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Abstract

Approximations for an unknown density g in terms of a reference density
fν and its associated orthonormal polynomials are discussed. The main ap-
plication is the approximation of the density f of a sum S of lognormals
which may have different variances or be dependent. In this setting, g may
be f itself or a transformed density, in particular that of logS or an expo-
nentially tilted density. Choices of reference densities fν that are considered
include normal, gamma and lognormal densities. For the lognormal case, the
orthonormal polynomials are found in closed form and it is shown that they
are not dense in L2(fν), a result that is closely related to the lognormal dis-
tribution not being determined by its moments and provides a warning to
the most obvious choice of taking fν as lognormal. Numerical examples are
presented and comparison are made to established approaches such as the
Fenton–Wilkinson method and skew-normal approximations. Also extension
to density estimation for statistical data sets and non-Gaussian copulas are
outlined.

Keywords:: Lognormal distribution, sums of lognormally distributed random
variable, orthogonal polynomial, density estimation, Stieltjes moment prob-
lem, numerical approximation of functions, exponential tilting, conditional
Monte Carlo, Archimedean copula, Gram–Charlier expansion, Hermite poly-
nomial, Laguerre polynomial

1 Introduction

The lognormal distribution arises in a wide variety of disciplines such as engineering,
economics, insurance, finance, and across the sciences Aitchison and Brown (1957);
Crow and Shimizu (1988); Johnson et al. (1994); Limpert et al. (2001); Dufresne
(2009). Therefore, it is natural that sums S of n lognormals come up in a number of
contexts. A basic example in finance is the Black–Scholes model, which assumes that
security prices are lognormals, and hence the value of a portfolio with n securities
has the form S. In insurance, individual claim sizes are often taken as independent
lognormals, so the total claim amount in a certain period is again of form Thorin
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and Wikstad (1977). A further example occurs in telecommunications, where the
inverse of the signal-to-noise ratio (a measure of performance in wireless systems)
can be modeled as a sum of i.i.d. lognormals (Gubner, 2006).

The distribution S is, however, not available in explicit form, and evaluating it
numerically or approximating it is considered to be a challenging problem with a long
history. The classical approach is to use an approximation with another lognormal
distribution. This goes back at least to Fenton (1960b) and it is nowadays known
as the Fenton–Wilkinson method as according to Marlow (1967) this approximation
was already used by Wilkinson in 1934. However, it can be rather inaccurate when
the number of summands is rather small, or when the dispersion parameter is too
high. Also tail approximations have been extensively discussed, with the right tail
being a classical example in subexponential theory,Embrechts et al. (1997), and the
study of the left tail being more recent, Asmussen et al. (2015), Gulisashvili and
Tankov (2013).

This paper discusses a different method, to approximate the probability density
function (p.d.f.) f via polynomials {Qk} which are orthonormal w.r.t. some reference
measure ν. In the general formulation, one is interested in approximating a target
density g using the density fν of ν as reference and g some other density. One
then finds a series representation of g/fν of the form

∑∞
k=0 akQk, and then the

approximation of g is

ĝ(x) = gν(x)
K∑

k=0

akQk(x), (1.1)

for some suitable K. The most obvious connection to the lognormal sum problem
is g = f , but we shall look also at other possibilities, to take g as the density of
logS and transform back to get the approximation f̂(x) = ĝ(log x)/x or to use an
exponential tilting. The choice of ν is a crucial step, and three candidates for ν are
investigated: the normal, the gamma, and the lognormal distributions.

The form of the Qk is classical for the normal distribution where it is the Hermite
polynomials and for the gamma where it is the Laguerre polynomials, but for the
lognormal distributions it does not appear to be in the literature and we give here
the functional expression (Theorem 2.3). The Fenton–Wilkinson method may be
seen as the K = 2 case of fν being lognormal of the general scheme, and this choice
of fν may be the most obvious one. However, we show that in the lognormal case
the orthonormal polynomials are not dense in L2(fν). This result is closely related
to the lognormal distribution not being determined by its moments Heyde (1963);
Berg et al. (1984) and indicates that a lognormal fν is potentially dangerous. For
this reason, the rest of the paper concentrates on taking the reference distribution as
normal (using the logarithmic transformation) or gamma (using exponential tilting).

After discussing the details of the orthonormal polynomials expansions in Sec-
tions 2 and 3, we proceed in Section 4 to show a number of numerical examples.
The polynomial expansions are compared to existing methods as Fenton–Wilkinson
and a more recent approximation in terms of log skew normal distributions Hcine
and Bouallegue (2015), as well as to exact values obtained by numerical quadra-
ture in cases where this is possible or by Monte Carlo density estimation. Section 4
also outlines an extension to statistical data sets and non-Gaussian copulas. Appen-
dices A.1 contains a technical proof and Appendix A.2 some new material on the
SLN Laplace transform.
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2 Orthogonal polynomial representation of
probability density functions

Let X be a random variable which has a density f with respect to some measure
λ ≥ 0 (typically Lebesgue measure on an interval or counting measure on a subset
of Z). If f is unknown but the distribution of X is expected to be close to some
probability measure ν with p.d.f. fν , one may use fν as a first approximation to f
and next try to improve by invoking suitable correction terms.

In the setting of this paper X is the sum of lognormal r.v.s and the correction
terms are obtained by expansions in terms of orthonormal polynomials. Before going
into the details of the lognormal example, let us consider the general case.

Assuming all moments of ν to be finite, the standard Gram–Schmidt orthogo-
nalization technique shows the existence of a set of polynomials {Qk}k∈N0 which are
orthonormal in L2(ν) equipped with the usual inner product 〈g, h〉 =

∫
gh dν and

the corresponding norm ‖g‖2 = 〈g, g〉. That is, the Qk satisfy

〈
Qi, Qj

〉
=

∫
Qi(x)Qj(x) dν(x) = δij , i, j ∈ N0, (2.1)

where δij denotes the Kronecker symbol. If there exists an α > 0 such that
∫

eα|x| dν(x) <∞ , (2.2)

the set {Qk}k∈N0 is complete in L2(ν), cf. Chapter 7 of the book by Nagy Nagy
(1965). The implication is that if f/fν is in L2(ν), that is, if

∫
f(x)2

fν(x)2
dν(x) =

∫
f(x)2

fν(x)
dλ(x) <∞ , (2.3)

we may expand f/fν as
∑∞

k=0 akQk where

ak =
〈
f/fν , Qk

〉
=

∫
fQk dλ = E

[
Qk(X)

]
. (2.4)

This suggests that we use (1.1) as an approximation of f in situations where the
p.d.f. of X is unknown but the moments are accessible.

Remark 2.1. If the first m moments of X and ν coincide, one has ak = 0 for
k = 1, . . . ,m. When choosing ν, a possible guideline is therefore to match as many
moments as possible. ♦

Due to the Parseval relationship
∑∞

k=0 a
2
k = ‖f/fν‖2, the coefficients of the poly-

nomial expansion, {ak}k∈N0 , tend toward 0 as k →∞. The accuracy of the approxi-
mation (1.1), for a given order of truncation K, depends upon how swiftly the coef-
ficients decay; note that the L2 loss of the approximation of f/fν is

∑∞
K+1 a

2
k. Note

also that the orthogonal polynomials can be specified recursively (see Thm. 3.2.1
of Szegö (1939)) which allows a reduction of the computing time required for the
coefficients’ evaluation and makes it feasible to consider rather large K.
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2.1 Normal reference distribution

A common choice as a reference distribution is the normal N (µ, σ2). The associated
orthonormal polynomial are given by

Qk(x) =
1

k!2k/2
Hk

(
x− µ
σ
√

2

)
, (2.5)

where {Hk}k∈N0
are the Hermite polynomials, defined in Szegö (1939) for instance.

If f is continuous, a sufficient (and close to necessary) condition for f/fν ∈ L2(ν) is

f(x) = O
(
e−ax

2)
as x→ ±∞ with a >

(
4σ2
)−1. (2.6)

Indeed, we can write the integral in (2.3) as I1+I2+I3, the integrals over (−∞,−A),
[−A,A], resp. (A,∞). Note that I2 < ∞ follows since the integrand is finite by
continuity, whereas the finiteness of I1, I3 is ensured by the integrands beingO(e−bx

2
)

where b = 2a − 1/2σ2 > 0. Similar arguments apply to conditions (2.9) and (2.12)
below.

Remark 2.2. The expansion formed by a standard normal baseline distribution
and Hermite polynomials is known in the literature as Gram–Charlier expansion of
type A, and the application to a standardised sum is the Edgeworth expansion, cf.
Cramer (1999), Barndorff-Nielsen and Cox (1989). ♦

2.2 Gamma reference distribution
If X has support (0,∞), it is natural to look for a ν with the same property. One
of the most apparent possibilities is the gamma distribution, denoted Gamma(r,m)
where r is the shape parameter and m the scale parameter. The p.d.f. is

fν(x) =
xr−1e−x/m

mrΓ(r)
, x ∈ R+. (2.7)

The associated polynomials are given by

Qn(x) = (−1)n
[

Γ(n+ r)

Γ(n+ 1)Γ(r)

]−1/2

Lr−1
n (x/m), n ∈ N0, (2.8)

where {Lr−1
n }n∈N0 denote the generalised Laguerre polynomials, see Szegö (1939); in

Mathematica these are accessible via the LaguerreL function. Similarly to (2.6), one
has the following condition for f/fν ∈ L2(ν):

f(x) = O
(
e−δx

)
as x→∞ with δ > 1/2m, and

f(x) = O
(
xβ
)

as x→ 0 with β > r/2− 1.
(2.9)

2.3 Lognormal reference distribution

The lognormal distribution LN (µ, σ2) is the distribution of eY where Y ∼ N (µ, σ2).
It has support on R+. The polynomials orthogonal to the LN (µ, σ2) are given in
the following proposition, to be proved in the Appendix:
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Theorem 2.3. The polynomials orthonormal with respect to the lognormal distri-
bution are given by

Qk(x) =
e−

k2σ2

2√
[e−σ2 , e−σ2 ]k

k∑

i=0

(−1)k+ie−iµ−
i2σ2

2 ek−i
(
1, . . . , e(k−1)σ2)

xi, (2.10)

for k ∈ N0 where

ei (X1, . . . , Xk) =

{∑
1≤j1<···<ji≤kXj1 · · ·Xji , for i ≤ k,

0, for i > k,
(2.11)

are the elementary symmetric polynomials and [x, q]n =
∏n−1

i=0

(
1− xqi

)
is the Q-

Pochhammer symbol.

Remark 2.4. The result of Theorem 2.3 does not appear to be in the literature; the
closest reference seems to be a 1923 paper byWigert Wigert (1923) who considers the
distribution with p.d.f. `e−`2 ln2(x)/

√
π (later called the Stieltjes–Wigert distribution).

♦
The equivalent of condition (2.6) for f/fν ∈ L2(ν) now becomes

f(x) = O
(
e−b log2 x

)
for x→ 0 and ∞ with b >

(
4σ2
)−1

, (2.12)

which is rather mild. However, a key difficulty in taking the reference distribution
as lognormal is the following result related to the fact that the lognormal and the
Stieltjes-Wigert distributions are not characterised by their moments, see Heyde
(1963); Berg et al. (1984); Chihara (1979); Christiansen (2003). Hence, the orthogo-
nal polynomials associated with the lognormal p.d.f. and the Stieltjes-Wigert p.d.f.
are also the orthogonal polynomials for some other distribution.

Proposition 2.5. The set of orthonormal polynomials in Theorem 2.3 is incomplete
in L2(ν). That is, span{Qk}k∈N0 is a proper subset of L2(ν).

Proof. Let Y be a r.v. whose distribution is the given lognormal ν and X a r.v. with
a distribution different from Y but with the same moments. According to (Berg
et al., 1984, pp. 201–202) such an X can be chosen such that fX/fν is bounded and
hence in L2(ν). The projection of f/fν onto span{Qk} is then

∞∑

k=0

〈
f/fν , Qk

〉
Qk =

∞∑

k=0

E
[
Qk(X)

]
Qk =

∞∑

k=0

E
[
Qk(Y )

]
Qk

= Q0 = 1 6= f/fν ,

where the first step used (2.4) and the second that the moments are the same. This
implies f/fν ∈ L2(ν) \ span{Qk} and the assertion.

2.4 Convergence of the estimators w.r.t. K
Orthogonal polynomial approximations generally become more accurate as the order
of the approximation K increases. Figure 1 shows a specific orthogonal polynomial
approximation, f̂N (to be described in Section 3.2), converging to the true SLN
density f for increasing K. In this example, we take the SLN distribution with
µ = (0, 0, 0)>, Σii = 0.1, and ρ = −0.1.
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0.2

0.4

0.6

0.8

K = 0

K = 2

K = 4

f

Figure 1: Examples of orthogonal polynomial approximations using a N (1.13, 0.232)
reference converging to the target f with increasing K.

Proposition 2.5 implies that orthogonal polynomial approximations with a log-
normal reference distribution cannot be relied upon to converge to the desired target
density but may have a different limit (the orthogonal projection described there).
The next plot, Figure 2, illustrates this phenomenon. The approximation appears to
converge, but not to the target density. Our theoretical discussion suggests that this
incorrect limit density has the same moments as the target lognormal distribution,
and this was verified numerically for the first few moments,

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8
K = 0

K = 1

K = 40

f

Figure 2: Example of orthogonal polynomial approximations of f using a LN (0, 1.222)
reference not converging to the LN (0, 1.502) target.

Lastly, it must be noted that we cannot in practice take K arbitrarily large,
due to numerical errors incurred in calculating the {ak} coefficients. Obviously this
can be overcome by using infinite precision operations, however this swiftly becomes
prohibitively slow. Software tools like Mathematica allow for arbitrarily large but
finite precision, which gives on the flexibility to choose a desired accuracy/speed
trade-off. We use this technology and select K ≤ 40.

3 Application to lognormal sums

We now turn to our main case of interest where X = S is a lognormal sum. Specif-
ically,

S = eX1 + · · ·+ eXn , n ≥ 2, (3.1)

where the vector X = (X1, . . . , Xn) is governed by a multivariate normal distri-
bution N (µ,Σ), where µ = (µ1, . . . , µn)> is the mean vector and Σ =

(
σij
)
the

covariance matrix. We write this distribution as SLN (µ,Σ), and hereafter denote
its p.d.f. as f . We are interested in computing the p.d.f. when the summands exhibit
dependency (Σ is non-diagonal). This is an ambitious goal given that the p.d.f. of
the sum of two i.i.d lognormally distributed random variables is already unknown.
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The validity of the polynomial approximations rely on the L2 integrability condi-
tion (2.3), which is difficult to check because the p.d.f. of S is not available. We will
need asymptotic results describing the left and the right tail of the distribution of S,
which we collect in the following subsection.

3.1 Tail asymptotics of lognormal sums
The tail asymptotics of f(x) are given in the following lemma, which simply collects
the results from Corollary 2 of Gulisashvili and Tankov (2015) and Theorem 1 of
Asmussen and Rojas-Nandapaya (2008).

Lemma 3.1. We have

f(x) = O(exp{−c1 ln(x)2}) as x→ 0 and (3.2)
f(x) = O(exp{−c2 ln(x)2}) as x→∞ (3.3)

where
c1 =

[
2 min
w∈∆

w>Σ−1w
]−1 and c2 =

[
2 max
i=1,...,n

σii
]−1

,

with the notation that ∆ = {w |wi ∈ R+,
∑n

i=1 wi = 1}.

We are also interested in the asymptotic behaviour of Z = ln(S) later in the pa-
per. Writing the p.d.f. of Z as fZ we have fZ(z) = ezf(ez). Together with L’Hôpital’s
rule this gives the following results (extending Gao et al. (2009)):

Corollary 3.2. We have

fZ(z) = O(exp{−c1z
2}) as z → −∞ and (3.4)

fZ(z) = O(exp{−c2z
2}) as z → +∞ (3.5)

where the constants are as in Lemma 3.1.

3.2 Lognormal sums via a normal reference distribution
Consider transforming S to Z = ln(S) and expanding this density with orthogonal
polynomials using a normal distribution as reference. That is, our approximation to
f using a N (µ, σ2) reference is

f̂N =
1

σx
f̂Z

(
lnx− µ

σ

)
where f̂Z(z) = φ(z)

K∑

i=1

aiQi(z),

with φ(·) being the standard normal p.d.f. The following result tells us when the in-
tegrability condition fZ/fν ∈ L2(ν) is satisfied. It follows immediately by combining
(2.6) and Corollary 3.2

Proposition 3.3. Consider Z = ln(S) where S is SLN (µ,Σ) distributed. Let ν
be the probability measure associated to the normal distribution N (µ, σ2). We have
fZ/fν ∈ L2(ν) if

2σ2 > (2c2)−1 = max
i=1,...,n

Σii . (3.6)
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Computing the {âk}k∈N0 coefficients can be done using Crude Monte Carlo
(CMC), as in

âk =
1

R

R∑

r=1

Qn(Sr) , S1, . . . , SR
i.i.d.∼ SLN (µ,Σ)

for k = 0, . . . , K. We can use the same S1, . . . , SR for all âk together with a smoothing
technique called common random numbers Asmussen and Glynn (2007); Glasserman
(2003). Note that a non-trivial amount of computational time is typically spent
just constructing the Hermite polynomials. Incorporating the Hermite polynomial’s
recurrence relation in our calculations achieved a roughly 40× speed-up compared
with using Mathematica’s HermiteH.

3.3 Lognormal sums via a gamma reference distribution
When ν is Gamma(r,m), it makes little sense to expand f in terms of {Qk}k∈N0

and fν as the integrability condition (2.9) fails, f/fν 6∈ L2(ν). The workaround con-
sists in using orthogonal polynomials to expand the exponentially tilted distribution,
denoted SLN θ(µ,Σ). This distribution’s p.d.f. is

fθ(x) =
e−θxf(x)

L (θ)
, θ ≥ 0, (3.7)

where L (θ) = E[e−θS] is the Laplace transform of S. Asmussen et al. Asmussen
et al. (2015) investigated the use of fθ(x) in approximating the survival function
of S, and developed asymptotic forms and Monte Carlo estimators of this density.

Remark 3.4. The use of gamma distribution and Laguerre polynomials links our
approach to a well established technique called the Laguerre method. The expansion
is an orthogonal projection onto the basis of Laguerre functions constructed by
multiplying Laguerre polynomials and the square root of the exponential distribution
with parameter 1. The method is described in Abate et al. (1995). Note also that the
damping procedure employed when integrability problems arise is quite similar to
considering the exponentially tilted distribution instead of the real one. The use of
the gamma distribution as reference is applied to actuarial science in Goffard et al.
(2016, 2015). ♦

Using (2.9), we immediately obtain the following result which sheds light on
how to tune the parameters of the reference gamma distribution so the integrability
condition fθ/fν ∈ L2(ν) is satisfied.

Proposition 3.5. Consider the r.v. Sθ distributed according to the exponentially-
tilted SLN θ(µ,Σ) distribution. Let ν be the probability measure associated with the
Gamma(r,m) distribution. We have fθ/fν ∈ L2(ν) if m > 1/2θ.

Hereafter we assume that the parameters r and m of fν ∼ Gamma(r,m) are
chosen to satisfy Proposition 3.5’s conditions.
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Our approximation—based upon rearranging (3.7)—is of the form

f̂(x) = eθxL (θ)f̂θ(x) = eθxL (θ)
K∑

k=0

akQk(x)fν(x) . (3.8)

The coefficients ak = E[Qk(Sθ)] can be estimated in (at least) three different ways:
(i) using CMC, (ii) using Monte Carlo with a change of measure so θ → 0, or (iii) by
directly computing the moments E[Skθ ]. The first method is nontrivial, as simulating
from fθ likely requires using acceptance-rejection (as in Asmussen et al. (2015)).
Options (ii) and (iii) use

ak = E[Qk(Sθ)] =: qk0 + qk1E[Sθ] + · · ·+ qkkE[Skθ ] (3.9)

where {qki} are the coefficients in Qk, and

E[Siθ] =
E[Sie−θS]

L (θ)
=:

Li(θ)

L (θ)
.

The Li(θ) notation was selected to highlight the link between E[Sine−θSn ] and the
ith derivative of L (θ).

All three methods require access to the Laplace transform, and method (iii)
requires Li(θ), however none of L (θ) or Li(θ) are available in closed form. Our
approach to circumvent these problems is presented in the Appendix.

4 Numerical illustrations

We take several approximations f̂ and compare them against the benchmark of nu-
merical integration. One form of f particularly useful for numerical integration, in
terms of the LN (µ,Σ) density fLN , is as a surface integral, f(s) = n−

1
2

∫
∆s
n
fLN (x) dx,

where ∆s
n = {x ∈ Rn

+ : ‖x‖1 = s}. Mathematica integrates this within a reason-
able time for n = 2 to 4 using NIntegrate and ParametricRegion). For n > 4 we
qualitatively assess the performance of the estimators by plotting them.

The quantitative error measure used is the L2 norm of (f̂ − f) restricted to
(0,E[S]). We focus on this region as at one hand it is the hardest to approximate
(indeed, Lemma 3.1 shows that just a single lognormal is a theoretically justified
approximation of the SLN right tail) and that at the other of high relevance in
applications, see for example the introduction of Asmussen et al. (2015) and the
references therein.

4.1 The estimators
We will compare the following approximations:

• the Fenton-Wilkinson approximation f̂FW, cf. Fenton (1960a), consists in ap-
proximating the distribution of S by a single lognormal with the same first
and second moment;
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• the log skew normal approximation f̂Sk, cf. Hcine and Bouallegue (2015)1, is a
refinement of Fenton–Wilkinson by using a log skew normal as approximation
and fitting the left tail in addition to the first and second moment;

• the conditional Monte Carlo approximation f̂Cond , cf. Example 4.3 on p. 146 of
Asmussen and Glynn (2007), uses the representation f(x) = E

[
P(S ∈ dx |Y )

]

for some suitable Y (here chosen as one of the normal r.v.s Xi occurring in
(3.1)) and simulates the conditional expectation;

• f̂N is the approximation described in Section 3.2 using a logarithmic transfor-
mation and the Hermite polynomials with a normal reference distribution;

• f̂Γ is the approximation described in Section 3.3 using exponential tilting and
the Laguerre polynomials with a gamma reference distribution.

These approximations are all estimators of functions (i.e., not pointwise estima-
tors, such as in Laub et al. (2016)) and they do not take excessive computational ef-
fort to construct. The first two, f̂FW and f̂Sk, only need µ and Σ and do not have any
Monte Carlo element. Similarly, the estimator f̂Γ when utilising the Gauss–Hermite
quadrature described in (6.2) in the Appendix does not use Monte Carlo. For the
remaining approximations we utilise the common random numbers technique, mean-
ing that the same R = 105 i.i.d. SLN (µ,Σ) samples S = (S1, . . . , SR)> are given
to each algorithm. Lastly, all the estimators except f̂Γ satisfy

∫
f̂(x) dx = 1. One

problem with the orthogonal polynomial estimators is that they can take negative
values; this can easily be fixed, but we do not make that adjustment here.

For f̂N , we take µ = E[Z] and σ2 = Var[Z], calculated using numerical inte-
gration. The f̂Γ case is more difficult. Equation (3.8) shows that we must impose
θm < 1 to ensure that f̂Γ(x) → 0 as x → ∞. Exploring different parameter se-
lections showed that fixing θ = 1 worked reasonably well. Moment matching fθ
to fν leads to the selection of m and r. The moments of fθ, Êfθ = L̂1(θ)/L̂0(θ)
and V̂arfθ = L̂2(θ)/L̂0(θ) − Êfθ

2
can be approximated using the Gauss–Hermite

quadrature of (6.2); for this we use H = 64, 32, 16 for n = 2, 3, 4 respectively (and
CMC for n > 4).

With these regimes, parameter selection for the reference distributions is auto-
matic, and the only choice the user must make is in selecting K. In these tests we
examined various K from 1 to 40, and show the best approximations found. The
source code for these tests is available online at Asmussen et al. (2016), and we
invite readers to experiment the effect of modifying K and θ and the parameters of
the reference distributions.

4.2 Results

For each test case with n ≤ 4 we plot the f̂(x) and f(x) together and then
(f̂(x)− f(x)) over x ∈ (0, 2E[S]). A table then shows the L2 errors over (0,E[S]).

1Note that in Hcine and Bouallegue (2015), the formula for εopt contains an typographic error.
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fΓ

f

f̂FW f̂Sk f̂Cond f̂N f̂Γ

L2 8.01× 10−2 4.00× 10−2 1.56× 10−3 1.94× 10−3 2.28× 10−3

Test 1: µ = (0, 0), diag(Σ) = (0.5, 1), ρ = −0.2. Reference distributions used are
N (0.88, 0.712) and Gamma(2.43, 0.51) with K = 32, 16 resp.

1 2 3 4 5 6 7

0.05
0.10
0.15
0.20
0.25

1 2 3 4 5 6 7

-0.002

-0.001

0.001

0.002

fFW

fSk

fCond

fN

fΓ

f

f̂FW f̂Sk f̂Cond f̂N f̂Γ

L2 1.02× 10−2 3.49× 10−3 1.78× 10−3 7.86× 10−4 7.24× 10−4

Test 2: µ = (−0.5, 0.5), diag(Σ) = (1, 1), ρ = 0.5. Reference distributions used are
N (0.91, 0.902) and Gamma(2.35, 0.51) with K = 32, 16 resp.
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2 4 6 8 10

0.05

0.10

0.15

0.20

2 4 6 8 10

-0.002

-0.001

0.001

fFW

fSk

fCond

fN

fΓ

f

f̂FW f̂Sk f̂Cond f̂N f̂Γ

L2 9.48× 10−3 3.71× 10−3 1.60× 10−3 1.18× 10−3 3.53× 10−4

Test 3: n = 3, µi = 0, Σii = 1, ρ = 0.25. Reference distributions used are N (1.32, 0.742)
and Gamma(3, 0.57) with K = 7, 25 resp.

2 4 6 8 10 12

0.05

0.10

0.15

2 4 6 8 10 12

-0.003
-0.002
-0.001

0.001
0.002

fFW

fSk

fCond

fN

fΓ

f

f̂FW f̂Sk f̂Cond f̂N f̂Γ

L2 1.82× 10−2 6.60× 10−3 1.90× 10−3 1.80× 10−3 1.77× 10−4

Test 4: n = 4, µi = 0, Σii = 1, ρ = 0.1. Reference distributions used are N (1.32, 0.742)
and Gamma(3.37, 0.51) with K = 18, 18 resp.
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The following test case shows the density approximations for a large n.

5 10 15 20

0.1

0.2

0.3

f

FW

f

Sk

f

Cond

f

N

f

Γ

Test 5: Sum of 10 i.i.d. LN (0, 0.1) r.v.s. Reference distributions used are N (2.35, 0.232)
and Gamma(12.61, 0.25) with K = 18, 35 resp.

Finally, we fit f̂N and f̂Γ to simulated data (105 replications) for the sum of
lognormals with a non-Gaussian dependence structure. Specifically, we take the sum
of n = 3 standard lognormal r.v.s with a Clayton copula, defined by its distribution
function

CCl
θ (u1, . . . , un) =

(
1− n+

n∑

i=1

u−θi

)−1/θ

, for θ > 0 .

The Kendall’s tau correlation of the CCl
θ copula is τ = θ/(θ+2) McNeil et al. (2015).

2 4 6 8 10

0.05

0.10

0.15

0.20

2 4 6 8 10

-0.003

-0.002

-0.001

0.001

fN

fΓ

f

Test 6: Sum of 3 LN (0, 1) r.v.s with CCl
10 (·) copula (i.e., τ = 5

6). Reference distributions
used are N (1.46, 0.712) and Gamma(8.78, 0.25) with K = 40. The L2 errors of f̂N and f̂Γ

are 2.45× 10−3 and 2.04× 10−3 respectively.

Our overall conclusion of the numerical examples is that no single method can
be considered as universally superior. Of the methods in the literature, the log skew
normal approximations is generally better than Fenton-Wilkinson, which is unsur-
prising given it is an extension introducing one more parameter. The estimators, f̂N
and f̂Γ, based on orthogonal polynomial approximation techniques, are very flexi-
ble. They also display as least as good and sometimes better p.d.f. estimates over
the interval (0,E[S]) and their periodic error indicates that they would supply even
more accurate c.d.f. estimates. One should note, however, that their performance
relies on the tuning of parameters and that somewhat greater effort is involved in
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their computation (though this is mitigated through the availability of the software
in Asmussen et al. (2016)).

An interesting feature of f̂N and f̂Γ is that the Frank copula example indicates
some robustness to the dependence structure used. In view of the current interest
in financial applications of non-Gaussian dependence this seems a promising line for
future research.
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5 Proof of Proposition 2.3

Proof. The polynomials orthogonal with respect to the lognormal distribution will
be derived using the general formula

Qn(x) =
1√

Dn−1,n−1Dn,n

∣∣∣∣∣∣∣∣∣∣∣

s0 s1 · · · sn
s1 s2 · · · sn+1
...

...
...

sn−1 sn · · · s2n−1

1 x · · · xn

∣∣∣∣∣∣∣∣∣∣∣

, n ≥ 1, (5.1)

where {sn}n∈N0 denotes the moment sequence of the lognormal distribution and
Dn,n = |{sk,l}0≤k,l≤n| is a Hankel determinant. The moments of the lognormal dis-
tribution are given by sn = pnqn

2 , where p = eµ and q = eσ
2/2. Consider

Dn,n =

∣∣∣∣∣∣∣∣∣∣∣∣

1 pq · · · pnqn
2

pq p2q4 pn+1q(n+1)2

...
...

...
pn−1q(n−1)2 pnqn

2 · · · p2n−1q(2n−1)2

pnqn
2

pn+1q(n+1)2 · · · p2nq(2n)2

∣∣∣∣∣∣∣∣∣∣∣∣

, n ≥ 1, (5.2)

and denote by Rk the kth row and by C` the `th column. We apply the elementary
operations Rk+1 → p−kq−k

2
Rk+1, and C`+1 → p−`q−`

2
C`+1 for k, ` = 0, . . . , n to get

a Vandermonde type determinant. Thus we have

Dn,n = en(n+1)µe
n(n+1)(2n+1)

3
σ2

n−1∏

k=0

[
e−σ

2

; e−σ
2]
k

(5.3)

We expand the determinant in (5.1) with respect to the last row to get

Qn(x) =
1√

Dn−1,n−1Dn,n

n∑

k=0

(−1)n+kxkD−kn−1,n, (5.4)

where D−kn−1,n is Dn,n with the last row and the (k+1)th column deleted. We perform
onD−kn−1,n the following operations: Rj+1 → p−jq−j

2
Rj+1, for j = 0, . . . , n−1, Cj+1 →
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p−jq−j
2
Cj+1, for j = 0, . . . , k − 1, and finally Cj → p−jq−j

2
Cj, for j = k + 1, . . . , n.

We obtain

D−kn−1,n = pn
2−kq

2n3+n
3
−k2

∣∣∣∣∣∣∣∣∣

1 α0 · · · αk−1
0 αk+1

0 · · · αn0
1 α1 · · · αk−1

1 αk+1
1 · · · αn+1

1
...

...
...

...
...

1 αn−1 · · · · · · · · · · · · αnn−1

∣∣∣∣∣∣∣∣∣
,

where αk = q2k, for k = 0, . . . , n−1. Expanding the polynomialB(X) =
∏n−1

i=0 (x−αi),
we get

B(x) = xn + βn−1x
n−1 + · · ·+ β0,

where βk = (−1)n−ken−k (α0, . . . , αn−1), and ek (X1, . . . , Xn) denotes the elementary
symmetric polynomial, defined previously in (2.11). We apply the elementary oper-
ation Cn → Cn+

∑k−1
j=0 ajCj+1 +

∑n−1
j=k+1 ajCj, followed by n−k cyclic permutations

to get
D−kn−1,n = pn−kqn

2−k2en−k
(
1, . . . , q2(n−1)

)
Dn−1,n−1. (5.5)

Inserting (5.3) and (5.5) into (5.4) leads to (2.10).

6 Computing the coefficients of the expansion
{ak}k∈N0 in the gamma case

We extend here the techniques developed in Laub et al. (2016) to construct an
approximation for Li(θ). We note that Li(θ) ∝

∫
Rn exp{−hθ,i(x)} dx where

hθ,i(x) = −i ln(1>eµ+x) + θ1>eµ+x +
1

2
x>Σ−1x , i ∈ N0.

This uses the notation ex = (ex1 , . . . , exn)>. Next, define x∗ as the minimiser of
hθ,i (calculated numerically), and consider a second order Taylor expansion of hθ,i
about x∗. Denote L̃i(θ) as the approximation where hθ,i is replaced by this Taylor
expansion in Li(θ). Simplifying yields

L̃i(θ) =
exp{−hθ,i(x∗)}√

|ΣH|
(6.1)

where H , the Hessian of hθ,i evaluated at x∗, is

H = i
eµ+x∗

(eµ+x∗
)>

(1>eµ+x∗)2
+ Σ−1 − diag(Σ−1x∗) .

As θ → ∞ we have L̃i(θ) → Li(θ). We can rewrite Li(θ) = L̃i(θ)Ii(θ) and
estimate Ii(θ), as in Laub et al. (2016).

Proposition 6.1. The moments of the exponentially-tilted distribution SLN θ(µ,Σ),
denoted Li(θ), can be written as Li(θ) = L̃i(θ)Ii(θ) where L̃i(θ) is in (6.1) and

Ii(θ) =
√
|ΣH| v(0)−1 E[v(Σ

1
2Z)]

where Z ∼ N (0, I), and

v(z) = exp{i ln(1>eµ+x∗+z)− θ1>eµ+x∗+z − (x∗)>Σ−1z} .
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Proof. We begin by substituting x = x∗ + H−
1
2y into Li(θ), then multiply by

exp{± some constants }:

Li(θ) =

∫

Rn

(2π)−
n
2√

|Σ|
exp{i log(1>eµ+x)− θ1>eµ+x − 1

2
x>Σ−1x} dx

=

∫

Rn

(2π)−
n
2√

|ΣH|
exp{i log(1>eµ+x∗+H− 1

2 y)− θ1>eµ+x∗+H− 1
2 y

− 1

2
(x∗ +H−

1
2y)>Σ−1(x∗ +H−

1
2y)} dy

= L̃i(θ) exp{−i log(1>eµ+x∗
) + θ1>eµ+x∗}

×
∫

Rn
(2π)−

n
2 exp{i log(1>eµ+x∗+H− 1

2 y)− θ1>eµ+x∗+H− 1
2 y

− (x∗)>Σ−1H−
1
2y − 1

2
y>(ΣH)−1y} dy .

That is, Li(θ) = L̃i(θ)Ii(θ). In Ii(θ), take the change of variable y = (ΣH)
1
2z, and

the result follows.

Remark 6.2. The form of Ii(θ) naturally suggests evaluation using Gauss–Hermite
quadrature:

L̂i(θ) =
exp{−hθ,i(x∗)}

v(0) π n/2

H∑

i1=1

· · ·
H∑

in=1

v(Σ
1
2z)

n∏

j=1

wij (6.2)

where z = (zi1 , . . . , zin)>, the set of weights and nodes {(wi, zi) : 1 ≤ i ≤ H} is
specified by the Gauss–Hermite quadrature algorithm, and H ≥ 1 is the order of
the approximation. This approximation is accurate, especially so when the i in Li

becomes large. Even for L (= L0) this method appears to outperform the quasi-
Monte Carlo scheme outlined in Laub et al. (2016). ♦

Thus, with L̂i(θ) given in (6.2), we can now estimate the coefficients. The three
methods correspond to

1. âk = R−1
∑R

r=1Qk(Sr), for S1, . . . , SR
i.i.d.∼ fθ(x),

2. âk =
∑k

j=0 qkj Ê[Sjθ ] = qk0 + (R L̂ (θ))−1
∑k

j=1 qkj
∑R

r=1 S
j
re
−θSr , from (3.9),

where S1, . . . , SR
i.i.d.∼ f(x),

3. âk = qk0 + L̂ (θ)−1
∑k

j=1 qkj L̂j(θ).

In the numerical illustrations, we switched between using methods (2) and (3) for
large and small n respectively. Algorithms for efficient simulation from fθ is work in
progress.
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