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Abstract
The Markov renewal equation

Zi(x) = zi(x) +
∑

j∈E

∫ x

0
Zj(x− y)Fij(dy), i ∈ E ,

is considered in the subcritical case where the matrix of total masses of the
Fij has spectral radius strictly less than one, and the asymptotics of the Zi(x)
is found in the heavy-tailed case involving a local subexponential assumption
on the Fij . Three cases occur according to the balance between the zi(x) and
the tails of the Fij , A crucial step in the analysis is obtaining multivariate and
local versions of a lemma due to Kesten on domination of subexponential tails.
These also lead to various results on tail asymptotics of sums of a random
number of heavy-tailed random variables in models which are more general
than in the literature.

1 Introduction

The occurrence of heavy tails has been argued repeatedly in a variety of applica-
tion areas covering insurance and finance ([1]), telecommunications and internet
traffic ([2]), optics ([3]), cell proliferation ([4]) and many more; a broad overview
is in [5]. Correspondingly, performance analysis of models for such situations has
triggered a vast literature on probabilistic features of heavy tails.

This paper deals with two particular problems in this area. The first is asymp-
totics of renewal-type equations of the form

Zi(x) = zi(x) +
∑

j∈E

∫ x

0

Zj(x− y)Fij(dy), i ∈ E , (1.1)

where E is a finite index set, (Zi)i∈E a set of unknown functions defined on [0,∞),
(zi)i∈E a set of non-negative known functions, and (Fij)i,j∈E a set of non-negative
heavy-tailed measures on [0,∞). The second is the tail behaviour of a random sum

S =
N∑

i=1

Xi (1.2)
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where N ∈ N is a light-tailed r.v. and the Xi are non-negative heavy-tailed r.v.’s,
such that certain types of dependence to be specified later may occur.

The simple renewal equation

Z(x) = z(x) +

∫ x

0

Z(x− y)F (dy) (1.3)

is a classical structure in applied probability and occurs for example in branch-
ing processes ([6]), ruin problems ([7]) and ergodicity problems for possibly non-
Markovian processes ([8, VI.1]). The emphasis is usually on asymptotic properties
of Z(x) as x→∞ where the simplest situation is existence of a limit1 when F is a
probability measure, i.e. when ‖F‖ = 1 where ‖F‖ is the total mass of F . However,
in the branching process example ‖F‖ is the expected number of children of an
individual so obviously the case ‖F‖ 6= 1 is of interest. One then typically has an
exponential order eγx of Z(x). Here γ > 0 when ‖F‖ > 1 and γ < 0 when ‖F‖ < 1
and F is light-tailed (this last situation also occurs in Cramér-Lundberg asymptotics
for ruin probabilities and queues, cf. [8, V.7]). For ‖F‖ < 1 and F heavy-tailed, the
order depends on a delicate balance between the tails of F and z and in fact the
results are more recent, [9] (see also [10] for a closely related results).

The system (1.1) goes under the name of the Markov renewal equation, cf. [8];
this terminology stems from the case of

P =
(
‖Fij‖

)
i,j∈E

being stochastic, i.e. the transition matrix of a Markov chain ξ0, ξ1, . . . In branch-
ing processes, it occurs when individuals have several types, and in insurance and
finance, it relates to regime-switching; another relevant example comes from com-
puter reliability problems, [11]. The known asymptotic results on the Zi(x) depend
crucially on the spectral radius ρ of P : if ρ = 1, in particular if P is stochastic, lim-
its exists whereas otherwise the order is exponential, eγx, where γ > 0 when ρ > 1
and γ < 0 when ρ < 1 and the Fij are light-tailed [again, regularity conditions are
required]. The gap is the case ρ < 1 and heavy tails. The main contribution of the
paper in the setting of (1.1) is to fill this gap. The result is stated as Theorem 2.2
below. Three cases occur depending on whether the tail of the zi or the Fij domi-
nate, or if they are of same order. The conditions involve the non-standard concept
of local subexponentiality.

One main example of random sums like (1.2) is total claims distributions in
insurance: N is the number of claims in a given period and X1, X2, . . . the claim
sizes which classically are taken i.i.d. and independent of N which is assumed light-
tailed (for example, the negative binomial distribution is popular because of its
interpretation as a gamma mixture of Poissons). In finance, S could be the payoff of
a portfolio consisting of assets with values X1, X2, . . .With light-tailed Xi, P(S > x)
decays roughly exponential, with heavy tails the asymptotic form is EN ·P(X1 > x).
Our main result in that direction, Theorem 2.3 below, is an extension to sums of
the form

∑d
k=1

∑Nk

1 Xi;k where N1, . . . , Nd are dependent and the distribution of

1This and the following statements require regularity conditions which we omit; see the citations
given
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Xi;k depends on i. For example in the insurance setting, (N1, . . . , Nd) could be
conditionally independent given (τ1, . . . , τd) with Poisson rate λk for Nk, where τk
is the time spent by some environmental process in state k in the period [0, T ]
(dependence occurs because τ1 + · · · + τd = T ). The main step in the proof of
Theorem 2.3 is a version of a classical lemma due to Kesten on tail domination of
subexponential sums; for the proof of Theorem 2.2 we also need a local version of
this.

The paper is organised as follows. Section 2 starts with some necessary back-
ground, in particular on local subexponentiality, and proceeds to state the two main
results of the paper, Theorems 2.2 and 2.3 referred to above. The rest of the paper
is then proofs supplemented with miscellaneous results of some independent inter-
est. Sections 3–5 give the random sum part in various settings. This together with
a number of additional steps then allows to conclude the proof of Theorem 2.2 in
Section 6. This proceeds by first assuming P to be substochastic, thereby allow-
ing Markov chain interpretations, and finally reduce the general case to this by a
Perron-Frobenius type transformation.

2 Preliminaries and statement of main results

For a distribution F on R+, let F (x) = F (0, x] be the distribution function (c.d.f.)
and F (x) = 1− F (x) = F (x,∞) the tail. If F and G are distributions and X ∼ F
and Y ∼ G independent random variables, then F ∗G denotes the convolution of F
and G,

F ∗G(x) =

∫ x

0

G(x− y)F (dy) =

∫ x

0

F (x− y)G(dy),

which is the distribution of the sum X + Y .
We next briefly mention the most standard definitions and relations in the heavy-

tailed area. For a more detailed and thorough treatment, see [1], [12]. A distribution
F is said to be heavy-tailed if F does not possess any positive exponential moments,
that is

∫∞
−∞ exp(λx)F (dx) = ∞ for all λ > 0. It is long-tailed, written F ∈ L, if it

has unbounded support and F (x+y)/F (x)→ 1 as x→∞ for any fixed y ∈ R. Any
F ∈ L is especially heavy-tailed. F is said to be subexponential if F ∗n(x)/F (x)→ n
for all n (actually, it is sufficient that this holds for n = 2). The intuition is that
the only significant way the sum of independent F -distributed random variables can
exceed som large threshold x is if the maximum of the random variables exceeds
that x. This is also known as the principle of a single big jump. Similarly, a density
f is long-tailed if f(x) > 0 for all sufficiently large x and f(x + t)/f(x) → 1 for
any fixed t. If F and G have densities f , g, respectively, the convolution F ∗ G
then has density f ∗ g given by f ∗ g(x) =

∫ x
0
f(x − y)g(y)dy. The density f of

F is said to be subexponential, written F ∈ Sac, if f is long-tailed and f ∗2(x) =∫ x
0
f(x− y)f(y)dy ∼ 2f(x) as x→∞. Note that Sac is a subclass of S. Also, since

subexponentiality is a tail property it is actually sufficient for a distribution F to
only have a density f(x) for sufficiently large x.

We proceed to the less standard concepts of local long-tailedness and subexpo-
nentiality, as introduced in [9]. The local property can be viewed as intermediate
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between being long-tailed (subexponential) and having a long-tailed (subexponen-
tial) density. First, we need to introduce some notation. For a fixed T > 0 define
∆ = ∆T = (0, T ] and let x+ ∆ = {x+ y | y ∈ ∆} = (x, x+ T ].

Definition 2.1. A distribution F is said to be ∆-long-tailed, written F ∈ L∆, if
F (x + ∆) > 0 for all sufficiently large x and F (x + y + ∆)/F (x + ∆) → 1 as
x → ∞ for any fixed y. It is is ∆-subexponential, written F ∈ S∆, if F ∈ L∆ and
F ∗2(x+ ∆)/F (x+ ∆)→ 2.

Notice that if we allow T = ∞ then the class L∆ corresponds to the ordinary
longtailed distributions L; if T < ∞, then L∆ ⊂ L. Similarly, for any finite T
the class S∆ ⊂ S, and if we allow T = ∞ the two classes coincides. It appears
that ∆-subexponential distributions possess many similar properties as the ordinary
subexponential distributions. A main and crucial difference is that the tail function
F (x) is monotone whereas F (x + ∆) may not be. Also, it it worth noticing that a
distribution F with a subexponential density f is ∆-subexponential for any T > 0.

We are now ready to state our main results. Let P be the the matrix with ijth
element pij = ‖Fij‖.

Theorem 2.2. Consider the Markov renewal equation (1.1). Assume that P is
irreducible with spr(P ) < 1 and that Fij(x+ ∆) ∼ pijcijG(x+ ∆) where cij > 0 and
G is a ∆-subexponential distribution function for all T > 0. Let g(x) = G(x, x+ 1),
Ij =

∫∞
0
zj(y) dy, and let dij be the ijth element of the matrix (I−P )−1M (I−P )−1

with M = (pk`ck`)k,`∈E , kij the ijth element of
∑∞

0 P n = (I − P )−1. Then three
cases occur:

i) Assume that zj is directly Riemann integrable and zj(x)/g(x) → 0 for all
j ∈ E. Then

Zi(x) ∼
∑

j∈E
Ijdijg(x).

ii) Assume that zj is directly Riemann integrable and zj(x)/g(x) → aj where
aj > 0 for at least one j ∈ E. Then

Zi(x) ∼
∑

j∈E
(Ijdij + kijaj) g(x).

iii) Assume that zj(y)/Ij has a subexponential density and that zj(x)/g(x) → ∞
for all j. Then

Zi(x) ∼
∑

j∈E
kijzj(x).

Theorem 2.3. Let N1, . . . , Nd be non-negative integer-valued r.v.’s and

S =
d∑

i=1

Ni∑

j=1

Xij
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where the Xij are independent given N1, . . . , Nd with distribution Fi of Xij. Assume
F i(x) ∼ ciF (x) for some F ∈ S and some c1, . . . , cd ≥ 0 and that there are εi > 0
such that E[(1 + εi)

Ni ] <∞ for all i = 1, . . . , d. Then

P(S > x) ∼
(
c1E[N1] + · · ·+ cdE[Nd]

)
F (x).

Note that N1, . . . , Nd are not assumed independent. A local version of Theorem 2.3
is given below as Theorem 4.3.

3 Random sums of subexponentials

A classical bound due to Kesten ([13] pp. 148–9, [1] p. 41) states that for a subex-
ponential distribution F0 and ε > 0 there exists a D0 = D0(ε) > 0

F ∗n0 (x) ≤ D0(1 + ε)nF 0(x) for any x ≥ 0 and n ∈ N. (3.1)

The following result is a similar result involving convolution of the tails of multiple
subexponential distribution functions.

Proposition 3.1. Let F ∈ S, let c1, . . . , cd ≥ 0 and let F1, . . . , Fd be distributions
with F i(x) ∼ ciF (x). Then for every ε > 0 there exists a D = D(ε) such that the
following inequality holds

F ∗n1
1 ∗ · · · ∗ F ∗nd

d (x) ≤ D(1 + ε)nF (x) for all x ≥ 0 and n1, . . . , nd ∈ N (3.2)

where n = n1 + . . .+ nd. Furthermore

F ∗n1
1 ∗ · · · ∗ F ∗nd

d (x) ∼ (c1n1 + · · ·+ cdnd)F (x). (3.3)

Proof. Define the distribution function F0 by having tail

F 0(x) = sup
i=1,...,d

{F i(x)} ∼ sup
i=1,...,d

{ciF (x)} = sup
i=1,...,d

{ci}F (x).

Notice that taking the supremum will preserve properties as being cadlag, decreas-
ing, and having values between [0, 1]. Since the tail of F0 is the supremum of the
tails of some c.d.f.’s, F0 is indeed af c.d.f. itself. Let k = supi=1,...,d ci. The tail of F0 is
then asymptotically of the form kF (x), and since S is closed under tail equivalence
we must have F0 ∈ S. From the classical Kesten bound it follows that for every
ε > 0 there is a D0 = D0(ε) such that (3.1) holds. Now for i = 0, 1 . . . , d let

Xi,1, . . . , Xi,ni
∼ Fi where n0 = n

Then by construction we have the stochastic ordering

Xi,j ≤st X0,k for all i = 1, . . . , d, j = 1, . . . , ni, k = 1, . . . , n,

which implies that the sums also have the corresponding stochastic ordering

X1,1 + · · ·+X1,n1 + · · ·+Xd,1 + · · ·+Xd,nd
≤st X0,1 + · · ·+X0,n.
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Written in terms of convolutions of the tails of the distribution functions this means
that

F ∗n1
1 ∗ · · · ∗ F ∗nd

d (x) ≤ F ∗n0 (x).

By (3.1) it is therefore sufficient to show that there exists a D = D(ε) such that

D0F0(x) ≤ DF (x).

From the definition of F0 and F i(x) ∼ ciF (x) it follows that whenever K >
max1,...,d{ci}, there exists a x0 ≥ 0 such that F0(x)/F (x) ≤ K for all x > x0.
Replacing K by a larger K if necessary, we may assume this holds for all x. Thus

D0F0(x) = D0
F0(x)

F (x)
F (x) ≤ D0 sup

x

{
F0(x)

F (x)

}
F (x)

≤ D0

(
sup
x≤x0

{
F0(x)

F (x)

}
+ sup

x>x0

{
F0(x)

F (x)

})
F (x)

≤ D0(K + 2 max
i=1,...,d

{ci})F (x) ≡ DF (x)

with D = D0(K + 2 maxi=1,...,d{ci}). The asympotics in (3.3) now easily follows. To
this end, just notice that F ∗ni

i (x) ∼ niciF (x) for all i by standard subexponential
theory and proceed by induction, using that G1 ∗G2(x) ∼ (γ1 + γ2)F (x) if Gi(x) ∼
γiF (x) for i = 1, 2 and F ∈ S.

Kesten’s bounds is commonly used as majorant in dominated convergence to
find the asymptotics of a randomly stopped sum of i.i.d. subexponential random
variables. Proposition 3.1 can be used correspondingly for the multidimensional case
which we use to give the proof of Theorem 2

Proof. The law of total probability yields

P(S > x)

F (x)
=

∞∑

n1,n2,...,nd=1

P(N1 = n1, . . . , Nd = nd)
F ∗n1 ∗ · · · ∗ F ∗nd(x)

F (x)

→
∞∑

n1,n2,...,nd=1

P(N1 = n1, . . . , Nd = nd)(c1n1 + · · ·+ cdnd)

= c1E[N1] + · · ·+ cdE[Nd]

using Proposition 3.1 and dominated convergence; this is justified since Hölder’s
inequality implies that E[(1 + ε)N1+···+Nd ] <∞ if we take (say) 1 + ε = min{1 + ε1,
. . . , 1 + εd}1/d.

4 Random sums of local subexponentials

The objective of the following Lemma is to obtain an upper bound for convolution
of local subexponential distribution functions, which is needed to expand the local
version of Kesten’s bounds stated as Proposition 4 in [9] to include the convolution
of several local subexponential distribution functions.
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Lemma 4.1. Let H ∈ S∆. Assume that Gi, i = 1, 2 are distributions satisfying

Gi(x+ ∆) ≤ biH(x+ ∆) for all x ≥ x0

for some bi ≥ 1 and x0. Then for some constant a depending only on H, it holds
that

G1 ∗G2(x+ ∆) ≤ ab1b2H(x+ ∆) for all x ≥ x0. (4.1)

Proof. Define

a1 = sup
u,v≥x0 : |u−v|≤1

H(u+ ∆)

H(v + ∆)

and notice that a1 is finite for sufficiently large x0 since H is ∆-subexponential, and
therefore especially ∆-longtailed. We have the representation

G1 ∗G2(x+ ∆) =

∫ x

0

G2(x− y + ∆)G1(dy) +

∫ x+T

x

G2(0, x+ T − y]G1(dy)

≡ P1(x) + P2(x).

Consider the first term. Let k be the smallest integer such that x/k ≤ 1 and 1/k ≤ T .
Split interval (0, x] into k disjoint equally sized parts. For x ≥ x0 the first term can
then be written as a sum and assessed as follows

P1(x) =
k−1∑

i=0

∫ x(i+1)/k

xi/k

G2(x− y + ∆)G1(dy)

≤ b2

k−1∑

i=0

∫ x(i+1)/k

xi/k

H(x− y + ∆)G1(dy)

≤ a1b2

k−1∑

i=0

∫ x(i+1)/k

xi/k

H(x− xi/k + ∆)G1(dy)

≤ a1b2

k−1∑

i=0

H(x− xi/k + ∆)G1(xi/k, x(i+ 1)/k)

≤ a1b1b2

k−1∑

i=0

H(x− xi/k + ∆)H(xi/k + ∆)

where the summands can be evaluated backwards
∫ x(i+1)/k

xi/k

H(x− y + ∆)H(dy) ≥ 1

a1

∫ x(i+1)/k

xi/k

H(x− ix/k + ∆)H(dy)

=
1

a1

H(x− ix/k + ∆)H(xi/k + ∆).

Inserting this upper bound for the summands yields the inequality

P1(x) ≤ a2
1b1b2

k−1∑

i=0

∫ x(i+1)/k

xi/k

H(x− y + ∆)H(dy)

= a2
1b1b2

∫ x

0

H(x− y + ∆)H(dy)

≤ a2
1b1b2H

∗2(x+ ∆).
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Since H is ∆-subexponential there must be a finite δ such that

H∗2(x+ ∆) ≤ (2 + δ)H(x+ ∆) for all x ≥ x0

if x0 is sufficiently large. This provides the final inequality for the first term

P1(x) ≤ (2 + δ)a2
1b1b2H(x+ ∆).

Now, consider the second term. It follows directly that

P2(x) ≤
∫ x+T

x

G1(dy) ≤ b1H(x+ ∆) ≤ b1b2H(x+ ∆).

Altogether we now have

G1 ∗G2(x+ ∆) ≤ ((2 + δ)a2
1 + 1)b1b2H(x+ ∆)

so we can take a = (2 + δ)a2
1 + 1.

We can use this to obtain a local version of Proposition 3.1.

Proposition 4.2. Let F ∈ S∆ for some ∆, and Fi(x + ∆) ∼ ciF (x + ∆) for
c1, . . . , cd ≥ 0. Then for every ε > 0 there exists a D = D(ε) and a x0 = x0(ε) such
that the following inequality holds

F ∗n1
1 ∗ · · · ∗ F ∗nd

d (x+ ∆) ≤ D(1 + ε)nF (x+ ∆) (4.2)

for all x ≥ x0 and n1, . . . , nd ∈ N where n = n1 + . . .+ nd. Furthermore

F ∗n1
1 ∗ · · · ∗ F ∗nd

d (x+ ∆) ∼ (c1n1 + · · ·+ cdnd)F (x+ ∆).

Proof. Let ε > 0 be given. Notice that from Proposition 1 it follows that for i =
1, . . . , d there is a Vi = Vi(ε) such that

F ∗ni
i (x+ ∆) ≤ Vi(1 + ε)niF (x+ ∆).

(4.2) can then be proven by induction using Lemma 4.1. For d = 2 it follows directly
from the Lemma that there is an a such that

F ∗n1
1 (x+ ∆) ∗ F ∗n2

2 (x+ ∆) ≤ aV1V2(1 + ε)n1+n2F (x+ ∆).

Letting D = aV1V2 we have the desired inequality. Assume that (4.2) holds for d
distribution functions with constant D. Now consider the case with d+1 distribution
functions, then we have

F ∗n1
1 ∗ · · · ∗ F ∗nd+1

d+1 (x+ ∆) = (F ∗n1
1 ∗ · · · ∗ F ∗nd

1 ) ∗ F ∗nd+1

d+1 (x+ ∆)

≤ aDVd+1(1 + ε)n1+···+nd(1 + ε)nd+1F (x+ ∆)

= aDVd+1(1 + ε)n1+···+nd+1F (x+ ∆).

From Corollary 2 in [9] it follows that F ∗ni
i (x+ ∆) ∼ niciF (x+ ∆) for i = 1, . . . , d,

and using Proposition 3 in [9] one can further deduce that

F ∗n1
1 ∗ · · · ∗ F ∗nd

d (x+ ∆) ∼ (n1c1 + · · ·+ ndcd)F (x+ ∆).

Theorem 4.3. Assume in addition to the ssumptions of Theorem 2.3 that F ∈ S∆

for some ∆ and Fi(x+ ∆) ∼ ciF (x+ ∆) for c1, . . . , cd ≥ 0. Then

F ∗N1 ∗ · · · ∗ F ∗Nd(x+ ∆) ∼ (c1E[N1] + · · ·+ cdE[Nd])F (x+ ∆).

Proof. Use dominated convergence justified by Proposition 4.2.
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5 Random sums with subexponential densities

In [9] it is shown that when F ∈ Sac then, for any ε > 0, there exist x0 = x0(ε) and
V = V (ε) such that

f ∗n(x) ≤ V (1 + ε)nf(x) for any x ≥ x0 and n ∈ N.

We now seek to obtain a version of Theorem 2.3 involving densities instead. To
do this we need an upper bound for convolutions, as for the local subexponential
case.

Lemma 5.1. Let F ∈ Sac. Let f1 and f2 be densities with the properties

fi(x) ≤ bif(x) with bi > 1 for i = 1, 2 and all x ≥ x0.

Then there is a constant A independent of f1 and f2 such that

f1 ∗ f2(x) ≤ Ab1b2f(x) for all x ≥ x0.

Proof. Since f is longtailed then f(x) > 0 for all x ≥ x0 for x0 sufficiently large,
hence

a ≡ sup
y∈(0,x−x0)

f(x− y)

f(x)

is finite. Consider the partition

f1 ∗ f2(x) =

∫ x

0

f1(x− y)f2(y)dy

=

∫ x−x0

0

f1(x− y)f2(y)dy +

∫ x0

x−x0
f1(x− y)f2(y)dy +

∫ x

x0

f1(x− y)f2(dy)

≡ I1 + I2 + I3.

Now each term is assessed individually, starting with the first for x ≥ x0,

I1 ≤ b1

∫ x−x0

0

f(x− y)F2(dy) ≤ ab1

∫ x−x0

0

f(x)F2(dy) ≤ ab1b2f(x).

Analogously for the third term,

I3 =

∫ x−x0

0

f2(x− y)f1(y)dy ≤ ab1b2f(x).

Only the second term is left to be evaluated. Now let x ≥ 2x0, then it follows

I2 = b1b2

∫ x0

x−x0
f(x− y)f(y)dy ≤ b1b2

∫ x

0

f(x− y)f(y)dy = b1b2f
∗2(x).

Since f is a subexponential density, if x0 is sufficiently large there must be a δ > 0
such that

f ∗2(x) ≥ (2 + δ)f(x) for all x ≥ x0.

Hence,
I2 ≤ b1b2(2 + δ)f(x).

To conclude the proof, let A = 2a+ 2 + δ.
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Theorem 5.2. Let F ∈ Sac and f1, . . . , fd be densities with fi(x) ∼ cif(x) for some
ci ≥ 0, i = 1, . . . , d. Then for any ε > 0 there is a D = D(ε) and x0 = x0(ε) such
that

f ∗n1
1 ∗ · · · ∗ f ∗nd

nd
(x) ≤ D(1 + ε)f(x)

for any x ≥ x0 and n1, . . . , nd ∈ N. Furthermore

f ∗n1
1 ∗ · · · ∗ f ∗nd

nd
(x) ∼ (n1c1 + · · ·+ ndcd)f(x).

Proof. Analogous to Proposition 4.2.

6 Proof of Theorem 2.2

Recall that P = (pij)i,j∈E where the entries are defined by pij = ‖Fij‖. Let λ =
spr(P ) be the Perron-Frobenius root of P and v the corresponding right eigenvector.
Hence, P nv = λnv, which by strict positivity of v implies that the n’th element p(n)

ij

of P n will decay at rate λn. We will first treat the case where in addition to λ < 1
the matrix P is substochastic. This means that the row sums satisfy

∑
j pij ≤ 1,

with strict inequality for at least one i..
Introduce an irreducible absorbing Markov chain (ξn)n∈N with state space E ∪ {†}

where † is the coffin state. Let Q = (qij)i,j∈E∪{†} be the transition matrix with
qij = pij for i, j ∈ E , q†i = 0, q†† = 1, and qi† = 1−∑j∈E pij. Recall that there must
be at least one index i such that qi† > 0. Then N = inf{n ≥ 0 : ξn = †} will be the
time until absorbtion.

Let Tn denote the waiting time between jump n and n + 1. Then T0, T1, . . .
are conditionally independent given F = σ(ξ0, ξ1, . . .) with conditional distribution
function satisfying

Gij(t) = P(Tn ≤ t | F) = P(Tn ≤ t | ξn, ξn+1)

on {ξn = i, ξn+1 = j}, and we have

Fij(t) = P(ξn+1 = j, Tn ≤ t | ξn = i) = qijGij(t).

Henceforth we will only consider i, j 6= †. Thus, Fij(t) = pijGij(t).
The solution of the Markov renewal equation (1.1) is given by Proposition 4.4 in

[8] as

Zi(x) =
∑

j∈E
Zij(x) where Zij(x) =

∫ x

0

zj(x− y)Uij(dy) (6.1)

with Markov renewal kernel Uij being the expected number of returns to state j ∈ E
before time t given that the Markov chain starts in state i ∈ E . That is,

Uij(t) =
∞∑

n=0

(F ∗n)ij(t) =
∞∑

n=0

Pi(ξn = j, Sn−1 ≤ t),

where Sn−1 = T0 + · · ·+Tn−1. First, it is necessary to consider the local asymptotics
of Uij.
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Lemma 6.1. Under the assumptions of Theorem 2.2,

Uij(t+ ∆) ∼ dijG(t+ ∆). (6.2)

Proof. Notice that the n’th convolution of the semi-Markov kernel also can be de-
fined locally

(F ∗n)ij(t+ ∆) = Pi(ξn = j, Sn−1 ∈ t+ ∆).

Rewriting the right-hand side using conditional expectations yields

Pi(ξn = j, Sn−1 ∈ t+ ∆) = Pi(ξn = j, T0 + · · ·+ Tn−1 ∈ t+ ∆)

= p
(n)
ij P(T0 + · · ·+ Tn−1 ∈ t+ ∆ | ξ0 = i, ξn = j)

= p
(n)
ij E

[
E
[
P(T0 + · · ·+ Tn−1 ∈ t+ ∆ | ξ0 = i, ξn = j) | ξ1, . . . , ξn−1

]]

= p
(n)
ij E

[
G

(n)
ij (t+ ∆)

]
,

where G(n)
ij is the distribution of the sum T0 + · · ·+Tn−1 conditioned on the Markov

states ξ0 = i, ξ1, . . . , ξn−1, ξn = j.
Let N (n)

k` the the random variable counting the number of jumps from state k ∈ E
to state ` ∈ E before the n’th jump, that is

N
(n)
k` =

n−1∑

m=0

1{ξm=`,ξm+1=k}.

Correspondingly, let N (n)
k`|ij be the random variable representing the number of jumps

from k ∈ E to ` ∈ E before jump n given that ξ0 = i and ξn = j, i.e. it is distributed
as N (n)

k` conditioned on ξ0 = i, ξn = j. This has expected value

E
[
N

(n)
k`|ij
]

= E
[
N

(n)
k`

∣∣ ξ0 = i, ξn = j
]

=
E
[∑n−1

m=0 1{ξ0=i,ξm=k,ξm+1=`,ξn=j}
]

P(ξ0 = i, ξn = j)

=

∑n−1
m=0 P(ξ0 = i, ξm = k, ξm+1 = `, ξn = j)

P(ξ0 = i, ξn = j)
=

∑n−1
m=0 p

(m)
ik pk`p

(n−m−1)
`j

p
(n)
ij

=

∑n−1
m=0(Pm)ikpk`(P

n−m−1)`j
(P n)ij

.

Recall that G(n)
ij is the distribution of the sum of the random variables T0, T1,

. . . , Tn−1 conditioned on the Markov chain until the nth jump. The distribution
of Tm merely depends on ξm and ξm+1. Therefore, G

(n)
ij can be interpreted as the

random convolution

G
(n)
ij (t+ ∆) = ∗

k,`∈E
G
∗N(n)

k`|ij
k` (t+ ∆).

Applying Theorem 4.3 the local asymptotics of G(n)
ij can then be specified as

E
[ ∗
k,`∈E

G
∗N(n)

k`|ij
k` (t+ ∆)

]
∼
(∑

k,`∈E
E
[
N

(n)
k`|ij
]
ck`

)
G(t+ ∆).
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This asymptotic specification transfers to the semi-Markov kernel as follows

(F ∗n)ij(t+ ∆) ∼
∑

k,`∈E

n−1∑

m=0

(Pm)ikpk`(P
n−m−1)`jck`G(t+ ∆)

and on to the Markov renewal kernel

Uij(t+ ∆) ∼
∞∑

n=0

∑

k,`∈E

n−1∑

m=0

(Pm)ikpk`(P
n−m−1)`jck`G(t+ ∆)

=
∑

k,`∈E

∞∑

m=0

∞∑

n=m+1

(Pm)ikpk`(P
n−m−1)`jck`G(t+ ∆).

Since P has spectral radius strictly less than 1 the infinite series above converges
with limits

∞∑

n=m+1

(P n−m−1)`j =
∞∑

k=0

(P k)`j = (I − P )−1
`j ,

∞∑

m=0

(Pm)ik = (I − P )−1
ik .

Thus
Uij(t+ ∆) ∼

(∑

k,`∈E
(I − P )−1

ik pk`(I − P )−1
`j ck`

)
G(t+ ∆) ,

concluding the proof.

For the proof of Theorem 2.2, it suffices in view of (6.1) to find the asymptotics
of the summands Zij(x) =

∫ x
0
zj(x−y)Uij(dy) in the solution of the Markov renewal

equation. As an introductory remark, notice that G ∈ S∆ for all T > 0 has the
implications

G(x, x+ 1/n] ∼ g(x)

n
for all n and

g(x+ y)

g(x)
→ 1 for all |y| < y0 <∞

for some appropriate y0. For a suitable A < x/2 decompose Zij(x) into three parts,
namely

Zij(x) =

(∫ A

0

+

∫ x−A

A

+

∫ x

x−A

)
zj(x− y)Uij(dy)

≡ J1(x,A) + J2(x,A) + J3(x,A).

We now consider and evaluate the three parts separately. In case i) of the Theorem
we have

J1(x,A) =

∫ A

0

zj(x− y)Uij(dy)

= g(x)

∫ A

0

zj(x− y)

g(x− y)

g(x− y)

g(x)
Uij(dy) = o(g(x))
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when x→∞. Also

J2(x,A) =

∫ x−A

A

zj(x− y)Uij(dy) =

∫ x−A

A

zj(x− y)

g(x− y)
g(x− y)Uij(dy)

= o(1)

∫ x−A

A

g(x− y)Uij(dy) = o(g(x))

∫ x−A

A

g(x− y)

g(x)
Uij(dy).

From this we can conclude

lim
A→∞

lim
x→∞

J2(x,A)

g(x)
= lim

A→∞
lim
x→∞

o(g(x))

g(x)
(U(x− A)− U(A)) = 0.

Finally, consider a finite partition of the interval (x − A, x] into n equally sized
intervals. A is now assumed to be an integer. Furthermore, let

z̄n(x) = sup
|y−x|≤ 1

n

z(y).

Then we can bound J3 from above by the upper Riemann sum

J3(x,A) =

∫ x

x−A
zj(x− y)Uij(dy) ≤

An−1∑

k=0

z̄n

(
k

n

)
Uij

(
x− k + 1

n
, x− k

n

)

∼ dij

An−1∑

k=0

z̄n

(
k

n

)
G

(
x− k + 1

n
, x− k

n

)

∼ g(x)
dij
n

An−1∑

k=0

z̄n

(
k

n

)
∼ g(x)

dij
n

∞∑

k=0

z̄n

(
k

n

)

as x → ∞ and A → ∞. Since z is assumed to be directly Riemann integrable, we
have

1

n

∞∑

k=0

z̄n

(
k

n

)
→ Ij

as n tends to infinity. So we have now obtained

lim sup
A→∞

lim sup
x→∞

J3(x,A)

g(x)
≤ dijIj.

Using the same approach with lim inf a similar bound from below is obtained using
lower Riemann sums. This finishes case i).

Now consider case ii). The first of the decomposed parts has the asymptotics

J1(x,A) =

∫ A

0

zj(x− y)Uij(dy) ∼ ajg(x)

∫ A

0

g(x− y)

g(x)
Uij(dy)

∼ ajg(x)Uij(A)

which leads to

lim
A→∞

lim
x→∞

J1(x,A)

g(x)
= lim

A→∞
lim
x→∞

ajUij(A) = kijaj.

13



The second part in case ii) can also be evaluated as follows

J2(x,A) =

∫ x−A

A

zj(x− y)Uij(dy) =

∫ x−A

A

zj(x− y)

g(x− y)
g(x− y)Uij(dy)

= O(1)

∫ x−A

A

g(x− y)Uij(dy).

Notice the similarity to J2 in case i). Corresponding calculations show that J2(x,A) =
o(g(x)). J3 is also similar to case i), which concludes case ii).

In case iii) we are no longer able to consider the decomposition we have so far.
Instead, let Kj denote the probability measure with density zj(x)/Ij. Recall that
Kj ∈ S∆. Now let ∆ = (0, 1] and consider a new decomposition

∫ x

0

zj(x− y)Uij(dy) =

∫ x−A

0

zj(x− y)Uij(dy) +

∫ x

x−A
zj(x− y)Uij(dy)

≡ I1(x,A) + I2(x,A),

where the second term satisfies

I2(x,A) ≤ A sup
y≤A
|zj(y)| Uij(x− A, x] = o(zj(x)).

Letting A tend to infinity in a slower rate than x (recall that we have chosen A
to be less than x/2) will preserve this inequaility. Now consider a corresponding
decomposition of the convolution Kj ∗ Uij.

(Kj ∗ Uij)(x+ ∆) =

∫ x

0

Kj(x− y + ∆)Uij(dy)

=

∫ x−A

0

Kj(x− y + ∆)Uij(dy) +

∫ x

x−A
Kj(x− y + ∆)Uij(dy)

≡ I ′1(x,A) + I ′2(x,A).

As for I2 we can evaluate I ′2(x,A) = o(zj(x)). Since zj ∈ L we have zj(x) ∼ Ij ·
Kj(x+ ∆) for ∆ = (0, 1] and therefore I1(x,A) ∼ Ij · I ′1(x,A). This yields

∫ x

0

zj(x− y)Uij(dy) ∼ Ij · (Kj ∗ Uij)(X + ∆).

Due to the assumption zj(x)/g(x)→∞ the use of Proposition 3 in [9] with c1 = 1
and c2 = 0 gives

Ij · (Kj ∗ Uij)(x+ ∆) ∼ kijIjK(x+ ∆) ∼ kijzj(x)

which concludes the proof of Theorem 2.2 in the substochastic case.
If instead of P being substochastic it merely satisfies spr(P ) < 1, we define the

measure F̃ij(dx) = Fij(dx)vi/vj for i, j ∈ E and let P̃ be the matrix with elements
‖F̃ij‖ = ‖Fij‖vi/vj. P̃ will then be a substochastic matrix with row sums λ and

14



therefore it must also have spectral radius less than one. Letting Z̃i(x) = viZi(x)
and z̃i(x) = vizi(x) another renewal equation occurs

Z̃i(x) = z̃i(x) +
∑

j∈E

∫ x

0

Z̃j(x− y)F̃ij(dy) ,

which has the same properties as analyzed previously in the substochastic case with
Markov kernel Ũij = Uijvi/vj. What we have shown already can therefore be applied
with coefficients ãj, d̃ij, k̃ij and Ĩj. The assumption of the asymptotic properties of
Gij stated in Theorem 2.2 implies that G̃ij(t+ ∆) = viGij(t+ ∆)/vj ∼ c̃ijG(t+ ∆),
where c̃ij = cijvi/vj and same relation transfers to d̃ij = dijvi/vj. Correspondingly for
k̃ij = Ũij(0,∞) = Uij(0,∞)vi/vj = kijvi/vj. Last to mention is Ĩj =

∫∞
0
z̃j(y)dy =

vj
∫∞

0
zj(y)dy = vjIj and ãj = vjaj. Inserting these into the asympotics of Z̃i gives

the same result as Theorem 2.2. For example in case ii), the substochatic results
gives Z̃i(x) ∼ ∑j∈E(Ĩj d̃ij + ãj k̃ij)g(x) which translates to

Zi(x) =
1

vi
Z̃i(x) ∼ 1

vi

∑

j∈E

(
vjIj

vi
vj
dij + vjaj

vi
vj
kij

)
g(x)

=
∑

j∈E

(
Ijdij + ajkij

)
g(x).
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