZ {ω1, . . . , ωn} ⊂ h∗ be the integral lattice where ωi ∈ h∗ is the fundamental
weights defined by (ωi|αj) = δij . At first we work with the quantum group
Uv(g) defined over Q(v) but later we will specialize to an abitrary field and any
nonzero q in the field. This is done by considering Lusztig’s A-form UA where
A = Z[v, v−1], see Section 4. For any A-algebra R; UR = UA⊗AR. We will later
need the automorphism ω of Uv and the antipode S defined as in [Jan96] along
with the definition of quantum numbers [n]β and quantum binomial coefficients.
We use the notation E(r) = Er

[r]! and similarly for F . The Weyl group W is

generated by the simple reflections si = sαi
. As usual we define for a weight

µ ∈ Λ the weight space (Uv)µ := {u ∈ Uv|Kαu = v(α|µ)u for all α ∈ Π}. For a
µ ∈ Q, Kµ is defined as follows: Kµ =

∏n
i=1K

ai
αi

if µ =
∑n
i=1 aiαi. There is a

braid group action on the quantum group Uv usually denoted by Tsi where si is
the reflection with respect to the simple root αi. In this paper we will reserve
the T for twisting functors so we will call this braid group action R instead.
That is we have automorphisms Rsi such that

RsiEαi
=− Fαi

Kαi

RsiEαj
=

∑

r+s=−aij

(−1)sv−sαi
E(r)
αi
Eαj

E(s)
αi
, if i 6= j

RsiFαi
=−K−1

αi
Eαi

RsiFαj
=

∑

r+s=−aij

(−1)svsαi
F (s)
αi
Fαj

F (r)
αi
, if i 6= j

RsiKµ =Ksi(µ).

Our definition of braid operators follows the definition in [Jan96]. Note that
this definition differs slightly from the original definition in [Lus90] (cf. [Jan96,
Warning 8.14]).

The inverse to Rsi is given by

R−1
si
Eαi

=−K−1
αi
Fαi

R−1
si
Eαj

=
∑

r+s=−aij

(−1)sv−sαi
E(s)
αi
Eαj

E(r)
αi
, if i 6= j

R−1
si
Fαi

=− Eαi
Kαi

R−1
si
Fαj

=
∑

r+s=−aij

(−1)svsαi
F (r)
αi
Fαj

F (s)
αi
, if i 6= j

R−1
si
Kµ =Ksi(µ).

For w ∈W with a reduced expression si1 · · · sir , Rw is defined as Rsi1 · · ·Rsir .
This is independent of the reduced expression of w. An important property of the
braid operators is that if αi1 , αi2 ∈ Π and w(αi1) = αi2 then Rw(Fαi1

) = Fαi2
.

These properties are proved in Chapter 8 in [Jan96].
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Twisting functors for quantum group modules

For a reduced expression si1 · · · siN of w0 we can make an ordering of all the
positive roots by defining

βj := si1 · · · sij−1
(αij ), j = 1, . . . , N

In this way we get {β1, . . . , βN} = Φ+. We could just as well have used the
opposite reduced expression w0 = siN · · · si1 . In the following we will sometimes
use the numbering si1 · · · siN and sometimes the numbering siN · · · si1 . Note that
if w = si1 · · · sir and we expand this to a reduced expression si1 · · · sirsir+1

· · · siN
we get {β1, . . . , βr} = Φ+∩w(Φ−). We can define ’root vectors’ Fβj

, j = 1, . . . , N
by

Fβj
:= Rsi1 · · ·Rsij−1

(Fαij
).

Note that this definition depends on the chosen reduced expression. For a
different reduced expression we might get different root vectors. As mentioned
above if β ∈ Π then the root vector Fβ defined above is the same as the generator
with the same notation (cf. e.g [Jan96, Proposition 8.20]) so the notation is not
ambigious in this case. Let w ∈ W and let sir · · · si1 be a reduced expression
of w. Define Fβj

by choosing a reduced expression si1 · · · sirsir+1 · · · sN of w0

starting with the reduced expression si1 · · · sir of w−1. We define a subspace
U−
v (w) of U−

v as follows:

U−
v (w) := spanQ(v)

{
F a1β1

· · ·F arβr
|aj ∈ N

}

where Fβj
= Rsi1 · · ·Rsij−1

(Fαij
) as before. The definition of U−

v (w) seems to
depend on the reduced expression of w. But the subspace is independent of the
chosen reduced expression. This is shown in [Jan96, Proposition 8.22]. We will
show below that U−

v (w) is a subalgebra of U−
v and that

U−
v (w) = spanQ(v)

{
F arβr

· · ·F a1β1
|aj ∈ N

}
.

For a subalgebra N ⊂ Uv we define N∗ =
⊕

µN
∗
µ (i.e. the graded dual)

with the action given by (uf)(x) = f(xu) for u ∈ Uv, f ∈ N∗, x ∈ N . We
define ’the semiregular bimodule’ Swv := Uv ⊗U−

v (w) U
−
v (w)∗. Proving that this

is a Uv-bimodule will be the first main result of this paper. We will show that
there exists a right module structure on Swv such that as a right module Swv is
isomorphic to U−

v (w)∗ ⊗U−
v (w) Uv.

2 Calculations with root vectors

Let A = Z[v, v−1]. Lusztigs A-form is defined to be the A subalgebra of Uv
generated by the divided powers E

(n)
αi and F

(n)
αi for n ∈ N and K±1

i .

We want to define U−
A (w) = spanA

{
F

(a1)
β1

· · ·F
(ar)
βr

|ai ∈ N
}

where the Fβi

are defined from a reduced expression of w like earlier. We have U−
v (w0) = U−

v so
we want a similar property over A: U−

A (w0) = U−
A where U−

A is the A-subalgebra

generated by {F
(n)
αi |n ∈ N, i = 1, . . . , n}. This is shown very similar to the way

it is shown for Uv in [Jan96].

Lemma 2.1 Assume g does not contain any G2 components:

3
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1. The subspace UA(w) := spanA

{
F

(a1)
β1

· · ·F
(ar)
βr

|ai ∈ N
}

depends only on w,

not on the reduced expression chosen for w.

2. Let α and β be two distinct simple roots. If w is the longest element in the
subgroup of W generated by sα and sb then the span defined as before is

the subalgebra of UA generated by F
(a)
α and F

(b)
β , a, b ∈ N.

Proof. Claim 2. is shown on a case by case basis. We will show first that the
second claim implies the first.

We show this by induction on l(w). If l(w) ≤ 1 then there is only one reduced
expression of w and there is nothing to show. Assume l(w) > 1 and that w
has two reduced expressions w = sα1

sα2
· · · sαr

and w = sγ1sγ2 · · · sγr . We can
assume that we can get from one of the reduced expression to the other by an
elementary braid move (sαsβ · · · = sβsα · · · ). Set α = α1 and γ = γ1.

If α = γ, set w′ = sαw. Then the subspace spanned by the elements as in
the lemma is for both expressions equal to:


∑

a≥0

F (a)
α


 ·Rsα(U

−
A (w′)) (1)

If α 6= γ then the elementary move must take place at the beginning of the reduced
expression for both reduced expressions. Let w′′ be the longest element generated
by sα and sγ then we must have w = w′′w′ for some w′ with l(w′′) + l(w′) =
l(w) and the reduced expression for w′ in both reduced expressions are equal
whereas the reduced expressions for w′′ are the two possible combinations for
the two different reduced expressions. So the span of the products is given by
U−
A (w′)Rw′′(U−

A (w′′)) which is independent of the reduced expression by the
second claim.

We turn to the proof of the second claim: First assume we are in the simply
laced case. Then w = sαsβsα = sβsαsβ . Lets work with the reduced expression
sαsβsα. The other situation is symmetric by changing the role of α and β. We
want to show that

B :=
〈
F (n1)
α , F

(n2)
β |n1, n2 ∈ N

〉
A
= spanA

{
F (a1)
α F

(a2)
α+βF

(a3)
β |ai ∈ N

}
=: V (2)

where F
(a)
α+β = Rα(F

(a)
β ). By [Lus90] section 5 we have that F

(a)
α+β ∈ U−

A for all
a ∈ N and we see that

F
(k)
β F (k′)

α =
∑

t,s≥0

(−1)sv−tr−sF (r)
α F

(s)
α+βF

(t)
β

where the restrictions on the sum is s+t = k′ and s+t = k. Lusztig calculates for
the Eα’s but just use the anti-automorphism Ω (defined in Section 1 of [Lus90])
on the results to get the corresponding formulas for the F ’s. Also we get the (−1)s

from the fact that (using the notation of [Lus90]) E12 = −Rα2(Eα1) because of

the difference in the definition of the braid operators. Since F
(a)
α+β ∈ U−

A we have
that V ⊂ B. If we show that V is invariant by multiplication from the left with

F
(a)
α and F

(a)
β for all a ∈ N then we must have B ⊂ V . For F

(a)
α this is clear.
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For F
(k)
β , k ∈ N we use the formula above:

F
(k)
β F (a1)

α F
(a2)
α+βF

(a3)
β =

∑

t,s≥0

(−1)sv−d(tr+s)F (r)
α F

(s)
α+βF

(t)
β F

(a2)
α+βF

(a3)
β

=
∑

t,s≥0

(−1)sv−d(tr+s)+dta2F (r)
α F

(s)
α+βF

(a2)
α+βF

(t)
β F

(a3)
β

=
∑

t,s≥0

(−1)sv−d(tr+s)+dta2
[
s+ a2
s

][
t+ a3
t

]
F (r)
α F

(s+a2)
α+β F

(t+a3)
β .

We see that F
(k)
β V ⊂ V so V = B.

In the non simply laced case we have to use the formulas in [Lus90] section
5.3 (d)-(i) but the idea of the proof is the same. If there were similar formulas
for the G2 case it would be possible to show the same here. I do not know if
similar formulas can be found in this case. The important part is just that if

you ’v-commute’ two of the ’root vectors’ F
(k)
βi

and F
(k′)
βj

you get something that
is still in UA. �

Lemma 2.2

U−
A (w0) = U−

A

Proof. It is clear that U−
A (w0) ⊂ U−

A . We want to show that F
(k)
α U−

A (w0) ⊂
UA(w0) for all α ∈ Π.

U−
A (w0) is independent of the chosen reduced expression so we can choose

a reduced expression for w0 such that sα is the last factor. Then the first root

vector Fβ1 is equal to Fα. Then it is clear that F
(k)
α U−

A (w0) ⊂ U−
A (w0). Since

this was for an abitrary simple root α the proof is finished. (This argument is
sketched in the appendix of [Lus90].) �

Corollary 2.3 We get a basis of U−
A by the products of the form F

(a1)
β1

· · ·F
(aN )
βN

where a1, . . . , aN ∈ N.

Corollary 2.4 U−
A (w) = U−

v (w) ∩ UA.

Proof. Assume the length of w is r and define for k = (k1, . . . , kr) ∈ Nr

F (k) = F
(k1)
β1

· · ·F
(kr)
βr

.

It is clear that U−
A (w) ⊆ U−

v (w)∩UA. Assume x ∈ U−
v (w)∩UA. Since x ∈ U−

v (w)
we have constants ck ∈ Q(v), k ∈ Nr such that

x =
∑

k∈Nr

ckF
(k).

Assume the length of w0 is N and denote for n ∈ NN , F (n) like above for w.
U−
v (w) ∩ UA ⊆ U−

v (w0) ∩ UA = U−
A (w0) (U−

A (w0) ⊂ U−
v (w0) ∩ UA clearly and

U−
A (w0) is invariant under multiplication by U−

A .) so there exists bn ∈ A, n ∈ NN

such that
x =

∑

k∈NN

bkF
(k).

But then we have two expressions of x in U−
v (w) expressed as a linear combina-

tion of basis elements. So we must have that the multindieces bk are zero on
coordinates ≥ r and that all the ck are actually in A. This proves the corollary.�
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Definition 2.5 Let x ∈ (Uv)µ and y ∈ (Uv)γ then

[x, y]v := xy − v−(µ|γ)yx.

Proposition 2.6 For x1 ∈ (Uv)µ1
, x2 ∈ (Uv)µ2

and y ∈ (Uv)γ we have

[x1x2, y]v = x1[x2, y]v + v−(γ|µ2)[x1, y]vx2

and
[y, x1x2]v = v−(γ|µ1)x1[y, x2]v + [y, x1]vx2.

Proof. Direct calculation. �

We have the following which corresponds to the Jacobi identity. Note that
setting v = 1 recovers the usual Jacobi identity for the commutator.

Proposition 2.7 for x ∈ (Uv)µ, y ∈ (Uv)ν and z ∈ (Uv)γ we have

[[x, y]v, z]v = [x, [y, z]v]v−v
−(µ|ν)[y, [x, z]v]v+v

−(ν|µ+γ)
(
v(ν|µ) − v−(ν|µ)

)
[x, z]vy

Proof. Direct calculation. �

For use in the theorem below define:

Definition 2.8 Let A = Z[v, v−1] and let A′ be the localization of A in [2]
(and/or [3]) if the Lie algebra contains any Bn, Cn or F4 part (resp. any G2

part). Let w ∈ W have a reduced expression sir · · · si1 . Define βj and Fβj
,

i = 1, · · · , r as above: βj = si1 · · · sij−1(αij ) and Fβj
= Rsi1 · · ·Rsij−1

(Fαij
).

We define

U−
A′(w) = spanA′

{
F a1β1

· · ·F arβr
|a1, . . . , ar ∈ N

}

This subspace is independent of the reduced expression for w. This can be proved
in the same way as Lemma 2.1 using the rank 2 calculations done in [Lus90].

The main tool that will be used in this project is the following theorem
from [DP93, thm 9.3] originally from [LS91, Proposition 5.5.2]:

Theorem 2.9 Let Fβj
and Fβi

be defined as above. Let i < j. Let A = Z[v, v−1]
and let A′ be the localization of A in [2] (and/or [3]) if the Lie algebra contains
any Bn, Cn or F4 part (resp. any G2 part). Then

[Fβj
, Fβi

]v = Fβj
Fβi

− v−(βi|βj)Fβi
Fβj

∈ spanA′

{
F
ai+1

βi+1
· · ·F

aj−1

βj−1

}

Proof. We shall provide the details of the proof sketched in [DP93]. The rank
2 case is handled in [Lus90]. Note that in [Lus90] we see that when µ = 2 (in
his notation) we get second divided powers and when µ = 3 we get third divided
powers. This is one reason why we need to be able to divide by [2] and [3].

So we assume the rank 2 case is proven. In particular we can assume there is no
G2 component. Let k ∈ N, k < j. Then [Fβj

, Fβk
] = Rsi1 · · ·Rsik−1

[Rsik · · ·Rsij−1
(Fαij

), Fαik
]v

so we can assume in the above that i = 1. We can then assume that j > 2
because otherwise we would be in the rank 2 case. We will show by induction
over l ∈ N that

[Fβt
, Fβ1

]v = Fβt
Fβ1

− v−(β1|βt)Fβ1
Fβt

∈ spanA′

{
F a2β2

· · ·F
at−1

βt−1

}

6
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for all 1 < t ≤ l. The induction start l = 2 is the rank 2 case. Assume the
induction hypothesis that

[Fβt
, Fβ1

]v = Fβt
Fβ1

− v−(β1|βt)Fβ1
Fβt

∈ spanA′

{
F a2β2

· · ·F
at−1

βt−1

}

for t ≤ l. We need to prove the result for l+ 1. We have βl+1 = si1 · · · sil(αil+1
).

Now define i = il and j = il+1. Set w = si1 · · · sil−1
. So βl+1 = wsi(αj) and

Fβl+1
= RwRsi(Fαj

). Define α = αi1 . We need to show that

[RwRsi(Fαj
), Fα]v ∈ spanA′

{
F a2β2

· · ·F alβl

}
.

We divide into cases:
Case 1) (αi|αj) = 0: In this case RwRsi(Fαj

) = Rw(Fαj
). Since sisj = sjsi

there is a reduced expression for w0 starting with si1 · · · sl−1sjsi. So the induction
hypothesis gives us that [Rw(Fαj

), Fα1 ]v can be expressed by linear combinations
of ordered monomials involving only Fβ2

· · ·Fβl−1
.

Case 2) (αi|αj) = −1 and l(wsj) > l(w): In this case wsisj(αi) = w(αj) >
0 so there is a reduced expression for w0 starting with si1 · · · sil−1

sisjsi =
si1 · · · sil−1

sjsisj . So we have by induction that [Rw(Fαj
), Fα]v is a linear

combination of ordered monimials only involving Fβ2 · · ·Fβl−1
.

Observe that we have

Fβl+1
=RwRsi(Fαj

)

=Rw(Fαj
Fαi

− vFαi
Fαj

)

=Rw(Fαj
)Fβl

− vFβl
Rw(Fαj

)

=[Rw(Fαj
), Fβl

]v

so by Proposition 2.7 we get

[Fβl+1
, Fα]v =[[Rw(Fαj

), Fβl
]v, Fα]v

=[Rw(Fαj
), [Fβl

, Fα]v]v − v−(w(αj)|βl)[Fβl
, [Rw(Fαj

), Fα]v]v

+ v−(βl|α+w(αj))
(
v−1 − v

)
[Rw(Fαj

), Fα]vFβl
.

By induction (and Proposition 2.6) [Rw(Fαj
), [Fβl

, Fα]v]v and [Fβl
, [Rw(Fαj

), Fα]v]v
are linear combinations of ordered monomials containing only Fβ2

, . . . , Fβl−1
so

we have proved this case.
Case 3) (αi|αj) = −1 and l(wsj) < l(w): In this case write u = wsj . We

claim l(usi) > l(u). Assume l(usi) < l(u) then

l(w) + 2 = l(wsisj) = l(usjsisj) = l(usisjsi) < l(u) + 2 = l(w) + 1

A contradiction. So there is a reduced expression of w0 starting with usi. We
have Fβl+1

= RwRsi(Fαj
) = Ru(Fαi

) so we get

[Fβl+1
, Fα]v = [Ru(Fαi

), Fα]v

Now we claim that either u−1(α) = αj or u−1(α) < 0: Indeed w−1(α) < 0 so
u−1(α) is < 0 unless w−1(α) = −αj in which case we get u−1(α) = sjw

−1(α) =
sj(−αj) = αj . If α = u(αj) we get

[Ru(Fαi
), Fα]v = Ru([Fαi

, Fαj
]v) = Ru(Rsj (Fαi

)) = Rw(Fαi
) = Fβl

7
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In the other case we know from induction that

[Ru(Fαi
), Fα]v ∈ U−

A′(u
−1)

Now U−
A′(u−1) ⊂ U−

A′(sju
−1) = U−

A′(w−1) so we get that [Ru(Fαi
), Fα]v can

be expressed as a linear combination of monomials involving Fα = Fβ1
and

the terms Fβ2 · · ·Fβl−1
. Assume that a monomial of the form Fmα F

a2
β2

· · ·F
al−1

βl−1

appears with nonzero coefficient. The weights of the left and right hand side
must agree so we have wsi(αj) + α =

∑l−1
k=2 akβk +mα or

wsi(αj) =

l−1∑

k=2

akβk + (m− 1)α

Since w−1(βk) < 0 for k = 1, 2, . . . l − 1 (and α = β1) we get

αi + αj = w−1wsi(αj) =
l−1∑

k=2

akw
−1(βk) + (m− 1)w−1(α) < 0.

Which is a contradiction.
Case 4) 〈αj , α

∨
i 〉 = −1, (αi|αj) = −2 and l(wsj) > l(w): Here we get

Fβl+1
= RwRsi(Fαj

) = Rw(Fαj
Fαi

−v2Fαi
Fαj

) = Rw(Fαj
)Fβl

−v2Fβl
Rw(αj) = [Rw(Fαj

), Fβl
]v

From here the proof goes exactly as in case 2.
Case 5) 〈αj , α

∨
i 〉 = −2, and l(wsj) > l(w): First of all since l(wsj) > l(w)

we can deduce that l(wsisjsisj) = l(w) + 4: We have −βl+1 + 2wsisj(αi) =
wsisjsi(αj) = w(αj) > 0 showing that we must have wsisj(αi) > 0.

We have

Fβl+1
= RwRsi(Fαj

) = Rw(Fαi
F (2)
αj

− vFαj
Fαi

Fαj
+ v2F (2)

αj
Fαi

)

We claim that we have

Rsi(Fαj
) =

1

[2]

(
RsiRsj (Fαi

)Fαi
− Fαi

RsiRsj (Fαi
)
)

This is shown by a direct calculation. First note that

RsiRsj (Fαi
) = R−1

sj
RsjRsiRsj (Fαi

) = R−1
sj

(Fαi
) = Fαj

Fαi
− v2Fαi

Fαj

So

RsiRsj (Fαi
)Fαi

− Fαi
RsiRsj (Fαi

) =Fαj
F 2
αi

− v2Fαi
Fαj

Fαi
− Fαi

Fαj
Fαi

+ v2F 2
αi
Fαj

=Fαj
F 2
αi

− v[2]Fαi
Fαj

Fαi
+ v2F 2

αi
Fαj

=[2]Rsi(Fαi
).

Therefore

Fβl+1
=

1

[2]

(
RwRsiRsj (Fαi

)Fβl
− Fβl

RwRsiRsj (Fαi
)
)

=
1

[2]
[RwRsiRsj (Fαi

), Fβl
]v

=
1

[2]
[[Rw(Fαj

), Fβl
]v, Fβl

]v

8
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By Proposition 2.7 and the above we get

[RwRsiRsj (Fαi
), Fα]v =[[Rw(Fαj

), Fβl
]v, Fα]v

=[Rw(Fαj
), [Fβl

, Fα]v]v − v2[Fβl
, [Rw(Fαj

), Fα]v]v

+v2−(α|βl)
(
v−2 − v2

)
[Rw(Fαj

), Fα]vFβl

which by induction is a linear combination of ordered monomials involving only
Fβ2 , . . . , Fβl

. Using Proposition 2.7 again we get

[2][Fβl+1
, Fα]v =[[RwRsiRsj (Fαi

), Fβl
]v, Fα]v

=[RwRsiRsj (Fαi
), [Fβl

, Fα]v]v − [Fβl
, [RwRsiRsj (Fαi

), Fα]v]v

which by induction and the above is a linear combination of ordered monomials
involving only Fβ2 , . . . , Fβl

.
Case 6) (αi|αj) = −2, l(wsj) < l(w) and l(wsjsi) < l(wsj): Set u = wsjsi.

We claim l(usi) = l(usj) > l(u). Indeed suppose the contrary then l(w) + 2 =
l(wsisj) = l(usisjsisj) < l(u)+4 = l(w)+2. We reason like in case 3): We have
Fβl+1

= RwRsi(Fαj
) = RuRsiRsjRsi(Fαj

) = Ru(Fαj
). Now either u−1(α) = αi,

u−1(α) = si(αj) or u−1(α) < 0. If u−1(α) < 0 we get by induction that
[Fα, Ru(Fαj

)]v is in U−
A′(u−1) ⊂ U−

A′(w−1) and by essentially the same weight
argument as in case 3) we are done.

If α = u(αi) then

[Ru(Fαj
), Fα]v =[Ru(Fαj

), Ru(Fαi
)]v

=Ru(Fαj
Fαi

− v2Fαi
Fαj

)

=

{
RuRsi(Fαj

) if 〈αj , α
∨
i 〉 = −1

RuRsiRsj (Fαi
) if 〈αj , α

∨
i 〉 = −2

So [Fα, Ru(Fαj
)]v ∈ U−

A′(sisjsiu
−1) = U−

A′(siw
−1). Assume we have a monomial

of the form Fmα F
a2
β2

· · ·F alβl
with m nonzero in the expression of [Ru(Fαj

), Fα]v.
Then

wsi(αj) =

l∑

k=2

akβk + (m− 1)α

and we get

αj =

l∑

k=2

aksiw
−1(βk) + (m− 1)siw

−1(α) < 0.

A contradiction.
If α = usi(αj) then

[Ru(Fαj
), Fα]v =Ru[Fαj

, Rsi(Fαj
)]v

=Ru(Fαj
Rsi(Fαj

)− v−2Rsi(Fαi
)Fαj

)

=Ru(RsiRsjRsi(Fαj
)Rsi(Fαj

)− v−2Rsi(Fαj
)RsiRsjRsi(Fαj

))

Which is in U−
A′(sisjsiu

−1) = U−
A′(siw

−1) by the rank 2 case. By the same
weight argument as above we are done.
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Case 7) (αi|αj) = −2, l(wsj) < l(w) and l(wsjsi) > l(wsj): Set u = wsj .
Like in case 3) we get that either u−1(α) = αj or u−1(α) < 0. If α = u(αj):

[Fβl+1
, Fα]v = Ru[RsjRsi(Fαj

), Fαj
]v ∈ U−

A′(sisju
−1) = U−

A′(siw
−1)

And by a weight argument as above we are done.
If u−1(α) < 0 then α = β′

i for some i ∈ {1, . . . , l−2} where the β′
is are defined

as above but using a reduced expression of u. Set β′
l−1 = u(αj), β

′
l = usj(αi)

and β′
l+1 = usjsi(αj) = wsi(αj) = βl+1. Then

[Fβl+1
, Fα]v = [Fβ′

l+1
, Fβ′

i
]v ∈ U−

A′(sisju
−1) = U−

A′(siw
−1)

by induction and by a weight argument as above we are done. �

Lemma 2.10 Let w0 = si1 · · · siN and let Fβj
= Rsi1 · · ·Rsij−1

(Fαij
) let l, r ∈

{1, . . . , N} with l ≤ r. Then

spanQ(v)

{
F arβr

· · ·F alβl
|aj ∈ N

}
= spanQ(v)

{
F alβl

· · ·F arβr
|aj ∈ N

}

and the subspace is invariant under multiplication from the left by Fβi
, i =

l, . . . , r.

Proof. If r − l = 0 the lemma obviously holds. Assume r − l > 0. For
k ∈ Nr−l, k = (kl, . . . , kr) let F k = F klβl

· · ·F krβr
. We will prove the statement

that F k ∈ spanQ(v)

{
F arβr

· · ·F alβl
|aj ∈ N

}
by induction over kl+ · · ·+kr. If k = 0

the statement holds. We have

F k = Fβj
F
kj−1
βj

F
kj+1

βj+1
· · ·F krβr

.

By induction F
kj−1
βj

F
kj+1

βj+1
· · ·F krβr

∈ spanQ(v)

{
F arβr

· · ·F alβl
|aj ∈ N

}
so if we show

that Fβj
F brβr

· · ·F blβl
∈ spanQ(v)

{
F arβr

· · ·F alβl
|ai ∈ N

}
for all bi, i = l, . . . r then

we have shown the first inclusion.
We use downwards induction on j and induction on b1 + · · ·+ br. If j = r

then this is obviously true. If j < r we use theorem 2.9 to conclude that

Fβr
Fβj

− v−(βr|βj)Fβj
Fβr

∈ spanQ(v)

{
F
ar−1

βr−1
· · ·F

aj+1

βj+1
|ai ∈ N

}

If br = 0 the induction over j finishes the claim. We get now if br 6= 0

Fβj
F brβr

· · ·F blβl
= v(βr|βj)

(
Fβr

Fβj
F br−1
βr

· · ·F blβl
+ΣF br−1

βr
· · ·F blβl

)

where Σ ∈ spanQ(v)

{
F
ar−1

βr−1
· · ·F

aj+1

βj+1
|ai ∈ N

}
. By the induction on br + · · ·+ bl

Fβj
F br−1
βr

· · ·F blβl
∈ spanQ(v)

{
F arβr

· · ·F alβl
|ai ∈ N

}
and the induction on j en-

sures that ΣF br−1
βr

· · ·F blβl
∈ spanQ(v)

{
F arβr

· · ·F alβl
|ai ∈ N

}
since Σ contains only

elements generated by Fβr−1
· · ·Fβl

.
We have now shown that

spanQ(v)

{
F alβl

· · ·F arβr
|aj ∈ N

}
⊂ spanQ(v)

{
F arβr

· · ·F alβl
|aj ∈ N

}

The other inclusion is shown symmetrically. In the process we also proved
that the subspace is invariant under left multiplication by Fβj

. �
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Remark The above lemma shows that U−
v (w) is an algebra.

Definition 2.11 Let β ∈ Φ+ and let Fβ be a root vector corresponding to β.

Let u ∈ Uq. Define ad(F iβ)(u) := [[. . . [u, Fβ ]v . . . ]v, Fβ ]v and ãd(F iβ)(u) :=
[Fβ , [. . . , [Fβ , u]v . . . ]]v where the ’v-commutator’ is taken i times from the left
and right respectively.

Proposition 2.12 Let u ∈ (UA)µ, β ∈ Φ+ and Fβ a corresponding root vector.
Set r = 〈µ, β∨〉. Then in UA we have the identity

ad(F iβ)(u) = [i]β !
i∑

n=0

(−1)nv
n(1−i−r)
β F

(n)
β uF

(i−n)
β

and

ãd(F iβ)(u) = [i]β !

i∑

n=0

(−1)nv
n(1−i−r)
β F

(i−n)
β uF

(n)
β

Proof. This is proved by induction. For i = 0 this is clear. The induction step
for the first claim:

[i]β !

i∑

n=0

(−1)nv
n(1−i−r)
β F

(n)
β uF

(i−n)
β Fβ

− v−r−2i
β Fβ [i]β !

i∑

n=0

(−1)nv
n(1−i−r)
β F

(n)
β uF

(i−n)
β

=[i]β !

i∑

n=0

(−1)nv
n(1−i−r)
β [i+ 1− n]F

(n)
β uF

(i+1−n)
β

− [i]β !

i∑

n=0

(−1)nv
n(1−i−r)−r−2i
β [n+ 1]F

(n+1)
β uF

(i−n)
β

=[i]β !

i+1∑

n=0

(−1)nv
n(−i−r)
β

(
vnβ [i+ 1− n] + vn−i−1

β [n]
)
F

(n)
β uF

(i+1−n)
β

=[i+ 1]β !

i+1∑

n=0

(−1)nv
n(−i−r)
β F

(n)
β uF

(i+1−n)
β .

The other claim is shown similarly by induction. �

So we can define ad(F
(i)
β )(u) := ([i]!)−1 ad(F iβ)(u) ∈ UA and ãd(F

(i)
β )(u) :=

([i]!)−1ãd(F iβ)(u) ∈ UA.

Proposition 2.13 Let a ∈ N, u ∈ (UA)µ and r = 〈µ, β∨〉. In UA we have the
identities

uF
(a)
β =

a∑

i=0

v
(i−a)(r+i)
β F

(a−i)
β ad(F

(i)
β )(u)

=

a∑

i=0

(−1)iv
a(r+i)−i
β F

(a−i)
β ãd(F

(i)
β )(u)

11
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and

F
(a)
β u =

a∑

i=0

v
(i−a)(r+i)
β ãd(F

(i)
β )(u)F

(a−i)
β

=

a∑

i=0

(−1)iv
a(r+i)−i
β ad(F

(i)
β )(u)F

(a−i)
β

Proof. This is proved by induction. For a = 0 this is obvious. The induction
step for the first claim:

[a+ 1]βuF
(a+1)
β =uF

(a)
β Fβ

=

a∑

i=0

v
(i−a)(r+i)
β F

(a−i)
β ad(F

(i)
β )(u)Fβ

=

a∑

i=0

v
(i−a)(r+i)−r−2i
β [a+ 1− i]βF

(a+1−i)
β ad(F

(i)
β )(u)

+

a∑

i=0

v
(i−a)(r+i)
β [i+ 1]βF

(a−i)
β ad(F

(i+1)
β )(u)

=

a∑

i=0

v
(i−a−1)(r+i)−i
β [a+ 1− i]βF

(a+1−i)
β ad(F

(i)
β )(u)

+

a+1∑

i=1

v
(i−a−1)(r+i−1)
β [i]βF

(a+1−i)
β ad(F

(i)
β )(u)

=

a+1∑

i=0

v
(i−a−1)(r+i)
β

(
v−iβ [a+ 1− i]β + va+1−i

β [i]
)
F

(a+1−i)
β ad(F

(i)
β )(u)

=[a+ 1]β

a+1∑

i=0

v
(i−a−1)(r+i)
β F

(a+1−i)
β ad(F

(i)
β )(u).

So the induction step for the first identity is done. The three other identities are
shown similarly by induction. �

Let si1 . . . siN be a reduced expression of w0 and construct root vectors Fβi
,

i = 1, . . . , N . In the rest of the section Fβi
refers to the root vectors constructed

as such. In particular we have an ordering of the root vectors.

Proposition 2.14 Let 1 ≤ i < j ≤ N and a, b ∈ Z>0.

[F bβj
, F aβi

]v ∈ spanQ(v)

{
F aiβi

· · ·F
aj
βj
|al ∈ N, ai < a, aj < b

}
.

Proof. From Theorem 2.9 we get the a = 1, b = 1 case. We will prove the
general case by 2 inductions.

If j − i = 1 then [Fβj
, F aβi

]v = 0 for all a. We will use induction over j − i.
We have by Proposition 2.6 that

[Fβj
, F aβi

]v = v−((a−1)βi|βj)F a−1
βi

[Fβj
, Fβi

]v + [Fβj
, Fβi

]vF
a−1
βi

.

The first term is in the correct subspace by Theorem 2.9. On the second we use
the fact that [Fβi

, Fβj
]v only contains factors F aiβi+1

· · ·F
aj−1

βj−1
and the induction

12
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over j− i as well as induction over a to conclude that we can commute the F a−1
βi

to the correct place and be in the correct subspace.
Now just make a similar kind of induction on i− j and b to get the result

that
[F bβj

, F aβi
]v ∈ spanQ(v)

{
F aiβi

· · ·F
aj
βj
|al ∈ N, ai < a, aj < b

}
. �

Corollary 2.15 Let 1 ≤ i < j ≤ N and a, b ∈ Z>0.

[F
(b)
βj
, F

(a)
βi

]v ∈ spanA

{
F

(ai)
βi

· · ·F
(aj)
βj

|al ∈ N, ai < a, aj < b
}
.

Proof. Proposition 2.14 tells us that there exists ck ∈ Q(v) such that

[F
(b)
βj
, F

(a)
βi

]v =
∑

k

ckF
(aki )
βi

· · ·F
(akj )

βj

with aki < a and akj < b for all k. But since [F
(b)
βj
, F

(a)
βi

]v ∈ U−
A there exists

bk ∈ A such that

[F
(b)
βj
, F

(a)
βi

]v =
∑

k

bkF
(ak1 )
β1

· · ·F
(akN )
βN

.

Now we have two expressions of [F
(b)
βj
, F

(a)
βi

]v in terms of a basis of U−
Q(v). So we

must have that the ck’s are equal to the bk’s. Hence ck ∈ A for all k �

Lemma 2.16 Let n ∈ N. Let 1 ≤ j < k ≤ N .

ad(F
(i)
βj

)(F
(n)
βk

) = 0 and ãd(F
(i)
βk

)(F
(n)
βj

) = 0 for i≫ 0.

Proof. We will prove the first assertion. The second is proved completely similar.
We can assume βj = 1 because

ad(F
(i)
βj

)(F
(n)
βk

) = Tsi1 · · ·Tsij−1

(
ad(F (i)

αij
)(Tsij · · ·Tsik−1

(F (n)
αik

))
)
.

So we assume βj = β1 =: β ∈ Π and α := βk = si1 . . . sik−1
(αij ) ∈ Φ+. We have

ad(Fβ)(F
(n)
α ) ∈ spanA

{
F

(a2)
β2

· · ·F
(ak)
βk

|al ∈ N, ak < n
}
,

hence the same must be true for ad(F
(i)
β )(F

(n)
α ). By homogenity if the monomial

F
(a2)
β2

· · ·F
(ak)
βk

appears with nonzero coefficient then we must have

iβ + nα =

k∑

s=2

asβs

or equivalently

(n− ak)α =
k−1∑

s=2

asβs − iβ.

Use sβ on this to get

(n− ak)sβ(α) =

s−1∑

s=2

assβ(βs) + iβ.

13
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By the way the βs’s are chosen sβ(βs) > 0 for 1 < s < k. So this implies that
a positive multiple (n − aj) of a positive root must have iβ as coefficient. If
we choose i greater than nd where d is the maximal possible coefficient of a
simple root in any positive root then this is not possible. Hence we must have

for i > nd that ad(F
(i)
β )(F

(n)
α ) = 0. �

In the next lemma we will need to work with inverse powers of some of the
Fβ ’s. We know from e.g. [And03] that {F aα |a ∈ N}, α ∈ Π is a multiplicative
set so we can take the Ore localization in this set. Since Rw is an algebra
isomorphism of Uv we can also take the Ore localization in one of the ’root
vectors’ Fβj

. We will denote the Ore localization in Fβ by Uv(Fβ).

Lemma 2.17 Let β ∈ Φ+ and Fβ a root vector. Let u ∈ (Uv)µ be such that

ãd(F iβ)(u) = 0 for i ≫ 0. Let a ∈ N and set r = 〈µ, β∨〉. Then in the algebra
Uv(Fβ) we get

uF−a
β =

∑

i≥0

v
−ar−(a+1)i
β

[
a+ i− 1

i

]

β

F−i−a
β ãd(F iβ)(u)

and if u′ ∈ (Uv)µ is such that ad(F iβ)(u
′) = 0 for i≫ 0

F−a
β u′ =

∑

i≥0

v
−ar−(a+1)i
β

[
a+ i− 1

i

]

β

ad(F iβ)(u
′)F−i−a

β .

Proof. First we want to show that

ãd(F iβ)(u)F
−1
β =

∞∑

k=i

v−r−2k
β F−k+i−1

β ãd(F kβ )(u). (3)

Remember that ãd(F kβ )(u) = 0 for k big enough so this is a finite sum. This is
shown by downwards induction on i. If i is big enough this is 0 = 0. We have

Fβ ãd(F
i
β)(u) = ãd(F i+1

β )(u) + v−r−2i
β ãd(F iβ)(u)Fβ

so

ãd(F iβ)(u)F
−1
β =F−1

β ãd(F i+1
β )(u)F−1

β + v−r−2i
β F−1

β ãd(F iβ)(u)

=
∞∑

k=i+1

v−r−2k
β F−k+i−1

β ãd(F kβ )(u) + v−r−2i
β F−1

β ãd(F iβ)(u)

=

∞∑

k=i

v−r−2k
β F−k+i−1

β ãd(F kβ )(u).

Setting i = 0 in the above we get the induction start:

uF−1
β =

∑

k≥0

v−r−2k
β F−k−1

β ãd(F kβ )(u).

For the induction step assume

uF−a
β =

∑

i≥0

v
−ar−(a+1)i
β

[
a+ i− 1

i

]

β

F−a−i
β ãd(F iβ)(u).

14
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Then

uF−a−1
β =

∑

i≥0

v
−ar−(a+1)i
β

[
a+ i− 1

i

]

β

F−a−i
β ãd(F iβ)(u)F

−1
β

=
∑

i≥0

v
−ar−(a+1)i
β

[
a+ i− 1

i

]

β

F−a−i
β

∑

k≥i

v−r−2k
β F−k+i−1

β ãd(F kβ )(u)

=
∑

k≥0

k∑

i=0

v
−(a+1)r−(a+1)i−2k
β

[
a+ i− 1

i

]

β

F−a−1−k
β ãd(F kβ )(u)

=
∑

k≥0

v
−(a+1)r−(a+2)k
β

(
k∑

i=0

v
−(a+1)i+ak
β

[
a+ i− 1

i

]

β

)
F−a−1−k
β ãd(F kβ )(u).

The induction is finished by observing that

k∑

i=0

v
−(a+1)i+ak
β

[
a+ i− 1

i

]

β

=vakβ +

k∑

i=1

v
−(a+1)i+ak
β

(
viβ

[
a+ i

i

]

β

− va+iβ

[
a+ i− 1

i− 1

]

β

)

=vakβ +

k∑

i=1

v−ai+akβ

[
a+ i

i

]

β

−

k∑

i=1

v
−a(i−1)+ak
β

[
a+ i− 1

i− 1

]

β

=vakβ +
k∑

i=1

v−ai+akβ

[
a+ i

i

]

β

−
k−1∑

i=0

v−ai+akβ

[
a+ i

i

]

β

=

[
a+ k

k

]

β

.

The other identity is shown similarly by induction. �

Definition 2.18 Let β ∈ Φ+ and let β be Fβ a root vector. We define for n ∈ N
in Uv(Fβ)

F
(−n)
β = [n]!F−n

β

i.e. F
(−n)
β =

(
F

(n)
β

)−1

.

Corollary 2.19 Let β ∈ Φ+ and Fβ a root vector. Let u ∈ (Uv)µ be such that

ãd(F
(i)
β )(u) = 0 for i≫ 0. Let a ∈ N and set r = 〈µ, β∨〉. Then in the algebra

Uv(Fβ) we get

uF
(−a)
β F−1

β =
∑

i≥0

v
−(a+1)r−(a+2)i
β F

(−i−a)
β F−1

β ãd(F
(i)
β )(u)

and if u′ ∈ (Uv)µ is such that ad(F
(i)
β )(u′) = 0 for i≫ 0

F
(−a)
β F−1

β u′ =
∑

i≥0

v
−(a+1)r−(a+2)i
β ad(F

(i)
β )(u′)F

(−i−a)
β F−1

β .
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3 Twisting functors

In this paper we are following the paper [And03] closely. The definition of
twisting functors for quantum group modules given later and the ideas in this
section are mostly coming from this paper.

We will start by showing that the semiregular bimodule Swv is a bimodule
isomorphic to U−

v (w)∗ ⊗U−
v (w) Uv as a right module.

Recall how Uv(w), S
w
v and Sv(F ) are defined: Let sir · · · si1 be a reduced

expression for w and Fβj
= Rsi1 · · ·Rsij−1

(Fαij
) as usual then

U−
v (w) = spanQ(v)

{
F a1β1

· · ·F arβr
|ai ∈ N

}
,

Swv = Uv ⊗U−
v (w) U

−
v (w)∗

and for F ∈ U−
v such that {F a|a ∈ N} is a multiplicative set

Sv(F ) = Uv(F )/Uv

where Uv(F ) denotes the Ore localization in the multiplicative set {F a|a ∈ N}.
In the following proposition we will define a left Uv isomorphism between

Swv and Sv(Fβr
) ⊗Uv

Sw
′

v where w′ = sirw. We will need some notation. Let

m ∈ N. We denote by f
(r)
m ∈ (Q(v)[Fβr

])∗ the linear function defined by

f
(r)
m (F aβr

) = δm,a. We will drop the (r) from the notation in most of the

following. For g ∈ U−
v (w′)∗ we define fm · g to be the linear function defined by:

For x ∈ U−
v (w′), (fm · g)(xF aβr

) = fm(F
a
βr
)g(x). From the definition of U−

v (w)

and because we are taking graded dual every f ∈ U−
v (w)∗ is a linear combination

of functions on the form fm · g for some m ∈ N and g ∈ U−
v (w′) (by induction

this implies that every function in U−
v (w) is a linear combination of functions of

the form f
(r)
mr · · · f

(2)
m2 · f

(1)
m1 for some m1, . . . ,mr ∈ N). Note that the definition

of fm makes sense for m < 0 but then fm = 0.

Proposition 3.1 Assume w = sik · · · si1 = sikw
′, where k is the length of w,

then as a left Uv module

Swv
∼= Sv(Fβk

)⊗Uv
Sw

′

v

by the following left Uv isomorphism

ϕk : Swv → Sv(Fβk
)⊗Uv

Sw
′

v

defined by:

ϕk(u⊗ fm · g) = uF−m−1
βk

Kβk
⊗ (1⊗ g), u ∈ Uv,m ∈ N, g ∈ U−

v (w′)∗.

The inverse to ϕk is the left Uv-homomorphism ψk : Sv(Fβk
) ⊗Uv

Sw
′

v → Swv
given by:

ψk(uF
−m
βk

⊗(1⊗g)) = v(mβk|βk)uK−1
βk

⊗fm−1·g, u ∈ Uv.m ∈ N, g ∈ U−
v (w′)∗.

Proof. The question is if ϕk is welldefined. Let f = fm · g. We need to show
that the recipe for uFβj

⊗f is the same as the recipe for u⊗Fβj
f for j = 1, . . . , k.
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For j = k this is easy to see. Assume from now on that j < k. We need to figure
out what Fβj

f is. We have by Proposition 2.13 (setting r = 〈βj , β
∨
k 〉)

(Fβj
f)(xF aβk

) = f(xF aβk
Fβj

)

= f

(
x

a∑

i=0

v
(i−a)(r+i)
β

[
a

i

]

β

ãd(F iβk
)(Fβj

)F a−iβk

)

=

(
a∑

i=0

v
−m(r+i)
β

[
m+ i

i

]

β

fm+i ·
(
ãd(F iβk

)(Fβj
)g
))

(xF aβk
)

=


∑

i≥0

v
−m(r+i)
β

[
m+ i

i

]

β

fm+i ·
(
ãd(F iβk

)(Fβj
)g
)

 (xF aβk

)

so

Fβj
f =

∑

i≥0

v
−m(r+i)
β

[
m+ i

i

]

β

fm+i ·
(
ãd(F iβk

)(Fβj
)g
)
.

Note that the sum is finite because of Lemma 2.16.
On the other hand we have that uFβj

⊗ f is sent to (using Lemma 2.17)

uFβj
F−m−1
βk

Kβk
⊗ (1⊗ g)

= u
∑

i≥0

v
−(m+1)r−(m+2)i
βk

[
m+ i

i

]

β

F−i−m−1
βk

ãd(F iβk
)(Fβj

)Kβk
⊗ (1⊗ g)

= u
∑

i≥0

v−mr−miβk

[
m+ i

i

]

β

F−i−m−1
βk

Kβk
ãd(F iβk

)(Fβj
)⊗ (1⊗ g).

Using the fact that ãd(F iβk
)(Fβj

) can be moved over the first and the second
tensor we see that the two expressions uFβj

⊗ f and u⊗ Fβj
f are sent to the

same.
So ϕk is a welldefined homomorphism. It is clear from the construction that

ϕk is a Uv homomorphism.
We also need to prove that ψk is welldefined. We prove that uF−m

βk
Fβj

⊗(1⊗g)

is sent to the same as uF−m
βk

⊗ (1⊗Fβj
g) by induction over k− j. If j = k−1 we

see from Lemma 2.17 and Theorem 2.9 that Fβk−1
F−a
βk

= v−(aβk|βk−1)F−a
βk
Fβk−1

and therefore uF−m
βk

Fβk−1
⊗ (1⊗ g) is sent to

v(mβk−βj |βk)+(mβk|βk−1)uK−1
βk
Fβk−1

⊗ fm−1 · g

= v(mβk+(m−1)βk−1βk)uK−1
βk

⊗ Fβk−1
(fm−1 · g).

Note that because we have ãd(F iβk
)(Fβj

) = 0 for all i ≥ 1 we get Fβk−1
(fm−1 ·g) =

v−(βk−1|(m−1)βk)fm−1 · (Fβk−1
g). Using this we see that uF−m

βk
Fβk−1

⊗ (1⊗ g) is

sent to the same as uF−m
βk

⊗ (1⊗ Fβk−1
g).

Now assume j − k > 1. To calculate what uF−m
βk

Fβj
⊗ (1⊗ g) is sent to we

need to calculate F−m
βk

Fβj
. By Lemma 2.17

F−m
βk

Fβj
= vmrFβj

F−m
βk

−
∑

i≥1

v
−(m+1)i
β

[
m+ i− 1

i

]

β

F−m−i
βk

ãd(F iβk
)(u).

17
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So

uF−m
βk

Fβj
⊗ (1⊗ g) = u

(
vmrβ Fβj

F−m
βk

−
∑

i≥1

v
−(m+1)i
β

[
m+ i− 1

i

]

β

F−m−i
βk

ãd(F iβk
)(u)

)
⊗ (1⊗ g).

By the induction over k−j (remember that ãd(F iβk
)(u) is a linear combination

of ordered monomials involving only the elements Fβj+1
· · ·Fβk−1

) this is sent to
the same as

u


vmrβ Fβj

F−m
βk

⊗ (1⊗ g)−
∑

i≥1

v
−(m+1)i
β

[
m+ i− 1

i

]

β

F−m−i
βk

⊗ (1⊗ ãd(F iβk
)(u)g)




which is sent to

u

(
vmr+2m
β Fβj

K−1
βk

⊗ fm−1 · g

−K−1
βk

⊗
∑

i≥1

v
2(m+i)−(m+1)i
β

[
m+ i− 1

i

]

β

⊗ fm+i−1 · (ãd(F
i
βk
)(u)g)

)

= v2mβ uK−1
βk

(
v
(m−1)r
β Fβj

⊗ fm−1 · g

− 1⊗
∑

i≥1

v
−(m−1)i
β

[
m+ i− 1

i

]

β

⊗ fm+i−1 · (ãd(F
i
βk
)(u)g)

)

= v(mβk|βk)uK−1
βk

⊗ fm−1 · (Fβj
g).

But this is what uF−m
βk

⊗ (1 ⊗ Fβj
g) is sent to. We have shown by induction

that ψk is well defined. It is easy to check that ψk is the inverse to ϕk. �

Proposition 3.2 Let sir · · · si1 be a reduced expression of w ∈W . There exists
an isomorphism of left Uv-modules

Swv
∼= Sv(Fβr

)⊗Uv
· · · ⊗Uv

Sv(Fβ1)

Proof. The proof is by induction of the length of w. Note that Sev = Uv⊗k k
∗ ∼=

Uv so Proposition 3.1 with w′ = e gives the induction start.
Assume the length of w is r > 1. By Proposition 3.1 we have Swv

∼=
Sv(Fβr

) ⊗Uv
Sw

′

v . By induction Sw
′

v
∼= Sv(Fβr−1) ⊗Uv

· · · ⊗Uv
Sv(Fβ1). This

finishes the proof. �

We can now define a right action on Swv by the isomorphism in Proposition 3.2.
By first glance this might depend on the chosen reduced expression for w. But
the next proposition proves that this right action does not depend on the reduced
expression chosen.

Proposition 3.3 As a right Uv module Swv
∼= U−

v (w)∗ ⊗Uv
Uv.

18
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Proof. All isomorphisms written in this proof are considered to be right Uv
isomorphisms. This is proved in a very similar way to Proposition 3.1. We will
sketch the proof here.

For l ∈ {1, . . . , N} define Slv = (U lv)
∗⊗U l

v
Uv where U lv = spanQ(v)

{
F alβl

· · ·F arβr
|ai ∈ N

}
.

Note that S1
v = U−

v (w)∗ ⊗Uv
Uv. We want to show that (U lv)

∗ ⊗U l
v
Uv ∼=

Sl+1
v ⊗Uv

Sv(Fβl
). If we prove this we will have S1

v
∼= S2

v ⊗Uv
Sv(Fβ1

) ∼= · · · · · · ∼=
Sv(Fβr

)⊗Uv
· · · ⊗Uv

Sv(Fβ1
) ∼= Swv as a right module and we are done.

Let r = 〈βj , β
∨
l 〉. From Proposition 2.13 we have

Fβj
F aβl

=

a∑

i=0

v
(i−a)(r+i)
β

[
a

i

]

β

F a−iβl
ad(F iβl

)(Fβj
)

and by Lemma 2.17 we have

F−a
βl
Fβj

=
∑

i≥0

v
−ar−(a+1)i
βl

[
a+ i− 1

i

]

βl

ad(F iβl
)(Fβr

)F−i−a
βl

.

We define the right homomorphism ϕl from (U lv)
∗⊗U l

v
Uv to Sl+1

v ⊗Uv
Sv(Fβl

)
by

ϕl(g · fml
⊗ u) = (g ⊗ 1)⊗Kβl

F−ml−1
βl

u.

Like in the previous propisition we can use the above formulas to show that this
is well defined and we can define an inverse like in the previous proposition only
reversed. The inverse is:

ψl((g ⊗ 1)⊗ F−m−1
βl

u) = v−((m+1)βl|βl)g · fm ⊗K−1
βl
u. �

So we have now that Swv is a bimodule isomorphic to Uv ⊗U−
v (w) U

−
v (w)∗ as

a left module and isomorphic to U−
v (w)∗ ⊗U−

v (w) Uv as a right module. We want
to examine the isomorphism between these two modules. For example what is
the left action of Kα on f ⊗ 1 ∈ (U−

v (w))∗ ⊗U−
v (w) Uv.

Assume f = f
(r)
mr · · · f

(1)
m1 i.e. that f(F a1β1

· · ·F arβr
) = δm1,a1 · · · δmr,ar . Then

we get via the isomorphism (U−
v (w))∗ ⊗U−

v (w) Uv
∼= Sv(Fβr

)⊗Uv
· · · ⊗Uv

Sv(Fβ1
)

that f ⊗ u is sent to

Kβr
F−mr−1
βr

⊗ · · · ⊗Kβ1
F−m1−1
β1

u.

We want to investigate what this is sent to under the isomorphism Sv(Fβr
)⊗Uv

· · · ⊗Uv
Sv(Fβ1

) ∼= Uv ⊗U−
v (w) (U

−
v (w))∗. To do this we need to commute u with

F−m1−1
β1

, then F−m2−1
β2

and so on. So we need to find ũ and m′
1, . . . ,m

′
r such

that
Kβr

F−mr−1
βr

· · ·Kβ1
F−m1−1
β1

u = ũKβr
F

−m′
r−1

βr
· · ·Kβ1

F
−m′

1−1
β1

or equivalently

uF
m′

1+1
β1

K−1
β1

· · ·F
m′

r+1
βr

K−1
βr

= Fm1+1
β1

K−1
β1

· · ·Fmr+1
βr

K−1
βr
ũ.

Assume we have found such ũ and m′
1, . . . ,m

′
r then the above tensor is sent to

v
∑r

i=1((m
′+1)βi|βi)ũ⊗ f̃
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where f̃ = f
(r)
m′

r
· · · f

(1)
m′

1
. So in conclusion we have that f⊗u ∈ (U−

v (w))∗⊗U−
v (w)Uv

maps to v
∑r

i=1((m
′+1)βi|βi)ũ⊗ f̃ ∈ Uv⊗U−

v (w) (U
−
v (w))∗ where f̃ and ũ are defined

as above.
We have a similar result the other way: u⊗ f ∈ Uv ⊗U−

v (w) (U
−
v (w))∗ maps

to v−
∑r

i=1((m+1)βi|βi)u ⊗ f ∈ (U−
v (w))∗ ⊗U−

v (w) Uv. So if we want to figure
out the left action of u on a tensor f ⊗ 1 we need to first use the isomorpism
(U−

v (w))∗ ⊗U−
v (w) Uv → Uv ⊗U−

v (w) (U
−
v (w))∗ then use u on this and then use

the isomorphism Uv ⊗U−
v (w) (U

−
v (w))∗ → (U−

v (w))∗ ⊗U−
v (w) Uv back again.

In particular if u = Kα we have f = f and u = v
∑r

i=1((mi+1)βi|βi)Kα. Note

that if f = f
(mr)
mr · · · f

(1)
m1 then the grading of f is

∑r
i=1miβi so Kα(f ⊗ 1) =

v(γ+
∑r

i=1 βi|α)f ⊗Kα for f ∈ (U−
v (w))∗γ .

Definition 3.4 Let w ∈ W . For a Uv-module M define a ’twisted’ version of
M called wM . The underlying space is M but the action on wM is given by:
For m ∈M and u ∈ Uv

u ·m = Rw−1(u)m.

Note that if w, s ∈ W and l(sw) > l(w) then s(wM) = swM since for u ∈ Uv
and m ∈ s(wM): u ·m = Rs(u) ·m = Rw−1(Rs(u))m = R(sw)−1(u)m.

Definition 3.5 The twisting functor Tw associated to an element w ∈W is the
following:

Tw : Uv−Mod → Uv−Mod is an endofunctor on Uv−Mod. For a Uv-module
M :

TwM = w(Swv ⊗Uv
M).

Definition 3.6 Let M be a Uv-module and λ : U0
v → Q(v) a character (i.e. an

algebra homomorphism into Q(v)). Then

Mλ = {m ∈M |∀u ∈ U0
v , um = λ(u)m}.

Let X denote the set of characters. Let wtM denote all the weights of M ,
i.e. wtM = {λ ∈ X|Mλ 6= 0}. We define for µ ∈ Λ the character vµ by

vµ(Kα) = v(µ|α). We also define vµβ = v
(β|β)

2 µ. We say that M only has integral
weights if all its weights are of the form vµ for some µ ∈ Λ.

W acts on X by the following: For λ ∈ X define wλ by

(wλ)(u) = λ(Rw−1(u)).

Note that wvµ = vw(µ).
We will also need the dot action. It is defined as such: For a weight µ ∈ X

and w ∈ W , w.µ = v−ρw(vρµ) where ρ = 1
2

∑
β∈Φ β as usual. The Verma

module M(λ) for λ ∈ X is defined as M(λ) = Uv ⊗U≥0
v

Q(v)λ where Q(v)λ
is the onedimensional module with trivial U+

v action and U0
v action by λ (i.e.

Kµ · 1 = λ(Kµ)). M(λ) is a highest weight module generated by vλ = 1⊗ 1.
Note that Rw−1 sends a weight space of weight µ to the weight space of

weight w(µ) since if we have a vector m with weight µ in a module M we get in
wM that

Kα ·m = Rw−1(Kα)m = Kw−1(α)m = v(w
−1(α)|µ)m = v(α|w(µ))m.
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We define the character of a Uv-module M as usual: The character is a
map chM : X → N given by chM(µ) = dimMµ. Let eµ be the delta function
eµ(γ) = δµ,γ . We will write chM as the formal infinite sum

chM =
∑

µ∈X

dimMµe
µ.

For more details see e.g. [Hum08]. Note that if we define w(
∑
µ aµe

µ) =∑
µ aµe

w(µ) then chwM = w(chM) by the above considerations.

Proposition 3.7

chTwM(λ) = chM(w.λ)

Proof. To determine the character of TwM(λ) we would like to find a basis.
We will do this by looking at some vectorspace isomporphisms to a space where
we can easily find a basis. Then use the isomorphisms back again to determine
what the basis looks like in TwM(λ). So assume w = sir · · · si1 is a reduced
expression for w. Expand to a reduced expression siN · · · sir+1

sir · · · si1 for

w0. Let Uwv = spanQ(v)

{
F
ar+1

βr+1
· · ·F aNβN

|ai ∈ N
}
. Set k = Q(v). We have the

canonical vector space isomorphisms

U−
v (w)∗ ⊗U−

v (w) Uv ⊗Uv
Uv ⊗U≥0

v
kλ ∼=U−

v (w)∗ ⊗U−
v (w) Uv ⊗U≥0

v
kλ

∼=U−
v (w)∗ ⊗k U

w
v ⊗k kλ.

The map from the last vectorspace to the first is easily seen to be f⊗u⊗1 7→ f⊗
u⊗1⊗1 = f⊗u⊗vλ, f ∈ U−

v (w)∗, u ∈ Uwv and vλ = 1⊗1 ∈ Uv⊗U≥0
v
kλ =M(λ)

is a highest weight vector in M(λ).
So we see that a basis of TwM(λ) = w(U−

v (w)∗ ⊗U−
v (w) Uv ⊗Uv

M) is given

by the following: Choose a basis {fi}i∈I for U−
v (w)∗ and a basis {uj}j∈J for Uwv .

Then a basis for TwM(λ) is given by

{fi ⊗ uj ⊗ vλ}i∈I,j∈J .

So we can find the weights of TwM(λ) by examining the weights of f ⊗u⊗vλ
for f ∈ U−

v (w)∗ and u ∈ Uwv . By the remarks before this proposition we have
that Kα(f ⊗ 1) = v(γ+

∑r
i=1 βi|α)f ⊗Kα for f ∈ U−

v (w)∗vγ so for such f and for
u ∈ (Uwv )vµ the weight of f ⊗ u⊗ vλ is vγ+µ+

∑r
i=1 βiλ. After the twist with w

the weight is vw(γ+µ)w.λ. The weights γ and µ are exactly such that w(γ) < 0
and w(µ) < 0 so we see that the weights of TwM(λ) are {vµw.λ|µ < 0} each
with multiplicity P(µ) where P is Kostant’s partition function. This proves that
the character is the same as the character for the Verma module M(w.λ). �

Definition 3.8 Let λ ∈ X and M(λ) the Verma module with highest weight λ.
Let w ∈W . We define

Mw(λ) = TwM(w−1.λ).

Recall the duality functor D : Uv − Mod → Uv − Mod. For a Uv module
M , DM = Hom(M,Q(v)) is the graded dual module with action given by
(xf)(m) = f(S(ω(m))) for x ∈ Uv, f ∈ DM and m ∈M . By this definition we
have chDM = chM and D(DM) =M .
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Theorem 3.9 Let w0 be the longest element in the Weyl group. Let λ ∈ X.
Then

Tw0
M(λ) ∼= DM(w0.λ)

Proof. We will show thatDTw0
M(w0.λ) ∼=M(λ) by showing thatDTw0

M(w0.λ)
is a highest weight module with highest weight λ. We already know that the char-
acters are equal by Proposition 3.7 so all we need to show is that DTw0

M(w0.λ)
has a highest weight vector of weight λ that generates the whole module over
Uv. Consider the function gλ ∈ DMw0(λ) given by:

gλ(F
−aN−1
βN

⊗ . . .⊗ F−a1−1
β1

⊗ vw0.λ) =

{
1 if aN = · · · = a1 = 0

0 otherwise.

We claim that F−aN−1
βN

⊗ . . . ⊗ F−a1−1
β1

⊗ vw0.λ with ai ∈ N defines a basis for
Mw0(λ) so this defines a function on Mw0(λ). In the proof of Proposition 3.7 we
see that a basis is given by f ⊗ 1⊗ vλ ∈ U−

v (w0)⊗ Uv ⊗M(λ) = Tw0
M(λ). We

know that elements of the form f
(N)
mN · · · f

(1)
m1 defines a basis of (U−

v )∗ = U−
v (w0)

∗.

Under the isomorphisms of Proposition 3.3 f
(N)
mN · · · f

(1)
m1 ⊗ 1⊗ vw0.λ is sent to

KβN
F−mN−1
βN

⊗· · ·⊗Kβ1
F−m1−1
β1

⊗vw0.λ ∈ Sv(FβN
)⊗Uv

· · ·⊗Uv
Sv(Fβ1

)⊗Uv
M(w0.λ).

If we commute all the K’s to the right to the vλ we get some non-zero multiple
of

F−mN−1
βN

⊗ · · · ⊗ F−m1−1
β1

⊗ vw0.λ.

So we have shown that {F−mN−1
βN

⊗ · · · ⊗ F−m1−1
β1

⊗ vw0.λ|mi ∈ N} is a basis of
Mw0(λ).

The action on a dual module DM is given by uf(u′) = f(S(ω(u)u′)). Re-
member that the action on Mw0(λ) is twisted by Rw0

so we get that

ugλ(F
−aN−1
βN

⊗. . .⊗F−a1−1
β1

⊗vw0.λ) = gλ(Rw0(S(ω(u)))F
−aN−1
βN

⊗. . .⊗F−a1−1
β1

⊗vw0.λ).

In particular for u = Kµ we get

Kµgλ(F
−aN−1
βN

⊗ . . .⊗ F−a1−1
β1

⊗ vw0.λ) = gλ(Kw0(µ)F
−aN−1
βN

⊗ . . .⊗ F−a1−1
β1

⊗ vw0.λ)

= vc(w0.λ)(Kw0(µ))gλ(F
−aN−1
βN

⊗ . . .⊗ F−a1−1
β1

⊗ vw0.λ)

where

c = (w0(µ)|

N∑

i=1

aiβi +

N∑

i=1

βi).

we have

vc(w0.λ)(Kw0(µ)) =v
(w0(µ)|

∑N
i=1 aiβi+

∑N
i=1 βi)

(
v−ρw0(v

ρλ)
)
(Kw0(µ))

=v(w0(µ)|
∑N

i=1 aiβi+2ρ)v−(ρ|w0(µ))(vρλ)(Kµ)

=v(w0(µ)|
∑N

i=1 aiβi+ρ)v(ρ|µ)λ(Kµ)

=v(w0(µ)|
∑N

i=1 aiβi+ρ)v−(ρ|w0(µ))λ(Kµ)

=v(w0(µ)|
∑N

i=1 aiβi)λ(Kµ).
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Setting the ai’s equal to zero we get λ(Kµ). So gλ has weight λ. We want to
show that gλ generates DMw0(λ) over Uv.

Let M ∈ NN , M = (m1, . . . ,mN ). An element in DMw0(λ) is a linear
combination of elements of the form gM defined by:

gM (F−aN−1
βN

⊗ . . .⊗ F−a1−1
β1

⊗ vw0.λ) = δa1,m1
· · · δaN ,mN

.

This is because of the way the dual module is defined (as the graded dual). We
want to show that gM ∈ Uvgλ by using induction over m1 + · · ·mN . Note that
g(0,...,0) = gλ so this gives the induction start. Assume M = (m1, . . . ,mN ) ∈
NN . Let j be such that mN = · · · = mj+1 = 0 and mj > 0. By induction
we get for M ′ = (0, . . . , 0,mj − 1,mj−1, . . . ,m1) that gM ′ ∈ Uvgλ. Now let
uj = ω(S−1(R−1

w0
(Fβj

))). Then

ujgλ(F
−aN−1
βN

⊗ . . .⊗ F−a1−1
β1

⊗ vw0.λ) = gλ(Fβj
F−aN−1
βN

⊗ . . .⊗ F−a1−1
β1

⊗ vw0.λ).

From Lemma 2.17 we get for r > j (setting k = 〈βj , β
∨
r 〉)

Fβj
F−a
βr

= v−akβr
F−a
βr

+
∑

i≥1

v
−ak−(a+1)i
βr

[
a+ i− 1

i

]

βr

F−i−a
βr

ãd(F iβr
)(u).

But gM ′ is zero on every F−aN−1
βN

⊗ . . .⊗ F−a1−1
β1

⊗ vw0.λ where one of the ai’s
with i > j is strictly greater than zero. This coupled with the observation above
gives us that

ujgM ′(F−aN−1
βN

⊗ . . .⊗ F−a1−1
β1

⊗ vw0.λ)

=gM ′(vcF−aN−1
βN

⊗ . . .⊗ F
−(aj−1)−1
βj

⊗ . . .⊗ F−a1−1
β1

⊗ vw0.λ)

=vcgM (F−aN−1
βN

⊗ . . .⊗ F
−aj−1
βj

⊗ · · · ⊗ F−a1−1
β1

⊗ vw0.λ)

where c is some constant coming from the commutations. We see that gM =
v−cujgM ′ which finishes the induction step.

So in conclusion we have that DMw0(λ) is a highest weight module with
highest weight λ. So we have a surjection from M(λ) to DMw0(λ). But since the
two modules have the same character and the weight spaces are finite dimensional
the surjection must be an isomorphism. �

Proposition 3.10 Let M be a Uv-module, β ∈ Φ+ and let w ∈ W . Assume
sir · · · si1 is a reduced expression of w and Fβ = Rsi1 · · ·Rsir (Fα) for some
α ∈ Π such that l(sαw) > l(w) (so we have w(β) = α). Then

w(Sv(Fβ)⊗Uv
M) ∼= Sv(Fα)⊗Uv

wM.

Proof. Define the map ϕ : Sv(Fα)⊗
wM → w(Sv(Fβ)⊗M) by

ϕ(uF−m
α ⊗m) = Rw−1(u)F−m

β ⊗m.

This is obivously a Uv-homomorphism if it is welldefined and it is a bijection
because Rw−1 is a Uv-isomorphism. We have to check that if uF−m

α = u′F−m′

α

then Rw−1(u)F−m
β = Rw−1(u′)F−m′

α and that ϕ(uF−m
α u′ ⊗m) = ϕ(uF−m

α ⊗

Rw−1(u′)m) but uF−m
α = u′F−m′

α if and only if Fm
′

α u = Fmα u
′. Using the

isomorhpism Rw−1 on this we get Fm
′

β Rw−1(u) = Fmβ Rw−1(u′) which implies
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Rw−1(u)F−m
β = Rw−1(u′)F−m′

β . For the other equation: Since we only have the

definition of ϕ on elements on the form uF−m
α ⊗m assume F−m

α u′ = ũF−m̃
β . This

is equivalent to u′F m̃α = Fmα ũ. Use Rw−1 on this to get Rw−1(u′)F m̃β = Fmβ ũ or

equivalently F−m
β Rw−1(u) = Rw−1(ũ)F−m̃

α . Now we can calculate:

ϕ(uF−m
α u′ ⊗m) =ϕ(uũF−m̃

α ⊗m)

=Rw−1(uũ)F−m̃
β ⊗m

=Rw−1(u)Rw−1(ũ)F−m̃
β ⊗m

=Rw−1(u)F−m
β ⊗Rw−1(u′)m = ϕ(uF−m

α ⊗Rw−1(u)m). �

Proposition 3.11 w ∈W . If s is a simple reflection such that sw > w then

Tsw = Ts ◦ Tw.

Proof. Let α be the simple root corresponding to the simple reflection s. By
Proposition 3.2 we get for M a Uv-module:

TswM = sw(Sswv ⊗Uv
M) ∼=sw(Sv(Rw−1(Fα))⊗Uv

Swv ⊗Uv
M)

∼=s(w(Sv(Rw−1(Fα))⊗Uv
Swv ⊗Uv

M))
∼=s(Sv(Fα)⊗Uv

w(Swv ⊗Uv
M))

where the last isomorphism is the one from Proposition 3.10. �

4 Twisting functors over Lusztigs A-form

We want to define twisting functors so they make sense to apply to UA modules.
Note first that the maps Rs send UA to UA.

Recall that for n ∈ N with n > 0 and Fβ a root vector we have defined in
Uv(Fβ)

F
(−n)
β = [n]β !F

−n
β (4)

i.e. F
(−n)
β =

(
F

(n)
β

)−1

.

Definition 4.1 Let s be a simple reflection corresponding to a simple root
α. Let SsA be the UA-sub-bimodule of Ssv = Sv(Fα) generated by the elements

{F
(−n)
α F−1

α |n ∈ N}.

Note that SsA ⊗A Q(v) = Ssv .

Proposition 4.2 In Uv(sl2) let E,K,F be the usual generators and define as
in [Lus90] the elements

[
K; c

t

]
=

t∏

n=1

Kvc−n+1 −K−1v−c+n−1

vs − v−s
.

Then

F (−s)F−1E(r) =

r∑

t=0

E(r−t)

[
K; r − s− t− 2

t

]
F (−s−t)F−1.

24



Twisting functors for quantum group modules

Proof. This is proved by induction over r. We define as in [Jan96]

[K; c] =

[
K; c

1

]
=
Kvc −K−1v−c

v − v−1
.

From [Jan96] we get EF s+1 = F s+1E + [s+ 1]F s[K,−s] so

F−s−1E = EF−s−1+[s+1]F−1[K;−s]F−s−1 = EF−s−1+[s+1][K;−2−s]F−s−2

and multiplying with [s]! we get

F (−s)F−1E = EF (−s)F−1 + [K;−2− s]F (−s−1)F−1.

This is the induction start. The rest is the induction step. In the process you
have to use that

1

[r]

(
[r − t]

[
K; r − s− t

t

]
+

[
K; r − 1− s− t

t− 1

]
[K;−s− t]

)
=

[
K; r − s− t− 1

t

]

or equivalently that

[r − t][K; r − s− t] + [t][K;−s− t] = [r][K; r − s− 2t].

This can be shown by a direct calculation. �

We could have proved this in the other way around instead too to get

Proposition 4.3

E(r)F (−s)F−1 =

r∑

t=0

F (−s−t)F−1

[
K; s+ t− r + 2

t

]
E(r−t).

The above and Corollary 2.19 shows that SA(F ) is a bimodule. We can now
define the twisting functor TAs corresponding to s:

Definition 4.4 Let s be a simple reflection corresponding to a simple root α.
The twisting functor TAs : UA -Mod → UA -Mod is defined by: Let M be a UA
module, then

TAs (M) = s(SA(Fα)⊗UA
M).

Note that TAs (M) ⊗A Q(v) = Ts(M ⊗A Q(v)) so that if M is a Q(v) module
then TAs = Ts on M .

We want to define the twisting functor for every w ∈W such that if w has
a reduced expression w = sir · · · si1 then TAw = T asir ◦ · · · ◦ TAsi1 . As before we

define a ’semiregular bimodule’ SwA = UA ⊗U−
A
(w) U

−
A (w)∗ and show this is a

bimodule isomorphic to SA(Fβr
)⊗UA

· · · ⊗UA
SA(Fβ1

).

Theorem 4.5 SwA := UA⊗U−
A
(w)U

−
A (w)∗ is a bimodule isomorphic to SA(Fβr

)⊗UA

· · · ⊗UA
SA(Fβ1

) and the functors TAs , s ∈ Π satisfy braid relations.

Proof. Note that U−
A (w) can be seen as an A-submodule of U−

v (w) and similarly
U−
A (w)∗ can be seen as a submodule of U−

v (w)∗. So we have an injective A
homomorphism

SwA → Swv .
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Assume the length of w is r and w = sirw
′, l(w′) = r − 1. We want to show

that the isomorphism ϕr from Proposition 3.2 restricts to an isomorphism
SwA → SA(Fβr

)⊗UA
Sw

′

A .

Assume f ∈ U−
A (w) is such that f = g ·f ′m meaning that f(xF

(n)
βr

) = g(x)δm,n,

(x ∈ U−
A (w′), n ∈ N) where g ∈ U−

A (w′)∗. Then f ′m = [m]βr
!fm where fm is

defined like in Proposition 3.2 and for u ∈ UA we have therefore

ϕr(u⊗ f) = uF
(−m)
βr

F−1
βr

⊗ (1⊗ g)

which can be seen to lie in SA(Fβr
)⊗UA

Sw
′

A . The inverse also restricts to a map
to the right space:

ψr(uF
(−m)
βr

F−1
βr

⊗ (1⊗ g)) =ψr(u[m]βr
!F−m−1
βr

⊗ (1⊗ g))

=[m]βr
!u⊗ fm · g

=u⊗ f ′m · g.

The maps are well defined because they are restrictions of well defined maps and
it is easy to see that they are inverse to each other.

As in the generic case we get a right module action on SwA in this way.
This is the right action coming from Swv restricted to SwA . So now we have
SwA = SA(Fβr

)⊗UA
· · · ⊗UA

SA(Fβ1
). Showing that the twisting functors then

satisfy braid relations is done in the same way as in Proposition 3.11. �

Now we can define TAw = TAsir ◦ · · · ◦ TAsi1 if w = sir · · · si1 is a reduced
expression of w. By the previous theorem there is no ambiguity in this definition
since the TAs ’s satisfy braid relations.

It is now possible for any A algebra R to define twisting functors UR-Mod→
UR-Mod. Just tensor over A with R.

F.x. let R = C with v 7→ 1. SA(Fβ)⊗AC is just the normal Ss = U(yβ)/U via

the isomorphism uF
(−n)
β F−1

β ⊗1 7→ uy−n−1
β where u is given by the isomorphism

between U−
A ⊗A C and U−.

Theorem 4.6 Let R be an A-algebra with v ∈ A being sent to q ∈ R\{0}. Let
λ : U0

R → R be an R-algebra homomorphism and let MR(λ) = UR⊗
U

≥0
R

Rλ be the

UR Verma module with highest weight λ where Rλ is the rank 1 free U≥0
R -module

with U>0
R acting trivially and U0

R acting as λ. Let D : UR → UR be the duality
functor on UR −Mod induced from the duality functor on UA → UA. Then

TRw0
MR(λ) ∼= DMR(w0.λ).

Proof. The proof is the almost the same as the proof of Theorem 3.9. We have
by Corollary 2.19 (setting k = 〈βj , β

∨
r 〉)

Fβj
F

(−a)
βr

F−1
βr

= q−(a+1)(βr|βj)F
(−a)
βr

F−1
βr
Fβj

+
∑

j≥1

q
−(a+1)k−(a+2)i
βr

F
(−a−i)
βr

F−1
βr

ãd(F
(i)
βr

)(u).

Define for M = (m1, . . . ,mN ) ∈ N the function

gM (F
(−aN )
βN

F−1
βN

⊗· · ·⊗F
(−a1)
β1

F−1
β1

⊗vw0.λ) =

{
1 if a1 = m1 . . . aN = mN

0 otherwise .
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Note that g(0,...,0) = gλ from Theorem 3.9. In particular it has weight λ. We want
to show that DMw0

R (λ) = URg(0,...,0). We use induction on the number of nonzero
entries in M . Assume j is such that mN = · · · = mj+1 = 0 and mj = n > 0.
Let M ′ = (0, . . . , 0, 0,mj−1, . . . ,m1). By induction gM ′ ∈ URg(0,...,0).

Set u = ω(S−1(R−1
w0

(F
(n)
βj

))). Then

ugM ′(F
(−aN )
βN

F−1
βN

⊗ · · · ⊗ F
(−a1)
β1

F−1
β1

⊗ vw0.λ)

=gM ′(F
(n)
βj

F
(−aN )
βN

F−1
βN

⊗ · · · ⊗ F
(−a1)
β1

F−1
β1

⊗ vw0.λ)

=gM ′(
1

[n]βj
!
Fnβj

F
(−aN )
βN

F−1
βN

⊗ · · · ⊗ F
(−a1)
β1

F−1
β1

⊗ vw0.λ)

=gM ′(qc1
1

[n]βj
!
Fn−1
βj

F
(−aN )
βN

F−1
βN

⊗ · · · ⊗ Fβj
F

(−aj)
βj

F−1
βj

⊗ · · · ⊗ F
(−a1)
β1

F−1
β1

⊗ vw0.λ)

...

=gM ′(qcn
1

[n]βj
!
F

(−aN )
βN

F−1
βN

⊗ · · · ⊗ Fnβj
F

(−aj)
βj

F−1
βj

⊗ · · · ⊗ F
(−a1)
β1

F−1
β1

⊗ vw0.λ)

=

{
gM ′(qcnF

(−aN )
βN

F−1
βN

⊗ · · · ⊗
[
aj
n

]
βj
F

(−(aj−n))
βj

F−1
βj

⊗ · · · ⊗ F
(−a1)
β1

F−1
β1

⊗ vw0.λ) if n ≤ aj

0 otherwise

for some appropiate integers c1, . . . , cn ∈ Z. gM ′ is nonzero on this only when
n = aj . So we get in conclusion that ugM ′ = v−cngM . This finishes the induction
step. �

5 sl2 calculations

Assume g = sl2. Let r ∈ N. Let MA(v
r) be the UA(sl2) Verma module with

highest weight vr ∈ Z i.e. MA(v
r) = UA ⊗

U
≥0
A

Avr where Avr is the free U≥0
A -

module of rank 1 with U+
A acting trivially and K · 1 = qr. Inspired by [And03]

we see that in sl2 we have for r ∈ Z the homomorphism ϕ :MA(v
r) → DMA(v

r)
given by:

Let {wi = F (i)w0} be a basis for MA(λ) where w0 is a highest weight vector
in MA(v

r) and let {w∗
i } be the dual basis in DMA(λ). Then

ϕ(wi) = (−1)ivi(i−1)−ir

[
r

i

]
w∗
i .

Checking that this is indeed a homomorphism of UA algebras is a straightforward
calculation.

By Theorem 4.6 we see that DMA(v
r) =Ms

A(v
r). In the following section

we will try to say something about the composition factors of a Verma module
so it is natural to consider first sl2 Verma modules.

Definition 5.1 Let g = sl2. Let r ∈ N. Then HA(v
r) is defined to be the free
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UA(sl2)-module of rank r + 1 with basis e0, . . . , er defined as follows:

Kei =v
r−2iei,

[
K; c

t

]
ei =

[
r − 2i+ c

t

]
ei

E(n)ei =

[
i

n

]
ei−n, n ∈ N

F (n)ei =

[
r − i

n

]
ei+n, n ∈ N

for i = 0, . . . , r. Where e<0 = 0 = e>r.

Lemma 5.2 Let g = sl2. Let r ∈ N. Then we have a short exact sequence:

0 → DMA(v
−r−2) →MA(v

r) → HA(v
r) → 0.

Proof. We use the fact that DMA(v
−r−2) = TAs MA(v

r) by Theorem 4.6. Let
ei = F (i)w0 where w0 is a heighest weight vector in MA(v

r). We will construct
a UA-homomorphism spanA {ei|i > r} → DMA(−r − 2). Let τ be as defined
in [Jan96] Chapter 4. Note that in UA(F ) S(τ(F )) is invertible so we can consider
S and τ as automorphisms of UA(F ). We define a map by

er+i 7→ (−1)r+iS(τ(F (−i−1)))w0

Note that for sl2 Rs = S ◦ τ ◦ ω. Using this and the formula in Proposition 4.2
it is straightforward to check that this is a UA-homomorphism. �

If we specialize to an A-algebra R with R being a field where v is sent to a
non-root of unity q ∈ R we get that MR(q

k) = UR ⊗UA
MA(v

k) is simple for
k < 0. So in the above with r ∈ N, DMR(q

−r−2) = MR(q
−r−2) = LR(q

−r−2)
and actually we see also that HR(q

r) = LR(q
r). So there is an exact sequence

0 → LR(q
−r−2) →MR(q

r) → LR(q
r) → 0.

So the composition factors in MR(q
r) are LR(q

r) and LR(q
−r−2) = LR(s.q

r)
where s is the simple reflection in the Weyl group of sl2.

6 Jantzen filtration

In this section we will work with the field C and send v to a non root of unity
q ∈ C∗. We define Uq = UA ⊗A Cq where Cq is the A-algebra C with v being
sent to q. These results compare to the results in [And03] and [AL03].

Let λ be a weight i.e. an algebra homomorphism U0
q → C and let M(λ) =

Uq ⊗U≥0
q

Cλ be the Verma module of highest weight λ. Consider the local

ring B = C[X](X−1) and the quantum group UB = UA ⊗A B. We define
λX : U0

q → B to be the weight defined by (λX)(Kµ) = λ(Kµ)X and we define
MB(λX) = UB ⊗

U
≥0
B

BλX to be the Verma module with highest weight λX.

Note that MB(λX)⊗B C ∼=M(λ) when we consider C as a B-algebra via the
specialization X 7→ 1

For a simple root αi ∈ Π we define MB,i(λX) := UB(i) ⊗U≥0
B

BλX , where

UB(i) is the subalgebra generated by U≥0
B and Fαi

. We define Msi
B,i(λ) :=
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si((UB(i)⊗UB(si) UB(si)
∗)⊗UB(i) MB,i(si.λ)) where the module (UB(i)⊗UB(si)

UB(si)
∗) is a UB(i)-bimodule isomorphic to SB,i(Fαi

) = (UB(i))(Fαi
)/UB(i) by

similar arguments as earlier.

Proposition 6.1 There exists a nonzero homomorphism ϕ :MB(λX) →Msα
B (λX)

which is an isomorphism if qρλ(Kα) 6∈ ±qZ>0
α and otherwise we have a short

exact sequence

0 →MB(λX)
ϕ
→Msα

B (λX) →M(sα.λ) → 0

where we have identified the cokernel Msα
B (sα.λX)/(X − 1)MB(sα.λX) with

M(sα.λ).
Furthermore there exists a nonzero homomorphism ψ :Msα

B (λX) →MB(λX)

which is an isomorphism if qρλ(Kα) 6∈ ±qZ>0
α and otherwise we have a short

exact sequence

0 →Msα
B (λX)

ψ
→MB(λX) →M(λ)/M(sα.λ) → 0.

Proof. We will first define a map from MB,i(λX) to

Msi
B,i(λX) = si

(
(UB(i))(Fα)/UB(i)⊗UB

MB,i(sα.λX)
)
.

Setting λ′ = λX define

ϕ(F (n)
α vλ′) = anF

(−n)
α F−1

α ⊗ vsα.λ′

where

an = (−1)nq−n(n+1)
α λ′(Kα)

n

n∏

t=1

q1−tα λ′(Kα)− qt−1
α λ′(Kα)

−1

qtα − q−tα
.

So we need to check that this is a homomorphism: First of all for µ ∈ Q.

Kµ · anF
(−n)
α F−1

α ⊗ vsα.λ′ =anKsα(µ)F
(−n)
α F−1

α ⊗ vsα.λ′

=q(n+1)(sα(µ)|α)(sα.λ
′)(Ksα(µ))F

(−n)
α F−1

α ⊗ vsα.λ′

=q−(n+1)(µ|α)q−(ρ|sα(µ))q(ρ|µ)λ′(Kµ)F
(−n)
α F−1

α ⊗ vsα.λ′

=q−(n+1)(µ|α)q−(ρ−α|µ)q(ρ|µ)λ′(Kµ)F
(−n)
α F−1

α ⊗ vsα.λ′

=q−n(µ|α)λ′(Kµ)F
(−n)
α F−1

α ⊗ vsα.λ′

=ϕ(KµF
(n)
α vλ′).

We have

Eα · anF
(−n)
α F−1

α ⊗ vsα.λ′ =anRsi(Eαi
)F (−n)
α F−1

α ⊗ vsα.λ′

=− anFαKαF
(−n)
α F−1

α ⊗ vsα.λ′

=− q2(n+1)
α sα.λ

′(Kα)[n]αanF
(−n+1)
α F−1

α ⊗ vsα.λ′

=− q2nα λ′(K−1
α )[n]αanF

(−n+1)
α F−1

α ⊗ vsα.λ′

and

ϕ(EαF
(n)
α vλ′) =ϕ

(
F (n−1)
α

q1−nα Kα − qn−1
α K−1

α

qα − q−1
α

vλ′

)

=

(
an−1F

(−n+1)
α F−1

α

q1−nα λ′(Kα)− qn−1
α λ′(Kα)

−1

qα − q−1
α

)
⊗ vλ′
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so we see that ϕ(EαF
(n)
α vλ′) = Eα · ϕ(F

(n)
α vλ′). Clearly ϕ(Eα′F

(n)
α vλ′) = 0 =

Eα′ · anF
(−n)
α F−1

α ⊗ vλ′ for any simple α′ 6= α so what we have left is Fα: By
Proposition 4.3

Fα · anF
(−n)
α F−1

α ⊗ vsα.λ′

=anRsi(Fα)F
(−n)
α F−1

α ⊗ vsα.λ′

=− anK
−1
α EαF

(−n)
α F−1

α ⊗ vsα.λ′

=− anK
−1
α F (−n−1)

α F−1
α [Kα;n+ 2]⊗ vsα.λ′

=− anq
−2(n+2)
α sα.λ

′(K−1
α )

qn+2
α sα.λ

′(Kα)− q−n−2
α sα.λ

′(Kα)
−1

qα − q−1
α

F (−n−1)
α F−1

α ⊗ vsα.λ′

=− anq
−2(n+1)
α λ′(Kα)

qnαλ
′(K−1

α )− q−nα λ′(Kα)

qα − q−1
α

F (−n−1)
α F−1

α ⊗ vsα.λ′

and

ϕ(FαF
(n)
α vλ) =[n+ 1]αϕ(F

(n+1)
α vλ)

=[n+ 1]αan+1F
(−n−1)
α F−1

α ⊗ vλ

so we see that ϕ(FαF
(n)
α vλ) = Fα · ϕ(F

(n)
α vλ).

Now note that if λ(Kα) 6∈ ±qNα then X − 1 does not divide an for any n ∈ N
implying that an is a unit. So when λ(Kα) 6∈ ±qNα, ϕ is an isomorphism. If
λ(Kα) = εqrα for some ε ∈ {±1} and r ∈ N we see that X − 1 divides an for any
n > r so the image of ϕ is

spanB

{
F (−n)
α Fα ⊗ vsα.λ′ |n ≤ r

}
+ (X − 1) spanB

{
F (−n)
α F−1

α ⊗ vsα.λ′ |n > r
}
.

Thus the cokernel Msi
B,i(λ)/ Imϕ is equal to

spanB

{
F (−n)
α F−1

α ⊗ vsα.λ′ |n > r
}
/(X − 1) spanB

{
F (−n)
α F−1

α ⊗ vsα.λ′ |n > r
}

which is seen to be isomorphic to Msi
B,i(si.λ

′)/(X − 1)Msi
B,i(si.λ

′).

If λ(Kα) 6∈ ±qNα then obviously we can define an inverse to ϕ, ψ :Msi
B,i(λ

′) →
MB,i(λ

′). If λ(Kα) = εqr for some ε ∈ {±1} and some r ∈ N we define
ψ :Msi

B,i(λ
′) →MB,i(λ

′) by

ψ(F (−n)
α F−1

α ⊗ vsα.λ′) =
(X − 1)

an
F (n)
α vλ′

(note that for all λ and all n ∈ N, (X − 1)2 6 |an so (X−1)
an

∈ B). This implies
ϕ ◦ ψ = (X − 1) id and ψ ◦ ϕ = (X − 1) id. Using that ϕ is a Uq-homomorphism
we show that ψ is: For u ∈ Uq and v ∈Msi

B,i(λ
′):

(X − 1)ψ(uv) = ψ(uϕ(ψ(v))) = ψ(ϕ(uψ(v))) = (X − 1)uψ(v).

Since B is a domain this implies ψ(uv) = uψ(v).
We see that X − 1 divides X−1

an
for any n ≤ r so the image of ψ is

(X − 1) spanB

{
F (n)
α vλ′ |n ≤ r

}
+ spanB

{
F (n)
α vλ′ |n > r

}
.
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Thus the cokernel MB,i(λ)/ Imψ is equal to

spanB

{
F (n)
α vλ′ |n ≤ r

}
/(X − 1) spanB

{
F (n)
α vλ′ |n ≤ r

}

which is seen to be isomorphic to

MB,i(λ)/MB,i(sα.λ).

Now we induce to the whole quantum group: We have that

MB(λ
′) = UB ⊗UB(i) MB,i(λ

′)

and

Msi
B (λ′) =si

(
(UB ⊗UB(si) UB(si)

∗)⊗UB
UB ⊗

U
≥0
B

Bλ′

)

∼=si
(
(UB ⊗UB(i) UB(i)⊗UB(si) UB(si)

∗)⊗
U

≥0
B

Bλ′

)

∼=UB ⊗UB(i)
si
(
(UB(i)⊗UB(si) UB(si)

∗)⊗
U

≥0
B

Bλ′

)

∼=UB ⊗UB(i) M
si
B,i(λ

′)

so by inducing to UB-modules using the functor UB ⊗UB(i) − we get a map
ϕ : MB(λ

′) → Msi
B (λ′) and a map ψ : Msi

B (λ′) → MB(λ
′). This functor

is exact on MB,i(λ
′) and Msi

B,i(λ
′) so the proposition follows from the above

calculations. �

Proposition 6.2 Let λ : U0
q → C be a weight. Set λ′ = λX. Let w ∈ W and

α ∈ Π such that w(α) > 0. There exists a nonzero homomorphism ϕ :Mw
B (λ′) →

Mwsα
B (λ′) that is an isomorphism if qρλ(Kw(α)) 6∈ ±qZ>0

α and otherwise we have
the short exact sequence

0 →Mw
B (λ

′)
ϕ
→Mwsα

B (λ′) →Mw(sw(α).λ) → 0

where the cokernel Mwsα
B (sw(α).λ

′)/(X − 1)Mwsα
B (sw(α).λ

′) is identified with
Mw(sw(α).λ).

Furthermore there exists a nonzero homomorphism ψ :Mwsα
B (λX) →Mw

B (λX)

which is an isomorphism if qρλ(Kw(α)) 6∈ ±qZ>0
α and otherwise we have a short

exact sequence

0 →Mwsα
B (λ′)

ψ
→Mw

B (λ
′) →Mw(λ)/Mw(sw(α).λ) → 0.

Proof. Let µ = w−1.λ and µ′ = µX then from Proposition 6.1 we get a
homomorphism MB(µ

′) →Msα
B (µ′) and a homomorphism Msα

B (µ′) →MB(µ
′).

Observe that

qρµ(Kα) =w
−1.λ(Kα)

=w−1(qρλ)(Kα)

=q(ρ|w(α))λ(Kw(α))

= (qρλ) (Kw(α))
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soMB(µ
′) →Msα

B (µ′) andMsα
B (µ′) →MB(µ

′) are isomorphisms if (qρλ) (Kw(α)) 6∈

±qZ>0
α and otherwise we have the short exact sequences

0 →MB(µ
′) →Msα

B (µ′) →M(µ′) → 0

and
0 →Msα

B (µ′) →MB(µ
′) →M(µ′)/M(sα.µ

′) → 0.

Now we use the twisting functor Tw on the homomorphisms MB(µ
′) →

Msα
B (µ′) and Msα

B (µ′) →MB(µ
′) to get homomorphisms ϕ :Mw

B (λ) →Mwsα
B (λ)

and ψ :Mwsα
B (λ) →Mw

B (λ) (using the fact that Tw ◦ Tsα = Twsα). We are done
if we show that Tw is exact on Verma modules. But

TwMB(µ
′) =w

(
(U−

B (w)∗ ⊗U−
B
(w) UB)⊗UB

UB ⊗
U

≥0
B

Bµ′

)

∼=w
(
(U−

B (w)∗ ⊗U−
B
(w) UB)⊗U≥0

B

Bµ′

)

∼=w
(
U−
B (w)∗ ⊗U−

B
(w) U

−
B ⊗C Bµ′

)

as vectorspaces and U0
B modules. Observing that U−

B is free over U−
B (w) we get

the exactness. �

Fix a weight λ : U0
q → C and a w ∈W . Define Φ+(w) := Φ+∩w(Φ−) = {β ∈

Φ+|w−1(β) < 0} and Φ+(λ) := {β ∈ Φ+|qρλ(Kβ) ∈ ±qZ}. Choose a reduced
expression of w0 = si1 · · · siN such that w = sin · · · si1 . Set

βj =

{
−wsi1 · · · sij−1

(αij ), if j ≤ n

wsi1 · · · sij−1
(αij ), if j > n.

Then Φ+ = {β1, . . . , βN} and Φ+(w) = {β1, . . . , βn}. We denote by ΨwB(λ) the
composite

Mw
B (λX)

ϕw
1 (λ)
→ M

wsi1
B (λX)

ϕw
2 (λ)
→ · · ·

ϕw
N (λ)
→ Mww0

B (λX)

where the homomorphisms are the ones from Proposition 6.2 i.e. the first n
homomorphisms are the ψ’s and the last N − n homomorphisms are the ϕ’s
from Proposition 6.2. We denote by Ψw(λ) the Uq-homomorphism Mw(λX) →
Mww0(λX) induced by tensoring the above UB-homomorphism with C considered
as a B module by X 7→ 1.

In analogy with Theorem 7.1 in [AL03] and Proposition 4.1 in [And03] we
have

Theorem 6.3 Let λ : U0
q → C be a weight. Let w ∈ W . Then there ex-

ists a filtration of Mw(λ), Mw(λ) ⊃ Mw(λ)1 ⊃ · · · ⊃ Mw(λ)r such that
Mw(λ)/Mw(λ)1 ∼= ImΨw(λ) ⊂Mww0(λ) and

r∑

i=1

chMw(λ)i =
∑

β∈Φ+(λ)∩Φ+(w)

(chM(λ)− chM(sβ .λ))

+
∑

β∈Φ+(λ)\Φ+(w)

chM(sβ .λ).

32



Twisting functors for quantum group modules

Proof. Set λ′ = λX. Define for i ∈ N

Mw
B (λ

′)i = {m ∈Mw
B (λ

′)|ΨwB(λ)(m) ∈ (X − 1)iMww0

B (λ′)}.

Set Mw(λ)i = π(Mw
B (λ

′)i) where π : Mw
B (λ) → Mw(λ) is the canonical homo-

morphism from Mw
B (λ) to Mw

B (λ)/(X − 1)Mw
B (λ)

∼= Mw(λ). This defines a
filtration of Mw(λ). We have Mw(λ)N+1 = 0 so the filtration is finite.

Let µ : U0
q → C be a weight. Set µ′ = µX. The maps ϕwj (λ) restrict to weight

spaces. Denote the restriction ϕwj (λ)µ′ . Let Ψw
B(λ)µ′ :Mw

B (λ)µ′ →Mww0

B (λ)µ′

be the restriction of Ψw
B(λ) to the µ′ weight space. We have a nondegenerate

bilinear form (−,−) on M(λ′)µ′ given by (x, y) = (ΨwB(λ)µ′(x)) (y). It is nonde-
generate since ΨwB(λ) is injective. Let ν : B → C be the (X − 1)-adic valuation
i.e. ν(b) = m if b = (X − 1)mb′, (X − 1) ∤ b′. We have by [Hum08, Lemma 5.6]
(originally Lemma 5.1 in [Jan79])

∑

j≥1

dim(Mj)µ = ν(detΨwB(λ)µ′).

Clearly ν(detΨw
B(λ)µ′) =

∑N
j=1 ν(detϕ

w
j (λ)µ′) and the result follows when we

show:
ν(detϕwj (λ)µ′) = dimC

(
cokerϕwj (λ)µ′

)
.

Fix ϕ := ϕwj (λ)µ′ and let M and N be the domain and codomain respectively.
M and N are free B modules of finite rank. Let d be the rank. We can choose
bases m1, . . . ,md and n1, . . . , nd such that ϕ(mi) = aini, i = 1, . . . , d for some

ai ∈ B. Set C = cokerϕ ∼=
⊕d

i=1B/(ai) and set CC = C ⊗B (B/(X − 1)B) =
C ⊗B C where C is considered a B-module by X 7→ 1. Note that

B/(ai)⊗B C =

{
C, if (X − 1)|ai

0, otherwise

so dimC CC = #{i|ν(ai) > 0}. Since there exists a ψ : N → M such that
ϕ ◦ ψ = (X − 1) id we get ν(ai) ≤ 1 for all i. So then dimC CC = ν(detϕ) and
the claim has been shown. �

7 Linkage principle

Let R be a field that is an A-algebra and q ∈ R the nonzero element that v
is sent to. As usual we can define the Verma modules: Assume λ : U0

R → R
is a homomorphism. Then we define MR(λ) = UR ⊗

U
≥0
R

Rλ where Rλ is the

onedimensional R-module with trivial action from U+
R and U0

R acting as λ. There
is a unique simple quotient LR(λ) of MR(λ).

Let α = αi ∈ Π. Consider the parabolic Verma module MR,i(λ) :=

UR(i)⊗U≥0
R

Rλ, where UR(i) is the submodule generated by U≥0
R and Fαi

. We

get a map MR,i(λ) → Ms
R,i(λ) :=

s((UR(i) ⊗UR(si) UR(si)
∗) ⊗UR(i) MR,i(s.λ))

where the module (UR(i) ⊗UR(si) UR(si)
∗) is a UR(i)-bimodule by the similar

arguments as earlier. Inducing to the whole quantum group and using Tw we
get a homomorphism

Mw
R (λ) →Mwsα

R (λ)
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So we can construct a sequence of homomorphisms ϕ1, . . . , ϕN

MR(λ)
ϕ1
→M

si1
R (λ)

ϕ2
→ · · · · · ·

ϕN
→ Mw0

R (λ) = DMR(λ).

We denote the composition by Ψ. Note that the image of Ψ must be the
unique simple quotient LR(λ) of MR(λ) since every map M(λ) → DM(λ)
maps to the unique simple quotient of M(λ) (by the usual arguments e.g. like
in [Hum08, Theorem 3.3]).

First we want to consider some facts about the map ϕ :Mw
R (λ) →Mwsα

R (λ).
Let Mα(λ) denote the UR(sl(2)) Verma module with highest weight λ(Kα). We
will use the notation Mpα(λ) for the parabolic UR(i) Verma module UR(i)⊗U≥0

R

Rλ. The map ϕ was constructed by first inducing the map of parabolic modules
and then using the twisting functor Tw.

Assume the sequence of UR(sl2) modules Mα(λ) →Ms
α(λ) → Qα(λ) → 0 is

exact (i.e. Qα(λ) is the cokernel of the map Mα(λ) →Ms
α(λ)). Inflating to the

parabolic situation we get an exact sequence Mpα(λ) →Ms
pα
(λ) → Qpα(λ) → 0

where Qpα(λ) is just the inflation of Qα(λ) to the corresponding parabolic
module.

Inducing from a parabolic module to the whole module is done by applying
the functor M 7→ UR ⊗U(i) M . This is right exact so we get the exact sequence
MR(λ) →Ms

R(λ) → QR(λ) → 0 where QR(λ) = UR ⊗UR(i) Qpα(λ).
Assume we have a finite filtration of Qα(λ):

0 = Q0 ⊂ Q1 ⊂ · · · ⊂ Qr = Qα(λ)

such that Qi+1/Qi ∼= Lα(µi). So we have after inflating:

0 = Qpα,0 ⊂ Qpα,1 ⊂ · · · ⊂ Qpα,r = Qpα(λ)

such that Qpα,i+1/Qpα,i
∼= Lpα(µi).

That is we have short exact sequences of the form

0 → Qpα,i → Qpα,i+1 → Lpα(µi) → 0.

Since induction is right exact we get the exact sequence

QR,i → QR,i+1 → Lpα(µi) → 0

where QR,i is the induced module of Qpα,i and Lpα(µi) is the induced module
of Lpα(µi).

Starting from the top we have

QR,r−1 → QR(λ) → Lpα(µr−1) → 0

so we see that the composition factors of QsαR (λ) are contained in the set of
composition factors of Lpα(µr−1) and the composition factors of QR,r−1. By
induction we get then that the composition factors of QR,r−1 are composition

factors of Lpα(µi), i = 0, . . . , r−2. The conclusion is that we can get a restriction
on the composition factors of QR(λ) by examining the composition factors of
induced simple modules.

Let L = Lpα(µ) be a simple parabolic module and let L be the induction of
L. Then because induction is right excact we have

MR(µ) → L→ 0.
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So the composition factors of L are composition factors of MR(µ). This gives us
a restriction on the composition factors of MR(λ):

Use the above with w−1.λ in place of λ and use the twisting functor TRw on
the exact sequence MR(w

−1.λ) →Ms
R(w

−1.λ) → QR(w
−1.λ) → 0 to get

Mw
R (λ) →Mws

R (λ) → QwR(λ) → 0

where QwsR (λ) = TRw (QR(w
−1.λ)). Add the kernel to get the 4-term exact

sequence
0 → Kws

R (λ) →Mw
R (λ) →Mws

R (λ) → QwsR (λ) → 0

Since chMw
R (λ) = chMws

R (λ) we must have chKws
R (λ) = chQwsR (λ).

So we have a sequence of homomorphisms ϕi

MR(λ)
ϕ1
→Ms

R(λ)
ϕ2
→ · · ·

ϕN
→ Mw0

R (λ) = DMR(λ)

and these maps each fit into a 4-term exact sequence

0 → Kws
R (λ) →Mw

R (λ) →Mws
R (λ) → QwsR (λ) → 0

where chKws
R (λ) = chQwsR (λ). In particular Mw

R (λ) → Mws
R (λ) is an isomor-

phism if the corresponding sl2 map Mα(w
−1.λ) → DMα(w

−1.λ)(=Ms
α(w

−1.λ))
is an isomorphism. If the sl2 map is not an isomorphism then we have a restric-
tion on the composition factors that can get killed by the map MR(w

−1.λ) →
Ms
R(w

−1.λ) by the above. To get to the map Mw
R (λ) → Mws

R (λ) we use Tw
which is right exact so we get a restriction on the composition factors killed by
Mw
R (λ) →Mws

R (λ) too:
Fix α. From the above we know that a composition factor of QR(λ) is a

composition factor of Lpα(µ) for some µ where Lα(µ) is a composition factor of
Mα(λ). Use this for w−1.λ and use Tw. So we get that a composition factor of
QwsR (λ) is a composition factor of TwLpα(µ) with µ as before. Since Tw is right
exact we have that

TwMR(µ) → TwLpα(µ) → 0

is exact. Since chTwMR(µ) = chMR(w.µ) we see that a composition factor of
QwsR (λ) must be a composition factor of a Verma module MR(w.µ) where µ is
such that Lα(µ) is a composition factor of Mα(w

−1.λ).

Definition 7.1 We define a partial order on weights. We say µ ≤ λ if µ−1λ =
q
∑n

i=1 aiαi for some ai ∈ N where µ−1 : U0
R → C is the weight with µ−1(Kα) =

µ(K−1
α ) for all α ∈ Π.
For a weight ν of the form ν = q

∑n
i=1 aiαi with ai ∈ N we call

∑n
i=1 ai the

height of ν.

Note that for a Verma module M(λ) we have µ ≤ λ for all µ ∈ wtM(λ)
where wtM(λ) denotes the weights of M(λ).

Definition 7.2 Let µ, λ ∈ Λ. Define µ ↑R λ to be the partial order induced by
the following: µ is less than λ if there exists a w ∈ W , α ∈ Π and ν ∈ Λ such
that µ = w.ν < λ and Lα(ν) is a composition factor of Mα(w

−1.λ).
i.e. µ ↑R λ if there exists a sequence of weights µ = µ1, . . . , µr = λ such that

µi is related to µi+1 as above.

We have established the following:
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Proposition 7.3 If LR(µ) is a composition factor of MR(λ) then µ ↑R λ.

Proof. Choose a reduced expression of w0 and construct the maps ϕi as above.
If LR(µ) is a composition factor of MR(λ) it must be killed by one of the maps
ϕi since the image of Ψ is LR(λ). So LR(µ) must be a composition factor of
one of the modules QwR(λ). We make an induction on the height of µ−1λ. If
µ−1λ = 1 then λ = µ and we are done. Otherwise we see that LR(µ) is a
composition factor of one of the QwR(λ)’s. But every composition factor of QwR(λ)
is a composition factor of M(ν) where ν ↑R λ and ν < λ. Since ν < λ the height
of µ−1ν is less then the height of µ−1λ so we are done by induction. �

In the non-root of unity case ↑R is equivalent to the usual strong linkage: µ is
strongly linked to λ if there exists a sequence µi with µ = µ1 < µ2 < · · · < µr = λ
and µi = sβi

.µi+1 for some positive roots βi (remember that if β = w(α) then
sβ = wsαw

−1).
In the nonroot of unity case we see that Mα(w

−1.λ) is simple if

qρw−1.λ(Kα) 6∈ ±qZ>0
α .

Otherwise there is one composition factor in Mα(w
−1.λ) apart from Lα(w

−1.λ),
namely Lα(sαw

−1.λ). So the composition factors of QwR are composition factors
of MR(wsαw

−1.λ) =MR(sw(α).λ). Actually QwR =Mws
R (sw(α).λ) in this case:

Lets consider the construction of the maps ϕi in the above. We start with
the map Mα(λ) → Ms

α(λ) and then inflate to Mpα(λ) → Ms
pα
(λ). In the case

where q is not a root of unity it is easy to see that if qρλ(Kα) 6∈ ±qZ>0
α then this

is an isomorphism and otherwise the kernel (and the cokernel) is isomorphic to
Mpα(s.λ) which is a simple module. So after inducing we get the 4 term exact
sequence

0 →MR(s.λ) →MR(λ) →Ms
R(λ) →Ms

R(s.λ) → 0

since induction is exact on Verma modules. Use these observations on w−1.λ and
the fact that Tw is exact on Verma modules and we get a map Mw

R (λ) →Mws
R (λ)

which is an isomorphism if qρλ(Kα) 6∈ ±qZ>0
α and otherwise we have the 4-term

exact sequence

0 →Mw
R (s.λ) →Mw

R (λ) →Mws
R (λ) →Mws

R (s.λ) → 0

Theorem 7.4 Let R be a field (any characteristic) and let q ∈ R be a non-root
of unity. R is an A-algebra by sending v to q. Let λ : U0

q → R be an algebra
homomorphism.

MR(λ) has finite Jordan-Holder length and if LR(µ) is a composition factor
of MR(λ) then µ ↑ λ where ↑ is the usual strong linkage.

Proof. This will be proved by induction over ↑. If λ is anti-dominant (i.e.

qρλ(Kα) 6∈ ±qZ>0
α for all α ∈ Π) then we get that all the maps ϕi are iso-

morphisms and so MR(λ) is simple. Now assume λ is not anti-dominant. A
composition factor LR(µ) must be killed by one of the ϕi’s so must be a com-
postion factor of QwR for some w. By the above calculations we see that if

qρλ(Kα) 6∈ ±qZ>0
α then Mw

R (λ) → Mwsα
R (λ) is an isomorphism and otherwise

QwR =Mwsα
R (sα.λ). By induction all the Verma modules with highest weight µ

strongly linked to λ has finite length and the composition factors are strongly
linked to µ. This finishes the induction. �
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Irreducible quantum group modules with finite

dimensional weight spaces. I

Dennis Hasselstrøm Pedersen

Abstract

In this paper we classify all simple weight modules for a quantum group
Uq at a complex odd root of unity q when the Lie algebra is not of type
G2. By a weight module we mean a finitely generated Uq-module which
has finite dimensional weight spaces and is a sum of those. Our approach
follows the procedures used by S. Fernando [Fer90] and O. Mathieu [Mat00]
to solve the corresponding problem for semisimple complex Lie algebras.

1 Introduction and notation

Let g be a simple complex Lie algebra not of type G2. Let q ∈ C be a nonzero
element and let Uq := Uq(g) be the quantum group over C with q as the quantum
parameter (defined below). We want to classify all simple weight modules for
Uq. In the papers [Fer90] and [Mat00] this is done for g-modules. Fernando
proves in the paper [Fer90] that the classification of simple g weight modules
essentially boils down to classifying two classes of simple modules: The finite
dimensional simple modules and the so called ’torsion free’ simple modules. The
classification of finite dimensional modules is well known in the classical case
(as well as in the quantum group case) so the remaining problem is to classify
the torsion free simple modules. Olivier Mathieu classifies these in the classical
case in [Mat00]. The classification uses the concept of g coherent families which
are huge g modules with weight vectors for every possible weight, see [Mat00,
Section 4]. Mathieu shows that every torsion free simple module is a submodule
of a unique irreducible semisimple coherent family and each of these irreducible
semisimple coherent families contains a so-called admissible simple highest weight
module as well. This reduces the classification to the classification of admissible
simple highest weight modules.

1.1 Main results

In this paper we will first carry out the reduction done by Fernando to the
quantum group case for q a non-root-of-unity and q an odd root of unity. Then
we carry out the classification of torsion free simple module in the root of unity
case. The corresponding classification of torsion free simple modules for generic
q turns out to be much harder. We leave this to a subsequent paper [Ped15a].

We will follow closely the methods described in the two above mentioned
papers. Many of the results can be directly translated from the classical case
but in several cases we have to approach the problem a little differently. One of
the first differences we encounter is the fact that in [Fer90] concepts are defined
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by using the root system without first choosing a base. Then later a base is
chosen in an appropiate way. In the quantum group case we define the quantized
enveloping algebra by first choosing a base of the root system and then defining
the simple root vectors Eα, Fα, etc. This means that we can’t later change the
basis like in [Fer90]. The solution is to consider ’twists’ of modules by Weyl
group elements cf. definition 2.1. Another difference is the fact that we do not
a priori have root vectors Eβ for any positive root β unless β is simple. Root
vectors can be constructed but the construction involves a choice of a reduced
expression for the longest element of the Weyl group w0. The root vectors
constructed depend on this choice. So if we want to use root vectors to define
our terms we should prove that our definitions are independent of the choice
of the root vectors. Once the root vectors are defined we continue like in the
classical case with some differences. Notably the proof of Proposition 2.11 is
different. Here we reduce the problem to rank 2 calculations in the quantized
enveloping algebra. This is also the main reason we exclude g of type G2 in this
paper.

In the root of unity case the classification of simple weight modules reduces
completely to the classical case as seen in Section 5. We use the same procedure
as in [Mat00] to reduce the problem to classifying coherent families and then
we show that all irreducible coherent families in the root of unity case can be
constructed via classical g coherent families.
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1.3 Notation

We will fix some notation: We denote by g a fixed simple Lie algebra over
the complex numbers C. We assume g is not of type G2 to avoid unpleasant
computations.

Fix a triangular decomposition of g: Let h be a maximal toral subalgebra
and let Φ ⊂ h∗ be the roots of g relative to h. Choose a simple system of roots
Π = {α1, . . . , αn} ⊂ Φ. Let Φ+ (resp. Φ−) be the positive (resp. negative) roots.
Let g± be the positive and negative part of g corresponding to the simple system
Π. So g = g− ⊕ h ⊕ g+. Let W be the Weyl group generated by the simple
reflections si := sαi

. For a w ∈W let l(w) be the length of W i.e. the smallest
amount of simple reflections such that w = si1 · · · sil(w)

. Let (·|·) be a standard

W -invariant bilinear form on h∗ and 〈α, β∨〉 = 2(α|β)
(β|β) . Since (·|·) is standard we

have (α|α) = 2 for any short root α ∈ Φ. Let Q = spanZ {α1, . . . , αn} denote the
root lattice and Λ = spanZ {ω1, . . . , ωn} ⊂ h∗ the integral lattice where ωi ∈ h∗

are the fundamental weights defined by (ωi|αj) = δij .
Let Uv = Uv(g) be the corresponding quantized enveloping algebra defined

over Q(v) as defined in [Jan96] with generators Eα, Fα,K
±1
α , α ∈ Π and certain
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relations which can be found in Chapter 4 of [Jan96]. We define vα = v(α|α)/2

(i.e. vα = v if α is a short root and vα = v2 if α is a long root) and for n ∈ Z,

[n]v = vn−v−n

v−v−1 . Let [n]α := [n]vα =
vnα−v−n

α

vα−v−1
α

. We omit the subscripts when it

is clear from the context. For later use we also define the quantum binomial
coefficients: For r ∈ N and a ∈ Z:

[
a

r

]

v

=
[a][a− 1] · · · [a− r + 1]

[r]!

where [r]! := [r][r − 1] · · · [2][1]. Let A = Z[v, v−1] and let UA be Lusztigs A-
form defined in [Lus90], i.e. the A subalgebra generated by the divided powers

E
(n)
α := 1

[n]α!E
n
α, F

(n)
α := 1

[n]α!F
n
α and K±1

α , α ∈ Π.

Let q ∈ C be a nonzero complex number and set Uq = UA⊗A Cq where Cq is
the A-module equal to C as a vector space where v is sent to q. In the following
sections we will distinguish between whether q is a root of unity or not.

We have a triangular decomposition of Lusztigs A-form UA = U−
A ⊗U0

A⊗U+
A

with U−
A the A subalgebra generated by {F

(n)
α |α ∈ Π, n ∈ N} in UA, U+

A the A

subalgebra generated by {E
(n)
α |α ∈ Π, n ∈ N} in UA and U0

A the A subalgebra
generated by {K±1

α ,
[
Kα;c
r

]
|α ∈ Π, c ∈ Z, r ∈ N} in UA where

[
Kα; c

r

]
:=

r∏

j=1

Kαv
c+1−j
α −K−1

α v−c−1+j
α

vjα − v−jα
.

For later use we also define [Kα; r] =
[
Kα;r
1

]
. We have the corresponding

triangular decomposition of Uq: Uq = U−
q ⊗U0

q ⊗U+
q with U±

q = U±
A ⊗A Cq and

U0
q = U0

A ⊗A Cq.

For a q ∈ C∗ = C\{0} define
[
a
r

]
q

as the image of
[
a
r

]
v

in C. We will omit

the subscript from the notation when it is clear from the context. We define
qβ ∈ C and [n]β ∈ C as the image of vβ ∈ A and [n]β ∈ A, respectively abusing

notation. Similarly, we will abuse notation and write
[
Kα;c
r

]
also for the image

of
[
Kα;c
r

]
∈ UA in Uq. Define for µ ∈ Q, Kµ =

∏n
i=1K

ai
αi

if µ =
∑n
i=1 aiαi with

ai ∈ Z.
There is a braid group action on Uv which we will describe now. We use the

definition from [Jan96, Chapter 8]. The definition is slightly different from the
original in [Lus90, Theorem 3.1] (see [Jan96, Warning 8.14]). For each simple
reflection si there is a braid operator that we will denote by Tsi satisfying the
following: Tsi : Uv → Uv is a Q(v) automorphism and for i 6= j ∈ {1, . . . , n}

Tsi(Kµ) =Ksi(µ)

Tsi(Eαi
) =− Fαi

Kαi

Tsi(Fαi
) =−K−1

αi
Eαi

Tsi(Eαj
) =

−〈αj ,α
∨
i 〉∑

i=0

(−1)iv−iαi
E(r−i)
αi

Eαj
E(i)
αi

Tsi(Fαj
) =

−〈αj ,α
∨
i 〉∑

i=0

(−1)iviαi
F (i)
αi
Fαj

F (r−i)
αi

.
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The inverse T−1
si is given by conjugating with the Q-algebra anti-automorphism

Ψ from [Lus90, section 1.1] defined as follows:

Ψ(Eαi
) = Eαi

, Ψ(Fαi
) = Fαi

, Ψ(Kαi
) = K−1

αi
, Ψ(v) = v.

The braid operators Tsi satisfy braid relations so we can define Tw for any w ∈W :
Choose a reduced expression of w: w = si1 · · · sin . Then Tw = Tsi1 · · ·Tsin is
independent of the chosen reduced expression by [Lus90, Theorem 3.2]. We have
Tw(Kµ) = Kw(µ). Furthermore Tw restricts to an automorphism Tw : UA → UA.

Let w0 be the longest element in W and let si1 · · · siN be a reduced expression
of w0. We define root vectors Eβ and Fβ for any β ∈ Φ+ by the following: First
of all set

βj = si1 · · · sij−1
(αij ), for i = 1, . . . , N.

Then Φ+ = {β1, . . . , βN}. Set

Eβj
= Tsi1 · · ·Tsij−1

(Eαij
)

and
Fβj

= Tsi1 · · ·Tsij−1
(Fαij

).

In this way we have defined root vectors for each β ∈ Φ+. These root vectors
depend on the reduced expression chosen for w0 above. For a different reduced
expression we might get different root vectors. It is a fact that if β ∈ Π then
the root vectors Eβ and Fβ defined above are the same as the generators with
the same notation (cf. e.g. [Jan96, Proposition 8.20]) so the notation is not
ambigious in this case. By “Let Eβ be a root vector” we just mean a root vector
constructed as above for some reduced expression of w0.

1.4 Basic definitions

Definition 1.1 Let M be a Uq-module and λ : U0
q → C a character (i.e. an

algebra homomorphism into C). Then the weight space Mλ is defined as

Mλ = {m ∈M |∀u ∈ U0
q , um = λ(u)m}.

Let X denote the set of characters of U0
q . Let wtM denote all the weights of M ,

i.e. wtM = {λ ∈ X|Mλ 6= 0}. If q is not a root of unity we define for µ ∈ Λ the

character qµ by qµ(Kα) = q(µ|α) for any α ∈ Π. We also define qµβ = q
(β|β)

2 µ. We

say that M only has integral weights if µ(Kα) ∈ ±qZα for any α ∈ Π, µ ∈ wtM .

If q is not a root of unity then U0
q is isomorphic to C[X±1

1 , . . . , X±1
n ] and X can

be identified with (C∗)n by sending µ ∈ X to (µ(Kα1
), . . . , µ(Kαn

)). When q
is a root of unity the situation is a bit more complex. We will show later that
when q is a root of unity X can be identified with S ×Λl × h∗ where S is the set
of homomorphisms Q→ {±1} and Λl is a finite set depending on the order l of
the root of unity. There is an action of W on X. For λ ∈ X define wλ by

(wλ)(u) = λ(Tw−1(u)).

Note that wqµ = qw(µ).
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Definition 1.2 Let M be a Uq-module and w ∈W . Define the twisted module
wM by the following:

As a vector space wM =M but the action is given by twisting with w−1: For
m ∈ wM and u ∈ Uq:

u ·m = Tw−1(u)m.

We also define wM to be the inverse twist, i.e. for m ∈ wM , u ∈ Uq:

u ·m = T−1
w−1(u)m.

Hence for any Uq-module M , w(wM) =M = w(wM).

Note that wtwM = w(wtM) and that w(w
′

M) ∼= ww′

M for w,w′ ∈ W with
l(ww′) = l(w) + l(w′) because the braid operators Tw satisfy braid relations.

Also w(w
′
M) ∼= w′wM .

Definition 1.3 We define the category F = F(g) as the full subcategory of
Uq −Mod such that for every M ∈ F we have

1. M is finitely generated as a Uq-module.

2. M =
⊕

λ∈XMλ and dimMλ <∞.

Note that the assignment M 7→ wM is an endofunctor on F (in fact an auto-
equivalence).

The goal of this paper is to classify all the simple modules in F in the case
where q ∈ C is a root of unity. Our first step is a reduction to so called torsion
free simple modules, see Definition 2.8. This reduction actually works for generic
q as well and we treat that case first, see Section 2. Then in Section 3 we
prove the corresponding reduction when q is a root of 1. To handle the torsion
free simple modules we need some detailed calculations - found in [Ped15b] and
recalled in Section 4 - on the commutation relations among quantum root vectors.
Then we prove the classification of torsion free simple modules in Section 5 and
Section 6. The classification for generic q turns out to be somewhat harder and
will be the subject of a subsequent paper [Ped15a].

2 Nonroot of unity case: Reduction

In this section we fix a non-root-of-unity q ∈ C∗.

Definition 2.1 Let M ∈ F and let β be a root. M is called β-finite if for
all λ ∈ wtM we have that qNβλ ∩ wtM is a finite set. Here qNβ is the set
{qiβ |i ∈ N} and qiβλ just means pointwise multiplication of characters.

As an example consider a highest weight module M . For any positive root
β ∈ Φ+, M is β-finite. If M is a Verma module then M is not β-finite for any
negative root β ∈ Φ−.

Proposition 2.2 Let M ∈ F and β a positive root. Let Eβ be any choice of a
root vector corresponding to β. Then the following are equivalent

1. M is β-finite.
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2. For all m ∈M , Erβm = 0 for r ≫ 0

Proof. Note that EβMλ ⊂Mqβλ. This shows that 1. implies 2.. Now assume
2. and assume M is not β-finite. Then we must have a λ ∈ wtM , an increasing
sequence {ji}i∈N ⊆ N, weights µi = qjiβλ ∈ wtM and weight vectors 0 6= mi ∈
Mµi

such that Eβmi = 0. If λ(Kβ) = ±qjβ for some j ∈ Z then we can asssume

without loss of generality that j ∈ N since otherwise we can replace λ by qjiβλ
for some sufficiently large ji.

Now consider the subalgebra D of Uq generated by Eβ , K
±1
β and Fβ where Fβ

is the corresponding root vector to Eβ (i.e. if Eβ = Tw(Eαi
) then Fβ = Tw(Fαi

)).
This is a subalgebra isomorphic to Uqβ (sl2). For each i we get a Uqβ (sl2)-module
Dmi with highest weight µi. We claim that in each of those modules we have a
weight vector vi ∈ Dmi of weight λ:

To prove the claim it is enough to show that F
(ji)
β mi 6= 0 since Fβ decreases the

weight by β (i.e. FβMµ ⊂Mq−βµ). To show this we show that E
(ji)
β F

(ji)
β mi 6= 0.

In the following we will use Kac’s formula:

E
(r)
β F

(s)
β =

∑

j≥0

F
(s−j)
β

[
Kβ ; 2j − r − s

j

]
E

(r−j)
β .

This is a well known formula that can be found in e.g. [Jan96, Lemma 1.7]
(although in this reference it is written in a slightly different form).

E
(ji)
β F

(ji)
β mi =

∑

s≥0

F
(ji−s)
β

[
Kβ ; 2s− 2ji

s

]
E

(ji−s)
β mi

=

[
Kβ ; 0

ji

]
mi

=

ji∏

t=1

q1−tβ µi(Kβ)− qt−1
β µi(Kβ)

−1

qtβ − q−tβ
mi

=

ji∏

t=1

q2ji+1−t
β λ(Kβ)− q−2ji+t−1

β λ(Kβ)
−1

qtβ − q−tβ
mi.

This is zero if and only if λ(Kβ) = ±q−2ji−1+t
β for some t = 1, . . . , ji. Note

that the power of q is negative in all cases here so this is not the case by the

assumption above. So F
(ji)
β mi 6= 0 and we are done proving the claim. So we

have 0 6= vi ∈ Dmi of weight λ for i ∈ N.

Consider the Uqβ (sl2) element Cβ = FβEβ +
qβKβ+q

−1
β
K−1

β

(qβ−q
−1
β

)2
. Then Cβ acts on

Dmi by the scalar
qβµi(Kβ) + q−1

β µi(Kβ)
−1

(qβ − q−1
β )

.

If Cβ acts in the same way on Dmi and Dmk then we must have either
µi(Kβ) = µk(Kβ) (i.e. i = j) or µi(Kβ) = q−2

β µj(Kβ)
−1. The second case

implies that λ(Kβ) = ±q−aβ for some a ∈ N which we have ruled out above. So
the vectors vi are linearly independent. Hence M contains an infinite set of
linearly independent vectors of weight λ. This contradicts the fact that M ∈ F .�
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Proposition 2.3 Let β be a positive root and Eβ a root vector corresponding to
β. Let M ∈ F . The set M [Eβ ] = {m ∈M | dim 〈Eβ〉m <∞} is a Uq-submodule
of M .

Proof. Assume first that β is a simple root. We want to show that for v ∈M [Eβ ]

we have for each u ∈ Uq, uv ∈ M [Eβ ]. It is enough to show this for u = Fα,
u = Kα and u = Eα for all simple roots α. If u = Kα there is nothing to show
since Kα acts diagonally on M . If u = Fα for α 6= β there is nothing to show
since Eβ and Fα commute. If α = β then we get the result from the identity

E(r)
α Fα = FαE

(r)
α + E(r−1)

α [Kα; r − 1]

found in e.g. [Jan96, section 4.4]. Finally if u = Eα and α 6= β then from the
rank 2 calculations in [Lus90, section 5.3] we get:

• If (α|β) = 0:

E
(r)
β Eα = EαE

(r)
β .

• If (α|β) = −1:

E
(r)
β Eα = qrEαE

(r)
β + qEα+βE

(r−1)
β

where Eα+β := Tsα(Eβ).

• If (α|β) = −2 and 〈α, β∨〉 = −2:

E
(r)
β Eα = q2rEαE

(r)
β + qr+1Eα+βE

(r−1)
β + q2E2β+αE

(r−2)
β

where Eα+β := Tsα(Eβ) and E2β+α := TsαTsβ (Eα).

• If (α|β) = −2 and 〈α, β∨〉 = −1: In this case we get from the calculations
in [Lus90, section 5.3] that

EαE
(r)
β = q2rE

(r)
β Eα + q2E

(r−1)
β Eα+β

where Eα+β := Tsβ (Eα).

After using the Q-algebra anti automorphism Ψ from [Lus90, section 1.1]
we get

E
(r)
β Eα = q2rEαE

(r)
β + q2E′

α+βE
(r−1)
β

where E′
α+β = Ψ(Eα+β) = T−1

sβ
(Eα).

In all cases we get that if E
(n)
β m = 0 for n >> 0 then E

(n)
β Eαm = 0 for n >> 0.

This proves that uv ∈ {m ∈M | dim 〈Eβ〉m <∞} in this case also.
If β is not simple then Eβ = Tw(Eα′) for some simple root α′ and some

w ∈W . Since Tw is an automorphism we have Tw(Uq) = Uq so instead of proving
the claim for u = Eα, Kα and Fα we can show it for u = Tw(Eα), Tw(Kα) and
Tw(Fα) so the claim follows from the calculations above. �

Lemma 2.4 Let Eβ and E′
β be two choices of root vectors. Then M [Eβ ] =M [E′

β ]
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Proof. Suppose we have two root vectors Eβ and E′
β . By Proposition 2.3 and

Proposition 2.2 we have dim
〈
E′
β

〉
m <∞ for all m ∈M [Eβ ] so M [Eβ ] ⊂M [E′

β ].

Symmetrically we have also M [E′
β ] ⊂M [Eβ ]. �

Definition 2.5 Let β be a positive root and Eβ a root vector corresponding to
β. Define M [β] = {m ∈M | dim 〈Eβ〉m <∞}.

By Lemma 2.4 this definition is independent of the chosen root vector.
Everything here that is done for a positive root β can be done for a negative

root just by replacing the E’s with F ’s, i.e. for a negative root β ∈ Φ−,
M [β] = {m ∈M | dim 〈F−β〉m <∞} and so on.

Definition 2.6 Let M ∈ F . Let β ∈ Φ. M is called β-free if M [β] = 0.

Note that M is β-finite if and only if M [β] = M so β-free is, in a way, the
opposite of being β-finite. Suppose L ∈ F is a simple module and β a root.
Then by Proposition 2.3 L is either β-finite or β-free.

Definition 2.7 Let M ∈ F . Define FM = {β ∈ Φ|M is β-finite} and TM =
{β ∈ Φ|M is β-free}. For later use we also define F sM := FM ∩ (−FM ) and
T sM := TM ∩ (−TM ) to be the symmetrical parts of FM and TM .

Note that Φ = FL ∪ TL for a simple module L and this is a disjoint union.

Definition 2.8 A module M is called torsion free if TM = Φ.

Proposition 2.9 Let L be a simple module and β a root. L is β-free if and
only if qNβ wtL ⊂ wtL.

Proof. Assume L is β-free and β ∈ Φ+. Let Eβ be a corresponding root vector.
The proof is similar for β ∈ Φ− but with F instead of E. Then for all 0 6= m ∈ L,

E
(r)
β m 6= 0. If λ ∈ wtL then there exists 0 6= mλ ∈ Lλ and since E

(r)
β mλ ∈ Lqrβλ

the implication follows. For the other way assume qNβ wtL ⊂ wtL. Then L is
clearly not β-finite. Since L is simple L must then be β-free. �

Proposition 2.10 Let L ∈ F be a simple module. TL is a closed subset of the
roots Φ. That is if β, γ ∈ TL and β + γ ∈ Φ. Then β + γ ∈ TL.

Proof. Since L is β-free we have qNβ wtL ⊂ wtL and since L is γ free we get
further qNγqNβ wtL ⊂ wtL so therefore qN(β+γ) wtL ⊂ wtL hence L is (β + γ)
free. �

Proposition 2.11 Let M ∈ F be a Uq-module. FM is a closed subset of Φ.
That is if β, γ ∈ FM and β + γ ∈ Φ then β + γ ∈ FM .

Proof. Let α, β ∈ FM with α+β ∈ Φ. We have to show that α+β ∈ FM . First
let us show the claim if the root system Φ is a rank 2 root system. In this case the
claim will follow from the rank 2 calculations in [Lus90]. Assume Π = {α1, α2}.
Assume first that we have α ∈ Π and β ∈ Φ+. We show below that we can always
reduce to this situation. We can assume α = α1 by renumbering if neccesary.
We now have 5 possibilites:

Case 0) (α1, α2) = 0 is clear.
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Case 1): (α1|α2) = −1. The only possibility for β ∈ Φ+ such that α+ β is a
root is β = α2. Set Eα+β = Tsβ (Eα) then Lusztig shows in [Lus90, section 5.5]
that

E
(k)
α+β =

k∑

t=0

(−1)tq−tE
(k−t)
β E(k)

α E
(t)
β .

The difference in the definition of the braid operators between [Jan96] and [Lus90]
means that we have to multiply the formula in [Lus90] by (−1)k since (using the
notation of [Lus90]) E12 = −Eα+β . Let m ∈M . Then there exists a T ∈ N such

that E
(t)
β m = 0 for t ≥ T since M is β-finite. Let mt = E

(t)
β m, t = 0, 1, . . . , T .

For each mt there is a Kt ∈ N such that E
(k)
α mt = 0 for k ≥ Kt since M

is α-finite. Set K = max{T,K0, . . . ,KT } then the above identity shows that

E
(k)
α+βm = 0 for k ≥ K

Case 2): 〈α1, α
∨
2 〉 = −2. In this case β = α2 is the only possibility to choose

β ∈ Φ+ such that α+ β ∈ Φ. Set Eα+β = Tα(Eβ) then by [Lus90, section 5.5]:

E
(k)
α+β =

k∑

t=0

(−1)tq−2tE(k−t)
α E

(k)
β E(t)

α

and the same argument as above works.
Case 3): 〈α2, α

∨
1 〉 = −2 and β = α2. Set Eα+β = Tβ(Eα) then

E
(k)
α+β =

k∑

t=0

(−1)tq−2tE
(k−t)
β E(k)

α E
(t)
β

and the argument follows like in case 1) and 2).
Case 4): 〈α2, α

∨
1 〉 = −2 and β = α1 + α2. In this case set Eβ = Eα1+α2

=
Tα2(Eα1) and Eα+β = E2α1+α2 = Tα2Tα1(Eα2). We want a property similar to
the one in the other cases. We want to show that there exists ct ∈ Q(q) such
that

E
(k)
2α1+α2

=

k∑

t=0

ctE
(k−t)
α1

E
(k)
α1+α2

E(t)
α1
.

We will use notation like in [Lus90] so set E1 = Eα1
, E12 = Eα1+α2

and
E112 = E2α1+α2

. Let k ∈ N. By 5.3 (h) in [Lus90]

E
(k)
1 E

(k)
12 = (−1)kqk

k∏

i=1

(q2i+1)E
(k)
112+

k−1∑

s=0

(−1)sqs−s(k−s)−s(t−s)

(
s∏

i=1

(q2i + 1)

)
E

(k−s)
12 E

(s)
112E

(k−s)
1

so

E
(k)
112 = (−1)kc

(
E

(k)
1 E

(k)
12 −

k−1∑

s=0

(−1)sqs−s(k−s)−s(t−s)

(
s∏

i=1

(q2i + 1)

)
E

(k−s)
12 E

(s)
112E

(k−s)
1

)

where c =
(
qk
∏k
i=1(q

2i + 1)
)−1

.

We will show by induction over s < k that there exists ai ∈ Q(q) such that

E
(k−s)
12 E

(s)
112E

(k−s)
1 =

s∑

i=0

aiE
(i)
1 E

(k)
12 E

(k−i)
1 .
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The induction start s = 0 is obvious. Now observe that again from 5.3 (h)
in [Lus90] we have for s < k:

E
(s)
1 E

(k)
12 =(−1)sqs−s(k−s)

s∏

i=1

(q2i + 1)E
(k−s)
12 E

(s)
112

+
s−1∑

n=0

(−1)nqn−n(s−n)−n(k−n)

(
n∏

i=1

(q2i + 1)

)
E

(k−n)
12 E

(n)
112E

(s−n)
1 .

So

E
(k−s)
12 E

(s)
112 = (−1)s

(
qs−s(k−s)

s∏

i=1

(q2i + 1)

)−1(
E

(s)
1 E

(k)
12 −

s−1∑

n=0

(−1)nbnE
(k−n)
12 E

(n)
112E

(s−n)
1

)

where bn ∈ Q(q) are the coefficients above. Hence

E
(k−s)
12 E

(s)
112E

(k−s)
1 = (−1)sbE

(s)
1 E

(k)
12 E

(k−s)
1 +

s−1∑

n=0

(−1)s+nb′nE
(k−n)
12 E

(n)
112E

(k−n)
1

for some coefficients b and b′n ∈ Q(q). This identity completes the induction over
s.

So to sum up we have proven that there exists ct ∈ Q(q) such that

E
(k)
2α1+α2

=

k∑

t=0

ctE
(k−t)
α1

E
(k)
α1+α2

E(t)
α1
.

(Note for later use in the root of unity case that the ct are in the localization of
Z[q, q−1] in the elements (q2i + 1) for i ∈ N which are nonzero unless q is an lth
root of unity with l even). Now the proof goes as above.

The above 5 cases are the only possible cases with the above assumptions
since we have excluded G2.

We will now show how to reduce the problem to rank 2. Assume β, γ ∈ FM
and β + γ ∈ Φ. We will first show:

• There exists a w ∈W such that w(β) ∈ Π and w(γ) ∈ Φ+.

Let w0 = si1 · · · siN be a reduced expression and let βj = si1 · · · sij−1
(αij ).

Then Φ+ = {β1, . . . , βN}. Assume first that both β and γ are positive. Then
β = βj and γ = βr for some j and r. Without loss of generality we can assume
j < r. Then we can set w = sij−1

· · · si1 in this case. If β and γ are both negative
then w0(β) and w0(γ) are both positive and we can do as before. Assume β < 0
and γ > 0. Assume β = −βj and γ = βr for some j and r. Without loss of
generality we can assume j < r. Then set w = sij · · · si1 . The claim has been
shown.

Next we will show:

• There exists a w ∈ W such that w(β) and w(γ) is contained in a rank 2
subsystem of the roots.

If (β|γ) < 0 then there exists a simple system Π′ of Φ such that β and γ
are in Π′. But since all simple system of a root system are W conjugate
the claim follows. Assume (β|γ) ≥ 0. Then 〈β + γ, γ∨〉 ≥ 〈γ|γ∨〉 = 2 so

10
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sγ(β + γ) = β + γ − 〈β + γ, γ∨〉 γ ≤ β − γ. So β − γ is a root in this case. Since
we have excluded G2 this means that the γ string through β is β−γ, β, β+γ and
therefore 〈β + γ, γ∨〉 = 2 or equivalently 〈β, γ∨〉 = 0. So (β−γ|γ) = −(γ|γ) < 0.
Hence there is a simple system of roots Π′ such that γ, β−γ ∈ Π′. So there exists
w such that w(γ) and w(β − γ) are simple roots. Since w(β) = w(γ) +w(β − γ)
we see that w(β) and w(γ) are contained in a rank 2 subsystem of Φ. So the
second claim is proven.

Note that wM is w(β) and w(γ) finite: Since wtwM = w(wtM) we have that
a µ ∈ wtwM is of the form µ = w(λ) for some λ ∈ wtM . Now qNw(β)µ∩wtwM =
w(qNβλ∩wtM) is finite because M was β-finite. All in all we get that for some w
we have w(β+γ) ∈ FwM . But since FwM = w(FM ) this shows that β+γ ∈ FM .�

Let L be a simple module. Since FL and TL are both closed subsets of Φ we
get from [Fer90, Lemma 4.16] that PL := FL ∪ T sL is a parabolic subset of the
roots - i.e. PL ∪ (−PL) = Φ and PL is a closed subset of Φ.

Since PL ∪ (−PL) = Φ we must have for some w ∈W , Φ+ ⊂ w(PL). From
now on we will assume Φ+ ⊂ PL since otherwise we can just describe the
module wL and then untwist once we have described this module. So we assume
PL = Φ+ ∪ 〈Π′〉 where Π′ ⊂ Π and where 〈Π′〉 denotes the subset of Φ generated
by Π′, i.e. 〈Π′〉 = ZΠ′ ∩ Φ.

Let p be the parabolic Lie algebra corresponding to PL i.e. p = h⊕
⊕

β∈PL
gβ

and let l and u be the Levi part and the nilpotent part of p respectively i.e.
l = h ⊕

⊕
β∈P s

L
gβ and u =

⊕
β∈PL\P s

L
gβ . We can define Uq(p), Uq(l) and

Uq(u). Furthermore we can define Uq(u
−) where u− is the nilpotent part of the

opposite parabolic p− corresponding to (−PL). We have Uq(p) = Uq(l)Uq(u) and
Uq(g) = Uq(u

−)Uq(p).
Here is how we define the above subalgebras: (Defined like in [Pul06])

Assume PL = Φ+ ∪ 〈Π′〉. Let wl
0 be the longest element in the Weyl group W l

corresponding to Π′. Let w0 be the longest element in W . Set w = w0(w
l
0)

−1.
Choose a reduced expression w0 = sj1 · · · sjksi1 · · · sih such that wl

0 = si1 · · · sih .
Let {Eβ , Fβ |β ∈ Φ+} be the root vectors defined by this reduced expression.

Set

β1
t = βt+k = wsi1 · · · sit−1

(αit), t = 1, . . . , h

β2
t = βt = sj1 · · · sjt−1

(αjt), t = 1, . . . , k.

This means that

Fβ1
t
= TwTsi1 · Tsit−1

(Fαit
), t = 1, . . . , h

Fβ2
t
= Tsj1 · Tsjt−1

(Fαjt
), t = 1, . . . , k

and similarly for the E’s.
We define

Uq(p) =
〈
Eβj

,Kµ, Fβ1
i

〉
j=1,...,N,µ∈Q,i=1,...h

,

Uq(l) =
〈
Eβ1

i
,Kµ, Fβ1

i

〉
µ∈Q,i=1,...h

and
Uq(u) =

〈
Eβ2

i

〉
i=1,...,k

.

11
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Similarly we define Uq(u
−) =

〈
Fβ2

i

〉
i=1,...,h

. All of these are subalgebras

of Uq(g) are independent of the chosen reduced expression of w0 and wl
0. Fur-

thermore Uq(p) and Uq(l) are Hopf subalgebras of Uq(g) as stated in [Pul06,
Proposition 5 and Lemma 2].

There is a Q grading on Uq with degEα = α, degFα = −α and degK±1
β = 0

as described in e.g. [Jan96, section 4.7]. This induces a grading on U±
q and on

Uq(u) and Uq(u
−). We will define Uq(u)

>0 and Uq(u
−)<0 to be the subalgebras

consisting of elements with nonzero degree (i.e. the augmentation ideals).

Definition 2.12 Let p be a standard parabolic sub Lie algebra of g and let l, u
and u− be defined as above. Let N be a Uq(l)-module. We define

M(N) = Uq(g)⊗Uq(p) N,

where N is considered as a Uq(p)-module with Uq(u) acting trivially, i.e. through
the coidentity ε : Uq(u) → C sending everything of nonzero degree to zero.

Definition 2.13 If M is a Uq(g)-module we define

Mu = {m ∈M |xm = ε(x)m, x ∈ Uq(u)}.

Proposition 2.14 Let M be a Uq(g)-module. Mu is a Uq(l)-module.

Proof. We will show that for u ∈ Uq(l), Uq(u)
>0u ∩ Uq(g)Uq(u)

>0 6= ∅. This is
true by simple grading considerations. We know that Uq(u)

>0u ⊂ Uq(l)Uq(u) =
Uq(l)Uq(u)

>0 + Uq(l). But the degree of a homogeneous element u′u ∈ U−
q

with u′ ∈ Uq(u)
>0 cannot be in ZΠ′ since that would mean u′ ∈ Uq(l). So

Uq(u)
>0u ⊂ Uq(l)Uq(u)

>0. �

Proposition 2.15 Let N be a Uq(l)-module and let M be a Uq(g)-module. There
are natural vector space isomorphisms

Φ = ΦM,N : HomUq(g)(M(N),M) ∼= HomUq(l)(N,M
u).

Proof. If f : M(N) → M is a Uq(g)-module map then Φ(f) : N → Mu is
defined by Φ(f) = fu ◦ (1 ⊗ idN ), where 1 ⊗ idN : N → M(N)u is given by
n 7→ 1⊗ n and fu : M(N)u →Mu is the restriction of f to M(N)u.

The inverse map Ψ is given by: For g : N →Mu, Ψ(g)(u⊗ n) = ug(n). It is
easy to check that Φ and Ψ are inverse to each other. �

Proposition 2.16 If X is a simple Uq(l)-module then M(X) has a unique
simple quotient L(X).

Proof. The proof is exactly the same as the proof of Proposition 3.3 in [Fer90]:
Suppose M is a submodule of M(X). If 0 6= v ∈ M ∩ (1 ⊗ X) then Uqv =
UqUq(l)v = Uq(1⊗X) = M(X) so M ∩ (1⊗X) = 0 for every proper submodule
M . Let N be the sum of all proper submodules. N is proper since N∩(1⊗X) = 0
and maximal since it is the sum of all proper submodules. �

Let F(l) denote the full subcategory of Uq(l)-modules that consists of modules
that are finitely generated over Uq and are weight modules with finite dimensional
weight spaces.

12
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Proposition 2.17 The maps L : N 7→ L(N) and F : V 7→ V u determine
a bijective correspondence between the simple modules in F(l) and the simple
modules M in F(g) that have Mu 6= 0. L and F are inverse to each other.

The second part of the proof is just a quantum version of the proof of Proposi-
tion 3.8 in [Fer90]. The first part is shown a little differently here.

Proof. First we will show that if V is a simple Uq(g)-module with V u 6= 0 then
V u is a simple Uq(l)-module: Assume 0 6= V1 ⊂ V u is a Uq(l)-submodule of
V u. We will show that V1 = V u. Since V is a simple Uq(g)-module we have
V = Uq(g)V1. Now as a vector space we have

V = Uq(g)V1 = Uq(u
−)Uq(l)Uq(u)V1 = Uq(u

−)Uq(l)(Uq(u)
>0 + C)V1

= Uq(u
−)Uq(l)V1

= Uq(u
−)V1

= (Uq(u
−)<0 + C)V1

= Uq(u
−)<0V1 + V1.

We are done if we show Uq(u
−)<0V u∩V u = 0. Observe that Uq(u

−)<0V u is a
Uq(l) module since Uq(l)Uq(u

−)<0 = Uq(u
−)<0Uq(l). Assume v ∈ V u and assume

we have a u′ ∈ Uq(u
−)<0 such that u′v ∈ V u. We can assume u′ ∈ (Uq(u

−)<0)γ
for some γ ∈ Q and v ∈ Vµ for some µ ∈ X. Assume u′v 6= 0. Then since V is
simple there exists a u ∈ Uq such that uu′v = v but by weight considerations
we must have u ∈ (Uq)−γ ⊂ Uq(p

−)Uq(u)
>0 so uu′v = 0 since u′v ∈ V u. A

contradiction.
Now assume N is a simple Uq(l) module. L(N)u is simple by the above. Let

Φ be the isomorphism from Proposition 2.15 and consider Φ(p) : N → L(N)u

where p : M(N) → L(N) is the cannocial projection from M(N) to L(N). Since
Φ is an isomorphism the map Φ(p) is nonzero. Since N is simple by assumption
and L(N)u is simple by the above we get that Φ(p) is an isomorphism.

Suppose V is a simple Uq(g)-module such that V u is nonzero. Let f =
Φ−1(id) : M(V u) → V where id : V u → V u is the identity map. Then f is
nonzero and therefore surjective because V is simple. But since L(V u) is the
unique simple quotient of M(V u) we get L(V u) = V . �

Let p be a standard parabolic subalgebra of g and define Uq(p), l, Uq(l) etc.
as above. Let Φl be the roots corresponding to l i.e. such that l = h⊕

⊕
β∈Φl gβ .

Then for β ∈ Φl and a Uq(l)-module M we define β-finite, β-free, M [β] etc. as
above. The definitions, lemmas and propositions above still hold in this case as
long as we require β ∈ Φl so that we actually have root vectors Eβ , Fβ ∈ Uq(l).
We define TM := {β ∈ Φl|M [β] = 0} and FM := {β ∈ Φl|M [β] = M} i.e. as
before but only for roots in Φl.

By now we have reduced the problem of classifying simple modules in F(g)
somewhat. If L ∈ F is a simple module we know that there exists some w such
that Φ+ ⊂ PwL. Define l, Uq(l) from L etc. as above, then Φl = 〈Π′〉 = F sL ∪ T sL
where Π′ is the subset of simple roots such that PL = Φ+ ∪ 〈Π′〉. From the
above we get then that wL is completely determined by the simple Uq(l)-module
(wL)u. So we have reduced the problem to looking at simple Uq(l)-modules N
satisfying Φl = F sN ∪ T sN .
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We claim that Π′ = Π′
F s

N
∪ Π′

T s
N

such that F sN =
〈
Π′
FN

〉
and T sN =

〈
Π′
TN

〉

and such that none of the simple roots in Π′
F s

N
are connected to any simple root

from Π′
T s
N

. Suppose α ∈ F sN is a simple root and suppose α′ ∈ Π′ is a simple root

that is connected to α in the Dynkin diagram. So α+α′ is a root. There are two
possibilities. Either α+ α′ ∈ FN or α+ α′ ∈ TN . If α+ α′ ∈ FN : Since F sN is
symmetric we have −α ∈ F sN and since FN is closed α′ = α+α′+(−α) ∈ FN . If
α+ α′ ∈ TN and α′ ∈ TN then we get similarly α ∈ TN which is a contradiction.
So α′ ∈ FN . We have shown that if α ∈ FN then any simple root connected to
α is in FN also. So FN and TN contains different connected components of the
Dynkin diagram for Φl.

Let τ = c(l)⊕ gF s
N
⊕ hF s

N
and t = gT s

N
⊕ hT s

N
. Define

Uq(τ) = 〈Eα,Kα,Kβ , Fα〉α∈Π′
Fs
N
,β∈Φ\Φl

and
Uq(t) = 〈Eα,Kα, Fα〉α∈Π′

Ts
N

.

Then by construction Uq(g) ∼= Uq(τ)⊗CUq(t) as a vector space via u1⊗u2 7→ u1u2
for u1 ∈ Uq(τ) and u2 ∈ Uq(t).

To continue we want to use a result similar to [Lem69] Theorem 1 which
says that there is a 1-1 correspondence between simple Uq(l)-modules and simple
(Uq(l))0 modules. Since Lemire’s result is for Lie algebras we will prove the
same for quantum group modules but the proofs are essentially the same. In the
following l is the Levi part of some standard parabolic subalgebra p and Uq(l) is
defined as above. Note in particular that the results work for l = g by choosing
p = g. For easier notation we will set Cq := (Uq(l))0.

Lemma 2.18 Let V be a simple Uq(l)-module and λ a weight of V . Then Vλ is
a simple Cq-module.

Proof. It is enough to show that for v ∈ Vλ nonzero we have Vλ = Cqv but this
follows since Vλ = (Uq(l)v)λ = (

⊕
ν Uq(l)νv)λ = Uq(l)0v �

Lemma 2.19 Assume V1 and V2 are simple Uq(l)-modules. Let λ ∈ wtV1 and
assume (V1)λ ∼= (V2)λ as Cq-modules. Then V1 ∼= V2.

Proof. Let 0 6= vi ∈ (Vi)λ, i = 1, 2. Then (Vi)λ ∼= Cq/AnnCq
(vi) as Cq-modules

since (Vi)λ is simple (Lemma 2.18). Let M = AnnCq
(v1), then M is a maximal

left ideal in Cq since Cq/M is simple. We will show that there exists a unique
maximal ideal M ′ of Uq(l) containing M . Let M ′′ = Uq(l)M . Then M ′′ 6= Uq(l)
because M 6= Cq and so there is a maximal ideal M ′ containing M ′′. To
show uniqueness we will show that Uq(l)/M

′′ has a unique maximal submodule
(and therefore a unique simple quotient). Clearly Uq(l)/M

′′ =
⊕

γ(Uq(l)/M
′′)γ .

Let N be a submodule of Uq(l)/M
′′. Then N =

⊕
γ N ∩ (Uq(l)/M

′′)γ . Since
(Uq(l)/M

′′)λ = (Cq/M) ∼= (V1)λ is a simple Cq-module we have either N ∩
(Uq(l)/M

′′)λ = (Uq(l)/M
′′)λ or N ∩ (Uq(l)/M

′′)λ = 0. In the first case we have
1+M ′′ ∈ N and so N = Uq(l)/M

′′. So all proper submodules of Uq(l)/M
′′ have

N ∩ (Uq(l)/M
′′)λ = 0. Let N0 be the sum of all proper submodules. Then this

is the unique maximal submodule of Uq(l)/M
′′. So there is a unique maximal

submodule M ′ of Uq(l) containing M .

14



Irreducible quantum group modules with finite dimensional weight

spaces. I

Set Mi = AnnCq
(vi). Then from the above we get unique maximal left

ideals M ′
i of Uq(l) containing Mi. By the uniqueness we have M ′

i = AnnUq(l)(vi)
and we have Vi ∼= Uq(l)/M

′
i . Let ϕ : Cq/M1 → Cq/M2 be the isomorphism

between (V1)λ and (V2)λ and suppose ϕ(1 + M1) = x + M2. Then define
Φ : Uq/M

′
1 → Uq/M

′
2 by Φ(u+M ′

1) = ux+M ′
2. Then Φ is a Uq(l)-isomorphism

because Φ is a nonzero homomorphism between two simple modules. �

Lemma 2.20 Let λ ∈ X. Let N be a simple Cq-module such that Kαn =
λ(Kα)n, for all α ∈ Π and n ∈ N . Then there exists a simple Uq(l)-module V
such that N ∼= Vλ as a Cq-module.

Proof. Let 0 6= n ∈ N and set M = AnnCq
(n). Then there exists a maximal

left ideal M ′ of Uq(l) like in the proof of Lemma 2.19. Set V = Uq(l)/M
′. This

is a simple module since M ′ is maximal. We claim that Vλ ∼= N as Cq-modules.
This follows from the fact that Cq ∩M

′ =M :
M ⊂ Cq ∩M

′ by definition. Take any x ∈ Cq ∩M
′ and assume x 6∈M . Since

M is maximal in Cq we must have y ∈ Cq such that yx− 1 ∈M hence 1 ∈M ′.
This is a contradiction. So M = Cq ∩M

′. �

It now follows that we have just like Theorem 1 in [Lem69] the theorem:

Theorem 2.21 Let λ ∈ X. There is a 1 − 1 correspondence between simple
Uq(l)-modules V with weight Vλ 6= 0 and simple Cq modules with weight λ given
by: For V a Uq(l)-module, Vλ is the corresponding simple Cq-module.

The next lemma we will prove is the equivalent of Lemma 4.5 in [Fer90]. The
proof goes in almost exactly the same way.

Lemma 2.22 Let L be a simple Uq(l)-module. Let Uq(t) and Uq(τ) be defined
as above. There exists a simple Uq(τ)-module L1 and a simple Uq(t)-module
L2 such that L ∼= L1 ⊗C L2 as a Uq(l) = Uq(τ)⊗C Uq(t) module. Furthermore
if Π′

T s
L
=
⋃s
i=1 Π

′
(T s

L
)i

where Π′
(T s

L
)i

are the different connected components in

Π′
T s
L

set ti = g(TL)i ⊕ h(TL)i and Uq(ti) = 〈Fα,Kα, Eα〉α∈Π′
(Ts

L
)i

. Then Uq(t) ∼=

Uq(t1)⊗C · · · ⊗C Uq(ts) and there exists simple Uq(ti)-modules (L2)i such that
L2

∼= (L2)1 ⊗C · · · ⊗C (L2)s as Uq(t1)⊗C · · · ⊗C Uq(ts)-modules.

Proof. Let λ be one of the weights of L. Then we know that E := Lλ is a
simple finite dimensional Cq-module. Let R (respectively R1 and R2) denote the
image of Cq (respectively Uq(τ)0 and Uq(t)0) in EndC(E). Since E is simple we
have R = EndC(E). Since R1E 6= 0 there exists a nontrivial R1-submodule of
resRR1

E and since E is finite dimensional there exists a simple R1-submodule E1

of resRR1
E. The simplicity of E1 implies that the representation R1 → EndC(E1)

is surjective. The kernel of R1 → EndC(E1) must be AnnR1
(E1). But if this is

nonzero then since E = RE1 = R2E1 and since R1 and R2 commutes we see
that AnnR(E) will be nonzero which is a contradiction since R = EndC(E). So
R1

∼= EndC(E1) is simple. Similarly there exists a simple R2-module E2 and
R2

∼= EndC(E2) is simple. Now as in the proof of Lemma 4.5 in [Fer90] we
get R ∼= R1 ⊗ R2 (using [ANT44, Theorem 7.1D]). Since R = EndC(E) it has
exactly one simple module up to isomorphism. This implies that E ∼= E1 ⊗C E2

as R-modules.
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Now set L1 = Uq(τ)E1 and L2 = Uq(t)E2. We have Lλ = E ∼= E1 ⊗C E2 =
(L1 ⊗C L2)λ and by Theorem 2.21 this implies that L ∼= L1 ⊗C L2.

The second part of the lemma is proved in the same way. The only thing we
used about Uq(τ) and Uq(t) was that Uq(l) = Uq(τ)Uq(t) and that Uq(τ)0 and
Uq(t)0 commutes. The same is true for Uq(t) and the Uq(ti)’s. �

To summarize we have the following equivalent of Theorem 4.18 in [Fer90]:

Theorem 2.23 Suppose L ∈ F is a simple Uq(g) module. Let w ∈W be such
that PwL is standard parabolic. With notation as above: (wL)u is a simple
Uq(l)-module and this module decomposes into a tensor product Xfin ⊗C Xfr

where Xfin is a finite dimensional simple Uq(τ)-module and Xfr is a torsion
free Uq(t)-module. Furthermore if t = t1 ⊕ · · · ⊕ ts as a sum of ideals then
Xfr = X1 ⊗C · · · ⊗C Xs for some simple Uq(ti)-modules.

Given the pair (Xfin, Xfr) and the w ∈ W defined above then L can be
recovered as wL(Xfin ⊗C Xfr)).

So the problem of classifying simple modules in F is reduced to the problem of
classifying finite dimensional simple modules of Uq(τ) and classifying torsion free
simple modules of Uq(t) where t is a simple Lie algebra. In the next section we
will show that we can make the same reduction if q is an odd root of unity. The
procedure is similar but there are some differences, e.g. because the sl2 theory
is a little different.

3 Root of unity case: Reduction

We will now consider the root of unity case. In this section q ∈ C will be assumed
to be a primitive l’th root of unity where l is odd.

Lemma 3.1 Let λ ∈ X and α ∈ Π. Then λ(Kα) = ±qkα for some k ∈ {0, . . . , l−
1}.

Proof. By Section 6.4 in [Lus90] we have the following relation in UA:

[
Kα; 0

l − 1

][
Kα;−l + 1

1

]
=

[
l

l − 1

]

vα

[
Kα; 0

l

]
.

Since
[
l
l−1

]
qα

= 0 when q is an l’th root of unity we must have that either

q−l+1
α λ(Kα)− ql−1

α λ(Kα)
−1 = 0 or q1−kα λ(Kα)− qk−1

α λ(Kα)
−1 = 0 for some k ∈

{1, . . . , l−1}. Writing out what these equations imply we get that λ(Kα) = ±qkα
for some k ∈ {0, . . . , l − 1}. �

Definition 3.2

Λl = {λ ∈ Λ|0 ≤ 〈λ, α∨〉 < l, ∀α ∈ Π}

Lemma 3.3 Let λ : U0
q → C be an algebra homomorphism. Then λ is com-

pletely determined by its values on Kα and
[
Kα;0
l

]
with α ∈ Π. Choosing a

16
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homomorphism σ : Q → {±1}, an element λ0 ∈ Λl and an element λ1 ∈ h∗

determines a homomorphism λ ∈ X as follows: For α ∈ Π:

λ(Kα) =σ(α)q
(λ0|α)

λ(

[
Kα; 0

l

]
) =

〈
λ1, α∨

〉
.

All algebra homomorphisms λ : U0
q → C are of this form, i.e. X = S × Λl × h∗

in this case, where S is the set of homomorphisms σ : Q→ {±1}.

Proof. We will use the relations for UA from Section 6.4 of [Lus90]. Let β ∈ Π. If

λ(Kβ) = d then λ(K−1
β ) = d−1 and the value on

[
Kβ ;c
t

]
=
∏t
i=1

qc−i+1
β

Kβ−q
i−1−c
β

K−1
β

qi
β
−q−i

β

for 0 ≤ t < l is also determined. The relations

[
Kβ ; c

l

]
−

[
Kβ ; c+ 1

l

]
= −qc+1

β Kβ

[
Kβ ; c

l − 1

]

determine the values on
[
Kβ ;c
t

]
for all c ∈ Z if the value on

[
Kβ ;0
t

]
and the value

on Kβ is known. Finally if c = rl + t with 0 ≤ t < l we have

[
Kβ ; 0

rl + t

]
=

[
Kβ ; 0

rl

][
Kβ ;−rl

t

]

=r−1

[
Kβ ; 0

(r − 1)l

][
Kβ ;−(r − 1)l

l

][
Kβ ;−rl

t

]

...

=(r!)−1
r−1∏

s=0

[
Kβ ;−sl

l

][
Kβ ;−rl

t

]
.

So determining the value on Kβ and
[
Kβ ;0
l

]
determines the value on all of U0

q .
If σ, λ0, λ1 is chosen as above it is easy to check that the relations from

Section 6.4 in [Lus90] are satisfied. That all characters are of this form follows
from Lemma 3.1. �

It can be noted in the above that λ1 = λ◦Fr′ |h where Fr′ : U(g) → Uq(g)/
〈
Kl
α − 1|α ∈ Π

〉

is the Frobenius map from [KL02]. We will restrict to modules of type 1 meaning
σ(α) = 1 for all α ∈ Π in the above. It is standard how to get from modules of
type 1 to modules of any other type σ (cf. e.g. [Jan96, Section 5.1-5.4]).

Since we restrict to modules of type 1 we will assume from now on that
X = Λl × h∗. A weight λ ∈ X will also be written as (λ0, λ1) ∈ Λl × h∗.

Lemma 3.4 Let λ ∈ X with λ0 and λ1 defined as in Lemma 3.3. Let β ∈ Φ+,
c ∈ Z,

λ(

[
Kβ ; c+ 1

l

]
) =

{
λ(
[
Kβ ;c
l

]
) + 1 if

〈
λ0, β∨

〉
+ c ≡ −1 mod l

λ(
[
Kβ ;c
l

]
) otherwise .

17



Irreducible quantum group modules with finite dimensional weight

spaces. I

Proof. Set a =
〈
λ0, β∨

〉
. By (b4) in Section 6.4 of [Lus90]

λ

([
Kβ ; c

l

])
=λ

([
Kβ ; c− 1

l

]
+ qcβKβ

[
Kβ ; c− 1

l − 1

])

=λ

([
Kβ ; c− 1

l

])
+ qc+aβ

[
a+ c− 1

l − 1

]

qβ

.

[
a+c−1
l−1

]
qβ

is zero unless a+ c− 1 ≡ −1 mod l. If a+ c− 1 ≡ −1 mod l then

a+ c ≡ 0 mod l and so qa+cβ = 1 and
[
a+c−1
l−1

]
qβ

=
[
l−1
l−1

]
qβ

= 1. �

For a character λ ∈ X and a µ ∈ Q we define qµλ as follows:

(qµλ)(Kα) =q
(µ|α)λ(Kα) = q

〈µ,α∨〉
α λ(Kα)

(qµλ)

([
Kα; c

l

])
=λ

([
Kα; c+ 〈µ, α∨〉

l

])
.

With this notation we get for a module M that E
(r)
α Mλ ⊂Mqrαλ and F

(r)
α Mλ ⊂

Mq−rαλ. Note also that (qlβλ)1 = λ1 + β.
We use the same definitions as in Section 2:

Definition 3.5 Let M ∈ F and let β ∈ Φ. We call M β-finite if qNβλ ∩ wtM
is a finite set for all λ ∈ wtM where qNβλ = {qrβλ|r ∈ N}.

The weight vectors Eβ and Fβ for positive β that are not simple are defined
just as before by choosing a reduced expression of w0. By [Lus90, Section 5.6]

the divided powers E
(r)
β := 1

[r]β !
Erβ , r ∈ N are all contained in UA and by abuse

of notation we use the same symbol for the corresponding elements in Uq.

Proposition 3.6 Let M ∈ F and let β be a positive root. Let Eβ be any choice
of root vector corresponding to β. Then the following are equivalent:

1. M is β-finite.

2. For all m ∈M , E
(r)
β m = 0 for r >> 0

Proof. Clearly 1. implies 2. since E
(r)
β Mλ ⊂Mqrβλ. Assume 2. and suppose M

is not β finite.
We must have a λ ∈ wtM , an increasing sequence {ji}i∈N, weights µi =

qjiβλ ∈ wtM and weight vectors mi ∈ Mµi
such that E

(r)
β mi = 0 for all

r ∈ N\{0}. We can assume without loss of generality that if λ
([
Kβ ;0
l

])
∈ Z then

λ
([
Kβ ;0
l

])
∈ Z>0 by Lemma 3.4.

Now consider the subalgebra Dβ of Uq generated by E
(r)
β , K±1

β and F
(r)
β for

r ∈ N where Fβ is the root vector corresponding to Eβ (i.e. if Eβ = Tw(Eαi
)

then Fβ = Tw(Fαi
)). For each i we get a Dβ-module Dβmi with highest weight

µi. We claim that in each of these modules we have at least one weight vector
with one of the weights λ, q−βλ, . . . , q−(l−1)βλ. So we want to show for each mi

that at least one of the vectors F
(ji)
β mi, F

(ji+1)
β mi, . . . , F

(ji+l−1)
β mi is nonzero.
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We must have that one of the numbers ji, . . . , ji+ l− 1 is congruent to 0 modulo
l. Lets call this number k. Say k = rl. Now we have

E
(k)
β F

(k)
β mi =

∑

s≥0

F
(k−s)
β

[
Kβ ; 2s− 2k

s

]
E

(k−s)
β mi

=

[
Kβ ; 0

rl

]
mi

=
1

r!

r−1∏

s=0

[
Kβ ;−sl

l

]
mi

=
1

r!

r−1∏

s=0

(ci − s)mi

=

(
ci
r

)
mi

where ci = µi

([
Kβ ;0
l

])
. To show that this is nonzero we must show that

ci 6∈ {0, . . . , r − 1}. If λ
([
Kβ ;0
l

])
is not an integer then this is automatically

fullfilled. Otherwise we know ji = rl−t for some t = 0, . . . , l−1. So µi = q(rl−t)βλ
and by Lemma 3.4

ci = µi

([
Kβ ; 0

l

])
= q(rl−t)βλ

([
Kβ ; 0

l

])
= λ

([
Kβ ; 0

l

])
+ r − 1 ≥ r.

Since there are infinitely many mi’s we must have infinitely many weight
vectors {vj} of weight one of the weights λ, λ− β, . . . , λ− (l − 1)β.

To show that they are linearly independent let v1, . . . , vn be a finite set of

the above weight vectors. They are all of the form F
(ki)
β mi for some i and some

ki. Assume vn is the vector where the power kn is maximal. Then E
(kn)
β vi = 0

for i 6= n and E
(kn)
β vn 6= 0. It follows by induction on n that the set {v1, . . . , vn}

is linearly independent. �

We define M [β] = {m ∈M | dim
〈
E

(r)
β |r ∈ N

〉
m <∞}. Proposition 2.3 and

Lemma 2.4 carry over with the same proof. In particular M [β] is independent of
the choice of root vector Eβ . Again we call M β-free if M [β] = 0. Again we can
show everything with F ’s instead of E’s if β is negative.

Propositions 2.9 and 2.10 carry over with almost identical proofs. Setting
l = 1 in the propositions and their proofs below would make the proofs identical.

Proposition 3.7 Let M ∈ F be a simple module and β a root. Then M is
β-free if and only if qNlβ wtM ⊂ wtM .

Proof. Assume β is positive. If qNlβ wtM ⊂ wtM then M is clearly not β-finite
and since M is simple we have by Proposition 2.3 that M is β-free in this case.
For the other way assume M is β-free and assume we have a weight vector

0 6= m ∈Mλ such that E
(rl)
β m = 0 for some r ∈ N. For any i ∈ N,

[
i+rl
i

]
β
6= 0 so

E
(rl+i)
β m =

[
i+ rl

i

]−1

β

E
(i)
β E

(rl)
β m = 0
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But this implies that m ∈ M [β] which contradicts the assumption that M is
β-free. If β is negative we do the same with F ’s instead of E’s. �

Proposition 3.8 Let L ∈ F be a simple module. TL is a closed subset of Φ.

Proof. Assume β, γ ∈ TL with β+ γ ∈ Φ. Then since β ∈ TL, qNlβ wtL ⊂ wtL.
Since γ ∈ TL we get then qNlγqNlβ wtL ⊂ wtL so qNl(β+γ) wtL ⊂ wtL. �

Proposition 3.9 Let L ∈ F be a simple module. FL and TL are closed subsets
of Φ and Φ = FL ∪ TL (disjoint union).

Proof. TL is closed by Proposition 3.8. FL is closed by the same proof as the
proof of Proposition 2.11. Note that the constants in the proof of Proposition 2.11
that are inverted are all nonzero even when q is a l’th root of unity as long as l
is odd. �

We define PL like in Section 2 and we assume like above that PL is standard
parabolic by considering wL for an appropiate w ∈W . The subalgebras Uq(p),
Uq(l), Uq(u), Uq(u

−) etc. are defined as above but this time with divided powers.
For example we have

Uq(p) =
〈
E

(r)
βj
,Kµ, F

(r)

β1
i

〉
j=1,...,N,µ∈Q,i=1,...,h,r∈N

and so on. Now the rest of the lemmas and proposition carry over with the same
proofs as before and we have the following equivalent of Theorem 2.23:

Theorem 3.10 Suppose L ∈ F is a simple Uq(g) module. Let w ∈W be such
that PwL is standard parabolic. With notation as above: (wL)u is a simple
Uq(l)-module and this module decomposes into a tensor product Xfin ⊗C Xfr

where Xfin is a finite dimensional simple Uq(τ)-module and Xfr is a torsion
free simple Uq(t)-module. Furthermore if t = t1 ⊕ · · · ⊕ ts as a sum of ideals
then Xfr = X1 ⊗C · · · ⊗C Xs as Uq(t1) ⊗ · · · ⊗ Uq(ts)-module for some simple
Uq(ti)-modules Xi, i = 1, . . . , s.

Given the pair (Xfin, Xfr) and the w ∈ W defined above then L can be
recovered as w(L(Xfin ⊗C Xfr)).

So in the root of unity case we have also that to classify simple modules in
F we just have to classify finite dimensional modules of Uq(τ) and ’torsion free’
modules over Uq(t), where t can be assumed to be a simple Lie algebra.

4 UA formulas

In this section we recall from [Ped15b] some formulas for commuting root vectors
with each other that will be used later. Note that in [Ped15b] the braid operators
that we here call Tw are denoted by Rw. In [Ped15b] Tw denotes twisting
functors.

Recall that A = Z[v, v−1] where v is an indeterminate and UA is the A-

subspace of Uv generated by the divided powers E
(n)
α , F

(n)
α , n ∈ N and Kα, K−1

α .
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Definition 4.1 Let x ∈ (Uv)µ and y ∈ (Uv)γ then we define

[x, y]v := xy − v−(µ|γ)yx

Theorem 4.2 Suppose we have a reduced expression of w0 = si1 · · · siN and
define root vectors Fβ1

, . . . , FβN
. Let i < j. Let A = Z[v, v−1] and let A′ be the

localization of A in [2] if the Lie algebra contains any Bn, Cn or F4 part. Then

[Fβj
, Fβi

]v = Fβj
Fβi

− v−(βi|βj)Fβi
Fβj

∈ spanA′

{
F
aj−1

βj−1
· · ·F

ai+1

βi+1

}

Proof. [LS91, Proposition 5.5.2]. Detailed proof also in [Ped15b, Theorem 2.9].�

Definition 4.3 Define ad(F iβ)(Fα) := [[. . . [Fα, Fβ ]v . . . ]v, Fβ ]v and ãd(F iβ)(Fα) :=
[Fβ , [. . . , [Fβ , Fα]v . . . ]]v where the commutator is taken i times from the left and
right respectively.

Proposition 4.4 Let u ∈ (UA)µ, β ∈ Φ+ and Fβ a corresponding root vector.
Set r = 〈µ, β∨〉. Then in UA we have the identity

ad(F iβ)(u) = [i]β !

i∑

n=0

(−1)nv
n(1−i−r)
β F

(n)
β uF

(i−n)
β

and

ãd(F iβ)(u) = [i]β !
i∑

n=0

(−1)nv
n(1−i−r)
β F

(i−n)
β uF

(n)
β

Proof. Proposition 1.8 in [Ped15b]. �

So we can define ad(F
(i)
β )(u) := ([i]!)−1 ad(F iβ)(u) ∈ UA and ãd(F

(i)
β )(u) :=

([i]!)−1ãd(F iβ)(u) ∈ UA.

Proposition 4.5 Let a ∈ N, u ∈ (UA)µ and r = 〈µ, β∨〉. In UA we have the
identities

uF
(a)
β =

a∑

i=0

v
(i−a)(r+i)
β F

(a−i)
β ad(F

(i)
β )(u)

=

a∑

i=0

(−1)iv
a(r+i)−i
β F

(a−i)
β ãd(F

(i)
β )(u)

and

F
(a)
β u =

a∑

i=0

v
(i−a)(r+i)
β ãd(F

(i)
β )(u)F

(a−i)
β

=

a∑

i=0

(−1)iv
a(r+i)−i
β ad(F

(i)
β )(u)F

(a−i)
β

Proof. Proposition 1.9 in [Ped15b]. �
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Proposition 4.6 For x1 ∈ (UA)µ1
, x2 ∈ (UA)µ2

and y ∈ (UA)γ we have

[y, x1x2]v = x1[y, x2]v + v−(γ|µ2)[y, x1]vx2

and
[x1x2, y]v = v−(γ|µ1)x1[x2, y]v + [x1, y]vx2

Proof. Direct calculation. �

Let si1 . . . siN be a reduced expression of w0 and construct root vectors Fβi
,

i = 1, . . . , N . In the next lemma Fβi
refers to the root vectors constructed as

such. In particular we have an ordering of the root vectors.

Lemma 4.7 Let n ∈ N. Let 1 ≤ j < k ≤ N .

ad(F
(i)
βj

)(F
(n)
βk

) = 0 and ãd(F
(i)
βk

)(F
(n)
βj

) = 0 for i≫ 0.

Proof. Lemma 1.11 in [Ped15b]. �

5 Ore localization and twists of localized modules

In this section q will be a complex primitive l’th root of unity with l odd. Recall
that we will assume X = Λl × h∗ in this case restricting to modules of type 1.
For an element λ ∈ X we define λ0 ∈ Λl and λ1 ∈ h∗ as in Lemma 3.3 such

that λ(Kα) = q(λ
0|α) and λ(

[
Kα;0
l

]
) =

〈
λ1, α∨

〉
for α ∈ Π and we will also write

λ = (λ0, λ1) ∈ X.

Lemma 5.1 Let β be a positive root and Fβ a corresponding root vector. The
set

{r!F
(rl)
β |r ∈ N} = {

(
F

(l)
β

)r
|r ∈ N}

is an Ore subset of Uq.

Proof. We can assume β is simple since otherwise Fβ = Tw(Fα) for some α ∈ Π

and some w ∈W and Tw(Uq) = Uq. Since r!F
(rl)
β k!F

(kl)
β = (r + k)!F

(rl+kl)
β the

set is multiplicative and does not contain 0. We will show the Ore property for
each generator of Uq. First consider α ∈ Π a simple root not equal to β. Let
n ∈ N. We have the following identities for r ≥ 1 (cf. Proposition 4.5)

r!F
(rl)
β E(n)

α =E(n)
α r!F

(rl)
β

r!F
(rl)
β K±1

α =K±1
α r!F

(rl)
β

F (n)
α r!F

(rl)
β =r!F

(rl)
β F (n)

α

+

r−1∑

k=0

kl+l∑

i=kl+1

ci(r − k − 1)!F
(rl−kl−l)
β F

(kl+l−i)
β ad(F

(i)
β )(F (n)

α )

where ci = q
i(i+〈α,β∨〉)
β r(r − 1) · · · (r − k). Finally we have the sl2 identities for

0 ≤ i ≤ l:

r!F
(rl)
β F

(n)
β =F

(n)
β r!F

(rl)
β

E
(i)
β r!F

(rl)
β =r!F

(rl)
β E

(i)
β +

i∑

t=1

r(r − 1)!F
(rl−l)
β F

(l−t)
β E

(i−t)
β

[
Kβ ; i− rl

t

]

β

.

So we have shown that it is an Ore set. �
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We will denote the Ore localization of Uq in the above set by Uq(Fβ). For a

Uq-module M we define M(Fβ) := Uq(Fβ) ⊗Uq
M . We write the inverse of F

(rl)
β ,

r ∈ N as F
(−rl)
β i.e. F

(−rl)
β = r!

(
r!F

(rl)
β

)−1

∈ Uq(Fβ).

Lemma 5.2 Let λ = (λ0, λ1) ∈ Λl × h∗, β ∈ Φ+ and let Fβ be a corre-
sponding root vector. Let Iλ be the left Uq(Fβ)-ideal Uq(Fβ){(u − λ(u))|u ∈
U0
q }. Then there exists, for each b ∈ C, an automorphism of Uq(Fβ)-modules

ψλFβ ,b
: Uq(Fβ)/Iλ → Uq(Fβ)/I(λ0,λ1+bβ) such that for u ∈ Uq(Fβ) and i ∈ N,

ψλFβ ,i
(u + Iλ) = F

(−il)
β uF

(il)
β + I(λ0,λ1+iβ) and the map b 7→ ψλFβ ,b

(u + Iλ) is

polynomial in b. Furthermore ψ
(λ0,λ1+bβ)
Fβ ,b′

◦ ψλFβ ,b
= ψλFβ ,b+b′

for b, b′ ∈ C.

Proof. If β is not simple then Fβ = Tw(Fα) for some simple root α ∈ Π.

Then we define ψλFβ ,b
(u) = Tw(ψ

wλ
Fα,b

(T−1
w (u))) where T−1

w (F
(−l)
β ) = F

(−l)
α and

Tw(F
(−l)
α ) = F

(−l)
β . So we assume from now on that β ∈ Π.

We define ψλFβ ,b
on generators: For α ∈ Π\{β} and n ∈ N

ψλFβ ,b
(E(n)

α ) =E(n)
α

ψλFβ ,b
(F (n)
α ) =F (n)

α

−
∑

k≥0

(
b

k + 1

) kl+l∑

i=kl+1

q
i(〈α|β∨〉−i)
β F

(−kl−l)
β F

(kl+l−i)
β ad(F

(i)
β )(F (n)

α )

ψλFβ ,b
(K±1

α ) =λ(K±1
α )

ψλFβ ,b
(F

(n)
β ) =F

(n)
β

ψλFβ ,b
(Eβ) =Eβ + bF

(−l)
β F

(l−1)
β [〈λ0, β

∨〉+ 1]β

ψλFβ ,b
(E

(l)
β ) =E

(l)
β + bF

(−l)
β

l−1∑

t=1

F
(l−t)
β E

(l−t)
β

[
〈λ0, β

∨〉

t

]

β

+ bF
(−l)
β (〈λ1, β

∨〉+ 1− b)

ψλFβ ,b
(K±1

β ) =λ(K±1
β ).

The sum given in the formula for F
(n)
α is finite by Lemma 4.7. It is easy to check

that ψλFβ ,i
(u+ Iλ) = F

(−il)
β uF

(il)
β + I(λ0,λ1+bβ) for i ∈ N and it is seen from the

formulas that b 7→ ψλFβ ,b
(u+ Iλ) is polynomial. So ψλFβ ,b

satisfies the generating
relations of Uq for b ∈ N hence it satisfies the generating relations for all b ∈ C

because ψλFβ ,b
(u) is polynomial in b. Similarly we can show the rest of the claims

by using the fact that b 7→ ψλFβ ,b
(u) is polynomial. �

We will define a twist of the action of a Uq(Fβ)-module:

Definition 5.3 Let M be a Uq(Fβ)-module. We define ψFβ ,b.M to be the module
equal to M as a vector space with action twisted via ψFβ ,b: For m ∈M we denote
the corresponding element in ψFβ ,b.M by ψFβ ,b.m. Let λ = (λ0, λ1) ∈ wtM and
assume m ∈Mλ. We have a homomorphism of Uq(Fβ)-modules π : Uq(Fβ)/Iλ →
M defined by sending u+ Iλ in Uq(Fβ)/Iλ to um. We define for u ∈ Uq(Fβ):

u · ψFβ ,b.m = ψFβ ,b.
(
π(ψ

(λ0,λ1−bβ)
Fβ ,b

(u))
)

where u = u+ I(λ0,λ1−bβ) ∈ Uq(Fβ)/I(λ0,λ1−bβ).
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Lemma 5.4 Let M be a Uq(Fβ)-module. Let r ∈ Z.

ψFβ ,r.M
∼=M.

Furthermore for λ = (λ0, λ1) ∈ wtM we have as (Uq(Fβ))0-modules

ψFβ ,r.Mλ
∼=M(λ0,λ1−rβ).

Proof. The isomorphism in both cases is given by ψFβ ,r.m 7→ F
(rl)
β m. Using

the fact that ψ
(λ0,λ1−rβ)
Fβ ,r

(u+ I(λ0,λ1−rβ)) = F
(−rl)
β uF

(rl)
β + Iλ it is easy to show

that this is a homomorphism and the inverse is given by multiplying by F
(−rl)
β .�

Definition 5.5 Let Σ ⊂ Φ+. Then Σ is called a set of commuting roots if there
exists an ordering of the roots in Σ; Σ = {β1, . . . , βs} such that for some reduced
expression of w0 and corresponding construction of the root vectors Fβ we have:
[Fβj

, Fβi
]q = 0 for 1 ≤ i < j ≤ s.

For any subset I ⊂ Π, let QI be the subgroup of Q generated by I, ΦI the
root system generated by I , Φ+

I = Φ+ ∩ ΦI and Φ−
I = −Φ+

I .

We have the following equivalent of Lemma 4.1 in [Mat00]:

Lemma 5.6 1. Let I ⊂ Π and let α ∈ I. There exists a set of commuting
roots Σ′ ⊂ Φ+

I with α ∈ Σ′ such that Σ′ is a basis of QI .

2. Let J, F be subsets of Π with F 6= Π. Let Σ′ ⊂ Φ+
J \Φ

+
J∩F be a set of

commuting roots which is a basis of QJ . There exists a set of commuting
roots Σ which is a basis of Q such that Σ′ ⊂ Σ ⊂ Φ+\Φ+

F

Proof. The first part of the proof is just combinatorics of the root system so
it is identical to the first part of the proof of Lemma 4.1 in [Mat00]: Let us
first prove assertion 2.: If J is empty we can choose α ∈ Π\F and replace J
and Σ′ by {α}. So assume from now on that J 6= ∅. Set J ′ = J\F , p = |J ′|,
q = |J |. Let J1, . . . , Jk be the connected components of J and set J ′

i = J ′ ∩ Ji,
Fi = F ∩ Ji, and Σ′

i = Σ ∩ ΦJi , for any 1 ≤ i ≤ k. Since Σ′ ⊂ ΦJ is a basis
of QJ , each Σ′

i is a basis of QJi . Since Σ′
i lies in Φ+

Ji
\Φ+

Fi
, the set J ′

i = Ji\Fi
is not empty. Hence J ′ meets every connected component of J . Therefore we
can write J = {α1, . . . , αq} in such a way that J ′ = {α1, . . . , αp} and, for any s
with p+ 1 ≤ s ≤ q, αs is connected to αi for some i < s. Since Π is connected
we can write Π\J = {αq+1, . . . , αn} in such a way that, for any s ≥ q + 1, αs is
connected to αi for some i with 1 ≤ i < s. So Π = {α1, . . . , αn} such that for
s > p we have that αs is connected to some αi with 1 ≤ i < s.

Let Σ′ = {β1, . . . , βq}. We will define βq+1, . . . , βl inductively such that for
each s ≥ q, {β1, . . . , βs} is a commuting set of roots which is a basis of Φ{α1,...,αs}.
So assume we have defined β1, . . . , βs. Let ws be the longest word in sα1 , . . . , sαs

and let ws+1 be the longest word in sα1
, . . . , sαs+1

. Choose a reduced expression
of ws such that the corresponding root vectors {Fβ} satisfies [Fβj

, Fβi
]q = 0

for i < j. Choose a reduced expression of ws+1 = wsw
′ starting with the

above reduced expression of ws. Let Ns be the length of ws and Ns+1 be the
length of ws+1. So we get an ordering of the roots generated by {α1, . . . , αs+1}:
Φ+

{α1,...,αs+1}
= {γ1, . . . , γNs

, γNs+1, . . . , γNs+1
} with Φ+

{α1,...,αs}
= {γ1, . . . , γNs

}.

Consider γNs+1 = ws(αs+1). Since ws only consists of the simple reflections
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corresponding to α1, . . . , αs we must have that γNs+1 = αs+1 +
∑s
i=1miαi for

some coefficients mi ∈ N. So {β1, . . . , βs, γNs+1} is a basis of Φ{α1,...,αs+1}. From
Theorem 4.2 we get for 1 ≤ i ≤ s

[FγNs+1
, Fβi

]q ∈ spanC
{
F a2γ2 · · ·F

aNs
γNs

|ai ∈ N}
}
.

But since {γ1, . . . , γNs
} = Φ+

{α1,...,αs}
and since γNs+1 = αs+1 +

∑s
i=1miαi we

get [FγNs+1
, Fβi

]q = 0.
All that is left is to show that γNs+1 6∈ ΦF . By the above we must have that

αs+1 is connected to some αi ∈ J ′. We will show that the coefficient of αi in
γNs+1 is nonzero. Otherwise (γNs+1|αi) < 0 and so γNs+1 + αi ∈ Φ{α1,...,αs+1}

and by Theorem 1 in [Pap94], γNs+1 + αi = γj for some 1 < j ≤ s. This is
impossible since γNs+1 + αi 6∈ Φ{α1,...,αs}. So we can set βs+1 = γNs+1 and the
induction step is finished.

To prove assertion 1. it can be assumed that I = Π. Thus assertion 1. follows
from assertion 2. with J = {α} and F = ∅. �

Lemma 5.7 Let Σ = {β1, . . . , βn} be a set of commuting roots with correspond-

ing root vectors Fβ1
, . . . , Fβn

, then F
(l)
β1
, . . . , F

(l)
βn

commute.

Proof. Calculating in Uv for i < j we get using Proposition 4.6

[F
(l)
βj
, F

(l)
βi

]v =
1

([l]v!)2
[F lβj

, F lβi
]v = 0

hence v(lβi|lβj)F
(l)
βi
F

(l)
βj

−F
(l)
βj
F

(l)
βi

= 0 in UA. Since [F
(l)
βi
, F

(l)
βj

]q = ql
2(βi|βj)F

(l)
βi
F

(l)
βj

−

F
(l)
βj
F

(l)
βi

= F
(l)
βi
F

(l)
βj

− F
(l)
βj
F

(l)
βi

we have proved the lemma. �

Corollary 5.8 Let Σ = {β1, . . . , βn} be a set of commuting roots with corre-
sponding root vectors Fβ1

, . . . , Fβn
. The set

FΣ :={r1!F
(r1l)
β1

· · · rn!F
(rnl)
βn

|r1, . . . , rn ∈ N}

={
(
F

(l)
β1

)r1
· · ·
(
F

(l)
βn

)rn
|r1, . . . , rn ∈ N}

is an Ore subset of Uq.

Proof. This follows from Lemma 5.7 and Lemma 5.1. �

We let Uq(FΣ) denote the Ore localization of Uq in the Ore subset FΣ. For a
Uq-module M we define MFΣ = Uq(FΣ) ⊗Uq

M .

Definition 5.9 Let Σ = {β1, . . . , βn} be a set of commuting roots that is a basis
of Q with a corresponding Ore subset FΣ. Let ν ∈ h∗, ν =

∑n
i=1 aiβi for some

ai ∈ C. For a Uq(FΣ)-module M we define ψFΣ,ν .M = ψFβ1
,a1 ◦ · · · ◦ ψFβn ,an

.M .

Corollary 5.10 Let Σ be a set of commuting roots that is a basis of Q. Let
µ ∈ Q and let M be a Uq(FΣ)-module. Then

ψFΣ,µ.M
∼=M

as Uq(FΣ)-modules. Also for λ = (λ0, λ1) ∈ wtM :

ψFΣ,µ.Mλ
∼=M(λ0,λ1+µ)

as (Uq(FΣ))0-modules.
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Proof. Since Σ is a basis of Q we can write µ =
∑
β∈Σ aββ for some aβ ∈ Z.

So the corollary follows from Lemma 5.4. �

Definition 5.11 A module M ∈ F is called admissible if its weights are con-
tained in a single coset of (Λl× h∗)/(Λl×Q) and if the dimensions of the weight
spaces are uniformly bounded. M is called admissible of degree d if d is the
maximal dimension of the weight spaces in M .

Of course all finite dimensional simple modules are admissible but the inter-
esting admissible modules are the infinite dimensional admissible simple modules.
In particular simple torsion free modules in F are admissible. We show later
that each infinite dimensional simple module L gives rise to a ’coherent family’
EXT (L) containing at least one simple highest weight module that is admissible
of the same degree.

We need the equivalent of Lemma 3.3 in [Mat00]. Some of the proofs leading
up to this are more or less the same as in [Mat00] but for completenes we include
it here as well.

Definition 5.12 A cone C is a finitely generated submonoid of the root lattice
Q containing 0. If L is a simple module define the cone of L, C(L), to be the
submonoid of Q generated by TL.

Lemma 5.13 Let L ∈ F be an infinite dimensional simple module. Then the
group generated by the submonoid C(L) is Q.

Compare [Mat00] Lemma 3.1

Proof. First consider the case where TL ∩ (−FL) = ∅. Then in this case we
have Φ = T sL ∪ F sL. Since F sL and T sL contain different connected components of
the Dynkin diagram and since L is simple and infinite we must have Φ = T sL
and therefore C(L) = Q.

Next assume TL ∩ (−FL) 6= ∅. By Lemma 4.16 in [Fer90] PL = T sL ∪ FL
and P−

L = TL ∪ F sL are two opposite parabolic subsystems of Φ. So we have
that TL ∩ (−FL) and (−TL) ∩ FL must be the roots corresponding to the
nilradicals v± of two opposite parabolic subalgebras p± of g. Since we have
g = v++v−+[v+, v−] we get that TL∩ (−FL) generates Q. Since C(L) contains
TL ∩ (−FL) it generates Q. �

Definition 5.14 Let x ≥ 0 be a real number. Define ρl(x) = CardBl(x) where
Bl(x) = {µ ∈ lQ|

√
(µ|µ) ≤ x} and lQ = {lµ ∈ Q|µ ∈ Q}.

Let M ∈ F be a weight module with all weights lying in a single coset of
(Λl × h∗)/(Λl ×Q) say (0, λ1) + (Λl ×Q). The density of M is

δl(M) = lim inf
x→∞

ρl(x)
−1

∑

µ0∈Λl,µ1∈Bl(x)

dimMqµ1 (µ0,λ1).

For a cone C we define δ(C) = lim infx→∞ ρ1(x)
−1 Card(C ∩ B1(x)) =

lim infx→∞ ρl(x)
−1 Card(lC ∩Bl(x)) where lC = {lc ∈ Q|c ∈ C}.

Lemma 5.15 There exists a real number ε > 0 such that δl(L) > ε for all
infinite dimensional simple modules L.
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Proof. Note that since qlC(L)λ ⊂ wtL for all λ ∈ wtL we have δl(L) ≥ δ(C(L)).
Since C(L) is the cone generated by TL and TL ⊂ Φ (a finite set) there can

only be finitely many different cones.
Since there are only finitely many different cones attached to infinite simple

dimensional modules and since any cone C that generates Q has δ(C) > 0 we
conclude via Lemma 5.13 that there exists an ε > 0 such that δl(L) > ε for all
infinite dimensional simple modules. �

Definition 5.16 Let M be a g-module. We can make M into a Uq-module by
the Frobenius homomorphism: We define M [l] to be the Uq-module equal to M
as a vector space and with the action defined as follows: For m ∈M , α ∈ Π,

K±1
α m =m

Eαm =0

E(l)
α m =eαm

Fαm =0

F (l)
α m =fαm

where eα is a root vector of g of weight α and fα is such that [eα, fα] = hα. The
above defines an action of Uq on M by Theorem 1.1 in [KL02].

Proposition 5.17 Let λ = (λ0, λ1) ∈ X and let L(λ) be the unique simple
highest weight module with weight λ. Then L(λ) ∼= LC(λ

1)[l] ⊗ L((λ0, 0)) where
LC(λ

1) denotes the unique simple g-module of highest weight λ1.

Proof. The proof of Theorem 3.1 in [AM15] works here in exactly the same
way. �

Lemma 5.18 Let M ∈ F be an admissible module. Then M has finite Jordan-
Hölder length.

Proof. As M is admissible, we have δl(M) < ∞. For any exact sequence
0 → M1 → M2 → M3 → 0, we have δl(M2) ≥ δl(M1) + δl(M3). Let Y be the
set of all µ ∈ Λ such that | 〈µ, α∨〉 | ≤ 1 for all α ∈ Π. By Proposition 5.17
and the classification of classical simple finite dimensional g-modules any finite
dimensional Uq-module L has L(µ0,µ1) 6= 0 for some µ0 ∈ Λl and some µ1 ∈ Y .
It follows like in [Mat00, Lemma 3.3] that the length of M is finite and bounded
by A+δl(M)/ε where A =

∑
µ0∈Λl,µ1∈Y dimM(µ0,µ1) and ε is the constant from

Lemma 5.15. �

Lemma 5.19 Let M be an admissible module. Let Σ ⊂ Φ+ be a set of com-
muting roots and FΣ a corresponding Ore subset. Assume −Σ ⊂ TM . Then for
λ = (λ0, λ1) ∈ X:

dim(MFΣ)λ = max
µ∈ZΣ

{dimM(λ0,λ1+µ)}

and if dimMλ = maxµ∈ZΣ{dimM(λ0,λ1+µ)} then (MFΣ
)λ ∼= Mλ as (Uq)0-

modules.
In particular if Σ ⊂ TM as well then MFΣ

∼=M as Uq-modules.

Compare to Lemma 4.4(ii) in [Mat00].
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Proof. We have Σ = {β1, . . . , βr} for some β1, . . . , βr ∈ Φ+. Let Fβ1
, . . . , Fβr

be corresponding q-commuting root vectors. Let λ ∈ X and set

d = max
µ∈ZΣ

{dimM(λ0,λ1+µ)}.

Let V be a finite dimensional subspace of (MFΣ
)λ. Then there exists a ho-

mogenous element s ∈ FΣ such that sV ⊂ M . Let ν ∈ ZΣ be the degree of
s. So sV ⊂ Mqνλ hence dim sV ≤ d. Since s acts injectively on MFΣ

we have

dimV ≤ d. Now the first claim follows because F
(±l)
β acts injectively on MFΣ

for all β ∈ Σ.
We have an injective Uq-homomorphism from M to MFΣ sending m ∈M to

1⊗m ∈MFΣ
that restricts to a (Uq)0-homomorphism from Mλ to (MFΣ

)λ. If
dimMλ = d then this is surjective as well. So it is an isomorphism. The last
claim follows because ±Σ ⊂ TM implies dimMλ = dimMqµλ for any µ ∈ ZlΣ;
so Mλ

∼= (MFΣ)λ for any λ ∈ X. Since M is a weight module this implies that
M ∼=MFΣ as Uq-modules. �

Lemma 5.20 Let L ∈ F be a simple Uq(sl2) module. Then the weight spaces
of L are all 1-dimensional.

Proof. For sl2 there is only one simple root α and we will denote the root
vectors Eα and Fα by E and F respectively. Similarly K±1 = K±1

α . Consider

the Casimir element C = EF + q−1K+qK−1

(q−q−1)2 . Let λ ∈ wtL and let c ∈ C be an

eigenvalue of C on Lλ. Consider the eigenspace L(c) = {v ∈ Lλ|Cv = cv}. Then
F (l)E(l) acts on this space since C commutes with all elements from Uq(sl2).
Choose an eigenvector v0 ∈ L(c) for F (l)E(l). We will show by induction that
E(n)F (n)v0 ∈ Cv0 for all n ∈ N. The induction start n = 0 is obivous. Let n ∈ N

and assume n = i+ rl with 0 ≤ i < l. If i 6= 0 then [n] 6= 0 and we have:

E(n)F (n)v0 =
1

[n]2
E(n−1)EFF (n−1)v0

=
1

[n]2
E(n−1)

(
C −

q−1K + qK−1

(q − q−1)2

)
F (n−1)v0

=
1

[n]2
E(n−1)F (n−1)

(
c−

q(λ
0|α)+1−2n + q2n−1−(λ0|α)

(q − q−1)2

)
v0

where α is the simple root. So the claim follows by induction. In the case that
i = 0 we have

E(n)F (n)v0 =
1

r
E(rl−l)E(l)F (rl)v0

=
1

r
E(rl−l)

l∑

t=0

F (rl−t)

[
K; 2t− rl − l

t

]
E(l−t)v0

=
1

r
E(rl−l)

l∑

t=0

F (rl−l)F (l−t)E(l−t)

[
K; l − rl

t

]
v0

=
1

r
E(rl−l)F (rl−l)

(
F (l)E(l) +

l−1∑

t=1

F (l−t)E(l−t)

[(
λ0|α

)
+ l − rl

t

]
+
〈
λ1, α∨

〉
+ 1− r

)
v0
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Since v0 is an eigenvector for F (l)E(l) we have only left to consider the action
of F (i)E(i) for 1 ≤ i < l. But we can show like above that F (i)E(i)v0 ∈ Cv0 by

using that C = FE + qK+K−1q−1

(q−q−1)2 .

Now since L is simple we must have that Lλ is a simple (Uq)0-module
(Lemma 2.18). So Lλ is generated by v0. Since E(n)F (n)v0 ∈ Cv0 for all n ∈ C

we get dimLλ = 1. �

Lemma 5.21 Let L be a simple infinite dimensional admissible module. Let
β ∈ (T sL)

+. Then there exists a b ∈ C such that ψFβ ,b.LFβ
contains a simple

admissible Uq-submodule L′ with TL′ ⊂ TL and β 6∈ TL′ .

Proof. By Lemma 5.19 L ∼= LFβ
as Uq-modules so we will write L instead of

LFβ
when taking twist. The Uq(Fβ)-module structure on L coming from the

isomorphism. Let Dβ be the subalgebra of Uq generated by E
(n)
β , K±1

β , F
(n)
β ,

n ∈ N. Then Dβ is isomorphic to the algebra Uqβ (sl2). Let v ∈ L and consider
the Dβ-module Dβv. Since L is admissible so is Dβv. So Dβv has a simple
Dβ-submodule V by Lemma 5.18.

Let v ∈ V be a weight vector such that Eβv = 0 (such a v always exists since

Elβ = 0). Assume λ is the weight of v. By Lemma 5.20 F
(l)
β E

(l)
β v = cv for some

c ∈ C.
Then by (the proof of) Lemma 5.2 we get

F
(l)
β E

(l)
β ψFβ ,b.v

=ψFβ ,b.

(
c+ b

l−1∑

t=1

F
(l−t)
β E

(l−t)
β

[
〈λ0, β

∨〉

t

]

β

+ b(〈λ1, β
∨〉+ 1− b)

)
v

=ψFβ ,b. (c+ b(〈λ1, β
∨〉+ 1− b)) v.

Since C is algebraically closed the polynomial in b, c+b(〈λ1, β
∨〉+1−b) has a

zero. Assume from now on that b ∈ C is chosen such that c+b(〈λ1, β
∨〉+1−b) = 0.

Thus ψFβ ,b.L contains an element v′ = ψFβ ,b.v such that F
(l)
β E

(l)
β v′ = 0

and since F
(l)
β acts injectively on ψFβ ,b.L, we have E

(l)
β v′ = 0. Set V = {m ∈

ψFβ ,b.L|E
(N)
β m = 0, N >> 0} = (ψFβ ,b.L)

[β]. By Proposition 2.3 this is a Uq-
submodule of the Uq-module ψFβ ,b.L. It is nonzero since v′ ∈ V . By Lemma 5.18
V has a simple Uq-submodule L′.

We have left to show that TL′ ⊂ TL. Assume γ ∈ TL′ . Then qlNγ wtL′ ⊂
wtL′ by Proposition 3.7. But since wtL′ ⊂ {(λ0, λ1−bβ)|(λ0, λ1) ∈ wtL} we get
for some ν ∈ wtL, {(ν0, ν1 − bβ + rγ)|r ∈ N} ⊂ {(λ0, λ1 − bβ)|(λ0, λ1) ∈ wtL}
or equivalently qlNγν ⊂ wtL. But this shows that γ 6∈ FL and since L is a simple
Uq-module this implies that γ ∈ TL. By construction we have β 6∈ TL′ . �

Lemma 5.22 Let L ∈ F be a simple module. Then there exists a w ∈W such
that w(FL\F

s
L) ⊂ Φ+ and w(TL\T

s
L) ⊂ Φ−.

Proof. Lemma 4.16 in [Fer90] tells us that there exists a basis B of the root
system Φ such that the antisymmetrical part, FL\F

s
L, of FL is contained in the

positive roots Φ+
B corresponding to the basis B and the antisymmetrical part,

TL\T
s
L, of TL is contained in the negative roots Φ−

B corresponding to the basis.
Since all bases of a root system are W -conjugate the claim follows. �
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Lemma 5.23 Let L be an infinite dimensional admissible simple module. Let
w ∈W be such that w(FL\F

s
L) ⊂ Φ+. Let α ∈ Π be such that −α ∈ w(TL) (such

an α always exists). Then there exists a commuting set of roots Σ with α ∈ Σ
which is a basis of Q such that −Σ ⊂ w(TL).

Proof. Set L′ = wL. Since w(TL) = TwL = TL′ we will just work with L′. Then
FL′\F sL′ ⊂ Φ+.

Note that it is always possible to choose a simple root α ∈ −TL′ since L′

is infinite dimensional: If this was not possible we would have Φ− ⊂ FL′ . But
since FL′\F sL′ ⊂ Φ+ this implies FL′ = Φ.

Set F = F sL′ ∩Π. Since L′ is infinite dimensional F 6= Π. By Lemma 5.6 2.
applied with J = {α} = Σ′ there exists a commuting set of roots Σ that is a basis
of Q such that Σ ⊂ Φ+\Φ+

F . Since FL′\F sL′ ⊂ Φ+ we have Φ− = T−
L′ ∪ (F sL′)−.

To show −Σ ⊂ TL′ we show
(
Φ−\Φ−

F

)
∩ F sL′ = ∅ or equivalently (F sL′)− ⊂ Φ−

F .
Assume β ∈ F sL′ ∩ Φ+, β =

∑
α∈Π aαα, aα ∈ N. The height of β is the sum∑

α∈Π aα. We will show by induction on the height of β that −β ∈ Φ−
F . If the

height of β is 1 then β is a simple root and so β ∈ F . Clearly −β ∈ Φ−
F in this

case. Assume the height of β is greater than 1. Let α′ ∈ Π be a simple root such
that β − α′ is a root. There are two possibilities: −α′ ∈ TL′ or ±α′ ∈ F sL′ .

In the first case where −α′ ∈ TL′ we must have −β+α′ ∈ F sL′ since if −β+α′ ∈
TL then −β = (−β + α′) − α′ ∈ TL′ because TL′ is closed (Proposition 3.8).
So β − α′ ∈ F sL′ and β ∈ F sL′ . Since FL′ is closed (Proposition 2.11) we get
−α′ = (β − α′)− β ∈ FL which is a contradiction. So the first case (−α′ ∈ TL′)
is impossible.

In the second case since FL′ is closed we get ±(β−α′) ∈ FL′ i.e. β−α′ ∈ F sL′ .
By the induction −(β − α′) ∈ Φ−

F and since −β = −(β − α′)− α′ we are done.�

6 Coherent families

As in the above section q is a complex primitive l’th root of unity with l odd in
this section. For λ ∈ X we write λ = (λ0, λ1) like above.

Lemma 6.1 Let M,N ∈ F be semisimple Uq-modules. If TrM = TrN then
M ∼= N .

Proof. Theorem 7.19 in [Lam01] states that this is true for modules over a
finite dimensional algebra. So we will reduce to the case of modules over
a finite dimensional algebra. Let L be a composition factor of M and λ a
weight of L. Then the multiplicity of the Uq-composition factor L in M is the
multiplicity of the (Uq)0-composition factor Lλ in Mλ by Theorem 2.21. Mλ is
a finite dimensional (Uq)0-module. Let I be the kernel of the homomorphism
(Uq)0 → EndC(Mλ) given by the action of (Uq)0. Then (Uq)0/I is a finite
dimensional C algebra and Mλ is a module over (Uq)0/I. Furthermore since

TrM (λ, u) = 0 for all u ∈ I the trace of an element u ∈ (Uq)0 is the same as

the trace of u+ I ∈ (Uq)0/I on Mλ as a (Uq)0/I-module. So if TrM = TrN the
multiplicity of Lλ in Mλ and Nλ are the same and hence the multiplicity of L
in M is the same as in N . �

Definition 6.2

T ∗ = h∗/Q.
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By Corollary 5.10 it makes sense to write ψFβ ,t.M for t ∈ T ∗ up to isomor-
phism for a Uq(FΣ)-module M .

Definition 6.3 A (quantized) coherent family is a Uq-module M such that for
all µ ∈ Λl:

• dimM(µ,ν) = dimM(µ,ν′) for all ν, ν′ ∈ h∗.

• For all u ∈ (Uq)0, the map h∗ ∋ ν 7→ Tru|M(µ,ν)
is polynomial.

For a coherent family M and t ∈ T ∗ define

M[t] =
⊕

µ0∈Λl,µ1∈t

M(µ0,µ1).

M is called irreducible if there exists a t ∈ T ∗ such that M[t] is a simple
Uq-module.

Lemma 6.4 Let M be a coherent family. Let µ ∈ Λl. Then the set Ω of all
weights ν ∈ h∗ such that the (Uq)0-module M(µ,ν) is simple is a Zariski open
subset of h∗.

If M is irreducible then Ω 6= ∅ if M(µ,ν) 6= 0 for any ν ∈ h∗ (equivalently for
all ν ∈ h∗).

Proof. If M(µ,ν) = 0 for all ν ∈ h∗ then Ω = ∅. Assume dimM(µ,ν) = d > 0
for all ν ∈ h∗. If M is irreducible there exists t ∈ T ∗ such that M[t] is a
simple Uq-module. Then for ν ∈ t, M(µ,ν) = M[t](µ,ν) is a simple Uq-module by
Theorem 2.21. So in this case Ω 6= ∅.

Now the proof goes exactly like in [Mat00, Lemma 4.7]: The (Uq)0-module
M(µ,ν) is simple if and only if the bilinear map Bν : (Uq)0 × (Uq)0 ∋ (u, v) 7→
Tr(uv|M(µ,ν)

) has maximal rank d2. For any finite dimensional subspace E ⊂

(Uq)0 the set ΩE of all ν such that Bν |E has rank d2 is open. Therefore Ω = ∪EΩE
is open. �

Definition 6.5 Let L be an admissible Uq-module and let µ ∈ Λl.

Supp(L, µ) = {ν ∈ h∗| dimL(µ,ν) > 0}

and

Suppess(L, µ) = {ν ∈ Supp(L, µ)| dimL(µ,ν) is maximal in {dimL(µ,ν′)|ν
′ ∈ h∗}}.

Definition 6.6 Let M be an admissible module. Define Mss to be the unique
(up to isomorphism) semisimple module with the same composition factors as
M .

Let V be a Uq-module such that V =
⊕

i∈I Vi for some index set I and some
admissible Uq-modules Vi. Then V ss =

⊕
i∈I V

ss
i .

Proposition 6.7 Let L be an infinite dimensional admissible simple Uq-module.
Then there exists a unique (up to isomorphism) semisimple irreducible coherent
family EXT (L) containing L.
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Proof. Let w ∈ W be such that w(FL\F
s
L) ⊂ Φ+ and Σ a set of commuting

roots that is a basis of Q such that −Σ ⊂ w(TL) (Exists by Lemma 5.22 and
Lemma 5.23) with corresponding Ore subset FΣ. Set

EXT (L) :=

(
⊕

t∈T∗

w (ψFΣ,t.(
wL)FΣ)

)ss
.

For each t ∈ T ∗ choose a representative νt ∈ t. As a (Uq(FΣ))0-module

EXT (L) =
⊕

t∈T∗

w (ψFΣ,νt .(
wL)FΣ

)
ss
.

Define Y := {µ ∈ Λl| Supp(
wL, µ) 6= ∅}. For each µ ∈ Y let λµ ∈ Suppess(

wL, µ).
By Corollary 5.10

(wL)FΣ
∼=
⊕

µ∈Y

⊕

ν∈Q

ψFΣ,ν .((
wL)FΣ

)(µ,λµ)

as (Uq(FΣ))0-modules.
So we have the following (Uq(FΣ))0-module isomorphisms:

EXT (L) ∼=
⊕

µ∈Y

⊕

t∈T∗

⊕

ν∈Q

w
(
ψFΣ,νt+ν .((

wL)FΣ)(µ,λµ)

)ss

∼=
⊕

µ∈Y

⊕

ν∈h∗

w
(
ψFΣ,ν .((

wL)FΣ
)(µ,λµ)

)ss
.

Let u ∈ (Uq)0 and µ ∈ Y . Then we see from the above and Lemma 5.19 that

Tru|EXT (L)(µ,ν)
= Trψ

(µ,λµ)
FΣ,ν−λµ

(T−1
w (u))|(wL)(µ,λµ)

.

By Lemma 5.2 this is polynomial in ν−λµ hence also polynomial in ν. We know
that this polynomial is determined in all ν such that ν − λµ ∈ Suppess(L, µ).
Suppess(L, µ) is Zariski dense in h∗ because λµ −NΣ ⊂ Suppess(L, µ) and Σ is a
basis of Q. So Tr is determined on all of EXT (L) by L. For any (µ, ν) ∈ X we
have

dim EXT (L)(µ,λµ+ν) =dim
(
ψFΣ,ν .((

wL)FΣ
)(µ,λµ)

)ss

=dim((wL)FΣ
)(µ,λµ)

so EXT (L) is a coherent family.
Assume M is a semisimple irreducible coherent family containing L. Let

µ ∈ Y . By Lemma 6.4 the set Ω1 of ν ∈ h∗ such that EXT (L)(µ,ν) is simple
and the set Ω2 of ν ∈ h∗ such that M(µ,ν) is simple are non-empty open subsets
of h∗ (Ω1 6= ∅ because EXT (L)(µ,ν) = L(µ,ν) for ν ∈ Suppess(L, µ)). So their
intersection Ω1 ∩ Ω2 is open and non-empty (since any Zariski open set of h∗

is Zariski dense in h∗). Since Suppess(L, µ) is Zariski dense we get that there
exists a ν ∈ Ω1 ∩ Ω2 ∩ Suppess(L, µ) such that M(µ,ν) and EXT (L)(µ,ν) are
simple. Since L(µ,ν) ⊂ M(µ,ν) and L(µ,ν) ⊂ EXT (L)(µ,ν) we get M(µ,ν)

∼=
L(µ,ν)

∼= EXT (L)(µ,ν). This is true for any (µ, ν) such that ν ∈ Suppess(L, µ).
Let u ∈ (Uq)0 and µ ∈ Y . Then we see that Tru|EXT (L)(µ,ν)

= Tru|L(µ,ν)
=
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Tru|M(µ,ν)
for any ν ∈ Suppess(L, µ). Since Suppess(L, µ) is Zariski dense

this implies Tru|EXT (L)(µ,ν)
= Tru|M(µ,ν)

for all ν ∈ h∗. So by Lemma 6.1
EXT (L)(µ,ν) ∼= M(µ,ν) as (Uq)0-modules for any (µ, ν) ∈ wt EXT (L).

Then by Theorem 2.21 we get that M ∼= EXT (L) ⊕ N for some coherent
family N with the property that N(µ,ν) = 0 for any (µ, ν) ∈ X such that
Supp(L, µ) 6= ∅. Since M is irreducible there exists a t ∈ T ∗ such that the
Uq-module M[t] is simple. We have M[t] ∼= EXT (L)[t] ⊕ N [t]. Since M[t] is
simple and EXT (L)[t] 6= 0 we get that N [t] = 0. Since N is a coherent family
this implies that N = 0. So M ∼= EXT (L).

So we have left to show that EXT (L) is irreducible. Let Fβ1 , . . . , Fβn
be the

root vectors corresponding to Σ = {β1, . . . , βn} and Eβ1 , . . . , Eβn
the correspond-

ing E-root vectors. Let µ ∈ Y . As above we choose a λµ ∈ Suppess(
wL). The

elements F
(l)
βi
E

(l)
βi

, i = 1, . . . , n act on ψFΣ,ν .((
wL)FΣ

)(µ,λµ) by
∑s
j=1 p

µ
i,j(ν)ui,j

for some uµi,j ∈ Uq(FΣ) and some polynomials pµi,j : h
∗ → C so

pµ :=

n∏

i=1

detF
(l)
βi
E

(l)
βi
|ψFΣ,ν .((wL)FΣ

)(µ,λµ)

is a nonzero polynomial in ν by (the proof of) Lemma 5.2. Set p =
∏
µ∈Y pµ.

Let Ω be the set of non-zero points for p. By [Mat00, Lemma 5.2 i)] the
set T (Ω) :=

⋂
µ∈Q(µ + Ω) is non-empty. So there exists a ν ∈ h∗ such that

p(ν + µ1) 6= 0 for any µ1 ∈ Q. For such a ν we see that F
(l)
βi
E

(l)
βi

act bijectively
on

⊕

µ∈Y

⊕

µ1∈Q

ψFΣ,ν .((
wL)FΣ

)(µ,λµ+µ1) =ψFΣ,ν .(
wL)FΣ

.

Since F
(l)
βi

act injectively on ψFΣ,ν .(
wL)FΣ

this implies that E
(l)
βi

act injec-
tively on ψFΣ,ν .(

wL)FΣ
. Let L1 ⊂ ψFΣ,ν .(

wL)FΣ
be a simple Uq-submodule

of ψFΣ,ν .(
wL)FΣ

. By the above we have ±Σ ⊂ TL1
. So by Proposition 3.7 we

get TL1
= Φ. Define EXT (L1) =

(⊕
t∈T∗ (ψFΣ,t.(L1)FΣ

)
)ss

. Then as above this
is a coherent family. Let λ′ ∈ wtL1. Then EXT [λ′ + Q] = (L1)FΣ = L1 by
Lemma 5.19 so EXT (L1) is an irreducible coherent family.

Let µ ∈ Λl be such that Supp(L1, µ) 6= ∅. Suppess(L1, µ) is Zariski dense in
h∗ so Suppess(L1, µ) ∩ Ω1 6= ∅. Let ν′ ∈ Ω1 ∩ Suppess(L1, µ). Then (L1)(µ,ν′)

∼=
(ψFΣ,ν .(

wL)FΣ
)(µ,ν′). Then as above (with M = EXT (L) and L replaced by

L1) we get EXT (L) ∼= EXT (L1)⊕N for some semisimple coherent family N
with N(µ,ν) = 0 for any (µ, ν) ∈ X such that Supp(L1, µ) 6= ∅. Since EXT (L)
contains L we get that L = M ′ ⊕M ′′ for some Uq-modules M ′ ⊂ EXT (L1)
and M ′′ ⊂ N . Since L is simple and since there exists a µ ∈ Λl such that
Supp(L, µ) 6= ∅ and Supp(L1, µ) 6= ∅ we must have M ′′ = 0 and L = M ′. But
then we have proved that the irreducible coherent family EXT (L1) contains L.
Hence EXT (L) ∼= EXT (L1) by the above and EXT (L) is irreducible. �

Theorem 6.8 Let L be an admissible infinite dimensional simple module. Then
there exists a w ∈ W and a λ ∈ X such that wEXT (L) contains an infinite
dimensional simple highest weight module L(λ) and wEXT (L) ∼= EXT (L(λ)).

Proof. Let w ∈W be such that w(FL\F
s
L) ⊂ Φ+ and w(TL\T

s
L) ⊂ Φ− and let

Σ be a set of commuting roots that is a basis of Q such that −Σ ⊂ w(TL) (Exists
by Lemma 5.22 and Lemma 5.23). Let FΣ be a corresponding Ore subset. Then

33



Irreducible quantum group modules with finite dimensional weight

spaces. I

EXT (L) =

(
⊕

t∈T∗

w (ψFΣ,t.(
wL)FΣ)

)ss

so

wEXT (L) =

(
⊕

t∈T∗

(ψFΣ,t.(
wL)FΣ

)

)ss
= EXT (wL).

Set L′ = wL. We will show by induction on |T+
L′ | that there exists a λ ∈ X

such that L(λ) is infinite dimensional and EXT (L′) ∼= EXT (L(λ)):
If |T+

L′ | = 0 then L′ is itself an infinite dimensional highest weight module.
Assume |T+

L′ | > 0. Then T+
L′ ∩ Π 6= ∅ because if this was not the case then

Φ+ ⊂ FL′ since FL′ is closed. But Φ+ ⊂ FL′ implies |T+
L′ | = 0.

Let α ∈ T+
L′ ∩ Π. Then α ∈ T sL′ since TL′\T sL′ ⊂ Φ−. So −α ∈ TL′ . Then

by Lemma 5.21 there exists a b ∈ C such that ψFα,b.L
′
Fα

contains a simple
Uq-submodule L′′ with TL′′ ⊂ TL′ and α 6∈ TL′′ . By Lemma 5.23 there exists a
set of commuting roots Σ that is a basis of Q such that α ∈ Σ and −Σ ⊂ TL′ .
Then by the above there exists a ν = bα such that ψFΣ,ν .L

′
FΣ

contains a simple
Uq-submodule L′′ with TL′′ ⊂ TL′ and α 6∈ TL′′ . L′′ is infinite dimensional since
−Σ ⊂ TL′′ and EXT (L′′) ∼= EXT (L′) by Proposition 6.7.

By induction there exists a λ ∈ X such that L(λ) is infinite dimensional and
EXT (L′′) ∼= EXT (L(λ)). �

The twists we have defined for quantum group modules are analogues of the
twists that can be made of normal Lie algebra modules as described in [Mat00].
In the next proposition we will use these Lie algebra module twists denoted by
fνΣ given a set of commuting roots Σ and a ν ∈ T ∗ (see Section 4 in [Mat00]). For
λ1 ∈ h∗ let LC(λ

1) denote the simple highest weight Lie algebra g-module with
highest weight λ1. Let eβ , fβ denote root vectors in g such that [eβ , fβ ] = hβ .

Proposition 6.9 Let λ1 ∈ h∗ be such that LC(λ
1) is admissible. Let Σ be a

set of commuting roots that is a basis of Q with fβ acting injectively on LC(λ
1)

for each β ∈ Σ. Let λ0 ∈ Λl. Define M =
(⊕

ν∈T∗ fνΣ.LC(λ
1)fΣ

)[l]
⊗ L((λ0, 0)).

Then M is an irreducible coherent family containing the simple highest weight
module L((λ0, λ1)).

Proof. M contains L((λ0, λ1)) by Proposition 5.17.
Set MC =

⊕
ν∈T∗ fνΣ.LC(λ

1)fΣ . So M = (MC)
[l] ⊗ L((λ0, 0)). Let µ ∈ Λl

and u ∈ (Uq)0. We need to show that the map ν 7→ Tru|M(µ,ν)
is polynomial.

M(µ,ν) =
⊕

η∈Λ

(
(MC)

[l]
)
qη(0,ν)

⊗ L((λ0, 0))q−η(µ,0)

=
⊕

η∈lΛ

(
(MC)ν+ η

l

)[l]
⊗ L((λ0, 0))q−η(µ,0)

=
⊕

η∈lΛ

(
f
ν+ η

l

Σ .(MC)0

)[l]
⊗ L((λ0, 0))q−η(µ,0).

34



Irreducible quantum group modules with finite dimensional weight

spaces. I

The action on (fνΣ.(MC)0)
[l] ⊗L(λ0) is just the action on ((MC)0)

[l] ⊗L(λ0)
twisted with the automorphism u′ 7→ fνΣu

′f−νΣ on the first tensor factor where
u′ = Fr(u) (Fr is the Frobenius twist defined in [KL02, Theorem 1.1]). The
map u′ 7→ fνΣu

′f−νΣ is of the form
∑
i pi(ν)ui for some polynomials pi and some

ui ∈ (UC)0 where UC := U(g) is the classical universal enveloping algebra of g.
Composing a polynomial map with the map λ 7→ λ+ η

l is still polynomial. So
the trace is a finite sum of polynomials in λ which is still polynomial.

Let uq be the small quantum group as defined in [AM15] i.e. the subalgebra
of Uq generated by Eα,K

±1
α , Fα, α ∈ Π. Then L((λ0, 0)) restricted to uq is a

simple uq-module by [AM15, Section 3.2].
By [Mat00, Lemma 5.3 i)] and [Mat00, Proposition 5.4] there exists a t ∈ T ∗

such that MC[t] is simple. Then M[t] = (MC[t])
[l] ⊗ L((λ0, 0)) is simple: Let

0 6= v0 ⊗ v1 ∈ L((λ0, 0))⊗ (MC[t])
[l]

. Then

Uq(v0 ⊗ v1) =Uquq(v0 ⊗ v1)

=Uq(L((λ
0, 0))⊗ v1)

=L((λ0, 0))⊗ Uqv1

=L((λ0, 0))⊗ (UCv1)
[l]

=L((λ0, 0))⊗ (MC[t])
[l]

since L((λ0, 0)) is a simple uq-module and since MC[t] is a simple UC-module.�

Corollary 6.10
(⊕

ν∈T∗

(
fνΣ.L(λ

1)fΣ
)[l]

⊗ L((λ0, 0))
)ss

∼= EXT (L((λ0, λ1))).

Proof. This follows by the uniqueness of EXT (L(λ)). �

Corollary 6.11 Let L be an infinite dimensional admissible simple module.

Then EXT (L) is of the form
(
(M)

[l] ⊗ L((λ0, 0))
)ss

for some g coherent family

M (in the sense of [Mat00]).

Proof. By Theorem 6.8 there exists a w ∈W and a λ ∈ X such that wEXT (L) ∼=
EXT (L(λ)). By Corollary 6.10 EXT (L(λ)) ∼=

(
M⊗ L((λ0, 0))

)ss
for some g

coherent family M. By [Mat00, Proposition 6.2] and the fact that L((λ0, 0))
is finite dimensional we see that w

(
M⊗ L((λ0, 0))

)ss ∼=
(
M⊗ L((λ0, 0))

)ss
for

all w ∈W . �

So in the root of unity case the classification of torsion free modules reduces
to the classification of classical torsion free modules. By Proposition 6.7 a
torsion free module is a submodule of a semisimple irreducible coherent family
so the problem reduces to classifying semisimple irreducible coherent families.
By Corollary 6.11 the classification of these coherent families reduces to the
classification in the classical case.
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Abstract

We classify the simple quantum group modules with finite dimensional
weight spaces when the quantum parameter q is transcendental and the
Lie algebra is not of type G2. This is part 2 of the story. The first part
being [Ped15a]. In [Ped15a] the classification is reduced to the classification
of torsion free simple modules. In this paper we follow the procedures
of [Mat00] to reduce the classification to the classification of infinite
dimensional admissible simple highest weight modules. We then classify
the infinite dimensional admissible simple highest weight modules and
show among other things that they only exist for types A and C. Finally
we complete the classification of simple torsion free modules for types A

and C completing the classification of the simple torsion free modules.
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1 Introduction

This is part 2 of the classification of simple quantum group modules with finite
dimensional weight spaces. In this paper we focus on the non root of unity case.
Let g be a simple Lie algebra. Let q ∈ C be a non root of unity and let Uq

be the quantized enveloping algebra over C with q as the quantum parameter
(defined below). We want to classify all simple weight modules for Uq with finite
dimensional weight spaces. In the papers [Fer90] and [Mat00] this is done for
g-modules. Fernando proves in [Fer90] that the classification of simple g weight
modules with finite dimensional weight spaces essentially boils down to classifying
two classes of simple modules: Finite dimensional simple modules over a reductive
Lie algebra and so called ’torsion free’ simple modules over a simple Lie algebra.
The classification of finite dimensional modules is well known in the classical
case (as well as the quantum group case) so the remaining problem is to classify
the torsion free simple modules. O. Mathieu classifies all torsion free g-modules
in [Mat00]. The classification uses the concept of a g coherent family which
are huge g modules with weight vectors for every possible weight, see [Mat00,
Section 4]. Mathieu shows that every torsion free simple module is a submodule
of a unique irreducible semisimple coherent family [Mat00, Proposition 4.8] and
each of these irreducible semisimple coherent families contains an admissible
simple highest weight module as well [Mat00, Proposition 6.2 ii)]. This reduces
the classification to the classification of admissible simple highest weight modules.
In this paper we will follow closely the methods described in [Mat00]. We will
focus only on the case when q is not a root of unity. The root of unity case
is studied in [Ped15a]. Some of the results of [Mat00] translate directly to the
quantum group case but in several cases there are obstructions that need to be
handled differently. In particular the case by case classification in types A and
C is done differently. This is because our analog of EXT (L) given an admissible
simple infinite dimensional module L is slightly different from the classical case
see e.g. Section 7. The proof when reducing to types A and C in [Fer90]
and [Mat00] uses some algebraic geometry to show that torsion free modules
can only exist in types A and C. In this paper we show that infinite dimensional
admissible simple highest weight modules only exist in types A and C and use
this fact to show that torsion free modules can not exist for modules other than
types A and C. For this we have to restrict to transcendental q. Specifically
we use Theorem 8.1. If this theorem is true for a general non-root-of-unity q
we can remove this restriction. The author is not aware of such a result in the
litterature.

1.1 Main results

To classify simple weight modules with finite dimensional modules we follow the
procedures of S. Fernando and O. Mathieu in [Fer90] and [Mat00]. The analog
of the reduction done in [Fer90] is taken care of in the quantum group case
in [Ped15a] so what remains is to classify the torsion free modules. We will first
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recall some results from [Ped15a] and [Ped15b] concerning the reduction and some
formulas for commutating root vectors. This is recalled in Section 2 and Section 3.
In Section 4 we do some prelimary calculations concerning Ore localization and
certain ’twists’ of modules necessary to define the ’Coherent families’ of Section 5.
Here we don’t define the concept of a general coherent family but instead directly
define the analog of coherent irreducible semisimple extensions EXT (L) of an
admissible simple infinite dimensional module L. In analog with the classical
case we show that for any admissible simple infinite dimensional module L,
EXT (L) contains a submodule isomorphic to a simple highest weight module,
see Theorem 5.12. We also prove a result in the other direction: If g is such that
there exists a simple infinite dimensional admissible module L then there exists
a torsion free Uq(g)-module, see Theorem 5.8. So the existence of torsion free
modules over the quantized enveloping algebra of a specific g is equivalent to
the existence of an admissible infinite dimensional highest weight simple module
over Uq(g). Using this we show that torsion free modules exist only for types
A and C in the Sections 8.1, 8.2, 8.3, 8.4 and 8.5 where we also classify the
admissible simple highest weight modules which are infinite dimensional. Finally
in Section 9 and Section 10 we complete the classification in types A and C,
respectively, by showing exactly which submodules of EXT (L(λ)) are torsion
free for a λ of a specific form see Theorem 9.8 and Theorem 10.7.
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1.3 Notation

We will fix some notation: We denote by g a fixed simple Lie algebra over
the complex numbers C. We assume g is not of type G2 to avoid unpleasant
computations.

Fix a triangular decomposition of g: g = g− ⊕ h⊕ g+: Let h be a maximal
toral subalgebra and let Φ ⊂ h∗ be the roots of g relative to h. Choose a simple
system of roots Π = {α1, . . . , αn} ⊂ Φ. Let Φ+ (resp. Φ−) be the positive (resp.
negative) roots. Let g± be the positive and negative part of g corresponding
to the simple system Π. Let W be the Weyl group generated by the simple
reflections si := sαi

. For a w ∈ W let l(w) be the length of W i.e. the smallest
amount of simple reflections such that w = si1 · · · sil(w)

. Let (·|·) be a standard

W -invariant bilinear form on h∗ and 〈α, β∨〉 = 2(α|β)
(β|β) . Since (·|·) is standard we

have (α|α) = 2 for any short root α ∈ Φ and since g is not of type G2 we have
(β|β) = 4 for any long root β ∈ Φ. Let Q = spanZ {α1, . . . , αn} denote the root
lattice and Λ = spanZ {ω1, . . . , ωn} ⊂ h∗ the integral lattice where ωi ∈ h∗ is the
fundamental weights defined by (ωi|αj) = δij .

Let Uv = Uv(g) be the corresponding quantized enveloping algebra defined
over Q(v), see e.g. [Jan96] with generators Eα, Fα,K

±1
α , α ∈ Π and certain
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relations which can be found in chapter 4 of [Jan96]. We define vα = v(α|α)/2

(i.e. vα = v if α is a short root and vα = v2 if α is a long root) and for n ∈ Z,

[n]v = vn−v−n

v−v−1 . Let [n]α := [n]vα =
vn
α−v−n

α

vα−v−1
α

. We omit the subscripts when it

is clear from the context. For later use we also define the quantum binomial
coefficients: For r ∈ N and a ∈ Z:[

a

r

]

v

=
[a][a− 1] · · · [a− r + 1]

[r]!

where [r]! := [r][r − 1] · · · [2][1]. Let A = Z[v, v−1] and let UA be Lusztigs

A-form, i.e. the A subalgebra generated by the divided powers E
(n)
α := 1

[n]α!E
n
α,

F
(n)
α := 1

[n]α!F
n
α and K±1

α , α ∈ Π.

Let q ∈ C∗ = C\{0} be a nonzero complex number that is not a root of unity
and set Uq = UA ⊗A Cq where Cq is the A-algebra C where v is sent to q.

We have a triangular decomposition of Lusztigs A-form UA = U−
A ⊗U0

A⊗U+
A

with U−
A =

〈
F

(n)
α |α ∈ Π, n ∈ N

〉
∈ UA, U+

A =
〈
E

(n)
α |α ∈ Π, n ∈ N

〉
∈ UA and

U0
A =

〈
K±1

α ,
[
Kα;c
r

]
|α ∈ Π, c ∈ Z, r ∈ N

〉
where

[
Kα; c

r

]
:=

r∏

j=1

Kαv
c−j+1
α −K−1

α v−c+j−1
α

vjα − v−j
α

.

We have the corresponding triangular decomposition of Uq: Uq = U−
q ⊗U0

q ⊗U+
q

with U±
q = U±

A ⊗A Cq and U0
q = U0

A ⊗A Cq.

For a q ∈ C∗ define
[
a
r

]
q

as the image of
[
a
r

]
v

in Cq. We will omit the

subscript from the notation when it is clear from the context. qβ ∈ C and
[n]β ∈ C are defined as the image of vβ ∈ A and [n]β ∈ A, respectively abusing

notation. Similarly, we will abuse notation and write
[
Kα;c
r

]
also for the image

of
[
Kα;c
r

]
∈ UA in Uq. Define for µ ∈ Q, Kµ =

∏n
i=1 K

ai
αi

if µ =
∑n

i=1 aiαi with
ai ∈ Z.

There is a braid group action on Uv which we will describe now. We use the
definition from [Jan96, Chapter 8]. The definition is slightly different from the
original in [Lus90, Theorem 3.1] (see [Jan96, Warning 8.14]). For each simple
reflection si there is a braid operator that we will denote by Tsi satisfying the
following: Tsi : Uv → Uv is a Q(v) automorphism. For i 6= j ∈ {1, . . . , n}

Tsi(Kµ) =Ksi(µ)

Tsi(Eαi) =− FαiKαi

Tsi(Fαi
) =−K−1

αi
Eαi

Tsi(Eαj ) =

−〈αj ,α
∨
i 〉∑

i=0

(−1)iv−i
αi
E(r−i)

αi
EαjE

(i)
αi

Tsi(Fαj
) =

−〈αj ,α
∨
i 〉∑

i=0

(−1)iviαi
E(i)

αi
Eαj

E(r−i)
αi

.

The inverse T−1
si is given by conjugating with the Q-algebra anti-automorphism

Ψ from [Lus90, section 1.1] defined as follows:

Ψ(Eαi) = Eαi , Ψ(Fαi) = Fαi , Ψ(Kαi) = K−1
αi

, Ψ(q) = q.
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The braid operators Tsi satisfy braid relations so we can define Tw for any w ∈ W :
Choose a reduced expression of w: w = si1 · · · sin . Then Tw = Tsi1

· · ·Tsin
and

Tw is independent of the chosen reduced expression, see e.g. [Lus90, Theorem 3.2].
We have Tw(Kµ) = Kw(µ). The braid group operators restrict to automorphisms
UA → UA and extend to automorphisms Uq → Uq.

Let M be a Uq-module and λ : U0
q → C a character (i.e. an algebra

homomorphism into C). Then

Mλ = {m ∈ M |∀u ∈ U0
q , um = λ(u)m}.

Let X denote the set of characters U0
q → C. Since U0

q
∼= C[X±1

1 , . . . , X±1
n ] we

can identify X with (C∗)n by U0
q ∋ λ 7→ (λ(Kα1

), . . . , λ(Kαn
)) ∈ (C∗)n.

1.4 Basic definitions

Definition 1.1 Let wtM denote all the weights of M , i.e. wtM = {λ ∈
X|Mλ 6= 0}.

For µ ∈ Λ and b ∈ C∗ define the character bµ by bµ(Kα) = b(µ|α), α ∈ Π. In
particular for b = q we get qµ(Kα) = q(µ|α). We say that M only has integral
weights if λ(Kα) ∈ ±qZα for all λ ∈ wtM , α ∈ Π.

There is an action of W on X. For λ ∈ X define wλ by

(wλ)(u) = λ(Tw−1(u))

Note that wqµ = qw(µ).

Definition 1.2 Let M be a Uq-module and w ∈ W . Define the twisted module
wM by the following:

As a vector space wM = M but the action is given by twisting with w−1: For
m ∈ wM and u ∈ Uq:

u ·m = Tw−1(u)m.

We also define wM to be the inverse twist, i.e. for m ∈ wM , u ∈ Uq:

u ·m = T−1
w−1(u)m.

Hence for any Uq-module w(wM) = M = w(wM).

Note that wtwM = w(wtM) and that w(w
′

M) ∼= ww′

M for w,w′ ∈ W with
l(ww′) = l(w) + l(w′) because the braid operators Tw satisfy braid relations.

Also w(w
′
M) ∼= w′wM

Definition 1.3 We define the category F = F(g) as the full subcategory of
Uq −Mod such that for every M ∈ F we have

1. M is finitely generated as a Uq-module.

2. M =
⊕

λ∈X Mλ and dimMλ < ∞.

Note that the assignment M 7→ wM is an endofunctor on F (in fact an
auto-equivalence).

Let w0 be the longest element in W and let si1 · · · siN be a reduced expression
of w0. We define root vectors Eβ and Fβ for any β ∈ Φ+ by the following:
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First of all set

βj = si1 · · · sij−1
(αij ), for i = 1, . . . , N

Then Φ+ = {β1, . . . , βN}. Set

Eβj = Tsi1
· · ·Tsij−1

(Eαij
)

and
Fβj = Tsi1

· · ·Tsij−1
(Fαij

)

In this way we have defined root vectors for each β ∈ Φ+. These root vectors
depend on the reduced expression chosen for w0 above. For a different reduced
expression we might get different root vectors. It is a fact that if β ∈ Π then
the root vectors Eβ and Fβ defined above are the same as the generators with
the same notation (cf. e.g. [Jan96, Proposition 8.20]) so the notation is not
ambigious in this case. By “Let Eβ be a root vector” we will just mean a root
vector constructed as above for some reduced expression of w0.

2 Reductions

We recall the following results from [Ped15a].

Proposition 2.1 Let β be a positive root and Eβ , Fβ root vectors corresponding
to β. Let M ∈ F . The sets M [β] = {m ∈ M | dim 〈Eβ〉m < ∞} and M [−β] =
{m ∈ M | dim 〈Fβ〉m < ∞} are submodules of M and independent of the chosen
root vectors Eβ, Fβ.

Proof. This is shown for Eβ in Proposition 2.3 and Lemma 2.4 in [Ped15a] and
the proofs are the same for Fβ . �

Definition 2.2 Let M ∈ F . Let β ∈ Φ. M is called β-free if M [β] = 0 and
β-finite if M [β] = M .

Suppose L ∈ F is a simple module and β a root. Then by Proposition 2.1 L
is either β-finite or β-free.

Definition 2.3 Let M ∈ F . Define FM = {β ∈ Φ|M is β-finite} and TM =
{β ∈ Φ|M is β-free}. For later use we also define F s

M := FM ∩ (−FM ) and
T s
M := TM ∩ (−TM ) to be the symmetrical parts of FM and TM .

Note that Φ = FL ∪ TL for a simple module L and this is a disjoint union.

Definition 2.4 A module M is called torsion free if TM = Φ.

Proposition 2.5 Let L ∈ F be a simple module and β a root. L is β-free if
and only if qNβ wtL ⊂ wtL.

Proof. Proposition 2.9 in [Ped15a]. �

Proposition 2.6 Let L ∈ F be a simple module. TL and FL are closed subsets
of Q. That is, if β, γ ∈ FL (resp. β, γ ∈ TL) and β + γ ∈ Φ then β + γ ∈ FL

(resp. β + γ ∈ TL).
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Proof. Proposition 2.10 and Proposition 2.11 in [Ped15a]. �

Theorem 2.7 Let λ ∈ X. There is a 1 − 1 correspondence between simple
Uq-modules with weight λ and simple (Uq)0-modules with weight λ given by: For
V a Uq-module, Vλ is the corresponding simple (Uq)0-module.

Proof. Theorem 2.21 in [Ped15a]. �

Theorem 2.8 Let L ∈ F be a simple Uq(g)-module. Then there exists a w ∈ W ,
subalgebras Uq(p), Uq(l), Uq(u), Uq(u

−) of Uq with Uq = Uq(u
−)Uq(p), Uq(p) =

Uq(l)Uq(u) and a simple Uq(l)-module N such that wL is the unique simple
quotient of Uq ⊗Uq(p) N where N is considered a Uq(p)-module with Uq(u) acting
trivially.

Furthermore there exists subalgebras Ufr, Ufin of Uq(l) such that Uq(l) ∼=
Ufr ⊗ Ufin and simple Ufr and Ufin modules Xfr and Xfin where Xfin is
finite dimensional and Xfr is torsion free such that N ∼= Xfin ⊗ Xfr as a
Ufr ⊗ Ufin-module.

Ufr is the quantized enveloping algebra of a semisimple Lie algebra t =
t1 ⊕ · · · ⊕ tr where t1, . . . , tr are some simple Lie algebras. There exists simple
torsion free Uq(ti)-modules Xi, i = 1, . . . , r such that Xfr

∼= X1 ⊗ · · · ⊗Xr as
Uq(t1)⊗ · · · ⊗ Uq(tr)-modules.

Proof. Theorem 2.23 in [Ped15a]. �

So the problem of classifying simple modules in F is reduced to the problem
of classifying finite dimensional simple modules and classifying simple torsion
free modules of Uq(t) where t is a simple Lie algebra.

3 UA calculations

In this section we recall from [Ped15b] some formulas for commuting root vectors
with each other that will be used later on. Recall that A = Z[v, v−1] where v
is an indeterminate and UA is the A-subspace of Uv generated by the divided

powers E
(n)
α and F

(n)
α , n ∈ N.

Definition 3.1 Let x ∈ (Uq)µ and y ∈ (Uq)γ then we define

[x, y]q := xy − q−(µ|γ)yx

Theorem 3.2 Suppose we have a reduced expression of w0 = si1 · · · siN and
define root vectors Fβ1

, . . . , FβN
. Let i < j. Let A = Z[q, q−1] and let A′ be the

localization of A in [2] if the Lie algebra contains any Bn, Cn or F4 part. Then

[Fβj
, Fβi

]q = Fβj
Fβi

− q−(βi|βj)Fβi
Fβj

∈ spanA′

{
F

aj−1

βj−1
· · ·F

ai+1

βi+1

}

Proof. [LS91, Proposition 5.5.2]. A proof following [DP93, Theorem 9.3] can
also be found in [Ped15b, Theorem 2.9]. �

Definition 3.3 Let u ∈ UA and β ∈ Φ+. Define ad(F i
β)(u) := [[. . . [u, Fβ ]q . . . ]q, Fβ ]q

and ãd(F i
β)(u) := [Fβ , [. . . , [Fβ , u]q . . . ]]q where the commutator is taken i times

from the left and right respectively.
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Proposition 3.4 Let a ∈ N, u ∈ (UA)µ and r = 〈µ, β∨〉. In UA we have the
identities

uF a
β =

a∑

i=0

v
(i−a)(r+i)
β

[
a

i

]

β

F a−i
β ad(F i

β)(u)

=

a∑

i=0

(−1)iv
a(r+i)−i
β

[
a

i

]

β

F a−i
β ãd(F i

β)(u)

Proof. Proposition 2.13 in [Ped15b]. �

Let si1 . . . siN be a reduced expression of w0 and construct root vectors Fβi ,
i = 1, . . . , N . In the next lemma Fβi refers to the root vectors constructed as
such. In particular we have an ordering of the root vectors.

Lemma 3.5 Let n ∈ N. Let 1 ≤ j < k ≤ N .

ad(F i
βj
)(Fn

βk
) = 0 and ãd(F i

βk
)(Fn

βj
) = 0 for i ≫ 0.

Proof. Lemma 2.16 in [Ped15b]. �

4 Ore localization and twists of localized modules

In this section we present some results towards classifying simple torsion free
modules following [Mat00].

We need the equivalent of Lemma 3.3 in [Mat00]. The proofs are essentially
the same but for completeness we include most of the proofs here.

Definition 4.1 A cone C is a finitely generated submonoid of the root lattice
Q containing 0. If L is a simple module define the cone of L, C(L), to be the
submonoid of Q generated by TL.

Lemma 4.2 Let L ∈ F be an infinite dimensional simple module. Then the
group generated by the submonoid C(L) is Q.

Compare [Mat00] Lemma 3.1

Proof. First consider the case where TL ∩ (−FL) = ∅. Then in this case we
have Φ = T s

L ∪ F s
L. We claim that T s

L and F s
L correspond to different connected

components of the Dynkin diagram: Suppose α ∈ F s
L is a simple root and

suppose α′ ∈ Π is a simple root that is connected to α in the Dynkin diagram.
So α+α′ is a root. There are two possibilities. Either α+α′ ∈ FL or α+α′ ∈ TL.
If α+ α′ ∈ FL: Since F s

L is symmetric we have −α ∈ F s
L and since FL is closed

(Proposition 2.6) α′ = α + α′ + (−α) ∈ FL. If α + α′ ∈ TL and α′ ∈ TL then
we get similarly α ∈ TL which is a contradiction. So α′ ∈ FL. We have shown
that if α ∈ FL then any simple root connected to α is in FL also. So FL and
TL contains different connected components of the Dynkin diagram. Since L is
simple and infinite we must have Φ = T s

L and therefore C(L) = Q.
Next assume TL ∩ (−FL) 6= ∅. By Lemma 4.16 in [Fer90] PL = T s

L ∪ FL

and P−
L = TL ∪ F s

L are two opposite parabolic subsystems of Φ. So we have
that TL ∩ (−FL) and (−TL) ∩ FL must be the roots corresponding to the
nilradicals v± of two opposite parabolic subalgebras p± of g. Since we have
g = v++v−+[v+, v−] we get that TL∩ (−FL) generates Q. Since C(L) contains
TL ∩ (−FL) it generates Q. �
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We define ρ and δ like in [Mat00, Section 3]:

Definition 4.3 Let x ≥ 0 be a real number. Define ρ(x) = CardB(x) where
B(x) = {µ ∈ Q|

√
(µ|µ) ≤ x}

Let M be a weight module with support lying in a single Q-coset, say qQλ :=
{qµλ|µ ∈ Q}. The density of M is δ(M) = lim infx→∞ρ(x)−1

∑
µ∈B(x) dimMqµλ

For a cone C we define δ(C) = lim infx→∞ρ(x)−1 Card(C ∩B(x))

Lemma 4.4 There exists a real number ε > 0 such that δ(L) > ε for all infinite
dimensional simple modules L.

Proof. Note that since qC(L)λ ⊂ wtL for all λ ∈ wtL we have δ(L) ≥ δ(C(L)).
Since C(L) is the cone generated by TL and TL ⊂ Φ (a finite set) there can

only be finitely many different cones.
Since there are only finitely many different cones attached to infinite simple

dimensional modules and since any cone C that generates Q has δ(C) > 0 we
conclude via Lemma 4.2 that there exists an ε > 0 such that δ(L) > ε for all
infinite dimensional simple modules. �

Definition 4.5 A module M ∈ F is called admissible if its weights are contained
in a single coset of X/qQ and if the dimensions of the weight spaces are uniformly
bounded. M is called admissible of degree d if d is the maximal dimension of the
weight spaces in M .

Of course all finite dimensional simple modules are admissible but the inter-
esting admissible modules are the infinite dimensional simple ones. In particular
simple torsion free modules are admissible. We show later that each infinite
dimensional admissible simple module L gives rise to a ’coherent family’ EXT (L)
containing at least one torsion free module and at least one simple highest weight
module that is admissible of the same degree.

Lemma 4.6 Let M ∈ F be an admissible module. Then M has finite Jordan-
Hölder length.

Proof. The length of M is bounded by A+ δ(M)/ε where A =
∑

λ∈Y dimMλ

and Y = {ν ∈ X| ν = σqµ, | 〈µ, α∨〉 | ≤ 1, σ(Kα) ∈ {±1} for all α ∈ Π}.
Check [Mat00, Lemma 3.3] for details. Here we use the fact that finite di-
mensional simple quantum group modules have the same character as their
corresponding Lie algebra simple modules. This is proved for transcenden-
tal q in [Jan96, Theorem 5.15] and for general non-roots-of-unity in [APW91,
Corollary 7.7]. �

Lemma 4.7 Let β be a positive root and let Fβ be a corresponding root vector.
The set {Fn

β |n ∈ N} is an Ore subset of Uq.

Proof. A proof can be found in [And03] for β a simple root. If β is not
simple then Fβ is defined as Tw(Fα) for some w ∈ W and some α ∈ Π. Since
S := {Fn

α |n ∈ N} is an Ore subset of Uq we get for any n ∈ N and u ∈ Uq that

Fn
αUq ∩ uS 6= ∅.

Let u′ ∈ Uq and set u = T−1
w (u′), then from the above

∅ 6= Tw(F
n
α )Tw(Uq) ∩ Tw(u)Tw(S) = Fn

β Uq ∩ u′Tw(S).

Since Tw(S) = {Fn
β |n ∈ N} we have proved the lemma. �
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We denote the Ore localization of Uq in the above set by Uq(Fβ).

Lemma 4.8 Let p be Laurent polynomial. If

p(qr1 , . . . , qrn) = 0

for all r1, . . . , rn ∈ N then p = 0.

Proof. If n = 1 we have a Laurent polynomial of one variable with infinitely
many zero-points so p = 0. Let n > 1, then for constant r1 ∈ N, p(qr1 ,−, . . . ,−)
is a Laurent polynomial in n− 1 variables equal to zero in (qr2 , . . . , qrn) for all
r2, . . . , rn ∈ N so by induction p(qr1 , c2, . . . , cn) = 0 for all c2, . . . , cn. Now for
arbitrary c2, . . . , cn ∈ C∗ we get p(−, c2, . . . , cn) is a Laurent polynomial in one
variable that is zero for all qr1 , r1 ∈ N hence p(c1, . . . , cn) = 0 for all c1 ∈ C∗.�

The next lemma is crucial for the rest of the results in this paper. We will
use this result again and again.

Lemma 4.9 Let β ∈ Φ+ and let Fβ be a corresponding root vector. There exists
automorphisms ϕFβ ,b : Uq(Fβ) → Uq(Fβ) for each b ∈ C∗ such that ϕFβ ,qi(u) =

F−i
β uF i

β for i ∈ Z and such that for u ∈ Uq(Fβ) the map C∗ → Uq(Fβ), b 7→

ϕFβ ,b(u) is of the form b 7→ p(b) for some Laurent polynomial p ∈ Uq(Fβ)[X,X−1].
Furthermore for b, b′ ∈ C∗, ϕFβ ,b ◦ ϕFβ ,b′ = ϕFβ ,bb′ .

Proof. We can assume β is simple since if Fβ = Tw(Fα′) for some α′ ∈ Π then
we can just define the homomorphism on Tw(Eα), Tw(K

±1
α ), Tw(Fα) for α ∈ Π

i.e. in this case we define ϕFβ ,b(u) = Tw(ϕα′,b(T
−1
w (u))) where we extend Tw to

a homomorphism Tw : Uq(Fα′ ) → Uq(Fβ) by Tw(F
−1
α′ ) = F−1

β .

So β is assumed simple. For b ∈ C∗ define bβ = b(β|β)/2 i.e. bβ = b if β is
short and bβ = b2 when β is long. We will define the map on the generators
Eα,Kα, Fα for α ∈ Π. If α = β the map is defined as follows:

ϕFβ ,b(F
±1
β ) =F±1

β

ϕFβ ,b(K
±1
β ) =b∓2

β K±1
β

ϕFβ ,b(Eβ) =Eβ + F−1
β

(bβ − b−1
β )(qβb

−1
β Kβ − q−1

β bβK
−1
β )

(qβ − q−1
β )2

.

Assume α 6= β. Let r = 〈α, β∨〉. Note that ad(F−r+1
β )(Fα) = 0 because this

is one of the defining relations of Uq. We define the map as follows:

ϕFβ ,b(Fα) =

−r∑

i=0

b−r−i
β q

i(i+r)
β

i∏

t=1

bβq
1−t
β − b−1

β qt−1
β

qtβ − q−t
β

F−i
β ad(F i

β)(Fα)

ϕFβ ,b(Kα) =b−r
β Kα = b−(α|β)Kα

ϕFβ ,b(Eα) =Eα.

Note that if b = qj for some j ∈ Z then
∏i

t=1

bβq
1−t
β −b−1

β qt−1
β

qtβ−q−t
β

=
[
j
i

]
β
. Since the

map b 7→ ϕFβ ,b(u) is of the form b 7→
∑r

i=1 pi(b)ui with pi Laurent polynomial
in b for each generator of Uq it is of this form for all u ∈ Uq. It’s easy to check
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that ϕFβ ,b(u) = F−i
β uF i

β when b = qi, i ∈ N. So ϕFβ ,b satisfies the generating

relations of Uq for b = qi, i ∈ N. By Lemma 4.8 ϕFβ ,b must satisfy the generating
relations for all b ∈ C.

Consider the last claim of the lemma: Let u ∈ Uq, then by the above
b 7→ ϕFβ ,b(u) is a Laurent polynomial and so b 7→ ϕFβ ,bb′(u) and ϕFβ ,b(ϕFβ ,b′(u))
for a constant b′ ∈ C∗ is a Laurent polynomial as well. Now we know from above
that for b′ = qj for some j ∈ Z and i ∈ Z:

ϕFβ ,qi ◦ ϕFβ ,b′(u) =F−i
β F−j

β uF j
βF

i
β

=F−i−j
β uF i+j

β

=ϕFβ ,qiqj (u)

So ϕFβ ,b(ϕFβ ,qj (u)) = ϕFβ ,bqj (u) for all b ∈ C∗ since both sides are Laurent
polynomials in b and they are equal in infinitely many points. In the same way
we get the result for all b′ ∈ C. �

Note that if β is long then the above automorphism is a Laurent polynomial
in b2. So if b21 = b22 for b1, b2 ∈ C∗ then ϕFβ ,b1 = ϕFβ ,b2 . We could have defined
another automorphism ϕ′

Fβ ,b
:= ϕFβ ,b2/(β|β) and proved the lemma above with

the modification that ϕ′
Fβ ,qiβ

(u) = F−i
β uF i

β . The author has chosen the first

option to avoid having to write the β in qβ all the time in results like Lemma 4.12
and Corollary 4.20. On the other hand this choice means that we have to take
some squareroots sometimes when doing concrete calculations involving long
roots see e.g the proof of Lemma 5.11. The choice of squareroot doesn’t matter
by the above.

We can use the formulas in Section 3 to find the value of ϕFβ ,b(Fβ′) and
ϕFβ ,b(Eβ′) for general root vectors Fβ , Fβ′ and Eβ′ , β, β′ ∈ Φ+.

Proposition 4.10 Let si1 . . . siN be a reduced expression of w0 and define
root vectors Fβ1

, . . . , FβN
and Eβ1

, . . . , EβN
using this expression (i.e. Fβj

=
Tsi1

. . . Tsij−1
(Fαij

) and Eβj
= Tsi1

. . . Tsij−1
(Eαij

)). Let 1 ≤ j < k ≤ N and

set r =
〈
βk, β

∨
j

〉
.

ϕFβj
,b(F

n
βk
) =

∑

i≥0

q
i(nr+i)
βj

b−nr−i
βj

i∏

t=1

q1−t
βj

bβj
− qt−1

βj
b−1
βj

qtβj
− q−t

βj

F−i
βj

ad(F i
βj
)(Fn

βk
)

ϕFβk
,b(F

n
βj
) =

∑

i≥0

(−1)iq−i
βk
bnr+i
βk

i∏

t=1

q1−t
βk

bβk
− qt−1

βk
b−1
βk

qtβk
− q−t

βk

F−i
βk

ãd(F i
βk
)(Fn

βj
)

ϕFβj
,b(Eβk

) =
∑

i≥0

b−i
βj

i∏

t=1

q1−t
βj

bβj
− qt−1

βj
b−1
βj

qtβj
− q−t

βj

F−i
βj

ui

ϕFβk
,b(Eβj ) =

∑

i≥0

biβk

i∏

t=1

q1−t
βk

bβk
− qt−1

βk
b−1
βk

qtβk
− q−t

βk

F−i
βk

ũi

for some ui, ũi ∈ Uq (independent of b) such that ui = ũi = 0 for i ≫ 0. In
particular for any j, k ∈ {1, . . . , N}:

ϕFβj
,−1(Fβk

) = (−1)(βj |βk)Fβk

ϕFβj
,−1(Eβk

) = Eβk
.

11
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Note that the sums are finite because of Lemma 3.5.

Proof. By Proposition 3.4 we have for any a ∈ N

Fn
βk
F a
βj

=

a∑

i=0

q
(i−a)(nr+i)
βj

[
a

i

]

βj

F a−i
βj

ad(F i
βj
)(Fn

βk
)

=
∞∑

i=0

q
i(nr+i)
βj

q
−a(nr+i)
βj

i∏

t=1

q1−t
βj

qaβj
− qt−1

βj
q−a
βj

qtβj
− q−t

βj

F a−i
βj

ad(F i
βj
)(Fn

βk
).

Here we use the fact that
[
a
i

]
βj

= 0 for i > a. So

F−a
βj

Fn
βk
F a
βj

=
∑

i≥0

q
i(nr+i)
βj

q
−a(nr+i)
βj

i∏

t=1

q1−t
βj

qaβj
− qt−1

βj
q−a
βj

qtβj
− q−t

βj

F−i
βj

ad(F i
βj
)(Fn

βk
).

Now using the fact that ϕFβj
,qa(F

n
βk
) = F−a

βj
Fn
βk
F a
βj

, the fact that ϕFβj
,b(F

n
βk
) is

Laurent polynomial and Lemma 4.8 we get the first identity. The second identity
is shown similarly by using the second identity in Proposition 3.4.

To prove the last two identities we need to calculate F−a
βj

En
βk
F a
βj

(resp.

F−a
βk

En
βj
F a
βk

) for any a ∈ N. Let w = si1 · · · sij−1 and w′ = sij+1 · · · sik−1
. Then

Eβj
= Tw(Eαij

) and Fβk
= TwTsij

Tw′(Fαik
).

EβjF
a
βk

=Tw

(
Eαij

Tsij
Tw′(F a

αik
)
)

=TwTsij

(
−K−1

αij
Fαij

Tw′(F a
αik

)
)
.

Expand sij · · · siN from the right to a reduced expression sij · · · siN sm1 · · · smj−1

of w0. Do the same with sij+1 · · · siN sm1 · · · smj−1 to get a reduced expres-
sion sij+1

· · · siN sm1
· · · smj

. We claim that if we use the reduced expression
sij+1

· · · siN sm1
· · · smj

to construct roots β′
1 . . . , β

′
N and root vectors F ′

β′
j

then

F ′
β′
N

= Tsij+1
· · ·TsiN

Tsm1
· · ·Tsmj−1

(Fαmj
) = Fαij

. This is easy to see since

β′
N is positive but sijβ

′
N = w0(αmj

) < 0. We have Tw′(F a
αik

) = F a
β′
k−j

. Since

k − j < N we can use what we just calculated above: (set d = k − j)

F ′−a
β′
d

F ′
β′
N
F ′a
β′
d
=
∑

i≥0

q
i(r+i)
β′
d

q
−a(r+i)
β′
d

i∏

t=1

q1−t
β′
d
qaβ′

d
− qt−1

β′
d
q−a
β′
d

qtβ′
d
− q−t

β′
d

F ′−i
β′
d

ad(F ′i
β′
d
)(F ′

β′
N
).

so

F−a
βk

EβjF
a
βk

=KβjTwTsij


∑

i≥0

q
i(r+i)
β′
d

q−ai
β′
d

i∏

t=1

q1−t
β′
d
qaβ′

d
− qt−1

β′
d
q−a
β′
d

qtβ′
d
− q−t

β′
d

F ′−i
β′
d

ad(F ′i
β′
d
)(F ′

β′
N
)


 .

This shows the third identity. The fourth is shown similarly.
Setting b = −1 in the above formulas we get the last claim of the proposition.�

Definition 4.11 Let M be a Uq(Fβ)-module. We define a new module ϕFβ ,b.M
(with elements ϕFβ ,b.m, m ∈ M) where the module structure is given by compos-
ing with the above automorphism ϕFβ ,b. – i.e. uϕFβ ,b.m = ϕFβ ,b.ϕFβ ,b(u)m for
all u ∈ Uq(Fβ), m ∈ M .

12
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Note that wtϕFβ ,b.M = b−β wtM where b−β is the character such that b−β(Kα) =

b−(α|β) for α ∈ Π.
The homomorphisms from Lemma 4.9 preserve degree so we can restrict to

(Uq(Fβ))0 which we will do in the next lemma. The twist of a (Uq(Fβ))0-module
is defined in the same way as the definition above. It is an important fact of
these twists that they do not neccesarily preserve simplicity of Uq-modules: If L
is a Uq(Fβ)-module that is simple as a Uq-module then ϕFβ ,b.L can be nonsimple
as a Uq-module for some b ∈ C∗, see e.g. Lemma 4.23.

Lemma 4.12 Let M be a Uq(Fβ)-module. Let i ∈ Z. Then

ϕFβ ,qi .M
∼= M

as Uq(Fβ)-modules. Furthermore for λ ∈ wtM we have an isomorphism of
(Uq(Fβ))0-modules:

ϕFβ ,qi .Mλ
∼= Mq−iβλ.

Proof. The isomorphism in both cases is given by ϕFβ ,qi .m 7→ F i
βm, ϕFβ ,qi .M →

M . The inverse is given by multiplying by F−i
β . By Lemma 4.9: For u ∈

Uq(Fβ), m ∈ M ; ϕFβ ,qi(u) = F−i
β uF i

β so uϕFβ ,qi .m = ϕFβ ,qi .F
−i
β uF i

βm 7→

F i
βF

−i
β uF i

βm = uF i
βm. Thus the given map is a homomorphism. �

Definition 4.13 Let Σ ⊂ Φ+. Then Σ is called a set of commuting roots if
there exists an ordering of the roots in Σ; Σ = {β1, . . . , βs} such that for some
reduced expression of w0 and corresponding construction of the root vectors Fβ

we have: [Fβj
, Fβi

]q = 0 for 1 ≤ i < j ≤ s.
For any subset I ⊂ Π, let QI be the subgroup of Q generated by I, ΦI the

root system generated by I , Φ+
I = Φ+ ∩ ΦI and Φ−

I = −Φ+
I .

The following three lemmas have exactly the same proofs as their counterparts
([Ped15a, Lemma 5.6], [Ped15a, Lemma 5.22] and [Ped15a, Lemma 5.23]) in
the root of unity case in [Ped15a]. We include the proofs here as well for
completeness.

We have the following equivalent of Lemma 4.1 in [Mat00]:

Lemma 4.14 1. Let I ⊂ Π and let α ∈ I. There exists a set of commuting
roots Σ′ ⊂ Φ+

I with α ∈ Σ′ such that Σ′ is a basis of QI .

2. Let J, F be subsets of Π with F 6= Π. Let Σ′ ⊂ Φ+
J \Φ

+
J∩F be a set of

commuting roots which is a basis of QJ . There exists a set of commuting
roots Σ which is a basis of Q such that Σ′ ⊂ Σ ⊂ Φ+\Φ+

F

Proof. The first part of the proof is just combinatorics of the root system so
it is identical to the first part of the proof of Lemma 4.1 in [Mat00]: Let us
first prove assertion 2.: If J is empty we can choose α ∈ Π\F and replace J
and Σ′ by {α}. So assume from now on that J 6= ∅. Set J ′ = J\F , p = |J ′|,
q = |J |. Let J1, . . . , Jk be the connected components of J and set J ′

i = J ′ ∩ Ji,
Fi = F ∩ Ji, and Σ′

i = Σ ∩ ΦJi
, for any 1 ≤ i ≤ k. Since Σ′ ⊂ ΦJ is a basis

of QJ , each Σ′
i is a basis of QJi

. Since Σ′
i lies in Φ+

Ji
\Φ+

Fi
, the set J ′

i = Ji\Fi

is not empty. Hence J ′ meets every connected component of J . Therefore we
can write J = {α1, . . . , αq} in such a way that J ′ = {α1, . . . , αp} and, for any s

13
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with p+ 1 ≤ s ≤ q, αs is connected to αi for some i < s. Since Π is connected
we can write Π\J = {αq+1, . . . , αn} in such a way that for any s ≥ q + 1, αs is
connected to αi for some i with 1 ≤ i < s. So Π = {α1, . . . , αn} such that for
s > p we have that αs is connected to some αi with 1 ≤ i < s.

Let Σ′ = {β1, . . . , βq}. We will define βq+1, . . . , βl inductively such that for
each s ≥ q, {β1, . . . , βs} is a commuting set of roots which is a basis of Φ{α1,...,αs}.
So assume we have defined β1, . . . , βs. Let ws be the longest word in sα1

, . . . , sαs

and let ws+1 be the longest word in sα1
, . . . , sαs+1

. Choose a reduced expression
of ws such that the corresponding root vectors {Fβk

}sk=1 satisfies [Fβj
, Fβi

]q = 0
for i < j. Choose a reduced expression of ws+1 = wsw

′ starting with the
above reduced expression of ws. Let Ns be the length of ws and Ns+1 be the
length of ws+1. So we get an ordering of the roots generated by {α1, . . . , αs+1}:
Φ+

{α1,...,αs+1}
= {γ1, . . . , γNs

, γNs+1, . . . , γNs+1
} with Φ+

{α1,...,αs}
= {γ1, . . . , γNs

}.

Consider γNs+1 = ws(αs+1). Since ws only consists of the simple reflections
corresponding to α1, . . . , αs we must have that γNs+1 = αs+1 +

∑s
i=1 miαi for

some coefficients mi ∈ N. So {β1, . . . , βs, γNs+1} is a basis of Φ{α1,...,αs+1}. From
Theorem 3.2 we get for 1 ≤ i ≤ s

[FγNs+1
, Fβi ]q ∈ spanC

{
F

aNs
γNs

· · ·F a2
γ2

|ai ∈ N}
}

But since {γ1, . . . , γNs
} = Φ+

{α1,...,αs}
and since γNs+1 = αs+1 +

∑s
i=1 miαi we

get [FγNs+1
, Fβi

]q = 0.
All that is left is to show that γNs+1 6∈ ΦF . By the above we must have that

αs+1 is connected to some αi ∈ J ′. We will show that the coefficient of αi in
γNs+1 is nonzero. Otherwise (γNs+1|αi) < 0 and so γNs+1 + αi ∈ Φ{α1,...,αs+1}

and by Theorem 1 in [Pap94], γNs+1 + αi = γj for some 1 < j ≤ s. This is
impossible since γNs+1 + αi 6∈ Φ{α1,...,αs}. So we can set βs+1 = γNs+1 and the
induction step is finished.

To prove assertion 1. it can be assumed that I = Π. Thus assertion 1. follows
from assertion 2. with J = {α} and F = ∅. �

Lemma 4.15 Let L ∈ F be a simple module. Then there exists a w ∈ W such
that w(FL\F

s
L) ⊂ Φ+ and w(TL\T

s
L) ⊂ Φ−.

Proof. Since L is simple we have Φ = FL ∪ TL. By Proposition 2.6 FL and TL

are closed subsets. Then Lemma 4.16 in [Fer90] tells us that there exists a basis
B of the root system Φ such that the antisymmetrical part of FL is contained in
the positive roots Φ+

B corresponding to the basis B and the antisymmetrical part
of TL is contained in the negative roots Φ−

B corresponding to the basis. Since all
bases of a root system are W -conjugate the claim follows. �

Lemma 4.16 Let L be an infinite dimensional admissible simple module. Let
w ∈ W be such that w(FL\F

s
L) ⊂ Φ+. Let α ∈ Π be such that −α ∈ w(TL) (such

an α always exists). Then there exists a commuting set of roots Σ with α ∈ Σ
which is a basis of Q such that −Σ ⊂ w(TL).

Proof. Set L′ = wL. Since w(TL) = TwL = TL′ we will just work with L′. Then
FL′\F s

L′ ⊂ Φ+.
Note that it is always possible to choose a simple root α ∈ −TL′ since L′

is infinite dimensional: If this was not possible we would have Φ− ⊂ FL′ . But
since FL′\F s

L′ ⊂ Φ+ this would imply FL = Φ.

14
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Set F = F s
L′ ∩ Π. Since L′ is infinite dimensional F 6= Π. By Lemma 4.14 2.

applied with J = {α} = Σ′ there exists a commuting set of roots Σ that is a basis
of Q such that Σ ⊂ Φ+\Φ+

F . Since FL′\F s
L′ ⊂ Φ+ we have Φ− = T−

L′ ∪ (F s
L′)−.

To show −Σ ⊂ TL′ we show
(
Φ−\Φ−

F

)
∩ F s

L′ = ∅ or equivalently (F s
L′)− ⊂ Φ−

F .
Assume β ∈ F s

L′ ∩ Φ+, β =
∑

α∈Π aαα, aα ∈ N. The height of β is the sum∑
α∈Π aα. We will show by induction on the height of β that −β ∈ Φ−

F . If the

height of β is 1 then β is a simple root and so β ∈ F . Clearly −β ∈ Φ−
F in this

case. Assume the height of β is greater than 1. Let α′ ∈ Π be a simple root such
that β − α′ is a root. There are two possibilities: −α′ ∈ TL′ or ±α′ ∈ F s

L′ .
In the first case where −α′ ∈ TL′ we must have −β + α′ ∈ F s

L′ since if
−β + α′ ∈ TL then −β = (−β + α′) − α′ ∈ TL′ . So β − α′ ∈ F s

L′ and β ∈ F s
L′ .

Since FL′ is closed (Proposition 2.6) we get −α′ = (β − α′)− β ∈ FL which is a
contradiction. So the first case (−α′ ∈ TL′) is impossible.

In the second case since FL′ is closed we get ±(β−α′) ∈ FL′ i.e. β−α′ ∈ F s
L′ .

By the induction −(β − α′) ∈ Φ−
F and since −β = −(β − α′)− α′ we are done.�

Proposition 4.17 Let Σ = {β1, . . . , βr} be a set of commuting roots. The set
{qaF a1

β1
· · ·F ar

βr
|ai ∈ N, a ∈ Z} is an Ore subset of Uq.

Proof. We will prove it by induction over r. r = 1 is Lemma 4.7.
Let Sr = {qaF a1

β1
· · ·F ar

βr
|ai ∈ N, a ∈ Z}. Let a1, . . . , ar ∈ N, a ∈ Z and

u ∈ Uq, then we need to show that

qaF a1

β1
· · ·F ar

βr
Uq ∩ uSr 6= ∅. (1)

and
Uqq

aF a1

β1
· · ·F ar

βr
∩ Sru 6= ∅. (2)

By Lemma 4.7 there exists ũ ∈ Uq and b ∈ N such that

F ar

βr
ũ = uF b

βr
. (3)

By induction
qaF a1

β1
· · ·F

ar−1

βr−1
Uq ∩ ũSr−1 6= ∅

so
qaF ar

βr
F a1

β1
· · ·F

ar−1

βr−1
Uq ∩ F ar

βr
ũSr−1 6= ∅

Since Σ is a set of commuting roots F ar

βr
F a1

β1
· · ·F

ar−1

βr−1
= qkF a1

β1
· · ·F

ar−1

βr−1
F ar

βr
for

some k ∈ Z. Using this and (3) we get

∅ 6= qa+kF a1

β1
· · ·F ar

βr
Uq ∩ uF b

βr
Sr−1 ⊂ qaF a1

β1
· · ·F ar

βr
Uq ∩ uSr

where F b
βr
Sr−1 ⊂ Sr because Fβr q-commutes with all the other root vectors.

(2) is shown similarly. �

Lemma 4.18 Let ν ∈ X and let Σ = {β1, . . . , βn} be a basis of Q. Then there
exists b = (b1, . . . , bn) ∈ (C∗)n such that

ν = bβ1

1 bβ2

2 · · · bβn
n

and there are only finitely many different b ∈ (C∗)n satisfying this.
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Proof. If γ1, γ2 ∈ X satisfy γ1(Kβi
) = γ2(Kβi

) for i = 1, . . . , n then γ1 = γ2 be-

cause {β1, . . . , βn} is a basis of Q. Since for a1, . . . , an ∈ C∗, aβ1

1 aβ2

2 · · · aβn
n (Kβi

) =

a
(βi|β1)
1 a

(βi|β2)
2 · · · a

(βi|βn)
n we have to solve the system in n unknown variables

x1, . . . , xn:

x
(β1|β1)
1 x

(β1|β2)
2 · · ·x(β1|βn)

n =ν(Kβ1
)

x
(β2|β1)
1 x

(β2|β2)
2 · · ·x(β2|βn)

n =ν(Kβ2)

...

x
(βn|β1)
1 x

(βn|β2)
2 · · ·x(βn|βn)

n =ν(Kβn
).

Let cj ∈ C, j = 1, . . . , n be such that ν(Kβj ) = ecj . There is a choice here since
any cj + 2kπi, k ∈ Z could be chosen instead. Consider the linear system in n
unknowns X1, . . . , Xn

(β1|β1)X1 + (β1|β2)X2 · · · (β1|βn)Xn =c1

(β2|β1)X1 + (β2|β2)X2 · · · (β2|βn)Xn =c2

...

(βn|β1)X1 + (βn|β2)X2 · · · (βn|βn)Xn =cn.

This system has a unique solution a1, . . . , an ∈ C since the matrix ((βi|βj))i,j
is invertible. So xi = eai is a solution to the above system. Any other solution
to the original system corresponds to making a different choice when taking
the logarithm of ν(Kβi

). So another solution would be of the form xi = eai+a′
i

where a′i, i = 1, . . . , n is a solution to a system of the form:

(β1|β1)X1 + (β1|β2)X2 · · · (β1|βn)Xn =2k1πi

(β2|β1)X1 + (β2|β2)X2 · · · (β2|βn)Xn =2k2πi

...

(βn|β1)X1 + (βn|β2)X2 · · · (βn|βn)Xn =2knπi.

for some k1, . . . , kn ∈ Z. Since A = ((βi|βj))i,j is a matrix with only integer co-

efficients we have A−1 = 1
detA Ã for some Ã with only integer coefficients. So the

solution to the system above is integer linear combinations in 2kiπi
detA , i = 1, . . . , n

hence {(ea
′
1 , . . . , ea

′
n)|(a′1, . . . , a

′
n) is a solution to the above system} has fewer

than n detA elements so it is a finite set. �

In the next definition we would like to compose the ϕ’s for different β. In
particular let Σ = {β1, . . . , βn} be a set of commuting roots and Fβ1

, . . . , Fβn

corresponding root vectors. Let FΣ := {qaF a1

β1
· · ·F an

βn
|ai ∈ N, a ∈ Z} and let

Uq(FΣ) be the Ore localization in FΣ. For i < j we have

F−k
βi

Fβj
F k
βi

= q−k(βi|βj)Fβj

or equivalently ϕFβi
,qk(Fβj

) =
(
qk
)−(βi|βj)

Fβj
. This implies ϕFβi

,b(Fβj
) =

b−(βi|βj)Fβj for b ∈ C∗ because b 7→ ϕFβi
,b(Fβj ) is Laurent polynomial. Sim-

ilarly ϕFβj
,b(Fβi

) = b(βi|βj)Fβi
. This shows that we can define ϕFβ ,b(F

−1
β′ ) =
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ϕFβ ,b(Fβ′)−1 for β, β′ ∈ Σ extending ϕFβ ,b to a homomorphism Uq(FΣ) → Uq(FΣ).
Also note that the ϕ’s commute because

F−k1

βi
F−k2

βj
uF k2

βj
F k1

βi
=qk1k2(βi|βj)F−k2

βj
F−k1

βi
uq−k1k2(βi|βj)F k1

βi
F k2

βj

=F−k2

βj
F−k1

βi
uF k1

βi
F k2

βj

Definition 4.19 Let Σ = {β1, . . . , βr} be a set of commuting roots and let
Fβ1 , . . . , Fβr be corresponding root vectors such that [Fβj , Fβi ]q = 0 for i < j. Let
Uq(FΣ) denote the Ore localization of Uq in the Ore set FΣ := {qaF a1

β1
· · ·F ar

βn
|ai ∈

N, a ∈ Z}. Said in words we invert Fβ for all β ∈ Σ.
Let M be a Uq-module. We define MFΣ

to be the Uq(FΣ)-module Uq(FΣ)⊗Uq
M .

Let b = (b1, . . . , br) ∈ (C∗)r. Then for a Uq(FΣ)-module N we define ϕFΣ,b.N to
be the twist of the module by ϕFβ1

,b1 ◦ · · · ◦ ϕFβr ,br
.

For i = (i1, . . . , ir) ∈ Zr define qi = (qi1 , . . . , qir) ∈ (C∗)r and qZ
r

= {qi|i ∈
Zr} ⊂ (C∗)r.

For b = (b1, . . . , br) ∈ (C∗)r we set bΣ := bβ1

1 · · · bβr
r ∈ X. If Σ is a basis

of Q then the map b 7→ bΣ is surjective by Lemma 4.18 but not neccesarily
injective.

Corollary 4.20 (to Lemma 4.12) Let Σ be a set of commuting roots that
is a Z basis of Q, let FΣ be an Ore subset corresponding to Σ, let M be a
Uq(FΣ)-module and let i = (i1, . . . , in) ∈ Zn. Then

ϕFΣ,qi .M ∼= M

as Uq(FΣ)-modules. Furthermore for λ ∈ wtM we have an isomorphism of
(Uq(FΣ))0-modules:

ϕFΣ,qi .Mλ
∼= M(q−i)Σλ = Mq−µλ

where µ =
∑n

j=1 ijβj.

Proof. The corollary follows from Lemma 4.12 because Σ is a Z basis of Q. �

Definition 4.21 Let L be an admissible module of degree d. The essential
support of L is defined as

Suppess(L) := {λ ∈ wtL| dimLλ = d}

Lemma 4.22 Let M be an admissible module. Let Σ ⊂ Φ+ be a set of com-
muting roots and FΣ a corresponding Ore subset. Assume −Σ ⊂ TM . Then for
λ ∈ X:

dim(MFΣ)λ = max
µ∈ZΣ

{dimMqµλ}

and if dimMλ = maxµ∈ZΣ{dimMqµλ} then (MFΣ
)λ ∼= Mλ as (Uq)0-modules.

In particular if Σ ⊂ TM as well then MFΣ
∼= M as Uq-modules.

Compare to Lemma 4.4(ii) in [Mat00].

Proof. We have Σ = {β1, . . . , βr} for some β1, . . . , βr ∈ Φ+ and corresponding
root vectors Fβ1

, . . . , Fβr
. Let λ ∈ X and set d = maxµ∈ZΣ{dimMqµλ}. Let V

be a finite dimensional subspace of (MFΣ
)λ. Then there exists a homogenous

element s ∈ FΣ such that sV ⊂ M . Let ν ∈ ZΣ be the degree of s. So sV ⊂ Mqνλ
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hence dim sV ≤ d. Since s acts injectively on MFΣ
we have dimV ≤ d. Now the

first claim follows because F±1
β acts injectively on MFΣ

for all β ∈ Σ.
We have an injective Uq-homomorphism from M to MFΣ

sending m ∈ M to
1⊗m ∈ MFΣ that restricts to a (Uq)0-homomorphism from Mλ to (MFΣ)λ. If
dimMλ = d then this is surjective as well. So it is an isomorphism. The last
claim follow because ±Σ ⊂ TM implies dimMλ = dimMqµλ for any µ ∈ ZΣ; so
Mλ

∼= (MFΣ
)λ for any λ ∈ X. Since M is a weight module this implies that

M ∼= MFΣ
as Uq-modules. �

Lemma 4.23 Let L be a simple infinite dimensional admissible module. Let
β ∈ (T s

L)
+. Then there exists a b ∈ C∗ such that ϕFβ ,b.LFβ

contains a simple
admissible Uq-submodule L′ with TL′ ⊂ TL and β 6∈ TL.

Proof. Since β ∈ T s
L we have L ∼= LFβ

as Uq-modules by Lemma 4.22. So we
will consider L as a Uq(Fβ)-module via this isomorphism when taking twist etc.

Let Eβ and Fβ be root vectors corresponding to β. Let λ ∈ wtL. Consider
FβEβ as a linear operator on Lλ. Since C is algebraically closed FβEβ must
have an eigenvalue cβ and an eigenvector v ∈ Lλ. By (the proof of) Lemma 4.9

FβEβϕFβ ,b.v = ϕFβ ,b.(cβ−(qβ−q−1
β )−2(bβ−b−1

β )(qβb
−1
β λ(Kβ)−q−1

β bβλ(Kβ)
−1)v.

The Laurent polynomial, in b, cβ − (q− q−1)−2(bβ − b−1
β )(bβλ(Kβ)− b−1

β λ(K−1
β ))

has a zero point c ∈ C∗.
Thus ϕFβ ,c.L contains an element v′ such that FβEβv

′ = 0 and since Fβ

acts injectively on ϕFβ ,c.L, we have Eβv
′ = 0. Set V = {m ∈ ϕFβ ,c.L|E

N
β m =

0, N >> 0} = (ϕFβ ,c.L)
[β]. By Proposition 2.1 this is a Uq-submodule of the

Uq-module ϕFβ ,c.L. It is nonzero since v′ ∈ V . By Lemma 4.6 V has a simple
Uq-submodule L′.

We want to show that TL′ ⊂ TL. Assume γ ∈ TL′ . Then qNγ wtL′ ⊂ wtL′.
But since wtL′ ⊂ c−β wtL we get for some ν ∈ wtL, qNγc−βν ⊂ c−β wtL or
equivalently qNγν ⊂ wtL. But this shows that γ 6∈ FL and since L is a simple
Uq-module this implies that γ ∈ TL. By construction we have β 6∈ TL′ . �

5 Coherent families

For a Uq-module M ∈ F define TrM : X × (Uq)0 → C by TrM (λ, u) = Tru|Mλ
.

Lemma 5.1 Let M,N ∈ F be semisimple Uq-modules. If TrM = TrN then
M ∼= N .

Proof. Theorem 7.19 in [Lam01] states that this is true for modules over a
finite dimensional algebra. So we will reduce to the case of modules over
a finite dimensional algebra. Let L be a composition factor of M and λ a
weight of L. Then the multiplicity of the Uq-composition factor L in M is the
multiplicity of the (Uq)0-composition factor Lλ in Mλ by Theorem 2.7. Mλ is
a finite dimensional (Uq)0-module. Let I be the kernel of the homomorphism
(Uq)0 → EndC(Mλ) given by the action of (Uq)0. Then (Uq)0/I is a finite
dimensional C algebra and Mλ is a module over (Uq)0/I. Furthermore since

TrM (λ, u) = 0 for all u ∈ I the trace of an element u ∈ (Uq)0 is the same as

the trace of u+ I ∈ (Uq)0/I on Mλ as a (Uq)0/I-module. So if TrM = TrN the
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multiplicity of Lλ in Mλ and Nλ are the same and hence the multiplicity of L
in M is the same as in N . �

We will use the Zariski topology on (C∗)n: V is a closed set if it is the
zero-points of a Laurent polynomial p ∈ C[X±1

1 , . . . , X±1
n ].

Proposition 5.2 Let L be an infinite dimensional admissible simple module of
degree d. Let Σ be a set of commuting roots that is a basis of Q and w ∈ W such
that −Σ ⊂ w(TL). Let FΣ be a corresponding Ore subset. Let λ ∈ Suppess(L).
The set

{b ∈ (C∗)n| w
(
ϕFΣ,b.

(
(wL)FΣ

)
w(λ)

)
is a simple (Uq)0-module}

is a Zariski open set of (C∗)n.

Proof. The (Uq)0-module V := w
(
ϕFΣ,b.

(
(wL)FΣ

)
w(λ)

)
is simple if and only

if the bilinear map Bb(u, v) ∈ (Uq)0 × (Uq)0 7→ Tr

(
uv|

w

(

ϕFΣ,b.
(

(wL)FΣ

)

w(λ)

)

)

has maximal rank d2: The map factors through EndC(V )× EndC(V ) given by
the representation (Uq)0 → EndC(V ) on V . Bb has maximal rank d2 if and only
if the representation is surjective onto EndC(V ) which is equivalent to V being
simple.

For any finite dimensional subspace E ⊂ (Uq)0, the set ΩE of all b such
that Bb|E has rank d2 is either empty or the non-zero points of the Laurent
polynomial detM for some d2 × d2 minor M of the matrix (Bb(ei, ej))i,j where

{ei} is a basis of E. Therefore Ω = ∪EΩE is open. �

For a module M that is a direct sum of modules of finite length we define
Mss to be the unique (up to isomorphism) semisimple module with the same
composition factors as M .

Lemma 5.3 Let L be an infinite dimensional simple admissible Uq-module of
degree d, w ∈ W and Σ = {β1, . . . , βn} ⊂ Φ+ a set of commuting roots that is
a basis of Q such that −Σ ⊂ w(TL). Let FΣ be a corresponding Ore subset to
Σ. Let c ∈ (C∗)n and let L′ be another infinite dimensional Uq-module such
that L′ is contained in w (ϕFΣ,c.(

wL)FΣ)
ss

(i.e. L′ is a composition factor of
w (ϕFΣ,c.(

wL)FΣ)). Assume that Σ′ = {β′
1, . . . , β

′
n} ⊂ Φ+ is another set of

commuting roots that is a basis of Q and w′ ∈ W is such that −Σ′ ⊂ w′(TL′).
Let FΣ′ be a corresponding Ore subset.

Define ai,j ∈ Z by w(w′)−1(β′
i) =

∑n
j=1 ai,jβj and define f : (C∗)n → (C∗)n

by

f(b1, . . . , bn) =

(
n∏

i=1

b
ai,1

i , . . . ,

n∏

i=1

b
ai,n

i

)
.

Then L′ is admissible of degree d and

w′
(
ϕFΣ′ ,b.(

w′

L′)FΣ′

)ss
∼= w

(
ϕFΣ,f(b)c.(

wL)FΣ

)ss

Proof. We will show that Tr
w′

(

ϕF
Σ′ ,b.(

w′
L′)F

Σ′

)ss

= Tr
w(ϕFΣ,f(b)c.(

wL)FΣ)
ss

.
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Let λ ∈ Suppess(L). Then w(λ) ∈ Suppess(
wL). As a (Uq)0-module we have

(
w (ϕFΣ,c.(

wL)FΣ)
)ss ∼=

⊕
i∈Zn

w
(
ϕFΣ,qic.

(
(wL)FΣ

)
w(λ)

)ss
(Corollary 4.20). Let

λ′ ∈ Suppess(L
′). Then L′

λ′ is a (Uq)0-submodule of w
(
ϕFΣ,qjc.

(
(wL)FΣ

)
w(λ)

)ss

for some j ∈ Zn. We can assume j = 0 by replacing c with qjc (note
that we have then (c−1)Σ = w

(
λ′λ−1

)
). So L′

λ′ is a (Uq)0-submodule of

w
(
ϕFΣ,c.

(
(wL)FΣ

)
w(λ)

)ss
. For any other µ ∈ Suppess(L

′) there is a unique

j′µ ∈ Zn such that µ = (w′)−1

((
q−j′µ

)Σ′)
λ′ and a unique jµ ∈ Zn such that

w−1
((

q−jµc−1
)Σ)

λ = µ. For such jµ, L′
µ is a submodule of w

(
ϕFΣ,qjµc.

(
(wL)FΣ

)
w(λ)

)ss
.

f is bijective, f(qZ
n

) = qZ
n

, f(b)Σ = w(w′)−1
(
bΣ′
)

for all b ∈ (C∗)n and

for any µ ∈ Suppess(L
′), f(qj

′
µ) = qjµ . For a Laurent polynomial p, p ◦ f is

Laurent polynomial as well. Since qN
n

is Zariski dense in (C∗)n (Lemma 4.8)
and f is a Laurent polynomial the set D = {qjµc ∈ (C∗)n|µ ∈ Suppess(L

′)} is

Zariski dense. By Proposition 5.2 the (Uq)0-module w
(
ϕFΣ,b.

(
(wL)FΣ

)
w(λ)

)

is simple for all b ∈ Ω for some Zariski open set Ω of (C∗)n. Since D is dense
and Ω is open D ∩ Ω is nonempty. So there exists a µ0 ∈ Suppess(L

′) such that
w
(
ϕFΣ,qjµ0 c

.
(
(wL)FΣ

)
w(λ)

)
is simple and contains the nonzero simple (Uq)0-

module L′
µ0

as a submodule. Thus L′
µ0

∼= w
(
ϕFΣ,qjµ0 c

.
(
(wL)FΣ

)
w(λ)

)
. We

get now from Lemma 4.22 that L′ is admissible of degree d and that for every
µ ∈ Suppess(L

′),

L′
µ
∼=w

(
ϕFΣ,qjµc.

(
(wL)FΣ

)
w(λ)

)

∼=w
(
ϕ
FΣ,f(q

j′µ )c
.
(
(wL)FΣ

)
w(λ)

)
.

By Lemma 4.22, Corollary 4.20 and the definition of j′µ we have for any
µ ∈ Suppess(L

′)

w′

(
ϕ
FΣ′ ,q

j′µ
.
(
(w

′

L′)FΣ′

)
w′(λ′)

)
∼= L′

µ.

Let u ∈ (Uq)0. We see that for b = qj
′
µ

Tru|
w

(

ϕFΣ,f(b)c.
(

(wL)FΣ

)

w(λ)

) = Tru|L′
µ
= Tru|

w′

(

ϕF
Σ′ ,b.((w

′L′)F
Σ′ )w′(λ′)

).

Since b 7→ Tru|
w

(

ϕFΣ,f(b)c.
(

(wL)FΣ

)

w(λ)

)ss and b 7→ Tru|
w′

(

ϕF
Σ′ ,b.((w

′L′)F
Σ′ )w′(λ′)

)ss

are both Laurent polynomials and equal on the Zariski dense subset {qj
′
µ |µ ∈

Suppess(L
′)} they are equal for all b ∈ (C∗)n. Thus by Lemma 5.1

w
(
ϕFΣ,f(b)c.

(
(wL)FΣ

)
w(λ)

)ss
∼= w′

(
ϕFΣ′ ,b.

(
(w

′

L′)FΣ′

)
w′(λ′)

)ss

as (Uq)0-modules. Since (by Corollary 4.20)

w′
(
ϕFΣ′ ,b.(

w′

L′)FΣ′

)ss
∼=
⊕

i∈Zn

w′

(
ϕFΣ′ ,qib.

(
(w

′

L′)FΣ′

)
w′(λ′)

)ss
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and

w
(
ϕFΣ,f(b)c.(

wL)FΣ

)ss ∼=
⊕

i∈Zn

w
(
ϕFΣ,qif(b)c. ((

wL)FΣ)w(λ)

)ss

we get

w′
(
ϕFΣ′ ,b.(

w′

L′)FΣ′

)ss
∼=
⊕

i∈Zn

w′

(
ϕFΣ′ ,qib.

(
(w

′

L′)FΣ′

)
w′(λ′)

)ss

∼=
⊕

i∈Zn

w
(
ϕFΣ,f(qib)c. ((

wL)FΣ)w(λ)

)ss

∼=
⊕

i∈Zn

w
(
ϕFΣ,qif(b)c. ((

wL)FΣ)w(λ)

)ss

∼=w
(
ϕFΣ,f(b)c.(

wL)FΣ

)ss

as (Uq)0-modules. By Theorem 2.7 this implies they are isomorphic as Uq-
modules as well. �

Corollary 4.20 tells us that twisting with an element of the form qi gives us a
module isomorphic to the original module. Thus it makes sense to write ϕFΣ,t.M
for a t ∈ (C∗)n/qZ

n

and a Uq(FΣ)-module M . Just choose a representative for t.
Any representative gives the same Uq(FΣ)-module up to isomorphism.

Let L be an admissible simple module. Assume for a w ∈ W that Σ ⊂ −w(TL)
is a set of commuting roots that is a basis of Q (it is always possible to find such
w and Σ by Lemma 4.15 and Lemma 4.16) and let FΣ be a corresponding Ore
subset. Let ν ∈ X. The Uq-module

w


 ⊕

b∈(C∗)n:bΣ=ν

ϕFΣ,b. (
wL)FΣ




has finite length by Lemma 4.18, Lemma 4.22 and Lemma 4.6.
We define

EXT (L) =


 ⊕

t∈(C∗)n/qZn

w
(
ϕFΣ,t. (

wL)FΣ

)



ss

.

The definition is independent (up to isomorphism) of the chosen w, Σ and FΣ as
suggested by the notation:

Lemma 5.4 Let L be a simple admissible module. Let w,w′ ∈ W and assume
Σ ⊂ −w(TL),Σ

′ ⊂ −w′(TL′) are sets of commuting roots that are both a basis of
Q. Let FΣ, F

′
Σ′ be corresponding Ore subsets. Then


 ⊕

t∈(C∗)n/qZn

w
(
ϕFΣ,t. (

wL)FΣ

)



ss

∼=


 ⊕

t∈(C∗)n/qZn

w′

(
ϕF ′

Σ′ ,t.
(
w′

L
)
F ′

Σ′

)


ss

as Uq-modules.
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Proof. Obviously L is a submodule of
(
w
(
ϕFΣ,1. (

wL)FΣ

))ss
where 1 = (1, . . . , 1).

By Lemma 5.3 this implies that for b ∈ (C∗)n

(
w′

(
ϕFΣ′ ,b.

(
w′

L
)
FΣ′

))ss

∼=
(
w
(
ϕFΣ,f(b). (

wL)FΣ

))ss

for some f with the property that f(qZ
n

) = qZ
n

. So it makes sense to write f(t)
for t ∈ (C∗)n/qZ

n

. Thus

 ⊕

t∈(C∗)n/qZn

w′

(
ϕF ′

Σ′ ,t.
(
w′

L
)
F ′

Σ′

)


ss

∼=


 ⊕

t∈(C∗)n/qZn

w
(
ϕFΣ,f(t). (

wL)FΣ

)



ss

∼=


 ⊕

t∈(C∗)n/qZn

w
(
ϕFΣ,t. (

wL)FΣ

)



ss

since f is bijective. �

Proposition 5.5 Let L be a simple infinite dimensional admissible module. For
x ∈ W :

EXT (xL) ∼= x (EXT (L))

and
EXT (xL) ∼= x (EXT (L)) .

Proof. Let w ∈ W be such that w(FL\F
s
L) ⊂ Φ+ (exists by Lemma 4.15). Let

Σ be a set of commuting roots that is a basis of Q such that −Σ ⊂ w(TL)
(exists by Lemma 4.16) and let FΣ be a corresponding Ore subset. First we

will define EXT ′(L) =
(⊕

t∈(C∗)n/qZn
w−1

(
ϕFΣ,t.(

w−1
L)FΣ

))ss
and show that

EXT ′(L) ∼= EXT (L) as Uq-modules: Going through the proof of Lemma 5.3
and Lemma 5.4 and and replacing Tw−1 and T−1

w−1 with T−1
w and Tw respectively

we get that TrEXT ′(L) = TrEXT (L) so they are isomorphic by Lemma 5.1.
We will show for any α ∈ Π that

EXT (sαL) ∼= sα (EXT (L))

which implies the claim by induction over the length l(x) of x (where l(x) is the
smallest number of simple reflections need to write x, i.e. there is a reduced
expression x = si1 · · · sil(x)

).
So let α ∈ Π and let w and Σ be defined as above. Let w′ = wsα. Note that

w′(FsαL\F
s
sαL) ⊂ Φ+ and −Σ ⊂ TsαL. We split into two cases: If l(w′) < l(w)

then

sα (EXT (L)) =sα




 ⊕

t∈(C∗)n/qZn

w′sα
(
ϕFΣ,t.(

w′sαL)FΣ

)



ss


∼=sα




 ⊕

t∈(C∗)n/qZn

sα
(
w′
(
ϕFΣ,t.(

w′

(sαL))FΣ

))



ss


∼=


 ⊕

t∈(C∗)n/qZn

w′
(
ϕFΣ,t.(

w′

(sαL))FΣ

)



ss

=EXT (sαL).
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If l(w′) > l(w) we get

sα (EXT (L)) ∼=sα
(
EXT ′(L)

)

=sα




 ⊕

t∈(C∗)n/qZn

w−1
(
ϕFΣ,t.(

w−1
L)FΣ

)



ss


∼=


 ⊕

t∈(C∗)n/qZn

(w′)−1
(
ϕFΣ,t.(

(w′)−1
(sαL))FΣ

)



ss

=EXT (sαL).

The second claim is shown similarly. �

Proposition 5.6 Let L be an infinite dimensional admissible simple module of
degree d. If L′ is an infinite dimensional simple submodule of EXT (L) then L′

is admissible of degree d and EXT (L) ∼= EXT (L′).

Proof. Let w ∈ W and let Σ be a set of commuting roots that is a basis of Q
such that Σ ⊂ −w(TL) (possible by Lemma 4.15 and Lemma 4.16). Then by
definition

EXT (L) =


 ⊕

t∈(C∗)n/qZn

w
(
ϕFΣ,t. (

wL)FΣ

)



ss

.

L′ being a submodule of EXT (L) implies that L′ must be a submodule of

(
w
(
ϕFΣ,c. (

wL)FΣ

))ss

for some c ∈ (C∗)n. Let w′ ∈ W and let Σ′ be a set of commuting roots that is a
basis of Q such that Σ′ ⊂ −w′(TL′). By Lemma 5.3 L′ is admissible of degree d
and there exists a bijective map f : (C∗)n → (C∗)n such that f(qZ

n

) = qZ
n

and

(
w′

(
ϕFΣ′ ,b.

(
w′

L′
)
FΣ′

))ss

∼=
(
w
(
ϕFΣ,f(b)c. (

wL)FΣ

))ss
.

Since f(qZ
n

) = qZ
n

it makes sense to write f(t) for t ∈ (C∗)n/qZ
n

. So writing
tc = qZ

n

c ∈ (C∗)n/qZ
n

we get

EXT (L′) =


 ⊕

t∈(C∗)n/qZn

w′

(
ϕFΣ,t.

(
w′

(L′)
)
FΣ′

)


ss

∼=


 ⊕

t∈(C∗)n/qZn

w
(
ϕFΣ,f(t)tc . (

wL)FΣ

)



ss

∼=


 ⊕

t∈(C∗)n/qZn

w
(
ϕFΣ,t. (

wL)FΣ

)



ss

=EXT (L)

since the assignment t 7→ f(t)tc is bijective. �
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Lemma 5.7 Let f ∈ C[X±1
1 , . . . , X±1

n ] be a nonzero Laurent polynomial. There
exists b1, . . . , bn ∈ C∗ such that for all i1, . . . , in ∈ Z

f(qi1b1, . . . , q
inbn) 6= 0.

Proof. Assume f = X−N1
1 · · ·X−Nn

n g with g ∈ C[X1, . . . , Xn]. g has coefficients
in some finitely generated (over Q) subfield k of C. Let b1, . . . bn be generators
of n disjoint extensions of k of degree > deg g. The monomials bm1

1 · · · bmn
n ,

0 ≤ mi ≤ deg g are all linearly independent over k. Since qi 6= 0 for i ∈ Z the
same is true for the monomials (qi1b1)

m1 · · · (qinbn)
mn . So g(qi1b1, . . . , q

inbn) 6= 0,
hence f(qi1b1, . . . , q

inbn) 6= 0. �

Theorem 5.8 Let L be an infinite dimensional admissible simple modules of
degree d. Then EXT (L) contains at least one simple torsion free module.

Proof. Let λ ∈ w(wtL). Then as a (Uq)0-module

EXT (L) =


w


 ⊕

b∈(C∗)n

ϕFΣ,b.
(
(wL)FΣ

)
λ






ss

for some w ∈ W and some Ore subset FΣ corresponding to a set of com-
muting roots Σ that is a basis of Q. Let u ∈ (Uq)0. Then the map b 7→
detu|

w
(

ϕFΣ,b.
(

(wL)FΣ

)

λ

) = detϕFΣ,b(T
−1
w (u))|(

(wL)FΣ

)

λ

is Laurent polynomial.

Let p(b) =
∏

β∈Σ detEβFβ |w
(

ϕFΣ,b.
(

(wL)FΣ

)

λ

). p is a Laurent polynomial by the

above. By Lemma 5.7 there exists a c ∈ (C∗)n such that p(b) 6= 0 for all b ∈ qZ
n

c

which implies that EβFβ acts injectively on the module L′ := w
(
ϕFβ ,c.(

wL)FΣ

)

for all β ∈ Σ. Since Fβ acts injectively on the module by construction this
implies that Eβ acts injectively as well. So we have ±Σ ⊂ TL′ . Any simple
submodule V of L′ is admissible of degree d by Lemma 5.3 and since Fβ and Eβ

act injectively we get dimVλ = d = dimL′
λ for any λ ∈ wtL′ thus V = L′. So

L′ is a simple module. Using Proposition 2.5 it is easy to see that L′ is torsion
free since ±Σ ⊂ TL′ and Σ is a basis of Q. �

Proposition 5.9 Let L be an infinite dimensional admissible simple module.

Let β ∈ Φ+. If −β ∈ TL then EXT (L) contains
(⊕

t∈C∗/qZ ϕFβ ,t.LFβ

)ss
as a

Uq-submodule.

Proof. Let w ∈ W and Σ = {β1, . . . , βn} be such that Σ is a set of commuting
roots that is a basis of Q and −Σ ⊂ w(TL) and FΣ a corresponding Ore subset
(always possible by Lemma 4.15 and Lemma 4.16).

We have w(β) =
∑n

i=1 aiβi for some ai ∈ Z. Set x = F a1

β1
· · ·F an

βn
∈ Uq(FΣ).

Let Uq(x) be the Uq-subalgebra generated by x in Uq(FΣ). x is playing the role
of Fβ and that is why the notation resembles the notation for Ohre localization.
The Ohre localization of Uq in x does not neccesarily make sense though because
x is not neccesarily an element of Uq.

Let V be the Uq(x)-submodule of (wL)FΣ
generated by 1 ⊗ wL. For any

t ∈ C∗/qZ

w
(
ϕFΣ,(ta1 ,...,tan ).V

)
:=
{
ϕFΣ,(ta1 ,...,tan ).v ∈ w

(
ϕFΣ,(ta1 ,...,tan ).(

wL)FΣ

)
|v ∈ V

}
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is a Uq(x)-submodule of w
(
ϕFΣ,(ta1 ,...,tan ).(

wL)FΣ

)
: To show this we show

that for u ∈ Uq(x) and c ∈ C∗, ϕFΣ,(ca1 ,...,can )(u) ∈ Uq(x). We know that
ϕFΣ,(ca1 ,...,can )(u) ∈ Uq(FΣ)[c

±1] and we also see by construction that for c = qi,
i ∈ Z, we have ϕFΣ,(ca1 ,...,can )(u) = x−iuxi ∈ Uq(x). Choose a vector space basis
of Uq(x), {ui}i∈I and extend to a basis {ui, u

′
j}i∈I,j∈J of Uq(FΣ) where I and J are

some index sets. Then for u ∈ Uq(x) we have ϕFΣ,(ca1 ,...,can )(u) =
∑

i∈I′ uipi(c)+∑
j∈J′ u′

jp
′
j(c) for some finite I ′ ⊂ I and J ′ ⊂ J and some pi, p

′
j ∈ C[X±1]. We

see that for j ∈ J ′, p′j(q
i) = 0 for all i ∈ Z so p′j = 0. Hence ϕFΣ,(ca1 ,...,can )(u) =∑

i∈I′ uipi(c) ∈ Uq(x). This shows that w
(
ϕFΣ,(ta1 ,...,tan ).V

)
is a submodule of

w
(
ϕFΣ,(ta1 ,...,tan ).(

wL)FΣ

)
. Set

V =


 ⊕

t∈C∗/qZ

w
(
ϕFΣ,(ta1 ,...,tan ).V

)



ss

.

Clearly V is a Uq-submodule of EXT (L). We claim that V ∼=
(⊕

t∈C∗/qZ ϕFβ ,t.LFβ

)ss

as Uq-modules. We will show this using Lemma 5.1.
Note that for λ ∈ wtV and i ∈ Z we have

w
(
ϕFΣ,((qi)a1 ,...,(qi)an ).Vλ

)
∼= w

(
V
q−i

∑n
k=1

akβkλ

)

as a (Uq)0-module by Corollary 4.20.

We have wtV = (C∗)β wtL = wt
(⊕

t∈C∗/qZ ϕFβ ,t.LFβ

)ss
. Let λ ∈ wtL be

such that dimLλ = maxi∈Z{dimLqiβλ} then Vw(λ)
∼= (wL)w(λ)

∼= w(Lλ) as a

(Uq)0-module by Lemma 4.22 and we have for ν ∈ (C∗)βλ:

Vν =


 ⊕

c∈C∗:cw(β)=w(ν−1λ)

w
(
ϕFΣ,(ca1 ,...,can ).Vw(λ)

)



ss

so for u ∈ (Uq)0:

Tru|Vν
=

∑

c∈C∗:cβ=ν−1λ

Tr
(
ϕFΣ,(ca1 ,...,can )(T

−1
w (u))

)
|Vw(λ)

(note that cw(β) = w(ν−1λ) if and only if cβ = ν−1λ since cw(β) = w(cβ)).
Set p(c) = Tr

(
ϕFΣ,(ca1 ,...,can )(T

−1
w (u))

)
|Vw(λ)

. p is Laurent polynomial in c

and p(qi) = Tru|L
q−iβλ

for i ∈ N.
On the other hand we can show similarly that

Tru|((
⊕

t∈C∗/qZ
ϕFβ,t.LFβ )

ss
)
ν

=
∑

c∈C∗:cβ=ν−1λ

Tr
(
ϕFβ ,c(u)

)
|(LFβ

)λ .

Similarly Tr
(
ϕFβ ,c(u)

)
|(LFβ

)λ is Laurent polynomial in c and equal to Tru|L
q−iβλ

for c = qi, i ∈ N. So Tr
(
ϕFβ ,c(u)

)
|(LFβ

)λ = p(c). We conclude that TrV =

Tr((
⊕

t∈C∗/qZ
ϕFβ,t.LFβ )

ss

so V ∼=
(⊕

t∈C∗/qZ ϕFβ ,t.LFβ

)ss
as Uq-modules by Lemma 5.1.�
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For any λ ∈ X there is a unique simple highest weight module which we call
L(λ). It is the unique simple quotient of the Verma module M(λ) := Uq⊗U

≥0
q

Cλ

where Cλ is the 1-dimensional U≥0
q -module with U+

q acting trivially and U0
q

acting like λ. Let ρ = 1
2

∑
β∈Φ+ β. In the following we use the dot action on X.

For w ∈ W , w.λ := q−ρw(qρλ).

Proposition 5.10 Let λ ∈ X be such that L(λ) is admissible. Let α ∈ Π.

Assume λ(Kα) 6∈ ±qN. Let a = 2
(α|α) . If a = 1

2 choose a squareroot λ(Kα)
1
2 of

λ(Kα). Then

• −α ∈ TL(λ).

• L(sα.λ) is admissible.

• sαL(sα.λ) is a subquotient of the Uq-module L(λ)Fα .

• L(sα.λ) and sαL(λ) are subquotients of the Uq-module. ϕFα,λ(Kα)a .L(λ)Fα
.

Proof. λ(Kα) 6∈ ±qNα implies that −α ⊂ TL(λ) since for i ∈ N:

E(i)
α F (i)

α vλ =

i∏

j=1

qj−1
α λ(Kα)− q1−j

α λ(Kα)
−1

qjα − q−j
α

vλ.

This is only zero for an i ∈ N when λ(Kα) ∈ ±qNα.
Let vλ ∈ L(λ) be a highest weight vector. Denote the vector ϕFα,λ(Kα)a .Fαvλ ∈

ϕFα,λ(Kα).L(λ)FΣ
as vsα.λ. This is a highest weight vector of weight sα.λ: For

µ ∈ Q:

Kµvsα.λ =KµϕFα,λ(Kα)a .Fαvλ

=ϕFα,qλ(Kα)a .
(
(qλ(Kα)

a)
−(µ|α)

λ(Kµ)Fαvλ

)

=q−(µ|α)λ

(
K

−〈µ,α∨〉
α Kµ

)
ϕFα,qαλ(Kα).Fαvλ

=q−(µ|α)(sαλ)(Kµ)vsα.λ

=sα.λ(Kµ)vsα.λ.

For α′ ∈ Π\{α}
Eα′ϕFα,λ(Kα)a .vλ = ϕFα,λ(Kα)a .Eα′vλ

and for α′ = α we have by the formula in the proof of Lemma 4.9

EαϕFα,λ(Kα)a .Fαvλ

=ϕFα,λ(Kα)a .FαϕFα,qλ(Kα)a(Eα)vλ

=ϕFα,λ(Kα)a .Fα

(
Eα + F−1

α

qα(qαλ(Kα))
−1Kα − q−1

α qαλ(Kα)K
−1
α

(qα − q−1
α )2

)
vλ

=0.

So vsα.λ is a highest weight vector of weight sα.λ hence L(sα.λ) is a subquotient
of ϕFα,λ(Kα)a .L(λ)Fα

. Since L(sα.λ) is a subquotient of ϕFα,λ(Kα)a .L(λ)Fα
it is

admissible by Lemma 4.22.
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Consider sα
(
ϕFα,λ(Kα)a .L(λ)Fα

/(Uqvsα.λ)
)

and the vector

v′ = F−1
α vsα.λ + Uqvsα.λ ∈ sα

(
ϕFα,λ(Kα)a .L(λ)Fα

/(Uqvsα.λ)
)
.

Then Eβv
′ = 0 for all β ∈ Π: First of all

Eα · v′ =T−1
sα (Eα)v

′

=−KαFαv
′

=−Kαvsα.λ + Uqvsα.λ

=0.

For β ∈ Π\{α}

Eβ · v′ =T−1
sα (Eβ)v

′.

=

−〈β,α∨〉∑

i=0

(−1)iq−i
α E(i)

α EβE
(−〈β,α∨〉−i)
α v′

=(−1)〈β,α
∨〉q

〈β,α∨〉
α E

(−〈β,α∨〉)
α Eβv

′

=(−1)〈β,α
∨〉q

〈β,α∨〉
α E

(−〈β,α∨〉)
α F−1

α Eβvsα.λ + Uqvsα.λ

=0

since Eαv
′ = 0 and Eβvsα.λ = 0 by the above.

So v′ is a highest weight vector and v′ has weight λ: For µ ∈ Q:

Kµ · v′ =Ksαµv
′

=KsαµF
−1
α vsα.λ + Uqvsα.λ

=q(sα(µ)|α)sα.λ(Ksαµ)F
−1
α vsα.λ + Uqvsα.λ

=λ(Kµ)F
−1
α vsα.λ + Uqvsα.λ.

So L(λ) is a subquotient of sα(ϕFα,λ(Kα)a .L(λ)Fα
) hence sαL(λ) is a subquo-

tient of ϕFα,λ(Kα)a .L(λ)Fα
. Consider the vector

v′′ = F−1
α vλ + Uqvλ ∈ sα (L(λ)Fα

/(Uqvλ)) .

By an argument analog to above we get Eβ · v′′ = 0 for all β ∈ Π\{α} since Eβ

and F−1
α commutes and vλ is a highest weight vector. We get Eα · v′′ = 0 by

the following:

Eα · v′′ =T−1
sα (Eα)v

′′

=−KαFαv
′′

=− q−2FαKαF
−1
α vλ + Uqvλ

=0.

So v′′ is a highest weight vector in sα (L(λ)Fα
/(Uqvλ)). v′′ has weight sα.λ:

For µ ∈ Q:

Kµ · v′′ =Ksαµv
′′

=KsαµF
−1
α vλ + Uqvλ

=q(sα(µ)|α)λ(Ksαµ)v
′′

=(q−αsαλ)(Kµ)v
′′.
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Hence L(sα.λ) is a subquotient of sαL(λ)FΣ
and therefore sαL(sα.λ) is a

subquotient of L(λ)FΣ
. �

Lemma 5.11 Let λ ∈ X be such that L(λ) is an infinite dimensional admissible
module of degree d. Let α ∈ Π. Then

EXT (L(λ)) ∼= EXT (sαL(λ))

and if λ(Kα) 6∈ ±qNα then EXT (L(λ)) contains L(sα.λ) and sαL(sα.λ) as Uq-
submodules, where sα.λ := q−ρsα(q

ρλ) = q−αsαλ.

Proof. Assume first that λ(Kα) 6∈ ±qNα. By Proposition 5.10 the Uq-module⊕
t∈C∗/qZ ϕFα,t.L(λ)Fα

contains L(sα.λ),
sαL(λ) and sαL(sα.λ) as subquotients.

By Proposition 5.9 and Proposition 5.6 this finishes the proof of the claim when
λ(Kα) 6∈ ±qNα.

Assume now that λ(Kα) = ±qkα for some k ∈ N: If λ(Kα) = qkα it is easy to
prove that L(λ) ∼= sαL(λ). Assume from now on that λ(Kα) = −qkα. We have

EXT (L(λ)) =


 ⊕

t∈(C∗)/qZn

ϕFΣ,t.L(λ)FΣ




ss

for some set of commuting roots Σ = {β1, . . . , βn} that is a basis of Q with
−Σ ⊂ TL(λ). Since Σ is a basis of Q there exists a1, . . . , an ∈ Z such that
α =

∑n
i=1 aiβi. Let vλ be a highest weight vector in L(λ). We will show that

v0 := ϕ
FΣ,((−1)a

′
1 ,...,(−1)a

′
n )
.F i

αvλ ∈ sαEXT (L(λ)) is a highest weight vector of

weight λ where a′i = 2ai

(α|α) . This will imply EXT (sαL(λ)) ∼= EXT (L(λ)) by

Proposition 5.6. The weight of v0: Let µ ∈ Q:

Kµ · v0 =Ksα(µ)ϕFΣ,((−1)a
′
1 ,...,(−1)a

′
n )
.F i

αvλ

=(−1)(
∑n

i=1 a′
iβi|µ)qi(α|µ)λ(KµK

−〈µ,α∨〉
α )ϕ

FΣ,((−1)a
′
1 ,...,(−1)a

′
n )
.F i

αvλ

=(−1)〈µ,α
∨〉q

i〈µ,α∨〉
α (−qiα)

−〈µ,α∨〉λ(Kµ)v0

=λ(Kµ)v0.

By Proposition 4.10 ϕ
Fβ ,(−1)

2
(β|β)

(Eα′) = Eα′ and ϕ
Fβ ,(−1)

2
(β|β)

(Fα′) = ±Fα′

for any α′ ∈ Π and any β ∈ Φ+. So ϕ
FΣ,((−1)a

′
1 ,...,(−1)a

′
n )
(Eβ), β ∈ Π\{α} and

ϕ
FΣ,((−1)a

′
1 ,...,(−1)a

′
n )
(Fα) kills F i

αvλ ∈ L(λ) because Eβ and Fα does. Hence Eβ ,

β ∈ Π kills v0 by the same argument as in the proof of Proposition 5.10 when
proving that v′ is a highest weight vector. �

Theorem 5.12 Let L be an infinite dimensional admissible simple module of
degree d. Then the Uq-module EXT (L) contains an infinite dimensional ad-
missible simple highest weight module L(λ) of degree d for some weight λ ∈ X.
Furthermore for any x ∈ W :

xEXT (L) ∼= EXT (L).

Proof. Let w ∈ W be such that w(FL\F
s
L) ⊂ Φ+ and w(TL\T

s
L) ⊂ Φ−. Set

L′ = w−1
L (then w−1

L′ = L). We will show the result first for L′ by induction

28



Irreducible quantum group modules with finite dimensional weight

spaces. II

on |T+
L′ |. If |T+

L′ | = 0 then L′ is itself a highest weight module. Assume |T+
L′ | > 0.

Let β ∈ T+
L′ . Then β ∈ T s

L′ since TL′\T s
L′ ⊂ Φ−. So −β ∈ TL′ . Then by

Lemma 4.23 there exists a b ∈ C∗ such that ϕFβ ,b.L
′
Fβ

contains a Uq-submodule

L′′ with TL′′ ⊂ TL′ and β 6∈ TL′′ . By Proposition 5.9 and Proposition 5.6
EXT (L′) ∼= EXT (L′′) as Uq-modules. By induction EXT (L′′) contains an
infinite dimensional admissible simple highest weight module L(λ) for some λ.
So EXT (L′) ∼= EXT (L(λ)) by Proposition 5.6. Choose a reduced expression
sir · · · si1 for w−1. By Proposition 5.5 and Lemma 5.11

EXT (L) ∼=EXT (w
−1

L′)

∼=w−1

EXT (L′)

∼=w−1

EXT (L(λ))
∼=sir ···si2EXT (si1L(λ))
∼=sir ···si2EXT (L(λ))

...
∼=EXT (L(λ)).

So EXT (L) contains a simple highest weight module L(λ). For any x ∈ W we
can do as above to show xEXT (L) ∼= EXT (xL(λ)) ∼= EXT (L(λ)) ∼= EXT (L).�

Corollary 5.13 Let L be a simple torsion free module. Then there exists a set
of commuting roots Σ that is a basis of Q with corresponding Ore subset FΣ, a
λ ∈ X and b ∈ (C∗)n such that −Σ ⊂ TL(λ) and L ∼= ϕFΣ,b.L(λ)FΣ

Proof. By Theorem 5.12 EXT (L) ∼= EXT (L(λ)) for some λ ∈ X. So L is a
Uq-submodule of EXT (L(λ)). Let Σ be a set of commuting roots such that
−Σ ⊂ L(λ) (exists by Lemma 4.16 by setting w = e, the neutral element in W )
then

EXT (L(λ)) =


 ⊕

t∈(C∗)n/qZn

ϕFΣ,t.L(λ)FΣ




ss

.

Since L is simple we must have that L is a submodule of ϕFΣ,b.L(λ)FΣ for some
b ∈ (C∗)n. By Proposition 5.6 and Lemma 4.22 dim (ϕFΣ,b.L(λ)FΣ

)λ = dimLλ

for all λ ∈ wtL so we have L ∼= ϕFΣ,b.L(λ)FΣ
. �

So to classify torsion free simple modules we need to classify the admissible
infinite dimensional simple highest weight modules L(λ) and then we need to
determine the t ∈ (C∗)n/qZ

n

such that ϕFΣ,t.L(λ)FΣ
is simple. Furthermore

we have that if there exists an admissible infinite dimensional simple module
then there exists a torsion free simple module. In the classical case torsion free
modules only exists if g is of type A or C so we expect the same to be true in
the quantum group case. We show this in Section 8.5.

6 Classification of simple torsion free Uq(sl2)-modules

In this section let g = sl2. In this case there is a single simple root α. It is
natural to identify X with C∗ via λ 7→ λ(Kα). We define F = Fα, E = Eα and
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K±1 = K±1
α . Let λ ∈ C∗\{±qN} and consider the simple highest weight module

L(λ). Let 0 6= v0 ∈ L(λ)λ. wtL = q−2Nλ so L(λ) is an admissible infinite
dimensional highest weight module. Thus EXT (L(λ)) contains a torsion free
module by Theorem 5.8. Let b ∈ C∗. We will describe the action on the module
ϕF,b.L(λ)(F ) and determine exactly for which b’s ϕF,b.L(λ)(F ) is torsion free.

Let vi = F iϕF,b.v0 for all i ∈ Z. Then we have for i ∈ Z

Fvi =vi+1

K±1vi =q−2ib∓2λvi

Evi =
(qib− q−ib−1)(q1−ib−1λ− qi−1bλ−1)

(q − q−1)2
vi−1.

We see that unless b = ±qi or b = ±qiλ for some i ∈ Z then ϕF,b.L(λ)(F ) is
torsion free. In this case we see that ϕF,−b = ϕF,b since for all u ∈ Uq(sl2),
ϕF,b(u) is Laurent polynomial in b2.

So in this case EXT (L(λ)) contains a maximum of four different sim-
ple submodules which are not torsion free: We have (ϕF,±qi .L(λ)(F ))

ss ∼=
(L(λ)(F ))

ss ∼= L(λ) ⊕ sαL(sα.λ) (which can be seen directly from the calcu-
lations but also follows from Corollary 4.20 and the fact that ϕF,−b = ϕF,b) and
(ϕF,±qiλ.L(λ)(F ))

ss ∼= (L(sα.λ)(F ))
ss ∼= L(sα.λ)⊕

sαL(λ) if λ 6∈ ±qZ.

The weights of ϕF,b.L(λ)(F ) are b−α wtL(λ)(F ) = q2Zb−2λ. Suppose we want
to find a torsion free Uq(sl2)-modules with integral weights. Then we just need to
find λ, b ∈ C∗ such that λ 6∈ ±qZ≥0 , b 6∈ ±qZ and b 6∈ ±qZλ such that b−2λ ∈ qZ.
For example choose a square root q1/2 of q and set λ = q−1 and b = q1/2. Then
we have a torsion free module L = spanC {vi|i ∈ Z} with action given by:

Fvi =vi+1

Kvi =q−2i−2vi

Evi =
(q1/2+i − q−1/2−i)(q−1/2−i − qi+1/2)

(q − q−1)2
vi−1

=
q(q−i−1 − qi)2

(q − q−1)2
vi−1.

In this paper we only focus on quantized enveloping algebras over C but note
that we can define, for a general field F with q ∈ F\{0} a non-root of unity, a
simple torsion free UF(sl2)-module with integral weights by the above formulas
(here UF(sl2) = UA ⊗A F where F is considered an A-algebra by sending v to q).

7 An example for Uq(sl3)

In this section we will show how we can construct a specific torsion free simple
module for Uq(sl3). In Section 9 we classify all torsion free Uq(sln)-modules with
n ≥ 3 so this example is of course included there. If you are only interested in
the general classification you can skip this section but the calculations in this
section gives a taste of the calculations needed in the general case in Section 9
and they show a phenomona that does not happen in the classical case.

Let α1 and α2 be the two simple roots of the root system. We will consider the
set of commuting roots Σ = {β1, β2} where β1 = α1 and β2 = α1+α2. Set Fβ1 :=
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Fα1
and Fβ2

:= Ts1(Fα2
) = Fα2

Fα1
−qFα1

Fα2
= [Fα2

, Fα1
]q. We have (β1|β2) =

1 and 0 = [Fβ2
, Fβ1

]q = Fβ2
Fβ1

− q−1Fβ1
Fβ2

or equivalently Fβ1
Fβ2

= qFβ2
Fβ1

.
Let λ ∈ X be determined by λ(Kα1

) = q−1 and λ(Kα2
) = 1. Then M(sα1

.λ)
is a submodule of M(λ) and L(λ) = M(λ)/M(sα2 .λ) = M(λ)/M(q−α2λ) is
admissible of degree 1. Let ξ = e2πi/3. We will show that ϕFΣ,(ξ,ξ).L(λ)FΣ is a
torsion free module. We have here a phenomona that does not happen in the
classical case: wtL(λ)FΣ

= wtϕFΣ,(ξ,ξ).L(λ)FΣ
but L(λ)FΣ

6∼= ϕFΣ,(ξ,ξ).L(λ)FΣ

as Uq-modules since one is simple and torsion free and the other isn’t (compare
to [Mat00, Section 10] where Mathieu classifies the torsion free simple modules
by determining for a coherent family M for which cosets t ∈ h∗/Q, M[t] is
torsion free).

We will show that Eα1
and Eα2

act injectively on the module ϕFΣ,(ξ,ξ).L(λ)FΣ
.

So we need to calculate ϕFΣ,(ξ,ξ)(Eα1
) and ϕFΣ,(ξ,ξ)(Eα2

). ϕFΣ,(ξ,ξ) = ϕFβ1
,ξ ◦

ϕFβ2
,ξ. We have

[Eα1 , Fβ2 ] =Fα2 [Eα1 , Fα1 ]− q[Eα1 , Fα1 ]Fα2

=Fα2

Kα1
−K−1

α1

q − q−1
− qFα2

qKα1
− q−1K−1

α1

q − q−1

=Fα2

Kα1
− q2Kα1

q − q−1

=− Fα2q
q − q−1

q − q−1
Kα1

=− qFα2
Kα1

.

We can show by induction that

[Eα1
, F j

β2
] =− q2−j [j]F j−1

β2
Fα2

Kα1

for any j ∈ N. Using that ϕFβ2
,b(Eα1) is Laurent polynomial and equal to

F−j
β2

Eα1
F j
β2

for b = qj we get

ϕFβ2
,b(Eα1) =Eα1 − q2b−1 b− b−1

q − q−1
F−1
β2

Fα2Kα1 .

We have Fβ2
Fβ1

= q−1Fβ1
Fβ2

so F−i
β1

Fβ2
F i
β1

= q−iFβ2
thus ϕFβ1

,b(F
−1
β2

) = bF−1
β2

.
We have

ϕFα1
,b(Fα2) =bFα2 −

b− b−1

q − q−1
F−1
α1

(qFα1Fα2 − Fα2Fα1)

=bFα2
+

b− b−1

q − q−1
F−1
α1

Fβ2
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and

ϕFβ1
,b1(ϕFβ2

,b2(Eα1))

=ϕFα1
,b1

(
Eα1

− q2b−1
2

b2 − b−1
2

q − q−1
F−1
β2

Fα2
Kα1

)

=Eα1 + F−1
α1

(b1 − b−1
1 )(qb−1

1 Kα1
− q−1b1K

−1
α1

)

(q − q−1)2

− q2b−1
2

b2 − b−1
2

q − q−1
b1F

−1
β2

(
b1Fα2

+
b1 − b−1

1

q − q−1
F−1
α1

Fβ2

)
b−2
1 Kα1

=Eα1 + F−1
α1

(b1 − b−1
1 )(qb−1

1 Kα1
− q−1b1K

−1
α1

)

(q − q−1)2

− q2b−1
2

b2 − b−1
2

q − q−1
F−1
β2

Fα2
Kα1

− qb−1
1 b−1

2

(b2 − b−1
2 )(b1 − b−1

1 )

(q − q−1)2
F−1
α1

Kα1

=Eα1
+ b−1

2 F−1
α1

(b1 − b−1
1 )(qb−1

1 b−1
2 Kα1 − q−1b1b2K

−1
α1

)

(q − q−1)2

− q2b−1
2

b2 − b−1
2

q − q−1
F−1
β2

Fα2Kα1 .

Let v′λ be a highest weight vector in L(λ) and set vλ = 1⊗ v′λ ∈ L(λ)FΣ
. We

have Fα2vλ = 0 by construction so we have

ϕFΣ,(b1,b2)(Eα1
)vλ =b−1

2

(b1 − b−1
1 )(b−1

1 b−1
2 − b1b2)

(q − q−1)2
F−1
α1

vλ.

ϕFΣ,(c1,c2).L(λ)FΣ is spanned by the elements F i
β1
F j
β2
ϕFΣ,(c1,c2).vλ, i, j ∈ Z

because every weight space is one-dimensional and F i
β1
F j
β2

acts injectively. Since

F−j
β2

F−i
β1

Eα1
F i
β1
F j
β2

=F−i
β1

F−j
β2

Eα1
F j
β2
F i
β1

=ϕFβ1
,qi(ϕFβ2

,qj (Eα1
))

=ϕFΣ,(qi,qj)(Eα1
)

we have

Eα1
F i
β1
F j
β2
ϕFΣ,(c1,c2).vλ

=F i
β1
F j
β2
ϕFΣ,(qi,qj)(Eα1

)ϕFΣ,(c1,c2).vλ

=F i
β1
F j
β2
ϕFΣ,(c1,c2).ϕFΣ,(qic1,qjc2)(Eα1)vλ

=q−jc−1
2

(qic1 − q−ic−1
1 )(q−i−jc−1

1 c−1
2 − qi+jc1c2)

(q − q−1)2
F i
β1
F j
β2
ϕFΣ,(c1,c2).F

−1
α1

vλ

=
(qic1 − q−ic−1

1 )(q−i−jc−1
1 c−1

2 − qi+jc1c2)

(q − q−1)2
F i−1
β1

F j
β2
ϕFΣ,(c1,c2).vλ.

This is only zero when c1 = ±q−i or c1c2 = ±q−i−j . Set c1 = c2 = e2πi/3 =: ξ.
Then we have shown that Eα1

acts injectively on ϕFΣ,(ξ,ξ).L(λ)FΣ
.
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Now we will show that Eα2
acts injectively on FΣ,(ξ,ξ).L(λ)FΣ

. We can show
by induction that

[Eα2 , F
j
β2
] =[j]Fα1F

j−1
β2

K−1
α2

so ϕFβ2
,b(Eα2) = Eα2 + b b−b−1

q−q−1Fα1F
−1
β2

K−1
α2

and

ϕFΣ,(b1,b2)(Eα2
) =ϕFβ1

,b1(ϕFβ2
,b2(Eα2

))

=Eα2
+ b2

b2 − b−1
2

q − q−1
Fα1

F−1
β2

K−1
α2

.

Thus

Eα2
F i
β1
F j
β2
ϕFΣ,(c1,c2).vλ =F i

β1
F j
β2
ϕFΣ,(qi,qj)(Eα2

)ϕFΣ,(c1,c2).vλ

=F i
β1
F j
β2
ϕFΣ,(c1,c2).ϕFΣ,(qic1,qjc2)(Eα2)vλ

=F i
β1
F j
β2
ϕFΣ,(c1,c2).c2

qjc2 − q−jc−1
2

q − q−1
Fα1F

−1
β2

K−1
α2

vλ

=q−j−1c2
qjc2 − q−jc−1

2

q − q−1
F i+1
β1

F j−1
β2

ϕFΣ,(c1,c2).vλ.

We see that this is nonzero only if c2 = ±q−j so again setting c1 = c2 = ξ ensures
that this is nonzero.

We have shown that the Uq-module ϕFΣ,(ξ,ξ).L(λ)FΣ has a basis F i
β1
F j
β2
ϕFΣ,(ξ,ξ).vλ,

i, j ∈ Z and we have

Fβ1
F i
β1
F j
β2
ϕFΣ,(ξ,ξ).vλ =F i+1

β1
F j−1
β2

ϕFΣ,(ξ,ξ).vλ

Fβ2
F i
β1
F j
β2
ϕFΣ,(ξ,ξ).vλ =q−jF i

β1
F j+1
β2

ϕFΣ,(ξ,ξ).vλ

Eα1F
i
β1
F j
β2
ϕFΣ,(ξ,ξ).vλ =C1F

i−1
β1

F j
β2
ϕFΣ,(ξ,ξ).vλ

Eα1
Eα2

F i
β1
F j
β2
ϕFΣ,(ξ,ξ).vλ =C2F

i
β1
F j−1
β2

ϕFΣ,(ξ,ξ).vλ

for some nonzero constants C1, C2 ∈ C∗. We see that any of the basis vec-
tors F i

β1
F j
β2
ϕFΣ,(ξ,ξ).vλ can be mapped injectively to any other basis vector

F i′

β1
F j′

β2
ϕFΣ,(ξ,ξ).vλ by elements of Uq so ϕFΣ,(ξ,ξ).L(λ)FΣ is a simple module.

The module is torsion free by Proposition 2.5.

8 Classification of admissible simple highest weight

modules

8.1 Preliminaries

In this section we prove some preliminary results with the goal to classify all
admissible simple highest weight modules. We will only focus on non-integral
weights since we have the following theorem from [AM15]:

Theorem 8.1 Assume q ∈ C\{0} is transcendental. Let λ : U0
q → C be a

weight such that λ(Kα) = qiβ for some i ∈ Z for every α ∈ Π - i.e. λ ∈ qQ. Say
λ = qµ, µ ∈ Q. Let LC(µ) denote the simple highest weight g-module of highest
weight µ. Then the character of L(λ) and LC(µ) are equal - i.e. for any ν ∈ Q,
dimL(λ)qνλ = dimLC(µ)ν+µ.
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Proof. [AM15, Corollary 6.3]. �

Extending to modules which are not of type 1 is done in the usual way (cf.
e.g. [Jan96, Section 5.1–5.2]). The above theorem implies that the integral
admissible simple highest weight modules can be classified from the classification
of the classical admissible simple highest weight modules when q is transcendental.
Hence we need only to consider weights λ ∈ X such that λ(Kα) 6∈ ±qZ for at
least one α ∈ Π in this case. So in the rest of the paper we will restrict our
attention to the case when q is transcendental. If a similar theorem is true for any
non-root-of-unity q then the results in this paper extend to all non-root-of-unities
but the author is not aware of any such result.

Theorem 8.2 Let λ ∈ X. Then there exists a filtration of M(λ), M(λ) ⊃
M1 ⊃ · · · ⊃ Mr such that M1 is the unique maximal submodule of M(λ) and

r∑

i=1

chMi =
∑

β∈Φ+

qρλ(Kβ)∈±q
Z>0
β

chM(sβ .λ)

The filtration is called the Jantzen filtration and the formula is called the Jantzen
sum formula.

Proof. This is proved in [Jos95, Section 4.1.2-4.1.3]. A proof using twisting
functors can also be found in [Ped15b, Theorem 6.3]. �

Definition 8.3 Let λ ∈ X.

A(λ) = {α ∈ Π|λ(Kα) 6∈ ±qNα}.

Let γ ∈ Π.

D(γ) = {β ∈ Φ+|β =
∑

α∈Π

mαα, mγ > 0}.

Lemma 8.4 Let λ ∈ X. Let γ ∈ Π be such that γ ∈ A(λ). Then −D(γ) ⊂
TL(λ).

Proof. Let β =
∑

α∈Π mαα ∈ D(γ). We prove by induction over htβ =∑
α∈Π mα that −β ∈ TL(λ). If htβ = 1 then β = γ and −γ ∈ TL(λ) by

Proposition 5.10.
Assume htβ > 1. Then β − α ∈ Φ+ for some α ∈ Π. We have either α = γ

or β − α ∈ D(γ). In either case we get β = β′ + β′′ for some β′, β′′ ∈ Φ+ with
β′ ∈ D(γ) and htβ′ < htβ. By induction −β′ ∈ TL(λ). If −β ∈ FL(λ) then
−β′ = −β + β′′ ∈ FL(λ) since Φ+ ⊂ FL(λ) and FL(λ) is closed (Proposition 2.6).
A contradiction. So −β ∈ TL(λ). �

Lemma 8.5 Let γ ∈ Π. D(γ) generates Q.

Proof. Let 〈D(γ)〉 be the subgroup of Q generated by D(γ). Assume Π ∩
〈D(γ)〉 6= Π. Let α 6∈ 〈D(γ)〉 be a simple root that is connected to an α′ ∈ 〈D(γ)〉
(possible since the Dynkin diagram of a simple Lie algebra is connected). Then
α + α′ ∈ 〈D(γ)〉. But then α = α + α′ − α′ ∈ 〈D(γ)〉. A contradiction. So
〈D(γ)〉 = Q. �
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Lemma 8.6 Let λ ∈ X be a non-integral weight. Assume that L(λ) is admissible.
Then A(λ) is connected and |A(λ)| ≤ 2.

Proof. Assume |A(λ)| ≥ 2. Let α, α′ ∈ A(λ) be two distinct elements. We
will show that α and α′ are connected. So assume (α|α′) = 0 to reach a
contradiction. L(λ) is admissible of some degree d. By Lemma 5.11 and
Proposition 5.6 sαL(sα.λ) is admissible of the same degree d (L(sα.λ) is infinite
dimensional since sα.λ(Kα′) = λ(Kα′) 6∈ ±qNα′). Let Σ be a set of commuting
roots that is a basis of Q such that α ∈ Σ and −Σ ⊂ TL(λ) (Lemma 4.16).
By Proposition 5.10 sαL(sα.λ) is a subquotient of L(λ)FΣ

. We claim that
Suppess(L(λ)) ∩ Suppess(

sαL(sα.λ)) 6= ∅. If this is true then we have for ν ∈
Suppess(L(λ))∩Suppess(

sαL(sα.λ)), L(λ)ν ∼= (L(λ)FΣ
)ν ∼= (sαL(sα.λ))ν as (Uq)0-

modules by Lemma 4.22. But then by Theorem 2.7 L(λ) ∼= sαL(sα.λ) which
is clearly a contradiction by looking at the weights of the modules. So we will
prove the claim that Suppess(L(λ)) ∩ Suppess(

sαL(sα.λ)) 6= ∅:
We have −D(α′) ⊂ TL(λ) and −D(α′) ⊂ TsαL(sα.λ) = sα(TL(sα.λ)) by

Lemma 8.4 and the fact that (α|α′) = 0. So −D(α′) ⊂ C(L(λ)) ∩ C(sαL(sα.λ))
thus C(L(λ)) ∩ C(sαL(sα.λ)) generate Q by Lemma 8.5. This implies that
C(L(λ)) − C(sαL(sα.λ)) = Q. The weights of L(λ) and sαL(sα.λ) are con-
tained in qQλ so a weight in the essential support of L(λ) (resp. sαL(sα.λ))
is of the form qµ1λ (resp. qµ2λ) for some µ1, µ2 ∈ Q. By the above qC(L(λ))+µ1λ∩
qC(sαL(sα.λ))+µ2λ 6= ∅. Since qC(L(λ))+µ1λ ⊂ Suppess(L(λ)) and qC(sαL(sα.λ))+µ2λ ⊂
Suppess(

sαL(sα.λ)) we have proved the claim.
So we have proved that any two roots of A(λ) are connected. Since there are

no cycles in the Dynkin diagram of a simple Lie algebra we get A(λ) = 2. �

8.2 Rank 2 calculations

Following the procedure in [Mat00, Section 7] we classify admissible simple
highest weight modules in rank 2 in order to classify the modules in higher ranks.
We only consider non-integral weights because of Theorem 8.1. We assume that
q is transcendental over Q.

Lemma 8.7 Assume g = sl3. Let λ ∈ X be a non-integral weight. The module
L(λ) is admissible if and only if qρλ(Kβ) ∈ ±qZ>0 for at least one root β ∈ Φ+.

Proof. It is easy to show that the Verma module M(λ) is not admissible.
So qρλ(Kβ) ∈ ±qZ>0 for at least one root β ∈ Φ+ by Theorem 8.2. On
the other hand suppose qρλ(Kβ) ∈ ±qZ>0 for at least one root β ∈ Φ+. If
qρλ(Kα) ∈ ±qZ>0 for a simple root α ∈ Π then by easy calculations we see that
M(sα.λ) is a submodule of M(λ). If qρλ(Kα) 6∈ ±qZ>0 for both simple roots
α ∈ Π then we get that M(sβ .λ) is a submodule by Theorem 8.2. So in both
cases we have a submodule M(sβ .λ) of M(λ). Since L(λ) is the unique simple
quotient of M(λ), L(λ) is a subquotient of M(λ)/M(sβ .λ). Since M(λ)/M(sβ .λ)
is admissible we see that L(λ) is admissible as well. �

Lemma 8.8 Assume g is of type C2 (i.e. g = sp(4)). Let Π = {α1, α2} where
α1 is short and α2 is long. Let λ ∈ X be a non-integral weight. The module L(λ)
is infinite dimensional and admissible if and only if qρλ(Kα1), q

ρλ(Kα1+α2) ∈

±qZ>0 and λ(Kα2
), λ(K2α1+α2

) ∈ ±q1+2Z(= ±q
1/2+Z

α2 = ±q
1/2+Z

2α1+α2
).
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Proof. Theorem 8.2 implies that qρλ(Kβ) ∈ qZ>0

β for at least two β ∈ Φ+

because otherwise L(λ) = M(λ)/M(sβ .λ) for some β ∈ Φ+. But M(λ)/M(sβ .λ)
is not admissible. Since λ is not integral we know qρλ(Kα) 6∈ qZα for some α ∈ Π.
Suppose λ(Kα1) 6∈ ±qZα1

. We split into cases and arrive at a contradiction in

both cases: If λ(Kα2) 6∈ ±qZ>0
α2 then by the above qρλ(Kα1+α2) ∈ ±qZ>0

α1+α2
=

±qZ>0 and qρλ(K2α1+α2) ∈ ±qZ>0

2α1+α2
= ±q2Z>0 which implies that qρλ(Kα1) =

qρλ(K2α1+α2K
−1
α1+α2

) ∈ ±qZ = ±qZα1
. A contradiction.

The other case is qρλ(Kα2) ∈ ±qZ>0
α2 = ±q2Z>0 : In this case we get λ(Kα1+α2) 6∈

±qZ = ±qZα1+α2
so the last root, 2α1 + α2, must satisfy that qρλ(K2α1+α2) ∈

±qZ>0

2α1+α2
= ±q2Z>0 . But this implies that λ(Kα1

)2 = λ(K2α1+α2
K−1

α2
) ∈ ±q2Z

which implies that λ(Kα1) ∈ ±qZ. A contradiction.
So λ(Kα1) ∈ ±qZ. Since λ is not integral we get λ(Kα2) 6∈ ±qZα2

= ±q2Z.

This implies that λ(K2α1+α2
) 6∈ ±q2Z = ±qZ2α1+α2

. Since qρλ(Kβ) ∈ ±qZ>0

β for

at least two β ∈ Φ+ we get qρλ(Kα1
) ∈ ±qZ>0 and qρλ(Kα1+α2

) ∈ ±qZ>0 . This
in turn implies that λ(Kα2

) = λ(Kα1+α2
K−1

α1
) ∈ ±qZ. Since λ(Kα2

) 6∈ ±q2Z we
get λ(Kα2

) ∈ ±q1+2Z. Similarly λ(K2α1+α2
) = λ(Kα1+α2

Kα1
) ∈ ±q1+2Z. So we

have shown the only if part.
Assume λ is as required in the lemma. We will show that L(λ) is admissible.

By Theorem 8.2 we see that the composition factors of M(sα1
.λ) are L(sα1

.λ)
and L(sα1+α2

sα1
.λ) = M(w0.λ) and the composition factors of M(sα1+α2

) are
L(sα1+α2

) and L(sα1
sα1+α2

) = M(w0.λ). So

∑

β∈Φ+

qρλ(Kβ)∈±q
Z>0
β

chM(sβ .λ) = chL(sα1 .λ) + chL(sα1+α2 .λ) + 2 chL(w0.λ).

So the composition factors of the maximal submodule of M(λ) are L(sα1 .λ),
L(sα1+α2 .λ) and L(w0.λ). The worst case scenario being multiplicity one. In
this case the character of L(λ) is

chM(λ)− chL(sα1 .λ)− chL(sα1+α2)− chL(w0.λ) =

=chM(λ)− chM(sα1 .λ)− chM(sα1+α2 .λ) + chM(w0.λ)

The character of Verma modules are known and by an easy calculation it is
seen that this would imply L(λ) is admissible (cf. the proof of Lemma 7.2
in [Mat00]). �

8.3 Type A, D, E

In this section we complete the classification of all simple admissible highest
weight modules when the Dynkin diagram of g is simply laced. In particular
we show that g does not admit infinite dimensional simple admissible modules
when g is of type D and E. In Section 8.5 we show that the same is the case
when g is of type B or F . Combining this and Section 8.5 we get that g admits
infinite dimensional simple admissible modules if and only if g is of type A or C.
Remember that we restrict our attention to transcendental q and to non-integral
weights because of Theorem 8.1.
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Definition 8.9 Let λ : U0
q → C be a weight. In the Dynkin diagram of g let any

node corresponding to α ∈ Π∩A(λ) be written as ◦ and every other as •. e.g. if
g = sl3 and |A(λ)| = 1 then the graph corresponding to λ would look like this:

• ◦

We call this the colored Dynkin diagram corresponding to λ.

In this way we get a ’coloring’ of the Dynkin diagram for every λ.

Lemma 8.10 Let λ ∈ X be a non-integral weight such that L(λ) is admissible.
If the colored Dynkin diagram of λ contains

α′

◦
α
◦

as a subdiagram then qρλ(Kα+α′) ∈ ±qZ>0

α′+α.

Proof. Let vλ be a highest weight vector of L(λ). Let s be the Lie algebra sl3
with α and α′ as simple roots. Let U be the subalgebra of Uq generated by
Fα, Fα′ ,K±1

α ,K±1
α′ , Eα, Eα′ . Then U ∼= Uqα(s) as algebras and Uvλ contains the

simple highest weight Uqα(s)-module L(λ, s) of highest weight λ (restricted to
U0
qα(s)) as a subquotient. Since L(λ) is admissible so is Uvλ hence L(λ, s) is

admissible. Then Lemma 8.7 implies that qρλ(Kα+α′) ∈ ±qZ>0
α . �

Lemma 8.11 Let λ ∈ X be a non-integral weight such that L(λ) is admissible.
If the colored Dynkin diagram of λ contains

α′

◦
α
◦

α′′

•

as a subdiagram then L(sα.λ) is admissible and the colored Dynkin diagram
corresponding to sα.λ contains

α′

•
α
◦

α′′

◦

i.e. we can ’move’ ◦ ◦ and still get an admissible module.

Proof. L(sα.λ) is admissible by Proposition 5.10. It is easy to see that
qρsα.λ(Kα) 6∈ ±qZ (follows by Lemma 8.10 since λ is non-integral), that
qρsα.λ(Kα′′) 6∈ ±qZ and that qρsα.λ(Kα′) ∈ ±qZ>0 (by Lemma 8.10) �

Lemma 8.12 Assume g 6= sl2. Let λ ∈ X be a non-integral weight such that
L(λ) is admissible.

If A(λ) = {α} then α is only connected to one other simple root α′, L(sα.λ)
is admissible and the corresponding colored Dynkin diagram of sα.λ contains

α
◦

α′

◦

as a subdiagram.
On the other hand if the colored Dynkin diagram of λ contains

α
◦

α′

◦
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and α′ is the only root connected to α then the colored Dynkin diagram of sα.λ
contains

α
◦

α′

•

as a subdiagram.

Proof. Since α ∈ A(λ), L(sα.λ) is admissible by Proposition 5.10. First assume
A(λ) = {α}. If α is connected to two distinct roots α′ and α′′ then it is easily
seen that α′, α′′ ∈ A(sα.λ) contradicting the fact that A(sα.λ) is connected
(Lemma 8.6). It is easily seen that qρsα.λ(Kα) 6∈ ±qZ>0 (since λ is non integral)
and qρsα.λ(Kα′) 6∈ qZ>0 .

On the other hand if A(λ) = {α, α′} then qρsα.λ(Kα′) = qρλ(Kα+α′) ∈
±qZ>0 by Lemma 8.10. �

Now we can eliminate the types that are not type A by the following theorem:

Theorem 8.13 Assume g is a simple Lie algebra of simply laced type. If there
exists an infinite dimensional admissible simple module then g is of type A.

Proof. Suppose there exists an infinite dimensional admissible simple module
then by Theorem 5.12 there exists a λ ∈ X such that L(λ) is an infinite admissible
simple highest weight module. By Theorem 8.1 and the classification in [Mat00]
there exists no highest weight simple admissible modules with integral weights
unless g is of type A. We need to show the same for non-integral weights.

If the Dynkin diagram is simply laced and not of type A then the Dynkin
diagram contains

α
•

α′

•
γ
•

α′′

•

as a subdiagram.
By Lemma 8.12 we can assume without loss of generality that |A(λ)| = 2 and

by Lemma 8.11 we can assume that the colored Dynkin diagram corresponding
to λ contains the following:

α
•

α′

◦
γ
◦

α′′

•

But then L(sγ .λ) is admissible as well by Proposition 5.10 and the colored
Dynkin diagram for sγ .λ contains

α
◦

α′

•
γ
◦

α′′

◦

contradicting the fact that A(λ) is connected. �
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Combining all the above results we get

Theorem 8.14 Let g = sln+1, n ≥ 2 with simple roots α1, . . . , αn such that
(αi|αi+1) = −1, i = 1, . . . , n. Let λ ∈ X be a non-integral weight.

L(λ) is admissible if and only if the colored Dynkin diagram of λ is of one
of the following types:

α1
◦

α2
•

α3
•

αn
•

α1
◦

α2
◦

α3
•

αn
•

α1
•

α2
◦

α3
◦

αn
•

...

α1
•

α2
•

α3
•

αn
◦

Proof. By the above results these are the only possibilites. To show that L(λ)
is admissible when the colored Dynkin diagram is of the above form use the
fact that by Lemma 8.11 and Lemma 8.12 we can assume λ has colored Dynkin
diagram as follows:

α1
◦

α2
•

α3
•

αn
• .

Let βi = α1 + α2 + · · · + αi, i = 1, . . . , n. We see easily that TL(λ) =
−{β1, β2, . . . , βn} and FL = Φ+ ∪ Φ{α2,...,αn}. Let l, u, p etc. be defined
as in Section 2 of [Ped15a]. By [Ped15a, Theorem 2.23] N := L(λ)u is a sim-
ple finite dimensional Uq(l)-module and L(λ) is the unique simple quotient of
M(N) = Uq ⊗Uq(p) N . Since the vectors β1, . . . , βn are linearly independent
M(N) is admissible. This implies that L(λ) is admissible since it is a quotient
of M(N). �

We can now make Corollary 5.13 more specific in type A:

Corollary 8.15 Let g = sln+1, n ≥ 2 with simple roots α1, . . . , αn such that
(αi|αi+1) = −1, i = 1, . . . , n. Let βj = α1 + · · · + αj, j = 1, . . . , n and
Σ = {β1, . . . , βn}. Let Fβj

= Ts1 · · ·Tsj−1
(Fαj

) and let FΣ = {qaF a1

β1
· · ·F an

βn
|ai ∈

N, a ∈ Z} be the corresponding Ore subset. Then Σ is a set of commuting roots
that is a basis of Q with corresponding Ore subset FΣ.

Let β′
j = αn + · · · + αn−j, j = 1, . . . , n and Σ = {β′

1, . . . , β
′
n}. Let F ′

β′
j
=

Tsn · · ·Tsn−j+1
(Fαn−j

) and let FΣ′ = {qa(F ′
β′
1
)a1 · · · (F ′

β′
n
)an |ai ∈ N, a ∈ Z} be

the corresponding Ore subset. Then Σ′ is a set of commuting roots that is a basis
of Q with corresponding Ore subset FΣ′ .

Let L be a simple torsion free module then one of the two following claims
hold

• There exists a λ ∈ X with λ(Kα1
) 6∈ ±qN, λ(Kαi

) ∈ ±qN, i = 2, . . . , n and
b ∈ (C∗)n such that

L ∼= ϕFΣ,b.L(λ)FΣ .

• There exists a λ ∈ X with λ(Kαn) 6∈ ±qN, λ(Kαi) ∈ ±qN, i = 1, . . . , n− 1
and b ∈ (C∗)n such that

L ∼= ϕFΣ′ ,b.L(λ)FΣ′ .
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Proof. By Theorem 5.12 EXT (L) ∼= EXT (L(λ′)) for some λ′ ∈ X. If λ′ is non-
integral then by Theorem 8.14, Lemma 8.11, Lemma 5.11 and Proposition 5.6
there exists a λ such that λ(Kα1

) 6∈ ±qN, λ(Kαi
) ∈ ±qN, i = 2, . . . , n and

such that EXT (L(λ′)) ∼= EXT (L(λ)). By Lemma 5.4 we can choose Σ as the
commuting set of roots that is used in the definition of EXT (L(λ)).

If λ′ is integral we see by Theorem 8.1, Lemma 5.11, Proposition 5.6 and the
classification in [Mat00, Section 8] that EXT (L(λ′)) ∼= EXT (L(λ)) for a λ such
that A(λ) = {α1} or A(λ) = {αn} (cf. e.g. [Mat00, Proposition 8.5]).

Now the result follows just like in the proof of Corollary 5.13. �

In Section 9 we determine all b ∈ (C∗)n such that ϕFΣ,b.L(λ)FΣ
is torsion free

with Σ as above in Corollary 8.15 and λ such that λ(Kα1) 6∈ ±qN, λ(Kαi) ∈ ±qN,
i = 2, . . . , n. By symmetry of the Dynkin diagram and Corollary 8.15 this
classifies all simple torsion free modules.

8.4 Quantum Shale-Weil representation

In this section we assume g is of type Cn. Let α1, . . . , αn be the simple roots
such that αi is connected to αi+1 and α1 is long. We will describe a specific
admissible module V and show that V = L(ω+)⊕ L(ω−) for some weights ω±

with the purpose of classifying the admissible simple highest weight modules,
see Theorem 8.17. Let V = C[X1, . . . , Xn]. We describe an action of the simple
root vectors on V : For i ∈ {2, . . . , n}

Eα1X
a1
1 Xa2

2 · · ·Xan
n =−

[a1][a1 − 1]

[2]
Xa1−2

1 Xa2
2 · · ·Xan

n

Fα1X
a1
1 Xa2

2 · · ·Xan
n =

1

[2]
Xa1+2

1 Xa2
2 · · ·Xan

n

EαiX
a1
1 · · ·Xan

n =[ai]X
a1
1 · · ·X

ai−1+1
i−1 Xai−1

i · · ·Xan
n

FαiX
a1
1 · · ·Xan

n =[ai−1]X
a1
1 · · ·X

ai−1−1
i−1 Xai+1

i · · ·Xan
n

K±1
α1

Xa1
1 Xa2

2 · · ·Xan
n =q∓(2a1+1)Xa1

1 Xa2
2 · · ·Xan

n

K±1
αi

Xa1
1 Xa2

2 · · ·Xan
n =q±(ai−1−ai)Xa1

1 Xa2
2 · · ·Xan

n .

We check that this is an action of Uq by checking the generating relations.
These are tedious and kind of long calculations but just direct calculations. We
refer to the generating relations as (R1) to (R6) like in [Jan96, Section 4.3].

(R1) is clear. (R2) and (R3): Let j ∈ {1, . . . , n}

Kαj
Eα1

Xa1
1 · · ·Xan

n =





−q−2a1+3 [a1][a1−1]
[2] Xa1−2

1 Xa2
2 · · ·Xan

n if j = 1

−qa1−2−a2 [a1][a1−1]
[2] Xa1−2

1 Xa2
2 · · ·Xan

n if j = 2

−qaj−1−aj [a1][a1−1]
[2] Xa1−2

1 Xa2
2 · · ·Xan

n if j > 2

=q(α1|αj)Eα1
Kαj

Xa1
1 Xa2

2 · · ·Xan
n .
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Similar for Kαj
Fα1

. For i ∈ {2, . . . , n}

Kαj
Eαi

Xa1
1 · · ·Xan

n =





qaj−1−aj [ai]X
a1
1 · · ·X

ai−1+1
i−1 Xai−1

i · · ·Xan
n if |j − i| > 1

qaj−1−aj−1[ai]X
a1
1 · · ·X

ai−1+1
i−1 Xai−1

i · · ·Xan
n if j = i− 1

qaj−1+1−aj+1[ai]X
a1
1 · · ·X

ai−1+1
i−1 Xai−1

i · · ·Xan
n if j = i

qaj−1−1−aj [ai]X
a1
1 · · ·X

ai−1+1
i−1 Xai−1

i · · ·Xan
n if j = i+ 1

=q(αi|αj)Eα1
Kαj

Xa1
1 Xa2

2 · · ·Xan
n .

Similarly for KαjFαi .
(R4):

[Eα1 , Fα1 ]X
a1
1 Xa2

2 · · ·Xan
n =Eα1

1

[2]
Xa1+2

1 Xa2
2 · · ·Xan

n + Fα1

[a1][a1 − 1]

[2]
Xa1−2

1 Xa2
2 · · ·Xan

n

=

(
−
[a1 + 2][a1 + 1]

[2][2]
+

[a1][a1 − 1]

[2][2]

)
Xa1

1 · · ·Xan
n

=
q−2a1−1 − q2a1+1

q2 − q−2
Xa1

1 · · ·Xan
n

=
Kα1

−K−1
α1

q2 − q−2
Xa1

1 · · ·Xan
n .

[Eα1
, Fα2

]Xa1
1 · · ·Xan

n =[a1]Eα1
Xa1−1

1 Xa2+1
2 · · ·Xan

n +
[a1][a1 − 1]

[2]
Fα2

Xa1−2
1 Xa2

2 · · ·Xan
n

=−
[a1][a1 − 1][a1 − 2]

[2]
Xa1−3

1 Xa2+1
2 · · ·Xan

n

+
[a1][a1 − 1][a1 − 2]

[2]
Xa1−3

1 Xa2+1
2 · · ·Xan

n

=0.

For i > 2 clearly [Eα1 , Fαi ]X
a1
1 · · ·Xan

n = 0. For i, j ∈ {2, . . . , n}: If |i−j| > 1
clearly [Eαi

, Fαj
]Xa1

1 · · ·Xan
n = 0.

[Eαi
, Fαi+1

]Xan
1 · · ·Xan

n =[ai]Eαi
Xa1

1 · · ·Xai−1
i X

ai+1+1
i+1 · · ·Xan

n

− [ai]Fαi+1
Xa1

1 · · ·X
ai−1+1
i−1 Xai−1

i · · ·Xan
n

=[ai][ai − 1]Xa1
1 · · ·X

ai−1+1
i−1 Xai−2

i X
ai+1+1
i+1 · · ·Xan

n

− [ai][ai − 1]Xa1
1 · · ·X

ai−1+1
i−1 Xai−2

i X
ai+1+1
i+1 · · ·Xan

n

=0.

[Eα2
, Fα1

]Xa1
1 · · ·Xan

n =Eα2

1

[2]
Xa1+2

1 Xa2
2 · · ·Xan

n − [a2]Fα1
Xa1+1

1 Xa2−1
2 · · ·Xan

n

=
[a2]

[2]
Xa1+3

1 Xa2−1
2 · · ·Xan

n −
[a2]

[2]
Xa1+3

1 Xa2−1
2 · · ·Xan

n

=0.
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For i > 2:

[Eαi
, Fαi−1

]Xan
1 · · ·Xan

n =[ai−2]Eαi
Xa1

1 · · ·X
ai−2−1
i−2 X

ai−1+1
i−1 · · ·Xan

n

− [ai]Fαi−1X
a1
1 · · ·X

ai−1+1
i−1 Xai−1

i · · ·Xan
n

=[ai−2][ai]X
a1
1 · · ·X

ai−2−1
i−2 X

ai−1+2
i−1 Xai−1

i · · ·Xan
n

− [ai][ai−2]Fαi−1X
a1
1 · · ·X

ai−2−1
i−2 X

ai−1+2
i−1 Xai−1

i · · ·Xan
n

=0.

For i > 1:

[Eαi
, Fαi

]Xa1
1 · · ·Xan

n =[ai−1]Eαi
Xa1

1 · · ·X
ai−1+1
i−1 Xai−1

i · · ·Xan
n

− [ai]Fαi
Xa1

1 · · ·X
ai−1−1
i−1 Xai+1

i · · ·Xan
n

=([ai−1][ai − 1]− [ai][ai−1 − 1])Xa1
1 · · ·X

ai−1

i−1 Xai
i · · ·Xan

n

=[ai−1 − ai]X
a1
1 · · ·Xan

n

=
Kαi

−K−1
αi

q − q−1
Xa1

1 · · ·Xan
n .

Finally we have the relations (R5) and (R6): Clearly [Eαi
, Eαj

]Xa1
1 · · ·Xan

n =
0 and [Fαi , Fαj ]X

a1
1 · · ·Xan

n = 0 when |j − i| > 1.

(E3
α2
Eα1 − [3]E2

α2
Eα1Eα2 + [3]Eα2Eα1E

2
α2

− Eα1E
3
α2
)Xa1

1 · · ·Xan
n

=
1

[2]

(
− [a1][a1 − 1][a2][a2 − 1][a2 − 2]

+ [3][a1 + 1][a1][a2][a2 − 1][a2 − 2]

− [3][a1 + 2][a1 + 1][a2][a2 − 1][a2 − 2]

+ [a1 + 3][a1 + 2][a2][a2 − 1][a2 − 2]
)
Xa1+1

1 Xa2−3
2 · · ·Xan

n

=
[a2][a2 − 1][a2 − 2]

[2]

(
− [a1][a1 − 1] + [3][a1 + 1][a1]

− [3][a1 + 2][a1 + 1] + [a1 + 3][a1 + 2]
)
Xa1+1

1 Xa2−3
2 · · ·Xan

n

=0.

(E2
α1
Eα2 − [2]α1Eα1Eα2Eα1 + Eα2E

2
α1
)Xa1

1 · · ·Xan
n

=
[a2]

[2][2]

(
[a1 + 1][a1][a1 − 1][a1 − 2]

− [2]α1
[a1][a1 − 1][a1 − 1][a1 − 2]

+ [a1][a1 − 1][a1 − 2][a1 − 3]
)
Xa1+3

1 Xa2−1
2 · · ·Xan

n

=
[a2][a1][a1 − 1][a1 − 2]

[2][2]

(
[a1 + 1]− [2]α1 [a1 − 1]

+ [a1 − 3]
)
Xa1+3

1 Xa2−1
2 · · ·Xan

n

=0.
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For i > 1:

(E2
αi
Eαi+1

−[2]Eαi
Eαi+1

Eαi
+ Eαi+1

E2
αi
)Xa1

1 · · ·Xan
n

=[ai+1][ai]([ai + 1]− [2][ai] + [ai − 1])Xa1
1 · · ·X

ai−1+2
i−1 Xai−1

i X
ai+1−1
i+1 · · ·Xan

n

=0.

(E2
αi+1

Eαi
−[2]Eαi+1

Eαi
Eαi+1

+ Eαi
E2

αi+1
)Xa1

1 · · ·Xan
n

=[ai+1][ai+1 − 1]([ai]− [2][ai + 1] + [ai + 2])Xa1
1 · · ·X

ai−1+1
i−1 Xai+1

i X
ai+1−2
i+1 · · ·Xan

n

=0.

(F 2
α1
Fα2

− [2]α1
Fα1

Fα2
Fα1

+ Fα2
F 2
α1
)Xa1

1 · · ·Xan
n

=
1

[2][2]
([a1]− [2]α1

[a1 + 2] + [a+ 4])Xa1+3
1 Xa2+1

2 · · ·Xan
n

=0.

(F 3
α2
Fα1

− [3]F 2
α2
Fα1

Fα2
+ [3]Fα2

Fα1
F 2
α2

− Fα1
F 3
α2
)Xa1

1 · · ·Xan
n

=
1

[2]

(
[a1 + 2][a1 + 1][a1]− [3][a1][a1 + 1][a1]

+ [3][a1][a1 − 1][a1]

− [a1][a1 − 1][a1 − 2]
)
Xa1−1

1 Xa2+3
2 · · ·Xan

n

=
[a1]

[2]

(
[a1 + 2][a1 + 1]− [3][a1 + 1][a1]

+ [3][a1][a1 − 1]

− [a1 − 1][a1 − 2]
)
Xa1−1

1 Xa2+3
2 · · ·Xan

n

=0.

For i > 1:

(F 2
αi
Fαi+1−[2]FαiFαi+1Fαi + Fαi+1F

2
αi
)Xa1

1 · · ·Xan
n

=[ai−1][ai−1 − 1]([ai]− [2][ai + 1] + [ai + 2])Xa1
1 · · ·X

ai−1−2
i−1 Xai+1

i X
ai+1+1
i+1 · · ·Xan

n

=0.

(F 2
αi+1

Fαi−[2]Fαi+1FαiFαi+1 + FαiF
2
αi+1

)Xa1
1 · · ·Xan

n

=[ai−1][ai]([ai + 1]− [2][ai] + [ai − 1])Xa1
1 · · ·X

ai−1−1
i−1 Xai−1

i X
ai+1+2
i+1 · · ·Xan

n

=0.

So we have shown that V is a Uq(g)-module. Note that V is admissible
of degree 1 and V = V even ⊕ V odd where V even are even degree polynomials
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and V odd are odd degree polynomials. Furthermore we see that V even = L(ω+)
and V odd = L(ω−) where ω± are the weights defined by ω+(Kα1

) = q−1,
ω+(Kαi

) = 1, i > 1 and ω−(Kα1
) = q−3, ω−(Kα2

) = q−1, ω−(Kαi
) = 1, i > 2.

V even is generated by 1 and V odd is generated by X1. We will use the fact that
L(ω+) is admissible in Theorem 8.17 in the next section.

8.5 Type B, C, F

In this section we classify the simple highest weight admissible modules when g

is of type B, C or F . Remember that we have assumed that q is transcendental.

Theorem 8.16 Let g be a simple Lie algebra not of type G2. Suppose there
exists an infinite dimensional admissible simple Uq(g)-module. Then g is of type
A or C.

Proof. If g is simply laced then Theorem 8.14 gives that g is of type A. So
assume g is not of simply laced type. Theorem 8.1 and the classification in the
classical case tells us that no admissible infinite dimensional simple highest weight
modules exists with integral weights when g is not simply laced (cf. [Mat00,
Lemma 9.1]).

We have assumed that g is not of type G2 so the remaining non-simply laced
types are B, C or F . We will show that the Dynkin diagram of g can’t contain
the subdiagram

α1
• ks

α2
•

α3
• .

Assume the Dynkin diagram contains the above as a subdiagram. If there
exists a simple admissible infinite dimensional module L then there exists a
non-integral λ ∈ X such that L(λ) is infinite dimensional and admissible (The-
orem 5.12). Let λ ∈ X be a non-integral weight such that L(λ) is admissible.
Then by Lemma 8.8, qρλ(Kα1

) ∈ ±qZα1
= ±qZ. By Lemma 8.11 and Lemma 8.12

we can assume without loss of generality that the colored Dynkin diagram of λ
is of the form

α1
• ks

α2
◦

α3
◦ .

Let s be the simple rank 3 Lie algebra of type B3. Let U be the subalgebra
of Uq generated by Eαi , Fαi ,K

±1
αi

, i = 1, 2, 3. Then U ∼= Uq(s). Let Qs :=
Z{α1, α2, α3} ⊂ Q. Let vλ be a highest weight vector of L(λ). Then Uvλ
contains the simple highest weight Uq(s)-module L(λ, s) of highest weight λ
(restricted to U0

q (s)) as a subquotient. Since L(λ) is admissible so is L(λ, s).
Like in the proof of Lemma 8.6 we get a contradiction if we can show that

TL(λ,s)∩Tsα2 L(sα2
.λ,s) generates Qs. It is easily seen that {−α1−α2,−α3,−2α1−

α2} ⊂ TL(λ,s) ∩ Tsα2 L(sα2
.λ,s), so TL(λ,s) ∩ Tsα2 L(sα2

.λ,s) generates Qs. So
C(L(λ, s))∩C(sα2L(sα2

.λ, s)) generates Qs. Therefore C(L(λ, s))−C(sα2L(sα2
.λ, s)) =

Qs. The weights of L(λ, s) and sα2L(sα2
.λ, s) are contained in qQsλ so a weight

in the essential support of L(λ, s) (resp. sα2L(sα2
.λ, s)) is of the form qµ1λ (resp.

qµ2λ) for some µ1, µ2 ∈ Qs. By the above qC(L(λ,s))+µ1λ∩qC(sα2 L(sα2
.λ,s))+µ2λ 6=

∅. Since qC(L(λ,s))+µ1λ ⊂ Suppess(L(λ)) and qC(sα2 L(sα2
.λ,s))+µ2λ ⊂ Suppess(

sα2L(sα2 .λ, s))
we have proved that Suppess(

sα2L(sα2 .λ, s)) ∩ Suppess(L(λ, s)) 6= ∅. By Propo-
sition 5.10 L(λ, s) and sα2L(sα2

.λ, s) are subquotients of L(λ, s)Fα2
. Let ν ∈

Suppess(
sα2L(sα2

.λ, s)) ∩ Suppess(L(λ, s)). Then by Lemma 4.22 L(λ, s)ν ∼=
(L(λ, s)Fα2

)ν ∼= (sα2L(sα2
.λ, s))ν so by Theorem 2.7 L(λ, s) ∼= sα2L(sα2

.λ, s).
This is a contradiction by looking at weights of the modules. �
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Theorem 8.17 Let g be a simple Lie algebra of type Cn (i.e. g = sp(2n)). Let
α1, . . . , αn be the simple roots such that αi is connected to αi+1 and α1 is long –
i.e. the Dynkin diagram of Cn is

α1
• +3

α2
•

αn−1

•
αn
• .

Let λ ∈ X. L(λ) is infinite dimensional and admissible if and only if

• λ(Kαi) ∈ ±qN for 1 < i ≤ n

• λ(Kα1
) ∈ ±q

1/2+Z

α1 = ±q1+2Z

• λ(Kα1+α2
) ∈ ±qZ≥−2

or equivalently qρλ(Kβ) ∈ ±qZ>0 for every short root β ∈ Φ+ and λ(Kβ′) ∈
±q1+2Z for every long root β′ ∈ Φ+.

Proof. Assume λ(Kαi) 6∈ ±qN for some i > 1. Then by Lemma 8.11 there
exists a λ′ such that L(λ′) is admissible and such that λ′(Kα2) 6∈ qN. Let s be
the Lie algebra sp(4) with simple roots α2 and α1. Let U be the subalgebra
of Uq generated by Fα1

, Fα2
,Kα1

,Kα2
, Eα1

, Eα2
. Then U ∼= Uq(s) as algebras

and Uvλ′ contains the simple highest weight Uq(s)-module L(λ′, s) of highest
weight λ′ (restricted to U0

qα(s)) as a subquotient. Since L(λ′) is admissible

so is Uvλ′ hence L(λ′, s) is admissible. So λ′(Kα2) ∈ ±qN by Lemma 8.8. A
contradiction. So we have proven that λ(Kαi

) ∈ ±qN for 1 < i ≤ n is a
neccesary condition. We get also from Lemma 8.8 that λ(Kα1) ∈ q1+2Z and
q3λ(Kα1+α2) = qρλ(Kα1+α2) ∈ ±qZ>0 which shows that the two other conditions
are neccesary.

Now assume we have a weight λ ∈ X that satisfies the above. So λ(Kα1
) =

q−1+r for some r ∈ 2Z. We can assume r ∈ N by Lemma 5.11 and Proposition 5.6
(if r < 0 replace λ with s1.λ, L(λ) is admissible if and only if L(s1.λ) is). We
have λ = ω+λ0 for some dominant integral weight λ0 and L(λ) is a subquotient
of L(ω+) ⊗ L(λ0). Since L(ω+) is admissible and L(λ0) is finite dimensional
L(ω+)⊗ L(λ0) is admissible and since L(λ) is a subquotient of L(ω+)⊗ L(λ0),
L(λ) is admissible as well. �

Corollary 8.18 Let g be a simple Lie algebra of type Cn (i.e. g = sp(2n)). Let
α1, . . . , αn be the simple roots such that αi is connected to αi+1 and α1 is long.

Let βj = α1 + · · · + αj, j = 1, . . . , n and Σ = {β1, . . . , βn}. Let Fβj =
Ts1 · · ·Tsj−1(Fαj ) and let FΣ = {qaF a1

β1
· · ·F an

βn
|ai ∈ N, a ∈ Z} be the correspond-

ing Ore subset. Then Σ is a set of commuting roots that is a basis of Q with
corresponding Ore subset FΣ.

Let L be a simple torsion free module. Then there exists a λ ∈ X with
λ(Kβ) ∈ ±qN for all short β ∈ Φ+ and λ(Kγ) ∈ ±q1+2Z for all long γ ∈ Φ+ and
a b ∈ (C∗)n such that

L ∼= ϕFΣ,b.L(λ)FΣ

Proof. By Theorem 5.12 there exists a λ ∈ X such that EXT (L) ∼= EXT (L(λ)).
By Proposition 5.6 L(λ) is admissible and by Theorem 8.17 λ is as described in
the statement of the corollary. Now the result follows just like in the proof of
Corollary 5.13. �
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In Section 10 we determine all b ∈ (C∗)n such that ϕFΣ,b.L(λ)FΣ
is torsion

free (with Σ and λ as above in Corollary 8.18). By the corollary this classifies
all simple torsion free modules for type C.

9 Classification of simple torsion free modules.

Type A.

In this section we assume g = sln+1 with n ≥ 2. Let Π = {α1, . . . , αn}
denote the simple roots such that (αi|αi+1) = −1, i = 1, . . . , n − 1. Set βj =
s1 · · · sj−1(αj) = α1+ · · ·+αj , then Σ = {β1, . . . , βn} is a set of commuting roots
with corresponding root vectors Fβj

= Ts1 · · ·Tsj−1
(Fαj

). We will show some
commutation formulas and use these to calculate ϕFΣ,b on all simple root vectors.
This will allow us to determine exactly for which b ∈ (C∗)n, ϕFΣ,b.L(λ)FΣ is
torsion free, see Theorem 9.8.

Choose a reduced expression of w0 starting with s1 · · · sn and define roots
γ1, . . . , γN and root vectors Fγ1

, . . . , FγN
from this expression. Note that Fβi

=
Fγi for i = 1, . . . , n.

Proposition 9.1 Let i ∈ {2, . . . , n} and j ∈ {1, . . . , n}.

[Fαi
, Fβj

]q =

{
Fβi , if j = i− 1

0, otherwise

and

[Eαi
, Fβj

] =

{
Fβi−1K

−1
αi

, if j = i

0, otherwise.

Proof. We will show the proposition for the F ’s first and then for the E’s.
Assume first that j < i− 1. Then clearly [Fαi , Fβj ]q = [Fαi , Fβj ] = 0 since

αi is not connected to any of the simple roots α1, . . . , αj appearing in βj .
Then assume j ≥ i. We must have αi = γk for some k > n since

{γ1, . . . , γN} = Φ+. By Theorem 3.2 [Fαi
, Fβj

]q is a linear combination of
monomials of the form F

aj+1
γj+1 · · ·F

ak−1
γk−1 . For a monomial of this form to appear

with nonzero coefficient we must have

k−1∑

h=j+1

ahγh = αi + βj = α1 + · · ·+ αi−1 + 2αi + αi+1 + . . . αj .

For this to be possible one of the positive roots γs, j < s < k must be equal to
α1 +α2 + · · ·+αm for some m ≤ j but α1 +α2 + · · ·+αm = γm by construction
and m ≤ j < s so m 6= s. We conclude that this is not possible.

Finally we investigate the case when j = i− 1. We have

[Fαi
, Fβi−1

]q =[Ts1 · · ·Tsi−2
(Fαi

), Ts1 · · ·Tsi−2
(Fαi−1

)]q

=Ts1 · · ·Tsi−2

(
[Fαi

, Fαi−1
]q
)

=Ts1 · · ·Tsi−2
Tsi−1

(Fαi
)

=Fβi
.
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For the E’s: Assume first j < i: Since Fβj
is a polynomial in Fα1

, . . . , Fαj
,

Eαi
commutes with Fβj

when j < i.
Assume then j = i: We have by the above

Fβi
= [Fαi

, Fβi−1
]q

so

[Eαi
, Fβi

] =[Eαi
, (Fαi

Fβi−1
− q−(βi−1|αi)Fβi−1

Fαi
)]

=[Eαi
, Fαi

]Fβi−1
− qFβi−1

[Eαi
, Fαi

]

=
Kαi −K−1

αi

q − q−1
Fβi−1

− qFβi−1

Kαi −K−1
αi

q − q−1

=Fβi−1

qKαi
− q−1K−1

αi
− qKαi

+ qK−1
αi

q − q−1

=Fβi−1
K−1

αi
.

Finally assume j > i: Observe first that we have

Tsi+1
· · ·Tsj−1

Fαj
=

m∑

s=1

usFαi+1
u′
s

for some m ∈ N and some us, u
′
s that are polynomials in Fαi+2

, . . . Fαj
. Note

that Tsi(us) = us and Tsi(u
′
s) = u′

s for all s since αi is not connected to any of
the simple roots αi+2, . . . αj . So

TsiTsi+1
· · ·Tsj−1

Fαj
=Tsi

(
m∑

s=1

usFαi+1
u′
s

)

=

m∑

s=1

usTsi(Fαi+1
)u′

s

=

m∑

s=1

us(Fαi+1Fαi − qFαiFαi+1)u
′
s

=

m∑

s=1

usFαi+1u
′
sFαi − qFαi

m∑

s=1

usFαi+1u
′
s

=Tsi+1 · · ·Tsj−1(Fαj )Fαi − qFαiTsi+1 · · ·Tsj−1(Fαj ).

Thus we see that

Fβj
=Ts1 . . . Tsi · · ·Tsj−1

(Fαj
)

=Tsi+1
· · ·Tsj−1

(Fαj
)Ts1 · · ·Tsi−1

(Fαi
)− qTs1 · · ·Tsi−1

(Fαi
)Tsi+1

· · ·Tsj−1
(Fαj

)

=Tsi+1
· · ·Tsj−1

(Fαj
)Fβi

− qFβi
Tsi+1

· · ·Tsj−1
(Fαj

)

and therefore

[Eαi
, Fβj

] =Tsi+1
· · ·Tsj−1

(Fαj
)[Eαi

, Fβi
]− q[Eαi

, Fβi
]Tsi+1

· · ·Tsj−1
(Fαj

)

=Tsi+1 · · ·Tsj−1(Fαj )Fβi−1K
−1
αi

− qFβi−1K
−1
αi

Tsi+1 · · ·Tsj−1(Fαj )

=Fβi−1
Tsi+1

· · ·Tsj−1
(Fαj

)K−1
αi

− Fβi−1
Tsi+1

· · ·Tsj−1
(Fαj

)K−1
αi

=0. �
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Proposition 9.2 Let i ∈ {2, . . . , n}. Let a ∈ Z>0. Then

[Fαi , F
a
βi−1

]q = [a]F a−1
βi−1

Fβi

and for b ∈ C∗

ϕFβi−1
,b(Fαi

) = bFαi
+

b− b−1

q − q−1
F−1
βi−1

Fβi
.

Proof. The first claim is proved by induction over a. a = 1 is shown in
Proposition 9.1. The induction step:

FαiF
a+1
βi−1

=
(
qaF a

βi−1
Fαi + [a]F a−1

βi−1
Fβi

)
Fβi−1

=qa+1F a+1
βi−1

Fαi + qaF a
βi−1

Fβi + q−1[a]F a
βi−1

Fβi

=qa+1F a+1
βi−1

Fαi + [a+ 1]F a
βi−1

Fβi .

So we have proved the first claim. We get then for a ∈ Z>0

ϕFβi−1
,qa(Fαi

) = F−a
βi−1

Fαi
F a
βi−1

= qaFαi
+

qa − q−a

q − q−1
F−1
βi−1

Fβi
.

Using the fact that ϕFβi−1
,b(Fαi

) is Laurent polynomial in b we get the second
claim of the proposition. �

Proposition 9.3 Let i ∈ {2, . . . , n}. Let a ∈ Z>0. Then

[Eαi
, F a

βi
] = qa−1[a]F a−1

βi
Fβi−1

K−1
αi

and for b ∈ C∗

ϕFβi
,b(Eαi) = Eαi + q−1b

b− b−1

q − q−1
F−1
βi

Fβi−1
K−1

αi
.

Proof. The first claim is proved by induction over a. a = 1 is shown in
Proposition 9.1. The induction step:

Eαi
F a+1
βi

=
(
F a
βi
Eαi

+ qa−1[a]F a−1
βi

Fβi−1
K−1

αi

)
Fβi

=F a+1
βi

Eαi
+ F a

βi
Fβi−1

K−1
αi

+ qa+1[a]F a
βi
Fβi−1

K−1
αi

=F a+1
βi

Eαi + qa(q−a + q[a])F a
βi
Fβi−1K

−1
αi

=F a+1
βi

Eαi
+ qa[a+ 1]F a

βi
Fβi−1

K−1
αi

.

This proves the first claim. We get then for a ∈ Z>0

ϕFβi
,qa(Eαi) = F−a

βi
EαiF

a
βi

= Eαi + q−1qa
qa − q−a

q − q−1
F−1
βi

Fβi−1K
−1
αi

.

Using the fact that ϕFβi
,b(Eαi

) is Laurent polynomial in b we get the second
claim of the proposition. �

In our classification we don’t need to calculate ϕFΣ,b(Eα1
) but for complete-

ness we show what it is in this case in Proposition 9.5. To do this we need the
following proposition:
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Proposition 9.4 Let j ∈ {2, . . . , n}. Then

[Eα1
, Fβj

] = −qTs2 · · ·Tsj−1
(Fαj

)Kα1
,

for a ∈ Z>0:

[Eα1 , F
a
βj
] = −q2−a[a]F a−1

βj
Ts2 · · ·Tsj−1(Fαj )Kα1

and for b ∈ C∗:

ϕFβj
,b(Eα1

) = Eα1
− q2b

b− b−1

q − q−1
F−1
βj

Ts2 · · ·Tsj−1
(Fαj

)Kα1
.

Proof. Like in the proof of Proposition 9.1 we see that

Ts2 · · ·Tsj−1Fαj =

m∑

s=1

usFα2u
′
s

for some m ∈ N and some us, u
′
s that are polynomials in Fα3 , . . . Fαj . Note that

Ts1(us) = us and Ts1(u
′
s) = u′

s for all s since α1 is not connected to any of the
simple roots α3, . . . αj . So

Ts1Ts2 · · ·Tsj−1
Fαj

=Ts1

(
m∑

s=1

usFα2
u′
s

)

=

m∑

s=1

usTs1(Fα2)u
′
s

=

m∑

s=1

us(Fα2Fα1 − qFα1Fα2)u
′
s

=

m∑

s=1

usFα2
u′
sFα1

− qFα1

m∑

s=1

usFα2
u′
s

=Ts2 · · ·Tsj−1
(Fαj

)Fα1
− qFα1

Ts2 · · ·Tsj−1
(Fαj

).

Thus

[Eα1
, Fβj

] =Ts2 · · ·Tsj−1
(Fαj

)[Eα1
, Fα1

]− q[Eα1
, Fα1

]Ts2 · · ·Tsj−1
(Fαj

)

=Ts2 · · ·Tsj−1
(Fαj

)
Kα1

−K−1
α1

q − q−1
− q

Kα1
−K−1

α1

q − q−1
Ts2 · · ·Tsj−1(Fαj )

=Ts2 · · ·Tsj−1
(Fαj

)
Kα1 −K−1

α1
− q2Kα1 +K−1

α1

q − q−1

=− qTs2 · · ·Tsj−1(Fαj )Kα1 .

Note that Ts2 · · ·Tsj−1(Fαj ) is a polynomial in Fα2 , . . . , Fαj . By Proposition 9.1
[Fαi , Fβj ]q = [Fαi , Fβj ] = 0 for 1 < i < j and [Fαj , Fβj ]q = FαjFβj−q−1FβjFαj =
0 so

Ts2 · · ·Tsj−1(Fαj )Fβj − q−1FβjTs2 · · ·Tsj−1(Fαj ) =[Ts2 · · ·Tsj−1(Fαj ), Fβj ]q

=0.
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The second claim is by induction on a:

Eα1F
a+1
βj

=
(
F a
βj
Eα1 − q2−a[a]F a−1

βj
Ts2 · · ·Tsj−1(Fαj )Kα1

)
Fβj

=F a+1
βj

Eα1 − qF a
βj
Ts2 · · ·Tsj−1(Fαj )Kα1

− q−a[a]F a
βj
Ts2 · · ·Tsj−1(Fαj )Kα1

=F a+1
βj

Eα1
− q1−a

(
qa + q−1[a]

)
F a
βj
Ts2 · · ·Tsj−1(Fαj )Kα1

=F a+1
βj

Eα1 − q1−a[a+ 1]F a
βj
Ts2 · · ·Tsj−1(Fαj )Kα1 .

So we get for a ∈ Z>0:

ϕFβj
,qa(Eα1

) = F−a
βj

Eα1
F a
βj

= Eα1
− q2q−a q

a − q−a

q − q−1
Ts2 · · ·Tsj−1

(Fαj
)Kα1

.

Using the fact that ϕFβj
,b(Eα1

) is Laurent polynomial in b we get the third claim

of the proposition. �

We can combine the above propositions in the following proposition

Proposition 9.5 Let i ∈ {2, . . . , n}. For b = (b1, . . . , bn) ∈ (C∗)n

ϕFΣ,b(Fαi) =b−1
i b−1

i+1 · · · b
−1
n ϕFβi−1,bi−1

(Fαi)

=b−1
i b−1

i+1 · · · b
−1
n (bi−1Fαi

+
bi−1 − b−1

i−1

q − q−1
F−1
βi−1

Fβi
)

ϕFΣ,b(Eαi
) =ϕFβi,bi

(Eαi
) = Eαi

+ q−1bi
bi − b−1

i

q − q−1
F−1
βi

Fβi−1
K−1

αi
.

Furthermore
ϕFΣ,b(Fα1

) = b2 · · · bnFα1

and

ϕFΣ,b
(Eα1

) =Eα1
− q2

n∑

j=2

bjb
−1
j+1 · · · b

−1
n

bj − b−1
j

q − q−1
F−1
βj

Ts2 · · ·Tsj−1
(Fαj

)Kα1

+ b−1
2 · · · b−1

n F−1
β1

(b1 − b−1
1 )(qb−1

1 · · · b−1
n Kα1

− q−1b1 · · · bnK
−1
α1

)

(q − q−1)2
.

Proof. The first two equations follow from Proposition 9.1, Proposition 9.2 and
Proposition 9.3. The third follows because Fα1

= Fβ1
q-commutes with all the

other root vectors Fβ2 , . . . , Fβn (see also the discussion before Definition 4.19).
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For the last equation we use Proposition 9.4:

ϕFΣ,b(Eα1) =ϕFβn ,bn ◦ · · · ◦ ϕFβ1
,b1(Eα1)

=ϕFβn ,bn ◦ · · · ◦ ϕFβ2
,b2

(
Eα1

− F−1
β1

(b1 − b−1
1 )(qb−1

1 Kα1 − q−1b1K
−1
α1

)

(q − q−1)2

)

=ϕFβn ,bn ◦ · · · ◦ ϕFβ3
,b3(Eα1 − q2b2

b2 − b−1
2

q − q−1
F−1
β2

Fα2Kα1

− b−1
2 F−1

β1

(b1 − b−1
1 )(qb−1

1 b−1
2 Kα1 − q−1b1b2K

−1
α1

)

(q − q−1)2
)

...

=Eα1
− q2

n∑

j=2

bjb
−1
j+1 · · · b

−1
n

bj − b−1
j

q − q−1
F−1
βj

Ts2 · · ·Tsj−1
(Fαj

)Kα1

− b−1
2 · · · b−1

n F−1
β1

(b1 − b−1
1 )(qb−1

1 · · · b−1
n Kα1

− q−1b1 · · · bnK
−1
α1

)

(q − q−1)2
�

Proposition 9.6 Let λ be a weight such that λ(Kαi
) ∈ ±qN for i = 2, . . . , n

and λ(Kα1
) 6∈ ±qN. Let b = (b1, . . . , bn) ∈ (C∗)n. Let i ∈ {2, . . . , n}. Then Eαi

acts injectively on the Uq-module ϕFΣ,b.L(λ)FΣ if and only if bi 6∈ ±qZ and Fαi

acts injectively on ϕFΣ,b.L(λ)FΣ if and only if bi−1 6∈ ±qZ.

Proof. By Proposition 4.10 and Corollary 4.20 a root vector acts injectively on
the Uq-module

ϕFΣ,(b1,...,bn).L(λ)FΣ

if and only if it acts injectively on

ϕFΣ,(ε1qi1b1,...,εnqinbn).L(λ)FΣ

for any i1, . . . , in ∈ Z and ε1, . . . , εn ∈ {±1}.
Assume there exists a 0 6= v ∈ ϕFΣ,b.L(λ)FΣ

such that Eαi
v = 0. We have

v = F a1

β1
· · ·F an

βn
⊗v′ for some a1, . . . , an ∈ Z≤0 and some v′ ∈ L(λ). So Eαiv = 0

implies

0 = ϕFΣ,b(Eαi
)F a1

β1
· · ·F an

βn
⊗ v′ = F a1

β1
· · ·F an

βn
⊗ ϕFΣ,c(Eαi

)v′

where c = (qa1b1, . . . , q
anbn). So there exists a v′ ∈ L(λ) such that ϕFΣ,c(Eαi)v

′ =
0. That is (

Eαi + q−1ci
ci − c−1

i

q − q−1
F−1
βi

Fβi−1K
−1
αi

)
v′ = 0

or equivalently

FβiEαiv
′ = q−1ci

c−1
i − ci
q − q−1

Fβi−1K
−1
αi

v′.

Since L(λ) is a highest weight module we have some r ∈ N such that Er
αi
v′ 6= 0

and Er+1
αi

v′ = 0. Fix this r. We get

E(r)
αi

Fβi
Eαi

v′ = E(r)
αi

q−1ci
c−1
i − ci
q − q−1

Fβi−1
K−1

αi
v′
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and calculating the right hand side and left hand side we get

qr−1[r]Fβi−1K
−1
αi

E(r)
αi

v′ = q−1+2rci
c−1
i − ci
q − q−1

Fβi−1K
−1
αi

E(r)
αi

v′.

So we must have

qr−1[r] = q−1+2rci
c−1
i − ci
q − q−1

or equivalently ci = ±q−r. Since ci ∈ qZbi we have proved the first claim.
The other claim is shown similarly (see e.g. the calculations done in the proof

of Proposition 10.5. The calculations will be the same in this case). �

Proposition 9.7 Let M be a weight Uq-module of finite Jordan-Hölder length
with finite dimensional weight spaces. Let α ∈ Π. If Eα and Fα both act
injectively on M then Eα and Fα act injectively on every composition factor of
M .

Proof. Let V be a simple Uq-submodule of M . Let µ be a weight of V . Then
Vµ is a simple (Uq)0-module by Theorem 2.7 and EαFα and FαEα act injectively
on Vµ by assumption. Since dimMµ < ∞ this implies that FαEα and EαFα act
injectively on the (Uq)0 module (M/V )µ ∼= Mµ/Vµ. Since M/V is the sum of its
weight spaces this implies that EαFα and FαEα act injectively on M/V . This
in turn implies that Eα and Fα act injectively on M/V . Doing induction on the
Jordan-Hölder length of M finishes the proof. �

The above proposition is true for a general simple Lie algebra g and we will use
it in the next section as well.

Theorem 9.8 Let λ be a weight such that λ(Kαi
) ∈ ±qN for i = 2, . . . , n and

λ(Kα1
) 6∈ ±qN. Let b = (b1, . . . , bn) ∈ (C∗)n. Then ϕFΣ,b.L(λ)FΣ

is simple and
torsion free if and only if bi 6∈ ±qZ, i = 1, . . . , n and λ(Kα1

)−1b1 · · · bn 6∈ ±qZ.

Proof. By Proposition 5.10 L(λ) is a subquotient of

s1
(
ϕFΣ,(λ(Kα1 ),1,...,1)

.L(λ)FΣ

)
.

So by Lemma 5.3 we get (using that L(λ) = s1
(
s1L(λ)

)
) for any c = (c1, . . . , cn) ∈

(C∗)n

(ϕFΣ,c.L(λ)FΣ
)
ss ∼= s1

(
ϕFΣ,(λ(Kα1

)c−1
1 ···c−1

n ,c2,...,cn)
.L(λ)FΣ

)ss
.

We have λ(Kα2
) = εqr for some r ∈ N and some ε ∈ {±1}. We see in the proof

of Lemma 5.11 that L(λ) is a subqoutient of

s2
(
ϕFΣ,(ε,ε,1,...,1).L(λ)FΣ

)
.

We get by Lemma 5.3 (using that L(λ) = s2
(
s2L(λ)

)
) for any c = (c1, . . . , cn) ∈

(C∗)n

(ϕFΣ,c.L(λ)FΣ
)
ss ∼= s2

(
ϕFΣ,(εc2,εc1,c3,...,cn).L(λ)FΣ

)ss
.
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Combining the above we get

(ϕFΣ,b.L(λ)FΣ
)
ss ∼=s2

(
ϕFΣ,(εb2,εb1,b3,...,bn).L(λ)FΣ

)ss

∼=s2
(
s1
(
ϕFΣ,(λ(Kα1

)b−1
1 ···b−1

n ,εb1,b3,...,bn)
.L(λ)FΣ

))ss

∼=s1s2
(
ϕFΣ,(λ(Kα1 )b

−1
1 ···b−1

n ,εb1,b3,...,bn)
.L(λ)FΣ

)ss
.

Since T−1
s1 T−1

s2 (Eα1
) = Eα2

and T−1
s1 T−1

s2 (Fα1
) = Fα2

we get by Proposition 9.6

that Eα1 acts injectively on s1s2
(
ϕFΣ,(λ(Kα1 )b

−1
1 ···b−1

n ,εb1,b3,...,bn)
.L(λ)FΣ

)
if and

only if b1 6∈ ±qZ and Fα1
acts injectively on s1s2

(
ϕFΣ,(λ(Kα1 )b

−1
1 ···b−1

n ,εb1,b3,...,bn)
.L(λ)FΣ

)

if and only if λ(Kα1)
−1b1 · · · bn 6∈ ±qZ.

Assume ϕFΣ,b.L(λ)FΣ is torsion free. Then all root vectors act injectively
on ϕFΣ,b.L(λ)FΣ

. We claim ϕFΣ,b.L(λ)FΣ
is simple: Let V ⊂ ϕFΣ,b.L(λ)FΣ

be a simple module. Then V is admissible of the same degree d as L(λ) by
Proposition 5.6 and because all root vectors act injectively dimVqµλ = d for all
µ ∈ Q. So V = ϕFΣ,b.L(λ)FΣ

. Thus (ϕFΣ,b.L(λ)FΣ
)
ss

= ϕFΣ,b.L(λ)FΣ
. Then

by the above

ϕFΣ,b.L(λ)FΣ
∼= s1s2

(
ϕFΣ,(λ(Kα1

)b−1
1 ···b−1

n ,εb1,b3,...,bn)
.L(λ)FΣ

)
.

This shows that when ϕFΣ,b.L(λ)FΣ is torsion free we must have λ(Kα1)
−1b1 · · · bn 6∈

±qZ. By Proposition 9.6 bi 6∈ ±qZ, i = 1, . . . , n.
Assume on the other hand that bi 6∈ ±qZ for i ∈ {1, . . . , n} and λ(Kα1

)−1b1 · · · bn 6∈
±qZ. By Proposition 9.6 we get that the simple root vectors Eα2

, . . . , Eαn
and

Fα1 , . . . , Fαn all act injectively on ϕFΣ,b.L(λ)FΣ
. We need to show that Eα1 acts

injectively on the module. By the above

(ϕFΣ,b.L(λ)FΣ)
ss ∼= s1s2

(
ϕFΣ,(λ(Kα1 )b

−1
1 ···b−1

n ,εb1,b3,...,bn)
.L(λ)FΣ

)ss

and the root vectors Eα1 , Fα1 act injectively on

s1s2
(
ϕFΣ,(λ(Kα1

)b−1
1 ···b−1

n ,εb1,b3,...,bn)
.L(λ)FΣ

)
.

Then by Proposition 9.7 Eα1 act injectively on all composition factors of
ϕFΣ,b.L(λ)FΣ

.
Let V be a simple Uq-submodule of ϕFΣ,b.L(λ)FΣ

. By the above all sim-
ple root vectors act injectively on V and then like above this implies V =
ϕFΣ,b.L(λ)FΣ

i.e. ϕFΣ,b.L(λ)FΣ
is simple and torsion free. �

By the comments after Corollary 8.15 the above Theorem completes the
classification of simple torsion free modules in type A.

10 Classification of simple torsion free modules.

Type C.

In this section we assume g is of type Cn (i.e. g = sp2n) with n ≥ 2. Let Π =
{α1, . . . , αn} denote the simple roots such that (αi|αi+1) = −1, i = 2, . . . , n− 1,
〈α2, α

∨
1 〉 = −1 and 〈α1, α

∨
2 〉 = −2 i.e. α1 is long and α2, . . . , αn are short.
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Set βj = s1 · · · sj−1(αj) = α1 + · · · + αj , then Σ = {β1, . . . , βn} is a set of
commuting roots with corresponding root vectors Fβj

= Ts1 · · ·Tsj−1
(Fαj

). We
will show some commutation formulas and use these to calculate ϕFΣ,b on most
of the simple root vectors.

Choose a reduced expression of w0 starting with s1 · · · sns1 · · · sn−1 and
define root vectors Fγ1

, . . . , FγN
from this expression. Note that Fβi

= Fγi
for

i = 1, . . . , n. Note for use in the proposition below that for j ∈ {1, . . . , n− 1},

γn+j = s1 · · · sns1 · · · sj−1(αj) = α1 + 2α2 + α3 + · · ·αj+1

and

Fγn+j =Ts1 · · ·TsnTs1 · · ·Tsj−1(Fαj )

=Ts1 · · ·Tsj+1Ts1 · · ·Tsj−1(Fαj ).

In particular Fα1+2α2
= Ts1Ts2(Fα1

).

Proposition 10.1 Let i ∈ {2, . . . , n} and j ∈ {1, . . . , n}

[Fαi
, Fβj

]q =





[2]Fα1+2α2 , if j = i = 2

Fα1+2α2+α3+···+αj , if i = 2 and j > 2

Fβi , if j = i− 1

0, otherwise

and

[Eαi
, Fβj

] =





[2]Fβ1K
−1
α2

, if j = 2 = i

Fβi−1
K−1

αi
, if j = i > 2

0, otherwise.

Proof. We will show the proposition for the F ’s first and then for the E’s.
Assume first that j < i− 1. Then clearly [Fαi

, Fβj
]q = [Fαi

, Fβj
] = 0 since αi is

not connected to any of the simple roots α1, . . . , αj appearing in βj .
Then assume j ≥ i > 2. We must have αi = γk for some k > n since

{γ1, . . . , γN} = Φ+. By Theorem 3.2 [Fαi , Fβj ]q is a linear combination of
monomials of the form F

aj+1
γj+1 · · ·F

ak−1
γk−1 . For a monomial of this form to appear

with nonzero coefficient we must have

k−1∑

h=j+1

ahγh = αi + βj = α1 + · · ·+ αi−1 + 2αi + αi+1 + . . . αj .

For this to be possible one of the positive roots γs, j < s < k must be equal to
α1 +α2 + · · ·+αm for some m ≤ j but α1 +α2 + · · ·+αm = γm by construction
and m ≤ j < s so m 6= s. We conclude that this is not possible.

Assume j = i− 1. We have

[Fαi
, Fβi−1

]q =[Ts1 · · ·Tsi−2
(Fαi

), Ts1 · · ·Tsi−2
(Fαi−1

)]q

=Ts1 · · ·Tsi−2

(
[Fαi

, Fαi−1
]q
)

=Ts1 · · ·Tsi−2
Tsi−1

(Fαi
)

=Fβi
.
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Assume j = 2 = i. Then

[Fα2
, Fβ2

]q =Fα2
Fβ2

− Fβ2
Fα2

=Fα2
(Fα2

Fα1
− q2Fα1

Fα2
)− (Fα2

Fα1
− q2Fα1

Fα2
)Fα2

=(q2Fα1F
2
α2

− q[2]Fα2Fα1Fα2 + F 2
α2
Fα1)

=[2]T−1
s2 (Fα1

)

=[2]T−1
s2 Ts2Ts1Ts2(Fα1)

=[2]Ts1Ts2(Fα1)

=[2]Fα1+2α2 .

Assume i = 2 and j = 3. Then

Fα1+2α2+α3
=Fγn+2

=Ts1Ts2Ts3Ts1(Fα2
)

=Ts1Ts2Ts1Ts3(Fα2
)

=Ts1Ts2Ts1(Fα2
Fα3

− qFα3
Fα2

)

=Fα2
Fβ3

− qFβ3
Fα2

.

Finally assume i = 2 and j > 3. We have

Fα1+2α2+α3+···+αj
=Fγn+j−1

=Ts1 · · ·Tsj−2
Tsj−1

TsjTs1 · · ·Tsj−3
Tsj−2

(Fαj−1
)

=Ts1 · · ·Tsj−2
Ts1 · · ·Tsj−3

Tsj−1
Tsj−2

Tsj (Fαj−1
)

=Ts1 · · ·Tsj−2
Ts1 · · ·Tsj−3

Tsj−1
Tsj−2

(Fαj−1
Fαj

− qFαj
Fαj−1

)

=Ts1 · · ·Tsj−2
Ts1 · · ·Tsj−3

(Fαj−2
Tsj−1

(Fαj
)− qTsj−1

(Fαj
)Fαj−2

)

=Fα2
Fβj

− qFβj
Fα2

=[Fα2 , Fβj ]q

using the facts that Tsj−1
Tsj−2

(Fαj−1
) = Fαj−2

and Ts1 · · ·Tsj−2
Ts1 · · ·Tsj−3

(Fαj−2
) =

Fα2
by Proposition 8.20 in [Jan96] (The proposition is about the E root vectors

but the proposition is true for the F ’s as well).
For the E’s: Assume first j < i: Since Fβj is a polynomial in Fα1 , . . . , Fαj ,

Eαi commutes with Fβj when j < i.
Assume then j = i: We have by the above

Fβi = [Fαi , Fβi−1 ]q
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so

[Eαi , Fβi ] =[Eαi , (FαiFβi−1 − q−(βi−1|αi)Fβi−1Fαi)]

=[Eαi , Fαi ]Fβi−1 − qαi−1Fβi−1 [Eαi , Fαi ]

=
Kαi

−K−1
αi

q − q−1
Fβi−1

− qαi−1
Fβi−1

Kαi
−K−1

αi

q − q−1

=Fβi−1

qαi−1
Kαi

− q−1
αi−1

K−1
αi

− qαi−1
Kαi

+ qαi−1
K−1

αi

q − q−1

=
qαi−1 − q−1

αi−1

q − q−1
Fβi−1K

−1
αi

=

{
[2]Fβi−1

K−1
αi

, if i = 2

Fβi−1
K−1

αi
, otherwise.

Finally assume j > i: Observe first that we have

Tsi+1
· · ·Tsj−1

Fαj
=

m∑

s=1

usFαi+1
u′
s

for some m ∈ N and some us, u
′
s that are polynomials in Fαi+2

, . . . Fαj
. Note

that Tsi(us) = us and Tsi(u
′
s) = u′

s for all s since αi is not connected to any of
the simple roots αi+2, . . . αj . So

TsiTsi+1
· · ·Tsj−1

Fαj
=Tsi

(
m∑

s=1

usFαi+1
u′
s

)

=
m∑

s=1

usTsi(Fαi+1
)u′

s

=
m∑

s=1

us(Fαi+1Fαi − qFαiFαi+1)u
′
s

=

m∑

s=1

usFαi+1u
′
sFαi − qFαi

m∑

s=1

usFαi+1u
′
s

=Tsi+1 · · ·Tsj−1(Fαj )Fαi − qFαiTsi+1 · · ·Tsj−1(Fαj ).

Thus we see that

Fβj
=Ts1 . . . Tsi · · ·Tsj−1

(Fαj
)

=Tsi+1
· · ·Tsj−1

(Fαj
)Ts1 · · ·Tsi−1

(Fαi
)− qFαi

Tsi+1
· · ·Tsj−1

(Fαj
)

=Tsi+1
· · ·Tsj−1

(Fαj
)Fβi

− qFβi
Tsi+1

· · ·Tsj−1
(Fαj

)

and therefore

[Eαi
, Fβj

] =Tsi+1
· · ·Tsj−1

(Fαj
)[Eαi

, Fβi
]− q[Eαi

, Fβi
]Tsi+1

· · ·Tsj−1
(Fαj

)

=[ri](Tsi+1 · · ·Tsj−1(Fαj )Fβi−1K
−1
αi

− qFβi−1K
−1
αi

Tsi+1 · · ·Tsj−1(Fαj ))

=[ri](Fβi−1
Tsi+1

· · ·Tsj−1
(Fαj

)K−1
αi

− Fβi−1
Tsi+1

· · ·Tsj−1
(Fαj

)K−1
αi

)

=0
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where

ri =

{
2 if i = 2

1 otherwise.
�

Proposition 10.2 Let i ∈ {2, . . . , n}. Let a ∈ Z>0. Then

[Fαi
, F a

βi−1
]q = [a]βi−1

F a−1
βi−1

Fβi

and for b ∈ C∗

ϕFβi−1
,b(Fαi

) =

{
b2Fα2

+ b2−b−2

q2−q−2F
−1
β1

Fβ2 , if i = 2

bFαi
+ b−b−1

q−q−1F
−1
βi−1

Fβi
, otherwise.

Proof. The first claim is proved by induction over a. a = 1 is shown in
Proposition 9.1. The induction step:

Fαi
F a+1
βi−1

=
(
qaβi−1

F a
βi−1

Fαi
+ [a]βi−1

F a−1
βi−1

Fβi

)
Fβi−1

=qa+1
βi−1

F a+1
βi−1

Fαi
+ qaβi−1

F a
βi−1

Fβi
+ q−1

βi−1
[a]βi−1

F a
βi−1

Fβi

=qa+1
βi−1

F a+1
βi−1

Fαi
+ [a+ 1]βi−1

F a
βi−1

Fβi
.

So we have proved the first claim. We get then for a ∈ Z>0:

ϕFβi−1
,qa(Fαi

) = F−a
βi−1

Fαi
F a
βi−1

= qaβi−1
Fαi

+
qaβi−1

− q−a
βi−1

qβi−1
− q−1

βi−1

F−1
βi−1

Fβi
.

Using the fact that ϕFβi−1
,b(Fαi

) is Laurent polynomial in b we get the second
claim of the proposition. �

Proposition 10.3 Let i ∈ {2, . . . , n}. Let a ∈ Z>0. Then

[Eαi
, F a

βi
] =

{
qa−1[2][a]F a−1

β2
Fβ1

K−1
α2

, if i = 2

qa−1[a]F a−1
βi

Fβi−1
K−1

αi
, otherwise.

and for b ∈ C∗

ϕFβi
,b(Eαi

) =

{
Eα2 + q−1[2]b b−b−1

q−q−1F
−1
β2

Fβ1K
−1
α2

, if i = 2

Eαi
+ q−1b b−b−1

q−q−1F
−1
βi

Fβi−1
K−1

αi
, otherwise.

Proof. The first claim is proved by induction over a. a = 1 is shown in
Proposition 9.1. The induction step: For i > 2:

Eαi
F a+1
βi

=
(
F a
βi
Eαi

+ qa−1[a]F a−1
βi

Fβi−1
K−1

αi

)
Fβi

=F a+1
βi

Eαi
+ F a

βi
Fβi−1

K−1
αi

+ qa+1[a]F a
βi
Fβi−1

K−1
αi

=F a+1
βi

Eαi
+ qa(q−a + q[a])F a

βi
Fβi−1

K−1
αi

=F a+1
βi

Eαi + qa[a+ 1]αi−1F
a
βi
Fβi−1K

−1
αi

.
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For i = 2:

Eα2
F a+1
β2

=
(
F a
β2
Eα2

+ qa−1[2][a]F a−1
β2

Fβ1
K−1

α2

)
Fβ2

=F a+1
β2

Eα2
+ [2]F a

β2
Fβ1

K−1
α2

+ qa+1[2][a]F a
β2
Fβ1

K−1
α2

=F a+1
β2

Eα2
+ qa[2](q−a + q[a])F a

β2
Fβ1

K−1
α2

=F a+1
β2

Eα2 + qa[2][a+ 1]F a
β2
Fβ1K

−1
α2

.

This proves the first claim. We get then for a ∈ Z>0

ϕFβi
,qa(Eαi) = F−a

βi
EαiF

a
βi

=

{
Eα2 + q−2q2a q2a−q−2a

q−q−1 F−1
β2

Fβ1
K−1

α2
, if i = 2

Eαi + q−1qa qa−q−a

q−q−1 F−1
βi

Fβi−1K
−1
αi

, otherwise.

Using the fact that ϕFβi
,b(Eαi) is Laurent polynomial in b we get the second

claim of the proposition. �

We combine the above propositions in the following proposition

Proposition 10.4 Let i ∈ {3, . . . , n}. For b = (b1, . . . , bn) ∈ (C∗)n

ϕFΣ,b(Fαi) =ϕFβi−1,bi−1
(Fαi)

=bi−1Fαi
+

bi−1 − b−1
i−1

q − q−1
F−1
βi−1

Fβi

ϕFΣ,b(Eαi) =ϕFβi,bi
(Eαi) = Eαi + q−1bi

bi − b−1
i

q − q−1
F−1
βi

Fβi−1K
−1
αi

.

Furthermore

ϕFΣ,b(Eα2) = Eα2 + q−1[2]b2
b2 − b−1

2

q − q−1
F−1
β2

Fβ1K
−1
α2

and
ϕFΣ,b(Fα1

) = b2 · · · bnFα1
.

With similar proof as the proof of Proposition 9.6 we can show

Proposition 10.5 Let λ be a weight such that λ(Kβ) ∈ ±qN for all short β ∈ Φ+

and λ(Kγ) ∈ ±q1+2Z for all long γ ∈ Φ+. Let b = (b1, . . . , bn) ∈ (C∗)n. Eα2

acts injectively on the Uq-module ϕFΣ,b.L(λ)FΣ if and only if b2 6∈ ±qZ. Let
i ∈ {3, . . . , n}. Then Eαi acts injectively on the module ϕFΣ,b.L(λ)FΣ if and only
if bi 6∈ ±qZ and Fαi

acts injectively on ϕFΣ,b.L(λ)FΣ
if and only if bi−1 6∈ ±qZ.

Proof. By Proposition 4.10 and Corollary 4.20 a root vector acts injectively on
the Uq-module

ϕFΣ,(b1,...,bn).L(λ)FΣ

if and only if it acts injectively on

ϕFΣ,(ε1qi1b1,...,εnqinbn).L(λ)FΣ

for any i1, . . . , in ∈ Z and ε1, . . . , εn ∈ {±1}.
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Assume there exists a 0 6= v ∈ ϕFΣ,b.L(λ)FΣ
such that Fαi

v = 0. We have
v = F a1

β1
· · ·F an

βn
⊗ v′ for some a1, . . . , an ∈ Z≤0 and some v′ ∈ L(λ). Fαi

v = 0
implies

0 = ϕFΣ,b(Fαi
)F a1

β1
· · ·F an

βn
⊗ v′ = F a1

β1
· · ·F an

βn
⊗ ϕFΣ,c(Fαi

)v′

where c = (qa1b1, . . . , q
anbn). So there exists a v′ ∈ L(λ) such that ϕFΣ,c(Fαi

)v′ =
0. That is (

ci−1Fαi
+

ci−1 − c−1
i−1

q − q−1
F−1
βi−1

Fβi

)
v′ = 0

or equivalently

(
Fβi−1

Fαi
+ c−1

i−1

ci−1 − c−1
i−1

q − q−1
Fβi

)
v′ = 0.

Let r ∈ N be such that F
(r)
αi v

′ 6= 0 and F
(r+1)
αi v′ = 0 (possible since λ(Kαi) ∈ ±qN

so −αi ∈ FL(λ)). So the above being equal to zero implies

0 =F (r)
αi

(
Fβi−1Fαi + c−1

i−1

ci−1 − c−1
i−1

q − q−1
Fβi

)
v′

=

(
[r]Fβi

F (r)
αi

+ q−r 1− c−2
i−1

q − q−1
Fβi

F (r)
αi

)
v′

=

(
[r] + q−r 1− c−2

i−1

q − q−1

)
Fβi

F (r)
αi

v′.

Since Fβi
F

(r)
αi v

′ 6= 0 this is equivalent to

0 = qr − q−r + q−r − q−rc−2
i−1 = qr − q−rc−2

i−1

or equivalently ci−1 = ±q−r.
The other claims are shown similarly. �

Proposition 10.6 Let λ be a weight such that λ(Kβ) ∈ ±qN for all short β ∈ Φ+

and λ(Kγ) ∈ ±q1+2Z for all long γ ∈ Φ+. Let b = (b1, . . . , bn) ∈ (C∗)n. Then
Fα1+2α2 acts injectively on the Uq-module ϕFΣ,b.L(λ)FΣ .

Proof. We can show similarly to the above calculations in this section that

ϕFΣ,b(Fα1+2α2) = b22Fα1+2α2 + (1− q2)b22b
−2
1

b21 − b−2
1

q2 − q−2
F−1
β1

F
(2)
β2

.

By Proposition 4.10 and Corollary 4.20 a root vector acts injectively on the
Uq-module

ϕFΣ,(b1,...,bn).L(λ)FΣ

if and only if it acts injectively on

ϕFΣ,(ε1qi1b1,...,εnqinbn).L(λ)FΣ

for any i1, . . . , in ∈ Z and ε1, . . . , εn ∈ {±1}.
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Assume there exists a 0 6= v ∈ ϕFΣ,b.L(λ)FΣ
such that Fα1+2α2

v = 0. We
have v = F a1

β1
· · ·F an

βn
⊗ v′ for some a1, . . . , an ∈ Z and some v′ ∈ L(λ). So

Fα1+2α2
v = 0 implies

0 = ϕFΣ,b(Fα1+2α2
)F a1

β1
· · ·F an

βn
⊗ v′ = F a1

β1
· · ·F an

βn
⊗ ϕFΣ,c(Fα1+2α2

)v′

where c = (qa1b1, . . . , q
anbn). So there exists a v′ ∈ L(λ) and a1, . . . , an ∈ Z

such that for c = (qa1b1, . . . , q
anbn), ϕFΣ,c(Fα1+2α2)v

′ = 0. That is

(
c22Fα1+2α2 + (1− q2)c22c

−2
1

c21 − c−2
1

q2 − q−2
F−1
β1

F
(2)
β2

)
v′ = 0

or equivalently

Fβ1Fα1+2α2v
′ + (1− q2)c−2

1

c21 − c−2
1

q2 − q−2
F

(2)
β2

v′ = 0.

So to prove our claim it is enough to prove that

(
Fβ1

Fα1+2α2
+ (1− q2)c−2

1

c21 − c−2
1

q2 − q−2
F

(2)
β2

)
v′ 6= 0

for any v′ ∈ L(λ) and any c1 ∈ C∗.

So let v′ ∈ L(λ) and let c1 ∈ C∗. Let r ∈ N be such that E
(r)
α2 v

′ 6=

0 and E
(r+1)
α2 v′ = 0 (possible since L(λ) is a highest weight module). It is

straightforward to show that for a ∈ N:

[E(a)
α2

, Fα1+2α2 ] = q−a+1[2]Fβ2E
(a−1)
α2

K−1
α2

+ q4−2aFβ1E
(a−2)
α2

K−2
α2

and

[E(a)
α2

, F
(2)
β2

] = q2−a[2]Fβ2
Fβ1

E(a−1)
α2

K−1
α2

+ q3−2a[2]F 2
β1
E(a−2)

α2
K−2

α2
.

Using this we get

E(r+2)
α2

(
Fβ1

Fα1+2α2
+ (1− q2)c−2

1

c21 − c−2
1

q2 − q−2
F

(2)
β2

)
v′

=

(
q−2r + q−1−2r[2](1− q2)c−2

1

c21 − c−2
1

q2 − q−2

)
F 2
β1
E(r)

α2
K−2

α2
v′

=q−2rc−4
1 F 2

β1
E(r)

α2
K−2

α2
v′

6=0

since Fβ1
acts injectively on L(λ). Thus

(
Fβ1

Fα1+2α2
+ (1− q2)c−2

1

c21 − c−2
1

q2 − q−2
F

(2)
β2

)
v′ 6= 0. �

Theorem 10.7 Let λ be a weight such that λ(Kβ) ∈ ±qN for all short β ∈ Φ
and λ(Kγ) ∈ ±q1+2Z for all long γ ∈ Φ. Let b = (b1, . . . , bn) ∈ (C∗)n. Then
the Uq-module ϕFΣ,b.L(λ)FΣ

is simple and torsion free if and only if bi 6∈ ±qZ,
i = 2, . . . , n and b21b2 · · · bn 6∈ ±qZ.
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Proof. Let i ∈ {2, . . . , n}. By Proposition 10.5, Eαi
acts injectively on ϕFΣ,b.L(λ)FΣ

if and only if bi 6∈ ±qZ. If ϕFΣ,b.L(λ)FΣ
is torsion free then every root vector

acts injectively. So ϕFΣ,b.L(λ)FΣ
being torsion free implies bi 6∈ ±qZ.

Let Σ′ = {β′
1, . . . , β

′
n} denote the set of commuting roots with β′

1 = α1 + α2,
β′
2 = α1+2α2, β

′
j = α1+2α2+α3+ · · ·+αj , j = 3, . . . , n. Let F ′

β′
1
:= Ts1(Fα2) =

Fβ2 , F ′
β′
2
:= Ts1Ts2(Fα1) = Fα1+2α1 , F ′

β′
j
:= Ts1 · · ·TsnTs1 · · ·Tsj−2(Fαj−1) =

Ts2(Fβj
) = Fα1+2α2+α3+···+αj

, j = 3, . . . , n (in this case we actually have F ′
β′
j
=

Fβ′
j
) and FΣ′ the Ore subset generated by F ′

β′
1
, . . . , F ′

β′
n
. Similarly to the above

calculations in this section we can show that for c ∈ (C∗)n

ϕFΣ′ ,c(Fα2
) = c−1

n · · · c−1
3 c−2

2

(
Fα2

+ q[2]c−1
1

c1 − c−1
1

q − q−1
(F ′

β′
1
)−1F ′

β′
2

)
.

Let v ∈ L(λ) and let r ∈ N be such that F
(r)
α2 v 6= 0 and F

(r+1)
α2 v = 0 (possible

since λ(Kα2) ∈ ±qN). Then we see like in the proof of Proposition 10.5 that
ϕFΣ′ ,c(Fα2

)v = 0 if and only if c1 = ±q−r thus ϕFΣ′ ,c.L(λ)FΣ′ is not torsion free
whenever c1 ∈ ±qZ by Proposition 4.10 and Corollary 4.20.

Set f(b) = (b21b2 · · · bn, b
−1
1 b−1

3 · · · bn, b3, . . . , bn). Then by Lemma 5.3

(ϕFΣ,b.L(λ)FΣ
)
ss ∼=

(
ϕFΣ′ ,f(b).L(λ)FΣ′

)ss
.

If ϕFΣ,b.L(λ)FΣ
is torsion free then it is simple so

ϕFΣ,b.L(λ)FΣ
∼=(ϕFΣ,b.L(λ)FΣ

)
ss

∼=
(
ϕFΣ′ ,f(b).L(λ)FΣ′

)ss

∼=ϕFΣ′ ,f(b).L(λ)FΣ′ .

We see that ϕFΣ,b.L(λ)FΣ
being torsion free implies b21b2 · · · bn 6∈ ±qZ.

Now assume bi 6∈ ±qZ, i = 2, . . . , n and b21b2 · · · bn 6∈ ±qZ. By Proposition 10.5
and Proposition 9.7 Eαi and Fαi , i = 3, . . . , n act injectively on all composition
factors of ϕFΣ,b.L(λ)FΣ .

Let L1 be a simple submodule of ϕFΣ,b.L(λ)FΣ
and let L2 be a simple sub-

module of ϕFΣ′ ,f(b).L(λ)FΣ′ . By Proposition 10.6, Fα1+2α2
acts injectively on

ϕFΣ,b.L(λ)FΣ
. Now clearly {−α1 − α2,−α1 − 2α2, α3, . . . , αn} ⊂ TL1

∩ TL2
so

C(L1) ∩ C(L2) generates Q. This implies that C(L1) − C(L2) = Q. Since
(ϕFΣ,b.L(λ)FΣ)

ss ∼=
(
ϕFΣ′ ,f(b).L(λ)FΣ′

)ss
we have wtLk ⊂ qQ(b−1)Σλ, k = 1, 2.

Choose µ1, µ2 ∈ Q such that qµ1(b−1)Σλ ∈ Suppess(L1) and qµ2(b−1)Σλ ∈
Suppess(L2). Then obviously qC(L1)+µ1(b−1)Σλ ⊂ Suppess(L1) and qC(L2)+µ2(b−1)Σλ ⊂
Suppess(L2). By the above qC(L1)+µ1(b−1)Σλ ∩ qC(L2)+µ2(b−1)Σλ 6= ∅ so
Suppess(L1) ∩ Suppess(L2) 6= ∅. Let ν ∈ Suppess(L1) ∩ Suppess(L2). By Propo-
sition 5.6, L1 and L2 are admissible of the same degree as L(λ). So we have
as (Uq)0-modules (using that (L1)ν and (L2)ν are simple (Uq)0-modules by
Theorem 2.7)

(L1)ν = (ϕFΣ,b.L(λ)FΣ)ν
∼=
(
(ϕFΣ,b.L(λ)FΣ)ν

)ss

∼=
((
ϕFΣ′ ,f(b).L(λ)FΣ′

)
ν

)ss ∼=
(
ϕFΣ′ ,f(b).L(λ)FΣ′

)
ν
= (L2)ν .

By Theorem 2.7 this implies L1
∼= L2.

Let Σ′′ = {β′′
1 , . . . , β

′′
n} denote the set of commuting roots with β′′

1 = α1 +
2α2, β′′

2 = α2, β′′
j = α1 + 2α2 + α3 + · · · + αj , j = 3, . . . , n. Let F ′′

β′′
1

:=
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Ts1Ts2(Fα1
), F ′′

β′′
2

:= Fα2
, F ′′

β′′
j

:= Ts2Ts1Ts2Ts3 · · ·Tsj−1
(Fαj

) = Ts1Ts2(Fβj
),

j = 3, . . . , n and FΣ′′ the Ore subset generated by F ′′
β′′
1
, . . . , F ′′

β′′
n
. Note that

F ′′
β′′
j
= Ts1Ts2(Fβj

) for all j ∈ {1, . . . , n}. The root vectors F ′′
β′′
1
, . . . , F ′′

β′′
n

act

injectively on s2s1L(λ). By Theorem 5.12 and Proposition 5.5 L(λ) is a submodule
of
(
ϕFΣ′′ ,d.(

s2s1L(λ))FΣ′′

)ss
for some d ∈ (C∗)n. Then by Lemma 5.3

(ϕFΣ,b.L(λ)FΣ
)
ss ∼=

(
ϕFΣ′′ ,g(b)d.(

s2s1L(λ))FΣ′′

)ss

for some g(b) ∈ (C∗)n.
Observe that for a1, . . . , an ∈ N:

ϕFΣ′′ ,(qa1 ,...,qan )(−Kα1Eα1)

=ϕFΣ′′ ,(qa1 ,...,qan )(Ts1Ts2(Fα1+2α2
))

=
(
F ′′
β′′
1

)−a1

· · ·
(
F ′′
β′′
n

)−an

Ts1Ts2(Fα1+2α2)
(
F ′′
β′′
n

)an

· · ·
(
F ′′
β′′
1

)a1

=Ts1Ts2

(
F−an

β1
· · ·F−an

βn
Fα1+2α2F

an

βn
· · ·F a1

β1

)

=Ts1Ts2

(
ϕFΣ,(qa1 ,...,qan )(Fα1+2α2)

)
.

Since ϕFΣ′′ ,c(−Kα1Eα1) and Ts1Ts2 (ϕFΣ,c(Fα1+2α2)) are both Laurent polyno-
mial in c we get by Lemma 4.8 that ϕFΣ′′ ,c(−Kα1Eα1) = Ts1Ts2 (ϕFΣ,c(Fα1+2α2))
for any c ∈ (C∗)n. Ts1Ts2 (ϕFΣ,c(Fα1+2α2)) acts injectively on s2s1L(λ) for any
c ∈ (C∗)n by Proposition 10.6. This implies that −Kα1

Eα1
acts injectively on

ϕFΣ′′ ,g(b)d.(
s2s1L(λ))FΣ′′ and this implies that Eα1

acts injectively.
Let L3 be a simple submodule of ϕFΣ′′ ,g(b)d.(

s2s1L(λ))FΣ′′ . We see that
{−α2,−α1 − 2α2, α3, . . . , αn} ⊂ TL3

∩ TL2
so C(L2) ∩ C(L3) generates Q

({α3, . . . , αn} ⊂ TL3 because of Proposition 9.7 and the fact that L3 is a com-
position factor of ϕFΣ,b.L(λ)FΣ). Arguing as above this implies that L2

∼= L3.
We have shown that L1

∼= L2
∼= L3. Above we have shown that Eα1

acts
injectively on L3, Fα2

acts injectively on L2 and Fα1
, Eα2

, Fαi
, Eαi

, i = 3, . . . , n
act injectively on L1. In conclusion we have shown that all root vectors act injec-
tively on the simple submodule L1 of ϕFΣ,b.L(λ)FΣ

thus wtL1 = Suppess(L1) =
qQ(b−1)Σλ and therefore L1 = ϕFΣ,b.L(λ)FΣ . This shows that ϕFΣ,b.L(λ)FΣ is
simple and torsion free with our assumptions on b. �
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