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Abstract

In this thesis we examine questions regarding group actions and invariants for a
certain class of Lie algebras known as the restricted Cartan types. That these
Lie algebras are restricted means that they are defined over a field of positive
characteristic and possess a map with formal properties similar to those of the pth
power map of an associative algebra. With some mild assumptions on the base field
we determine orbit closures in the Witt algebra – the smallest of the Cartan types –
and its dual space under the action of the automorphism group. Furthermore, we
show that the symmetric algebra and universal enveloping algebra of any restricted
Cartan type Lie algebra admit no nontrivial invariants under said action. Finally,
we consider a version of Chevalley’s Restriction Theorem for the restricted Cartan
types, and prove that the restriction homomorphism is not an isomorphism whenever
the torus involved is not generic.

Resumé

I denne afhandling undersøger vi spørgsmål vedrørende gruppevirkninger og in-
varianter for en bestemt klasse af Lie algebraer kendt som de restringerede Lie
algebraer af Cartan type. At disse Lie algebraer er restringerede betyder at de er
defineret over et legeme af positiv karakteristik og er udstyret med en afbildning
med formelle egenskaber som minder om p’te potens afbildningen p̊a en associativ
algebra. Med milde betingelser p̊a grundlegemet bestemmer vi banelukninger i Witt
algebraen – den mindste af Cartan typerne – og dennes duale rum, under virkningen
af automorfigruppen. Ydermere viser vi, at for en vilk̊arlig restringeret Lie algebra
af Cartan type er der kun trivielle invarianter under samme gruppevirkning i den
symmetriske algebra og den universelle indhyldningsalgebra. Endelig betragter vi
en version af Chevalley’s Restriction Theorem for de restringerede Cartan typer, og
beviser at restringeringshomomorfien ikke er en isomorfi n̊ar den involverede torus
ikke er generisk.

ii



Introduction

It is safe to say that the theory of finite-dimensional complex semisimple Lie algebras,
with its many beautiful theorems and all kinds of interesting applications, is by now a
classical (but still evolving!) subject in mathematics. Such a position cannot exactly
be claimed by the theory of Lie algebras over fields of positive characteristic. These
Lie algebras are called modular, and their theory is younger, having been initiated
by Jacobson in the 1930’s, and less well developed. But even though the theory
has spent its life outside the mathematical mainstream1, there has still been made
enormous progress, most notably seen in the full classification of finite-dimensional
simple Lie algebras over an algebraically closed field of characteristic greater than
three, which was recently completed by Strade and Premet. It is the combination of
this solid foundation with the great number of natural questions yet to be answered
(some of which are even quite easy to understand!) that is one of the most appealing
features of the modular theory.

In this thesis we aim to further the understanding of an important class of
finite-dimensional simple modular Lie algebras known as the restricted Cartan types.
They are analogues of certain infinite-dimensional Lie algebras of complex vector
fields studied by Cartan at the beginning of the previous century, and they often
exhibit what could be considered ’pathological’ behaviour, at least if one’s definition
of ’normal’ is the complex semisimple case. We will study the invariant theory of the
restricted Cartan types, or to be more precise, we will study certain group actions
related to these Lie algebras, that are natural analogues of well known group actions
from the semisimple complex world. The theorems we prove will, however, often be
very different from their classical counterparts.

Before we get to work, let us briefly explain the structure of the thesis:
In Chapter 1 we introduce most of the required notation and terminology. Fur-

thermore, we explain in detail the background for the questions to be studied. Topics
include the notion of restrictedness, the KW1 conjecture and Veldkamp’s Theorem.

In Chapter 2 we introduce the restricted Cartan types and determine orbit
closures in the smallest of these – the Witt algebra – and its dual space, under
the action of the automorphism group. Furthermore, we show that the symmetric
algebra and the universal enveloping algebra of an arbitrary restricted Cartan type
Lie algebra admit no non-trivial automorphism group invariants. Finally, we study
semi-invariants, and prove that the center of the universal enveloping algebra of the

1One could perhaps consider the subtheory of Lie algebras of reductive algebraic groups defined
over fields of positive characteristic close to mainstream.
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Witt algebra is free over the so-called p-center. Most of the results of this chapter
were published in the two papers [40], [41].

In Chapter 3 we consider an analogue of Chevalley’s Restriction Theorem – a
classical result in the complex semisimple theory – for the restricted Cartan types.
We introduce the variety of tori of maximal dimension and the notion of generic
torus, and we prove that the restriction homomorphism appearing in our version
of Chevalley’s Restriction Theorem fails to be an isomorphism whenever the torus
considered is non-generic.
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Chapter 1

Setting the Stage

1.1 Basic constructions and definitions

Let F denote any field. We start out by recalling three basic, but very important
functors, while fixing some notation in the process (for more details, see [24] or [11]):
Let V be a finite-dimensional vector space over F and denote by T (V ) the tensor
algebra of V , defined as vector space by T (V ) =

⊕∞
k=0 V

⊗k, and with multiplication
given by concatenation of tensors. The tensor algebra is naturally a graded algebra,
with the jth homogeneous piece T (V )j equal to V ⊗j for all j ≥ 0. If v1, . . . , vj ∈ V
we will often write v1v2 · · · vj for the element v = v1 ⊗ v2 ⊗ · · · ⊗ vj in T (V ) (and
use similar notation for the image of v in any quotient of T (V )). Now we get the
symmetric algebra of V by dividing out by the two-sided ideal of T (V ) generated by
all v ⊗ w − w ⊗ v with v, w ∈ V :

S(V ) = T (V )/〈v ⊗ w − w ⊗ v | v, w ∈ V 〉.

The symmetric algebra is commutative and graded (being a quotient of T (V ) by
a homogeneous ideal), and we write S(V )j for the jth homogeneous piece (we will
use a similar notation for any graded algebra). Furthermore, S(V ) can be naturally
identified, as we will often do, with the algebra F [V ∗] of polynomial functions on V ∗.
Any linear map f : V → W between vector spaces induces a graded homomorphism of
algebras S(f) : S(V )→ S(W ) in an obvious way, so we can consider S as a functor
between the category of F -vector spaces and the category of graded associative
algebras over F .

Now let g denote a finite-dimensional Lie algebra over F . The universal enveloping
algebra U(g) of g can be constructed by taking the tensor algebra T (g) and dividing
out by the two-sided ideal generated by all x⊗ y − y ⊗ x− [x, y] with x, y ∈ g:

U(g) = T (g)/〈x⊗ y − y ⊗ x− [x, y] | x, y ∈ g〉.

The universal enveloping algebra is a (generally noncommutative) noetherian domain
with a standard filtration {U(g)≤k}k∈N given by:

U(g)≤k = spanF{x1 · · ·xj | x1, . . . , xj ∈ g, j ≤ k}.
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Any homomorphism of Lie algebras induces a filtered homomorphism of the corre-
sponding universal enveloping algebras, so U is a functor from the category of Lie
algebras to the category of filtered associative algebras. Furthermore, the category
of modules over the Lie algebra g is naturally equivalent to the category of modules
over the algebra U(g), which is perhaps the main reason for our interest in the latter.

Finally, we define a functor Gr between the category of filtered associative algebras
and the category of graded associative algebras in the following way: Consider an
algebra A equipped with a filtration {A≤k}k∈N. The associated graded algebra Gr(A)
of A is defined on vector space level as Gr(A) =

⊕
k∈NA≤k/A≤k−1, with A≤−1 = 0

by definition. For ã ∈ A≤i/A≤i−1, b̃ ∈ A≤j/A≤j−1 we can define a product by first
lifting ã, b̃ to a ∈ Ai, b ∈ Aj respectively, and then taking ãb̃ to be the image of ab in
A≤i+j/A≤i+j−1. One easily checks that this is well defined, and by expanding linearly
we get a multiplication on Gr(A), making it into a graded algebra. Of course, if
A is graded, then it is also canonically filtered, and we have Gr(A) ∼= A. For any
a ∈ A \ {0} we set deg(a) = min{j ∈ N | a ∈ A≤j} and define the leading term map
l : A \ {0} → Gr(A) (which is a priori only a map of sets) by letting l(a) be the
image of a in A≤deg(a)/A≤deg(a)−1 = Gr(A)deg(a). The image of l is precisely the set
of homogeneous elements of Gr(A). Note that we can apply the Gr-construction
to any subspace (automatically filtered) V of A, in which case Gr(V ) becomes a
graded subspace of Gr(A). It is easy to show that if V,W ⊆ A are subspaces such
that V ⊆ W and Gr(V ) = Gr(W ), then V = W . This simple observation will prove
extremely useful!

Returning to our Lie algebra g, we note that the image of x1⊗· · ·⊗xj ∈ T (g)j in
U(g) is contained in U(g)≤j , and thus we have a linear map T (g)→ U(g)≤j/U(g)≤j−1

which can be extended to an algebra homomorphism ψ̃ : T (g)→ Gr(U(g)). Since ψ̃
vanishes on the ideal defining S(g) we get an induced homomorphism ψ : S(g)→
Gr(U(g)), which, by the PBW Theorem, is an isomorphism:

Gr(U(g)) ∼= S(g).

So our three functors are related in the nicest possible way, and the universal
enveloping algebra can be thought of as a filtered deformation of the symmetric
algebra. The leading term map l : U(g) \ {0} → S(g) is easily seen to be g-invariant,
and also has a nice multiplicative property: l(u1u2) = l(u1)l(u2) for all nonzero
u1, u2 ∈ U(g). We are usually more interested in U(g) than in S(g) because of the
former’s closer relation to g itself. However, the simpler structure of the symmetric
algebra makes it a viable strategy in many situations to work in S(g) and then try
to transfer the information to U(g). We will see plenty of examples of this later.

Now let M be any g-module. We have a natural homogeneous action of g on
T (M) by derivations, given by

y.(m1 ⊗ · · · ⊗mj) = y.m1 ⊗m2 ⊗ · · · ⊗mj + · · ·+m1 ⊗ · · · ⊗mj−1 ⊗ y.mj

for y ∈ g, m1, . . . ,mj ∈ M . This action factors through the ideal defining S(M),
and thus g also acts homogeneously by derivations on this algebra. If M is g itself
(with the adjoint action), then the action of g on T (g) also factors through the ideal
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defining U(g), and the resulting filtration preserving action turns out to be given
([11], 11.1) simply by

y.u = yu− uy

for y ∈ g, u ∈ U(g). In particular, the algebra of invariants U(g)g = {u ∈
U(g) | x.u = 0 for all x ∈ g} coincides with the center Z(g) of U(g).

If M = g or M = g∗ (the cases we are primarily interested in) then M is also a
rational module for the algebraic group G = Aut(g) of Lie automorphisms of g, and
we get an action of G on T (M) by algebra automorphisms:

g.(m1 ⊗ · · · ⊗mj) = g(m1)⊗ · · · ⊗ g(mj)

for g ∈ G, m1, . . . ,mj ∈ g. Again we get induced actions on S(g), S(g∗) and U(g),
which are homogeneous in the first two cases, filtration preserving in the last. All this
applies also if we start with an arbitrary algebraic F -group G and set g = Lie(G).1

A final notion, which will turn out to be very important, is that of regular
character : For any χ ∈ g∗ we let gχ ⊆ g denote the stabiliser of χ in the coadjoint
action:

gχ = {x ∈ g | x.χ = 0} = {x ∈ g | χ([x, g]) = 0}. (1.1)

Note that gχ is also the radical of the alternating bilinear form (·, ·)χ on g defined
by (x, y)χ = χ([x, y]) for x, y ∈ g. The index of g is the minimal dimension among
all stabilisers:

ind(g) = min{dim(gχ) | χ ∈ g∗}.

Since (·, ·)χ induces a symplectic form on g/gχ this vector space is even-dimensional
for all χ. An element χ ∈ g∗ with dim(gχ) = ind(g) is called regular, and we denote
the set of regular characters g∗reg. This is a Zariski-open subset of g∗ by [16], 1.11.5.

We are interested in the invariants of the group and Lie algebra actions just
described, along with some applications to representation theory, when F has positive
characteristic and g is restricted (to be defined). Let us first, however, recall the
situation in characteristic zero, which will, particularly in the classical case where
the Lie algebra is semisimple, serve as motivation and inspiration throughout:

1.2 Lie invariants in characteristic zero

Assume, unsurprisingly, that our ground field F has characteristic zero. Let further-
more {x1, . . . , xn} be an F -basis of g. We have a g-invariant isomorphism of vector
spaces ϕ : S(g)→ U(g) given on basis monomials by

ϕ(xi1 · · ·xik) =
∑
σ∈Sk

1

k!
xiσ(1) · · ·xiσ(k) (1.2)

for all k. Here Sk denotes the symmetric group on k letters, and the map is called
the symmetrization map. Note that (1.2) only makes sense because of the restriction

1In this thesis we consider only the adjoint action of an algebraic group on its Lie algebra.
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on the characteristic! While the symmetrization map is a very nice map (we miss it
sorely in characteristic p!), which allows us to compare the g-module structure of
U(g) and S(g), one could perhaps be bold and ask for an even nicer map. Namely,
while U(g) and S(g) are clearly not isomorphic as algebras (one being commutative,
the other generally noncommutative) it could still happen that the (commutative)
invariant subalgebras S(g)g and Z(g) were in fact isomorphic. It turns out that the
symmetrization map does not induce an algebra isomorphism when restricted to
S(g)g, but this can be remedied by twisting with a certain infinite order differential
operator J1/2 on S(g) (see [10], from where the notation is borrowed, or the original
paper [17]). The resulting algebra isomorphism ϕ ◦ J1/2 : S(g)g → Z(g) is called the
Duflo isomorphism. It should be mentioned that this is actually the degree zero part
of a much more general theorem stating that the cohomology algebras H∗(g, S(g))
and H∗(g, U(g)) are graded isomorphic (see [10] for the full story).

Assume now furthermore that F is algebraically closed, and that g is semisimple of
rank r, with triangular decomposition g = n−⊕h⊕n+, group of inner automorphisms
G, and Weyl group W . For any λ ∈ h∗, let M(λ) denote the corresponding Verma
module. The center of U(g) acts on M(λ) by a central character χλ : Z(g)→ F , and
we define, for any u ∈ Z(g), a polynomial function Ψ(u) on h∗ (that is, an element
of S(h)) by

Ψ(u)(λ) = χλ−ρ(u),

where ρ is the half-sum of positive roots. It turns out that Ψ(u) is W -invariant, and
that we get an isomorphism of algebras

Ψ : Z(g)
∼→ S(h)W

called the twisted Harish-Chandra isomorphism (where ρ obviously constitutes the
’twist’). In particular, the center is a polynomial algebra in dim(h) = r variables, by
the Chevalley-Shephard-Todd Theorem.

Using the identifications S(g∗) ∼= F [g], S(h∗) ∼= F [h] we get a natural map
S(g∗) → S(h∗) which is just restriction of polynomial functions. By Chevalley’s
Restriction Theorem this induces an isomorphism of algebras:

res : S(g∗)G ∼−→ S(h∗)W .

Now the Killing form κ on g gives us a G-module isomorphism g ∼−→ g∗, and similarly,
the restriction of κ to h induces a W -module isomorphism h ∼−→ h∗. These maps
then yield isomorphisms of algebras S(g)G ∼−→ S(g∗)G, S(h)W ∼−→ S(h∗)W , and,
composing with res, we finally get an algebra isomorphism

˜res : S(g)G ∼−→ S(h)W

which, since we know that S(g)G = S(g)g, can be fitted into a diagram with our
other two important isomorphisms, the Duflo map and the twisted Harish-Chandra
map:

S(g)g Z(g)

S(h)W .

˜res

ϕ◦J1/2

Ψ (1.3)
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This diagram commutes, a fact which is not exactly trivial. Since it can be hard to
track down a proof in the literature, we will sketch the idea here: The first thing
one needs to know is that when F is algebraically closed (still of characteristic zero)
and g is any Lie algebra over F , it is possible to describe the inverse (ϕ ◦ J1/2)−1

of the Duflo map using representation theory (see [16], 10.4, and [17]): Start by
taking any regular character λ ∈ g∗reg and find a solvable polarization of λ, i.e., a
solvable subalgebra p ⊆ g such that λ([p, p]) = 0 and dim(p) = 1

2
(dim(g) + dim(gλ))

(at least one such p always exists when λ is regular). Now consider the twisted
one-dimensional p-module F̃λ with action given by

x.1 = λ(x) + 1
2

trg/p(adx)

for all x ∈ p. The last term is just half the trace of the linear operator on g/p
induced by adx. It turns out that it is always possible to find a solvable polarization
such that the induced module Mλ,p = indg

p F̃λ is simple. Furthermore, the primitive
ideal ann(Mλ,p) in U(g) is independent of p, so we can safely denote it by I(λ). The
intersection I(λ)∩Z(g) is a maximal ideal of Z(g), i.e., it induces a central character
ψλ : Z(g)→ F . For any u ∈ Z(g) we can now define a function φ̃(u) : g∗reg → F by:

φ̃(u)(λ) = ψλ(u).

Magically, it turns out that φ̃(u) can be uniquely extended to a polynomial function
on g∗ which is exactly (ϕ ◦ J1/2)−1(u)!

By now, it should at least be clearer how to prove the commutativity of the
diagram (1.3). First identify h∗ with the subset of g∗ consisting of characters λ
satisfying λ(n− ⊕ n+) = 0, then ˜res becomes the usual restriction of functions. For
any nonzero λ ∈ h∗ the Borel subalgebra b = h ⊕ n+ is a solvable polarization of
λ, and indg

b F̃λ = M(λ− ρ) (with our two ’twists’ 1
2

trg/p(adx) and ρ matching up).
Thus we see, that for any u ∈ Z(g), the polynomial functions ( ˜res ◦ (ϕ ◦ J1/2)−1)(u)
and Ψ(u) coincide on the subset U of h∗ consisting of regular characters λ such that
M(λ− ρ) is simple. Luckily, U is nonempty and open in h∗, and we conclude that
( ˜res ◦ (ϕ ◦ J1/2)−1)(u) = Ψ(u) for all u ∈ Z(g).

So the natural question is how much of this carries over to the modular situation,
to which the answer is: Not very much! First of all, there is no symmetrization
map, and therefore no Duflo map.2 Second, for a simple modular Lie algebra (the
notion of ’semisimple’ is not very workable in characteristic p) the Killing form is not
necessarily nondegenerate, the Cartan subalgebras are not always conjugate under
the action of the automorphism group and the representation theory is not nearly as
well behaved, so pretty much everything breaks down! Nevertheless, we will see that
in some cases it is possible to prove analogues of the characteristic zero results.

2In fact, Premet has provided an (unpublished) example to show that the algebras of g-invariants
in S(g) and U(g) are not in general isomorphic in positive characteristic.
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1.3 Restricted Lie algebras and representation

theory

Assume now that our ground field F has characteristic p > 0. A p-mapping on g is
a map ·[p] : g→ g satisfying

1. (ad x)p = adx[p] for all x ∈ g,

2. (ax)[p] = apx[p] for all a ∈ F , x ∈ g,

3. (x+ y)[p] = x[p] + y[p] +
∑p−1

i=1 si(x, y) for all x, y ∈ g,

where the si(x, y) ∈ g are given by the expression

(ad(x⊗X + y ⊗ 1))p−1(x⊗ 1) =

p−1∑
i=1

isi(x, y)⊗X i−1

in g⊗ F [X]. While these properties, in particular the third one, might look weird at
first, one should just think of the definition as extracting the essential properties of
the operation of raising to the pth power in an associative algebra A over F (for a
proof that a 7→ ap does indeed define a p-mapping on A, see [26], V.7). The pair
(g, ·[p]) is called a restricted Lie algebra, and a Lie homomorphism between restricted
Lie algebras that respects the p-mappings is called a restricted homomorphism.

Why are the restricted Lie algebras important? Well, it turns out that many
modular Lie algebras occurring ’in real life’ have a natural p-mapping, typically
induced from an embedding into an associative algebra. Examples include the Lie
algebra of derivations Der(A) of an algebra A (for any derivation D ∈ Der(A), the
associative pth power Dp taken in gl(A) is again a derivation by Leibniz’ formula)
and the Lie algebra Lie(G) of any group scheme G over F (here the p-mapping is
induced from the embedding of Lie(G) into the distribution algebra Dist(G), see [29],
I.7.10). Furthermore, some of the tools of the theory of semisimple Lie algebras in
characteristic zero – notably the unique decomposition of elements into semisimple
and nilpotent parts – can be given meaningful analogues using the p-mapping. Finally,
the theory in the nonrestricted case relies heavily on restricted theory through the
use of so-called p-envelopes (see [58], 2.5).

From now on we will assume that our Lie algebra g is restricted, and that the
ground field F is algebraically closed. Denote by Mod(g) the category of g-modules
and by Mod<∞(g) the full subcategory of finite-dimensional modules. There are
several features of the study of Mod(g) that sets it apart from characteristic zero
theory. One is the fact that the simple g-modules are of finite bounded dimension.
This actually holds for any finite-dimensional modular Lie algebra (see [30], A.4),
and is a consequence of the fact that the center of U(g) is much larger in positive
characteristic, as we will see shortly. Another defining feature is the use of p-
characters : Let M be any g-module. We say that M has p-character χ ∈ g∗ if

(xp − x[p])m = χ(x)pm

6



for all x ∈ g,m ∈ M , where the product xp is taken in the universal enveloping
algebra U(g). Let Mod(g, χ) denote the full subcategory of Mod(g) consisting of
g-modules having p-character χ. Not every module admits a p-character, but the
simple modules always do, i.e., if M is a simple g-module, then there exists χ ∈ g∗

such that M ∈ Mod(g, χ) (a fact which was apparently first observed in [61]).
Furthermore, the category Mod(g, χ) is equivalent to the module category of the
χ-reduced enveloping algebra U(g, χ), defined by:

U(g, χ) = U(g)/〈xp − x[p] − χ(x)p1 | x ∈ g〉.

This algebra is finite-dimensional for any χ: if {x1, . . . , xn} is a basis of g, then
{xα1

1 · · ·xαnn | 0 ≤ α1, . . . , αn < p} is a basis of U(g, χ). So one can often use meth-
ods from the well-developed representation theory of finite-dimensional associative
algebras in the study of simple g-modules. It should, however, be noted that Weyl’s
theorem always fails in positive characteristic, i.e., Mod<∞(g) is not semisimple for
any nonzero g (see [20] for a nice cohomological proof). In other words, even if we
knew everything there is to know about the simple modules, we would still not have
complete knowledge of Mod<∞(g).

The category Mod(g, 0) has special significance, and we call a g-module M
restricted if M ∈ Mod(g, 0). Accordingly, the algebra U(g, 0) will be referred to as
the restricted universal enveloping algebra of g. Note that the ideal 〈xp − x[p] | x ∈
g〉 ⊆ U(g) defining U(g, 0) is a Hopf ideal, so that U(g, 0) becomes a finite-dimensional
cocommutative Hopf algebra. Using the equivalence of categories

{finite-dimensional cocommutative Hopf algebras}
l

{finite group schemes}

we associate to g the finite group scheme G over F having coordinate algebra
F [G] = U(g, 0)∗. The assignment g 7→ G induces an equivalence of categories

{finite-dimensional restricted Lie algebras}
l

{finite group schemes of height ≤ 1}

with inverse functor given by G 7→ Lie(G) ([12], II, §7, 4.1). This geometric
reformulation can be very useful, but it should be noted that it only captures the
restricted part of the representation theory of g: the category of G-modules (i.e.,
comodules of the coordinate algebra) is equivalent to the category of restricted
g-modules.

When χ 6= 0 the reduced enveloping algebra U(g, χ) does not inherit the Hopf
algebra structure of U(g), so we have to settle for the weaker structure ([48], Corol-
lary 8.4.3) of Frobenius algebra. A nondegenerate associative bilinear form 〈·, ·〉 on
U(g, χ) can be defined by choosing a basis {x1, . . . , xn} of g and taking 〈u, v〉 to be
the coefficient of xp−1

1 · · ·xp−1
n in uv for all u, v ∈ U(g, χ).
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1.4 The center Z(g) of the universal enveloping

algebra and the KW1 conjecture

One of the principal goals of most representation theories is to classify the simple
modules (if possible) and find their dimensions. In the case of restricted Lie algebras,
such a classification exists in a few special cases (a list is given in [20]), but in
general we have to settle for less. As the simple g-modules are of finite, bounded
dimension, a more modest (but, as it turns out, still very hard!) question would be
to ask for the maximal dimension M(g) of such a module. In the fundamental paper
[67] Zassenhaus gave a formula for M(g) in ring-theoretic terms. He worked in the
general, i.e., not necessarily restricted, setting, but here we will translate his result
to our setup (see also the account in [58], Chapter 6): Let Z0(g) ⊆ Z(g) denote the
p-center of g, defined as the subalgebra of U(g) generated by all xp − x[p], x ∈ g.
It follows directly from the axioms of the restriction map that the generators of
Z0(g) are indeed central. Also, let Q(g), Q0(g) denote quotient fields of Z(g), Z0(g)
respectively. It is easy to see that U(g) is free of rank pdim(g) over Z0(g), with any
basis {x1, . . . , xn} of g over F giving a basis {xα1

1 · · ·xαnn | 0 ≤ α1, . . . , αn < p} of
U(g) over Z0(g). In particular, U(g) is finitely generated over Z(g). Now U(g) is
a noetherian domain, so it has a division ring of fractions D(g), which, since each
nonzero u ∈ U(g) is integral over Z0(g), can be realized as:

D(g) = U(g)⊗Z0(g) Q0(g).

Our division ring D(g) contains Q(g) and Q0(g) as subfields, and Zassenhaus proves
that

M(g)2 = dimQ(g) D(g) = dimQ(g)(U(g)⊗Z0(g) Q0(g)).

Since dimQ0(g)(U(g)⊗Z0(g) Q0(g)) = rankZ0(g)(U(g)) = pdim(g) we get

M(g)2 =
pdim(g)

[Q(g) : Q0(g)]
. (1.4)

While this is indeed a very pretty equation, it seems that it should be possible to
give an intrinsic characterisation of M(g) not relying on the universal enveloping
algebra. To that end, Kac and Weisfeiler gave the following conjecture in [61]:

Conjecture 1.

M(g) = p(dim(g)−ind(g))/2. (1.5)

We will refer to Conjecture 1 as the first Kac-Weisfeiler conjecture, or KW1 for
short (as the name suggests, there was also a second Kac-Weisfeiler conjecture in the
same paper, sometimes just called the Kac-Weisfeiler conjecture, which was proved
in [43] by Premet). As for the motivation behind KW1, the authors write simply in
[61] that ”it seems plausible” (see, however, also Kac’s review of [43] in [1])! We will
provide some much needed further motivation in the next section. The conjecture
has been verified – with certain minor restrictions on the characteristic – for:
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• Lie algebras of reductive algebraic groups (essentially [50], see also [30], B.5),

• Solvable Lie algebras ([54], generalizing [61]),

• Lie algebras possessing a toral stabilizer ([45], generalizing [37]),

• The Poisson algebras B2n ([53]).

In general, it is known that ([45], Remark 1)

p(dim(g)−ind(g))/2 | M(g).

As for an upper bound, the best we have is M(g) ≤ p(dim(g)−dim(C(g)))/2, where C(g) is
the center of g (see [58], Exercise 1 in Section 6.6). It deserves mention that Mil’ner
published a note ([38]) in 1980, in which he claimed to have a proof of KW1. He
never published the details however, and his approach relied on a lemma which was
later shown to be false (see [22]). So as of today, the conjecture still stands, though
one can, unfortunately, still find otherwise reliable online sources where it is stated
as a theorem.

Using (1.4) we can reformulate KW1:

Lemma 1.1. The following statements are equivalent:

1. The KW1 conjecture is true.

2. dimQ(g) D(g) = pdim(g)−ind(g).

3. [Q(g) : Q0(g)] = pind(g).

It is the last statement of this lemma which lends itself to the use of invariant
theory, as we will see shortly. Let us first, however, consider finite group scheme
actions, which turn out to be closely related to a non-deformed version of the second
statement.

1.5 Invariants of finite group schemes and

symmetrization

In this section we use the setup from [52], only slightly modified. Let G be a finite
group scheme acting from the right on an irreducible affine algebraic variety X,
i.e., a scheme X = Spec(A) with A a finitely generated F -algebra and an integral
domain. By the notation x ∈ X it will be understood that x is a closed point of X
(we will not consider other kinds of points). Any closed subgroup scheme G′ of G
acts on G by right multiplication, and the quotient G/G′ is an affine scheme with
F [G/G′] = F [G]G

′
(here invariants are taken with respect to the right regular action

of G′ on F [G]). We define the index (G : G′) of G′ in G by

(G : G′) = dim(F [G/G′]).

9



Then one can show that we have dim(F [G]) = (G : G′) · dim(F [G′]), in analogy with
Lagrange’s Theorem for finite groups. Now, for any x ∈ X the stabilizer Gx is a
closed subgroup scheme of G. Let

M(X) = max{(G : Gx) | x ∈ X}

and
XG−reg = {x ∈ X | (G : Gx) = M(X)}.

Skryabin proves in [52], among many other things, that XG−reg is open in X, and
that

[F (X) : F (X)G] = M(X), (1.6)

where F (X) is the field of rational functions on X, i.e., the quotient field of F [X] = A
(he actually proves this in a more general situation, where X is not necessarily affine).
But why is this result of interest to us? Well, assume that we have a restricted
action of our Lie algebra g on F [X] by derivations (in other words, a restricted
homomorphism g→ Der(F [X])). Furthermore, for any x ∈ X with corresponding
maximal ideal mx ⊆ F [X], define

gx = {y ∈ g | y(mx) ⊆ mx}, (1.7)

m(X) = max{codimg(gx) | x ∈ X}, (1.8)

Xg−reg = {x ∈ X | codimg(gx) = m(X)},

and note that gx is restricted for any x ∈ X. Let G denote the finite group scheme
associated to g (given by F [G] = U(g, 0)∗, as in Section 1.3) and G(x) the finite
group scheme associated to gx. The action of g on F [X] induces an action of G
on X such that F (X)G = F (X)g and Gx

∼= G(x) for all x ([12], II, §7, 3.10), from
which it follows that

(G : Gx) =
dim(F [G])

dim(F [Gx])
= pcodimg(gx).

But then XG−reg = Xg−reg, and

[F (X) : F (X)g] = pm(X). (1.9)

Now consider the special case X = g∗ with the standard (restricted) action of g
by derivations on F [g∗] ∼= S(g). One checks easily that, for any y ∈ g and χ ∈ g∗,
we have y(mχ) ⊆ mχ if and only if χ([y, g]) = 0, so our two notions of stabilizer
(definitions (1.1) and (1.7)) coincide. We get m(X) = dim(g)− ind(g) and finally,
with Q(S(g)) denoting the field of fractions of S(g),

[Q(S(g)) : Q(S(g))g] = pdim(g)−ind(g). (1.10)

Looking at item 2 in Lemma 1.1, it becomes clear (since Q(g) = D(g)g) that the
KW1 conjecture can be seen as a deformed version of a special case of the invariant-
theoretic result (1.6). And of course, in view of (1.10), we are now very interested
in finding ways to compare S(g) and U(g)!
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Let us for a moment consider the symmetrization map ϕ : S(l)→ U(l) (defined
in Section 1.2) of a Lie algebra l over a field of characteristic zero. Its inverse ϕ−1

(which we consider instead of ϕ only for technical and notational reasons) has several
nice properties:3

1. ϕ−1 is an isomorphism of l-modules.

2. ϕ−1 is filtration-preserving (with the filtration on S(l) coming from the grading).

3. The map Gr(ϕ−1) from Gr(U(l)) ∼= S(l) to Gr(S(l)) ∼= S(l) is the identity.

Note that the identifications made in item 3 are canonical, so it makes sense to speak of
’the identity’. Sadly, the definition of ϕ does not make sense in prime characteristic,
but by slight abuse of terminology, we will refer to any map ψ : U(g) → S(g)
satisfying items 1, 2 and 3 as a symmetrization map. The importance of this notion,
from our perspective, comes from the fact that the KW1 conjecture is true for any
Lie algebra admitting such a map! This follows essentially from results in [37], but
we will work out some of the details here, for the sake of completeness. First, a little
preparation is needed: If x ∈ U(g) and z ∈ Z0(g) we write x

z
for the element x⊗ z−1

in D(g) = U(g)⊗Z0(g) Q0(g). Define a degree function on D(g) by setting

deg
(x
z

)
= deg(x)− deg(z).

One checks easily that this is well-defined. Now D(g) becomes a filtered algebra if
we set D(g)≤k = {y ∈ D(g) | deg(y) ≤ k} for all k ∈ Z. On the other hand, the
localization S(g)l(Z0(g)\{0}) (which makes sense since l(Z0(g) \ {0}) is a multiplicative
set) sitting inside Q(S(g)) becomes a Z-graded algebra by defining

(S(g)l(Z0(g)\{0}))k =

{
f

g

∣∣∣∣ f is homogeneous and deg(f)− deg(g) = k

}
for all k ∈ Z. Now we have:

Lemma 1.2.
Gr(D(g)) ∼= S(g)l(Z0(g)\{0}).

Proof. We have canonical linear maps dj : U(g)j → U(g)j/U(g)j−1
∼= S(g)j for all

j > 0 and define ψ̄k : D(g)≤k → S(g)l(Z0(g)\{0}) for all k ∈ Z by

ψ̄k

(x
z

)
=
dk+deg(z)(x)

ddeg(z)(z)
.

It is easy to check that these maps are well-defined and induce linear isomorphisms
ψk : D(g)≤k/D(g)≤k−1

∼−→ (S(g)l(Z0(g)\{0}))k. Finally, the map ψ : Gr(D(g)) →
S(g)l(Z0(g)\{0}) defined by ψ(

∑
k xk) =

∑
k ψk(xk), with xk ∈ D(g)≤k/D(g)≤k−1 for

all k, is an isomorphism of algebras.

3Aside from the three listed, it is also an isomorphism of coalgebras
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For any subspace V of D(g) we will identify Gr(V ) with a subspace of Q(S(g))
via the map given in Lemma 1.2. Now we have:

Theorem 1.3. Assume that g admits a symmetrization map ϕ. Then

[Q(g) : Q0(g)] = pind(g)

and the KW1 conjecture is true for g.

Proof. Set ind(g) = k and denote by Q(S(g)g), Q(S(g)p) fields of fractions of S(g)g,
S(g)p respectively. By (1.10), and the fact that S(g) is free of rank pdim(g) over S(g)p,
we get [Q(S(g)g) : Q(S(g)p)] = pk. Choose a homogeneous basis f1, . . . , fpk ∈ S(g)g

of Q(S(g)g) over Q(S(g)p). We want to show that f1, . . . , fpk is also a basis of
S(g)gl(Z0(g)\{0}) over S(g)pl(Z0(g)\{0}): The linear independence is clear, so assume

x ∈ S(g)g is homogeneous and write

x =
g1

h1

f1 + · · ·+
gpk

hpk
fpk

for some gi, hi ∈ S(g)p. By clearing denominators we get hx = g′1f1 +· · ·+g′
pk
fpk , and

since x, f1, . . . , fpk are homogeneous we can safely assume the same for h, g1, . . . , gpk .
But the set of homogeneous elements in S(g)p is precisely l(Z0(g) \ {0}), and so x
belongs to the S(g)pl(Z0(g)\{0})-span of f1, . . . , fpk , as was to be shown.

Since ϕ is g-invariant we have ϕ−1(f1), . . . , ϕ−1(fpk) ∈ Z(g), and

Gr(Q(g)) ⊆ S(g)gl(Z0(g)\{0}) = spanS(g)p
l(Z0(g)\{0})

{f1, . . . , fpk}

= Gr(spanQ0(g){ϕ−1(f1), . . . , ϕ−1(fpk)}) ⊆ Gr(Q(g)).

For the second equality we use both that Gr(Z0(g)) = S(g)p and that Gr(ϕ) is the
identity. It follows that Gr(spanQ0(g){ϕ−1(f1), . . . , ϕ

−1(fpk)}) = Gr(Q(g)), which
implies spanQ0(g){ϕ−1(f1), . . . , ϕ

−1(fpk)} = Q(g). Linear independence of the set
{ϕ−1(f1), . . . , ϕ−1(fpk)} is easy to check, and the result follows.

In his failed attempt [38] to resolve the KW1 conjecture in the positive, Mil’ner
actually ”proves” that every Lie algebra admits a symmetrization map. While some
of his arguments were later shown to be flawed, it should be remarked that the
author is not aware of a single example of a Lie algebra not admitting such a map.
Thus the class S of Lie algebras possessing symmetrization maps is still very much
shrouded in mystery, but we do have the following characterization, which is based
on a theorem by Friedlander and Parshall ([22]):

Theorem 1.4. For a Lie algebra g, the following conditions are equivalent:

1. g admits a symmetrization map.

2. The inclusion g ↪→ U(g) splits as a map of g-modules.

3. There exists an associative F -algebra A and an injective Lie homomorphism
ρ : g ↪→ A which splits as a map of g-modules.
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Note that the g-module structure on A in the third statement is given by
x.a = ρ(x)a− aρ(x) for all x ∈ g, a ∈ A.

Proof. We prove that the first and second statements are equivalent first: Assume
that there exists a symmetrization map ψ : U(g) → S(g). Then we must have
ψ(U(g)≤1) = S(g)≤1, and

U(g) = U(g)≤1 ⊕ ψ−1
( ∞⊕
k=2

S(g)k
)

= F ⊕ g⊕ ψ−1
( ∞⊕
k=2

S(g)k
)
.

These are direct sums of g-modules since ψ is g-invariant, so the g-module map
g ↪→ U(g) does indeed split.

As for the other implication, assume that there exists a g-invariant map s :
U(g) → g, which is the identity on g. By functoriality, s induces a map S(s) :
S(U(g))→ S(g), which is also g-invariant. We will now introduce a rather strange
map M : U(g)→ S(U(g)) known as Mil’ner’s map (defined in [22], but inspired by
[38]): Let x1, . . . , xn be a basis of g and xk1 · · · xkj a PBW basis element of U(g) (so
we have k1 ≤ · · · ≤ kj). For any ordered subset I ′ = {i1, . . . , is} of I = {1, . . . , j}
we write xI′ = xki1 · · ·xkis and define M by

M(xk1 · · ·xkj) =
∑

I=I1∪···∪Im

xI1 ◦ · · · ◦ xIm ,

where ◦ denotes the commutative product in S(U(g)), and the sum runs over all
disjoint decompositions of I into ordered subsets (we do not care for the order of
the subsets themselves). This definition begs for an example:

M(x1x2x3) = x1x2x3 + x1x2 ◦ x3 + x1x3 ◦ x2 + x2x3 ◦ x1 + x1 ◦ x2 ◦ x3.

It turns out that M is g-invariant, and from there it is a simple matter to check
that ϕ = S(s) ◦M is the desired symmetrization map (it is even an isomorphism of
coalgebras).

Now it is obvious that the second statement implies the third, and the proof of
the opposite implication is a simple application of the universal property of U(g):
Let an injective Lie homomorphism ρ : g→ A and a g-module map s : A→ g such
that s ◦ ρ = idg be given. We get, by the aforementioned universal property, an
algebra homomorphism ρ̂ : U(g)→ A which extends ρ. But then the composition
s ◦ ρ̂ : U(g)→ g is a g-module map which is the identity on g, and we are done.

Theorem 1.4 enables us to prove, heavily inspired by Lemma 3.5 in [44], that S
is closed under taking centralizers:

Proposition 1.5. Assume that g admits a symmetrization map, and let X be any
subset of g. Then the centralizer cg(X) = {y ∈ g | [y,X] = 0} also admits a
symmetrization map.
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Proof. Identify U(cg(X)) with a subalgebra of U(g) in the usual way. By Theorem 1.4,
there exists a map of g-modules s : U(g) → g with s|g = idg, and we only need to
check that s(U(cg(X))) ⊆ cg(X). But for all u ∈ U(cg(X)) and x ∈ X we clearly
have x.u = xu− ux = 0, so the g-invariance of s gives us

[x, s(u)] = x.s(u) = s(x.u) = 0,

and s(u) ∈ cg(X).

Let G be a connected reductive algebraic group over F satisfying the standard
hypotheses (introduced in [28] to avoid some of the pathological behaviour inextricably
linked to positive characteristic):

1. The derived group of G is simply connected.

2. p is good for G.

3. There exists a G-invariant non-degenerate bilinear form on Lie(G).

Then, by Proposition 1.4 in [59], Lie(G) admits a symmetrization map4 (which
can even be taken to be G-invariant) and thus satisfies the KW1 conjecture. By
Proposition 1.5 the same is true for any centralizer in Lie(G).

1.6 Decomposition of Z(g) for Lie algebras of

reductive groups

We now shift the perspective a little and consider the algebra extension Z0(g) ⊆ Z(g),
with item 3 of Lemma 1.1 as motivation. We know, of course, that this extension
is finite, but other than that, it seems to be very hard to describe the structure of
Z(g) as a Z0(g)-module in general. We do, however, have the following theorem:

Theorem 1.6. Let G be a connected reductive algebraic F -group of rank n, let
g = Lie(G), and assume that G satisfies the standard hypotheses of the previous
section. Then we have:

1. U(g)G is a polynomial algebra in n variables.

2. Z(g) ∼= Z0(g)⊗Z0(g)G U(g)G.

3. Z(g) is free of rank pn over Z0(g).

4. The three previous statements are still true if we replace U(g) by S(g), Z(g)
by S(g)g and Z0(g) by S(g)p.

4One ingredient of the proof is the so-called Richardson’s property, which appears several
places in the literature (albeit with definitions varying slightly from the original one in [44]) and is
essentially a linearized form of item 3 in Theorem 1.4.
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Veldkamp proved a version of this theorem in [62], with much stronger conditions
on G. His results were then generalized successively in [31], [39] and [9] (see also [59]),
but Theorem 1.6 is still known as Veldkamp’s Theorem (see [8] for some of the
terrible things that can happen if we lessen the conditions on G further). We see
that the center is in a natural way built from the p-center and the G-invariants, in
contrast with the classical situation in Section 1.2, where we have (shifting to the
notation from that section for a moment) U(g)G = U(g)g = Z(g). In both cases
U(g)G is a polynomial algebra in rank(G) variables, and in fact the first statement
in Veldkamp’s Theorem can be proved by constructing a map similar to the twisted
Harish-Chandra isomorphism of Section 1.2 ([9]). Note also, that since the rank of G
is equal to the index of g (see [30], B.5), the third statement of the theorem confirms
the KW1 conjecture for the Lie algebras considered.5

Later we will concern ourselves with the problem of finding an analogue of
Veldkamp’s Theorem for a very important class of Lie algebras known as the restricted
Cartan type Lie algebras (to be defined in the next section). For now, let us remark
that for a general finite-dimensional restricted g there seems to be no canonical
way of producing non-trivial central elements, i.e., elements z ∈ Z(g) \ Z0(g), and
the same can be said for elements in S(g)g \ S(g)p. In other words, we have no
replacement for the G-invariants in Veldkamp’s theorem. If we do, somehow, manage
to overcome this problem in the symmetric case, then the following differential
criterion by Skryabin (a shortened version of Theorem 5.4 in [52]) can be useful:

Theorem 1.7. Let X be a smooth irreducible affine variety, and assume that we
have a restricted action of g on F [X] by derivations. Recall the definition of m(X)
from section 1.5 and set n = dim(X)−m(X). For any f1, . . . fn ∈ F [X]g we denote
by C the (closed) subset of X consisting of all x ∈ X such that the differentials
dxf1, . . . , dxfn are linearly dependent. If codimX(C) ≥ 2, then

1. F [X]g = F [X]p[f1, . . . fn].

2. F [X]g is free of rank pn over F [X]p, with a basis given by

{fk11 . . . fknn | 0 ≤ k1, . . . , kn < p}.

With X = g∗, as in Section 1.5, we have n = ind(g) and F [X] ∼= S(g), so we see
that items 1 and 2 in Theorem 1.7 become analogues of the non-deformed versions
of items 2 and 3 in Theorem 1.6. The big problem, as already mentioned, is to find
fi that satisfy the condition in Theorem 1.7! And if one then wants to transfer the
results to the center, there is of course the issue of lacking symmetrization. Before
exploring these complications further, we need, however, to introduce the class of
Lie algebras which are at the center of most of our investigations.

5It deserves mention, that in [60] Topley uses a ’Veldkamp-like’ theorem to prove KW1 for
centralizers in Lie algebras of certain reductive groups. As we saw at the end of the last section,
one can prove a more general result without such a theorem (though it is of course still of interest
in its own right!).
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Chapter 2

The restricted Cartan types:
Invariants, semi-invariants and
orbit closures

2.1 Restricted Cartan type Lie algebras

The restricted simple Lie algebras have been completely classified when the charac-
teristic of the ground field is not too small:

Theorem 2.1. Let g be a finite-dimensional restricted simple Lie algebra over an
algebraically closed field of characteristic p > 5. Then g is either of classical or
Cartan type.

This theorem used to be known as the Kostrikin-Shafarevich Conjecture (stated
in [33]). It was proved for p > 7 by Block and Strade in [4] and is now a special case
of the classification of all simple modular Lie algebras over an algebraically closed
field of characteristic p > 3:

Theorem 2.2. Let g be a finite-dimensional simple Lie algebra over an algebraically
closed field of characteristic p > 3. Then g is either classical, of filtered Cartan type
or Melikian.

Here the Melikian algebras (one of which is restricted) live only in characteristic 5.
The proof of this monumental result, which spans many hundred pages spread
out over several papers, was completed by Premet and Strade in [47].1 The three
volumes [55], [56] and [57] give a uniform treatment of the proof, along with the
tools necessary to understand it (see also the survey [46]). For characteristics 2 and
3 the situation is significantly more complicated, and while progress is being made

1The classification theorem is only one of several examples of the modular theory placing itself
at the halfway point between complex Lie algebras and finite groups: while it certainly possesses
very little of the elegance and simplicity of the classification by Dynkin diagrams in the complex
case, it does not quite match the enormous complexity of the classification of finite simple groups
either.
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(see for example [51] or the recent paper [7]), it still seems that we are nowhere near
a full classification.

Returning to the restricted case, we proceed to explain the notions of ‘classical’
and ‘Cartan type’ in Theorem 2.1. Let F be a field of characteristic p > 3 and g′

a simple Lie algebra over the complex numbers. One can choose a special basis
{x1, . . . , xn} of g′, called a Chevalley basis ([24], 25.2), such that the structure
constants with respect to the Lie bracket are integers. Then g =

∑n
i=1 Zxi ⊗Z F

becomes a Lie algebra over F in an obvious way, and it turns out that g is simple
unless g′ ∼= sl(m) with p | m, in which case the center C(g) is one-dimensional and
g/C(g) is simple. The simple Lie algebras over F obtained by this method are called
classical.

Moving on to the Cartan types, where we will go into significantly more detail.
For the basic definitions and results we will follow 2.8–2.11 in [3] (which again refers
to [58] for many proofs), but note that [3] takes a more general approach by using
divided power algebras, whereas our approach is more concrete. The difference
amounts to nothing more than a scaling of basis elements, so though some formulas
might change, everything is essentially the same. In what follows, whenever we
consider the Cartan types, we will assume that the characteristic of our ground field
F is larger than 3. Let A(n) = F [X1, . . . , Xn]/〈Xp

1 , . . . , X
p
n〉 denote the truncated

polynomial ring in n variables over F . We write xi for the image of Xi in A(n)
and also define yi = xi + 1 for later use. Note that A(n) is a finite-dimensional
local algebra, with maximal ideal m = 〈x1, . . . , xn〉. The nth Witt-Jacobson algebra
W (n) is defined as the Lie algebra Der(A(n)) of derivations of A(n). It is restricted
and simple, with the p-map being given by ordinary multiplication in End(A(n)):
D[p] = Dp for all D ∈ W (n). Furthermore, it is an A(n)-module in an obvious way,
and has a standard basis {xα1

1 · · ·xαnn ∂i | 0 ≤ αj < p, 1 ≤ i ≤ n} where ∂i denotes
partial differentiation with respect to xi. The following useful formula is easy to
prove:

D =
n∑
i=1

D(xi)∂i (2.1)

for all D ∈ W (n). We will often use standard multi-index notation: For an n-tuple
α = (α1, . . . , αn) with 0 ≤ αj < p for 1 ≤ j ≤ n, we write xα for xα1

1 · · · xαnn and
define the degree of xα to be |α| = α1 + · · · + αn. We denote by εj the n-tuple
(0, . . . , 0, 1, 0, . . . , 0) with 1 in the j’th place, and by τ the n-tuple (p− 1, . . . , p− 1).
The commutator in W (n) is given by

[xα∂i, x
β∂j] = βix

α+β−εi∂j − αjxα+β−εj∂i. (2.2)

An important tool in the study ofW (n) is the standard gradingW (n) =
⊕N

i=−1W (n)i,
where N = n(p− 1)− 1 and

W (n)i =
n∑
j=1

∑
|α|=i+1

Fxα∂j.

The module of Kähler differentials ΩA(n)/F is easily seen to be free over A(n), with
a basis given by {dx1, . . . , dxn}. Furthermore, every exterior power Ωr

A(n)/F (r ≥ 0)
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is a W (n)-module in a natural way, which makes it possible to define the following
(restricted) subalgebras:

S(n) = {∂ ∈ W (n) | ∂(dx1 ∧ dx2 ∧ · · · ∧ dxn) = 0}, (2.3)

H(2m) = {∂ ∈ W (2m) | ∂
( m∑
i=1

dxi ∧ dx2m+1−i

)
= 0}, (2.4)

K(2m+ 1) = {∂ ∈ W (2m+ 1) | ∂(ωK) ∈ A(2m+ 1)ωK}. (2.5)

Here ωK =
∑m

i=1(xidx2m+1−i − x2m+1−idxi) + dx2m+1. It turns out, that in all three
cases a certain higher derived algebra (to be elaborated on) is simple and restricted,
and the three families of simple restricted Lie algebras obtained in this way are
known respectively as the special algebras, the Hamiltonian algebras and the contact
algebras. Together with the Witt-Jacobson algebras they constitute what is known
as the simple restricted Lie algebras of Cartan type. We will, however, often omit
the ’simple’ in what follows.

Let us now gather some facts about S(n). Define linear maps div : W (n)→ A(n)
and Dij : A(n)→ W (n) (1 ≤ i, j ≤ n) by

div(∂) =
n∑
i=1

∂i(∂(xi)),

Dij(f) = ∂j(f)∂i − ∂i(f)∂j

for all ∂ ∈ W (n) and f ∈ A(n). A direct calculation shows that

∂(dx1 ∧ · · · ∧ dxn) = div(∂)dx1 ∧ · · · ∧ dxn

for all ∂ ∈ W (n), which implies S(n) = {∂ ∈ W (n) | div(∂) = 0}. Using this
alternative definition it is easy to see that the images of the Dij are contained in
S(n). In fact, it can be shown that

S(n) =
∑
i,j

Dij(A(n))⊕
n⊕
i=1

Fxτ−(p−1)εi∂i.

Furthermore, it turns out that
∑

i,j Dij(A(n)) is equal to the derived algebra S(n)(1)

of S(n). If n ≥ 3, then S(n)(1) is restricted and simple, but for n = 2 the second
derived algebra S(n)(2) is a proper ideal of S(n)(1), since the element D12(xp−1

1 xp−1
2 )

is not contained in the former. However, S(n)(2) = D12(
∑
|α|<2p−2 Fx

α) is restricted

and simple, and we define the nth special algebra to be S(n)(1+δn2). It is not hard
to see that S(1) is one-dimensional and therefore not terribly interesting, so in the
following we will always assume n ≥ 2 when looking at the special algebras.

Let us move on to the family H(2m). Note first that H(2) = S(2), so it makes
no harm to assume m ≥ 2. For a number i ∈ {1, . . . , 2m} we set i′ = 2m+ 1− i and

σ(i) =

{
1 if 1 ≤ i ≤ m,

−1 if m+ 1 ≤ i ≤ 2m.
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For ∂ =
∑2m

i=1 fi∂i ∈ W (2m) the condition in (2.4) can be shown to be equivalent to

σ(i)∂j(fi) = σ(j′)∂i′(fj′) (2.6)

for all 1 ≤ i, j ≤ 2m. Using this equation it is not hard to see that the image of the
linear map DH : A(2m)→ W (2m) defined by

DH(f) =
2m∑
i=1

σ(i)∂i(f)∂i′

is contained in H(2m). It turns out that H(2m)(1) = DH(
∑
|α|<2m(p−1) Fx

α). This
subalgebra is simple and restricted, and we call it a Hamiltonian algebra.

The special and Hamiltonian algebras are easily seen to be graded subalgebras
of the corresponding Witt-Jacobson algebra, but this is not true for the last family,
the contact algebras: Define a linear map DK : A(2m + 1) → W (2m + 1) by
DK(f) =

∑2m+1
i=1 fi∂i, where

fi = xi∂2m+1(f) + σ(i′)∂i′(f) for 1 ≤ i ≤ 2m,

f2m+1 = 2f −
2m∑
j=1

xj∂j(f).

Furthermore, we define ∆(f) = 2f −
∑2m

j=1 xj∂j(f) and

〈f, g〉 = ∆(f)∂2m+1(g)−∆(g)∂2m+1(f) +
2m∑
j=1

σ(j)∂j(f)∂j′(g).

A basic calculation proves the commutation formula

[DK(f), DK(g)] = DK(〈f, g〉).

It turns out that the image of DK is exactly K(2m + 1). Grading A(2m + 1) by
deg(xα) = ‖α‖ = |α|+ α2m+1 − 2 induces a grading on K(2m+ 1) via

K(2m+ 1)j = span{DK(xα) | deg(xα) = j}.

The derived algebra K(2m+ 1)(1) is restricted and simple, and we call it a contact
algebra. It can be shown that K(2m+ 1)(1) = span{DK(xα) | α 6= τ} if 2m+ 4 ≡ 0
mod p and K(2m + 1)(1) = K(2m + 1) otherwise. We will need a few formulas
regarding the product 〈·, ·〉 (compare [3], p. 57, but note that formula (v) there is
not correct as stated):

〈1, xα〉 = α2m+1x
α−ε2m+1 (2.7)

〈xi, xα〉 = σ(i)αi′x
α−εi′ + α2m+1x

α+εi−ε2m+1 for 1 ≤ i ≤ 2m (2.8)

〈x2m+1, x
α〉 = ||α||xα (2.9)

〈xixj, xα〉 = σ(i)αi′x
α+εj−εi′ + σ(j)αj′x

α+εi−εj′ for 1 ≤ i, j ≤ 2m (2.10)

〈xixi′ , xα〉 = (αi′ − αi)xα for 1 ≤ i ≤ m. (2.11)
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From now on we will (by abuse of notation) write W (n), S(n), H(n) and K(n) for
the corresponding simple derived subalgebra, with the convention that n = 2m for
the Hamiltonian type and n = 2m + 1 for the contact type. If g is an arbitrary
simple restricted algebra of Cartan type, then we use the notation ĝ for the algebra

from which it is derived (with the convention Ŵ (n) = W (n)). We have the following
lemma, which sums up some of the most important information from the preceding
discussion:

Lemma 2.3. Let A(n) be graded in the usual way if g ∈ {W,S,H} and by deg(xβ) =
||β|| if g ∈ {K}. Then there exists a finite family of graded linear maps Dα : A(n)→
ĝ such that g is spanned by elements of the form Dα(xβ). The maps {Dα} are said
to be associated to g. Furthermore, if g ∈ {W,S,H} we have

(ad ∂s) ◦Dα = Dα ◦ ∂s (2.12)

for 1 ≤ s ≤ n and all α.

Proof. For W (n) we can use the maps Di defined by Di(f) = f∂i for all f ∈ A(n).
For S(n) we use the Dij with i 6= j, and for H(n), K(n) we use DH , DK respectively.
The identity (2.12) is an easy consequence of the formula [∂s, x

β∂j ] = ∂s(x
β)∂j , which

follows from (2.2). For example, if g is of type H, we get

[∂s, DH(f)] =
2m∑
i=1

σ(i)∂s(∂i(f))∂i′ =
2m∑
i=1

σ(i)∂i(∂s(f))∂i′ = DH(∂s(f)).

The sum g− of components of negative degree in g turns up in several of our
proofs, so it is nice to have a concrete description (which can be derived from the
information above): If g ∈ {W,S,H} then

g− = g−1 = span{∂1, . . . , ∂n},

and if g ∈ {K} then

g− = g−2 ⊕ g−1 = span{DK(1), DK(x1), . . . , DK(x2m)}.

Let us now gather some facts on automorphisms: It is well known that we have
an isomorphism Aut(A(n)) ∼−→ Aut(W (n)), ϕ 7→ σϕ, given by

σϕ(D) = ϕ ◦D ◦ ϕ−1

for all D ∈ W (n). Let G denote the automorphism group of g. This is a connected
algebraic group, and we have

G ∼= {g ∈ Aut(W (n)) | g(g) ⊆ g}.

Furthermore, we know that ([36], Proposition 3.2)

Lie(G) ∼= ĉg≥0, (2.13)
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where

ĉg =

{
ĝ if g ∈ {W,K}
ĝ⊕ F

∑
i xi∂i if g ∈ {S,H}

The following subgroups of G will be very important:

G0 = {g ∈ G | g(gi) = gi for all i}
Gr = {g ∈ G | g(x)− x ∈ g≥r+i for all i and all x ∈ gi}

Here r ≥ 1 and g≥k = ⊕j≥kgj for all k. It is well known that

G = G0 nG1 (2.14)

with G0 reductive and G1 the unipotent radical of G. Concretely, we have G0
∼= GLn

if g = W (n) or g = S(n), and G0
∼= CSp2m if g = H(2m) or g = K(2m+ 1) ([65]).

The normal series G1 DG2 D · · ·D 1 has abelian factor groups Gj/Gj+1
∼= ĝj , which

implies
dim(G) = dim(G0) + dim(G1) = dim(G0) + dim(ĝ≥1). (2.15)

So the dimension of G can be calculated from knowledge of ĝ and the (known)
reductive part G0. For example, if g = W (n), we have dim(G) = npn − n. Note
also, that it is a consequence of the semidirect product decomposition (2.14) that
g(g≥i) = g≥i for all g ∈ G and all i. The grading on g induces a grading g∗ =

⊕
i g
∗
i

by setting g∗i = {χ ∈ g∗ | χ(gj) = 0 for all j 6= i}. For any χ ∈ g∗ we write χi
for the component of χ of degree i and χ− for the sum of components of negative
degree. Set g∗≤i =

⊕
j≤i g

∗
j , then it follows from g(g≥i) = g≥i and the definition of

the coadjoint action, that g(g∗≤i) = g∗≤i for all g ∈ G and all i.
Inside G0 we have a one-dimensional torus T ∼= F ∗ corresponding to the nonzero

scalar matrices, and this subgroup turns out to be of crucial importance. An easy
calculation shows that the action of T on g is given by t.x = tix for all t ∈ T , x ∈ gi,
while the action on g∗ is given by t.χ = t−iχ for χ ∈ g∗i . Finally, if λ : F ∗ → G is a
one-parameter subgroup of G, we will sometimes write limt→0 λ(t).x = y to indicate
that the morphism F ∗ → X, t→ λ(t).x, extends to a morphism λ′ : F → X such
that λ′(0) = y. This implies in particular that y ∈ G.x.

2.2 Orbit closures in the Witt algebra w

When considering the problem of finding an analogue of Veldkamp’s Theorem
for the restricted Cartan types, the first question is of course: what should we
use as replacement for the reductive algebraic group in Theorem 1.6? Well, the
natural choice is the automorphism group G (not to be confused with the G in
the theorem), but then it is not even clear that U(g)G, S(g)G are contained in
Z(g), S(g)g respectively (cf. the isomorphism (2.13)). However, if we instead
consider the G- and g-action on S(g∗), then Skryabin has shown (in an example
at the very end of the paper [52]), that in the case g = W (n) we do indeed have
S(W (n)∗)G ⊆ S(W (n)∗)W (n), and

S(W (n)∗)W (n) ∼= S(W (n)∗)p ⊗(S(W (n)∗)p)G S(W (n)∗)G
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with S(W (n)∗)W (n) free of rank pn over S(W (n)∗)G. Even though g and g∗ are
not isomorphic as g-modules (or G-modules), as in the setup of Theorem 1.6, one
could perhaps see this result as a reason for cautious optimism. We will show in
Section 2.4 that U(g) is contained in the center, and likewise S(g)G ⊆ S(g)g, but
unfortunately in the most uninteresting way possible! As a prelude we determine
orbit closures in the Witt algebra w = W (1) and its dual space under the action of
the automorphism group. These results, apart from being of independent interest,
provided the inspiration for the more general invariant theoretic considerations in
Section 2.4.

We simplify the notation a bit and write w = Der(F [X]/〈Xp〉), with x denoting
the class of X in F [X]/〈Xp〉 and ∂ denoting differentiation with respect to x. We
set ei = xi+1∂ for i ∈ {−1, . . . , p − 2}, so that {e−1, . . . , ep−2} is an F -basis of w.
Furthermore, we will say that a nonzero w in w has degree i if w ∈ w≥i \w≥i+1 (this
of course determines the degree uniquely). Since G = Aut(w) preserves degree, it
also makes sense to speak of the degree of an orbit. Note finally that G0 = T in this
particular case.

The starting point for our calculations is the following theorem, which gives a
complete set of representatives for the nonzero orbits in w under the action of G:

Theorem 2.4. A set of representatives for the orbits of degree i is:

1. {e−1 + aep−2 | a ∈ F} if i = −1.

2. {ae0 | a ∈ F ∗} if i = 0.

3. {ei + ae2i | a ∈ F} if 1 ≤ i < p−1
2

.

4. {ei} if p−1
2
≤ i ≤ p− 2.

The dimensions of the orbits are:

1’. dim G.(e−1 + aep−2) = p− 1.

2’. dim G.ae0 = p− 2.

3’. dim G.(ei + ae2i) = p− i− 2 if 1 ≤ i < p−1
2

.

4’. dim G.ei = p− i− 1 if p−1
2
≤ i ≤ p− 2.

Cases 3, 3’, 4 and 4’ were taken care of in [66] as these, along with G.e−1 and 0,
account for the nilpotent orbits. The proofs of 1 and 2, as well as the corresponding
dimension statements, are very similar, but we include them here anyway for the
sake of completeness. First, however, some general considerations (for more details,
see [66]) that will be used throughout this section and the next: Let σϕ ∈ G1,
with ϕ(x) = x + b2x

2 + · · · + bp−1x
p−1 and ϕ−1(x) = x + c2x

2 + · · · + cp−1x
p−1. It

is convenient to set b1 = c1 = 1 and bp = cp = 0. Using the definition of the
isomorphism ϕ 7→ σϕ we get

σϕ(ei)(x) = ϕ(x)i+1(1 + 2c2ϕ(x) + · · ·+ (p− 1)cp−1ϕ(x)p−2). (2.16)
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Write σϕ(ei) =
∑p−2

j=i ajej, then formulas (2.1) and (2.16) tell us that ai = 1 and

aj = (i+ 1)bj−i+1 + (j − i+ 1)cj−i+1 + gj(b2, . . . , bj−i, c2, . . . , cj−i) (2.17)

for certain polynomials gj when i < j ≤ p− 2. We get another useful formula from
looking at the coefficient of xj on the left hand side of the equation ϕ(ϕ−1(x)) = x:

cj = −bj + hj(b2, . . . , bj−1, c2, . . . , cj−1). (2.18)

Here the hj are certain polynomials and 2 ≤ j ≤ p− 1. By induction we see that cj
can be expressed as a polynomial in b2, . . . , bj, and inserting into (2.17) yields

aj = (2i− j)bj−i+1 + g′j(b2, . . . , bj−i). (2.19)

Now we are ready for the

Proof of Theorem 2.4. We start with case 2: Note first that t.e0 = e0 for all t ∈ T ,
and this easily implies that ae0 and be0 are in the same orbit if and only if a = b.
Now let w = w0e0 + · · ·+ wp−2ep−2 with w0 6= 0. With notation as above, formula
(2.19) shows that we can choose b2, . . . , bp−1 ∈ F recursively such that σϕ(e0) =
e0 + w1

w0
e1 + · · ·+ wp−2

w0
ep−2. But then σϕ(w0e0) = w and we are done. This argument

actually shows that

G.ae0 = {ae0 + a1e1 + · · ·+ ap−2ep−2 | a1, . . . , ap−2 ∈ F} ∼= Ap−2, (2.20)

from which 2’ follows. As for case 1, look at y = y−1e−1 + · · ·+yp−2ep−2 with y−1 6= 0.
Again we can find b2, . . . , bp−1 such that σϕ(e−1) = e−1 + y0e0 + y−1y1e1 + · · · +
yp−3
−1 yp−3ep−3 + g′p−2(b2, . . . , bp−1)ep−2. Choosing a = yp−2

−1 yp−2− g′p−2(b2, . . . , bp−1) we
get

σϕ(e−1 + aep−2) = e−1 + y0e0 + y−1y1e1 + · · ·+ yp−2
−1 yp−2ep−2,

since σϕ(ep−2) = ep−2. Now we apply the element y−1
−1 ∈ T and get y−1

−1.σϕ(e−1 +
aep−2) = y. Thus every element of degree −1 is in the orbit of e−1 +aep−2 for some a.
It remains only to show that e−1 + aep−2 and e−1 + bep−2 are in the same orbit if
and only if a = b, and here one can use exactly the same method as in the proof of
Proposition 3.4 in [66] (it is also a consequence of the proof of case 1 in the next
theorem). Similarly, one can mimic the proof of Theorem 4.1 in said paper to show
that G.(e−1 + aep−2) has trivial stabilizer in G, which implies

dim(G.(e−1 + aep−2)) = dim(G) = p− 1

The next theorem provides the full picture on orbit closures in the Witt algebra:

Theorem 2.5. Let a ∈ F and define B = {b ∈ F | bp−1 = −a}. We have

1. G.(e−1 + aep−2) =

{
G.(e−1 + aep−2) ∪ (

⋃
b∈B G.be0) if a 6= 0

G.e−1 ∪w≥1 if a = 0
.
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2. G.ae0 = G.ae0.

3. G.(ei + ae2i) = G.(ei + ae2i) ∪w≥i+2 if 1 ≤ i < p−1
2

.

4. G.ei = w≥i if p−1
2
≤ i ≤ p− 2.

Cases 2 and 4 are more or less trivial: In the former case, equation (2.20) shows
that G.ae0 is a Zariski-closed subset of w for all a ∈ F , and in the latter case we
must have G.ei = w≥i \w≥i+1, which easily implies G.ei = w≥i. For orbits of type
1 or 3 we need to work considerably harder: Assume first that 1 ≤ i < p−1

2
. The

case i = 1 turns out to be degenerate, so we will save that for later and also assume
i 6= 1. The following proposition provides further information about the action of
G1 on ei + ae2i. Note that we will sometimes represent an element w ∈ w by its
coordinates (w−1, . . . , wp−2) with respect to the basis {ei}.

Proposition 2.6.

G1.(ei + ae2i) =





0
...
0
1
ai+1

...
a2i−1

f(ai+1, . . . , a2i−1) + a
a2i+1

...
ap−2





.

Here ai+1, . . . , â2i, . . . , ap−2 ∈ F , and f ∈ F [Xi+1, . . . , X2i−1] is a polynomial with
the following properties:

1. If X
αi+1

i+1 · · ·X
α2i−1

2i−1 is a monomial appearing in f with nonzero coefficient, then

2i−1∑
j=i+1

(j − i)αj = i.

2. The (usual) degree of f is at most i, and the component in f of degree i is
cX i

i+1 for some c ∈ F .

Note that the proposition does not say that c 6= 0. This actually turns out to be
the case – and of crucial importance – but we are not able to prove it yet.

Proof of Proposition 2.6. We use the notation from the discussion preceding the
proof of Theorem 2.4. Because of the bijection ϕ 7→ σϕ we can consider G1 as
a variety isomorphic to Ap−2 with coordinate functions b2, . . . bp−1. Grade the
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polynomial ring F [G1] by setting deg(bs) = s− 1 for 2 ≤ s ≤ p− 1. Looking closer
at the equation ϕ(ϕ−1(x)) = x we can refine formula (2.18) a bit to get c2 = −b2

and

cn = −bn +
n−1∑
s=2

cs
∑

n1+···+ns=n

bn1 · · · bns

for n > 2. From this it follows easily by induction that c2, . . . , cp−1 ∈ F [G1], and that
cs is homogeneous of degree s−1. Equation (2.16) shows that aj , i < j ≤ p−2, can be
written as a sum of terms bs1 · · · bsi+1

clbt1 · · · btl−1
where s1+· · ·+si+1+t1+· · ·+tl−1 =

j + 1. Since such a term has degree

i+1∑
n=1

(sn − 1) + (l − 1) +
l−1∑
m=1

(tm − 1) = j − i

we see that aj ∈ F [G1] is homogeneous of degree j − i. Furthermore, changing the
indices in (2.19) gives us as+i−1 = (i− s + 1)bs + h(b2, . . . , bs−1) for 2 ≤ s ≤ i and
some polynomial h, from which it follows by induction that

F [ai+1, . . . , as+i−1] = F [b2, . . . , bs]. (2.21)

Now let σϕ(ei + ae2i) = (0, . . . , 0, 1, ai+1, . . . , ap−2) (this is a slight abuse of notation,
but notice that the new aj agree with the old when i < j < 2i). Equation (2.19)
shows that we can recursively choose b2, . . . , bi to make ai+1, . . . , a2i−1 attain any set
of values in F . But a2i = g′2i(b2, . . . , bi)+a, and expressing b2, . . . , bi as polynomials in
ai+1, . . . , a2i−1 – which is possible because of (2.21) – we get a2i = f(ai+1, . . . , a2i−1)+
a for some polynomial f ∈ F [Xi+1, . . . , X2i−1]. The coordinates a2i+1, . . . , ap−2 can
again be assigned arbitrary values by choosing bi+1, . . . , bp−1 accordingly. As for
properties 1 and 2, we have shown that f(ai+1, . . . , a2i−1) is homogeneous of degree
2i − i = i when considered as an element of F [G1]. But since each of the aj is
homogeneous of degree j − i we get 1, from which 2 follows directly.

Write f = f0 + · · ·+ fi, where fj is the component in f of degree j. In particular
we have fi = cX i

i+1. Now we are ready to describe the G-orbit of ei + ae2i:
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Proposition 2.7.

G.(ei + ae2i) =





0
...
0
bi
...

b2i−1∑i
j=0

fj(bi+1,...,b2i−1)

bj−1
i

+ ab2
i

b2i+1

...
bp−2





. (2.22)

Here bi, . . . , b̂2i, . . . , bp−2 ∈ F with bi 6= 0.

Proof. We have G.(ei + ae2i) = T.(G1.(ei + ae2i)), so let us look at the action of
t ∈ T on w ∈ G1.(ei + ae2i):

t.w =



0
...
0
ti

ti+1ai+1

...
t2i(f(ai+1, . . . , a2i−1) + a)

...
tp−2ap−2


for some ai+1, . . . , â2i, . . . , ap−2 ∈ F . It follows from property 1 in Proposition 2.6
that

tif(ai+1, . . . , a2i−1) = f(tai+1, t
2ai+2, . . . , t

i−1a2i−1). (2.23)

Writing bi = ti, bi+1 = ti+1ai+1, . . . , bp−2 = tp−2ap−2 (skipping b2i) and using (2.23),
the 2ith coordinate in t.w becomes

t2i(f(ai+1, . . . , a2i−1) + a)

= bif

(
bi+1

bi
, . . . ,

b2i−1

bi

)
+ ab2

i =
i∑

j=0

fj(bi+1, . . . , b2i−1)

bj−1
i

+ ab2
i .

So we get a point like on the right hand side of (2.22). By simply reversing the
process we see that every point of this kind is in G.(ei + ae2i).
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We will now ignore the first i+ 1 coordinates (since they are all zero anyway) and
consider G.(ei + ae2i) as a subset of Ap−i−1. A general remark: for any polynomial f
in n variables, we write V (f) for the zero set of f in An. With this notation we have:

Corollary 2.8.

G.(ei + ae2i) = {w ∈ V (X2iX
i−1
i − cX i

i+1 −
i−1∑
j=0

X i−j
i fj − aX i+1

i ) | wi 6= 0}.

Proof. This follows directly from Proposition 2.7.

We are almost ready to determine the orbit closure, but we need the following
simple algebraic geometric fact: If f ∈ F [X1, . . . , Xn] is a polynomial satisfying
Xj - f for some j ∈ {1, . . . , n} and A = {x ∈ V (f) | xj 6= 0}, then A = V (f). To
prove this it is enough to show that A intersects every component of V (f), so assume
there is a component V (f ′) of V (f) (with f ′ an irreducible polynomial dividing f)
such that A ∩ V (f ′) = ∅. Then xj = 0 for every x ∈ V (f ′), and we must have
V (f ′) ⊆ V (Xj). But this means (Xj) ⊆ (f ′) and so f ′ divides Xj, which can only
happen if f ′ = αXj for some α 6= 0, a contradiction. The well known fact that the
closure of an orbit is a union of the orbit itself and certain other orbits of strictly
lower dimension will also be used several times.

Proposition 2.9.

G.(ei + ae2i) = V (X2iX
i−1
i − cX i

i+1 −
i−1∑
j=0

X i−j
i fj − aX i+1

i )

and c 6= 0.

Proof. Let g denote the polynomial on the right hand side, and write g = Xs
i g
′

with Xi - g′. It follows easily from Corollary 2.8 and the aforementioned algebraic
geometric fact that G.(ei + ae2i) = V (g′). We prove the proposition using descending
induction in i: Assume first that i = p−1

2
−1. To reach a contradiction we also assume

c = 0. Then g′ cannot contain a term of the form βXm
i+1 (for some β 6= 0,m > 0)

because of property 1 in Proposition 2.6, so we must have a point w ∈ V (g′) with
wi = 0, wi+1 6= 0. It follows that G.e(p−1)/2 ( G.(ei + ae2i), but this is impossible
since the dimension of the two varieties is the same (Theorem 2.4). Therefore c 6= 0
and G.(ei + ae2i) = V (g′) = V (g).

Assume now that the claim is true for i+ 1, and that c = 0 when we calculate
G.(ei + ae2i). Exactly as before we can find a w ∈ V (g′) satisfying wi = 0, wi+1 6= 0.
This means that there exists a′ ∈ F such that G.(ei+1 + a′e2(i+1)) ⊆ G.(ei + ae2i),
and by induction we know

G.(ei+1 + a′e2(i+1)) = V (X2(i+1)X
i
i+1 − c′X i+1

i+2 −
i∑

j=0

X i+1−j
i+1 f ′j − a′X i+2

i+1 )
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where the f ′j are certain homogeneous polynomials in Xi+2, . . . , X2i+1 and c′ 6= 0.
Let h denote the polynomial on the right hand side. Notice that h is irreducible: It
is a first degree polynomial in X2(i+1), and the coefficients have no common factors,
thanks to c′ being different from zero. If we set g′′ = g′(0, Xi+1, . . . , X2i), then
G.(ei+1 + a′e2(i+1)) ⊆ G.(ei + ae2i) means that V (h) ⊆ V (g′′), so h divides g′′. By
looking at the degree of the two polynomials in the variable Xi+1 this is seen to be
impossible, and so c 6= 0 and we are done.

Proof of case 3 in Theorem 2.5. Combining Corollary 2.8 and Proposition 2.9 we
get

G.(ei + ae2i) = G.(ei + ae2i) ∪ {w ∈ V (g) | wi = 0}.

Since g(0, Xi+1, . . . , X2i) = −cX i
i+1 we see that {w ∈ V (g) | wi = 0} = w≥i+2, and

so
G.(ei + ae2i) = G.(ei + ae2i) ∪w≥i+2.

This is true also for the degenerate case i = 1: Here we get f = 0 in the setup of
Proposition 2.6, and inserting this in Proposition 2.7 gives us

G.(e1 + ae2) = {w ∈ V (X2 − aX2
1 ) | w1 6= 0}.

Using the remark preceding Proposition 2.9 we conclude that G.(e1 + ae2) =
G.(e1 + ae2) ∪w≥3.

The last case in Theorem 2.5 could be proved using a similar method, but there
is an easier way:

Proof of case 1 in Theorem 2.5. The statement for a = 0 was proved in [66], so
assume a 6= 0. For an arbitrary λ ∈ F we define

w(λ) = {w ∈ w | w[p] = λw} \ {0}.

The idea of the proof is to describe the set w(−a) in two different ways. First we
claim that

w(−a) = G.(e−1 + aep−2) ∪
(⋃
b∈B

G.be0

)
. (2.24)

To show this, note first that the sets w(λ) are G-invariant: For w ∈ w(λ) and g ∈ G
we have

g(w)[p] = g(w[p]) = g(λw) = λg(w).

Set D = e−1 + aep−2. By an easy induction in i we get

Di(x) = a
(p− 1)!

(p− i)!
xp−i

for 2 ≤ i ≤ p− 1. In particular Dp−1(x) = a(p− 1)!x = −ax by Wilson’s Theorem,
so Dp(x) = D(−ax) = −aD(x). Since elements in w are uniquely determined by
their value on x, we get Dp = −aD, which implies G.D ⊆ w(−a). Now let b ∈ F
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with bp−1 = −a. One easily checks that e
[p]
0 = e0, and from this it follows that

(be0)[p] = bpe
[p]
0 = −a(be0). So G.be0 ⊆ w(−a) and we have shown:

w(−a) ⊇ G.(e−1 + aep−2) ∪
(⋃
b∈B

G.be0

)
. (2.25)

Since w(0) = (G.e−1 ∪ w≥1) \ {0} ([66], Lemma 3.1) we see that every nonzero
element of w is contained in some w(λ). But w(λ) ∩w(µ) = ∅ whenever λ 6= µ, and
this implies equality in (2.25).

Now consider w ∈ w as an endomorphism of A(1), and write char(w) for its
characteristic polynomial. Corollary 1 in [42] gives us

char(w) = Xp + ϕ(w−1, . . . , wp−2)X = X(Xp−1 + ϕ(w−1, . . . , wp−2)),

where ϕ is a nonzero homogeneous polynomial of degree p− 1. Our second claim is
that

w(−a) = V (ϕ− a). (2.26)

Assume first that w ∈ w(−a). Then w is semisimple considered as an endomorphism
of A(1) ([58], Proposition 3.3). In particular w has a nonzero eigenvalue µ ∈ F ∗,
and using the definition of w(−a) one checks that µp−1 = −a. Inserting µ into the
characteristic polynomial of w gives us w ∈ V (ϕ − a). Next, assume this is true.
Then w is not nilpotent, and therefore it is contained in w(λ) for some λ 6= 0. But
then any nonzero eigenvalue µ of w satisfies both µp−1 = λ and µp−1 = −a. So
λ = −a and we have shown (2.26).

We are now ready to complete the proof: Since the w(λ) are closed, it follows
from (2.24) that G.(e−1 + aep−2) ⊆ w(−a). Assume for some b ∈ F with bp−1 = −a
that G.be0 is not in the closure of G.(e−1 + aep−2). Then we see from (2.24) that
G.be0 must be an irreducible component of w(−a), of dimension p− 2 (Theorem 2.4).
But the description in (2.26) shows that every component of w(−a) has dimension
p− 1 (see [25], Theorem 3.3). This contradiction implies G.(e−1 + aep−2) = w(−a),
and we are done.

2.3 Orbit closures in w∗

Let {e′−1, . . . , e
′
p−2} denote the basis of w∗ dual to the basis {e−1, . . . , ep−2} of w.

So e′i(ej) = δij for i, j ∈ {−1, . . . , p− 2}. We define the height r(χ) of a character
χ ∈ w∗ by

r(χ) =

{
min{i ∈ {−1, . . . , p− 2} | χ|w≥i = 0} if χ(ep−2) = 0

p− 1 if χ(ep−2) 6= 0.

The notion of height has become standard in the literature on the Witt algebra and
its representations, so we will use it in what follows, even though it would have been
more in keeping with what we did for w to use the height minus one. Of course,
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since G preserves height, we have a well-defined notion of height for the orbits as
well. Now recall the notation introduced right after Theorem 2.4: For σϕ ∈ G1

we write ϕ(x) = x+ b2x
2 + · · ·+ bp−1x

p−1 and ϕ−1(x) = x+ c2x
2 + · · ·+ cp−1x

p−1.
Using the definition of the action we get σ−1

ϕ (e′i) =
∑i

j=−1 aje
′
j where ai = 1 and aj

(−1 ≤ j ≤ i− 1) is the coefficient of xi+1 in σϕ(ej)(x). More precisely we have (see
equation (2.16))

aj = (j + 1)bi−j+1 + (i− j + 1)ci−j+1 + pj(b2, . . . , bi−j, c2, . . . , ci−j)

where −1 ≤ j ≤ i− 1 and the pj are certain polynomials. Applying formula (2.18)
to express the ck in terms of the bk, we get

aj = (2j − i)bi−j+1 + p′j(b2, . . . , bi−j) (2.27)

It should also be noted that the action of the torus is now given by t.e′i = t−ie′i for
t ∈ T .

A complete set of representatives for the nonzero orbits in w∗ is given by the
following theorem, which is essentially due to Feldvoss and Nakano ([21]), but with
some additions and corrections:

Theorem 2.10. For any j ∈ N, let F (j) ⊆ F denote a set of representatives for the
equivalence classes of the equivalence relation on F given by: x ∼ y ⇔ xj = yj. A
set of representatives for the orbits of height i in w∗ is:

1. {ae′0 | a ∈ F ∗} if i = 1.

2. {e′i−1} if 0 ≤ i ≤ p− 3 and i is even.

3. {e′i−1 + ae′i−1
2

| a ∈ F (2)} if 3 ≤ i ≤ p− 2 and i is odd.

4. {e′p−2 + ae′−1 | a ∈ F (p−2)} if i = p− 1.

Furthermore, the dimensions of the orbits are:

1’. dim G.ae′0 = 1.

2’. dim G.e′i−1 = i+ 1 if 0 ≤ i ≤ p− 3 and i is even.

3’. dim G.(e′i−1 + ae′i−1
2

) = i if 3 ≤ i ≤ p− 2 and i is odd.

4’. dim G.(e′p−2 + ae′−1) = p− 1.

Proof. Case 1 is analogous to 2 in Theorem 2.4 and proved in exactly the same way,
while case 2 was proved in [21]. Here it was also shown that if 3 ≤ i ≤ p−2 and i is odd,
then every character of height i is in the orbit of some e′i−1+ae′(i−1)/2, but Feldvoss and
Nakano actually gave incorrect results in cases 1 and 3, having seemingly overlooked
the action of T (this was already remarked in [49]). Now assume e′i−1 + ae′(i−1)/2

and e′i−1 + a′e′(i−1)/2 are in the same orbit, for some a, a′ ∈ F . So there exists
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g = t ◦σϕ ∈ G (with t ∈ T , σϕ ∈ G1) such that g.(e′i−1 + ae′(i−1)/2) = e′i−1 + a′e′(i−1)/2,
or equivalently,

σϕ.(e
′
i−1 + ae′i−1

2
) = ti−1e′i−1 + t

i−1
2 a′e′i−1

2
.

If the coefficients of e′i−2, . . . , e
′
(i−1)/2+1 in σϕ.(e

′
i−1 + ae′(i−1)/2) are all zero, then the

coefficient of e′(i−1)/2 must be a (look at equation (2.27)). So we get ti−1 = 1 and

a = t
i−1
2 a′. Raising this last equation to the second power yields a2 = (a′)2. If on the

other hand this is true, i.e., a′ = ±a, then it is easily seen that e′i−1 + ae′(i−1)/2 and

e′i−1 + a′e′(i−1)/2 are in the same orbit (in the case a′ = −a just find t ∈ T satisfying

t−
i−1
2 = −1 and let it act on e′i−1 + ae′(i−1)/2). This proves case 3, and case 4 is

proved in the same way. As for the dimension statements, the first two cases are
straightforward, and one simply adapts the proof of Theorem 4.1 in [66] for the last
two. We will give an outline of the steps needed in case 3’: Write χ = e′i−1 +ae′(i−1)/2.
Then we have

Gχ = (Gχ ∩ T ) n (Gχ ∩G1).

To prove this, it is enough to show that if t−1 ∈ T , u ∈ G1 and t−1 ◦ u ∈ Gχ,
then t−1, u ∈ Gχ. Let u.χ = e′i−1 + ai−2e

′
i−2 + · · · + a−1e

′
−1. We get (t−1 ◦ u).χ =

ti−1e′i−1 + ti−2ai−2e
′
i−2 + · · ·+ t−1a−1e

′
−1, and since we assume t−1 ◦ u ∈ Gχ we must

have ai−2, . . . , â(i−1)/2, . . . , a−1 = 0. It now follows from equation (2.28) on the next
page that a(i−1)/2 = a. So u ∈ Gχ, which easily implies that t−1 ∈ Gχ too.

Setting G′ = Gχ ∩ T and G′′ = Gχ ∩G1, it can be shown that

G′ = {t ∈ T | t
i−1
2 = 1},

G′′ = {σϕ ∈ G1 | ϕ(x) = x+ bi+1x
i+1 + · · ·+ bp−1x

p−1}.

But then dimGχ = dimG′ + dimG′′ = p− i− 1, which implies

dimG.χ = dimG− dimGχ = i.

Now we determine the closures in w∗ of orbits of all heights except p− 1:

Theorem 2.11. Let a ∈ F . We have:

1. G.ae′0 = G.ae′0.

2. G.e′i−1 = {χ ∈ w∗ | r(χ) ≤ i} if 0 ≤ i ≤ p− 3 and i is even.

3. G.(e′i−1 + ae′i−1
2

) = G.(e′i−1 + ae′i−1
2

) ∪ {χ ∈ w∗ | r(χ) ≤ i− 2} if 3 ≤ i ≤ p− 2

and i is odd.

Proof. Cases 1 and 2 are trivial, so let us concentrate on case 3: Since the procedure
is similar to the one we used to prove case 3 in Theorem 2.5 we will omit quite a
few details. Write s = i−1

2
and σ−1

ϕ .e′i−1 =
∑i−1

j=−1 aje
′
j. We grade the polynomial

ring k[G1] = k[b2, . . . , bp−1] by setting deg(bs) = s− 1. Then it is easily shown that
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a−1, . . . , ai−2 ∈ F [G1], and that aj is homogeneous of degree i− j − 1. Proceeding
exactly as in the proof of Proposition 2.6, we get

G1.(e
′
i−1 + ae′s) =





a−1

...
as−1

f(as+1, . . . , ai−2) + a
as+1

...
ai−2

1
0
...
0





(2.28)

where a−1, . . . , â2s, . . . , ai−2 ∈ F and f ∈ F [Xs+1, . . . , Xi−2] is a polynomial satisfying
the following properties:

1. If X
αs+1

s+1 · · ·X
αi−2

i−2 is a monomial appearing in f with nonzero coefficient, then

i−2∑
j=s+1

(i− j − 1)αj = s.

2. The (usual) degree of f is at most s, and the component in f of degree s is
cXs

i−2 for some c ∈ F .

One can now write f = f0 + · · ·+ fs (fj being the component in f of degree j) and
repeat the proof of Proposition 2.7 to get

G.(e′i−1 + ae′s) =





b−1

...
bs−1∑s

j=0
fj(bs+1,...,bi−2)

bj−1
i−1

± a
√
bi−1

bs+1

...
bi−1

0
...
0




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where b−1, . . . , b̂s, . . . , bi−1 ∈ F and bi−1 6= 0. It follows directly that

G.(e′i−1 + ae′s)

= {x ∈ V ((XsX
s−1
i−1 − cXs

i−2 −
s−1∑
j=0

Xs−j
i−1 fj)

2 − a2X2s−1
i−1 ) | xi−1 6= 0}.

If c = 0 then G.e′i−2 ( G.(e′i−1 + ae′s), just as in the proof of Proposition 2.9, but
this is a contradiction since the dimension of the two varieties is the same. So c 6= 0
and the theorem follows easily.

It remains only to determine the orbit closures of characters of height p− 1. This
case turns out to be the hardest, and the strongest statement we can prove is:

Proposition 2.12. Either G.e′p−2 = G.e′p−2 ∪ {χ ∈ w∗ | r(χ) ≤ p− 3} or G.e′p−2 =
G.e′p−2 ∪G.e′p−3 ∪ {χ ∈ w∗ | r(χ) ≤ p− 3}. If the former is true, then

G.(e′p−2 + ae′−1) = G.(e′p−2 + ae′−1) ∪ {χ ∈ w∗ | r(χ) ≤ p− 3} (2.29)

for all a ∈ F .

Proof. Applying the usual method, we get

G.(e′p−2 + ae′−1)

= {x ∈ V ((X−1X
p−2
p−2 − cX

p−1
p−3 − q)p−2 − ap−2X

(p−2)(p−2)−1
p−2 ) | xp−2 6= 0},

where q =
∑p−2

j=1 X
p−1−j
p−2 fj and fj is a homogeneous polynomial of degree j. Fur-

thermore, if Xα0
0 · · ·X

αp−3

p−3 is a monomial appearing in any of the fj with non-zero
coefficient, then

p−3∑
k=0

(p− 2− k)αk = p− 1. (2.30)

We would like to prove c 6= 0, but this time we cannot use a dimension argument
(notice that the dimension of an orbit of height p− 2 is one less than the dimension
of G.(e′p−2 + ae′−1)), nor look at the degree of the polynomials defining the orbits
(as in Proposition 2.9), to derive a contradiction. It is, however, possible to say
something meaningful when a = 0. In this case we have

G.e′p−2 = {x ∈ V (X−1X
p−2
p−2 − cX

p−1
p−3 −

p−2∑
j=1

Xp−1−j
p−2 fj) | xp−2 6= 0}.

If c 6= 0, then the orbit closure is equal to the zero set of the polynomial on the
right hand side, which is exactly G.e′p−2 ∪ {χ ∈ w∗ | r(χ) ≤ p − 3}, and the same
argument for arbitrary a gives us (2.29). Now assume c = 0 and let l be the maximal
number satisfying fl 6= 0. Then we get

G.e′p−2 = V (X−1X
l−1
p−2 −

l∑
j=1

X l−j
p−2fj).
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The polynomial on the right hand side will be denoted by f ′. It follows, as in the
proof of Proposition 2.9, that an orbit G.(e′p−3 + a′e(p−3)/2) is contained in G.e′p−2.
Assume a′ 6= 0. Note that G.ep−2 is invariant under multiplication by scalars different
from zero, and the same is then true for the closure. Since b(G.(e′p−3 + a′e(p−3)/2)) =

G.(e′p−3 +
√
ba′e(p−3)/2) for any b 6= 0 we infer that⋃

b6=0

G.(e′p−3 + be p−3
2

) ⊆ G.e′p−2.

But the set on the left hand side is open in {χ ∈ w∗ | r(χ) ≤ p− 2}, and since this
set is irreducible we have

{χ ∈ w∗ | r(χ) ≤ p− 2} ( G.e′p−2.

But the dimension of both these varieties is p−1, which is a contradiction. This means
that a′ cannot be zero, and so G.e′p−3 ⊆ G.e′p−2. From the proof of Theorem 2.11 we
get

G.e′p−3 = V (XsX
s−1
p−3 − c′Xs

p−4 −
s−1∑
j=1

Xs−j
p−3gj),

where s = (p − 3)/2, c′ 6= 0 and the polynomial on the right hand side – let us
call it g – is irreducible. Also, every monomial Xα0

0 · · ·X
αp−3

p−3 appearing in g with

non-zero coefficient satisfies
∑p−3

k=0(p− 3− k)αk = s. The inclusion G.e′p−3 ⊆ G.e′p−2

implies that g divides f ′(X0, . . . , Xp−3, 0) = fl, so we can write fl = gh for some
polynomial h. Now grade the polynomial ring in the Xj by letting the degree of
Xj be p − 2 − j. Then fl is homogeneous of degree p − 1, and for a monomial
Xα0

0 · · ·X
αp−3

p−3 appearing in g we have

p−3∑
j=0

(p− 2− j)αj =

p−3∑
j=0

(p− 3− j)αj +

p−3∑
j=0

αj = 2s = p− 3,

so g is homogeneous of degree p−3 (note that we use the fact that g is homogeneous of
degree s in the usual sense for the second equality). It follows that h is homogeneous
of degree 2, which leaves only two possibilities: either h = dX2

p−3 or h = d′Xp−4. In
the second case we get fl = d′Xp−4g and

G.e′p−2 = G.e′p−2 ∪ {x ∈ w∗ | xp−2 = 0, fq(x−1, . . . , xp−3) = 0}
= G.e′p−2 ∪G.e′p−3 ∪ {x ∈ w∗ | xp−2 = xp−4 = 0}.

But this is impossible: Consider the set B = {x ∈ w∗ | xp−2 = 0, xp−3 = b, xp−4 = 0}
for some b 6= 0. This set would then be contained in G.e′p−2, and since characters

of height p − 2 in G.e′p−2 must be contained in G.e′p−3 we get B ⊆ G.e′p−3. But
this means that g becomes zero when inserting b for Xp−3 and 0 for Xp−4, and this
is clearly untrue. So we must have fl = dX2

p−3g, and a calculation similar to the
previous one gives us

G.e′p−2 = G.e′p−2 ∪G.e′p−3 ∪ {χ ∈ w∗ | r(χ) ≤ p− 3}.
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Although the description of the coadjoint orbit closures in Theorem 2.11 is not
quite complete, it only takes a little more work to show that every character χ ∈ w∗

is contained in an orbit closure that also contains 0 (for details, see [40]). It follows
immediately that any invariant polynomial on w∗ must be constant, i.e., F [w∗]G = F .
We generalize this result in the next section.

2.4 Invariants of the automorphism group

Throughout this section g denotes a restricted Cartan type Lie algebra with au-
tomorphism group G. Assume that the characteristic p of our ground field F is
larger than 3. We will show that both S(g) ∼= F [g∗] and U(g) possess no non-trivial
G-invariants. The following set is an important ingredient in the proof:

Y = {χ ∈ g∗ | there exists g ∈ G such that (g.χ)− = 0}.

For the proof of the first lemma we will need an alternate grading on g, defined as
follows: Grade A(n) and W (n) by deg(xα) =

∑n
i=1 iαi and deg(xα∂j) =

∑n
i=1 iαi− j.

Formula (2.2) shows that this grades W (n) as a Lie algebra, and we write W (n)[s]

for the sth graded component. Looking at the definitions, we see that the associated
maps {Dα} are all graded (Di of degree −i, Dij of degree −i − j and DH , DK

of degree −n), which implies that we get a Lie algebra grading on g by setting
g[s] = g ∩W (n)[s]. Furthermore, each gi is graded, i.e., gi =

⊕
s(gi ∩ g[s]).

Lemma 2.13. For every χ ∈ g∗≤1 \ g∗≤0 there exists g ∈ G2 such that g.χ = χ0 + χ1.

Proof. Let {Dα} be the maps associated to g. The core of the proof is an adaptation
(and simplification) of Theorem 4.1(3) in [23]. Assume χ ∈ g∗≤1 \ g∗≤0 and note that it
is enough to find g ∈ G2 such that (g.χ)− = 0. For if y ∈ g≥0 then g−1(y)− y ∈ g≥2,
which implies that g.χ and χ agree on g≥0, i.e., g.χ = χ0 + χ1.

Choose t minimal such that χ(g1 ∩ g[t]) 6= 0, then we can find an associated map
D and some xβ ∈ A(n) such that x = D(xβ) ∈ g1 ∩ g[t] and χ(x) 6= 0. We deal
first with the case g ∈ {W,S,H}: If χ− = 0 there is nothing to show, so assume
otherwise and choose l maximal with the property χ(∂l) 6= 0. Define E = D(xβ+εl),
then we have E ∈ g2 ∩ g[t+l], and according to Theorem 1 in [65] we can find, for
any c ∈ F , a g ∈ G2 such that

g−1(∂s)− ∂s − [cE, ∂s] ∈ g≥2 (2.31)

for all s, 1 ≤ s ≤ n. This implies g.χ(∂s) = χ(∂s) + cχ([E, ∂s]). Since [E, ∂s] ∈
g1 ∩ g[t+l−s] we get g.χ(∂s) = χ(∂s) = 0 if s > l, by minimality of t and maximality
of l. Notice also that

[E, ∂l] = [D(xβ+εl), ∂l] = −D(∂l(x
β+εl)) = −(βl + 1)x. (2.32)

Here the second equality follows from (2.12). Note that βl + 1 6= 0 because βl ≤ 3
(here the assumption p > 3 comes into play), so the calculation implies χ([E, ∂l]) 6= 0,
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which again implies that we can choose c such that g.χ(∂l) = 0. Applying this
process at most n times and composing the g’s, we end up with a g′ ∈ G2 such that
(g′.χ)− = 0.

Now assume g is a contact algebra, in which case
⊕

i<0 gi = g−2 ⊕ g−1 =
span{DK(1), DK(x1), . . . , DK(x2m)}. If χ(g−1) 6= 0 we choose l minimal such that
χ(DK(xl)) 6= 0 and define E = DK(xβ+εl′ ) ∈ g2 ∩ g[t+l′]. Again we can find
g ∈ G2 such that (2.31) holds with DK(xs) in place of ∂s, and it follows that
g.χ(DK(xs)) = χ(DK(xs)) + cχ([E,DK(xs)]). Since [E,DK(xs)] ∈ g1 ∩ g[t+l′−s′] we
get χ(DK(xs)) = 0 for s < l because of the choice of t. Furthermore,

[E,DK(xl)] = DK(〈xβ+εl′ , xl〉) = −σ(l)(βl′+1)DK(xβ)−βnDK(xβ+εl+εl′−εn). (2.33)

If χ(DK(xβ+εl+εl′−εn)) = 0 the proof proceeds as in the first case. Otherwise we can
replace xβ by xβ+εl+εl′−εn ∈ g1 ∩ g[t] and repeat the process. The new xβ satisfies
βn = 0, so the last term in (2.33) disappears and we can again proceed as in the
first case. Now induction yields a g′ ∈ G2 such that (g′.χ)−1 = 0. Finally, let
E ′ = DK(xβ+εn) ∈ g3. Then we can find g′′ ∈ G3 such that

(g′′g′).χ(DK(1))

= g′.χ(DK(1)) + cg′.χ([E ′, DK(1)]) = g′.χ(DK(1))− (βn + 1)cg′.χ(DK(xβ)).

It is clear that we can again choose c such that (g′′g′).χ(DK(1)) = 0, and since
((g′′g′).χ)−1 = (g′.χ)−1 = 0 (because g′′ ∈ G3) we are done.

Lemma 2.14. For every χ ∈ g∗≤1 \ g∗≤0 we have {χ0 + tχ1 | t ∈ F ∗} ⊆ G.χ and

χ0 ∈ G.χ.

Proof. Use the action of T on χ0 + χ1 and take the limit as t approaches zero.

Lemma 2.15. The set Y is dense in g∗.

Proof. Consider an element w =
∑n

i=1 aiD(xτ−εi) ∈ g with D = D1 if g = W (n),
D = D12 if g = S(n), D = DH if g = H(n) and D = DK if g = K(n) (the
ai ∈ F are arbitrary). Using the grading on g and the assumption p ≥ 5 one checks
that, with the exception of the case g = W (1), p = 5, we have (adw)2 = 0 and
[(adw)(x1), (adw)(x2)] = 0 for all x1, x2 ∈ g, which implies that g = exp(adw) =
id + adw is an automorphism of g (if g = W (1) one can use our results on orbit
representatives to prove Y = g∗). We treat the case g ∈ {W,S,H} first. Here we
can use (2.12) to get

g(∂s) = ∂s + [w, ∂s] = ∂s −
n∑
i=1

aiD(∂s(x
τ−εi)).

For any χ ∈ g∗ we set χ(D(∂s(x
τ−εi))) = bsi. So we have

g−1.χ(∂s) = χ(∂s)−
n∑
i=1

aibsi.
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If the n × n matrix B = (bsi) is invertible, then we can choose the ai such that
g−1.χ(∂s) = 0 for all s. The set Y ′ ⊆ Y of all χ ∈ g∗ that satisfies this condition is
open, so we just have to show that it is nonempty: Define matrices C = (∂s(x

τ−εi))s,i
and B′ = (D(∂s(x

τ−εi)))s,i. Explicitly, we have

csi =

{
(p− 2)xτ−2εi if s = i

(p− 1)xτ−εi−εs if s 6= i.

We see that C, and therefore also B′, is symmetric. Furthermore, the csi with s ≥ i
are linearly independent, and since D is injective on the ideal generated by x1x2 · · ·xn
(can easily be checked case by case) which contains all the csi, the elements on and
below the diagonal of B′ must also be linearly independent. But then we can choose
χ such that (say) B = I, and we are done.

Now let g be of type K and write zs = DK(xs′) for 1 ≤ s ≤ 2m, zn = DK(1). As
before, we calculate (with the convention xn′ = 1):

g(zs) = zs + [w, zs]

= zs −
n∑
i=1

ai[DK(xs′), DK(xτ−εi)] = zs −
n∑
i=1

aiDK(〈xs′ , xτ−εi〉).

We set bsi = χ(DK(〈xs′ , xτ−εi〉)) for all χ ∈ g∗, then it is again enough to find χ such
that B = (bsi) is invertible: Consider first the matrix C = (〈xs′ , xτ−εi〉)s,i. Using
(2.7), (2.8) and (2.9) we get, for 1 ≤ s, i ≤ 2m,

csi =

{
σ(i′)(p− 2)xτ−2εi if s = i

σ(s′)(p− 1)xτ−εi−εs + δsi′(p− 1)xτ−εn if s 6= i

and

csn = σ(s′)(p− 1)xτ−εs−εn

cns = (p− 1)xτ−εs−εn

cnn = (p− 2)xτ−2εn

It is easy to see from these formulas that the csi with s ≥ i are linearly independent.
But DK is injective (can be derived from [58], Lemma 5.1), so the entries on and below
the diagonal in the matrix B′ = (DK(〈xs′ , xτ−εi〉))s,i are also linearly independent.
Then we can choose χ such that B has the form

1 ∗
. . .

0 1


This matrix is clearly invertible.
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Lemma 2.16. There exists x ∈ g1 such that the map (adx)|g0 : g0 → g1 is injective.

Proof. Assume first that g ∈ {W,S}. We set x =
∑n−1

i=1 x
2
i∂i −

∑n−1
i=1 2xnxi∂n ∈ g1.

If y =
∑

i,j bijxi∂j is an arbitrary element of g0 and [x, y] = 0, then we have, for
1 ≤ s ≤ n− 1,

y ◦ x(xs) =
n∑
i=1

2bisxixs,

x ◦ y(xs) =
n−1∑
i=1

bisx
2
i −

n−1∑
i=1

2bnsxixn.

It follows (since we assume [x, y] = 0) that bij = 0 if j 6= n. So y =
∑n

i=1 binxi∂n and

y ◦ x(xn) =
n−1∑
i=1

n∑
j=1

2bjnxixj,

x ◦ y(xn) =
n−1∑
j=1

bjnx
2
j −

n−1∑
i=1

2bnnxixn.

Equating these expressions, we get bjn = 0 for 1 ≤ j ≤ n, so y = 0 and x works like
it should.

If g is of type H we set x =
∑2n

i=1 σ(i)x2
i∂i′ ∈ g1. Note first that the condition

(2.6) with i = j implies that if y =
∑

i,j bijxi∂j ∈ g, then bii = −bi′i′ . Again we
calculate, for 1 ≤ s ≤ 2n,

y ◦ x(xs) =
2n∑
i=1

2σ(s′)bis′xixs′

x ◦ y(xs) =
2n∑
i=1

σ(i′)bisx
2
i′

If [x, y] = 0 then these equations show that all bij = 0 (using that bss = −bs′s′), so
(adx)|g0 is injective, and we are done.

Finally, assume g is of type K and set x = DK(
∑2m

s=1 x
3
s) ∈ g1. An arbitrary

element y of g0 has the form DK(
∑

1≤i≤j≤2m bijxixj + cxn). Using formulas (2.9),
(2.10) and (2.11) we get〈 ∑

1≤i≤j≤2m

bijxixj + cxn,
2m∑
s=1

x3
s

〉
=

∑
1≤i≤j≤2m

j 6=i′

3bij(σ(i)xjx
2
i′ + σ(j)xix

2
j′) +

m∑
i=1

3bii′(x
3
i′ − x3

i ) + c

2m∑
i=1

x3
i .

Each term in the first sum contains standard basis elements which do not appear
anywhere else, so if [x, y] = 0 all the bij in the first sum must also be zero (recall that
DK is injective). Then we can look at the last two sums to get 3bii′ = −c = −3bii′ for
1 ≤ i ≤ m, which implies bii′ = 0. Finally c must also be zero, and we are done.
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Now we are ready for the main theorem:

Theorem 2.17. S(g)G = F and U(g)G = F .

Proof. Let f ∈ F [g∗]G ∼= S(g)G. We show first that f is constant on g∗0: For any
χ ∈ g∗1 and g ∈ G, we use Corollary 2.14 to write

f(0) = f(χ0) = f(χ) = f(g.χ) = f((g.χ)0). (2.34)

Let χ′ ∈ g∗0 be arbitrary and fix a basis {ys} of g0. Theorem 1 in [65] ensures the
existence of a g ∈ G1 that satisfies

g−1(ys)− ys − [x, ys] ∈ g≥2

for all s, where x is the one from Lemma 2.16. But the [x, ys] are linearly independent,
so we can choose χ ∈ g∗1 that satisfies χ([x, ys]) = χ′(ys) for all s. This means that

g.χ(ys) = χ(ys) + χ([x, ys]) = χ′(ys)

and (g.χ)0 = χ′. Now (2.34) gives f(χ′) = f(0).
For any χ ∈ Y , we can find g ∈ G such that (g.χ)− = 0 and use the action of T

to get
{(g.χ)0 + t(g.χ)1 + · · ·+ tN(g.χ)N | t ∈ F ∗} ⊆ G.χ.

It follows, by taking the limit as t approaches zero, that (g.χ)0 ∈ G.χ, and so
f(χ) = f((g.χ)0) = f(0). We have shown that f is constant on Y , and as a
consequence of Lemma 2.15 we get F [g∗]G = F .

Finally, let z ∈ U(g)G. One checks easily that the leading term map l from
section 1.1 is G-invariant, which implies l(z) ∈ S(g)G ∩ S(g)deg(z). But then we must
have deg(z) = 0, and thus z ∈ F .

2.5 Semi-invariants

The results of the previous section are of course rather discouraging, but the auto-
morphism group could still play a part in our search for non-trivial central elements
and an analogue of Veldkamp’s Theorem for the restricted Cartan type Lie algebras.
To explain how, we need a couple of definitions: Let H be an arbitrary algebraic
F -group with Lie algebra h = Lie(H), and let A be an associative F -algebra on which
H acts rationally by algebra automorphisms. We denote by X(H) the character
group of H and by X(h) = HomLie(h, F ) the character group of h. For any χ ∈ X(H)
we set

Aχ = {x ∈ A | h.x = χ(h)x for all h ∈ H}

and call χ a weight if Aχ 6= {0}. The nonzero x ∈ Aχ are called semi-invariants
of weight χ, and the monoid of weights is denoted by Λ(H,A). If we even have
χ ∈ Λ(H,A) ∩ ker d, where d : X(H) → X(h) is the group homomorphism given
by the usual differential, then we call χ a p-weight and x a p-semi-invariant. As
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motivation for this name, note that we always get pX(H) ∈ ker d. Now the sum of
weight spaces is easily seen to be direct, and we define the algebra of semi-invariants
AH-si and the algebra of p-semi-invariants AH-psi by

AH-si =
⊕

χ∈Λ(H,A)

Aχ,

AH-psi =
⊕

χ∈Λ(H,A)∩ker d

Aχ.

So, strictly speaking, the algebra of semi-invariants consists not only of semi-
invariants, but of all linear combinations of these, and similarly for the algebra
of p-semi-invariants. Clearly, we have

AH ⊆ AH-psi ⊆ AH-si ⊆ A[H,H] (2.35)

and also AH-psi ⊆ Ah, which is the main reason for our interest in AH-psi. The
following standard result (which we give without proof) is often useful:

Proposition 2.18. Assume that H/[H,H] is diagonalizable. Then

AH-si = A[H,H].

Now if H = [H,H] (which holds, for example, when H is semisimple) we get
AH = AH-si by (2.35), so there are no semi-invariants except for the ’real’ invariants.
If H is reductive, then H = Z(H)[H,H] and the adjoint action of Z(H) on h and h∗

is trivial, which implies S(h)H = S(h)[H,H] and S(h∗)H = S(h∗)[H,H]. So also in these
cases we have only the trivial weight, and if furthermore H satisfies the standard
hypotheses (so that h admits an H-invariant symmetrization map), then Λ(H,U(h))
is trivial as well.

We return now to the setup of the previous section, so that g denotes a Lie
algebra of restricted Cartan type, with automorphism group G. Then we have:

Lemma 2.19.

[G,G] = [G0, G0] nG1
∼=

{
SLn nG1 if g = W (n), S(n)

Sp2m nG1 if g = H(2m), K(2m+ 1).

Proof. The inclusion [G,G] ⊆ [G0, G0] nG1 follows from general facts, so to prove
the equality it is enough to show G1 ⊆ [G,G]. We will actually show the stronger
statement that Gr = [T,Gr] for all r ≥ 1 by induction on r. It is well known that
we have surjective group homomorphisms fr : Gr → ĝr (with ĝr considered as an
additive group) defined by

fr(σϕ) =
n∑
i=1

ϕ(xi)r+1∂i

for σϕ ∈ Gr. A straightforward calculation shows that

fr([t, g]) = (tr − 1)fr(g)
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for all g ∈ Gr, t ∈ T . So we can always choose t such that fr([t, g]) = fr(g), and
since the kernel of fr is Gr+1 we get [t, g] ≡ g mod Gr+1, which implies g ∈ [T,Gr]
by induction.

We see that G/[G,G] is a one-dimensional torus, so in particular Proposition 2.18
applies. Furthermore, X(G) ∼= X(T ) ∼= Z so we can, and will, identify weights with
integers. A priori we could have both positive and negative weights for the action
of G on U(g) and S(g), but a simple application of Theorem 2.17 shows that we
actually only get one or the other:

Proposition 2.20. We have Λ(G,U(g)) ⊆ N or Λ(G,U(g)) ⊆ −N, and the same
is true with S(g) in place of U(g).

Proof. Assume that there exist both positive and and negative weights in Λ(G,U(g)),
and let ψ1, ψ2 be the largest negative, resp. least positive, weight. Since Λ(G,U(g)) is
a monoid we must have ψ1 = −ψ2. If we choose nonzero elements x1 ∈ U(g)ψ1 , x2 ∈
U(g)ψ2 , then x1x2 ∈ U(g)0 = U(g)G. But U(g)G = F by Theorem 2.17, so x1 and
x2 are units, which is a contradiction since the set of units in U(g) is precisely F .
The proof for S(g) is exactly the same.

It follows from (2.13) that p-semi-invariants in U(g) are not automatically cen-
tral, and neither are p-semi-invariants in S(g) automatically contained in S(g)g.
When investigating the latter problem, the following lemma (which is essentially a
consequence of (1.9) and proved in [52])2 often comes in handy:

Lemma 2.21. Let h be an arbitrary restricted Lie algebra, and let X be an irreducible
affine variety, such that there is a restricted action of h on F [X] by derivations. If
h′ is any restricted subalgebra of h, then F [X]h = F [X]h

′
if and only if there exists

x ∈ Xg−reg such that h = hx + h′.

As an example of what we hope to be true in general, we now prove the following
theorem:

Theorem 2.22. Set w = W (1) and G = Aut(w). Then we have

1. U(w)G-psi ⊆ Z(w).

2. Z(w) is free of rank p over Z0(w) and there exists a Z0(w)-basis of Z(w)
consisting of p-semi-invariants.

3. The two previous statements are still true if we replace U(w) by S(w), Z(w)
by S(w)w and Z0(w) by S(w)p.

Proof. Our approach relies heavily on Jakovlev’s short paper [27], and we prove the
third statement first. Recall the notation from the start of section 2.2 and define a
character χ ∈ w∗ by χ(xp−1∂) = 1 and χ(xi∂) = 0 for 0 ≤ i ≤ p − 2. One checks
easily that wχ = F∂ and ind(w) = 1 (in fact, the index has been calculated for all

2To be precise, Skryabin only proves one implication of the lemma, but the other one is easy.
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the restricted Cartan type algebras, with certain restrictions on the characteristic, by
Krylyuk in [34] and [35]), so χ ∈ w∗reg and w = wχ +w≥0. But then, by Lemma 2.21,

we get S(w)Lie(G) = S(w)w≥0 = S(w)w and thus S(w)G−psi ⊆ S(w)w.
Now we define a basis {d0, . . . , dp−1} of w by di = yi+1∂, where y = x+ 1, and

set
f =

∑
|α|= p+1

2

cαd
α0
0 · · · d

αp−1

p−1 (2.36)

with cα = 1
α0!...αp−1!

if
∑
iαi = 0 and cα = 0 otherwise. It takes only a straightforward

calculation to get di.f = 0 for all i, so that f ∈ S(w)w. We want to show that
{1, f, . . . , f p−1} is an S(w)p-basis of S(w)w, and by Theorem 1.7 it is enough to
show that the closed subset C ⊂ w∗, consisting of all χ ∈ w∗ where the differential
dχf vanishes, has codimension at least 2 in w∗. Let Di denote partial differentiation
with respect to di. Then

C =

p−1⋂
i=0

V (Di(f)).

Notice that the term d
(p−1)/2
p−2 appears in Dp−1(f) with nonzero coefficient. No

other Di(f) contains a ”pure” dp−2-term, and this implies that Dp−1(f) cannot be
contained in the radical of any other Di(f). But then the codimension of C must be
at least 2. To finish the proof of the third statement, we need only to show that f is
a p-semi-invariant, which is now easy. For arbitrary g ∈ G we can write

g(f) = h0 + h1f + · · ·+ hp−1f
p−1 (2.37)

for some unique h0 . . . , hp−1 ∈ S(w)p, since G preserves S(w)w. But G also preserves
the grading of S(w), so (2.37) can only be true if h1 ∈ F ∗ and hi = 0 for all i 6= 1.3

To prove the statements for U(w), we note first, that even though the definition
of the standard symmetrization map in characteristic zero does not make sense in
our world, we still have ‘symmetrization in degrees less than p’, i.e., there is a G-
and w-module isomorphism φ : S(w)≤p−1 → U(w)≤p−1 given by

φ(di1 . . . dik) =
∑
σ∈Sk

1

k!
diσ(1) · · · diσ(k)

for k < p. With f̂ = φ(f) we have Z(w) = Z0(w)[f̂ ] by [27]. Denote by Z ′ the
Z0(w)-module generated by 1, f̂ , . . . , f̂p−1, then we can write

S(w)w = Gr(Z ′) ⊆ Gr(Z(w)) ⊆ S(w)w.

It follows that Gr(Z ′) = Gr(Z(w)) and therefore Z ′ = Z(w). A standard argument
shows that 1, f̂ , . . . , f̂p−1 are linearly independent, and thus we have proved the second
statement of the theorem. To prove the first, note simply that Z(w) ⊆ U(w)w≥0 ,
while at the same time,

Gr(U(w)w≥0) ⊆ S(w)w≥0 = S(w)w = Gr(Z(w)).

So Z(w) = U(w)w≥0 ⊇ U(w)G-psi and we are done.

3It is not too hard to show that the weight of f is in fact p(p−3)
2
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It should be painfully clear, that the rather ad hoc definition of the all-important
f ∈ S(w) makes it hard to generalize this proof to bigger Lie algebras of restricted
Cartan type (see, however, [5]), and even though f is a p-semi-invariant, we arrive at
this fact in a sort of ’backwards’ way. Thus the theorem might not might convince the
reader (it has not totally convinced the author!) that the study of p-semi-invariants
will make it any easier to find non-trivial central elements. Of course, a first step
in the right direction would be to prove that U(g)G-psi ⊆ Z(g) for any restricted
Cartan type Lie algebra g with automorphism group G, which is equivalent to
U(g)G-psi ⊆ U(g)g− . In the symmetric case we actually have a description of S(g)g−

for g ∈ {W,S,H} in [2] by Bedratyuk. Note also, that if we consider the second
Witt-Jacobson algebra W (2), then an example in section 6.4 of [45] provides a
character χ ∈ W (2)∗reg satisfying W (2) = W (2)χ + W (2)≥0. By Lemma 2.21 the
p-semi-invariants in S(W (2)) are then W (2)-invariant. For further results concerning
non-trivial central elements in special cases, see [18] and [32].
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Chapter 3

An analogue of Chevalley’s
Restriction Theorem

3.1 The variety of tori of maximal dimension

Chevalley’s Restriction Theorem (CRT for short) was already briefly explained in
Section 1.2, but let us restate it here for reference:

Theorem 3.1. Let g be a semisimple Lie algebra over an algebraically closed field
of characteristic zero, with Cartan subalgebra h ⊆ g, Weyl group W and group of
inner automorphisms G. Then the natural restriction map F [g]→ F [h] induces an
algebra isomorphism

res : F [g]G ∼−→ F [h]W .

In particular, F [g]G is a polynomial algebra in dim(h) variables.

A couple of remarks: In the setup of this theorem the notions of Cartan subalgebra
and maximal toral subalgebra (as in [24]) coincide. Corresponding to the latter kind
of subalgebra we have maximal tori in the restricted theory (we will elaborate on
this concept in a moment), but these need not be Cartan subalgebras, even when the
Lie algebra considered is simple. It turns out, that to get an analogue of CRT for the
restricted Cartan types we will have to replace the Cartan subalgebra by a maximal
torus. Furthermore, it is well known, that (with the notation of Theorem 3.1) we
have

W ∼= NG(h)/CG(h) (3.1)

where NG(h) = {g ∈ G | g(h) ⊆ h} is the normalizer of h in G and CG(h) = {g ∈ G |
g(h) = h for all h ∈ h} is the centralizer of h in G. It is the right hand side of (3.1)
which we will adapt to our setup. Finally, in characteristic zero any two Cartan
subalgebras of a Lie algebra are conjugate under the action of the group of inner
automorphisms, so in particular, the choice of h in Theorem 3.1 does not matter. For
the restricted Cartan types, the maximal tori are not all conjugate under the action
of the automorphism group, and the choice of maximal torus matters very much, as
we will see! Before we dive deeper into this problem, we will briefly recall the basics:
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Return to the general setup of an arbitrary restricted Lie algebra g over an
algebraically closed field F of positive characteristic. As mentioned previously, one
of the advantages of working in the restricted setting is that we have an analogue of
the Jordan decomposition in nonmodular semisimple Lie algebras: For any x ∈ g we
denote by 〈x〉[p] the smallest restricted subalgebra of g containing x. We say that x
is semisimple if x ∈ 〈x[p]〉[p], and we say that x is p-nilpotent if x[p]n = 0 for some n.
It can easily be shown ([58], proposition 3.3) that a semisimple x acts semisimply on
any finite-dimensional restricted g-module M , while a p-nilpotent x acts nilpotently
on M . The point now is that for any y ∈ g we can find uniquely determined ys, yn
such that ys is semisimple, yn is p-nilpotent, [ys, yn] = 0, and

y = ys + yn.

This version of the Jordan decomposition is useful in many situations. A restricted
abelian subalgebra t of g consisting only of semisimple elements is called a torus. It
is well known that a restricted subalgebra t′ is a torus if and only if the p-mapping
is invertible on t′. Furthermore, any torus admits a vector space basis consisting of
toral elements, i.e., elements y ∈ g satisfying y[p] = y. If {y1, . . . , yn} is a toral basis
of the torus t, then the set tor(t) of toral elements in t is given explicitly by

tor(t) =
n∑
i=1

Fpyi.

In particular, tor(t) is a vector space over Fp. If we denote by Autp(t) the group of
restricted automorphisms of t, then it is easily seen that any Fp-linear automorphism
of tor(t) induces canonically an element of Autp(t) and vice versa. It follows that
Autp(t) ∼= GLn(Fp). Now let G = Autp(g)◦ denote the identity component of the
(algebraic) group of restricted automorphisms of g. We define

W (g, t) = NG(t)/CG(t)

and call W (g, t) the Weyl group of g relative to t. We clearly have an injective
homomorphism W (g, t) ↪→ Autp(t). In particular, W (g, t) is finite.

Let µ(g) denote the maximal dimension of a torus in g and rk(g) the minimal
dimension of a Cartan subalgebra in g. The notions of maximal torus (that is, a torus
not properly contained in any other torus) and torus of maximal dimension need not
coincide, but in the case of restricted Cartan type Lie algebras, they do ([55], Section
7.5). The set T of tori of dimension µ(g) can be given the structure of a variety in
two different ways, which ultimately turn out to be equivalent: first consider T as a
subset of the Grassmannian Grµ(g)(g). It can be shown ([19], Lemma 7.4) that T is
locally closed in Grµ(g)(g) and thereby a quasi-projective variety. Second, let t ⊆ g
be any torus of dimension µ(g) and consider the variety Et of embeddings t ↪→ g of
restricted lie algebras. There is a natural free action of the finite group Autp(t) on Et,
and the geometric quotient Et/Autp(t) turns out to be an affine smooth irreducible
variety of dimension dim(g)− rk(g). The map ϕ 7→ ϕ(t) clearly induces a bijection
ψ between Et/Autp(t) and T , and thus we have another way of realizing the set of
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tori of maximal dimension as a variety. Luckily, ψ is actually an isomorphism of
varieties ([19], Theorem 9.3). In particular, T is affine. Note furthermore, that we
have a natural G-action on T . A torus t ∈ T such that

G.t = T

is said to be generic.
Let C denote the set of all Cartan subalgebras of dimension rk(g) in g. As a

subset of Grrk(g)(g), C is locally closed and thus a quasi-projective variety. We have
a morphism E : T → C, defined by E(t) = cg(t), where

cg(t) = {x ∈ g | [x, t] = 0 for all t ∈ t}.

This morphism is injective, dominant, étale and equivariant with respect to the
canonical G-action on T and C. If all maximal tori in g have dimension µ(g), then
E is even bijective (an inverse map is given by h→ {t ∈ ch(h) | t is semisimple}, see
[58], Theorem 2.4.1 and Corollary 2.4.2) and thereby a G-equivariant isomorphism
of varieties. Since this is the case for the Lie algebras we consider, the results we
prove for T can be transferred to C via E .

We specialize now to our favourite setup of a restricted Cartan type Lie algebra
g with automorphism group G. Note that we have G = G since G is connected. Let
T ′ be the subset of T consisting of all tori contained in g≥−1. Of course T = T ′ if
g ∈ {W,S,H}, but if g is of type K then T ′ is a proper closed subvariety of T .1 From
the fact that G respects the standard filtration of g it follows that T ′ is G-invariant.
As shown by Demushkin in [13], [14] (with corrections by Strade in [55], Section 7.5)
there are exactly µ(g) + 1− δgK orbits O0+δgK , . . . ,Oµ(g) in T ′ under the G-action,
and these have the following simple description:

Ok = {t ∈ T | dim(t ∩ g≥0) = k}.

For each of the four Cartan types we have canonical orbit representatives tk of Ok
given by

tk =
k∑
i=1

Fxi∂i ⊕
n∑

i=k+1

F (1 + xi)∂i if g = W (n) (3.2)

tk =
k∑
i=1

F (xi∂i − xn∂n)⊕
n−1∑
i=k+1

F ((1 + xi)∂i − xn∂n) if g = S(n) (3.3)

tk =
k∑
i=1

F (xi∂i − xi′∂i′)⊕
m∑

i=k+1

F ((1 + xi)∂i − xi′∂i′) if g = H(2m) (3.4)

tk =
k−1∑
i=1

Fxixi′ ⊕
m∑
i=k

F (1 + xi)xi′ ⊕ F
( m∑
i=1

xixi′ + x2m+1

)
if g = K(2m+ 1)

(3.5)

1For results on tori not contained in T ′ for type K, see [55], Theorem 7.5.15.
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In type K we have identified K(2m+ 1) with A(2m+ 1) via DK and also modified
the tk used in [55], Theorem 7.5.13, slightly. Note that the standard bases of the
tori tk exhibited here are all toral bases.

The closure relations in T ′ are not too hard to determine:

Proposition 3.2. We have

G.tk = G.tk ∪G.tk+1 ∪ · · · ∪G.tµ(g)

for k = 0 + δgK , . . . , µ(g).

Proof. Note first that the result follows by induction if we can prove tk ∈ G.tk−1.
Assume first that g is of type W and define a one-parameter subgroup t → ϕt of
Aut(A(n)) by ϕt(xi) = xi if i 6= k and ϕt(xk) = t−1xk. This induces a one-parameter
subgroup t→ σϕt of G, and an easy calculation shows that

σϕt(xi∂i) = xi∂i for 1 ≤ i < k

σϕt((1 + xk)∂k) = (t+ xk)∂k

σϕt((1 + xi)∂i) = (1 + xi)∂i for k < i ≤ n

Now for any point y ∈
∧
W (n) we write (y) for the line through it (recall that

T is a subset of P(
∧
W (n))). Then tk−1 identifies with (x1∂1 ∧ · · · ∧ xk−1∂k−1 ∧

(1 + xk)∂k ∧ · · · ∧ (1 + xn)∂n) and we get

σϕt .(x1∂1 ∧ · · · ∧ xk−1∂k−1 ∧ (1 + xk)∂k ∧ · · · ∧ (1 + xn)∂n)

= (x1∂1 ∧ · · · ∧ xk−1∂k−1 ∧ (t+ xk)∂k ∧ · · · ∧ (1 + xn)∂n).

Taking the limit as t approaches zero, we get limt→0 σϕt .tk−1 = (x1∂1 ∧ · · · ∧ xk∂k ∧
(1 + xk+1)∂k+1 ∧ · · · ∧ (1 + xn)∂n) = tk ∈ G.tk−1. If g is of type S, then the
automorphisms σϕt restrict to g, and we get limt→0 σϕt .tk−1 = tk in exactly the
same way. For g of type H or K we only have to modify the approach slightly:
Define a one-parameter subgroup t → µt of Aut(A(n)) by µt(xk−δgK ) = t−1xk−δgK ,
µt(x(k−δgK)′) = tx(k−δgK)′ and µt(xi) = xi for all other i. One checks easily, using
Theorems 7.3.6 and 7.3.8 in [55], that the automorphisms σµt restrict to g, and
calculations similar to those we did for type W show that limt→0 σµt .tk−1 = tk in
these cases also.

In particular we recover the result (from [6]) that when g ∈ {W,S,H} we have
G.t0 = T , i.e., t0 is a generic tori of g. If g = K(2m+1), then there are no generic tori,
a fact which was proved in [6] using detailed information on an associated Poisson
algebra. It can, however, also be done directly: Using the formulas (2.7)–(2.11) one
can easily show that the tori tk are in fact self-centralizing, which implies

dim(T ) = dim(g)− rk(g) = dim(g)− µ(g) = dim(g)− (m+ 1).

But then it quickly follows from (2.15) that

dim(G) < dim(T ),

and thus there can be no generic tori in K(2m+ 1).
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3.2 CRT and non-generic tori

The following analogue of CRT can be pieced together from the results of [42], [64],
[63] and [6]:

Theorem 3.3. Assume that g ∈ {W,S,H}. Then W (g, t0) ∼= GLµ(g)(Fp) and the
natural restriction map

res : F [g]G → F [t0]W (g,t0)

is an algebra isomorphism. Furthermore, F [g]G is a polynomial algebra in µ(g)
variables.

Of course, all the statements of this theorem remain true with t0 replaced by any
t ∈ G.t0, or, to put it in other words, with t0 replaced by any other generic torus.
We are interested in what happens for the non-generic tori. In order to calculate the
Weyl groups with respects to these it will be necessary to decompose the standard
tori given in (3.2), (3.3), (3.4), so define for the three Cartan types W , S and H,
tori t′k and t′′k for 1 ≤ k ≤ µ(g) by

t′k =
k∑
i=1

Fxi∂i if g = W (n)

t′k =
k∑
i=1

F (xi∂i − xn∂n) if g = S(n)

t′k =
k∑
i=1

F (xi∂i − xi′∂i′) if g = H(2m)

and

t′′k =
n∑

i=k+1

F (1 + xi)∂i if g = W (n)

t′′k =
n−1∑
i=k+1

F ((1 + xi)∂i − xn∂n) if g = S(n)

t′′k =
m∑

i=k+1

F ((1 + xi)∂i − xi′∂i′) if g = H(2m)

So we have tk = t′k⊕ t′′k. Let π : g→ g/g≥0 denote the canonical quotient map. Since
G preserves g≥0 and t′k = tk ∩ g≥0 we have a group homomorphism

Ψ : W (g, tk)→ GL(t′k)×GL(π(tk)).

In the extremal cases we already know W (g, t0) from Theorem 3.3, while it is
relatively easy to show that

W (g, tµ(g)) ∼= NG0(tµ(g))/CG0(tµ(g))
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which is more or less the ’usual’ Weyl group of the reductive group G0. It turns out
that W (g, tk) is built out of smaller Weyl groups of these two types, along with the
kernel of Ψ. To prove this we need a couple of lemmas, the first of which can be proved
in a very general setup. Let A be any finite-dimensional commutative F -algebra, and
note that we can define a group homomorphism Aut(A)→ Aut(Der(A)), ϕ 7→ σϕ,
by σϕ(D) = ϕ ◦D ◦ ϕ−1 for D ∈ Der(A), just as we did for the case A = A(n). Now
we have:

Lemma 3.4. Assume that the module of Kähler differentials ΩA/F is a free A-module.
Let l be any restricted subalgebra of Der(A), with maximal torus t, let a1, . . . , an ∈ A
be weight vectors with respect to the t-action such that {da1, . . . , dan} is an A-basis
of ΩA/F , and let ϕ be an F -algebra automorphism of A such that σϕ restricts to a
Lie automorphism of l. Then the following are equivalent:

1. σϕ normalizes t.

2. ϕ(a1), . . . , ϕ(an) are weight vectors with respect to the t-action.

Furthermore, σϕ centralises t if and only if the weights of ai and ϕ(ai) are the same
for 1 ≤ i ≤ n.

Proof. 1⇒ 2: For any D ∈ t we have

(ϕ−1 ◦D ◦ ϕ)(ai) = σϕ−1(D)(ai) = λ(σϕ−1(D))ai

for some weight λ ∈ t∗. So D(ϕ(ai)) = λ(σϕ−1(D))ϕ(ai) and ϕ(ai) is a weight vector,
with weight λ′ defined by λ′(D′) = λ(σϕ−1(D′)) for all D′ ∈ t.

2⇒ 1: Let {fi}1≤i≤n be the A-basis of HomA(ΩA/F , A) dual to the basis {dai}
of ΩA/F . The preimage Di of fi under the canonical isomorphism Der(A)

∼→
HomA(ΩA/F , A) satisfies Di(aj) = δij, and {Di}1≤i≤n is an A-basis of Der(A). We
have

D =
n∑
i=1

D(ai)Di (3.6)

for all D ∈ Der(A). Now define t′ =
∑n

i=1 FaiDi. The aiDi are commuting toral
elements of Der(A), and so t′ is a torus. Since the ai are weight vectors, it follows
from (3.6) that t ⊆ t′ ∩ l, and by maximality of t we must have t = t′ ∩ l. For any
D ∈ t we get now

σϕ−1(D) =
n∑
i=1

σϕ−1(D)(ai)Di =
n∑
i=1

λi(D)aiDi

for certain weights λi ∈ t∗. So σϕ−1(D) ∈ t′ ∩ l = t and σϕ−1 normalises t. The proof
of the last statement is now easy, and will be left to the reader.

We intend, of course, to use this lemma with A = A(n), l = g and t = tk. Define

zi =

{
xi if 1 ≤ i ≤ k or µ(g) < i ≤ n

yi if k + 1 ≤ i ≤ µ(g)
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Then one checks easily that z1, . . . , zn are weight vectors with respect to the action
of tk on A(n), and that {dz1, . . . , dzn} is an A(n)-basis of ΩA(n)/F . Furthermore,
{zα1

1 · · · zαnn | 0 ≤ α1, . . . , αn < p} is an F -basis of A(n) consisting of weight vectors.
Using this basis one can easily determine the weight spaces of A(n) with respect to
the tk-action. In fact, if {β1 . . . , βµ(g)} is the basis of t∗k dual to the standard basis of

tk given in (3.2), (3.3). (3.4), then the weight lattice is
∑µ(g)

i=1 Fpβi and the weight
spaces are

A(n)b1β1+···+bnβn = Fzb11 · · · zbnn
for g = W (n),

A(n)b1β1+···+bn−1βn−1 =
∑

j=0,...,p−1

Fzb1+j
1 · · · zbn−1+j

n−1 zjn (3.7)

for g = S(n), and

A(2m)b1β1+···+bmβm =
∑

0≤c1,...,cm<p

Fzb1+c1
1 · · · zbm+cm

m zc1m+1 · · · zcm2m (3.8)

for g = H(2m). The notation used here is not quite precise: The bi are elements in
Fp on the left hand sides, while we use their integer representatives in the interval
I = [0, . . . , p− 1] on the right hand sides. Furthermore, all exponents on the right
should be thought of as reduced mod p to an integer in I.

Lemma 3.4 and the preceding discussion shows that we have an injective ho-
momorphism W (g, tk) ↪→ (

∑µ(g)
i=1 Fpβi)n. To determine for which sets of weights

{λ1, . . . , λn} there exists σϕ ∈ G such that ϕ(zi) has weight λi, we need only a couple
of well known results on automorphisms of A(n), which we put together in a lemma:

Lemma 3.5. Let f1, . . . , fn ∈ A(n). There exists an automorphism ϕ ∈ A(n)
satisfying ϕ(zi) = fi if and only if the following two conditions are satisfied:

f(zi)− zi ∈ m for all i (3.9)

det
((
∂i((fj)1)

)n
i,j=1

)
6= 0. (3.10)

Assume these conditions hold. Then σϕ induces an automorphism of S(n) if and
only if

det
((
∂i(fj)

)n
i,j=1

)
∈ F, (3.11)

and σϕ induces an automorphism of H(n) (assuming n = 2m is even) if and only if

{fi, fj} = cσ(i)δi′j (3.12)

for some c ∈ F ∗ and all i, j.

We are almost ready to determine the Weyl group of g relative to tk. Let us first
define three subgroups of W (g, tk):

W1 = {w ∈ W (g, tk) | w|t′′k = id}
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W2 = {w ∈ W (g, tk) | w|t′k = id and w(t′′k) ⊆ t′′k}

W3 = ker(Ψ)

Now we have:

Proposition 3.6. Assume g ∈ {W,S,H} and k ≥ 1. Then

W (g, tk) ∼= (W1 ×W2) nW3,

with

W1
∼=


Sk if g = W (n)

Sk+1 if g = S(n)

Sk n (Z/2Z)k if g = H(n)

(3.13)

W2
∼= GLµ(g)−k(Fp) (3.14)

W3
∼= Mµ(g)−k,k(Fp) (3.15)

Proof. It is easy to see that the product of W2 and W3 must be direct, and that the
intersection (W1 ×W2) ∩W3 is trivial. Our approach is to construct ’by hand’ three
subgroups W ′

1, W ′
2, W ′

3 isomorphic to the right hand sides of (3.13), (3.14), (3.15),
such that W ′

j ⊆ Wj for j = 1, 2, 3 and W (g, tk) = W ′
1W

′
2W

′
3. From this it follows

automatically that W ′
j = Wj and we will be done. Note that we will sometimes define

elements of W (g, tk) simply by giving weight vectors satisfying the requirements of
Lemma 3.5.

Assume first that g = W (n). A moment’s thought reveals that weight vectors
fj = cjz

cj1
1 · · · z

cjn
n , 1 ≤ j ≤ n, satisfy (3.9), (3.10) if and only if

fj = cjxτ(j)y
cj(i+1)

i+1 · · · ycjnn 1 ≤ j ≤ k (3.16)

fj = y
cj(k+1)

k+1 · · · ycjnn k + 1 ≤ j ≤ n (3.17)

where τ ∈ Sk and (cji)k<j,i≤n ∈ GLn−k(Fp). Inspired by this we define the subgroup
W ′

1 of W (g, tk) by

ϕ(xj) = xτ(j) 1 ≤ j ≤ k

ϕ(yj) = yj k + 1 ≤ j ≤ n

for any τ ∈ Sk, the subgroup W ′
2 by

ϕ(xj) = xj 1 ≤ j ≤ k

ϕ(yj) = y
cj(k+1)

k+1 · · · ycjnn k + 1 ≤ j ≤ n

for any (cji)k<j,i≤n ∈ GLn−k(Fp), and finally the subgroup W ′
3 by

ϕ(xj) = xjy
cj(k+1)

k+1 · · · ycjnn 1 ≤ j ≤ k

ϕ(yj) = yj k + 1 ≤ j ≤ n
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with the cji arbitrary. It follows from (3.16) and (3.17) that any element of W (g, tk)
is a product of elements from W ′

1,W
′
2,W

′
3. Now it is a routine matter to check that

W ′
j ⊆ Wj for j = 1, 2, 3, and that W ′

1
∼= Sk, W

′
2
∼= GLn−k(Fp), W ′

3
∼= Mn−k,k(Fp).

Assume now g = S(n). Using the weight space decomposition (3.7) we see that
weight vectors f1, . . . , fn satisfy (3.9), (3.10) if and only if they have the following
form, modulo the corresponding weight spaces:

fj = xτ(j)y
cj(k+1)

k+1 · · · ycj(n−1)

n−1 1 ≤ j ≤ k and j = n (3.18)

fj = y
cj(k+1)

k+1 · · · ycj(n−1)

n−1 k + 1 ≤ j ≤ n− 1 (3.19)

Now τ ∈ Sk+1 is a permutation on {1, . . . , k, n} and (cji)k<j,i<n is a matrix in
GLn−1−k(Fp). Define ϕ ∈ Aut(A(n)) by ϕ(zj) = fj and let

wi = σϕ−1(yi∂i − xn∂n) =
n∑
j=1

σϕ−1(yi∂i − xn∂n)(zj)∂j

=
n∑
j=1

(cji − δjτ−1(n))zj∂j

for k < i < n. To get div(wi) = 0 we must have

cni =
n−1∑
j=1

cji + 1 (3.20)

for k < i < n. Assume that fn satisfies this, then it is a simple exercise in linear
algebra to show

det
((
∂i(fj)

)
j,i

)
= det

(
(csr)k<s,r<n

)
∈ F.

It follows that any ϕ defined by ϕ(zj) = fj subject to the condition (3.20) induces
an element of W (g, tk), and that all elements of W (g, tk) can be obtained in this
way. It is now easy to see how to define the three subgroups W ′

1, W ′
2, W ′

3 to get the
desired result.

Finally the case g = H(n), with n = 2m for some m ≥ 1. Assume σϕ ∈ NG(tk).
For any D ∈ tk we have

σϕ(D) =
n∑
j=1

σϕ(D)(zj)∂j =
n∑
j=1

λj(D)zj∂j ∈ tk

for certain weights λj, from which it follows that λj′ = −λj. In other words, σϕ
is completely determined by the weights of ϕ(z1), . . . , ϕ(zm). The conditions (3.9)
and (3.10) together with the weight space decomposition (3.8) imply that ϕ(xj),
1 ≤ j ≤ k, is a weight vector belonging to a weight of the form

∑m
i=k+1 cjiβi or

±βij +
∑m

i=k+1 cjiβi for an integer ij ∈ {1, . . . , k}, while the ϕ(yj), k < j ≤ m, belong
to weight spaces of the former type. Since ϕ must satisfy (3.12) we can rule out
the first possible kind of weight space for the ϕ(xj): For if ϕ(xj) ∈ A(n)∑m

i=k+1 cjiβi
,
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1 ≤ j ≤ k, then ϕ(xj′) ∈ A(n)−∑m
i=k+1 cjiβi

, and the first degree terms of ϕ(xj), ϕ(xj′)

must be of the form
∑n

i=m+k+1 aixi,
∑n

i=m+k+1 bixi respectively, for some ai, bi ∈ F .
But then

{ϕ(xj), ϕ(xj′)}0 =
{ n∑
i=m+k+1

aixi,

n∑
i=m+k+1

bixi

}
= 0

which contradicts (3.12). So ϕ(xj) ∈ A±βij+
∑m
i=k+1 cjiβi

, and the first degree term of

ϕ(xj) is ajxij if the sign is positive and ajxi′j if the sign is negative. For ϕ(xj′) it is

the other way around. Define a map τ : {1, . . . , k, 1′, . . . , k′} → {1, . . . , k, 1′, . . . , k′}
by sending j to the index of the first degree term in ϕ(xj). From the condition
{ϕ(xj), ϕ(xi)}0 = αδj′i, 1 ≤ j, i ≤ k, it follows that τ can be identified with an
element of Sk n (Z/2Z)k (where the copies of Z/2Z act coordinate-wise by ′).

By now we know that

ϕ(xj)1 = ajxτ(j) if 1 ≤ j ≤ k or m < j ≤ k +m

ϕ(yj)1 =
m∑

i=k+1

(cjixi + djixi′) if k < j ≤ m

ϕ(xj)1 =
m∑

i=k+1

djixi′ if k +m < j ≤ 2m

and by imposing the condition (3.10) on these terms, we see that the matrix
(cji)k<j,i≤m must be invertible. Define the subgroup W ′

1 of W (g, tk) by

ϕ(xj) = σ(τ(j))xτ(j) for 1 ≤ j ≤ k and m < j ≤ m+ k

ϕ(yj) = yj for k < j ≤ m

ϕ(xj) = xj for m+ k < j ≤ 2m

for any τ ∈ Sk n (Z/2Z)k, the subgroup W ′
2 by

ϕ(xj) = xj for 1 ≤ j ≤ k and m < j ≤ m+ k

ϕ(yj) = y
cj(k+1)

i+1 · · · ycjmm for k < j ≤ m

ϕ(xj) =
m∑

i=k+1

dij′xi′y
−cj′(k+1)

k+1 · · · y−cj′i+1

i · · · y−cj′mm for m+ k < j ≤ 2m

where (cji)k<j,i≤m ∈ GLm−k(Fp) and (dij′)k<j′,i≤m = (cj′i)
−1, and finally the subgroup

W ′
3 of W (g, ti) by

ϕ(xj) = xjy
cj(k+1)

k+1 · · · ycjmm for 1 ≤ j ≤ k

ϕ(yj) = yj for k < j ≤ m

ϕ(xj) = xjy
−cj′(k+1)

k+1 · · · y−cj′mm for m < j ≤ m+ k

ϕ(xj) = xj −
( k∑
i=1

cij′xixi′
)
yp−1
j′ for m+ k < j ≤ 2m.
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One checks easily that these automorphisms are actually well defined, i.e., that they
satisfy (3.9), (3.10) and (3.12). The preceding discussion shows that every element of
W (g, tk) must be a product of elements from W ′

1, W ′
2, W ′

3, and the result follows.

Armed with this detailed understanding of the Weyl groups associated to non-
generic tori, we are able to prove an extension of Theorem 3.3:

Theorem 3.7. Assume g ∈ {W,S,H} and let t ⊆ g be any torus of dimension µ(g).
The canonical restriction homomorphism

res : F [g]G → F [t]W (g,t).

is an isomorphism if and only if t is generic.

Proof. Because of Theorem 3.3 it is enough to show that res is not an isomor-
phism if t is not generic. More precisely, we will show that res is not surjec-
tive in this case. Assume first t = tk for some k ∈ {1, . . . , µ(g) − 1} and write
F [tk] = F [X1, . . . , Xk, Yk+1, . . . , Yµ(g)], where {X1, . . . , Xk} is a basis of (t′k)

∗ dual to
the standard basis of (t′k) and {Yk+1, . . . , Yµ(g)} is a basis of (t′′k)

∗ dual to the standard
basis of (t′′k). It follows directly from the definition of the subgroups W1 and W3 that
these act trivially on F [Yk+1, . . . , Yµ(g)] ∼= F [t′′k], so

F [Yk+1, . . . , Yµ(g)]
W2 ⊆ F [tk]

W (g,tk).

Let us now identify the action of W2 on F [Yk+1, . . . , Yµ(g)] with the action of
GLµ(g)−k(Fp) on S(tor(t′′k)

∗ ⊗ F ) induced from the natural action of GLµ(g)−k(Fp) on
tor(t′′k). Then, by a classical invariant theoretic result by Dickson ([15], see also the
proof of Theorem 1 in [42]) we have a homogeneous invariant f ∈ F [Yk+1, . . . , Yµ(g)]
of degree pµ(g)−k − pµ(g)−k−1 . We also know, however, that F [g]G is generated by
algebraically independent polynomials of degree at least pµ(g) − pµ(g)−1 ([42], [64],
[63]), and since res is a graded homomorphism it cannot be surjective.

Assume now t = tµ(g). Then we have

W (g, tµ(g)) = W1
∼= NG0(tµ(g))/CG0(tµ(g)).

By standard reductive group theory there exists an invariant f of degree at most 2
(one can also easily find such an f manually, take for example f = X1 + · · ·+ Xn

for g = W (n), with the notation from the previous case). By the same argument as
before, res cannot be surjective, and we are done.

The natural next question to adress is of course: what happens when g =
K(2m + 1)? It is not at all clear how to determine the structure of F [g]G in this
case. Even though there are no generic tori, it is still entirely possible that one could
find a torus such that restriction induces an isomorphism of invariants. This is the
same as saying that Theorem 3.7 cannot be extended to type K. On the other, if the
theorem does extend, then one will have to find some other way to describe F [g]G.
Either way, it is certainly an interesting problem, that deserves further study!
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