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Abstract

In this paper, we derive uniqueness and stability results for surface tensors.
Further, we develop two algorithms that reconstruct shape of n-dimensional
convex bodies. One algorithm requires knowledge of a finite number of surface
tensors, whereas the other algorithm is based on noisy measurements of a finite
number of harmonic intrinsic volumes. The derived stability results ensure
consistency of the two algorithms. Examples that illustrate the feasibility of
the algorithms are presented.
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1 Introduction

Recently, Minkowski tensors have succesfully been used as shape descriptors of spa-
tial structures in materials science, see, e.g., [3, 13, 14]. Surface tensors are transla-
tion invariant Minkowski tensors derived from surface area measures, and the shape
of a convex body K with nonempty interior in Rn is uniquely determined by the
surface tensors of K. In this context, the shape of K is defined as the equivalence
class of all translations of K.

In [9], Kousholt and Kiderlen develop reconstruction algorithms that approx-
imate the shape of convex bodies in R2 from a finite number of surface tensors.
Kousholt and Kiderlen describe two algorithms. One algorithm requires knowledge
of exact surface tensors and one allows for noisy measurements of surface tensors.
For the latter algorithm, it is argued that it is preferable to use harmonic intrinsic
volumes instead of surface tensors evaluated at the standard basis. The purpose of
this paper is threefold. Firstly, the reconstruction algorithms in [9] are generalized
to an n-dimensional setting. Secondly, stability and uniqueness results for surface
tensors are established, and the stability results are used to ensure consistency of
the generalized algorithms. Thirdly, we illustrate the feasibility of the reconstruction
algorithms by examples. The generalizations of the reconstruction algorithms are de-
veloped along the same lines as the algorithms for convex bodies in R2. However,
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there are several non-trivial obstacles on the way. In particular, essentially different
stability results are needed to ensure consistency.

The input of the first generalized algorithm is exact surface tensors up to a certain
rank of an unknown convex body in Rn. The output is a polytope with surface tensors
identical to the given surface tensors of the unknown convex body. The input of the
second generalized algorithm is measurements of harmonic intrinsic volumes of an
unknown convex body in Rn, and the output is a polytope with harmonic intrinsic
volumes that fit the given measurements in a least squares sense. When n ≥ 3, a
convex body that fits the input measurements of harmonic intrinsic volumes may
not exist, and in this case, the algorithm based on harmonic intrinsic volumes does
not have an output. However, this situation only occurs when the measurements are
too noisy, see Lemma 6.3.

The consistency of the algorithms described in [9] is established using the stabil-
ity result [9, Thm. 4.8] for harmonic intrinsic volumes derived from the first order
area measure. This result can be applied as the first order area measure and the
surface area measure coincide for n = 2. However, for n ≥ 3, the stability result is
not applicable. Therefore, we establish stability results for surface tensors and for
harmonic intrinsic volumes derived from surface area measures. More precisely, first
we derive an upper bound of the Dudley distance between surface area measures of
two convex bodies. This bound is small, when s is large and the distance between
the harmonic intrinsic volumes up to degree s of the convex bodies is small (The-
orem 4.3). From this result and a known connection between the Dudley distance
and the translative Hausdorff distance, we obtain that the translative Hausdorff dis-
tance between convex bodies with identical surface tensors up to rank s becomes
small, when s is large (Corollary 4.4). The stability result for surface tensors and
the fact that the rank 2 surface tensor of a convex body K determines the radii
of a ball containing K and a ball contained in K (Lemma 5.4) ensure consistency
of the generalized reconstruction algorithm based on exact surface tensors (Theo-
rem 5.5). The consistency of the reconstruction algorithm based on measurements
of harmonic intrinsic volumes are ensured by the stability result for harmonic in-
trinsic volumes under certain assumptions on the variance of the noise variables
(Theorems 6.4 and 6.5).

The described algorithms and stability results show that a finite number of sur-
face tensors can be used to approximate the shape of a convex body, but in general,
all surface tensors are required to uniquely determine the shape of a convex body.
However, there are convex bodies where a finite number of surface tensors contain
full information about the shapes of the convex bodies. More precisely, in [9], it is
shown that the shape of a convex body in Rn with nonempty interior is uniquely de-
termined by a finite number of surface tensors only if the convex body is a polytope.
We complement this result by showing that the shape of a polytope with m facets
is uniquely determined by the surface tensors up to rank m − n + 2. This result is
optimal in the sense that for each m ≥ n + 1 there is a polytope P with m facets
and a convex body K that is not a polytope, such that P and K have identical
surface tensors up to rank m− n+ 1. This implies that the rank m− n+ 2 cannot
be reduced. An earlier and weaker result in this direction is [9, Thm. 4.3] stating
that the shape of a polytope with m facets is determined by the surface tensors up
to rank 2m.
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The paper is organized as follows. General notation, surface tensors and har-
monic intrinsic volumes are introduced in Section 2. The uniqueness results are
derived in Section 3 and are followed by the stability results in Section 4. The two
reconstruction algorithms are described in Sections 5 and 6.

2 Notation and preliminaries

We work in the n-dimensional Euclidean vector space Rn, n ≥ 2 with standard inner
product 〈·, ·〉 and induced norm ‖·‖. The unit sphere in Rn is denoted Sn−1, and the
surface area and volume of the unit ball Bn in Rn is denoted ωn and κn, respectively.

In the following, we give a brief introduction to the concepts of convex bodies,
surface area measures, surface tensors and harmonic intrinsic volumes. For further
details, we refer to [12] and [9]. We let Kn denote the set of convex bodies (convex,
compact and nonempty sets) in Rn, and let Knn be the set of convex bodies with
nonempty interior. Further, Kn(R) is the set of convex bodies contained in a ball of
radius R > 0, and likewise, Kn(r, R) is the set of convex bodies that contain a ball
of radius r > 0 and are contained in a concentric ball of radius R > r. The set of
convex bodies Kn is equipped with the Hausdorff metric δ. The Hausdorff distance
between two convex bodies can be expressed as the supremum norm of the difference
of the support functions of the convex bodies, i.e.

δ(K,L) = ‖hK − hL‖∞ = sup
u∈Sn−1

|hK(u)− hL(u)|

for K,L ∈ Kn.
In the present work, we call the equivalence class of translations of a convex body

K the shape of K. Hence, two convex bodies are of the same shape exactly if they
are translates. As a measure of distance in shape, we use the translative Hausdorff
distance,

δt(K,L) = inf
x∈Rn

δ(K,L+ x)

for K,L ∈ Kn. The translative Hausdorff distance is a metric on the set of shapes
of convex bodies, see [6, p. 165].

For a convex body K ∈ Knn, the surface area measure Sn−1(K, ·) of K is defined
as

Sn−1(K,ω) = Hn−1(τ(K,ω))

for a Borel set ω ⊆ Sn−1, where Hn−1 is the (n− 1)-dimensional Hausdorff measure,
and τ(K,ω) is the set of boundary points of K with an outer normal belonging to
ω. For a convex body K ∈ Kn \ Knn there is a unit vector u ∈ Sn−1 and an x ∈ Rn,
such that K is contained in the hyperplane u⊥ + x. The surface area measure of K
is defined as

Sn−1(K, ·) = S(K)(δu + δ−u),

where S(K) is the surface area of K and δv is the Dirac measure at v ∈ Sn−1.
Notice that S(K) = Sn−1(K,Sn−1) for K ∈ Knn, and 2S(K) = Sn−1(K,Sn−1) for
K ∈ Kn \ Knn.
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The surface tensors of K ∈ Kn are the Minkowski tensors of K derived from the
surface area measure of K. Hence for s ∈ N0, the surface tensor of K of rank s is
given as

Φs
n−1(K) =

1

s!ωs+1

∫

Sn−1

us Sn−1(K, du)

where us : (Rn)s → R is the s-fold symmetric tensor product of u ∈ Sn−1 when u
is identified with the rank 1 tensor v 7→ 〈u, v〉. Due to multilinearity, the surface
tensor of rank s can be identified with the array {Φs

n−1(K)(ei1 , . . . , eis)}ni1,...,is=1 of
components of Φs

n−1(K), where (e1, . . . , en) is the standard basis of Rn. Notice that
the the components of Φs

n−1(K) are scaled versions of the moments of Sn−1(K, ·),
where the moments of order s ∈ N0 of a Borel measure µ on Sn−1 are given by

∫

Sn−1

ui11 · · ·uinn µ(du)

for i1, . . . , in ∈ {0, . . . , s} with
∑n

j=1 ij = s.
By [9, Remark 3.1], the surface tensors Φ0

n−1(K), . . . ,Φs
n−1(K) of K are uniquely

determined by Φs−1
n−1(K) and Φs

n−1(K) for s ≥ 2. More precisely, if 0 ≤ s ≤ so has
same parity as so, say, then Φs

n−1 can be calculated from Φso
n−1 by taking the trace

consecutively and multiplying with the constant

cs,so =
so!ωso
s!ωs+1

. (2.1)

We let
ms =

(
s+ n− 2

n− 1

)
+

(
s+ n− 1

n− 1

)

be the number of different components of Φs−1
n−1(K) and Φs

n−1(K), and we use the no-
tation φsn−1(K) for the ms-dimensional vector of different components of the surface
tensors of K of rank s− 1 and s.

To a convex body K ∈ Kn, we further associate the harmonic intrinsic volumes
that are the moments of Sn−1(K, ·) with respect to an orthonormal sequence of
spherical harmonics (for details on spherical harmonics, see [8]). More precisely,
for k ∈ N0, let Hn

kk be the vector space of spherical harmonics of degree k on
Sn−1. The dimension of Hn

k is denoted N(n, k), and
∑s

k=0N(n, k) = ms. We let
Hnk1, . . . , HnkN(n,k) be an orthonormal basis of Hn

k . Then, the harmonic intrinsic
volumes of K of degree k are given by

ψ(n−1)kj(K) =

∫

Sn−1

Hnkj(u)Sn−1(K, du)

for j = 1, . . . , N(n, k). For a convex body K ∈ Kn, we let ψsn−1(K) be the ms-
dimensional vector of harmonic intrinsic volumes of K up to degree s. The vector
ψsn−1(K) only depends on K through the surface area measure Sn−1(K, ·) of K, and
we can write ψsn−1(Sn−1(K, ·)) = ψsn−1(K). Likewise, for an arbitrary Borel measure
µ on Sn−1, we write ψsn−1(µ) for the vector of harmonic intrinsic volumes of µ up to
order s, that is the vector of moments of µ up to order s with respect to the given
orthonormal basis of spherical harmonics. The harmonic intrinsic volumes and the
surface tensors of a convex body K are closely related as there is an invertible linear
mapping f : Rms → Rms such that f(φsn−1(K)) = ψsn−1(K).
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3 Uniqueness results

The shape of a convex body is uniquely determined by a finite number of surface ten-
sors only if the convex body is a polytope, see [9, Cor. 4.2]. Further, in [9, Thm. 4.3]
it is shown that a polytope in Rn with nonempty interior and m ≥ n + 1 facets is
uniquely determined up to translation in Kn by its surface tensors up to rank 2m.
In Theorem 3.2, we replace 2m with m− n + 2, and in addition, we show that the
rank m− n+ 2 cannot be reduced.

We letM denote the cone of finite Borel measures on Sn−1. Further, we let Pm
be the set of convex polytopes in Rn with at most m ≥ n + 1 facets. The proof of
Lemma 3.1 is an improved version of the proof of [9, Thm. 4.3].

Lemma 3.1. Let m ∈ N and µ ∈M have finite support {u1, . . . , um} ⊆ Sn−1.

(i) The measure µ is uniquely determined inM by its moments up to order m.

(ii) If the affine hull aff{u1, . . . , um} of suppµ is Rn, then µ is uniquely determined
inM by its moments up to order m− n+ 2.

Proof. We first prove (ii). Since aff{u1, . . . , um} = Rn, we have m ≥ n + 1 and
the support of µ can be pared down to n + 1 vectors, say u1, . . . , un+1, such that
aff{u1, . . . , un+1} = Rn. For each j = 1, . . . , n+ 1, the affine hull

Aj = aff({u1, . . . , un+1} \ {uj})
is a hyperplane in Rn, so there is a vj ∈ Sn−1 and βj ∈ R such that

Aj = {x ∈ Rn | 〈x, vj〉 = βj}.
Now define the polynomial

p(u) =
n+1∑

j=1

(〈u, vj〉 − βj)2(1− 〈u, uj〉)(1− 〈u, un+2〉) . . . (1− 〈u, um〉)

for u ∈ Sn−1. The degree of p is m − n + 2, and p(uj) = 0 for j = 1, . . . ,m. Let
w ∈ Sn−1\{u1, . . . , um} and assume that p(w) = 0. Then w ∈ Aj for j = 1, . . . , n+1,
so in particular w =

∑n
j=1 γjuj where

∑n
j=1 γj = 1. We may assume that γ1 6= 0.

Since w ∈ A1, this implies that u1 is an affine combination of u2, . . . , un+1, so

A1 = aff{u1, . . . , un+1} = Rn.

This is a contradiction, and we conclude that p(w) > 0.
Now let ν ∈ M and assume that µ and ν have identical moments up to order

m− n+ 2. Since the polynomial p is of degree m− n+ 2, we obtain that
∫

Sn−1

p(u) ν(du) =

∫

Sn−1

p(u)µ(du) =
m∑

j=1

αj p(uj) = 0, (3.1)

where we have used that µ is of the form

µ =
m∑

j=1

αjδuj
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for some α1, . . . , αm > 0. Equation (3.1) yields that p(u) = 0 for ν-almost all u ∈
Sn−1 as the polynomial p is non-negative. Then, the continuity of p implies that

supp ν ⊆ {u ∈ Sn−1 | p(u) = 0} = {u1, . . . , um},

so ν is of the form

ν =
m∑

j=1

βjδuj (3.2)

with βj ≥ 0 for j = 1, . . . ,m.
For i = 1, . . . , n+ 1, define the polynomial

pi(u) = (〈u, vi〉 − βi)2(1− 〈u, un+2〉) . . . (1− 〈u, um〉)

for u ∈ Sn−1. Then pi is of degree m− n+ 1 and pi(uj) = 0 for j 6= i. If pi(ui) = 0,
then ui ∈ Ai and we obtain a contradiction as before. Hence pi(ui) > 0. Due to (3.2)
and the assumption on coinciding moments, we obtain that

αipi(ui) =
m∑

j=1

αjpi(uj) =
m∑

j=1

βjpi(uj) = βipi(ui). (3.3)

Since pi(ui) > 0, Equation (3.3) implies that αi = βi for i = 1, . . . , n+ 1.
For i = n+ 2, . . . ,m, define the polynomial

pi(u) =
p(u)

(1− 〈u, ui〉)

for u ∈ Sn−1. Then pi is of degree m− n+ 1 and pi(uj) = 0 for j 6= i. If pi(ui) = 0,
then ui ∈ Aj for j = 1, . . . , n + 1, which is a contradiction. Hence, pi(ui) = 0. By
arguments as before, we obtain that αi = βi for i = n + 1, . . . ,m. Hence ν = µ,
which yields (ii).

The statement (i) can be proved in a similar manner using the polynomials

p(u) =
m∏

j=1

(1− 〈u, uj〉)

and
pi(u) =

p(u)

1− 〈u, ui〉
for u ∈ Sn−1 and i = 1, . . . ,m.

Theorem 3.2. Letm ≥ n+1. A polytope P ∈ Pm with nonempty interior is uniquely
determined up to translation in Kn by its surface tensors up to rank m − n + 2. If
n = 2, then the result holds for any P ∈ Pm.

The rank m−n+ 2 is optimal as there is a polytope Pm ∈ Pm and a convex body
Km /∈ Pm having identical surface tensors up to rank m− n+ 1.
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Proof. Let P ∈ Pm have facet normals u1, . . . , um ∈ Sn−1 and nonempty interior.
Then, suppSn−1(P, ·) = {u1, . . . , um} and aff{u1, . . . , um} = Rn, so Sn−1(P, ·) is
uniquely determined in {Sn−1(K, ·) | K ∈ Kn} ⊆ M by its moments up to order
m−n+2 due to Lemma 3.1 (ii). Since the surface tensors of P are rescaled versions
of the moments of Sn−1(P, ·), the first part of the statement follows as a convex
body in Rn with nonempty interior is uniquely determined up to translation by its
surface area measure. Now assume that P ⊆ R2 is a polytope in Pm with empty
interior. Then P is contained in an affine hyperplane and Sn−1(P, ·) = S(P )(δu+δ−u)
for some u ∈ Sn−1. By Lemma 3.1 (i), the surface area measure of P is uniquely
determined by its moments up to second order. The second part of the statement
then follows since any convex body in R2 is uniquely determined up to translation
by its surface area measure.

To show that the rank m − n + 2 cannot be reduced, we first consider the case
n = 2. For m ≥ 3, let Pm be a regular polytope in R2 with outer normals uj =
(cos(j 2π

m
), sin(j 2π

m
)) for j = 0, . . .m−1 and facet lengths αj = 2π

m
for j = 0, . . . ,m−1.

Then, Pm and the unit disc B2 in R2 have identical surface tensors up to rank m−1.
This is easily seen by calculating and comparing the harmonic intrinsic volumes of
Pm and B2.

Now, counter examples in Rn, n ≥ 3 can be constructed inductively. Essentially,
if P ′m−1 and K ′m−1 are counter examples in Rn−1, counter examples Pm and Km in Rn

are obtained as bounded cones with scaled versions of P ′m−1 andK ′m−1 as bases. More
precisely, for a fixed 0 < α < 1 , define fα : Sn−2 → Sn−1 by fα(u) = (

√
1− α2 u, α)

for u ∈ Sn−2, and let

µm = fα(Sn−1(P
′
m−1, ·)) + αS(P ′m−1)δ−e3

and
νm = fα(Sn−1(K

′
m−1, ·)) + αS(K ′m−1)δ−e3 .

By Minkowski’s existence theorem, the measures µm and νm are surface area mea-
sures of convex bodies Pm ∈ Pm and Km ∈ Kn, respectively. Direct calculations
show that if P ′m−1 and K ′m−1 have identical surface tensors in Rn−1 up to rank
(m− 1)− (n− 1) + 1 = m− n+ 1, then Pm and Km have identical surface tensors
in Rn up to the same rank. Thus, we obtain that the rank m− n + 2 is optimal in
the sense that it cannot be reduced.

Due to the one-to-one correspondence between surface tensors up to rank s and
harmonic intrinsic volumes up to degree s of a convex body, the uniqueness result in
Theorem 3.2 also holds if surface tensors are replaced by harmonic intrinsic volumes.

4 Stability results

The shape of a convex body K ∈ Knn is uniquely determined by the set of surface
tensors {Φs

n−1(K) | s ∈ N0} of K, but as described in the previous section, only the
shape of polytopes are determined by a finite number of surface tensors. However,
for an arbitrary convex body, a finite number of its surface tensors still contain
information about its shape. This statement is quantified in this section, where we
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derive an upper bound of the translative Hausdorff distance between two convex
bodies with a finite number of coinciding surface tensors.

The cone of finite Borel measuresM on Sn−1 is equipped with the Dudley metric

dD(µ, ν) = sup

{∣∣∣∣
∫

Sn−1

f d(µ− ν)

∣∣∣∣
∣∣∣∣ ‖f‖BL ≤ 1

}

for µ, ν ∈M, where

‖f‖BL = ‖f‖∞ + ‖f‖L and ‖f‖L = sup
u6=v

|f(u)− f(v)|
‖u− v‖

for any function f : Sn−1 → R. It can be shown that the Dudley metric induces the
weak topology on M (the case of probability measures is treated in [5, Sec. 11.3]
and is easily generalized to finite measures on Sn−1) The set of real-valued func-
tions on Sn−1 with ‖f‖BL < ∞ is denoted BL(Sn−1). Further, we let the vector
space L2(Sn−1) of square integrable functions on Sn−1 with respect to the spherical
Lebesgue measure σ be equipped with the usual inner product 〈·, ·〉2 and norm ‖·‖2.

As in [1, Chap. 2.8.1], for k ∈ N, we define the operator Πnk on the space L2(Sn−1)
by

(Πnk f)(u) = Enk

∫

Sn−1

(
1 + 〈u, v〉

2

)k
f(v)σ(dv) (4.1)

for f ∈ L2(Sn−1) where the constant

Enk =
(k + n− 2)!

(4π)
n−1
2 Γ(k + n−1

2
)

satisfies

Enk

∫

Sn−1

(
1 + 〈u, v〉

2

)k
σ(du) = 1. (4.2)

As (1 + 〈u, v〉)k is a polynomial in 〈u, v〉 of order k, it follows from the addition
theorem for spherical harmonics (see, e.g., [8, Thm. 3.3.3]) that the function Πnk f
for f ∈ L2(Sn−1) can be expressed as a linear combination of spherical harmonics
of degree k or less, see also [1, pp. 61–62]. More precisely, there are real constants
(ankj) such that

Πnk f =
k∑

j=0

ankjPnjf, (4.3)

where Pnjf is the projection of f onto the space Hn
j of spherical harmonics of

degree j. The constants in the linear combination (4.3) are given by

ankj =
k!(k + n− 2)!

(k − j)!(k + n+ j − 2)!
,

see [1, p. 62]. By [1, Thm. 2.30], for any continuous function f : Sn−1 → R, the
sequence (Πnk f)k∈N converges uniformly to f when k → ∞. When f ∈ BL(Sn−1),
Lemma 4.1 provides an upper bound for the convergence rate in terms of ‖f‖L
and ‖f‖∞.
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Lemma 4.1. Let 0 < ε < 1 and k ∈ N. For f ∈ BL(Sn−1), we have

‖Πnk f − f‖∞ ≤
√
k
ε−1‖f‖L + 2ωnEnk exp(−1

4
kε)‖f‖∞. (4.4)

Proof. We proceed as in the proof of [1, Thm. 2.30]. Let f ∈ BL(Sn−1). Using (4.1)
and (4.2), we obtain that

|(Πnk f)(u)− f(u)| ≤ Enk

∫

Sn−1

(
1 + 〈u, v〉

2

)k
|f(u)− f(v)|σ(dv)

≤ I1(δ, u) + I2(δ, u)

for u ∈ Sn−1 and 0 < δ < 2, where

I1(δ, u) = Enk

∫

{v∈Sn−1:‖u−v‖≤δ}

(
1 + 〈u, v〉

2

)k
|f(u)− f(v)|σ(dv)

and

I2(δ, u) = Enk

∫

{v∈Sn−1:‖u−v‖>δ}

(
1 + 〈u, v〉

2

)k
|f(u)− f(v)|σ(dv).

Since I1(δ, u) ≤ δ‖f‖L and

I2(δ, u) ≤ 2ωnEnk

(
1− δ2

4

)
‖f‖∞,

we obtain that

|(Πnk f)(u)− f(u)| ≤ δ‖f‖L + 2ωnEnk

(
1− δ2

4

)k
‖f‖∞. (4.5)

To derive the upper bound on I2, we have used that 〈u, v〉 = 1−‖u−v‖2
2

for u, v ∈ Sn−1.
Now let δ =

√
k
ε−1

. From the mean value theorem, we obtain that

ln

(
1− δ2

4

)k
= −1

4
kε

ln(1)− ln(1− 1
4
kε−1)

1
4
kε−1

= −1
4
kεξ−1k

for some ξk ∈ [1− 1
4
kε−1, 1]. Hence,

(
1− δ2

4

)k
≤ exp(−1

4
kε). (4.6)

Combining (4.5) and (4.6) yields the assertion.

Remark 4.2. Stirling’s formula, Γ(x) ∼
√

2πxx−
1
2 e−x for x→∞, implies that

Enk ∼
(
k

4π

)n−1
2

for k →∞. Hence, the upper bound in (4.4) converges to zero for k →∞. The choice
of δ in the proof of Lemma 4.1 is optimal in the sense that if we use 0 < δ ≤ c√

k
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with a constant c > 0, then the derived upper bound in (4.4) does not converge to
zero. This follows as

1 ≥
(

1− δ2

4

)k
≥
(

1− c

4k

)k
→ e−

c
4

for k →∞, when 0 < δ ≤ c√
k
.

For functions f ∈ BL(Sn−1) satisfying ‖f‖BL ≤ 1, Lemma 4.1 yields an uniform
upper bound, only depending on k and the dimension n, of ‖Πnk f − f‖∞. In the
following theorem, this is used to derive an upper bound of the Dudley distance
between the surface area measures of two convex bodies where the harmonic intrinsic
volumes up to a certain degree so ∈ N are close in Rmso .

Theorem 4.3. Let K,L ∈ Kn(R) for some R > 0 and let so ∈ N. Let 0 < ε < 1
and δ > 0. If √

ωnmso‖ψson−1(K)− ψson−1(L)‖ ≤ δ (4.7)

then
dD(Sn−1(K, ·), Sn−1(L, ·)) ≤ c(n,R, ε)s

ε−1
2

o + δ, (4.8)

where c > 0 is a constant depending on n,R and ε.

Due to the addition theorem for spherical harmonics, the condition (4.7) is in-
dependent of the bases of Hn

k , k ∈ N that are used to derive the harmonic intrinsic
volumes.

Proof of Theorem 4.3. Define the signed Borel measure ν = Sn−1(K, ·)− Sn−1(L, ·)
and let f ∈ BL(Sn−1) satisfy ‖f‖BL ≤ 1. Then, by (4.3),

Πnso f =
so∑

j=0

ansoj

N(n,j)∑

i=0

〈f,Hnji〉2Hnji,

where |ansoj| ≤ 1. Since ‖f‖2 ≤
√
ωn‖f‖∞ ≤

√
ωn, we obtain from Cauchy-Schwarz’

inequality and a discrete version of Jensen’s inequality that

∣∣∣∣
∫

Sn−1

Πnso f dν

∣∣∣∣ ≤
√
ωn

so∑

j=0

N(n,j)∑

i=0

∣∣∣∣
∫

Sn−1

Hnji dν

∣∣∣∣

≤
(
ωn

( so∑

l=0

N(n, l)
) so∑

j=0

N(n,j)∑

i=0

(∫

Sn−1

Hnji dν

)2) 1
2

=
√
ωnmso ‖ψson−1(K)− ψson−1(L)‖.

Hence,
∣∣∣∣
∫

Sn−1

f dν

∣∣∣∣ ≤
∣∣∣∣
∫

Sn−1

Πnsof − f dν
∣∣∣∣+

∣∣∣∣
∫

Sn−1

Πnso f dν

∣∣∣∣

≤ 2Rn−1ωn
(
s

ε−1
2

o + 2ωnEnso exp(−1
4
sεo)
)

+ δ,

10



where we used Lemma 4.1 and that max{Sn−1(K,Sn−1), Sn−1(L, Sn−1)} ≤ Rn−1ωn.
For k →∞, the convergence of Enk exp(−1

4
kε) to zero is faster than the convergence

of k
ε−1
2 , see Remark 4.2. This implies the existence of a constant c only depending

on n,R and ε satisfying (4.8).

Corollary 4.4. Let K,L ∈ Kn(R) for some R > 0 and let 0 < ε < 1. If Φs
n−1(K) =

Φs
n−1(L) for 0 ≤ s ≤ so, then

dD(Sn−1(K, ·), Sn−1(L, ·)) ≤ c(n,R, ε)s
ε−1
2

o ,

where c > 0 is a constant depending on n,R and ε.

Proof. The assumption that K and L have coinciding surface tensors up to rank so
implies that ‖ψson−1(K) − ψson−1(L)‖ = 0. The result then follows from Theorem 4.3
with δ = 0.

The translative Hausdorff distance between two convex bodies in Kn(r, R) admits
an upper bound expressed by the n’th root of the Prokhorov distance between their
surface area measures, see [12, Thm. 8.5.3]. Further, the Prokhorov distance between
two Borel measures on Sn−1 can be bounded in terms of the square root of the Dudley
distance between the measures. Therefore, Corollary 4.4 in combination with [12,
Thm. 8.5.3] and [7, Lemma 9.5] yield the following stability result.

Theorem 4.5. Let K,L ∈ Kn(r, R) for some 0 < r < R and let 0 < ε < 1. If
Φs
n−1(K) = Φs

n−1(L) for 0 ≤ s ≤ so, then

δt(K,L) ≤ c(n, r, R, ε)s
− 1−ε

4n
o

for a constant c > 0 depending on n, r, R and ε.

5 Reconstruction of shape from surface tensors

In this section, we derive an algorithm that approximates the shape of an unknown
convex bodyK ∈ Knn from a finite number of surface tensors {Φs

n−1(K) | 0 ≤ s ≤ so}
of K for some so ∈ N. The reconstruction algorithm is a generalization to higher
dimension of Algorithm Surface Tensor in [9] that reconstructs convex bodies in R2

from surface tensors. The shape of a convex body K in Rn is uniquely determined
by the surface tensors of K, when K has nonempty interior, see [9, Sec. 4, p. 10].
For n = 2, the surface tensors of K determine the shape of K even when K is lower
dimensional. Therefore, the algorithm in [9] can be used to approximate the shape
of arbitrary convex bodies in R2, whereas the algorithm described in this section
only allows for convex bodies in Rn with nonempty interior. A non-trivial difference
between the algorithm in the two-dimensional setting and the generalized algorithm
is that in higher dimension, it is crucial that the first and second order moments of
a Borel measure µ on Sn−1 determine if µ is the surface area measure of a convex
body. Therefore, this is shown in Lemma 5.2 that is based on the following remark.

11



Remark 5.1. Let µ be a Borel measure on the unit sphere Sn−1. Then,
∫

Sn−1

〈z, u〉2µ(du) > 0 (5.1)

for all z ∈ Sn−1 if and only if the support of µ is full-dimensional (meaning that
the support of µ is not contained in any great subsphere of Sn−1). As the integral
in (5.1) is determined by the second order moments

mij(µ) =

∫

Sn−1

uiuj µ(du)

of µ, these moments determine if the support of µ is full-dimensional. More precisely,
the support of µ is full-dimensional if and only if the matrix of second order moments
M(µ) = {mij(µ)}ni,j=1 is positive definite as

z>M(µ)z =

∫

Sn−1

〈z, u〉2µ(du)

for z ∈ Rn.

Lemma 5.2. Let µ be a Borel measure on Sn−1 with µ(Sn−1) > 0.

(i) The measure µ is the surface area measure of a convex body K ∈ Knn, if and
only if the first order moments of µ vanish and the matrix M(µ) of second
order moments of µ is positive definite.

(ii) The measure µ is the surface area measure of a convex body K ∈ Kn \ Knn if
and only if the first order moments of µ vanish and the matrix M(µ) of second
order moments of µ has one positive eigenvalue and n− 1 zero eigenvalues.

In the case, where (ii) is satisfied, the measure µ is the surface area measure
of every convex body K with surface area 1

2
µ(Sn−1) contained in a hyperplane with

normal vector u, where u ∈ Sn−1 is a unit eigenvector of M(µ) corresponding to the
positive eigenvalue (u is unique up to sign).

Proof. Remark 5.1 implies that the interior of a convex body K is nonempty if and
only if the matrix of second order moments of Sn−1(K, ·) is positive definite, so the
statement (i) follows from Minkowski’s existence theorem, [12, Thm. 8.2.2].

If µ is the surface area measure of K ∈ Kn \ Knn, then µ is of the form

µ =
µ(Sn−1)

2
(δu + δ−u)

for some u ∈ Sn−1. Then, the first order moments of µ vanish, and the matrix M(µ)
of second order moments of µ is µ(Sn−1)u2. Hence,M(µ) has one positive eigenvalue
µ(Sn−1) with eigenvector u and n− 1 zero eigenvalues.

If the matrix M(µ) is positive semidefinite with one positive eigenvalue α > 0
and n− 1 zero eigenvalues, then M(µ) = αu2, where u ∈ Sn−1 is a unit eigenvector
(unique up to sign) corresponding to the positive eigenvalue. Assume further that
the first order moments of µ vanish, and define the measure ν = α

2
(δu + δ−u). Then

µ and ν have identical moments up to order 2, and Lemma 3.1 (i) yields that µ = ν.
Therefore, µ is the surface area measure of any convex body K with surface area α
contained in a hyperplane with normal vector u.
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5.1 Reconstruction algorithm based on surface tensors

Let K0 ∈ Knn be fixed. We consider K0 as unknown and assume that the surface
tensors Φ0

n−1(K0), . . . ,Φ
so
n−1(K0) of K0 are known up to rank so for some natural

number so ≥ 2. The aim is to construct a convex body with surface tensors identical
to the known surface tensors of K0. We proceed as in [9, Sec. 5.1].

Let

Mso = {(α,u) ∈ Rmso × (Sn−1)mso | αj ≥ 0,

mso∑

j=1

αjuj = 0}, (5.2)

and consider the minimization problem

min
(α,u)∈Mso

mso∑

j=1

(
φson−1(K0)j −

mso∑

i=1

αigsoj(ui)
)2
, (5.3)

where gsoj : Sn−1 → R is the polynomial that satisfies that
∫

Sn−1

gsoj(u)Sn−1(K0, du) = φson−1(K0)j

for j = 1, . . . ,mso . Notice, that the objective function in (5.3) is known, as the surface
tensors Φso−1

n−1 (K0) and Φso
n−1(K0) are assumed to be known. By [9, Thm. 4.1], there

exists a polytope P (not necessarily unique) with at most mso facets and surface
tensors identical to the surface tensors of K0 up to rank so. Now, let v1, . . . , vmso

∈
Sn−1 be the outer normals of the facets of such a polytope P and a1, . . . , amso

≥ 0
be the corresponding (n − 1)-dimensional volumes of the facets. If P has k < mso

facets, then ak+1 = · · · = amso
= 0. Then Sn−1(P, ·) =

∑mso
j=1 ajδvj , and

φson−1(P )j =

mso∑

i=1

aigsoj(vi).

As P and K0 has identical surface tensors up to rank so, this implies that
mso∑

j=1

(
φson−1(K0)j −

mso∑

i=1

aigsoj(vi)
)2

= 0. (5.4)

Therefore, (a,v) = (a1, . . . , amso
, v1, . . . , vmso

) ∈ Mso is a solution to the minimiza-
tion problem (5.3).

Now, let (α,u) ∈ Mso be an arbitrary solution to (5.3) and define the Borel
measure ϕ =

∑mso
i=1 αiδui on S

n−1. As the minimum value of the objective function is
0 due to (5.4), the moments of ϕ and Sn−1(K0, ·) of order so−1 and so are identical.
This implies that the moments of ϕ and Sn−1(K0, ·) of order 1 and 2 are identical as
so ≥ 2, see [9, Remark 3.1]. Then Lemma 5.2 (i) yields the existence of a polytope
Q ∈ Pmso

with nonempty interior such that Sn−1(Q, ·) = ϕ. The surface tensors of
Q are identical to the surface tensors of K0 up to rank so.

In the two-dimensional setup in [9, Sec. 5.1], every vector in Mso corresponds to
the surface area measure of a polytope. In the n-dimensional setting, this is not the
case, as Minkowski’s existence theorem requires that the linear hull of the vectors
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α1u1, . . . , αmso
umso

is Rn, when n > 2. However, as the above considerations show,
Lemma 5.2 ensures that every solution vector to the minimization problem (5.3), in
fact, corresponds to the surface area measure of a polytope, which is sufficient to
obtain a polytope with the required surface tensors.

The minimization problem (5.3) can be solved numerically, and a polytope corre-
sponding to the solution (α,u) ∈Mso can be constructed using Algorithm MinkData
described in [10], (see also [6, Sec. A.4]). This polytope has surface tensors identical
to the surface tensors of K0 up to rank so.

Algorithm Surface Tensor (n-dim)

Input: A natural number so ≥ 2 and surface tensors Φso−1
n−1 (K0) and Φso

n−1(K0) of
an unknown convex body K0 ∈ Knn.

Task: Construct a polytope K̂so in Rn with at most mso facets such that K̂so and
K0 have identical surface tensors up to rank so.

Action: Find a vector (α,u) ∈Mso that minimizes

mso∑

j=1

(
φson−1(K0)j −

mso∑

i=1

αigsoj(ui)
)2
.

The vector (α,u) describes a polytope K̂so in Rn with at most mso facets.
Reconstruct K̂so from (α,u) using Algorithm MinkData.

Remark 5.3. Solving the minimization problem (5.3) numerically might introduce
small errors, such that the surface tensors Φso−1

n−1 (K̂so) and Φso
n−1(K̂so) are only ap-

proximations of the surface tensors Φso−1
n−1 (K0) and Φso

n−1(K0). Small errors in the
surface tensors of rank so − 1 and so imply the risk of huge errors in the surface
tensors of rank less than so. This follows from the way the surface tensors Φs

n−1,
0 ≤ s ≤ so are related to the surface tensors Φso−1

n−1 and Φso
n−1 as described in Sec-

tion 2, see (2.1). The main problem is the constant

cs,so =
so!ωso
s!ωs+1

that increases rapidly with so for fixed s, and therefore might cause huge errors in, for
instance, the surface area of K̂so . The algorithm can be made more robust to numer-
ical errors by replacing the surface tensors with the scaled versions (s!ωs+1)

−1Φs
n−1

of the surface tensors. The two versions of the algorithm are theoretically equivalent.

5.2 Consistency of the reconstruction algorithm

The output of the algorithm described in the previous section is a polytope with
surface tensors identical to the surface tensors of K0 up to a given rank so. In
this section, we show that for large so the shape of the output polytope is a good
approximation of the shape of K0.
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For each so ≥ 2, let K̂so be an output of the algorithm based on surface tensors
up to rank so. Then exist rso , Rso > 0 such that K̂so , K0 ∈ Kn(rso , Rso) and by
Theorem 4.5, we obtain

δt(K0, K̂so) ≤ c(n, rso , Rso , ε)s
− 1−ε

4n
o

for ε > 0. Notice that c depends on so through rso and Rso , so even though the
factor s−1/(4n)+εo converges to 0 when so increases, we do not immediately obtain the
wanted consistency. To prevent the dependence of c on so, we show that there exist
radii r, R > 0 such that K0, K̂so ∈ Kn(r, R) for each so ≥ 2.

Lemma 5.2 yields that the surface tensor Φ2
n−1(K) of a convex body K ∈ Kn

determines if K has nonempty interior. In Lemma 5.4, we show that Φ2
n−1(K) even

determines the radius of a sphere contained in K and the radius of a sphere con-
taining K, when K has nonempty interior.

For a convex body K ∈ Knn, the coefficient matrix {Φ2
n−1(K)(ei, ej)}ni,j=1 of

Φ2
n−1(K) is symmetric and positive definite, and has therefore n positive eigen-

values. In the following, we let λmin(K) > 0 denote the smallest of these eigenvalues.
The proof of Lemma 5.4 is inspired by the proof of [6, Lemma 4.4.6].

Lemma 5.4. Let K ∈ Knn with centre of mass at the origin. Let

R =
S(K)

4πλmin(K)

(
S(K)

ωn

) 1
n−1

and r =
2πλmin(K)

(n+ 1)(4R)n−2
. (5.5)

Then rBn ⊆ K ⊆ RBn.

Proof. Let x be a point on the boundary ∂K of K. Then ‖x‖ > 0, so v = x
‖x‖ ∈ Sn−1

is well-defined. By monotonicity and positive multilinearity of mixed volumes (see,
e.g., [6, (A.16), (A.18)]) and the isoperimetric inequality (see, e.g., [6, (B.14)]), we
obtain that

‖x‖V (K,n− 1; [o, v]) = V (K,n− 1; [o, x]) ≤ Vn(K) ≤
(
S(K)

ωn

) n
n−1

κn, (5.6)

where V is the mixed volume, Vn is the n-dimensional volume and [a, b] is the convex
hull of {a, b} ⊆ Rn. Further, we have that

V (K,n− 1; [o, v]) =
1

n

∫

Sn−1

h[0,v](u)Sn−1(K, du)

=
1

2n

∫

Sn−1

|〈u, v〉|Sn−1(K, du)

≥ 1

2n

∫

Sn−1

〈u, v〉2 Sn−1(K, du) =
4π

n
Φ2
n−1(K)(v, v),

where we have used [6, (A.11) and (A.12)] and that Sn−1(K, ·) has centroid at the
origin. Hence,

V (K,n− 1; [o, v]) ≥ 4π

n
λmin(K). (5.7)

Equations (5.6) and (5.7) yield that ‖x‖ ≤ R, so K ⊆ RBn.
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As the centre of mass of K is at the origin, then [12, p. 320, note 6] and the
references given there yield that

1

n+ 1
w(K, u) ≤ hK(u)

for u ∈ Sn−1, where w(K, ·) is the width function of K. Since

w(K, u) = hK(u) + hK(−u) = hKs(u)

where Ks = K + (−K), it is sufficient to show that r(n + 1)Bn ⊆ Ks in order to
obtain that rBn ⊆ K. Due to origin-symmetry of Ks, we can proceed as in the
proof of [6, Lemma 4.4.6]. Let c = sup{a > 0 | aBn ⊆ Ks} > 0. Then cBn ⊆ Ks

and ∂Ks ∩ ∂cBn 6= ∅. As Ks and cBn are origin-symmetric there are contact points
z,−z ∈ ∂Ks ∩ ∂cBn and common parallel supporting hyperplanes of Ks and cBn in
z and −z. By the first part of this proof, we have Ks ⊆ 2RBn, so Ks is contained
in a n-dimensional box with one edge of length 2c parallel to z and n − 1 edges of
length 4R orthogonal to z. More precisely,

Ks ⊆ {x ∈ Rn | |〈x, z〉| ≤ c} ∩
n⋂

j=2

{x ∈ Rn | |〈x, uj〉| ≤ 2R}

where u2, . . . , un ∈ Sn−1 and z form an orthogonal basis of Rn. This implies that

Vn−1(Ks | (u2)⊥) ≤ 2c(4R)n−2, (5.8)

where Ks | (u2)
⊥ is the orthogonal projection of Ks onto (u2)

⊥. Using [6, (A.37)]
and that Equation (5.7) holds for any v ∈ Sn−1, we obtain

Vn−1(Ks | (u2)⊥) ≥ Vn−1(K | (u2)⊥)

= nV (K,n− 1; [o, u2]) ≥ 4πλmin(K),

so from (5.8) it follows that

c ≥ 2πλmin(K)

(4R)n−2
,

which yields that r(n+ 1)Bn ⊆ Ks.

Theorem 5.5. Let K0 ∈ Knn, so ≥ 2 be a natural number and 0 < ε < 1. If the
surface tensors up to rank so of a convex body Kso coincide with the surface tensors
of K0, then

δt(K0, Kso) ≤ c
(
n, ε,Φ2

n−1(K0)
)
s
− 1−ε

4n
o , (5.9)

where c > 0 is a constant depending only on n, ε and Φ2
n−1(K0). Hence, if (Kso)so∈N

is a sequence of convex bodies satisfying Φs
n−1(K0) = Φs

n−1(Kso) for 0 ≤ s ≤ so, then
the shape of Kso converges to the shape of K0 when so →∞.

Proof. When defined as in (5.5) with K replaced by K0, the radii r and R are deter-
mined by Φ2

n−1(K0), and since Φ2
n−1(K0) = Φ2

n−1(Kso), Lemma 5.2 and Lemma 5.4
yield that Kso + xso , K0 + x0 ∈ Kn(r, R) for suitable xso , x0 ∈ Rn. Then, using
translation invariance of δt, we obtain the bound (5.9) from Theorem 4.5. Now,
the constant c does not depend on so, so the stated convergence result is obtained
from (5.9).

The consistency of Algorithm Surface Tensor (n-dim) follows from Theorem 5.5.
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Figure 1: Ellipsoid Figure 2: Pyramid

5.3 Examples: Reconstruction of convex bodies in R3

In this section, we give two examples where Algorithm Surface Tensor is used to
reconstruct the shape of a convex body in R3. Following Remark 5.3, the scaled
surface tensors s!ωs+1Φ

s
2 have been used in order to make the reconstructions more

robust to numerical errors. In the first example, the ellipsoid in Figure 1 is recon-
structed. The reconstructions of the ellipsoid are based on surface tensors up to rank
so = 2, 4, 6, see Figure 3. In the second example, the pyramid displayed in Figure 2
is reconstructed. The reconstructions of the pyramid are executed with so = 2, 3, 4,
see Figure 4.

The minimization problem (5.3) is solved by means of the fmincon procedure
provided by MatLab, and a polytope corresponding to the solution to (5.3) is re-
constructed using Algorithm MinkData. This algorithm has been implemented by
Gardner and Milanfar for n ≤ 3, see [6, Sec. A4], and for n = 3 the algorithm
has recently become available on the website www.geometrictomography.com run
by Richard Gardner.

The surface tensor of rank 2 of a convex body contains information of the main
directions and the degree of anisotropy of the convex body. The effect of this is, in
particular, visible in the plots in Figure 3 that show that the three reconstructions
of the ellipsoid are elongated in the direction of the third axis. As expected, the
reconstructions of the ellipsoid and the reconstructions of the pyramid become more
accurate when so increases. The pyramid has 5 facets, so according to Theorem 3.2,
the surface tensors up to rank 4 uniquely determine the shape of the pyramid. The
last plot in Figure 4 shows that the reconstruction based on surface tensors up
to rank 4 is indeed very precise. Deviation from the pyramid can be ascribed to
numerical errors.

6 Reconstruction of shape from harmonic intrinsic
volumes

Due to the correspondence between surface tensors and harmonic intrinsic volumes,
a convex body K ∈ Knn is uniquely determined by the set of harmonic intrinsic
volumes {ψ(n−1)sj(K) | s ∈ N0, j = 1, . . . , N(n, s)} of K. In this section, we derive
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Figure 3: Reconstructions of the ellipsoid in Figure 1 based on surface tensors up to rank
so = 2, 4, 6.

Figure 4: Reconstructions of the pyramid in Figure 2 based on surface tensors up to rank
so = 2, 3, 4.

an algorithm that approximates the shape of an unknown convex bodyK0 ∈ Knn from
measurements subject to noise of a finite number of harmonic intrinsic volumes of
K0. The reconstruction algorithm we derive is a generalization to an n-dimensional
setting of Algorithm Harmonic Intrinsic Volume LSQ described in [9].

6.1 Reconstruction algorithm based on measurements of
harmonic intrinsic volumes

Let K0 ∈ Knn be an unknown convex body where measurements of the harmonic
intrinsic volumes of K0 are available up to degree so ≥ 2. Due to noise, the mea-
surements are of the form ψson−1(K0) + εso , where εso is an mso-dimensional vector
of random variables with zero mean and finite variance. As the harmonic intrinsic
volumes of degree 1 of K0 are known to vanish, these should not be measured, so
we let the corresponding noise variables be 0.

In Section 5, the exact surface tensors of K0 was known. In that situation, we
constructed a convex body with the same surface tensors as K0. In this section,
only noisy measurements of the harmonic intrinsic volumes are available, and it is
typically no longer possible to construct a convex body with the exact same harmonic
intrinsic volumes as K0. Instead, the aim is to construct a convex body K̂H

so ∈ Kn
such that the harmonic intrinsic volumes of K̂H

so fit the measurements ψson−1(K0)+εso
of the harmonic intrinsic volumes of K0 in a least squares sense. Hence, K̂H

so should
minimize the mapping Dso : Kn → [0,∞) defined as

Dso(K) = ‖ψson−1(K0) + εso − ψson−1(K)‖2
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for K ∈ Kn. In the 2-dimensional setup, [9, Lemma 6.1] yields the existence of a
convex body that minimizesDso . In the n-dimensional setting, however, the existence
of such a convex body can not be ensured. This existence problem is overcome
by extending the domain of Dso such that the mapping attains its infimum. This
extension prevents the existence problem and thus establishes a natural framework
for reconstruction in the n-dimensional setting.

First notice that Dso(K) only depends on K ∈ Kn through Sn−1(K, ·), so
a version Ďso of Dso can be defined on the set {Sn−1(K, ·) | K ∈ Kn} letting
Ďso(Sn−1(K, ·)) = Dso(K) for K ∈ Kn. In the weak topology, the closure of
{Sn−1(K, ·) | K ∈ Kn} ⊆ M is the set

M0 =
{
µ ∈M

∣∣
∫

Sn−1

uµ(du) = 0
}
,

and the domain of Ďso is extended toM0 by defining

Ďso(µ) = ‖ψson−1(K0) + εso − ψson−1(µ)‖2

for µ ∈M0. Then
inf
K∈Kn

Dso(K) = inf
µ∈M0

Ďso(µ) (6.1)

since Ďso is continuous onM0.
The infimum of Ďso is attained on M0, and in addition, it can be shown that

Ďso is minimized by a measure inMmso
, where

Mk =
{
µ ∈M0

∣∣ µ =
k∑

j=1

αjδuj , αj ≥ 0, uj ∈ Sn−1
}

for k ∈ N. This is the content of the following Lemmas 6.1 and 6.2. Due to the close
connection between Dso and Ďso , we write Dso for both versions of the mapping.

Lemma 6.1. Let µ ∈ M0 and s ∈ N0. Then there exist a measure µs ∈ Mms such
that µ and µs have identical moments up to order s.

The proof of Lemma 6.1 follows the lines of the proof of [9, Thm. 4.1]. The result
also holds if M0 and Mms are replaced by the larger sets M and {µ ∈ M | µ =∑k

j=1 αjδuj , αj ≥ 0, uj ∈ Sn−1}.
Lemma 6.2. There exists a measure µso ∈Mmso

such that

Dso(µso) = inf
µ∈M0

Dso(µ). (6.2)

If µ1, µ2 ∈M0 minimize Dso, then µ1 and µ2 have identical moments up to order so.

Proof. Let H = {ψson−1(µ) | µ ∈M0} ⊆ Rmso . Then

inf
µ∈M0

Dso(µ) = inf
x∈H
‖ψson−1(K0) + εso − x‖2.

Let {ψsn−1(µk)}k∈N be a convergent sequence in H. Then, supk∈N µk(S
n−1) < ∞,

since µ(Sn−1) =
√
ωnψn01(µ) for µ ∈M0. SinceM0 is closed, this implies that there
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exists a subsequence (µkl)l∈N of (µk)k∈N that converges weakly to a measure µ ∈M0,
see [2, Cor. 31.1]. Then ψson−1(µk)→ ψson−1(µ) for k →∞ as spherical harmonics are
continuous on Sn−1. Hence, H is closed in Rmso . Solving the minimization problem

inf
x∈H
‖ψson−1(K0) + εso − x‖2

corresponds to finding the metric projection of ψson−1(K0) + εso on the nonempty,
convex and closed set H. This projection always exists and is unique, see [12,
Sec. 1.2]. Then the existence of a measure µso ∈ Mso that satisfies (6.2) follows
from Lemma 6.1. The second statement of the lemma follows from the uniqueness
of the projection.

Due to Lemma 6.2 and the structure ofMmso
, the minimization of Dso can be

reduced to the finite minimization problem

inf
(α,u)∈Mso

so∑

s=0

N(n,s)∑

j=1

(
ψ(n−1)sj(K0) + εsj −

mso∑

l=1

αlHnsj(ul)
)2
, (6.3)

where Mso is defined in (5.2). A solution (α,u) ∈ Mso to the minimization prob-
lem (6.3) corresponds to the measure µα,u =

∑mso
j=0 αjδuj ∈ Mmso

. It follows from
Lemma 5.2 that the measure µα,u is a surface area measure of a convex body in Kn
if and only if µα,u is of the form a(δv + δ−v) for some a ≥ 0 and v ∈ Sn−1 or if the
matrixM(µα,u) of second order moments of µα,u is positive definite. The assumption
onM(µα,u) can alternatively be replaced by the assumption that α1u1, . . . , αmso

umso

span Rn .
Assume that µα,u = a(δv + δ−v) for some v ∈ Sn−1 and a ≥ 0. If a = 0, we let

K̂H
so be the singleton {0}. If a > 0, we let K̂H

so be a polytope in u⊥ with surface
area a. Now assume that α1u1, . . . , αmso

umso
span Rn. Then µα,u is the surface area

measure of a polytope with nonempty interior. We let K̂H
so be the output polytope

from Algorithm MinkData (see [6, Sec. A.4]) that reconstructs a polytope with
surface area measure µα,u from (α,u). In all three cases, the surface area measure
of K̂H

so is µα,u, so K̂H
so minimizes Dso .

As so ≥ 2, it follows from Lemma 5.2 and the uniqueness statement of Lemma 6.2
that if µα,u is not a surface area measure of a convex body, then the same holds
for every measure in M0 that minimizes Dso . Hence, the mapping Dso does not
attain its infimum on Kn, and there does not exist a convex body with harmonic
intrinsic volumes that fit the measurements ψson−1(K0) + εso in a least squares sense.
In this case, the reconstruction algorithm does not have an output. By Lemma 6.3
in Section 6.2, this situation only occurs when the measurements are too noisy. The
reconstruction algorithm is summarized in the following.

Algorithm Harmonic Intrinsic Volume LSQ (n-dim)

Input: Measurements ψson−1(K0)+εso of the harmonic intrinsic volumes up to degree
so ≥ 2 of an unknown convex body K0 ∈ Knn.

Task: Construct a polytope K̂H
so with at most mso facets such that the harmonic

intrinsic volumes up to order so of K̂H
so fit the measurements ψson−1(K0) + εso in

a least squares sense.
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Action: Let (a,v) be a solution to the minimization problem

inf
(α,u)∈Mso

so∑

s=0

N(n,s)∑

j=1

(
ψ(n−1)sj(K0) + εsj −

mso∑

l=1

αlHnsj(ul)
)2
.

Case 1: If a = 0, let K̂H
so = {0}.

Case 2: If µa,v = α(δu + δ−u) for some α > 0 and u ∈ Sn−1, let K̂H
so be a

polytope in u⊥ with surface area α.
Case 3: If a1v1, . . . , amso

vmso
span Rn, then (a,v) corresponds to the surface

area measure of polytope P ∈ Knn. Use Algorithm MinkData to recon-
struct P , and let K̂H

so = P .
Case 4: Otherwise, the solution (a,v) does not correspond to a surface area

measure of a convex body. The algorithm has no output.

6.2 Consistency of the reconstruction algorithm

Let (Ω,F ,P) be a complete probability space where the vectors of noise variables
(εso)so≥2 are defined. We assume that the noise variables are independent with zero
mean and that the variance of εsoj is bounded by σ2

so > 0 for so ≥ 2 and j =
1, . . . ,mso . In the following, for so ≥ 2, we write

Dso(·, εso) = ‖ψson−1(K0) + εso − ψson−1(·)‖2

to emphasize the dependence of Dso on εso , and we let rK0 = r
2
and RK0 = 2R,

where r and R are defined as in (5.5) with K replaced by K0.

Lemma 6.3. There exists a constant cK0 > 0 such that any measure µ ∈ M0 that
minimizes Dso(·, εso) is the surface area measure of a convex body Kµ ∈ Kn(rK0 , RK0)
if ‖εso‖ < cK0.

Proof. If µ ∈M0 minimizes Dso(·, εso), then
‖ψ2

n−1(K0)− ψ2
n−1(µ)‖ ≤ ‖ψson−1(K0) + εso − ψson−1(µ)‖+ ‖εso‖

≤
√
Dso(K0, εso) + ‖εso‖ = 2‖εso‖.

The second order moments of µ depend linearly on ψ2
n−1(µ), and the eigenvalues of

the matrix of second order moments M(µ) of µ depend continuously on M(µ), see
[15, Prop. 6.2], so for each α > 0,

|λmin(M(Sn−1(K0, ·)))− λmin(M(µ))| < α (6.4)

if ‖εso‖ is sufficiently small. Here λmin(A) denotes the smallest eigenvalue of a sym-
metric matrix A. Due to Lemma 5.2 (i), we have λmin(M(Sn−1(K0, ·))) > 0 as K0

has nonempty interior, soM(µ) is positive definite if ‖εso‖ is sufficiently small. Then
µ is a surface area measure of a convex body Kµ ∈ Knn by Lemma 5.2. Due to trans-
lation invariance of K 7→ Sn−1(K, ·), we can choose Kµ with centre of mass at the
origin. Then by Lemma 5.4, (6.4) and the fact that

|S(K0)− S(Kµ)| = √ωn‖ψ0
n−1(K0)− ψ0

n−1(µ)‖ ≤ 2
√
ωn‖εso‖,

we even have that rK0B
n ⊆ Kµ ⊆ RK0B

n if ‖εso‖ < cK0 , where cK0 > 0 is chosen
sufficiently small.
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We let Kso(εso) be the random set of convex bodies that minimize Dso(·, εso), i.e.

Kso(εso) =
{
K ∈ Kn | Dso(K, εso) = inf

L∈Kn
Dso(L, εso)

}
.

By Equation (6.1), the set Kso(εso) is nonempty if and only if Algorithm Harmonic
Intrinsic Volume LSQ has an output. Let g : Kn × Rmso → R be given as g(K, x) =
infL∈Kn Dso(L, x)−Dso(K, x) for K ∈ Kn and x ∈ Rmso , then

{
Kso(εso) 6= ∅

}
=
{

sup
K∈Kn

1{0}(g(K, εso)) = 1
}
⊆ Ω,

and for α ∈ R, we have
{

sup
K∈Kso (εso )

δt(K0, K) ≤ α
}

=
{

sup
K∈Kn

δt(K0, K)1{0}(g(K, εso)) ≤ α
}
∩
{

sup
K∈Kn

1{0}(g(K, εso)) = 1
}
,

where the supremum over the empty set is defined to be ∞. Using the nota-
tion of permissible sets, see [11, App. C] and arguments as in [9, p. 27], we ob-
tain that supK∈Kn δt(K0, K)1{0}(g(K, εso)) and supK∈Kn 1{0}(g(K, εso)) are F -B(R)-
measurable. Then {

sup
K∈Kso (εso )

δt(K0, K) ≤ α
}
∈ F

for α ∈ R, which implies that supK∈Kso (εso )
δt(K0, K) is measurable.

Theorem 6.4. Assume that σ2
so = O(s

−(2n−1+ε)
o ) for some ε > 0. Then

sup
K∈Kso (εso )

δt(K0, K)→ 0

almost surely for so →∞.

Proof. It follows from the assumption on σ2
so that mso‖εso‖2 → 0 almost surely for

so →∞ as

∞∑

so=2

Emso‖εso‖2 =
∞∑

so=2

mso

mso∑

j=1

Eε2soj ≤
∞∑

so=2

m2
soσ

2
so <∞,

where we have used that mso = O(sn−1o ) to obtain the last inequality. Now choose
cK0 according to Lemma 6.3 and let ω ∈ Ω satisfy that mso‖εso(ω)‖2 → 0 for
so →∞. Then, there exists an S ∈ N such that √mso‖εso(ω)‖ < cK0 for so > S. In
particular, ‖εso(ω)‖ < cK0 for so > S, so by Lemma 6.2 and Lemma 6.3 there is an
output polytope of Algorithm Harmonic Intrinsic Volume LSQ. Then, for so > S,
the set Kso(εso(ω)) is nonempty, and K + xK ∈ Kn(rK0 , RK0) for K ∈ Kso(εso(ω))
and a suitable xK ∈ Rn. Since

‖ψson−1(K0)− ψson−1(K)‖ ≤ ‖ψson−1(K0) + εso(ω)− ψson−1(K)‖+ ‖εso(ω)‖
≤
√
Dso(K0, εso(ω)) + ‖εso(ω)‖ = 2‖εso(ω)‖
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for K ∈ Kso(εso(ω)), the translation invariance of K 7→ Sn−1(K, ·) and Theorem 4.3
yield that

sup
K∈Kso (εso (ω))

dD(Sn−1(K0, ·), Sn−1(K, ·))

≤ c(n,RK0 ,
1
3
)s
− 1

3
o + 2

√
ωnmso‖εso(ω)‖ → 0

for so →∞. Hence, [7, Lemma 9.5] and [12, Thm. 8.5.3] imply that

sup
K∈Kso (εso (ω))

δt(K0, K)→ 0

for so →∞.

Theorem 6.5. Assume that σ2
so = O(s

−(2n−2+ε)
o ) for some ε > 0. Then

sup
K∈Kso (εso )

δt(K0, K)→ 0

in probability for so →∞.

Markov’s inequality and the assumption that σ2
so = O(s

−(2n−2+ε)
o ) imply that

mso‖εso‖2 → 0 in probability for so → ∞. Then, Theorem 6.5 follows in the same
way as Theorem 6.4.

Theorems 6.4 and 6.5 yield that the reconstruction algorithm gives good approx-
imations to the shape of K0 for large so under certain assumptions on the variance
of the noise variables. To test how noise affects the reconstructions for small so, the
ellipsoid in Figure 5 is reconstructed from harmonic intrinsic volumes up to degree
6. For k ∈ N0, the dimension of H3

k is 2k + 1, and to derive the harmonic intrinsic
volumes, we use the orthonormal basis of H3

k given by

H3k(2j+1)(u(θ, φ)) = αkj sinj(θ)C
j+ 1

2
k−j (cos(θ)) cos(jφ), 0 ≤ j ≤ k

and
H3k(2j)(u(θ, φ)) = αkj sinj(θ)C

j+ 1
2

k−j (cos(θ)) sin(jφ), 1 ≤ j ≤ k,

where αkj ∈ R is a normalizing constant, Cλ
l , l ∈ N0, λ > 0 are Gegenbauer

polynomials and u(θ, φ) = (sin(θ) sin(φ), sin(θ) cos(φ), cos(θ)) for 0 ≤ θ ≤ π and
0 ≤ φ ≤ 2π, see [4, Sections 1.2 and 1.6.2].

The harmonic intrinsic volumes are subject to an increasing level of noise. The
first plot in Figure 6 is a reconstruction based on exact harmonic intrinsic volumes,
whereas the reconstructions in the second and third plot are based on harmonic
intrinsic volumes disrupted by noise. The variance of the noise variables is σ2

2 = 1 in
the second plot and σ2

3 = 4 in the third plot. Then the standard deviations σ2 and σ3
of the noise variables are approximately 5% and 10% of ψ201(K0), respectively. For
the three levels of noise, the minimization problem (6.3) is solved using the fmincon
procedure provided by MatLab and Algorithm MinkData is applied to reconstruct
a polytope corresponding to the solution.
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Figure 5: Ellipsoid

Figure 6: Reconstructions of the ellipsoid in Figure 5 based on noisy measurements of
harmonic intrinsic volumes up to degree so = 6. In the three plots, the variances of the
noise variables are 0, 1 and 4.

The three plots in Figure 6 show how the reconstructions deviate increasingly
from the ellipsoid as the variance of the noise variables increases. The reconstruction
based on exact harmonic intrinsic volumes captures essential features of the ellipsoid.
The reconstruction is approximately invariant under rotations around the third axis
and has the same main directions and semi axes lengths as the ellipsoid. Despite a
noise level corresponding to 5% of ψ201(K0), the reconstruction in the second plot
captures to some extent the same features and provides a fairly good approximation
of the ellipsoid. The reconstruction in the third plot is comparable to the ellipsoid.
However, the effect of noise is clearly visible.
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