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Résumé på dansk

Denne afhandling består af tre artikler om Diofantisk approksimation, en undergren af
talteori. Før disse artikler er der en introduktion til forskellige aspekter af Diofantisk
approksimation og formelle Laurent rækker over Fq, samt en opsummering af hver af
de tre artikler.

Introduktionen indfører de grundlæggende begreber som artiklerne bygger på.
Blandt andet indføres metrisk Diofantisk approksimation, Mahlers tilgang til algeb-
raisk approksimation, Hausdorff målet og egenskaber ved de formelle Laurent rækker
over Fq. Introduktionen afsluttes med en diskussion af Mahlers problem betragtet i
de formelle Laurent rækker over F3.

Den første artikel omhandler intrinsisk Diofantisk approksimation i Cantor mæng-
den i de formelle Laurent rækker over F3. Opsummeringen indeholder en kort motiv-
ation, resultaterne fra artiklen og skitser af beviserne, hovedsageligt med fokus på de
anvendte ideer. Bevisernes detaljer er i artiklen.

Den anden artikel omhandler højere dimensionel Mahler approksimation. Opsum-
meringen følger den samme struktur som i tilfældet med den første artikel.

Den tredje artikel omhandler forvrænget inhomogen Diofantisk approksimation i
de formelle Laurent rækker over Fq. Opsummeringen består af to forskellige dele.
Den første del omhandler et mislykket forsøg på at anvende dynamiske metoder til at
opnå resultater og er ikke en del af artiklen. Den forklarer hvordan det reelle tilfælde
virker og hvad der går galt i tilfældet med formelle Laurent rækker. Den anden del
indeholder artiklens resultater og skitser af beviserne.
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Abstract in English

This thesis consists of three papers in Diophantine approximation, a subbranch of
number theory. Preceding these papers is an introduction to various aspects of Dio-
phantine approximation and formal Laurent series over Fq and a summary of each of
the three papers.

The introduction introduces the basic concepts on which the papers build. Among
other it introduces metric Diophantine approximation, Mahler’s approach on algebraic
approximation, the Hausdorff measure, and properties of the formal Laurent series
over Fq. The introduction ends with a discussion on Mahler’s problem when considered
in the formal Laurent series over F3.

The first paper is on intrinsic Diophantine approximation in the Cantor set in the
formal Laurent series over F3. The summary contains a short motivation, the results
of the paper and sketches of the proofs, mainly focusing on the ideas involved. The
details of the proofs are in the paper.

The second paper is on higher dimensional Mahler approximation. The summary
follows the same structure as in the case of the first paper.

The third paper is on twisted inhomogeneous Diophantine approximation in the
formal Laurent series over Fq. The summary consists of two distinct parts. The first
part is about a failed attempt of applying dynamical methods to obtain results and is
not part of the paper. It explains the ideas of how the real case works and what goes
wrong in the case of the formal Laurent series. The second part contains the results
of the paper and sketches of the proofs.
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Preface

“Try a hard problem. You may not solve it, but
you will prove something else.”

— J. E. Littlewood

Does the Cantor set contain any irrational algebraic numbers? In [20] Mahler
proposed this problem, and we expect the answer to be no.

In number theory we have an unofficial way of making conjectures about algebraic
numbers: An algebraic number behave like almost all real numbers, unless it has a
good reason not to. Since almost all numbers are normal, and rational numbers are
clearly not normal, we get the conjecture, that all irrational algebraic numbers are
normal, which would imply a no to Mahler’s problem.

Mahler’s problem is a hard problem! I started out my PhD trying to solve it, and
as will be apparent once you have read this thesis, I did not succeed, but I did find
something else along the way!

The thesis is divided into three parts: The first part is a general introduction to
some main concepts in Diophantine approximation and formal Laurent series over Fq.
The second part is summaries of the three papers resulting from my PhD, and the
final part is these three papers.

There are some people I would like to thank, people who have had a great impact
on my PhD: My family, who have provided an abundance of moral support and interest
in my project. My co-authors Simon Kristensen, Barak Weiss, Efrat Bank and Erez
Nesharim, whose various insights and expertises have complemented my insight and
expertise, producing results better than I could have obtained on my own. Finally,
and again, my supervisor Simon Kristensen who have not only been a guidance and
a support, but a colleague and a friend.

Steffen Højris Pedersen, Aarhus
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1 Introduction

The introduction has two sections: Diophantine approximation and formal Laurent
series. Diophantine approximation is the study of how well real numbers can be
approximated by rational numbers, and other similar questions. My PhD is in Dio-
phantine approximation, so the first section will be a short overview of some of the
relevant concepts in Diophantine approximation, concepts that build the foundation
for the research I have done.

The second section is about formal Laurent series over Fq, denoted Fq((X−1)).
Fq((X−1)) is an analytic, algebraic construction, that have enough properties in com-
mon with R, that the concepts from Diophantine approximation over R can be trans-
lated to this setting. On the other hand, R and Fq((X−1)) behave differently enough,
that Fq((X−1)) is interesting enough to study in its own right, at least from the Dio-
phantine approximation point of view. A big part of my PhD have been about doing
exactly this.

At the end of the introduction I will discuss Mahler’s problem when studied in
F3((X−1)).
1.1 Diophantine approximation

Beginnings

Most expositions on Diophantine approximation begin with the following theorem of
Dirichlet [9], which is the first application of the Pigeonhole Principle.

Theorem 1 (Dirichlet’s Theorem). For any α ∈ R, N ∈ N, there exist p, q ∈ Z,
0 < q ≤ N , such that

∣α − p
q
∣ < 1

Nq
.

Dirichlet’s Theorem is the start of Diophantine approximation and improves on
the statement, that Q is dense in R. More precisely, for any α ∈ R it guarantees a
rational approximation p

q sufficiently close to α in terms of the complexity of p
q , in

this case 0 < q ≤ N .
As a corollary of Dirichlet’s Theorem, or from the theory of continued fractions,

we get the following:

Corollary 2. For any α ∈ R, there exist infinitely many p
q ∈ Q, such that

∣α − p
q
∣ < 1

q2
.

1



2 Chapter 1. Introduction

The question of whether there exist infinitely many (from now on abbreviated
i.m.) numbers satisfying a certain property is one of the main topics in Diophant-
ine approximation, and hence a large part of Diophantine approximation deals with
variations of the corollary.

One way this is done, is by interpreting the right hand side of the inequality as
a function in q, and then ask what happens if we substitute with another function
ψ ∶ R+ → R+, that is whether

∣α − p
q
∣ < ψ(∣q∣)

for i.m. p
q ∈ Q. The most studied example of this is with the functions ψτ(q) = q−τ

where τ ∈ [2,∞).
Another variation is by approximating with other numbers than Q. Let A ⊆ R

and H ∶ A→ R a so called height function. Consider whether

∣α − a∣ < ψ(H(a))
for i.m. a ∈ A. Classical examples of A is subsets of Q with the usual height function
H(pq ) = ∣q∣ or An, algebraic numbers of degree at most n, with H(a) = H(P ) =
max{∣am∣ , . . . , ∣a1∣ , ∣a0∣}, where P (X) = amXm + ⋅ ⋅ ⋅ + a1X + a0 ∈ Z[X] is the minimal
polynomial of a.

Finally, a variation is done by looking only at specific α like e, π or algebraic
irrational numbers.

Where Dirichlet’s Theorem is seen as the beginning of Diophantine approximation,
the following theorem by Khintchine [11] is seen as the start of metric Diophantine
approximation. We let λ be the Lebesgue measure.

Theorem 3 (Khintchine’s Theorem). Let Ψ ∶ R≥1 → R>0 be a continuous function,
such that x↦ x2ψ(x) is non-increasing. Let

W (Ψ) = {ξ ∈ [0,1] ∶ ∣ξ − p
q
∣ < ψ(q), for i.m.

p

q
∈ Q}.

Then

λ(W (Ψ)) = ⎧⎪⎪⎨⎪⎪⎩
0 if ∑∞

n=1 nΨ(n) < ∞,
1 if ∑∞

n=1 nΨ(n) = ∞.
In metric Diophantine approximation we attempt to determine the generic or

almost all behaviour of numbers in regard to the questions from Diophantine approx-
imation. This is among other achieved by invoking the methods and results from
measure theory, ergodic theory and measurable dynamical systems. Even though
metrical methods are quite powerful, the results are often quite unsatisfactory. My
favourite example of this comes from normality of numbers.

Example. Let b ≥ 2 be an integer. Every ξ ∈ R has an unique base b expansion

ξ = [ξ] + ∞∑
i=1

ai
bi
,
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where ai ∈ {0, . . . , b − 1} and for each N ∈ N, there exists an i ≥ N , such that ai ≠ b−1.
ξ is called simply normal to base b, if

lim
N→∞

#{1 ≤ i ≤ N ∶ ai = d}
N

= 1

b

for every d ∈ {0, . . . , b − 1}. It is called normal, if it is simply normal to base b, b2, b3, . . .
An alternative characterisation of normality to base b is that the sequence {bnξ}∞n=0

is uniformly distributed modulo one. Since the map Tb ∶ T → T ∶ x ↦ bx mod 1 is
ergodic, it follows from the Pointwise Ergodic Theorem, that {bnξ}∞n=0 is uniformly
distributed modulo one for almost all ξ ∈ R. In particular almost all ξ ∈ R is simultan-
eously normal to all bases b ≥ 2. In spite of this fact, we have no concrete examples
of numbers satisfying this.

The irrationality measure and algebraic approximation

For a ξ ∈ R we define the irrationality measure of ξ by

µ(ξ) = sup{µ ∈ R ∶ 0 < ∣ξ − p
q
∣ < 1

qµ
, for i.m. p, q ∈ Z, q ≠ 0}. (1.1)

µ(ξ) measures how much we can improve on Corollary 2, i.e. how much we can
increase the exponent 2 and still have i.m. rational approximations satisfying the
stronger inequality. For τ > 2 we let Bτ = {ξ ∈ R ∶ µ(ξ) ≥ τ}. Since ∑∞

n=1 n
1
nτ < ∞, it

follows from Khintchine’s Theorem, that λ(Bτ) = 0. In particular, µ(ξ) = 2 for almost
all ξ ∈ R.

Two questions about the irrationality measure are often studied: The first question
is for a given ξ ∈ R to determine µ(ξ). Even though a generic ξ has µ(ξ) = 2, it is
usually hard to determine µ(ξ), but it turns out, that if we have full control of
the simple continued fraction expansion of ξ, this is often doable. In fact, if ξ has
convergents {pn

qn
}∞
n=0

, we can compute the irrationality measure by

µ(ξ) = 1 + lim sup
n→∞

log(qn+1)
log(qn) .

Since we know the simple continued fraction expansion of e, we can show that µ(e) = 2,
and hence e is generic in this respect. The second question is for a subset A ⊆ R to
determine the spectrum {µ(a) ∶ a ∈ A}. For ξ ∈ Q we have, that µ(ξ) = 1, and the
spectrum of R ∖Q is [2,∞]. The first question is just a special case of the second.

So far we have only been concerned with rational approximation, but the irration-
ality measure is a good way of illustrating the two different ways of generalising to
algebraic approximation. First, let us slightly rewrite the irrationality measure as

µ(ξ) = sup{µ ∈ R ∶ 0 < ∣P (ξ)∣ < H̃(P )−(µ−1), for i.m. P ∈ Z[X],degP = 1} , (1.2)

where for polynomials P (X) = anXn + ⋅ ⋅ ⋅ + a1X + a0, H̃(P ) = max{∣an∣ , . . . , ∣a1∣} is a
non-standard height.

This shows that rational approximation can either be seen as a question about
distance to rational numbers, or a question about evaluating the number in degree



4 Chapter 1. Introduction

one integer polynomials. In this way we can generalise to algebraic approximation in
two different ways.

The polynomial approach to algebraic approximation was done by Mahler in [18].
For ξ ∈ R, n ∈ N, we define

ωn(ξ) = sup{ω ∈ R ∶ 0 < ∣P (ξ)∣ <H(P )−ω, for i.m. P ∈ Z[X],degP ≤ n} ,
where for a polynomial P (X) = anXn+⋅ ⋅ ⋅+a1X+a0, we let H(P ) = max{∣an∣ , . . . , ∣a0∣}
be the height of P . ωn(ξ) naturally generalises (1.2), and in particular ω1(ξ) = µ(ξ)−1
for all ξ ∈ R.

The distance approach to algebraic approximation was done by Koksma in [15].
For ξ ∈ R, n ∈ N, we define

ω∗n(ξ) = sup{ω ∈ R ∶ 0 < ∣ξ − α∣ <H(α)−ω−1, for i.m. α ∈ An} ,
where the height of α, H(α) =H(P ), where P is the minimal polynomial of α. ω∗n(ξ)
generalises (1.1), and again ω∗1(ξ) = µ(ξ) − 1 = ω1(ξ).

In general ωn(ξ) and ω∗n(ξ) do not agree, but for a generic ξ we have ωn(ξ) =
ω∗n(ξ) = n, a result of Sprindžuk [29]. Just as in the case of the irrationality measure,
it turns out that e is generic, that is ωn(e) = ω∗n(e) = n for any n ∈ N. This follows
from a result by Popken [24].

In connection with discussing algebraic approximation, we will also discuss ap-
proximation of algebraic numbers. As mentioned in the preface, we expect algebraic
numbers to behave like almost all numbers, unless they have a good reason not to. In
particular, since µ(ξ) = 2 for almost all ξ ∈ R, and µ(ξ) = 1 for ξ ∈ Q, we expect algeb-
raic irrational numbers to have irrationality measure 2. This is a celebrated result of
Roth [25].

Theorem 4 (Roth’s Theorem). Let α ∈ R be an algebraic irrational number. Then

µ(α) = 2.

When doing algebraic approximation of algebraic numbers, it turns out, that they
are generic when approximating with algebraic numbers of lower degree, but not when
approximating with the same or higher degree. For α ∈ R algebraic of degree d, we
have that ωn(α) = ω∗n(α) = min{n, d − 1}. This is a huge improvement on Roth’s
Theorem, and essentially follows from Schmidt’s Subspace Theorem [26].

Hausdorff measure and Hausdorff dimension

Sometimes, in metric Diophantine approximation, we need a more refined notion on
the size of a set, as sets of zero measure can still be rather big. One way this is done is
by introducing the Hausdorff measure and the Hausdorff dimension. The construction
closely follows Carathéodory’s construction of the Lebesgue measure λd. For B ⊆ Rd

we define the diameter of B by

diamB = sup{∥x − y∥ ∶ x, y ∈ B} .
Furthermore, for δ > 0 we define a δ-cover of B to be a countable collection of sets{Un}∞n=1, such that B ⊆ ⋃∞

n=1Un, and for each n ∈ N, diam(Un) ≤ δ.



1.1. Diophantine approximation 5

For s ≥ 0 we define

Hsδ(B) = inf { ∞∑
n=1

(diamUn)s ∶ {Un}∞n=1 is a δ-cover of B},
and the Hausdorff s-measure by

Hs(B) = lim
δ→0
Hsδ(B).

Hs is an outer measure, and restricted to B(Rd) it is a measure. Furthermore,
it has the right scaling factor in the sence, that for ξ > 0, B ⊆ Rd, if we define
ξB = {ξb ∶ b ∈ B}, then Hs(ξB) = ξsHs(B).

It turns out, that for each set B, there is only one value of s whereHs is interesting.
To be more precise, there exist a s0, such that for r < s0 and s0 < t, we have respectivelyHr(B) = ∞ and Ht(B) = 0. At s0 we can have Hs0(B) = 0, Hs0(B) = ∞ or anything
in between. The point s0 is called the Hausdorff dimension of B, and we write that
as dimH B.

The Hausdorff d-measure is comparable with λd. In particular, for B ∈ B(Rd)
with λd(B) > 0 we have dimH B = d. We can now use the Hausdorff dimension as
a refined way of understanding the size of Lebesgue null sets. A good example of
this is the following theorem of Jarník [10]. Remember, that for each τ > 2 the set
Bτ = {ξ ∈ R ∶ µ(ξ) ≥ τ} is a Lebesgue null set. Jarník’s Theorem tells the size of Bτ in
terms of Hausdorff dimension.

Theorem 5 (Jarník’s Theorem). Let τ > 2 and let Bτ = {ξ ∈ R ∶ µ(ξ) ≥ τ}. Then
dimH Bτ = 2

τ .

Sometimes, we need an even more refined way of understanding the size of a set.
Let f be a dimension function, that is f ∶ R≥0 → R≥0 is continuous, increasing and
satisfying f(0) = 0. The standard example of such a function is for s > 0 the function fs
given by fs(x) = xs. We can now modify the construction of the Hausdorff s-measure
to a larger class of measures. For δ > 0 we define

Hfδ (B) = inf { ∞∑
n=1

f (diamUn) ∶ {Un}∞n=1 is a δ-cover of B},
and the Hausdorff f -measure by

Hf(B) = lim
δ→0
Hfδ (B).

Example. Let L be the set of Liouville numbers, that is the set

L = {ξ ∈ R ∶ µ(ξ) = ∞} .
From Jarník’s Theorem we get that dimH L = 0. For a dimension function f we

define the function Γf ∶ R≥0 → R≥0 by

Γf(r) = inf
0<s≤r r

f(s)
s

.
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A result of Olsen and Renfro [21] then tells, that

Hf(L) = ⎧⎪⎪⎨⎪⎪⎩
0 if lim supr↘0

Γf (r)
rt = 0 for some t > 0,∞ if lim supr↘0

Γf (r)
rt > 0 for all t > 0.

From this we obtain a much more precise understanding of the size of L than just
that dimH L = 0. If we use the result on the function fs for s ∈ (0,1), we have that
Γfs(r) = fs(r) and

Γfs(r)
rs/2 = rs/2 → 0 as r ↘ 0,

so Hs(L) = 0. From this we get dimH L = 0, but the strength of the result is, that for
any dimension function f we get the Hausdorff f -measure, and hence the result tells
the exact “cut point” where the measure drops from ∞ to 0.

1.2 The formal Laurent series over Fq
Something that looks like R
Let q be a power of the prime p, and let Fq be the finite field with q elements. The
formal Laurent series over Fq behave similarly enough to R, that the questions arising
in Diophantine approximation can be asked, but it also behave different enough, that
it is interesting to study in its own right. It is constructed in the following way:

Let Fq[X] be the polynomial ring over Fq. Fq[X] and Z share a lot of structure,
and Fq[X] can be seen as an analogue of Z. They are both Euclidian rings, and where
Z has the normal absolute value, we can equip Fq[X] with an absolute value, letting∣0∣ = 0 and for non-zero polynomials f , we let

∣f ∣ = qdeg f .

From Fq[X] we can, like in the case of Z, construct the field of fractions, giving
the rational functions Fq(X) as an analogue of Q. Furthermore, we can extend the
absolute value on Fq[X] to Fq(X), by

∣f
g
∣ = qdeg f−deg g.

When we have a field with an absolute value, we can make the completion. In the
case of Q with the normal absolute value, we get R. When we take the completion
of Fq(X) with respect to the above constructed absolute value, we get the formal
Laurent series over Fq, denoted Fq((X−1)). This turns out to be the set

{ ∞∑
i=−N aiX

−i ∶ ai ∈ Fq, a−N ≠ 0} ∪ {0} .
The absolute value for non-zero elements turn out to be

∣ ∞∑
i=−N aiX

−i∣ = qN .
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Fq((X−1)) is a locally compact field, which implies that we have a Haar measure.
We normalise it to be 1 on the unit ball around 0,

I = {x ∈ Fq((X−1)) ∶ ∣x∣ < 1} = { ∞∑
i=1

aiX
−i ∶ ai ∈ Fq},

using the standard convention, that if all the ai = 0 we have the zero element.
The fact that we have a measure enables us to do metric Diophantine approx-

imation. Furthermore, the construction of the Hausdorff measure and Hausdorff di-
mension only requires an absolute value, and hence carries through to the setting of
formal Laurent series over Fq. The theory of continued fraction also carries over to
this setting since Fq[X] is an Euclidean ring. This was done by Artin [2] and the
theory become slightly simpler.

An introduction to formal Laurent series over Fq would not be complete without
also explaining how it behave differently from R, and hence is interesting in its own
right. There are essentially two properties that make it behave significantly different
from R. First, the absolute value, and hence the induced metric, is ultrametric,
meaning that it satisfies the strong triangle inequality

∣x + y∣ ≤ max{∣x∣ , ∣y∣}
for all x, y ∈ Fq((X−1)). This inequality is the reason that the geometry of Fq((X−1))
behave different from the geometry of R. For instance two balls have either non-empty
intersection, or one is completely contained in the other. Another consequence is that
every triangle is isosceles.

When doing Diophantine approximation in the real case, we often get crucial
estimates by doing geometric considerations. In the formal Laurent series case, the
fact that the geometry is different from usual, disenables us to get the estimates in
this way. Instead, a way to get these estimates, is to use that the ultrametric property
gives a tree like structure on the open balls, and hence estimates can be obtained by
counting arguments.

Second, the fact that Fq has characteristic p, is carried over to Fq((X−1)), and as
always, there are differences between working in positive characteristic and working
in characteristic zero. In particular when taking powers, Fq((X−1)) behaves different
from R, in the sense that Freshman’s Dream hold true

(x + y)p = xp + yp
for all x, y ∈ Fq((X−1)). This plays a central role when discussing algebraicity of
formal Laurent series over Fq.

Mahler’s problem in F3((X−1))
Let us try to tackle Mahler’s problem, but in the formal Laurent series over F3: Let
α be an algebraic formal Laurent series in the Cantor set. Is α a rational function?

For the question to make sense, we need to define both what we mean by algebraic
formal Laurent series and by the Cantor set.

An α ∈ R is algebraic, if there exists a polynomial P ∈ Z[Y ], such that P (α) = 0.
Using that Fq[X] is an analogy of Z, we call an α ∈ Fq((X−1)) algebraic, if there exists
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a polynomial P ∈ Fq[X][Y ], such that P (α) = 0. As in the real case, the degree of α
is min{degY (P ) ∶ P ∈ Fq[X][Y ], P (α) = 0}, and there is no restriction in considering
polynomials P ∈ Fq(X)[Y ].

The Cantor set in the real case is

C = { ∞∑
i=1

ai3
−i ∈ R ∶ ai ∈ {0,2}},

so if we loosely speaking move to the world of formal Laurent series over F3, we let
3 =X, and get an analogue of the Cantor set by

C = { ∞∑
i=1

aiX
−i ∈ F3((X−1)) ∶ ai ∈ {0,2}}.

We can now formulate Mahler’s problem: Let α ∈ C be algebraic. Does this imply
that α ∈ F3(X)?

The answer is no as the following example show:

Example. Let

α = ∞∑
n=0

X−3n =X−1 +X−3 +X−9 +⋯
From Freshman’s Dream we get

α3 = ∞∑
n=0

X−3n+1 = α −X−1,

and hence
α3 − α +X−1 = 0.

It can be checked, that Y 3 − Y +X−1 is irreducible, and hence α is algebraic of
degree 3. Now, 2α ∈ C is also algebraic of degree 3 giving the counter example.

The existence of α was known to Mahler, as he used it as a counter example to
Roth’s Theorem in the formal Laurent series over finite fields [19].

By modifying the argument, we can construct algebraic formal Laurent series inC of degree 9, 27, and so forth. But can we find algebraic formal Laurent series inC of degrees not a power of the characteristic 3, or are these degrees the only ones
producing counterexamples to Mahler’s problem? The answer to this is also no, as
the following example constructs a degree 2 algebraic formal Laurent series in C:
Example. For i ∈ N0 define ci to be 0 if i written to base 3 contains an 1, and 1
otherwise. Note, that c3i = ci, c3i+1 = 0 and c3i+2 = ci. Let

C = ∞∑
i=0

ciX
−i,

and compute

C = ∞∑
i=0

c3iX
−3i + ∞∑

i=0

c3i+1X
−(3i+1) + ∞∑

i=0

c3i+2X
−(3i+2)

= ∞∑
i=0

ciX
−3i +X−2

∞∑
i=0

ciX
−3i

= ( ∞∑
i=0

ciX
−i)3 +X−2 ( ∞∑

i=0

ciX
−i)3

= C3 +X−2C3.
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So we have (1 +X−2)C3 − C = 0,

and since C ≠ 0, we have (1 +X−2)C2 − 1 = 0.

Again, it can be shown, that (1+X−2)Y 2−1 is irreducible, and hence C is algebraic
of degree 2. Finally, 2X−1C ∈ C is algebraic of degree 2.

C is called the Cantor Laurent series, and the construction is taken from the book
of Allouche and Shallit [1].

The two examples lead to the following natural and still open question:

Question. Does there for any d ∈ N, exists an α ∈ C algebraic of degree d?

In the literature there are several results connecting the coefficients of an α ∈
Fq((X−1)), to whether α is algebraic, most famously the following theorem by Christol
[8].

Theorem 6 (Christol’s Theorem). Let

α = ∞∑
i=0

aiX
−i

be a formal Laurent series over Fq. Then α is algebraic if and only if {ai}∞i=0 is an
automatic sequence.

A sequence {ai}∞i=0 is automatic, or more precisely q-automatic, if there exists a
finite automaton with states Fq, such that for each n, an is the output, when given n
written to base q as input. For more information see the book [1].

All of these results have the restriction, that they only tell whether α is algebraic,
but not what the degree is. By analysing the proofs we can sometimes get an upper
bound on the degree of α, but for answering the question, these results are insufficient.

I see two ways of approach for answering the question. Either we explicitly con-
struct algebraic formal Laurent series having the desired degree, or we develop theory
to get sufficient control of both the degree of the algebraic formal Laurent series, as
well as the coefficients.





2 Summaries of the papers

There are three papers resulting from my PhD. The paper “A Cantor set type result
in the field of formal Laurent series” is published in Functiones et Approximatio
Commentarii Mathematici [22], the paper “Some remarks on Mahler’s classification
in higher dimension” is to appear in Moscow Journal of Combinatorics and Number
Theory [16], and the paper “Solution of Cassels’ Problem on a Diophantine Constant
over Function Fields” is to appear in International Mathematics Research Notices [3].

The paper “Some remarks on Mahler’s classification in higher dimension” is written
together with Simon Kristensen and Barak Weiss and the paper “Solution of Cassels’
Problem on a Diophantine Constant over Function Fields” is written together with
Efrat Bank and Erez Nesharim. My contribution to these papers is proportional.

2.1 A Cantor set type result in the field of formal
Laurent series

As in the previous chapter, we let C be the Cantor set in R and C the Cantor set in
F3((X−1)). We let γ = log(2)

log(3) , which turns out to be the Hausdorff dimension of both
C and C. Furthermore, Hγ(C) = Hγ(C) = 1.

This paper is about understanding C with respect to rational approximation. More
precisely it is about intrinsic well approximation in C i.e. how well can elements in C
be approximated by rational functions in C.

In the real case, we would for an approximation function Ψ ∶ R≥0 → R≥0 be inter-
ested in the set

W (Ψ) = {α ∈ C ∶ ∣α − p
q
∣ < Ψ(q) for i.m.

p

q
∈ C}.

Understanding W (Ψ) is hard, because we need to simultaneously control both the
base 3 expansion of a fraction to check whether it is in C, as well as the height of
the fraction. In an ideal world all fractions in C would be endpoints of the intervals
in the construction, and hence on the form p

3n , in which case control would be easier.
This is not the case as 1

4 ∈ C.
Instead we consider the set

WC(Ψ) = {α ∈ C ∶ ∣α − p

3n
∣ < Ψ(3n) for i.m.

p

3n
∈ C},

where we only approximate by the endpoints from the construction of C, and we can
to some extend control the approximations.

Studying WC(Ψ) was done by Levesley, Salp and Velani in [17], where they estab-
lished the following:

11
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Theorem 7. Let f be a dimension function such that r−γf(r) is monotonic. Then

Hf(WC(Ψ)) = ⎧⎪⎪⎨⎪⎪⎩
0 if ∑∞

n=1 f(Ψ(3n)) × (3n)γ < ∞,Hf(C) if ∑∞
n=1 f(Ψ(3n)) × (3n)γ = ∞.

In particular for f(x) = xγ, we get

Hγ(WC(Ψ)) = ⎧⎪⎪⎨⎪⎪⎩
0 if ∑∞

n=1 (Ψ(3n) × 3n)γ < ∞,
1 if ∑∞

n=1 (Ψ(3n) × 3n)γ = ∞.
We let ψ ∶ {3n ∶ n ∈ N} → {3r ∶ r ∈ Z} be an approximation function. The problem

of controlling the rational numbers in C also appear in C. In particular, 2
X2−1 ∈ C is

not coming from the endpoints of the construction of C. So for the same reason as in
the real case, we are going to study

WC(ψ) = {h ∈ C ∶ ∣h − g

XN
∣ < ψ(3N), for i.m. N ∈ N, where g ∈ F(N)},

where F(N) = {f ∈ F[X] ∶ Coeff(f) ⊆ {0,2} ,deg f < N} ,
which is the analogue of WC(Ψ).

The first part of this paper establishes the analogue of Theorem 7 in C.
Theorem 8. Let f be a dimension function such that r−γf(r) is monotonic. Then

Hf(WC(ψ)) = ⎧⎪⎪⎨⎪⎪⎩
0 if ∑∞

n=1 f(ψ(3n)) × (3n)γ < ∞,Hf(C) if ∑∞
n=1 f(ψ(3n)) × (3n)γ = ∞.

Again, in the special case f(x) = xγ, we get

Hγ(WC(ψ)) = ⎧⎪⎪⎨⎪⎪⎩
0 if ∑∞

n=1 (ψ(3n) × 3n)γ < ∞,
1 if ∑∞

n=1 (ψ(3n) × 3n)γ = ∞. (2.1)

The result generalise easily to the case of a finite field Fq in stead of F3 and a
general missing digit set.

The structure of the proof follows that of [17], but with some changes and simpli-
fications coming from the fact, that F3((X−1)) is an ultrametric field. As is often the
case in such Khintchine type theorems, the part where the series converges is easy,
and is essentially a replication of the proof of the convergent part of the Borel–Cantelli
Lemma.

For the case where the series diverge, we first prove the divergent part of (2.1),
and then a standard application of the Mass Transference Principle from [5] implies
the result. To prove the divergent part of (2.1), we look at the subset of WC(ψ),
where we only approximate with reduced rational functions.

W ∗C (ψ) = {h ∈ C ∶ ∣h − g

XN
∣ < ψ(3N), for i.m. N ∈ N, where g ∈ F∗(N)},
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where

F∗(N) = {f ∈ F[X] ∶ Coeff(f) ⊆ {0,2} ,deg f < N and f(0) = 2} .
Since W ∗C (ψ) ⊆WC(ψ) ⊆ C, it is sufficient to prove, that if ∑∞

n=1 (ψ(3n) × 3n)γ = ∞,
then Hγ(W ∗C (ψ)) = 1. We rewrite W ∗C (ψ) as a lim sup set

W ∗C (ψ) = lim sup
N→∞ A∗

N ,

where
A∗
N = ⋃

g∈F∗(N)B ( g

XN
, ψ(3N)) ∩ C.

Then we use a version of the divergent Borel–Cantelli Lemma to get, that if∑∞
n=1Hγ(A∗

n) = ∞, and {A∗
n}∞n=1 is pairwise quasi-independent, meaning that

Hγ(A∗
m ∩A∗

n) ≤ Hγ(A∗
m)Hγ(A∗

n)
for distinct m and n, then Hγ(W ∗C (ψ)) = 1.

By careful counting, and using the tree structure of balls in ultrametric spaces, we
get both the quasi-independence, and that

∞∑
n=1

Hγ(A∗
n) = ∞∑

n=1

(ψ(3n) × 3n)γ × 3−γ = ∞.
In the real case, we use geometric arguments, and are only able to prove a weaker

version of pairwise quasi-independence, that there exists a K > 1, such that

Hγ(A∗
m ∩A∗

n) ≤KHγ(A∗
m)Hγ(A∗

n)
for distinct m and n, and hence we only have Hγ(W ∗C (ψ)) > 1

K , and we need to do
some tricks to blow up to measure 1. So, as mentioned in the introduction, we have
two different ways of getting the crucial estimate.

The second part of this paper is concerned with the irrationality measure of ele-
ments in C. Whereas the first part is about the generic properties of elements in C,
the second part is about the existence of elements in C with certain properties. In
analogy to the real case, we define the irrationality measure of an element ξ by

µ(ξ) = sup{µ ∈ R ∶ ∣ξ − g
h
∣ < ∣h∣−µ for i.m.

g

h
∈ F(X)}.

We prove, that for any τ ≥ 2, there exists an element ξ ∈ C with µ(ξ) = τ . The key
ingredient is the Folding Lemma from [23], that enables us to build a ξ, where we can
simultaneously control both the Laurent series, and hence that ξ ∈ C, and the simple
continued fraction expansion, and hence the irrationality measure. The strategy of
proof follows that of Bugeaud [7], where he proves the real case counterpart of the
theorem.
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2.2 Some remarks on Mahler’s classification in
higher dimension

Whereas the previous paper was about understanding the Cantor set, this paper
leans more towards understanding algebraicity and transcendence. It is concerned
with higher dimensional Mahler approximation, a natural generalisation of Mahler
approximation. In stead of considering polynomials P ∈ Z[X] when approximating a
x ∈ R, we consider polynomials in d variables P ∈ Z[X1, . . . ,Xd] when approximating
a x ∈ Rd.

We let k ∈ N, x ∈ Rd, and as in the one dimensional case we define the exponent

ωk(x) = sup{ω ∈ R ∶ ∣P (x)∣ ≤H(P )−ω for i.m. P ∈ Z[X1, . . . ,Xd],degtotal(P ) ≤ k} .
Furthermore, throughout this summary we let n = (k+d

d
) − 1 be the number of non-

constant monomials in the variables X1, . . . ,Xd of total degree at most k. From Yu
[30] we get, that ωk(x) ≥ n for all x ∈ Rd. The proof follows closely the proof, that
ωk(x) ≥ k for all x ∈ R.

The first result of the paper deals with how many points have better approximation
than n. We say, that a point x ∈ Rd is k-very well approximable, if there exists an
ε > 0 and infinitely many polynomials P ∈ Z[X1, . . . ,Xd] of total degree at most k,
such that ∣P (x)∣ ≤H(P )−(n+ε).

It turns out, that the set of k-very well approximable points is small.

Theorem 9. Lebesgue almost all x ∈ R is not k-very well approximable. In particular,
ωk(x) = n for Lebesgue almost all x ∈ Rd.

In fact, we prove something a bit stronger, as we show it not only for the Lebesgue
measure, but for any absolutely decaying Federer measure. For the definition of
absolutely decaying Federer measure see the paper.

The next result goes in the other direction and deals with k-badly approximable
points. We call a point x ∈ Rd k-badly approximable, if there exists an C = C(k,x),
such that ∣P (x)∣ ≥ CH(P )−n,
for all non-zero polynomials P ∈ Z[X1, . . . ,Xd] of total degree at most k. If we let Bk

be the set of k-badly approximable points, then from the work of Beresnevich, Bernik,
Kleinbock and Margulis [6] it follows, that λd(Bk) = 0. On the other hand we can
show, that it has not only full dimension, but it is even thick.

Theorem 10. Let B ⊆ Rd be an open ball and let M ∈ N. Then

dimH B ∩ M⋂
k=1

Bk = d.
The next result in the paper is about (k, ε)-Dirichlet improvable points and k-

singular points. We call a point x ∈ Rd (k, ε)-Dirichlet improvable if there exists a
Q0 ∈ N, such that for any Q ≥ Q0 there exists a polynomial P ∈ Z[X1, . . . ,Xd] of total
degree at most k, such that

H̃(P ) ≤ εQ and ∣P (x)∣ ≤ εQ−n.
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From [30] it follows, that for ε ≥ 1 any point satisfies the definition, and hence
the set of (k, ε)-Dirichlet improvable points is only interesting for ε < 1. If a point is(k, ε)-Dirichlet improvable for any ε > 0, we call it k-singular.

For a k-friendly measure, for the definition see the paper, but for instance λd, we
show that for ε small enough, the set of (k, ε)-Dirichlet improvable points is a null
set.

Theorem 11. Let µ be a k-friendly measure on Rd. Then there is an ε0 = ε0(d,µ),
such that the set of (k, ε)-Dirichlet improvable points has measure zero for any ε < ε0.
In particular, the set of k-singular vectors has measure zero.

Finally, we say that a point x ∈ Rd is k-algebraic, if there exists a polynomial
P ∈ Z[X1, . . . ,Xd] of total degree at most k, such that P (x) = 0. Furthermore, we
say that a point x ∈ Rd is algebraic of total degree k, if it is k-algebraic, and x does
not vanish at any polynomial of total degree less than k.

If a point is k-algebraic, then it is also k-singular, so a relevant question is, whether
there exists a k-singular point that is not k-algebraic? At least for d ≥ 2 this turns
out to be the case. For d = 1 it is unknown.

Theorem 12. For d ≥ 2, for any k ≥ 1, there exists a k-singular point in Rd which is
not k-algebraic.

We also improve on Theorem 11 in the special case of the Lebesgue measure λd.

Theorem 13. For any d, the set of x which are (k, ε)-Dirichlet improvable for some
ε < 1 and some k, has Lebesgue measure zero.

Theorem 13 tells that in the case of the Lebesgue measure, the set

⋃
0<ε<1

{x ∈ Rd ∶ x is (k, ε)-Dirichlet improvable} ,
is a null set, whereas Theorem 11 only tells that

⋃
0<ε<ε0 {x ∈ Rd ∶ x is (k, ε)-Dirichlet improvable} ,

is a null set for some ε0 dependent on the measure. So Theorem 13 in some sense
says, that in the case of the Lebesgue measure, we can let ε grow to 1, and still have
a null set.

The final result of the paper is a higher dimensional version of Roth’s Theorem.

Theorem 14. Let α = (α1, . . . , αd) ∈ Rd be an algebraic vector of total degree more
than k. Then for any ε > 0 there are only finitely many non-zero polynomials P ∈
Z[X1, . . . ,Xd] of total degree at most k with

∣P (α)∣ <H(P )−(n+ε).
The proofs of Theorems 9, 10, 11 and 14 follow the same underlying pattern.

First, the proof is reduced to the existence of non-zero integer linear combinations of
the monomials X1,X2, . . . ,Xd−1Xk−1

d ,Xk
d , satisfying some criteria dependent on the

number of monomials, n. Second, we realise that the one dimensional version of the
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theorem is shown by using some powerful theory to establish the existence of non-
zero integer linear combinations of the monomials X,X2, . . . ,Xk satisfying the same
criteria, but this time dependent on k, the number of monomials in this case. Third,
we use the powerful theory on the monomials X1,X2, . . . ,Xd−1Xk−1

d ,Xk
d . The cost of

using it on these, is that the criteria is now dependent on n, which is exactly what we
want.

The powerful theory that is used in each of the cases is the work of Kleinbock,
Lindenstrauss and Weiss [12], Beresnevich [4], Kleinbock and Weiss [14] and Schmidt’s
Subspace Theorem [26].

The proofs of Theorems 12 and 13 is more or less direct consequences of the work
of Shah [27] and of Kleinbock and Weiss [13].

2.3 Solution of Cassels’ Problem on a Diophantine
Constant over Function Fields

This paper takes its starting point in a failed attempt to get results in twisted in-
homogeneous Diophantine approximation over the formal Laurent series over Fq, by
the help of homogeneous dynamics.

Shapira showed in [28] the following theorem on twisted inhomogeneous Diophant-
ine approximation.

Theorem 15. For any γ, δ ∈ R, Lebesgue almost all (α,β) ∈ R2 satisfy

lim inf
n→∞ n ∣⟨nα − γ⟩∣ ∣⟨nβ − δ⟩∣ = 0. (2.2)

Here ∣⟨⋅⟩∣ means the distance to the nearest integer. The proof of the theorem
builds heavily on the connection between Diophantine approximation and dynamical
systems, and is proved by means of homogeneous dynamics.

Our attempt was to prove the analogue of Theorem 15 over the formal Laurent
series, which would require us to understand homogeneous dynamics over the formal
Laurent series. My personal goal was to understand how well methods of homogen-
eous dynamics can be used in Diophantine approximation over formal Laurent series
over Fq, and even though the attempt was a failure, I gained valuable information to-
wards my goal. Understanding the limitations and strenghts of a method is extremely
valuable.

The idea of the proof of Theorem 15 is fairly clear. It can be split into the
following steps. First, we find a more general question about unimodular lattices, or
more precisely translated unimodular lattices called grids. We let X3 be the space
of unimodular lattices in R3, and let Y3 be the space of grids in R3. We define the
product function N ∶ R3 → R by N((a, b, c)t) = abc. Furthermore, we define the
product function on subsets P ∶ P(R3) → P(R) by P (B) = {N(b) ∶ b ∈ B} for any
B ∈ P(R3). For a grid y ∈ Y3, we say it is dense product, DP, if

P (y) = R.

Furthermore, for a lattice x ∈X3, we say it is grid dense product, GDP, if

P (x + v) = R
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for all v ∈ R3.
For u = (α,β)t ∈ R2 we define the lattice

hu = ⎛⎜⎝
1 0 α
0 1 β
0 0 1

⎞⎟⎠Z3.

Theorem 15 is now a consequence of the following more general theorem.

Theorem 16. For Lebesgue almost all u ∈ R2, hu is GDP.

The second step is to realise, that the diagonal action on X3 plays nicely together
with being GDP. We let A = {diag(et1 , et2 , et3) ∶ t1, t2, t3 ∈ R, t1 + t2 + t3 = 0} be the set
of diagonal matrices in SL3(R) with positive diagonal entries. A acts on X3 and Y3

in the following way: For a ∈ A, b ∈ SL3(R) and v ∈ R3, we have a(bZ3) = (ab)Z3 and
a(bZ3 + v) = (ab)Z3 + av.

We let a ∈ A,y ∈ Y3, and note that P (ay) = P (y). Furthermore, for y0 ∈ Ay, we
have

P (y0) ⊆ P (y), (2.3)

and hence in particular if y0 is DP, then so is y. This implies in turn, that for x0, x ∈X3,

if x0 ∈ Ax,x0 is GDP, then x is GDP. (2.4)

The third step is to show the existence of a x0 ∈ X3 which is GDP. It is in this
step, that most of the hard work is done, so we will postpone the discussion until after
the the forth step.

The forth step is to show, that Lebesgue almost all u ∈ R2 have Ahu = X3. This
is a well known fact from homogeneous dynamics. It is a mixed consequence of the
fact, that for t > 0, at = diag(et, et, e−2t), the unstable horospherical subgroup of at is

U+
0 (at) = {hu ∶ u ∈ R2} ,

that the action of at is ergodic, and that the Haar measure on X3 restricts nicely to
U+

0 (at). For more details see [28, Lemma 4,8].
From step three there exist a x0 ∈ X3 which is GDP. From step four it follows,

that for almost all u ∈ R2, x0 ∈ Ahu, and hence from (2.4) Theorem 16 follows.
Going back to step three, the fact, that such a x0 exists is by no means clear, but

follows from the following surprising theorem, together with the fact that there exist
lattices with compact A-orbits.

Theorem 17. If x0, x̃ ∈X3, Ax̃ is compact and x̃ ∈ Ax0 ∖Ax0, then x0 is GDP.

The proof of Theorem 17 follows the following line: Let w ∈ R3, and consider the
orbit closure F = A(x0 +w). Furthermore, we consider grids in F of a special form
F̃ = {ỹ ∈ F ∶ ỹ = x̃ + v, for some v ∈ R3}. It can be shown, that F̃ ≠ ∅, so we let ỹ ∈ F̃ .

Now one of two cases arise: Either ỹ ∈ F̃ has a non-compact A orbit, in which case
it can be shown, that Aỹ contains x̃+v for all v ∈ R3, which then implies ỹ is DP, and
hence x0 +w is DP.

The other case is, that Aỹ is compact. In this case we want to show, that F is
sufficiently big.
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For each pair 1 ≤ i, j ≤ 3, i ≠ j and t ∈ R, let ui,j(t) be the 3 × 3 matrix with 1 on
the diagonal, t on the (i, j) place and 0 elsewhere.

Now for each ỹ ∈ F̃ ⊆ F , we show that there exists a non-zero t ∈ R, and a pair(i, j), such that ui,j(t)ỹ ∈ F . Next we realise, that not only does this extra point lie
in F , but if fact for any s ∈ R+t, we have that ui,j(s)ỹ ∈ F . Now for each ξ ∈ R there
is a w ∈ ỹ with all coordinates different from zero, and a s ∈ R+t, such that

N(ui,j(s)w) = N(w)(wj
wi
s + 1) = ξ,

and hence it follows from 2.3, that

ξ ∈ P (ui,j(s)ỹ) ⊆ P (ui,j(s)ỹ) ⊆ P (x0 +w),
which implies that x0 +w is DP. So for all w ∈ R3, we have, that x0 +w is DP, so x0

is GDP.
We are now ready to explain the deeper reason why the proof does not work over

formal Laurent series over Fq.
First, most of it works, and even become slightly prettier. We want A to be a two

parameter group of diagonal matrices in SL3(Fq((X−1))), so we let

A = {diag(Xk,X`,Xm) ∶ k, `,m ∈ Z, k + ` +m = 0} .
Furthermore, A acts on the space of grids in Fq((X−1))3. Now step one and two still
works, and a lot of Theorem 17, that is step three, still work. In fact due to the
ultrametric property only the second of the cases arise. The thing that goes wrong is
when we try to move from the existence of a t ∈ R, such that ui,j(t)ỹ ∈ F , to it being
true for any s ∈ R+t.

In the real case, we have, that

{ai
aj

∶ diag(a1, a2, a3) ∈ StabA(ỹ)} (2.5)

is dense in R+. Now for a ∈ StabA(ỹ), we have that

aui,j(t)ỹ = aui,j(t)a−1aỹ = ui,j(ai
aj
t)aỹ = ui,j(ai

aj
t)ỹ

lies in F , and combined with (2.5) being dense in R+, we get that ui,j(s)ỹ ∈ F for
every s ∈ R+t.

Now this is where it goes wrong, because in the formal Laurent series case, we
have no hope of having the analogue of (2.5) being dense in the monic formal Laurent
series. Even in the unlikely case, that StabA(ỹ) = A, we only have, that (2.5) is the
set of monic monomials, which is not dense in the set of monic formal Laurent series.

Since step three failed, we never got around to check the details of whether step
four holds true.

The lecture to be learned from the attempt is the following: If we want to apply
the methods of homogeneous dynamics to do Diophantine approximation in the field
of formal Laurent series, we might not be able to use the methods, if they require
underlying denseness results.
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Now, if you are really not interested in dynamics, you could have started the
summary here, but then you would have missed out on the fun.

Discouraged, we turned to another approach on inhomogeneous Diophantine ap-
proximation over formal Laurent series, the approach of linear algebra.

For θ, γ ∈ Fq((X−1)), we define

c(θ, γ) = inf
N≠0

∣N ∣ ∣⟨Nθ − γ⟩∣ ,
where the infimum is taken over the non-zero N ∈ Fq[X]. Furthermore, we define

BAθ = {γ ∈ Fq((X−1)) ∶ c(θ, γ) > 0} ,
c(θ) = sup

γ
c(θ, γ)

and
c = inf

θ
c(θ).

By using linear algebra, we are able to prove the following theorems:

Theorem 18. For every θ ∈ Fq((X−1)) the set BAθ has full hausdorff dimension.

Theorem 19.
c = q−2.

The most surprising is, that at present the value of c in the real case is only known
to satisfy

3

32
≤ c ≤ 68

483
,

so we are determining a constant whose value is unknown in the real case.
We also show higher dimensional version of these theorems, using what we call

generalised weights. A function g = (g1, . . . gd) ∶ N0 → Nd
0 is called a generalised

weight, if for all 1 ≤ s ≤ d the function gs in non-decreasing, and

d∑
s=1

gs(h) = h
for every h ∈ N0. One can think of a generalised weight as sending 0 to 0, and for
each subsequent value, it increases one of the coordinates by one.

Given a generalised weight g and θ,γ ∈ Fq((X−1))d, we define

cg(θ,γ) = inf
N≠0

max
1≤s≤d ∣N ∣ gs(degN)degN ∣⟨Nθs − γs⟩∣ .

Furthermore, we define

BAθ(g) = {γ ∈ Fq((X−1))d ∶ cg(θ,γ) > 0} ,
cg(θ) = sup

γ
c(θ,γ)

and
cg = inf

θ
c(θ).
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Theorem 20. For every generalized weight g and θ ∈ Fq((X−1))d, BAθ(g) is non-
empty. Moreover, if

inf
h∈N

ming(h)
h

> 0,

then BAθ(g) has full Hausdorff dimension.

Theorem 21. Any generalised weight g satisfy

cg = q−2.

For the sake of clarity we will only sketch the ideas of the proofs in the one
dimensional theorems. The higher dimensional theorems follow the same idea, but
with added technical notation disrupting the picture of what is going on.

For a θ = ∑∞
i=−deg θ θiX

−i ∈ Fq((X−1)), we can for each i, j ∈ N associate its Hankel
matrix

∆[i, j] = ⎛⎜⎝
θ1 ⋯ θj⋮ ⋮
θi ⋯ θi+j−1

⎞⎟⎠ .
Now, for a non-zero polynomial N of degree h, a γ ∈ Fq((X−1)) and an integer

` ≥ 0, we have that

∣N ∣ ∣⟨Nθ − γ⟩∣ < q−(1+`) ⇐⇒ ∆[h + 1 + `, h + 1] ⋅n = πh+1+`(γ),
where n is the coefficient vector of N , and πk(γ) is the projection that maps γ to(γ1, . . . , γk)t. In this way, the questions of interest is translated into questions about
non-zero solutions to systems of linear equations. In particular, we have, that γ ∈ BAθ

if and only if there exist ` ≥ 0, such that

∆[h + 1 + `, h + 1] ⋅n = πh+1+`(γ) (2.6)

has no solution for h ≥ 0 and n ∈ Fh+1
q .

The next step is to get control of the rank of ∆[i, j]. To do this, we construct for
each ` > 0 two sequences I` = {im}∞m=0 ,J` = {jm}∞m=0 in an inductive fashion, by

1. j0 = 0, i0 = `.
2. jm+1 = minj {j ∶ rank(∆[im, j]) = im}. If this minimum is not obtained, we let
jm+1 = ∞.

3. If jm+1 = ∞, let im+1 = im. Else let im+1 = mini {i ∶ rank(∆[i, jm+1]) = i − `}.
Along this sequences we have sufficiently control of solutions to (2.6). For ` > 0

we define Γ` to be the set of γ ∈ Fq((X−1)) which for each m ≥ 0,0 < j < jm+1, the
equation

∆[im, j]n = πim(γ)
has no solutions.

Now, this Γ` contains as a subset a Cantor like set C∞, created by starting with
I, cutting it into a number of subintervals of the same length, then throwing some
of these away, and for each of the kept subintervals, we repeat the procedure. How
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many subintervals we cut into, and how many subintervals we throw away, depends
on the sequence I`. The limit set is what we call C∞, and using methods from fractal
geometry, we get a lower bound on the dimension of C∞, and hence of Γ`. We get
that

dimH Γ` ≥ 1 − ξ
`

for some explicit constant 0 < ξ < 1 depending only on q.
Next, we get that for each ` > 0, the set Γ` is contained in BAθ, and hence

dimH BAθ ≥ 1 − ξ
`
,

but since this is true for each ` > 0, we get Theorem 18.
For Theorem 19, we have that dimH Γ1 > 0, and hence Γ1 ≠ ∅. For each γ ∈ Γ1, we

have, that c(θ, γ) ≥ q−2, and hence for each θ ∈ Fq((X−1)) we have that c(θ) ≥ q−2.
In order to get the result, we show that if c(θ) ≥ q−1, then there exist am0 ∈ N∪{∞},

such that ∆[m,m] is invertible exactly for 0 <m <m0. It is then a simple matter to
find a θ not satisfying this, and hence c = q−2.
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A CANTOR SET TYPE RESULT IN THE FIELD OF FORMAL
LAURENT SERIES

Steffen H. Pedersen

Abstract: We prove a Khintchine type theorem for approximation of elements in the Cantor
set, as a subset of the formal Laurent series over F3, by rational functions of a specific type.

Furthermore we construct elements in the Cantor set with any prescribed irrationality expo-
nent > 2.
Keywords: formal Laurent series, diophantine approximation, metric theory.

1. Introduction

In [6] Khintchine proved, that for ψ : R>1 → R>0 a continuous function with
x 7→ x2ψ(x) non-increasing, the set

W (ψ) =

{
ξ ∈ R :

∣∣∣∣ξ −
p

q

∣∣∣∣ < ψ(q) for infinitely many
p

q
∈ Q

}

of ψ-well approximable numbers has Lebesgue measure 0 if the series

∞∑

q=1

qψ(q)

converges, and full Lebesgue measure if the series diverge. The analogues state-
ment in the field of formal Laurent series over finite fields was shown by de Mathan
in [4].

In [7] Levesly, Salp and Velani established a Khintchine type theorem for
ψ-well approximable numbers in the Cantor set by rational numbers of the form
p

3n , p ∈ N.
The first part of this paper will establish the analogous statement in the field

of formal Laurent series over F3, where the Cantor set consists of those formal
Laurent series in the unit ball around 0 having only the coefficients 0 and 2.

2010 Mathematics Subject Classification: primary: 11J61; secondary: 11J83, 11K55
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8 Steffen H. Pedersen

The second part of the paper will construct elements of the Cantor set with
any prescribed irrationality exponent > 2. This is the analogue of the result in [3]
by Bugeaud.

The proofs follow the approach from [7] and [3], but with the simplifications
and complications of working over an ultrametric field.

2. Preliminaries

Let F3 be the field with 3 elements and let F3[X] be the polynomial ring over
F3. We can introduce an absolute value on F3[X], by letting |P | = 3degP for
P ∈ F3[X] \ {0}, and |0| = 0. This in turn gives an absolute value on the rational
functions F3(X), and by completing with respect to this absolute value, we get
the field of formal Laurent series over F3, that is the set

F3((X−1)) =

{ ∞∑

n=−N
a−nX

−n : a−n ∈ F3, aN 6= 0

}
∪ {0} ,

where we have the absolute value
∣∣∣∣∣
∞∑

n=−N
a−nX

−n
∣∣∣∣∣ = 3N

for the nonzero elements, and still |0| = 0. F3((X−1)) with the given absolute
value is an ultrametric space. We will restrict our attention to the unit ball in
F3((X−1)) around 0, that is the set

I =
{
h ∈ F3((X−1)) : |h| < 1

}
.

I is the set of formal Laurent series on the form
∞∑

n=1

a−nX
−n

where a−n ∈ F3, and where 0 is the element with all the coefficients a−n = 0. We
can write the absolute value on I as

|h| =
{

0, if h = 0,

3−N , if h 6= 0, N = min {n : a−n 6= 0} .

For x ∈ F3((X−1)) we let B(x, 3n) be the ball around x with radius 3n, and
for a−1, . . . , a−` ∈ F3 we let

B[a−1, . . . , a−`] = B(a−1X
−1 + · · ·+ a−`X

−`, r−`) ⊆ I.

This ball consists of those elements in I with the first ` coefficients given by
a−1, . . . , a−`.

28



A Cantor set type result in the field of formal Laurent series 9

It follows from the definition of the absolute value that every ball have radius
3−n for some n. In particular every ball inside I is of the given form. We denote
the radius of the ball B by r(B).

In this paper we will look at the Cantor set, but in the setting of formal Laurent
series. We define the ’Cantor set‘ as

C = {h ∈ I : a−n ∈ {0, 2}} .

We let ψ : {3n : n ∈ N} → {3−r : r ∈ Z} be a function, and are going to study
the set

WC(ψ) =
{
h ∈ C :

∣∣∣h− g

XN

∣∣∣ < ψ(3N ),

for infinitely many N ∈ N, where g ∈ F(N)
}
,

where
F(N) = {f ∈ F3[X] : Coeff(f) ⊆ {0, 2} ,deg f < N} ,

of ψ-well approximable elements in the Cantor set, by rational functions contained
in the Cantor set of a specific form. In this respect, we are concerned with intrinsic
Diophantine approximation.

For later we note that
#F(N) = 2N , (1)

and that

WC(ψ) =



h ∈ C : h ∈

⋃

g∈F(N)

B
( g

XN
, ψ(3N )

)
for infinitely many N ∈ N



 ,

when expressed in terms of balls instead of approximation. So

WC(ψ) = lim sup
N→∞

AN = {f ∈ C : f ∈ AN for infinitely many N ∈ N} ,

where
AN =

⋃

g∈F(N)

B
( g

XN
, ψ(3N )

)
.

Just as with every metric, locally compact space we can introduce the notion
of Hausdorff measure, and Hausdorff dimension. We let f : R>0 → R>0 be
a dimension function i.e. f is continuous, non-decreasing and satisfy f(0) = 0.
We can now define the Hausdorff f−measure in the following manner. For A ⊆
F3((X−1)) and ρ > 0, we let Bρ be the family of countable open covers of A, by
balls B of radius r(B) 6 ρ. We can now define the Hausdorff f−measure by

Hf (A) = lim
ρ→0

inf
B∈Bρ

∑

Bi∈B
f(r(Bi)).

29



10 Steffen H. Pedersen

If f is the dimension function given by f(x) = xs for a s > 0, we call it the
Hausdorff s−measure, and denote it by Hs. We define the Hausdorff dimension
by

dimH(A) = inf {s > 0 : Hs(A) = 0} .
Using standard techniques we can determine the Hausdorff dimension of C, in

fact we have the following result.

Proposition 1. Let γ = log(2)
log(3) . For any ball B with r(B) 6 1 and B ∩ C 6= ∅ we

have
Hγ(B ∩ C) = r(B)γ ,

and in particular for B = I we have

Hγ(C) = 1 and dimH(C) = γ.

Proof. Throughout the proof let B be a ball with B∩C 6= ∅ and r(B) = 3−`0 6 1.
Then B = B[a−1, . . . , a−`0 ] for some a−1, . . . , a−`0 ∈ F3.

For the upper bound, let ρ = 3−j 6 3−`0 . Then B ∪ C can be covered by the
collection of 2j−`0 balls

B′ =
{
B[a−1, . . . , a−`0 , a−(`0+1), . . . , a−j ] : a−(`0+1), . . . , a−j ∈ {0, 2}

}

of radius 3−j . We then have

inf
B∈Bρ

∑

Bi∈B
(r(Bi))

γ 6
∑

Bi∈B′
(r(Bi))

γ = 2j−`0(3−j)γ = 2−`0 = (3−`0)γ = r(B)γ ,

since 3γ = 2. By letting j →∞, we get that Hγ(B ∩ C) 6 r(B)γ , which gives the
upper bound.

For the lower bound let B be a cover of B ∩ C by balls. Then we want to show
that

r(B)γ 6
∑

Bi∈B
(r(Bi))

γ .

First we may restrict the balls to lie in B, potentially decreasing the sum. If
the inequality holds true when summing over a subset of B, then it holds true when
summing over B. Since B∩C is compact, due to balls in F3((X−1)) being clopen, we
can cover B ∩C by a finite subset of B. Furthermore if a ball B̃ = B[a−1, . . . , a−`]
of radius 3−` have one of a−1, . . . , a−` equal to 1, then B̃ ∩ C = ∅, and we remove
it from the finite subcover. The remaining balls we denote by B′, and note that
B′ is a finite cover of B ∩ C, each ball having nonempty intersection with C.

Let the smallest ball in B′ have radius 3−k. For balls B̃ = B[a−1, . . . , a−`] of
radius 3−` > 3−k, B̃ can disjointly be split into three balls A0, A1, A2 of radius
3−(`+1) by Ai = B[a−1, . . . , a−`, i] for i = 0, 1, 2. Now A1 ∩ C = ∅ and

r(B̃)γ = (3−`)γ = 3γ(3−(`+1))γ = 2(3−(`+1))γ = r(A0)γ + r(A2)γ ,

so replacing the B by A0 and A2 does not change the sum, and we still have a cover
of B ∩ C.
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A Cantor set type result in the field of formal Laurent series 11

By iterating the procedure we end up with a cover of B ∩ C by balls of radius
3−k. Since it is a cover we must have at least 2k−`0 such balls, and hence

∑

Bi∈B
r(Bi)

γ >
∑

Bi∈B′
r(Bi)

γ > 2k−`03−kγ = 2−`0 = r(B)γ ,

which is the lower bound. �

We are now ready to state the analogue of the main result of [7] in the setting
of formal Laurent series.

Theorem 2. Let f be a dimension function such that r−γf(r) is monotonic. Then

Hf (WC(ψ)) =

{
0 if

∑∞
n=1 f(ψ(3n))× (3n)γ <∞

Hf (C) if
∑∞
n=1 f(ψ(3n))× (3n)γ =∞

3. Toolbox

In this section we collect a lot of results which we will use in the rest of the paper.
We will need the following version of the diverging part of the Borel–Cantelli

lemma, Lemma 2.3 in [5].

Lemma 3. Let (X,µ) be a finite measure space. Let An be a sequence of measur-
able subsets of X. If

∞∑

n=1

µ(An) =∞,

then

µ(lim sup
n→∞

An) > lim sup
N→∞

(∑N
k=1 µ(Ak)

)2

∑N
n,m=1 µ(An ∩ Am)

.

Furthermore we need the following generalisation of the Mass Transference
Principle, Theorem 3 in [2], but slightly simplified to the current setting.

For a dimension function f and a ball B inside C, that is a ball in the relative
topology, of the form B = B(x, r), we can define the transformation of B by f as
the ball

Bf = B(x, f(r)1/γ).

If the dimension function is just r 7→ rs for some s > 0, we just write the
transformed ball as Bs. In particular we have that Bγ = B.

Theorem 4 (The Generalised Mass Transference Principle). Let {Bi}i∈N
be a sequence of balls in C with r(Bi)→ 0 as i→∞. Let f be a dimension function
such that x 7→ x−γf(x) is monotonic. Suppose that any ball B ⊆ C satisfy

Hγ
(
B ∩ lim sup

i→∞
Bfi

)
= Hγ(B).
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12 Steffen H. Pedersen

Then any ball B ⊆ C satisfy

Hf
(
B ∩ lim sup

i→∞
Bγi

)
= Hf (B).

We will also need the theory of continued fractions over formal Laurent series
as first studied by Artin in [1]. Every rational function g

h can be written uniquely
as a finite continued fraction

g

h
= a0 +

1

a1 +
1

. . . +
1

an

= [a0; a1, . . . , an]

with a0, a1, . . . , an ∈ F3[X] and deg(a1), . . . ,deg(an) > 1. In a similar way every
x ∈ F3((X−1)) \ F3(X) can uniquely be written as an infinite continued fraction

x = a0 +
1

a1 +
1

a2 +
1

. . .

= [a0; a1, a2, . . . ]

with ai ∈ F3[X] for all i > 0, and deg(ai) > 1 for i > 1. We call the polynomials
ai the partial quotients of x, and the rational functions

Pj
Qj

= [a0; a1, . . . , aj ]

the convergents to x.
Furthermore, from the ultrametric property on F3((X−1)), we have that

∣∣∣∣x−
Pj
Qj

∣∣∣∣ =
1

|aj+1| |Qj |2

for all the convergents.
We will also need the Folding Lemma, Proposition 2 in [8].

Lemma 5 (Folding Lemma). If g
h = [a0; a1, . . . , an] is a rational function, and

t is a polynomial with deg(t) > 1, then

g

h
+

(−1)n

th2
= [a0; a1, . . . , an, t,−an, . . . ,−a1].

4. Proof of Theorem 2

Convergent case

Since ∞∑

n=1

f(ψ(3n))× (3n)γ <∞,

and since f is a dimension function, we have that ψ(3n)→ 0 as n→∞.
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A Cantor set type result in the field of formal Laurent series 13

Let ρ > 0 be given. Then there exists an integer Nρ, such that

ψ(3n) 6 ρ for all n > Nρ. (2)

Furthermore we may choose Nρ such that Nρ →∞ as ρ→ 0.
We can now cover WC(ψ) by the countable collection of balls

WC(ψ) ⊆
⋃

N>Nρ
AN =

⋃

N>Nρ

⋃

g∈F(N)

B
( g

XN
, ψ(3N )

)
,

each having radius 6 ρ by (2). Hence

inf
B∈Bρ

∑

Bi∈B
f(r(Bi)) 6

∑

N>Nρ

∑

g∈F(N)

f(ψ(3N ))

=
∑

N>Nρ
f(ψ(3N ))×#F(N)

(1)
=

∑

N>Nρ
f(ψ(3N ))× (3N )γ → 0

as ρ→ 0. So we have that
Hf (WC(ψ)) = 0

in this case.

Divergent case

To simplify the notation we let µ be the Hausdorff γ-measure restricted to C, that
is

µ(A) = Hγ(A ∩ C)
for every Borel set A.

Furthermore we define

W ∗C (ψ) =
{
h ∈ C :

∣∣∣h− g

XN

∣∣∣ < ψ(3N ),

for infinitely many N ∈ N, where g ∈ F∗(N)
}
,

where

F∗(N) = {f ∈ F3[X] : Coeff(f) ⊆ {0, 2} ,deg f < N and f(0) = 2} .

We note that
#F∗(N) = 2N−1, (3)

and that just like before

W ∗C (ψ) =



h ∈ C : h ∈

⋃

g∈F∗(N)

B
( g

XN
, ψ(3N )

)
for infinitely many N ∈ N



 ,
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14 Steffen H. Pedersen

when expressed in terms of balls instead of approximation, and

W ∗C (ψ) = lim sup
N→∞

A∗N = {f ∈ C : f ∈ A∗N for infinitely many N ∈ N} ,

where
A∗N =

⋃

g∈F∗(N)

B
( g

XN
, ψ(3N )

)
.

Proving the divergent part of the theorem, but with W ∗C (ψ) instead of WC(ψ),
proves the result since

W ∗C (ψ) ⊆WC(ψ) ⊆ C,
so we do that.

First, we prove the divergent part of the theorem in the special case when the
dimension function f is just the function r 7→ rγ , that is the following theorem:

Theorem 6. µ(W ∗C (ψ)) = µ(C) = 1 if
∑∞
n=1 (ψ(3n)× 3n)γ =∞.

Proof. The proof is divided into six steps.
i) Without loss of generality we may assume that

ψ(3n) 6 3−n for all n ∈ N. (4)

If that was not the case, the function Ψ, defined by Ψ(r) = min
{
r−1, ψ(r)

}
,

would satisfy (4). Furthermore if Ψ(3n) = 3−n infinitely often, we have that
∞∑

n=1

(Ψ(3n)× 3n)γ =∞.

On the other hand if Ψ(3n) = 3−n only a finite number of times,
∞∑

n=1

(Ψ(3n)× 3n)γ >
∞∑

n=N

(Ψ(3n)× 3n)γ =
∞∑

n=N

(ψ(3n)× 3n)γ =∞,

for N sufficiently large. Since W ∗C (Ψ) ⊆ W ∗C (ψ), we could just prove the
theorem with Ψ instead of ψ.

ii) Let g, h ∈ F∗(n) be different. Then
∣∣∣∣
g

Xn
− h

Xn

∣∣∣∣ =

∣∣∣∣
g − h
Xn

∣∣∣∣ > 3−n > ψ(3n),

and hence
B
( g

Xn
, ψ(3n)

)
∩B

(
h

Xn
, ψ(3n)

)
= ∅

due to the ultrametric property. This implies that A∗n is a disjoint union

A∗n =
⊔

g∈F∗(n)

B
( g

Xn
, ψ(3n)

)

for every n ∈ N.
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A Cantor set type result in the field of formal Laurent series 15

iii) For any ball B with r(B) = 3−` 6 1 and B ∩ C 6= ∅, if n > `, then

#
{
g ∈ F∗(n) : B

( g

Xn
, ψ(3n)

)
⊆ B

}
= 2n−`−1. (5)

This follows since any polynomial g ∈ F∗(n) has the coefficient a0 = 2
and coefficients an−1, . . . , a1 either 0 or 2. The requirement that the ball
B
(
g
Xn , ψ(3n)

)
is contained in B fixes the coefficients an−1, . . . , an−`. The

remaining n− `− 1 coefficients can be either 0 or 2 giving 2n−`−1 elements
in the set.

iv) We can now, under the assumptions of iii), compute

µ(B ∩A∗n) = µ


 ⊔

g∈F∗(n)

B ∩B
( g

Xn
, ψ(3n)

)



=
∑

g∈F∗(n)

µ
(
B ∩B

( g

Xn
, ψ(3n)

))

=
∑

g∈F∗(n)

B( g
Xn ,ψ(3n))⊆B

µ
(
B
( g

Xn
, ψ(3n)

))

=
∑

g∈F∗(n)

B( g
Xn ,ψ(3n))⊆B

ψ(3n)γ

(5)
= 2n−`−1ψ(3n)γ

where we have used Proposition 1. Since

2n−`−1 = (3n)γ × (3−`)γ × 3−γ

we have that

µ(B ∩A∗n) = r(B)γ × (ψ(3n)× 3n)γ × 3−γ . (6)

For B = I it follows that

µ(A∗n) = (ψ(3n)× 3n)γ × 3−γ (7)

for all n ∈ N, and hence
∞∑

n=1

µ(A∗n) =∞. (8)

v) We have the following quasi-independence result

Proposition 7. For n > m we have

µ(A∗m ∩A∗n) 6 µ(A∗m)µ(A∗n) (9)
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16 Steffen H. Pedersen

Proof. Let ψ(3m) = 3−`. If n 6 `, then 3−n > 3−` = ψ(3m) and from
(4) we have 3−n > ψ(3n). Let g ∈ F∗(n), h ∈ F∗(m). Since g − hXn−m

evaluated in 0 is 2, we have that g − hXn−m 6= 0, and hence
∣∣∣∣
g

Xn
− h

Xm

∣∣∣∣ =

∣∣∣∣
g − hXn−m

Xn

∣∣∣∣ > 3−n.

From this we get that

B
( g

Xn
, ψ(3n)

)
∩B

(
h

Xm
, ψ(3m)

)
= ∅,

and by definition of A∗n and A∗m we then have

A∗n ∩A∗m = ∅,

which implies that
µ(A∗n ∩A∗m) = 0

and the quasi-independence is trivially satisfied.
If n > ` we have

µ(A∗m ∩A∗n) = µ


 ⊔

g∈F∗(m)

(
B
( g

Xm
, ψ(3m)

)
∩A∗n

)



=
∑

g∈F∗(m)

µ
(
B
( g

Xm
, ψ(3m)

)
∩A∗n

)

(6)
=

∑

g∈F∗(m)

(ψ(3m))γ × (ψ(3n)× 3n)γ × 3−γ

(3)
= 2m−1 × (ψ(3m))γ × (ψ(3n)× 3n)γ × 3−γ

=
(

3−γ × (ψ(3m)× 3m)γ
)
×
(

3−γ × (ψ(3n)× 3n)γ
)

(7)
= µ(A∗m)× µ(A∗n).

This concludes the proof of the quasi-independence. �

vi) From (8) we can use Lemma 3 to get

µ(W ∗C (ψ)) > lim sup
N→∞

(∑N
k=1 µ(A∗k)

)2

∑N
n,m=1 µ(A∗n ∩A∗m)

> lim sup
N→∞

1 = 1,

where the last inequality comes from the quasi-independence. Since we
trivially have

1 = µ(C) > µ(W ∗C (ψ)),

the result follows. �
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A Cantor set type result in the field of formal Laurent series 17

We will now deduce the diverging part of Theorem 2 from Theorem 6 by
a standard application of the Mass Transference Principle.

Proof. Without loss of generality we will assume that ψ(3n) → 0 when n → ∞,
since else W ∗C (ψ) = C and the result is clear. By assumption we have that

∞∑

n=1

f(ψ(3n))× (3n)γ =∞

and r 7→ r−γf(r) is monotonic. Define θ by θ(r) = df(ψ(r))1/γe3, where d·e3 is
the function that rounds up to the nearest power of 3.

Then
∞∑

n=1

(θ(3n)× 3n)γ =∞,

and from Theorem 6 we get that µ(W ∗C (θ)) = µ(C) = 1. This in turn implies that

µ(B ∩W ∗C (θ)) = µ(B ∩ C)

for any ball B ⊆ C. Now Theorem 4 gives

Hf (B ∩W ∗C (ψ)) = Hf (B ∩ C)

for any ball B ⊆ C. In particular for B = C we get the desired result. �

5. Irrationality exponent

For an element ξ ∈ F3((X−1)) we define the irrationality exponent of ξ as

τ(ξ) = sup
{
τ :
∣∣∣ξ − g

h

∣∣∣ < |h|−τ for infinitely many
g

h
∈ F3(X)

}
.

From Dirichlet’s theorem in the field of formal Laurent series we get that
τ(ξ) > 2 for all ξ ∈ F3((X−1)).

Furthermore for ψ : {3n : n ∈ N} → R+ a non-increasing function we define

K(ψ) =
{
ξ ∈ I :

∣∣∣ξ − g

h

∣∣∣ < ψ(|h|), for infinitely many
g

h
∈ F3(X)

}
.

We now have the following theorem.

Theorem 8. Let ψ : {3n : n ∈ N} → R+ be a non-increasing function such that
x 7→ x2ψ(x) is non-increasing and tends to 0 as 3n tends to infinity. For any
c ∈ (0, 1

3 ) the set
K(ψ) \ K(cψ) ∩ C

is uncountable.
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18 Steffen H. Pedersen

From Theorem 8 we get the following result.

Corollary 9. For any τ ∈ [2,∞] there exist uncountably many elements in C with
irrationality exponent τ .

Proof. For τ ∈ (2,∞) we can use Theorem 8 with ψ(x) = x−τ . For τ = 2 we can
use the function ψ(x) = (x log x)−2. Finally for τ =∞ the element

∞∑

n=1

2X−n!

has the desired irrationality exponent, since the proof by Liouville for the corre-
sponding real case can be applied. In a similar way we can construct uncountably
many with irrationality exponent τ =∞. �

Proof of Theorem 8. Let u1, v1 = 1 and define recursively ui+1 as the integer
satisfying

1 < 3ui+132viψ(3vi) 6 3,

and vi+1 by
vi+1 = ui+1 + 2vi.

From the assumption on x 7→ x2ψ(x) we get that the sequence {ui}i∈N is
non-decreasing and tends to infinity as i→∞.

From {ui}i∈N we now construct the following sequence of rational functions:
Let

ξu,1 = [0;−Xu1 ] =
−1

Xu1
=

P1

Xv1

ξu,2 = [0;−Xu1 , Xu2 , Xu1 ] =
−1

Xu1
+

−1

Xu2+2u1
=

P2

Xv2

ξu,3 = [0;−Xu1 , Xu2 , Xu1 , Xu3 ,−Xu1 ,−Xu2 , Xu1 ] =
−1

Xv1
+
−1

Xv2
+
−1

Xv3
=

P3

Xv3

...

where the element ξu,n+1 is constructed from ξu,n by applying the Folding Lemma.
Since we are in characteristic 3, and {vi}i∈N is strictly increasing, each of the
rational functions is in C. They converge to the element ξu,∞ ∈ C. Furthermore
by construction each of the rational functions ξu,n is a convergent of ξu,∞.

We have that
|ξu,∞ − ξu,n| =

1

3vn+1
< ψ(3vn),

and hence ξu,∞ ∈ K(ψ).
For the other part it is sufficient to show that all the convergents Pj

Qj
satisfy

∣∣∣∣ξu,∞ −
Pj
Qj

∣∣∣∣ > cψ(|Qj |)

as the convergents are best approximants.
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A Cantor set type result in the field of formal Laurent series 19

For 2i−1 6 j < 2i we have that |aj+1| 6 3ui+1 . Now
∣∣∣∣ξu,∞ −

Pj
Qj

∣∣∣∣ =
1

|aj+1| |Qj |2

but since

|aj+1| |Qj |2 ψ(|Qj |) 6 3ui+1 |Qj |2 ψ(|Qj |) 6 3ui+132viψ(3vi) 6 3

we have ∣∣∣∣ξu,∞ −
Pj
Qj

∣∣∣∣ >
ψ(|Qj |)

3
> cψ(|Qj |)

and hence ξu,∞ 6∈ K(cψ).
In order to get uncountable many elements with the desired property, the

sequence {ui}i∈N can be modified in the following way. Define {u′i}i∈N by u′1 = 1,
u′2n = un and u′2n+1 ∈ {1, 2}. By the same proof we get that each of the formal
Laurent series ξu′,∞ ∈ K(ψ) \ K(cψ) ∩ C, and since there is uncountably many
such sequences, each giving different formal Laurent series, we have the desired
result. �

6. Concluding remarks

Let p be a prime, q = pn for some n > 1, and Fq the field with q elements. We can
from Fq construct the polynomials Fq[X] and the rational functions Fq(X) with
absolute value

∣∣ g
h

∣∣ = qdeg g−deg h for the non-zero rational functions, and |0| = 0.
Completing with respect to this absolute value gives the formal Laurent series
over Fq.

Like before we restrict ourselves to the unit ball, that is elements of the form
∞∑

n=1

a−nX
−n, a−n ∈ Fq.

Let A ⊆ Fq with 2 6 #A < q, and construct the missing digit set

MDS(A) =

{ ∞∑

n=1

a−nX
−n : a−n ∈ A

}
.

In the particular the case q = 3 and A = {0, 2} we just have MDS(A) = C.
The results of this paper also holds true in the more general setting of miss-

ing digit sets, as the proofs can be modified to this situation. We have that
the Hausdorff dimension of MDS(A) is γA = log #A

log q with HγA(MDS(A)) = 1.
Furthermore for a function ψ : {qn : n ∈ N} → {q−r : r ∈ Z} we define the set
WMDS(A)(ψ) by
{
h ∈MDS(A) :

∣∣∣h− g

XN

∣∣∣ < ψ(qN ),

for infinitely many N ∈ N, where g ∈ FA(N)
}
,
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20 Steffen H. Pedersen

where
FA(N) = {f ∈ Fq[X] : Coeff(f) ⊆ A,deg f < N} ,

we have the following theorem.

Theorem 10. Let f be a dimension function such that r−γAf(r) is monotonic.
Then

Hf (WMDS(A)(ψ)) =

{
0 if

∑∞
n=1 f(ψ(qn))× (qn)γA <∞

Hf (MDS(A)) if
∑∞
n=1 f(ψ(qn))× (qn)γA =∞

Finally the results about irrationality exponents also hold true in the more
general setting. For an element ξ ∈ Fq((X−1)) we define the irrationality exponent
in the same way as before as

τ(ξ) = sup
{
τ :
∣∣∣ξ − g

h

∣∣∣ < |h|−τ for infinitely many
g

h
∈ Fq(X)

}
.

Furthermore for ψ : {qn : n ∈ N} → R+ a non-increasing function and I the
unit ball in Fq((X−1)) we define

K(ψ) =
{
ξ ∈ I :

∣∣∣ξ − g

h

∣∣∣ < ψ(|h|), for infinitely many
g

h
∈ Fq(X)

}
,

and we have

Theorem 11. Assume that x 7→ x2ψ(x) is non-increasing and tends to 0 as qn
tends to infinity. For any c ∈ (0, 1

q ) the set

K(ψ) \ K(cψ) ∩MDS(A)

is uncountable.

And the corresponding corollary

Corollary 12. For any τ ∈ [2,∞] there exist uncountably many elements in
MDS(A) with irrationality exponent τ .
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SOME REMARKS ON MAHLER’S CLASSIFICATION IN HIGHER
DIMENSION

S. KRISTENSEN, S. H. PEDERSEN, B. WEISS

Abstract. We prove a number of results on the metric and non-metric theory of
Diophantine approximation for Yu’s multidimensional variant of Mahler’s classific-
ation of transcendental numbers. Our results arise as applications of well known
results in Diophantine approximation to the setting of Yu’s classification.

1. Introduction

In [11], Mahler introduced a classification of transcendental numbers in terms of
their approximation properties by algebraic numbers. More precisely, he introduced
for each k ∈ N and each α ∈ R the Diophantine exponent

ωk(x) = sup{ω ∈ R∶ ∣P (x)∣ ≤H(P )−ω
for infinitely many irreducible P ∈ Z[X],deg(P ) ≤ k}. (1)

Here, H(P ) denotes the naive height of the polynomial P , i.e. the maximum absolute
value among the coefficients of P .

Mahler defined classes of numbers according to the asymptotic behaviour of these
exponents as k increases. More precisely, let

ω(x) = lim sup
k→∞

ωk(x)
k

.

The number x belongs to one of the following four classes.● x is an A-number if ω(x) = 0, so that x is algebraic over Q.● x is an S-number if 0 < ω(x) < ∞.● x is a T -number if ω(x) = ∞, but ωk(x) < ∞ for all k.● x is a U -number if ω(x) = ∞ and ωk(x) = ∞ for all k large enough.

All four classes are non-empty, with almost all real numbers being S-numbers. Every
real number belongs to one of the classes, and the classes are invariant under algebraic
operations over Q.

In analogy with Mahler’s classification, Koksma [10] introduced a different classi-
fication based on the exponent

ω∗k(α) = sup{ω∗ ∈ R∶ ∣x − α∣ ≤H(α)−ω∗ for infinitly many α ∈ Q ∩R,deg(α) ≤ k}.
In this case, H(α) denotes the naive height of α, i.e. the naive height of the minimal
integer polynomial of α. In analogy with Mahler’s classification, one defines w∗(x)
and A∗-, S∗-, T ∗- and U∗-numbers.

The reader is referred to the monograph [4] for an excellent overview of the classific-
ations and their properties. A particular property is that the classifications coincide,

2010 Mathematics Subject Classification. 11J82, 11J83.
SK and SHP supported by the Danish Natual Science Research Council.
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2 S. KRISTENSEN, S. H. PEDERSEN, B. WEISS

so that A-numbers are A∗-numbers, S-numbers are S∗-numbers and so on. The indi-
vidual exponents however need not coincide.

In [18], Yu introduced a classification similar to Mahler’s for d-tuples of real num-
bers. In brief, the classification is completely similar, except that the exponents ωk(x)
are now defined in terms of integer polynomials in d variables.

An analogue of Koksma’s classification was introduced by Schmidt [16]. However,
the relation between the two classifications is not at all clear, and it is conjectured
that the two classifications do not agree [16].

It is the purpose of the present note to study the Diophantine approximation prob-
lems arising within Yu’s classification. We recall the simple connection between the
questions arising from Mahler’s classification, and the problem of Diophantine ap-
proximation with dependent quantities. A classical problem in Diophantine approx-
imation, given x = (x1, . . . , xd) ∈ Rd, is to find ω for which

∥q ⋅ x∥ ≤ (max
1≤i≤d ∣qi∣)−ω for infinitely many q = (q1, . . . , qd) ∈ Zd, (2)

where as usual ∥ ⋅ ∥ denotes the distance to the nearest integer. Comparing (1) and
(2), one sees that one can define Mahler’s exponents ωk by restricting the classical
problem to a consideration of vectors x belonging to the Veronese curve

Γ = {(x,x2, . . . , xk) ∈ Rk ∶ x ∈ R} .
Similarly, in order to understand the exponents arising in Yu’s classification, one
should once more consider the corresponding problem of a single linear form, but
replace the Veronese curve by the variety obtained by letting the coordinates consist
of the distinct non-constant monomials in d variables of total degree at most k, say.
The resulting Diophantine approximation properties considered in this case would
correspond to the multidimensional analogue of ωk, i.e.

ωk(x) = sup{ω ∈ R∶ ∣P (x)∣ ≤H(P )−ω for infinitely many

P ∈ Z[X1, . . . ,Xd],deg(P ) ≤ k}.
Throughout, let n = (k+d

d
)−1 be the number of nonconstant monomials in d variables

of total degree at most k. In addition to the usual, naive height H(P ), we will also
use the following modification H̃(P ), which is the maximum absolute value of the
coefficients of the non-contant terms of P . The following is a slight re-statement of
[18, Theorem 1].

Theorem 1. For any x = (x1, . . . , xd) ∈ Rd, there exists c(k,x) > 0 such that for all
Q > 1, there is a polynomial P ∈ Z[X1, . . . ,Xd] of total degree at most k and height
H(P ) ≤ Q, such that ∣P (x)∣ < c(k,x)Q−n.
Replacing the condition H(P ) ≤ Q by H̃(P ) ≤ Q, we may always choose c(k,x) = 1.

The proof is essentially an application of the pigeon hole principle, and is com-
pletely analogous to the classical proof of Dirichlet’s approximation theorem in higher
dimension. As a standard corollary, one obtains the first bounds on the exponents
ωk(x).
Corollary 2. For any x = (x1, . . . , xd) ∈ Rd, there exists a c(k,x) > 0 such that

∣P (x)∣ < c(k,x)H(P )−n,
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SOME REMARKS ON MAHLER’S CLASSIFICATION IN HIGHER DIMENSION 3

for infinitely many P ∈ Z[X1, . . . ,Xd] of total degree at most k. In particular, ωk(x) ≥
n.

The corollary tells us what the normalising factor in the multidimensional definition
of ω(x) should be, namely the number of non-constant monomials in d variables of
total degree at most k.

Inspired by the above result, we will define the notions of k-very well approximable,
k-badly approximable, k-singular and k-Dirichlet improvable. We will then proceed to
prove that the set defined in this manner are all Lebesgue null-sets and so are indeed
exceptional. In the case of k-badly approximable results, we will also show that these
form a thick set, i.e. a set whose intersection with any ball has maximal Hausdorff
dimension. In fact, many of our results are somewhat stronger than these statements.
The properties are all consequences of other work by various authors (see below).
Finally, we will deduce a Roth type theorem from Schmidt’s Subspace Theorem [15].

It is not the aim of the present paper to prove deep results concerning Yu’s clas-
sification, but rather to examine the extent to which already existing methods have
something interesting to say about the classification.

2. Results and proofs

In each of the following subsections we introduce a property of approximation of
d-tuples of real numbers by algebraic numbers, and prove a result about it which
extends previous results known in case d = 1.

2.1. k-very well approximable points. A point x = (x1, . . . , xd) ∈ Rd is called
k-very well approximable if there exists ε > 0 and infinitely many polynomials P ∈
Z[X1, . . . ,Xd] of total degree at most k, such that

∣P (x)∣ ≤H(P )−(n+ε). (3)

In other words, x is k-very well approximable if the exponent n on the right hand
side in Corollary 2 can be increased by a positive amount. We will prove that this
property is exceptional in the sense that almost no points with respect to the d-
dimensional Lebesgue measure are k-very well approximable. In fact, we will show
that this property is stable under restriction to subsets supporting a measure with
nice properties.

We recall some properties of measures from [7]. A measure µ on Rd is said to be
Federer (or doubling) if there is a number D > 0 such that for any x ∈ supp(µ) and
any r > 0, the ball B(x, r) centered at x of radius r satisfies

µ(B(x,2r)) <Dµ(B(x, r)). (4)

The measure µ is said to be absolutely decaying if for some pair of numbers C,α > 0

µ (B(x, r) ∩ L(ε)) ≤ C (ε
r
)α µ(B(x, r)), (5)

for any ball B(x, r) with x ∈ supp(µ) and any affine hyperplane L, where L(ε) denotes
the ε-neighbourhood of L. A weaker variant of the property of being absolutely
decaying is obtained by replacing r in the denominator on the right hand side of (5)
by the quantity

sup{c > 0∶µ({z ∈ B(x, r) ∶ dist(z,L) > c}) > 0}.

45



4 S. KRISTENSEN, S. H. PEDERSEN, B. WEISS

In this case, we say that µ is decaying. If the measure µ has the property that

µ(L) = 0, (6)

for any affine hyperplane L, µ is called non-planar. Note that an absolutely decaying
measure is automatically non-planar, but a decaying measure need not be non-planar.
Finally, µ is called absolutely friendly if it is Federer and absolutely decaying, and is
called friendly if it is Federer, decaying, and non-planar.

Theorem 3. Let µ be an absolutely decaying Federer measure on Rd. For any k ∈ N,
the set of k-very well approximable points is a null set with respect to µ. In particular,
Lebesgue almost-no points are k-very well approximable.

Our proof relies on results of [7], in which the case d = 1 was proved.

Proof. Let f ∶ Rd → Rn be defined by f(x1, . . . , xd) = (x1, x2, . . . , xd−1xk−1d , xkd), so that
f maps (x1, . . . , xd) to the n distinct nonconstant monomials in d variables of total
degree at most k. Clearly, f is smooth, and by taking partial derivatives, we easily
see that Rn may be spanned by the partial derivatives of f of order up to k.

From [7, Theorem 2.1(b)] we immediately see that the pushforward f∗µ is a friendly
measure on Rn. We now apply [7, Theorem 1.1], which states that a friendly measure
is strongly extremal, i.e. for any δ > 0, almost no points in the support of the measure
have the property that

n∏
i=1 ∣qyi − pi∣ < q−(1+δ),

for infinitely many p ∈ Zn, q ∈ N. Clearly, this implies the weaker property of ex-
tremality, i.e. that for any δ′ > 0, almost no points in the support of the measure
satisfy

max
1≤i≤n ∣qyi − pi∣ < q−( 1n+δ′), (7)

for infinitely many p ∈ Zn, q ∈ N.
To get from the above to a proof of the theorem, we need to re-interpret this in

terms of polynomials. We apply Khintchine’s transference principle [5, Theorem V.IV]
to see that (7) is satisfied infinitely often if and only if

∣q ⋅ y − p∣ <H(q)−(n+δ′′), (8)

for infinitely many q ∈ Zn, p ∈ Z, where δ′′ > 0 can be explicitly bounded in terms of
n and δ′. Now, y lies in the image of f , so that the coordinates of y consist of all
monomials in the variables (x1, . . . xd), whence any polynomial in these d variables
may be expressed on the form P (x) = q ⋅ y − p. The coefficients of P include all the
coordinates of q and hence H(P ) ≥ H(q), so that if (3) holds for infinitely many
P with ε = δ′′, then (8) holds for infinitely many q, p. Since the latter condition is
satisfied on a set of µ-measure zero, it follows that µ-almost all points in Rd are not
k-very well approximable.

The final statement of the theorem follows immediately, as the Lebesgue measure
clearly is Federer and absolutely decaying. �

Some interesting open questions present themselves at this stage. One can ask
whether a vector exists which is k-very well approximable for all k. We will call such
vectors k-very very well approximable. It is not difficult to prove that the set of k-very
well approximable vectors is a dense Gδ-set, so the question of existence can be easily
answered in the affirmative. However, determining the Hausdorff dimension of the set
of very very well approximable vectors is an open question. When d = 1, it is known
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that the Hausdorff dimension is equal to 1 due to work of Durand [6], but the methods
of that paper do not easily extend to larger values of d.

Taking the notion one step further, one can ask whether vectors x ∈ Rd exist such
that for some fixed ε > 0, for any k ∈ N, there are infinitely many integer polynomials
P in d variables of total degree at most k, such that

∣P (x)∣ ≤H(P )−(n+ε),
where as usual n = (k+d

d
)−1, i.e. in addition to x being very very well approximable, we

require the very very very significant improvement in the rate of approximation to be
uniform in k. We will call such vectors very very very well approximable. Determining
the Hausdorff dimension of the set of very very very well approximable numbers is an
open problem.

2.2. k-badly approximable points. A point x = (x1, . . . , xd) ∈ Rd is called k-badly
approximable if there exists C = C(k,x) such that

∣P (x)∣ ≥ CH(P )−n,
for all non-zero polynomials P ∈ Z[X1, . . . ,Xd] of total degree at most k. In other
words, a point x ∈ Rd is k-badly approximable if the approximation rate in Corollary
2 can be improved by at most a positive constant in the denominator. Let Bk be the
set of k-badly approximable points. Note that each set Bk is a null set, which is easily
deduced from the work of Beresnevich, Bernik, Kleinbock and Margulis [2]. We will
now show:

Theorem 4. Let B ⊆ Rd be an open ball and let M ∈ N. Then

dimB ∩ M⋂
k=1Bk = d.

This statement is deduced from the work of Beresnevich [1], who proved the case
d = 1.

Proof. Let nk = (k+d
d
)−1 as before, but with the dependence on k made explicit in nota-

tion. Let f ∶ Rd → RnM be given by f(x1, . . . , xd) = (x1, x2, . . . , xd−1xM−1
d , xMd ), with the

monomials ordered in blocks of increasing total degree. Let rk = ( 1
nk
, . . . , 1

nk
,0, . . . ,0) ∈

RnM , where the non-zero coordinates are the first nk coordinates, so that rk is a prob-
ability vector.

We define as in [1] the set of r-approximable points for a probability vector r to be
the set

Bad(r) = {y = (y1, . . . , ynM
) ∶ for some C(y) > 0,

max
1≤i≤nM

∥qyi∥1/ri ≥ C(y)q−1, for any q ∈ N}.
Here, ∥z∥ denotes the distance to the nearest integer, and we use the convention that
z1/0 = 0.

Let 1 ≤ k ≤M be fixed and let x ∈ Rd satisfy that f(x) ∈ Bad(rk). From [1, Lemma
1]) it follows, that there exists a constant C = C(k,x), such that the only integer
solution (a0, a1, . . . , ank

) to the system

∣a0 + a1x1 + a2x2 + ⋅ ⋅ ⋅ + ank−1xd−1xk−1d + ank
xkd∣ < CH−1, max

i
∣ai∣ <H1/nk
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is zero. Here, the choice of rk and the ordering of the monomials in the function f
ensure that the effect of belonging to Bad(rk) will only give a polynomial expression
of total degree at most k. Indeed, writing out the full equivalence, we would have the
first inequality unchanged, with the second being maxi ∣ai∣ <Hrk,i , where the exponent
is the i’th coordinate of rk. If this coordinate is 0, we are only considering polynomials
where the corresponding ai is equal to zero.

Rewriting this in terms of polynomials, for any non-zero P ∈ Z[X1, . . . ,Xd] with
H(P ) <H1/nk and total degree at most k, we must have

∣P (x)∣ ≥ CH−1 > CH(P )−nk .

It follows that x ∈ Bk, and hence f−1(Bad(rk)) ⊆ Bk. The result now follows by ap-
plying [1, Theorem 1], which implies that the Hausdorff dimension of the intersection
of the sets f−1(Bad(rk)) is maximal. �

Again, an interesting open problem presents itself, namely the question of uniform-
ity of the constant C(k,x) in k. Is it possible to construct a vector in Bk for all k
with the constant being the same for all k? And in the affirmative case, what is the
Hausdorff dimension of this set? A weaker version of this question would be to ask
whether there is some natural dependence of C(k,x) on k, i.e. whether one can choose
C(k,x) = C(x)k or a similar dependence. We do not at present know the answer to
these questions.

2.3. (k, ε)-Dirichlet improvable vectors and k-singular vectors. Let ε > 0. A
point x is called (k, ε)-Dirichlet improvable if for any ε there exists a Q0 ∈ N, such
that for any Q ≥ Q0 there exists a polynomial P ∈ Z[X1, . . . ,Xd] with total degree at
most k,

H̃(P ) ≤ εQ and ∣P (x)∣ ≤ εQ−n.
Note that we are now using H̃ as a measure of the complexity of our polynomials.

In view of Theorem 1, if ε ≥ 1, all points clearly have this property, and so the
property is only of interest when ε < 1. A vector is called k-singular if it is (k, ε)-
Dirichlet improvable for every ε > 0.

We will need a few additional definitions before proceeding. For a function f ∶ Rd →
Rn, a measure µ on Rd and a subset B ∈ Rd with µ(B) > 0, we define

∥f∥µ,B = sup
x∈B∩suppµ ∣f(x)∣.

Let C,α > 0 and let U ⊆ Rd be open. We will say that the function f is (C,α)-good
with respect to µ on U if for any ball B ⊆ U with centre in suppµ and any ε > 0,

µ{x ∈ B ∶ ∣f(x)∣ < ε} ≤ C ( ε∥f∥µ,B )α µ(B).
We will say that a measure µ on Rd is k-friendly if it is Federer, non-planar and the

function f ∶ Rd → Rn given by f(x1, . . . , xd) = (x1, x2, . . . , xd−1xk−1d , xkd) is (C,α)-good
with respect to µ on Rd for some C,α > 0.

We have

Theorem 5. Let µ be a k-friendly measure on Rd. Then there is an ε0 = ε0(d,µ)
such that the set of (k, ε)-Dirichlet improvable points has measure zero for any ε < ε0.
In particular, the set of k-singular vector has measure zero.
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In the case when d = 1, k ≥ 2 and µ being the Lebesgue measure on R, the result
is immediate from work of Bugeaud [3, Theorem 7], in which an explicit value of ε is
given, namely ε = 2−3k−3. Our proof is non-effective and relies on [9, Theorem 1.5].

Proof. Under the assumption on the measure µ, [9, Theorem 1.5] implies the existence
of an ε0 > 0 such that for all ε̃ < ε0

f∗µ(DIε̃(T )) = 0 for any unbounded T ⊆ a+.
Here, f is the usual function f(x1, . . . , xd) = (x1, x2, . . . , xd−1xk−1d , xkd), a+ denotes

the set of (n + 1)-tuples of (t0, t1, . . . , tn) such that t0 = ∑n
i=1 ti, ti > 0 for each i, and

DIε̃(T ) denotes the set of vectors y = (y1, . . . , yn) ∈ Rn for which there is a T0 such
that for any t ∈ T with ∥t∥ ≥ T0, the system of inequalities

{∣q ⋅ y − p∣ < ε̃e−t0∣qi∣ < ε̃eti i = 1, . . . , n,

has infinitely many non-trivial integer solutions (q, p) = (q1, . . . , qn, p) ∈ Zn+1 ∖ {0}.
Our result follows by specialising the above property. Indeed, we apply this to

ε = ε̃n+1 < εn+10 and the central ray in a+,

T = {(t, t
n
, . . . ,

t

n
) ∶ t = log (Q

ε̃
)n,Q ≥ [ε0] + 1,Q ∈ N} .

The measure f∗µ is the pushforward under f of the k-friendly measure µ. It follows
that the set of x ∈ Rd for which their image under f is in DIε̃(T ) is of measure zero
for all ε̃ < εn+10 . From the definition of DIε̃ and the choice of a+ and T , f(x) ∈ DIε̃
if and only if there is a Q0 ≥ max{[ε0] + 1, ε̃eT0/n}, such that for Q > Q0 there exists
q0, q1, . . . , qn ∈ Z with max1≤i≤n ∣qi∣ < ε̃et/n = Q, such that

∣(q1, . . . qn) ⋅ f(x) + q0∣ < ε̃e−t = εQ−n.
Reinterpreting the right hand side of the above as a polynomial expression in x, this
recovers the exact definition of x being (k, ε1/(n+1))-Dirichlet improvable. �

Note that the proof in fact yields a stronger statement. Namely, by adjusting the
choice of a+, we could have put different weights on the coefficients of the approximat-
ing polynomials, thus obtaining the same result, but with a non-standard (weighted)
height of the polynomial.

As with the preceding results, some open problems occur. We do not at present
know if there exist a vector x, for which there are positive numbers εk > 0, such that
x ∈ DI(k, εk). If this is the case, determining the Hausdorff dimension of the set of
such vectors is another open problen. Additionally, the same questions can be asked
if we require ε to be independent of k, i.e. if we ask for the existence of a vector
x ∈ DI(k, ε) for all k.

Let us now say that x ∈ Rd is k-algebraic if there exists a nontrivial polynomial
P ∈ Z[X1, . . . ,Xd] of degree at most k, such that P (x) = 0. It is clear that if x is k-
algebraic, then it is k-singular. In light of Theorem 5, it is natural to inquire whether
all k-singular points are k-algebraic. In this direction we have:

Theorem 6. For d ≥ 2, for any k ≥ 1, there exists a k-singular point in Rd which is
not k-algebraic.

The proof relies on results of [8]. For d = 1, much less appears to be known in
general. For k = 2, it follows from a result of Roy [13] combined with a transference
result (see [5, Theorem V.XII]) that the answer is affirmative. Roy further indicates
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in [14] that he has an unpublished result for k = 3, which would imply the analogue
of Theorem 6 in the case d = 1, k = 3. Already for k = 2, the construction is rather
involved and a general approach would be desirable.

Proof. Once more, for a fixed k, we take f as in the proof of Theorem 5. In the
notation of [8], it is clear that x ∈ Rd is k-singular if f(x) ∈ Sing(n). Also f(x) is
totally irrational in the notation of [8] if and only if x is k-algebraic.

Since the image of f is a d-dimensional nondegenerate analytic submanifold of Rn,
for d ≥ 2 we can apply [8, Theorem 1.2] to conclude that the intersection of f (Rd)
with Sing(n) contains a totally irrational point. �

Theorem 5 does not give an explicit value of ε0, and indeed the value depends on
the measure µ. However we can at least push ε0 to the limit ε0 ↗ 1 in the case when
µ is the Lebesgue measure on Rd to obtain a result on the k-singular vectors.

Theorem 7. For any d, the set of x which are (k, ε)-Dirichlet improvable for some
ε < 1 and some k, has Lebesgue measure zero.

The proof relies on the work of Shah [17].

Proof. This is a direct consequence of [17, Corollary 1.4], where the set N is chosen
to be the diagonal N = {(N, . . . ,N) ∶ N ∈ N}. �

Note that once again, the result of Shah gives a stronger result in the sense that we
may take a non-standard height as in the preceding case and retain the conclusion.

2.4. Algebraic vectors. Our final result, which is again a corollary of known results,
is an analogue of Roth’s Theorem [12], which states that algebraic numbers are not
very well approximable. Schmidt’s Subspace Theorem, see e.g. [15], provides a higher
dimensional analogue of this result, and it is this theorem we will apply. We will say
that a vector α = (α1, . . . , αd) ∈ Rd is algebraic of total degree k if there is a polynomial
Pα ∈ Z[X1, . . . ,Xd] of total degree k with Pα(α) = 0 and if no polynomial of lower
total degree vanishes at α.

Theorem 8. Let α = (α1, . . . , αd) ∈ Rd be an algebraic d-vector of total degree more
than k. Then for any ε > 0 there are only finitely many non-zero polynomials P ∈
Z[X1, . . . ,Xd] of total degree at most k with

∣P (α)∣ <H(P )−(n+ε),
where n = (k+d

d
) − 1 as usual.

Proof. Since α in not algebraic of total degree at most k, by definition it follows that
the numbers 1, α1, α2, . . . , αd−1αk−1d , αkd are algebraically independent over Q. From a
corollary to Schmidt’s Subspace Theorem, [15, Chapter VI Corollary 1E], it follows
that there are only finitely many non-zero integer solutions (q0, . . . , qn) to

∣q0 + q1α1 + q2α2 + ⋅ ⋅ ⋅ + qn−1αd−1αk−1d + qnαkd ∣ < (max
1≤i≤n ∣qi∣)−(n+ε).

This immediately implies the result.
�
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This paper deals with an analogue of Cassels’ problem on inhomoge-
neous Diophantine approximation in function fields. The inhomogeneous
approximation constant of a Laurent series θ ∈ Fq

((
1
t

))
with respect to

γ ∈ Fq
((

1
t

))
is defined to be c(θ, γ) = inf0 6=N∈Fq [t] |N | · |〈Nθ − γ〉|. We show

that infθ∈Fq(( 1
t ))

supγ∈Fq(( 1
t ))

c(θ, γ) = q−2, and prove that for every θ the

set BAθ =
{
γ ∈ Fq

((
1
t

))
: c(θ, γ) > 0

}
has full Hausdorff dimension. Our

methods generalize easily to the case of vectors in Fq
((

1
t

))d
.

1 Introduction

For a real number θ, denote by 〈θ〉 = θ −
⌊
θ + 1

2

⌋
the representative in

[
−1

2
, 1
2

)
of θ

modulo the integers, and let |θ| denote the absolute value of θ. In these notation, |〈θ〉|
is the distance from θ to the integers.

A main topic in Diophantine approximation deals with the inhomogeneous approx-
imations of a real number (see [Cas57]). Given two real numbers θ and γ, define the
inhomogeneous approximation constant of θ with respect to γ as

c(θ, γ)
def
= inf

n6=0
|n| · |〈nθ − γ〉|. (1)

Also define the set
BAθ

def
= {γ ∈ R : c (θ, γ) > 0} . (2)

It was proved by [BW92] (cf. [Kim07] for a second proof):

∗Department of Mathematics, University of Michigan, Ann Arbor MI, 48109, USA, ebank@umich.edu
†School of Mathematical Sciences, Tel Aviv University, Tel Aviv 69978, Israel, erezne-

sharim@post.tau.ac.il
‡Department of Mathematics, Aarhus University, 8000 Aarhus C, Denmark, steffenh@math.au.dk
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Theorem 1.1. For every θ ∈ R \Q, the set BAθ has zero Lebesgue measure.

On the other hand, the following result concerning BAθ is proved in [Tse09] (see also
[BW92, Theorem 2.3]):

Theorem 1.2. For every θ ∈ R, the set BAθ has Hausdorff dimension 1.

We mention that subsets of Rd with positive Hausdorff dimension are uncountable,
and that subsets with positive Lebesgue measure in Rd have maximal dimension, i.e.,
d (see [Fal14] for the definition of Hausdorff dimension). In view of that, Theorem 1.1
states that the set BAθ is small, while Theorem 1.2 states that BAθ is large, and in
particular, not empty. Therefore, for every θ there exists a γ such that c(θ, γ) > 0. This
leads to the definition of the following two constants:

c(θ)
def
= sup

γ
c(θ, γ), (3)

and
c

def
= inf

θ
c(θ). (4)

Khinchine [Khi26] proved that c > 0. Davenport [Dav51] was the first to give an explicit
lower bound on c. The problem of finding the exact value of it was posed by Cassels
[Cas57, p.86]. According to [Mos12], the best estimate of c was found in [God53]:

Theorem 1.3.
3

32
≤ c ≤ 68

483
.

In this work we study the analogues of these constants in the context of function fields.

Remark 1.4. Some authors consider a constant which is similar to the one defined in (4):

c̃
def
= inf

θ
sup
γ

lim inf
n→∞

|n| · |〈nθ − γ〉|. (5)

By definition we have c ≤ c̃, and we are not aware of any result regarding equality.
However, the function fields analogues of those constants coincide (cf. Theorem 3.11).

1.1 Higher Dimensions

Throughout the paper, we will denote vectors by bold symbols, and their coordinates
with superscripts. Assume d ≥ 1. A weight in Rd is a vector r ∈ Rd with r1+· · ·+rd = 1,
rs ≥ 0 for any 1 ≤ s ≤ d. Given a weight r and θ,γ ∈ Rd, define the approximation
constant with weight r of θ with respect to γ by

cr(θ,γ)
def
= inf

n6=0
max
1≤s≤d

(
|n|rs |〈nθs − γs〉|

)
,

and let
BAθ(r)

def
=
{
γ ∈ Rd : cr (θ,γ) > 0

}
.

2
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As in the one dimensional case, define

cr (θ)
def
= sup

γ
cr(θ,γ),

and
cr

def
= inf

θ
cr (θ) . (6)

A higher dimensional version of Theorem 1.1 is proved in [Sha13] by dynamical methods:

Theorem 1.5. For almost every θ ∈ Rd (described explicitly), the set BAθ
(
1
d
, . . . , 1

d

)

has measure zero.

The higher dimensional version of Theorem 1.2 appeared only recently in [BM15],
extending a result proved independently by [BHKV10] and [ET11] about the weight
r =

(
1
d
, . . . , 1

d

)
:

Theorem 1.6. For every weight r and θ ∈ Rd, the set BAθ (r) has dimension d.

As for (6); Cassels [Cas57, Theorem X] showed that c( 1
d
,..., 1

d) > 0, and an explicit

lower bound was established in [BL05]:

Theorem 1.7. For every d ≥ 1

c( 1
d
,..., 1

d) ≥
1

72d28
1
d

.

We know of no results regarding cr for a general weight r.

1.2 The Function Fields Analogue of Diophantine Approximation

The function fields analogue of Diophantine approximation has been studied since the
work of Artin [Art24]. It is sometimes referred to as Diophantine approximation in
positive characteristic. Every statement in Diophantine approximation has an analogous
statement in this context. Let us introduce the dictionary which is used for translating
statements (and sometimes, their proofs) from one context to the other. Let q be a prime
power, and let Fq be the field with q elements. Define an absolute value on Fq [t] by

|N | def
= qdegN for 0 6= N ∈ Fq [t], and |0| = 0. Extend this definition to the fraction field,

the field of rational functions Fq (t), by
∣∣M
N

∣∣ def
= qdegM−degN where M,N ∈ Fq [t], N 6= 0.

The field Fq
((

1
t

))
of formal Laurent series in t with finite number of non zero coefficients

of positive powers of t, is the completion of Fq (t) with respect to this absolute value.
Extending the absolute value continuously to Fq

((
1
t

))
, gives that the absolute value of

a non zero θ ∈ Fq
((

1
t

))
, written as

θ =
∞∑

i=−deg θ

θit
−i,

3
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where deg θ
def
= max {−i : θi 6= 0}, is

|θ| = qdeg θ.

The set

I
def
=

{
θ ∈ Fq

((
1

t

))
: |θ| < 1

}
.

is a natural set of representatives for elements in Fq
((

1
t

))
up to the equivalence relation

of having a difference which is a polynomial. We denote 〈θ〉 =
∑∞

i=1 θit
−i and consider

it to be the representative of θ in I. We call 〈θ〉 and θ − 〈θ〉 the fractional part and the
polynomial part of θ, respectively. These definitions give the dictionary:

Fq[t] ! Z
Fq(t) ! Q
Fq
((

1
t

))
! R

|θ| = qdeg θ ! |θ|
|〈θ〉| = dist (θ,Fq [t]) ! |〈θ〉| = dist (θ,Z) .

1.3 Previous Works in Inhomogeneous Approximation in Function
Fields

The analogue of inhomogeneous approximation in function fields was studied in [Mah41].
Recently, this subject has regained interest, parallel to a significant progress in the real
case [Kri11, KN11, CF12, FK15]. Let us use the dictionary described above in order to
define the function fields analogues of (1), (2), (3) and (4). For θ, γ ∈ Fq

((
1
t

))
, denote

c(θ, γ)
def
= inf

06=N
|N | · |〈Nθ − γ〉| (7)

where N varies over the non zero polynomials in Fq [t],

BAθ
def
=

{
γ ∈ Fq

((
1

t

))
: c(θ, γ) > 0

}
, (8)

c(θ)
def
= sup

γ
inf
06=N
|N | · |〈Nθ − γ〉|, (9)

and
c

def
= inf

θ
c(θ). (10)

An analogue of Theorem 1.1 was proved in [KN11]:

Theorem 1.8. For every θ ∈ Fq
((

1
t

))
\ Fq (t), the set BAθ has zero measure.

The measure mentioned here is the natural measure on Fq
((

1
t

))
, which we will recall

in Section 2. Before we formulate higher dimensional analogues, let us introduce a more
general notion of weight which is more natural to this context. A generalized weight

4
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is a function g =
(
g1, . . . , gd

)
: N → Nd, such that for every 1 ≤ s ≤ d the function

gs : N→ N is non decreasing, and

d∑

s=1

gs (h) = h,

for every h ∈ N. Define the higher dimensional versions of (7), (8), (9), and (10): For

any θ, γ ∈ Fq
((

1
t

))d
, let

cg (θ,γ)
def
= inf

06=N
max
1≤s≤d

|N |
gs(degN)

degN · |〈Nθs − γs〉|,

where, by convention, gs(0)
0

= 1,

BAθ (g)
def
=

{
γ ∈ Fq

((
1

t

))d
: cg (θ,γ) > 0

}
,

cg (θ)
def
= sup

γ
cg (θ,γ) ,

and
cg

def
= inf

θ
cg (θ) .

While the approach of [Sha13] is likely to give a proof for the function fields analogue of
Theorem 1.5, this line will not be pursued in this note. The reader is referred to [Gho07,
HP02] to learn more about the dynamical approach towards Diophantine approximation
in function fields.

Remark 1.9. Any weight r in the sense of Section 1.1, induces a generalized weight gr,
by letting gr(0)

def
= (0, . . . , 0) and gr(h + 1)

def
= gr(h) + es, where 1 ≤ s ≤ d is any index

satisfying
rs · (h+ 1)− gsr(h) = max

1≤t≤d
rt · (h+ 1)− gtr(h) (11)

Note that for every h ≥ 0, we have

∑

1≤s≤d
rsh =

∑

1≤s≤d
gsr(h) = h. (12)

Therefore, there exists 1 ≤ s ≤ d such that

rs · (h+ 1)− gsr(h) ≥ 1

d
. (13)

By induction on h, using (11) and (13), we conclude that

rsh− gsr(h) ≥ −
(

1− 1

d

)
,
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for every h ≥ 0 and 1 ≤ s ≤ d. On the other hand, by (12) and (13) we get

rsh− gsr(h) = −
(∑

t6=s
rth− gtr(h)

)
≤ (d− 1)

(
1− 1

d

)
,

The upshot is that for any θ,γ ∈ Fq
((

1
t

))d
, the approximation constant cgr (θ,γ) differs

from
cr (θ,γ)

def
= inf

06=N
max
1≤s≤d

|N |rs · |〈Nθs − γs〉|.

by a multiplicative factor smaller than qd. In particular, for every θ ∈ Fq
((

1
t

))d
, the set

BAθ (r)
def
=

{
γ ∈ Fq

((
1

t

))d
: cr (θ,γ) > 0

}
,

equals BAθ (gr).

1.4 Main Results

In this paper, we prove the function fields analogue of Theorem 1.6 and determine the
value of the function fields analogue of (10). More precisely, we show:

Theorem 1.10. BAθ(g) 6= ∅ for every generalized weight g and θ ∈ Fq
((

1
t

))d
. More-

over, if

inf
h∈N

ming (h)

h
> 0 (14)

then dim (BAθ(g)) = d for every θ ∈ Fq
((

1
t

))d
.

Theorem 1.11. Any generalized weight g satisfies cg = q−2.

Remark 1.12. It should be mentioned that [Arm57, Agg69] deal with a related question
concerning products of linear forms. Assume Fi(x, y) = aix + biy, i ∈ {1, 2}, are two
linear forms with coefficients ai, bi ∈ Fq

((
1
t

))
. Using the methods of [Dav51, Cas52], it

was proven that:

sup
γ,δ∈Fq(( 1

t ))
inf

x,y∈Fq [t]
|F1 (x+ γ, y + δ)| · |F2 (x+ γ, y + δ)| = |a1b2 − a2b1| q−2. (15)

where the upper bound has been already proved in [Mah41, p. 519]. Given any θ ∈
Fq
((

1
t

))
, take F1 = θx+ y and F2 = x, and plug them into (15) to obtain:

sup
γ,δ∈Fq(( 1

t ))
inf

N∈Fq [t]
|N + γ| · |〈Nθ + δ + γθ〉| = q−2. (16)

Note that forcing γ = 0 and N 6= 0 can a priori make the left hand side of (16) bigger
or smaller, so one cannot apply (16) directly in order to estimate c(θ).
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2 Measure and dimension

In order to prove BAθ has the same Hausdorff dimension as Fq
((

1
t

))d
, we will construct

subsets of it by nested intersection. In this section we recall a general criterion which
gives rise to a lower bound on the Hausdorff dimension of such intersections.

2.1 Tree-like collections

Let X be a complete metric space with a metric ρ, and let µ be a Borel measure on X.
Following the terminology of [KW10], a collection C of compact subsets of X is called
tree-like if there exists a sequence of collections {Cm}∞m=0 such that C =

⋃∞
m=0 Cm which

satisfy the following conditions:

1. C0 = {C0}, with C0 ⊆ X compact.

2. µ(C) > 0 for any C ∈ C.
3. For any m ∈ N and C,C ′ ∈ Cm, either C = C ′ or µ (C ∩ C ′) = 0.

4. For any m ∈ N and C ∈ Cm+1, there exists C ′ ∈ Cm such that C ⊆ C ′.

5. For any m ∈ N and C ′ ∈ Cm, there exists C ∈ Cm+1 such that C ⊆ C ′.

Given a tree-like collection C =
⋃∞
m=0 Cm we define its limit set to be

C∞ =
∞⋂

m=0

⋃

C∈Cm
C.

For each m ∈ N define
ρm = sup

C∈Cm
ρ (C) ,

where ρ (C) = maxx,y∈C ρ(x, y), and

Dm = inf
C′∈Cm

µ
(⋃

C∈Cm+1, C⊆C′ C
)

µ(C ′)
.

A tree like collection is said to be strongly tree-like if, in addition:

6. ρm −−−→
m→∞

0.

The following is a specific case of [KW10, Lemma 2.5]:

Theorem 2.1. Let X be a complete metric space with a metric ρ, and µ be a Borel
measure. Assume that there exist constants c, α > 0 such that

µ(B(x, r)) ≥ crα, (17)

for any x ∈ X and 0 < r < 1. Then any strongly tree-like collection C =
⋃∞
m=0 Cm

satisfies

dimC∞ ≥ α− lim sup
m→∞

∑m
k=0 logDk

log ρm
.
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2.2 A metric and a measure on Fq
((

1
t

))d

We shall make use of the standard metric and measure on Fq
((

1
t

))
, which will be

denoted by ρ and µ respectively. The metric ρ is defined by ρ(θ, ϕ) = |θ − ϕ|, for all
θ, ϕ ∈ Fq

((
1
t

))
, where | · | stands for the absolute value on Fq

((
1
t

))
, as described in

Section 1.2. Note that the balls of this metric are of the form

B
(
θ, q−`

)
= θ + t−`I,

for ` ∈ Z and θ ∈ Fq
((

1
t

))
. The measure µ is the Haar measure on Fq

((
1
t

))
, normalized

by µ(I) = 1. This measure is characterized by assigning a measure q−` to any ball of
radius q−`, and by being invariant under addition.

The metric and the measure on Fq
((

1
t

))d
are defined by

ρd(θ,ϕ) = max
1≤s≤d

ρ(θs, ϕs),

for all θ,ϕ ∈ Fq
((

1
t

))d
and

µd = µ× . . .× µ,
d many times. Note that for any ` ≥ 0,

µd
(
B
(
θ, q−`

))
= q−d`,

and that whenever q−`−1 < r ≤ q−`, we have

B (θ, r) = B
(
θ, q−`

)
.

This proves that µd satisfies (17) with c = 1 and α = d.

2.3 Cantor constructions in Fq
((

1
t

))d

In this section we describe a construction of a tree-like collection in Fq
((

1
t

))d
, which

we refer to as a Cantor construction. To introduce the construction, we need some
additional notation; For any vector of non negative integers ` = (`1, . . . , `d), denote

` =
d∑

s=1

`s,

and F`q = F`q. Let π` : Fq
((

1
t

))d → F`q be the projection defined by

π`(θ)
def
=
(
θ11, . . . , θ

1
`1 , . . . , θ

d
1, . . . , θ

d
`d

)t
.

For convenience, we denote F0
q = {∅} and π(0,...,0)(θ) = ∅ for any θ ∈ Fq

((
1
t

))d
. By

abuse of notation, let us use π` to denote the projection to the first ` coordinates from
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F`′q to F`q, whenever `′ ≥ `, where this inequality should be understood coordinatewise.
For any v ∈ F`q define the cylinder of v by

[v]
def
=
{
θ ∈ Id : π`(θ) = v

}
,

and denote ` = `(v). For any h ∈ Nd, denote q−h =
(
q−h

1
, . . . , q−h

d
)

. Given a collection

of cylinders C, define

q−hC def
= {[u] : [π`(u)] ∈ C, ` = `(u)− h} .

Assume (`m)∞m=0 is a sequence of d dimensional non negative integer vectors. Let
(`′m)∞m=0 be any sequence of non negative integers satisfying `′m < `m for all m. Define a((
q`m
)∞
m=0

,
(
q`
′
m
)∞
m=0

)
Cantor construction as a set {Cm : m ≥ 0} satisfying C0 = {Id},

Cm+1 ⊆ q−`mCm,

and ∣∣q−`m {C} \ Cm+1

∣∣ = q`
′
m ,

for every m ≥ 0 and C ∈ Cm. The limit set of such a construction is the set C∞ =⋂∞
m=0

⋃
C∈Cm C, which we call a

((
q`m
)∞
m=0

,
(
q`
′
m
)∞
m=0

)
Cantor set. If the sequences

(`m)∞m=0 , (`′m)∞m=0 are constant, and equal, say, to `, `′ respectively, then we shall call
such a set a

(
q`, q`

′)
Cantor set.

2.4 Measure and dimension of Cantor constructions

First note that for any
((
q`m
)∞
m=0

,
(
q`
′
m
)∞
m=0

)
Cantor construction {Cm : m ≥ 0}, for

any m ≥ 0, we have

µ


 ⋃

C∈Cm+1

C


 =

q`m − q`′m
q`m

µ

( ⋃

C∈Cm
C

)
.

This follows from the fact that Cm+1 is composed of equal length cylinders which, there-
fore, have the same measure. This provides an expression for µ(C∞), and shows that if
|`m − `′m| is bounded then

µ(C∞) = 0.

We now apply Theorem 2.1 to get a lower bound on the dimension of Cantor sets:

Theorem 2.2. Assume C∞ is a
((
q`m
)∞
m=0

,
(
q`
′
m
)∞
m=0

)
Cantor set. If

min
m−1∑

k=0

`k −−−→
m→∞

∞, (18)

then

dim(C∞) ≥ d− lim sup
m→∞

m+ 1

min
∑m−1

k=0 `k

log q
q−1

log q
.
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Proof. Let {Cm : m ≥ 0} be the Cantor construction corresponding to C∞. So
C =

⋃∞
m=0 Cm is a tree-like collection. Moreover, we have that for every m ≥ 0,

ρm = q−min
∑m−1

k=0 `k ,

and

Dm =
q`m − q`′m

q`m
= 1− q`′m−`m ≥ q − 1

q
.

(18) implies that C is strongly tree-like. By Theorem 2.1, we get

dim(C∞) ≥ d− lim sup
m→∞

∑m
k=0 logDk

log ρm

≥ d− lim sup
m→∞

m+ 1

min
∑m−1

k=0 `k

log q
q−1

log q
.

3 The One Dimensional Case

In this section we state and prove the one dimensional versions of Theorems 1.10 and
1.11. Our method of proof is inspired by [DL63], and utilizes a characterization of the
approximations of θ by means of solutions to a certain linear system of equations.

3.1 The Corresponding Matrix of an Element in Fq
((

1
t

))

Assume θ ∈ Fq
((

1
t

))
is a Laurent series, and N = nht

h + ...+n0 ∈ Fq [t] is a polynomial
of degree h. Then

〈Nθ〉 = L1(θ)t
−1 + L2(θ)t

−2 + · · ·
where for any i ≥ 1,

Li(θ) = n0θi + n1θi+1 + · · ·+ nhθi+h.

For any γ ∈ Fq
((

1
t

))
and ` ≥ 0, one has

|N | · |〈Nθ − γ〉| < q−(1+`) ⇐⇒ |〈Nθ − γ〉| < q−(h+1+`)

⇐⇒ Li(θ) = γi, 1 ≤ i ≤ h+ 1 + `.
(19)

In order to write the above linear system of equations in a matrix form, let us define
∆(θ) to be the infinite matrix:

∆(θ) =




θ1 θ2 · · ·
θ2 θ3 · · ·
...

. . .


 .
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Denote the i× j sub-matrix of ∆(θ):

∆ [i, j] =




θ1 · · · θj
...

...
θi · · · θi−1+j


 .

In these notation, we may rewrite (19) as

|N | · |〈Nθ − γ〉| < q−(1+`) ⇐⇒ ∆ [h+ 1 + `, h+ 1] · n = πh+1+` (γ) . (20)

Here n is the coefficients vector of the polynomial N .
Consider the same matrix equation, where n is now a vector of variables. Note that

the matrix ∆ [h+ 1 + `, h+ 1] is a (h+ 1 + `)× (h+ 1) matrix. Therefore, for any ` > 0
and any fixed h, there exists a γ ∈ Fq

((
1
t

))
such that equation (20) has no solutions

n ∈ Fh+1
q . This means that for any N of degree h, |N | · |〈Nθ − γ〉| ≥ q−(1+`). Our intent

is to construct elements γ ∈ Fq
((

1
t

))
for which c(θ, γ) ≥ q−(1+`). This is equivalent to

the equality on the right hand side of (20) to have no solutions for all h ≥ 0 at once. To
this end, we carefully analyze the rank of the non square submatrices ∆[i, j].

Remark 3.1. We mention that for θ’s such that ∆[m,m] is invertible for all m > 0, our
construction is reduced to a slightly easier one. However, it should be noted that the
set of θ for which this happens is a set of measure zero. Indeed, for θ ∈ Fq

((
1
t

))
and

m > 0,
det (∆[m+ 1,m+ 1]) = det (∆[m,m]) θ2m+1 + F (θ1, · · · , θ2m),

where F (θ1, · · · , θ2m) is an explicit polynomial which only involves θ1, · · · , θ2m of θ (and
not θ2m+1). Therefore, if det (∆[m,m]) 6= 0 for all m, then

det (∆ [m+ 1,m+ 1]) 6= 0 ⇐⇒ θ2m+1 6= −
F (θ1, . . . , θ2m)

det (∆ [m,m])
.

Hence, the set of θ’s for which ∆[m,m] is invertible for all m > 0 is a (q2, q) Cantor set.
As discussed in Section 2.4, such sets have measure zero.

3.2 Indices Construction

Given any θ ∈ Fq
((

1
t

))
and an integer ` > 0, we define the sequences of indices I` =

{im}∞m=0, J` = {jm}∞m=0 as follows:

1. j0 = 0, i0 = `.

2. jm+1 = min{j : rank(∆[im, j]) = im}.
If this minimum is not obtained, we let jm+1 =∞.

3. If jm+1 =∞, let im+1 = im. Otherwise, define

im+1 = min{i : rank(∆[i, jm+1]) = i− `}.
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For convenience, we write i−1 = 0. Note that if det(∆ [m,m]) 6= 0 for all m > 0, then
im = (m + 1)` and jm = m` for all m ≥ 0. The following lemma summarizes some
properties of these indices.

Lemma 3.2. Let I`,J` be as defined above. If jm+1 <∞, then im+1 is defined, and the
indices satisfy:

1. im+1 ≤ jm+1 + `.

2. im+1 ≥ im + `.

3. jm+1 ≥ jm + `.

Proof. General facts about rank of matrices imply that

rank(∆[i, j]) ≤ min(i, j), (21)

and
rank(∆[i, j]) ≤ rank(∆[i+ 1, j]), (22)

for every i, j > 0. By the definition of jm+1, one has that im − rank(∆[im, jm+1]) = 0.
On the other hand, putting i = jm+1 + ` and j = jm+1 in (21) gives (jm+1 + `) −
rank(∆[jm+1 + `, jm+1]) ≥ `. By (22), any i, j > 0 satisfy (i + 1) − rank(∆[i + 1, j]) ≤
i − rank(∆[i, j]) + 1. Therefore, there exists some im ≤ i ≤ jm+1 + ` for which i −
rank(∆[i, jm+1]) = `. We conclude that im+1 is well defined.

1. By the definition of im+1 and the above discussion, it satisfies im+1 ≤ jm+1 + `.

2. Since rank(∆[im, jm+1]) = im, we have im ≤ jm+1. It follows that
rank(∆[i, jm+1]) = i for any i ≤ im, while if i > im, one has rank(∆[i, jm+1]) ≥ im.
Using rank(∆[im+1, jm+1]) = im+1 − `, we conclude that im+1 ≥ im + `.

3. Note that rank(∆[im, jm]) = im − `, and that for all j ≤ jm, one has that
rank(∆[im, j]) ≤ im − `. By the definition of jm+1 as the minimal j for which
rank(∆[im, j]) = im, it follows that jm+1 ≥ jm + `.

Remark 3.3. If θ ∈ Fq
((

1
t

))
is rational, i.e. θ ∈ Fq (t), then there exists an m for which

jm = ∞. Indeed, since θ is rational, its coefficients sequence is eventually periodic,
i.e., there exist m0, p ∈ N such that θm = θm+p for all m ≥ m0. Therefore, whenever
jm ≥ m0+p, we must already have jm =∞. The implication holds in the other direction
as well. Assume that jm+1 = ∞ for some m ∈ N. Then there exists 0 6= b ∈ Fimq such
that bt · (∆[im, j]) = 0 for all j > 0 at once. Since the i-th row of ∆(θ) consists of
the coefficients of 〈ti−1θ〉, this means that

∑im
s=1 b

sts−1θ is a polynomial. Therefore θ is
rational (this argument appears in [Har21, p.438]).
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3.3 Main Proposition

The following proposition is the key ingredient of the proofs of our main results. To
prove it, we make use of the indices constructed in Section 3.2. In fact, the construction
of the indices serves as a way to bypass the fact that the matrices ∆[m,m] are not
necessarily invertible.

Proposition 3.4. For any θ ∈ Fq
((

1
t

))
, ` > 0 consider the indices sequences I`,J`

constructed in Section 3.2. Let Γ` be the set of γ ∈ Fq
((

1
t

))
such that for any m ≥ 0

and 0 < j < jm+1, the equation

∆ [im, j] · n = πim (γ) (23)

has no solutions. Then

dim Γ` ≥ 1− 1

`

log q
q−1

log q
.

Proof. Let C0 = {I}. For m ≥ 0, assume that Cm is already defined. By definition,
rank(∆[im, j]) ≤ im − 1 for every j < jm+1. Moreover, for every j ≤ j′ we have

{
b ∈ Fimq : bt ·∆[im, j

′] = 0t
}
⊆
{
b ∈ Fimq : bt ·∆[im, j] = 0t

}
.

Hence, there exists 0 6= bm ∈ Fimq such that

(bm)t ·∆[im, j] = 0t,

for all j < jm+1. Define:

Cm+1 =
⋃

C∈Cm

{
π−1im (v) : v ∈ πim(C), (bm)t · v 6= 0

}
.

Note that Cm+1 is a set of sets. Finally, define

C∞ =
∞⋂

m=0

⋃

C∈Cm
C.

Claim 1: C∞ ⊆ Γ`
Let γ ∈ C∞. For m ≥ 0 and 0 < j < jm+1 we have that

(bm)t ·∆[im, j] = 0t and (bm)t · πim(γ) 6= 0.

Therefore, there are no solutions to (23), and hence γ ∈ Γ`.

Claim 2: dim (C∞) ≥ 1− 1
`

log q
q−1

log q

If jm+1 6= ∞ for all m ≥ 0, then C∞ is a
(
(qim−im−1)

∞
m=0 , (q

im−im−1−1)
∞
m=0

)
Cantor set.

Indeed, for every m ≥ 0, recall that rank(∆[im−1, jm]) = im−1, and hence, at least one
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of the last im− im−1 coefficients of bm is non zero. Therefore, for every γ ∈ Fq
((

1
t

))
for

which π−1im−1
(πim−1(γ)) ∈ Cm, there are exactly qim−im−1−1 vectors u ∈ Fim−im−1

q for which

(bm)t ·
(
πim−1 (γ)

u

)
= 0.

Applying Lemma 3.2(2) m− 1 times, yields im−1 ≥ m`. Since
∑m−1

k=0 ik− ik−1 = im−1,
it follows by Theorem 2.2 that

dim (C∞) ≥ 1− lim sup
m→∞

m+ 1

im−1

log q
q−1

log q
≥ 1− 1

`

log q
q−1

log q
.

If there exists m ≥ 0 for which jm+1 = ∞, then C∞ is a non empty union of cylinders
of length im, and therefore has a positive measure, thus Hausdorff dimension one.

3.4 The One Dimensional Case - Results

This section is devoted for the statements and proofs of Theorems 1.10 and 1.11 in the
one dimensional case.

Theorem 3.5. For every θ ∈ Fq
((

1
t

))
, dim (BAθ) = 1.

Proof. Fix any ` > 0. Consider the sequences I`,J` of indices from Section 3.2, and the
set Γ` from Proposition 3.4. Assume γ ∈ Γ`. By Proposition 3.4, for all m ≥ 0 and
0 < j < jm+1, there are no non zero solutions to (23). For any h ∈ N, let m be such
that jm ≤ h+ 1 < jm+1. In particular,

∆ [im, h+ 1] · n = πim(γ), (24)

has no non zero solutions. Using Lemma 3.2(1), we get im ≤ jm + ` ≤ h + 1 + `.
Therefore, the equation

∆ [h+ 1 + `, h+ 1] · n = πh+1+`(γ),

has no non zero solutions, as it is obtained from (24) by increasing the number of
equations. By (20), we get that

|N | · |〈Nθ − γ〉| ≥ q−(1+`)

for any 0 6= N ∈ Fq [t]. Therefore, Γ` ⊆ BAθ. We apply Proposition 3.4 to bound the
dimension of BAθ from below:

dimBAθ ≥ dim (Γ`) ≥ 1− 1

`

log q
q−1

log q
.

Since the above holds for all ` > 0, and since 1 − 1
`

log q
q−1

log q
−−−→
`→∞

1, we conclude that

dim (BAθ) = 1.
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Proposition 3.6. For every θ ∈ Fq
((

1
t

))
one has that c(θ) ≥ q−2.

Proof. The proof of Theorem 3.5 shows that any γ ∈ Γ1 satisfies c(θ, γ) ≥ q−2. Propo-
sition 3.4 implies dim (Γ1) > 0, hence in particular Γ1 6= ∅. Therefore, c(θ) ≥ q−2.

We now give a property of the elements θ ∈ Fq
((

1
t

))
for which c(θ) ≥ q−1.

Proposition 3.7. If c(θ) ≥ q−1 then there exists m0 ∈ N ∪ {∞} such that

∆[m,m] is invertible exactly for 0 < m < m0. (25)

Proof. Assume that there is no m0 satisfying (25). Therefore, there are 0 < m1 < m2 <
∞ such that ∆[m1,m1] is not invertible and ∆[m2,m2] is invertible. By assumption,
there exists γ such that

|N | · |〈Nθ − γ〉| < q−1 (26)

has no solutions 0 6= N in Fq [t]. By (20) with ` = 0,

∆ [m,m] · n = πm (γ) (27)

has no solutions 0 6= n ∈ Fmq for any m > 0 with nm 6= 0. Therefore, there are
no non zero solutions to (27). In particular, ∆[m2,m2] · n = πm2(γ) has no non zero
solutions n ∈ Fm2

q . However, ∆[m2,m2] is invertible, so we must have πm2(γ) = 0. Since
m1 < m2, we have πm1(γ) = 0. Now, ∆[m1,m1] is non-invertible, therefore, the equation
∆[m1,m1] · πm1 (n) = 0 has non zero solutions, contradicting (27) for m1.

Remark 3.8. In the extreme cases m0 = 1 and m0 = ∞, the other implication also
holds. To see this, note that if det (∆[m,m]) = 0 for all m > 0 then we must have θ = 0.
Indeed, for any m > 0, assume that θ1 = . . . = θm−1 = 0. Then ∆[m,m] have θm on the
anti diagonal, and zeroes above it. Therefore, 0 = det (∆[m,m]) = (θm)m, so θm = 0.
For θ = 0, any γ 6= 0 does not have solutions for (27). If m0 =∞, choose γ = 0. Since
∆[m,m] is invertible for every m, the only solution to (27) is n = 0.

As a corollary of Propositions 3.6 and 3.7, we get:

Theorem 3.9. c = q−2.

Proof. One only needs to make sure that there exists θ such that c(θ) = q−2. It is enough
to find θ which does not satisfy the conclusion of Proposition 3.7. Any θ with θ1 = 0
and θ2 6= 0 works.

We complete the discussion on the one dimensional case by showing that replacing
the inf by lim inf in the definition of c(θ, γ) does not change the value of the constant:

Proposition 3.10. Let θ ∈ Fq
((

1
t

))
. If c̃ (θ)

def
=

supγ lim inf {|N ||〈Nθ − γ〉| : 0 6= N ∈ Fq [t]} ≥ q−1 then there exists m0 ∈ N ∪ {∞}
such that ∆[m,m] is either invertible for all m ≥ m0 or non invertible for all m ≥ m0.
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Proof. The proof here is similar to the proof of Theorem 3.7. Assume that there are
infinitely many pairs 0 < m1 < m2 for which ∆ [m1,m1] is non invertible and ∆ [m2,m2]
is invertible. This implies that (26) has infinitely many non zero solutions, hence, c̃ (θ) <
q−1, which contradicts the assumptions of the proposition.

Theorem 3.11. c̃
def
= infθ c̃ (θ) = q−2.

Proof. By definition we have c ≤ c̃, so it is enough to find θ for which c̃(θ) ≤ q−2. Define
θ by θmk

= 1 for the sequence mk = 2k+1 − 2, k = 1, 2, . . ., and θm = 0 for every other
m ∈ N \ {mk : k ∈ N}. For this θ we have that ∆[mk,mk] is invertible because the
anti diagonal is full with ones, and below the anti diagonal there are only zeros. On the
other hand, ∆[mk + 1,mk + 1] is non invertible since the last row and column are zero.
Hence, by Proposition 3.10, c̃(θ) ≤ q−2.

4 The General Case

We now turn to prove Theorems 1.10 and 1.11. To this end, we need to further generalize

our indices construction. Fix a generalized weight g, a vector θ ∈ Fq
((

1
t

))d
and ` > 0,

and define the matrices

∆ [i, j] =




θ11 · · · θ1j
...

...
θ1g1(i) · · · θ1g1(i)+j
· · · · · · · · ·
θd1 · · · θdj
...

...
θd
gd(i)

· · · θd
gd(i)+j




. (28)

We construct the set of indices Ig,`, Jg,` the same way as in the one dimensional case.
This construction has the same properties as summarized in Lemma 3.2, as one can
prove by repeating the proof of Lemma 3.2 verbatim. The same argument works since
the rank is independent of the order of the rows.

Define the set

BAθ (g, `) =

{
γ ∈ Fq

((
1

t

))d
: inf
N 6=0

max
1≤s≤d

|N |
gs(degN+1+`)

degN |〈Nθs − γs〉| ≥ 1

}
.

For every 1 ≤ s ≤ d, we have gs(n+ 1) ≤ gs(n) + 1 for all n. It follows that

BAθ (g, `) ⊆ BAθ (g) . (29)

Note that for any polynomial N of degN = h, and every ` > 0, one has:

max1≤s≤d |N |
gs(h+1+`)

h |〈Nθs − γs〉| < 1 ⇐⇒

∆ [h+ 1 + `, h+ 1]n = πg (γ) ,

(30)

16

68



where n is the coefficients vector of the polynomial N . This is the higher dimensional
version of (20). The next proposition is the higher dimensional version of Proposition
3.4, and the idea of the proof is the same. Therefore, we will mainly emphasize the
differences in the proof.

Proposition 4.1. Assume θ ∈ Fq
((

1
t

))d
, a generalized weight g, and ` > 0. Define

Γθ (g, `) as the set of all γ ∈ Fq
((

1
t

))d
such that for any m ∈ N and 0 < j < jm+1, the

equation
∆ [im, j]n = πg(im) (γ) (31)

has no solutions n ∈ Fjq. Then Γθ (g, `) 6= ∅. Moreover, if

ming (im) −−−→
m→∞

∞ (32)

then

dim (C∞) ≥ d− lim sup
m→∞

m+ 1

ming(im−1)

log q
q−1

log q
. (33)

Proof. Let C0 =
{
Id
}

. In the same way as is in the proof of Proposition 3.4 define for
each m ≥ 1 the sets Cm, vectors bm ∈ Fimq and the set C∞, but using the matrices (28),
and projections πg(i) instead of πi.

Claim 1: C∞ ⊆ Γθ (g, `).
The argument is the same as in Proposition 3.4, but with the two aforementioned
changes.

Claim 2: If jm+1 6= ∞ for all m, then C∞ is a
((
qg(im)−g(im−1)

)∞
m=0

, (qim−im−1−1)
∞
m=0

)

Cantor set.
An analysis like the one in Proposition 3.4 gives, that for each m ≥ 0, and for each
C ∈ Cm, there are exactly qim−im−1−1 vectors v ∈ πg(im)(C), for which (bm)t · v = 0.
From the construction of Cm+1 from Cm, we get the desired.

Claim 3: Γθ (g, `) 6= ∅.
If jm+1 6= ∞ for all m, it follows since Cantor sets are non empty, that C∞ 6= ∅, and
hence Γθ (g, `) 6= ∅.

If there exists m ≥ 0 for which jm+1 =∞, then C∞ is a non empty union of cylinders
of length g(im). Therefore it is non empty.

Claim 4: If
ming (im) −−−→

m→∞
∞,

then

dim (C∞) ≥ d− lim sup
m→∞

m+ 1

g(im−1)

log q
q−1

log q
.

If jm+1 6=∞ for all m, then since
∑m−1

k=0 g(ik)− g(ik−1) = g(im−1), the result follows
from Theorem 2.2.
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If there exists m ≥ 0 for which jm+1 =∞, then C∞ has positive measure, and hence
dimension d.

Proof of Theorem 1.10. Recall that we want to show that dim (BAθ(g)) = d. Let ` > 0
be any integer. By imitating the proof of Theorem 3.5, we get that Γθ (g, `) ⊆ BAθ (g, `).
By Proposition 4.1, we get Γθ (g, `) 6= ∅, and hence, BAθ (g, `) 6= ∅. To conclude the
second part of the theorem, we assume that (14) holds. Therefore, there exists r > 0
such that ming(h) ≥ rh for all h. By applying Lemma 3.2(2) m times we see that for
every m ≥ 0, im ≥ (m+ 1)`. By the monotonicity of gs for all 1 ≤ s ≤ d, we thus obtain
that

ming (im) ≥ ming ((m+ 1)`) ≥ r(m+ 1)` −−−→
m→∞

∞.

Hence, condition (32) is satisfied. As a consequence of Proposition 4.1, the inequality
(33) also holds.

Finally,

dimBAθ (g, `) ≥ dim (Γθ (g, `))

≥ d− lim sup
m→∞

m+ 1

ming (im−1)

log q
q−1

log q

≥ d− 1

r`
.

As ` > 0 is arbitrary, by (29) we get

dimBAθ (g) = d.

Proof of Theorem 1.11. We want to show that cg = q−2. As in the proof of Propo-
sition 3.6, we note that Γθ (g, 1) is not empty. Therefore, cg (θ) ≥ q−2 for every

θ ∈ Fq
((

1
t

))d
. To show equality, it is enough to find one θ for which cg (θ) = q−2.

Let 1 ≤ s1, s2 ≤ d be such that gs1(1) 6= 0 and gs2(1) 6= gs2(2). If s1 = s2, choose any
θ with θs11 = 0, θs12 = 1 and θs13 = 0. Otherwise, choose θs11 = 0, θs12 = 1, θs21 = 1 and
θs22 = 0.
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metischer Teil.). Mathematische Zeitschrift, 19:153–206, 1924.

[BM15] P. Bengoechea and N. Moshchevitin. On weighted twisted badly approximable
numbers. arXiv, 1507.07119:1–17, 2015.

[BW92] D. Berend and M. William. The inhomogeneous minimum of binary quadratic
forms. Mathematical Proceedings of the Cambridge Philosophical Society, 112(1):7–19,
1992.

[BHKV10] Y. Bugeaud, S. Harrap, S. Kristensen, and S. Velani. On shrinking targets
for Zm actions on tori. Mathematika, 56(2):193–202, 2010.

[BL05] Y. Bugeaud and M. Laurent. On exponents of homogeneous and inhomogeneous
Diophantine approximation. Mosc. Math. J., 5:747–766, 2005.

[Cas52] J. W. S. Cassels. The inhomogeneous minimum of binary quadratic, ternary
cubic, and quaternary quartic forms. Proc. Cambridge Philos. Soc., 48:519–520, 1952.

[Cas57] J. W. S. Cassels. An Introduction to Diophantine Approximation. Hafner Pub-
lishing Co., New York, 1957. Facsimile reprint of the 1957 edition, Cambridge Tracts
in Mathematics and Mathematical Physics, No. 45.

[CF12] S. Y. Chen and M. Fuchs. A higher-dimensional Kurzweil theorem for formal
Laurent series over finite fields. Finite Fields and Their Applications, 18:1195-–1206,
2012.

[Dav51] H. Davenport. Indefinite binary quadratic forms, and Euclid’s algorithm in real
quadratic fields. Proc. London Math. Soc. (2), 53:65–82, 1951.

[DL63] H. Davenport and D. J. Lewis. An analogue of a problem of Littlewood. Michigan
Math. J., 10:157–160, 1963.

[ET11] M. Einsiedler and J. Tseng. Badly approximable systems of affine forms, fractals,
and Schmidt games. J. Reine Angew. Math., 660:83–97, 2011.

[Fal14] K. Falconer. Fractal Geometry: Mathematical Foundations and Applications.
John Wiley and Sons, 2014. 3rd edition.

19

71



[FK15] M. Fuchs and D. H. Kim. On Kurzweil’s 0-1 law in inhomogeneous Diophantine
approximation. Acta Arithmetica, 173:41-57, 2016.

[Gho07] A. Ghosh. Metric Diophantine approximation over a local field of positive
characteristic. J. Number Theory 124(2):454-469, 2007.

[God53] H. J. Godwin. On the theorem of Khintchine. Proc. London Math. Soc. V. 3,
1:211–221, 1953.

[Har21] G. H. Hardy. A Course of Pure Mathematics. Cambridge University Press,
1921. 3rd edition.

[HP02] S. Hersonsky and F. Paulin. A logarithm law for automorphism groups of trees.
Arch. Math., 88:97–108, 2002.
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