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Résumé pa dansk

Denne athandling bestar af tre artikler om Diofantisk approksimation, en undergren af
talteori. For disse artikler er der en introduktion til forskellige aspekter af Diofantisk
approksimation og formelle Laurent rackker over F,, samt en opsummering af hver af
de tre artikler.

Introduktionen indfgrer de grundleggende begreber som artiklerne bygger pa.
Blandt andet indfgres metrisk Diofantisk approksimation, Mahlers tilgang til algeb-
raisk approksimation, Hausdorff malet og egenskaber ved de formelle Laurent reekker
over F,. Introduktionen afsluttes med en diskussion af Mahlers problem betragtet i
de formelle Laurent reekker over 3.

Den forste artikel omhandler intrinsisk Diofantisk approksimation i Cantor maeng-
den i de formelle Laurent rackker over F3. Opsummeringen indeholder en kort motiv-
ation, resultaterne fra artiklen og skitser af beviserne, hovedsageligt med fokus pa de
anvendte ideer. Bevisernes detaljer er i artiklen.

Den anden artikel omhandler hgjere dimensionel Mahler approksimation. Opsum-
meringen fglger den samme struktur som i tilfaeldet med den forste artikel.

Den tredje artikel omhandler forvreenget inhomogen Diofantisk approksimation i
de formelle Laurent reekker over F,. Opsummeringen bestar af to forskellige dele.
Den fgrste del omhandler et mislykket forsgg pa at anvende dynamiske metoder til at
opna resultater og er ikke en del af artiklen. Den forklarer hvordan det reelle tilfeelde
virker og hvad der gar galt i tilfzeldet med formelle Laurent raekker. Den anden del
indeholder artiklens resultater og skitser af beviserne.






Abstract in English

This thesis consists of three papers in Diophantine approximation, a subbranch of
number theory. Preceding these papers is an introduction to various aspects of Dio-
phantine approximation and formal Laurent series over F, and a summary of each of
the three papers.

The introduction introduces the basic concepts on which the papers build. Among
other it introduces metric Diophantine approximation, Mahler’s approach on algebraic
approximation, the Hausdorff measure, and properties of the formal Laurent series
over [F,. The introduction ends with a discussion on Mahler’s problem when considered
in the formal Laurent series over Fj.

The first paper is on intrinsic Diophantine approximation in the Cantor set in the
formal Laurent series over 3. The summary contains a short motivation, the results
of the paper and sketches of the proofs, mainly focusing on the ideas involved. The
details of the proofs are in the paper.

The second paper is on higher dimensional Mahler approximation. The summary
follows the same structure as in the case of the first paper.

The third paper is on twisted inhomogeneous Diophantine approximation in the
formal Laurent series over F,. The summary consists of two distinct parts. The first
part is about a failed attempt of applying dynamical methods to obtain results and is
not part of the paper. It explains the ideas of how the real case works and what goes
wrong in the case of the formal Laurent series. The second part contains the results
of the paper and sketches of the proofs.
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Preface

“I'ry a hard problem. You may not solve it, but
you will prove something else.”

— J. E. Littlewood

Does the Cantor set contain any irrational algebraic numbers? In [20] Mahler
proposed this problem, and we expect the answer to be no.

In number theory we have an unofficial way of making conjectures about algebraic
numbers: An algebraic number behave like almost all real numbers, unless it has a
good reason not to. Since almost all numbers are normal, and rational numbers are
clearly not normal, we get the conjecture, that all irrational algebraic numbers are
normal, which would imply a no to Mahler’s problem.

Mabhler’s problem is a hard problem! I started out my PhD trying to solve it, and
as will be apparent once you have read this thesis, I did not succeed, but I did find
something else along the way!

The thesis is divided into three parts: The first part is a general introduction to
some main concepts in Diophantine approximation and formal Laurent series over F,.
The second part is summaries of the three papers resulting from my PhD, and the
final part is these three papers.

There are some people I would like to thank, people who have had a great impact
on my PhD: My family, who have provided an abundance of moral support and interest
in my project. My co-authors Simon Kristensen, Barak Weiss, Efrat Bank and Erez
Nesharim, whose various insights and expertises have complemented my insight and
expertise, producing results better than I could have obtained on my own. Finally,
and again, my supervisor Simon Kristensen who have not only been a guidance and
a support, but a colleague and a friend.

Steffen Hgjris Pedersen, Aarhus






1 Introduction

The introduction has two sections: Diophantine approximation and formal Laurent
series. Diophantine approximation is the study of how well real numbers can be
approximated by rational numbers, and other similar questions. My PhD is in Dio-
phantine approximation, so the first section will be a short overview of some of the
relevant concepts in Diophantine approximation, concepts that build the foundation
for the research I have done.

The second section is about formal Laurent series over I, denoted F,((X™1)).
F,((X™1)) is an analytic, algebraic construction, that have enough properties in com-
mon with R, that the concepts from Diophantine approximation over R can be trans-
lated to this setting. On the other hand, R and F,((X!)) behave differently enough,
that IF,((X 1)) is interesting enough to study in its own right, at least from the Dio-
phantine approximation point of view. A big part of my PhD have been about doing
exactly this.

At the end of the introduction I will discuss Mahler’s problem when studied in

F5((X71)).

1.1 Diophantine approximation

Beginnings

Most expositions on Diophantine approximation begin with the following theorem of
Dirichlet [9], which is the first application of the Pigeonhole Principle.

Theorem 1 (Dirichlet’s Theorem). For any o € R, N € N, there exist p,q € Z,
0<q< N, such that

Dirichlet’s Theorem is the start of Diophantine approximation and improves on
the statement, that QQ is dense in R. More precisely, for any a € R it guarantees a
rational approximation § sufficiently close to « in terms of the complexity of §> in
this case 0 < g < N.

As a corollary of Dirichlet’s Theorem, or from the theory of continued fractions,

we get the following:

Corollary 2. For any a € R, there exist infinitely many § € Q, such that
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The question of whether there exist infinitely many (from now on abbreviated
i.m.) numbers satisfying a certain property is one of the main topics in Diophant-
ine approximation, and hence a large part of Diophantine approximation deals with
variations of the corollary.

One way this is done, is by interpreting the right hand side of the inequality as
a function in ¢, and then ask what happens if we substitute with another function
Y : R, - R,, that is whether

<(lq))

‘ 4
a —_——
q

for i.m. ’é € Q. The most studied example of this is with the functions ¢, (q) = ¢~
where 7 € [2, 00).

Another variation is by approximating with other numbers than Q. Let A ¢ R
and H : A — R a so called height function. Consider whether

v —a| <4 (H(a))

for i.m. a € A. Classical examples of A is subsets of Q with the usual height function
H(E) = |q| or A,, algebraic numbers of degree at most n, with H(a) = H(P) =
max {|amy|,...,|ai],|ao}, where P(X) = ap,X™+---+ a1 X + ap € Z[ X ] is the minimal
polynomial of a.

Finally, a variation is done by looking only at specific « like e, 7w or algebraic
irrational numbers.

Where Dirichlet’s Theorem is seen as the beginning of Diophantine approximation,
the following theorem by Khintchine [11] is seen as the start of metric Diophantine
approximation. We let A be the Lebesgue measure.

Theorem 3 (Khintchine’s Theorem). Let ¥ : Ry; — Ry be a continuous function,
such that x — x2(x) is non-increasing. Let

W) = {5 €[0,1]: ‘{—’S <(q), for i.m. g € @}

Then
0 if X2 n¥(n)< oo,
Ay =10 TR
L if ¥ n¥(n) = oo,

In metric Diophantine approximation we attempt to determine the generic or
almost all behaviour of numbers in regard to the questions from Diophantine approx-
imation. This is among other achieved by invoking the methods and results from
measure theory, ergodic theory and measurable dynamical systems. Even though

metrical methods are quite powerful, the results are often quite unsatisfactory. My
favourite example of this comes from normality of numbers.

Example. Let b > 2 be an integer. Every £ € R has an unique base b expansion

8
|8

Il
—_

§=[¢]+

)
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where a; € {0,...,b—1} and for each N € N, there exists an ¢ > N, such that a; # b—1.
¢ is called simply normal to base b, if
#{1<i<N:aq;=d} 1

li —
Nl—rgo N b

for every d € {0,...,b—1}. It is called normal, if it is simply normal to base b, b%,b3, . ..

An alternative characterisation of normality to base b is that the sequence {b"¢},
is uniformly distributed modulo one. Since the map 7, : T - T : x ~ bx mod 1 is
ergodic, it follows from the Pointwise Ergodic Theorem, that {b"¢} " is uniformly
distributed modulo one for almost all £ € R. In particular almost all £ € R is simultan-
eously normal to all bases b > 2. In spite of this fact, we have no concrete examples
of numbers satisfying this.

The irrationality measure and algebraic approximation

For a £ € R we define the irrationality measure of £ by

p

p(§) =sup{peR:0< &

1 .
< q_l“ for im. p,qeZ,q+ 0}. (1.1)

1(§) measures how much we can improve on Corollary 2, i.e. how much we can
increase the exponent 2 and still have i.m. rational approximations satisfying the
stronger inequality. For 7> 2 we let B, = {£¢ e R: u(€) > 7}. Since Yooy n-t < oo, it
follows from Khintchine’s Theorem, that A(B;) = 0. In particular, x(&) = 2 for almost
all £ € R.

Two questions about the irrationality measure are often studied: The first question
is for a given £ € R to determine p(§). Even though a generic £ has u(¢) = 2, it is
usually hard to determine p(&), but it turns out, that if we have full control of
the simple continued fraction expansion of £, this is often doable. In fact, if ¢ has

[ee] . . .
convergents {’qﬁ}n o We can compute the irrationality measure by
S =

. log(QnJrl)
w(é) =1+limsup —————=.
(£) n—oo  l0g(qn)

Since we know the simple continued fraction expansion of e, we can show that p(e) = 2,
and hence e is generic in this respect. The second question is for a subset A € R to
determine the spectrum {u(a):ae A}. For £ € Q we have, that u(§) = 1, and the
spectrum of R\ Q is [2,00]. The first question is just a special case of the second.
So far we have only been concerned with rational approximation, but the irration-
ality measure is a good way of illustrating the two different ways of generalising to
algebraic approximation. First, let us slightly rewrite the irrationality measure as

p(€) =sup{peR:0<|P(&)| < H(P) ™ forim. PeZ[X],degP =1}, (1.2)

where for polynomials P(X) = a, X" + -+ a1.X + ag, H(P) = max {|an|,...,|ai|} is a
non-standard height.

This shows that rational approximation can either be seen as a question about
distance to rational numbers, or a question about evaluating the number in degree
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one integer polynomials. In this way we can generalise to algebraic approximation in
two different ways.

The polynomial approach to algebraic approximation was done by Mahler in [18].
For £ e R, n € N, we define

wn(§) =sup{weR:0< |P(&)| < H(P)™, for im. PeZ[X],deg P <n},

where for a polynomial P(X) = a, X"+---+a1 X +ag, we let H(P) = max{|a,|,...,|aol}
be the height of P. w, (§) naturally generalises (1.2), and in particular w;(§) = u(§)-1
for all £ e R.

The distance approach to algebraic approximation was done by Koksma in [15].
For £ e R, n € N, we define

wy, (&) = sup {w eR:0<|¢-a|<H(a)™™, forim. ace An},

where the height of a, H(«) = H(P), where P is the minimal polynomial of a. w (&)
generalises (1.1), and again w; (§) = u(§) - 1 =wi(§).

In general w,(£) and w; (&) do not agree, but for a generic & we have w,(§) =
w: (&) =n, a result of Sprindzuk [29]. Just as in the case of the irrationality measure,
it turns out that e is generic, that is w,(e) = w:(e) = n for any n € N. This follows
from a result by Popken [24].

In connection with discussing algebraic approximation, we will also discuss ap-
proximation of algebraic numbers. As mentioned in the preface, we expect algebraic
numbers to behave like almost all numbers, unless they have a good reason not to. In
particular, since (&) = 2 for almost all £ € R, and p(&) =1 for € € Q, we expect algeb-
raic irrational numbers to have irrationality measure 2. This is a celebrated result of

Roth [25].

Theorem 4 (Roth’s Theorem). Let a € R be an algebraic irrational number. Then

u(a) =2.

When doing algebraic approximation of algebraic numbers, it turns out, that they
are generic when approximating with algebraic numbers of lower degree, but not when
approximating with the same or higher degree. For o € R algebraic of degree d, we
have that w,(a) = wi(a) = min{n,d—-1}. This is a huge improvement on Roth’s
Theorem, and essentially follows from Schmidt’s Subspace Theorem [26].

Hausdorff measure and Hausdorff dimension

Sometimes, in metric Diophantine approximation, we need a more refined notion on
the size of a set, as sets of zero measure can still be rather big. One way this is done is
by introducing the Hausdorff measure and the Hausdorff dimension. The construction
closely follows Carathéodory’s construction of the Lebesgue measure \;. For B ¢ R4
we define the diameter of B by

diam B =sup {||x - y| : z,y € B}.

Furthermore, for 6 > 0 we define a d-cover of B to be a countable collection of sets
{U,}>,, such that B ¢ U2, U,, and for each n € N, diam(U,,) < 4.
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For s >0 we define
Hi(B) = inf{ > (diamU,)* : {U,}.~, is a d-cover of B},
n=1

and the Hausdorff s-measure by
H*(B) = }Sin%%g(B).

H* is an outer measure, and restricted to B(R?) it is a measure. Furthermore,
it has the right scaling factor in the sence, that for £ > 0, B ¢ R4 if we define
¢B={&b:be B}, then

H(EB) = &H(B).

It turns out, that for each set B, there is only one value of s where H? is interesting.
To be more precise, there exist a sg, such that for r < sy and sq < t, we have respectively
H"(B) = 00 and H{(B) =0. At so we can have H*(B) =0, H*(B) = oo or anything
in between. The point s is called the Hausdorff dimension of B, and we write that
as dimgy B.

The Hausdorff d-measure is comparable with A;. In particular, for B € B(R?)
with Ag(B) > 0 we have dimy B = d. We can now use the Hausdorff dimension as
a refined way of understanding the size of Lebesgue null sets. A good example of
this is the following theorem of Jarnik [10]. Remember, that for each 7 > 2 the set
B, ={¢eR:u(§) > 7} is a Lebesgue null set. Jarnik’s Theorem tells the size of B, in
terms of Hausdorff dimension.

Theorem 5 (Jarnik’s Theorem). Let 7 > 2 and let B, = {£eR:u(§) >7}. Then
dinlL{Z3T = %.

Sometimes, we need an even more refined way of understanding the size of a set.
Let f be a dimension function, that is f : R,g - R, is continuous, increasing and
satisfying f(0) = 0. The standard example of such a function is for s > 0 the function f;
given by fs(x) = x%. We can now modify the construction of the Hausdorff s-measure
to a larger class of measures. For § > 0 we define

HI(B) = inf{ Y f(diamU,) : {U,},., is a d-cover of B},
n=1
and the Hausdorff f-measure by
H/(B) = 1511%7{35(3).
Example. Let L be the set of Liouville numbers, that is the set

L-{¢eR:u(€) = oo} .

From Jarnik’s Theorem we get that dimy L = 0. For a dimension function f we
define the function I'y : Ryy — Ry by

[¢(r) = inf rf(s).

O<s<r S
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A result of Olsen and Renfro [21] then tells, that

Ly (r)
rt
oo if limsup,., Ffrﬁ") >0 for all ¢ > 0.

0 if limsup,, =0 for some ¢ > 0,

HI(L) ={

From this we obtain a much more precise understanding of the size of I than just
that dimy L = 0. If we use the result on the function fs for s € (0,1), we have that
Dy, (r) = fu(r) and

r
(1) =r2 > 0asr 0,
rs/2
so H*(IL) = 0. From this we get dimy L = 0, but the strength of the result is, that for
any dimension function f we get the Hausdorff f-measure, and hence the result tells
the exact “cut point” where the measure drops from oo to 0.

1.2 The formal Laurent series over [,

Something that looks like R

Let ¢ be a power of the prime p, and let F, be the finite field with ¢ elements. The
formal Laurent series over F, behave similarly enough to R, that the questions arising
in Diophantine approximation can be asked, but it also behave different enough, that
it is interesting to study in its own right. It is constructed in the following way:

Let F,[X] be the polynomial ring over F,. F,[X] and Z share a lot of structure,
and IF,[ X ] can be seen as an analogue of Z. They are both Euclidian rings, and where
Z has the normal absolute value, we can equip F,[ X ] with an absolute value, letting
|0] = 0 and for non-zero polynomials f, we let

|fl =g/

From F,[X] we can, like in the case of Z, construct the field of fractions, giving
the rational functions F,(X) as an analogue of Q. Furthermore, we can extend the
absolute value on F,[X] to F,(X), by

‘i‘ - qdegf—degg.
g

When we have a field with an absolute value, we can make the completion. In the
case of Q with the normal absolute value, we get R. When we take the completion
of F,(X) with respect to the above constructed absolute value, we get the formal
Laurent series over F,, denoted F,((X~!)). This turns out to be the set

o0

{ Y a;X:a;eFgay+ O} u {0} .
i=—N
The absolute value for non-zero elements turn out to be

’ i aiX_i ZqN.
i=—N
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F,((X™1)) is a locally compact field, which implies that we have a Haar measure.
We normalise it to be 1 on the unit ball around 0,

I= {a:e]Fq((X‘l)) | < 1} = {ZaiX_iiai qu},

using the standard convention, that if all the a; = 0 we have the zero element.

The fact that we have a measure enables us to do metric Diophantine approx-
imation. Furthermore, the construction of the Hausdorff measure and Hausdorff di-
mension only requires an absolute value, and hence carries through to the setting of
formal Laurent series over F,. The theory of continued fraction also carries over to
this setting since F;[X] is an Euclidean ring. This was done by Artin [2| and the
theory become slightly simpler.

An introduction to formal Laurent series over [F, would not be complete without
also explaining how it behave differently from R, and hence is interesting in its own
right. There are essentially two properties that make it behave significantly different
from R. First, the absolute value, and hence the induced metric, is ultrametric,
meaning that it satisfies the strong triangle inequality

[ +yl| < max {[«|, |yl}

for all z,y € F,((X~1)). This inequality is the reason that the geometry of F,((X1))
behave different from the geometry of R. For instance two balls have either non-empty
intersection, or one is completely contained in the other. Another consequence is that
every triangle is isosceles.

When doing Diophantine approximation in the real case, we often get crucial
estimates by doing geometric considerations. In the formal Laurent series case, the
fact that the geometry is different from usual, disenables us to get the estimates in
this way. Instead, a way to get these estimates, is to use that the ultrametric property
gives a tree like structure on the open balls, and hence estimates can be obtained by
counting arguments.

Second, the fact that F, has characteristic p, is carried over to F,((X 1)), and as
always, there are differences between working in positive characteristic and working
in characteristic zero. In particular when taking powers, F,((X 1)) behaves different
from R, in the sense that Freshman’s Dream hold true

(z+y)’ =a"+y"

for all x,y € F,((X')). This plays a central role when discussing algebraicity of
formal Laurent series over [F,.

Mabhler’s problem in Fs((X1))

Let us try to tackle Mahler’s problem, but in the formal Laurent series over Fs3: Let
a be an algebraic formal Laurent series in the Cantor set. Is « a rational function?
For the question to make sense, we need to define both what we mean by algebraic
formal Laurent series and by the Cantor set.
An « € R is algebraic, if there exists a polynomial P € Z[Y'], such that P(a) = 0.
Using that F,[X] is an analogy of Z, we call an a € F ((X 1)) algebraic, if there exists
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a polynomial P e F,[X][Y], such that P(«) =0. As in the real case, the degree of «
is min {deg, (P): P e F,[X][Y], P(a) = 0}, and there is no restriction in considering
polynomials P e F,(X)[Y].

The Cantor set in the real case is

C:{iaii’)’ieR:aiE{O,Q}}»
i1

so if we loosely speaking move to the world of formal Laurent series over F3, we let
3 =X, and get an analogue of the Cantor set by

c- {2@)( eF((X)) 10, ¢{0,2} ).

We can now formulate Mahler’s problem: Let o € C be algebraic. Does this imply
that o € Fg(X)?
The answer is no as the following example show:

Example. Let
a=Y X=X+ X3+ X+
n=0

From Freshman’s Dream we get

o0
_an+l _
043:ZX3 =a-X1,

n=0
and hence
o —a+X1=0.
It can be checked, that Y3 —Y + X! is irreducible, and hence « is algebraic of
degree 3. Now, 2a € C is also algebraic of degree 3 giving the counter example.

The existence of @ was known to Mahler, as he used it as a counter example to
Roth’s Theorem in the formal Laurent series over finite fields [19].

By modifying the argument, we can construct algebraic formal Laurent series in
C of degree 9, 27, and so forth. But can we find algebraic formal Laurent series in
C of degrees not a power of the characteristic 3, or are these degrees the only ones
producing counterexamples to Mahler’s problem? The answer to this is also no, as
the following example constructs a degree 2 algebraic formal Laurent series in C:

Example. For i € Ny define ¢; to be 0 if ¢ written to base 3 contains an 1, and 1
otherwise. Note, that cs; = ¢;, €341 =0 and ¢3;,9 = ¢;. Let
¢= Z CiX_i,
i=0
and compute

(&)

i
=}

o0 o0
-3t —(3¢+1 —(3i+2
CgiX b+ ZC3¢+1X (3¢ )+ Zc3i+2X (3i+2)
=0 =0

GX 4 XY X

7 =0
0o \3 B ) » 3
:(Z(:)CiX_) +X2(izzocix )
= ¢34 X2¢3,
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So we have
(1 +X‘2)QZ3 -¢=0,

and since € # 0, we have
(1+X2)¢2-1=0.

Again, it can be shown, that (1+X2)Y?2-1 is irreducible, and hence € is algebraic
of degree 2. Finally, 2X 1€ € C is algebraic of degree 2.

¢ is called the Cantor Laurent series, and the construction is taken from the book
of Allouche and Shallit [1].
The two examples lead to the following natural and still open question:

Question. Does there for any d € N, exists an « € C algebraic of degree d?

In the literature there are several results connecting the coefficients of an « €
F,((X™1)), to whether « is algebraic, most famously the following theorem by Christol
8].

Theorem 6 (Christol’s Theorem). Let
o= Z a; X"
i=0

be a formal Laurent series over F,. Then « is algebraic if and only if {a;};, is an
automatic sequence.

A sequence {ai}:o is automatic, or more precisely g-automatic, if there exists a
finite automaton with states F,, such that for each n, a, is the output, when given n
written to base ¢ as input. For more information see the book [1].

All of these results have the restriction, that they only tell whether « is algebraic,
but not what the degree is. By analysing the proofs we can sometimes get an upper
bound on the degree of o, but for answering the question, these results are insufficient.

I see two ways of approach for answering the question. Either we explicitly con-
struct algebraic formal Laurent series having the desired degree, or we develop theory
to get sufficient control of both the degree of the algebraic formal Laurent series, as
well as the coefficients.






2 Summaries of the papers

There are three papers resulting from my PhD. The paper “A Cantor set type result
in the field of formal Laurent series” is published in Functiones et Approximatio
Commentarii Mathematici [22], the paper “Some remarks on Mahler’s classification
in higher dimension” is to appear in Moscow Journal of Combinatorics and Number
Theory [16], and the paper “Solution of Cassels’ Problem on a Diophantine Constant
over Function Fields” is to appear in International Mathematics Research Notices [3].
The paper “Some remarks on Mahler’s classification in higher dimension” is written
together with Simon Kristensen and Barak Weiss and the paper “Solution of Cassels’
Problem on a Diophantine Constant over Function Fields” is written together with
Efrat Bank and Erez Nesharim. My contribution to these papers is proportional.

2.1 A Cantor set type result in the field of formal
Laurent series

As in the previous chapter, we let C' be the Cantor set in R and C the Cantor set in
Fs((X1)). We let v = Eig;’ which turns out to be the Hausdorff dimension of both
C and C. Furthermore, HY(C') = H(C) = 1.

This paper is about understanding C with respect to rational approximation. More
precisely it is about intrinsic well approximation in C i.e. how well can elements in C
be approximated by rational functions in C.

In the real case, we would for an approximation function ¥ : R,y - R,y be inter-
ested in the set

p
a__

W(0)={aeC: < U(q) for i.m. Pe C}.
q q

Understanding W (W) is hard, because we need to simultaneously control both the
base 3 expansion of a fraction to check whether it is in C, as well as the height of
the fraction. In an ideal world all fractions in C' would be endpoints of the intervals
in the construction, and hence on the form £, in which case control would be easier.
This is not the case as 1 € C.

Instead we consider the set

WC(\II):{@GC:‘Q—?%

. p
U(3") for im. —eC
<¥(3") for im gn },

where we only approximate by the endpoints from the construction of C', and we can
to some extend control the approximations.

Studying W () was done by Levesley, Salp and Velani in [17]|, where they estab-
lished the following:

11
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Theorem 7. Let f be a dimension function such that r=7 f(r) is monotonic. Then

0 if Ynt F(W(37)) x (37)7 < oo,

H(We (D)) = {Hf(C’) if S f(W(37) x (37)7 = co.

In particular for f(x) =27, we get

e oo n n\Y
H(We(D)) = {0 Ty (V(37) 87) < o,
1 if 302, (P(37) x37)7 = 0.

We let ¢ : {3" :neN} - {37 :r eZ} be an approximation function. The problem
of controlling the rational numbers in C' also appear in C. In particular, % eCis
not coming from the endpoints of the construction of C. So for the same reason as in
the real case, we are going to study

We () = {h €eC: ‘h— % <(3Y), for im. N e N, where g € f(N)},

where

F(N)={feF[X]:Coeff(f)c{0,2},deg f <N},

which is the analogue of W¢ ().
The first part of this paper establishes the analogue of Theorem 7 in C.

Theorem 8. Let f be a dimension function such that r=7 f(r) is monotonic. Then

_ )0 if Yz f($(3)) x (37)7 < oo,
el - {’Hf(c) if Y f(H(37)) x (37)7 = oo.

Again, in the special case f(x)=z7, we get

0 if 37, ((3") x37)" < oo,

. (2.1)
LT, ($(37) x31)7 = oo,

HY(We () ={

The result generalise easily to the case of a finite field IF, in stead of F5 and a
general missing digit set.

The structure of the proof follows that of [17], but with some changes and simpli-
fications coming from the fact, that F3((X 1)) is an ultrametric field. As is often the
case in such Khintchine type theorems, the part where the series converges is easy,
and is essentially a replication of the proof of the convergent part of the Borel-Cantelli
Lemma.

For the case where the series diverge, we first prove the divergent part of (2.1),
and then a standard application of the Mass Transference Principle from [5] implies
the result. To prove the divergent part of (2.1), we look at the subset of W (1)),
where we only approximate with reduced rational functions.

Wg(w):{heC:‘h—%

<(3N), for im. N eN, where g e F*(N)},
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where
F*(N)={feF[X]:Coeff(f) c{0,2},deg f < N and f(0) =2}.

Since Wi (¢) € We(v) € C, it is sufficient to prove, that if 77, ((3") x 3")” = oo,
then HY (W (v)) = 1. We rewrite W7 (¢) as a lim sup set

Wi () =limsup Ay,

N—oo

where
* g N
Ay= U Bl==.v@BY))nC.
T e (x5 )
Then we use a version of the divergent Borel-Cantelli Lemma to get, that if
Yo i HY(AL) = o0, and {A%}°7 | is pairwise quasi-independent, meaning that

HY (AL, nAL) <HT(AL)H (A7)

for distinct m and n, then HY(W;(v)) = 1.
By careful counting, and using the tree structure of balls in ultrametric spaces, we
get both the quasi-independence, and that

ZHNA;;) - i(w(z%“) 3 X3 = oo,

In the real case, we use geometric arguments, and are only able to prove a weaker
version of pairwise quasi-independence, that there exists a K > 1, such that

HY(A;, nAL) < KHY (AL )HY(AL)

for distinct m and n, and hence we only have H7(W;(¢)) > +, and we need to do
some tricks to blow up to measure 1. So, as mentioned in the introduction, we have
two different ways of getting the crucial estimate.

The second part of this paper is concerned with the irrationality measure of ele-
ments in C. Whereas the first part is about the generic properties of elements in C,
the second part is about the existence of elements in C with certain properties. In

analogy to the real case, we define the irrationality measure of an element & by

u(€)=sup{u€R:‘€—%

<[h[™ for i.m. % eF(X)}.

We prove, that for any 7 > 2, there exists an element & € C with u(§) = 7. The key
ingredient is the Folding Lemma from [23|, that enables us to build a &, where we can
simultaneously control both the Laurent series, and hence that £ € C, and the simple
continued fraction expansion, and hence the irrationality measure. The strategy of
proof follows that of Bugeaud [7], where he proves the real case counterpart of the
theorem.
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2.2 Some remarks on Mahler’s classification in
higher dimension

Whereas the previous paper was about understanding the Cantor set, this paper
leans more towards understanding algebraicity and transcendence. It is concerned
with higher dimensional Mahler approximation, a natural generalisation of Mahler
approximation. In stead of considering polynomials P € Z[ X ] when approximating a
x € R, we consider polynomials in d variables P € Z[ X7, ..., X4] when approximating
a xeR?,

We let k € N, & € R?, and as in the one dimensional case we define the exponent

wr(x) =sup{weR:|P(x)|< H(P)™ for im. PeZ[Xy,..., X4],deg; 1 (P) <k} .

Furthermore, throughout this summary we let n = (k;d) — 1 be the number of non-
constant monomials in the variables Xi,..., X  of total degree at most k. From Yu

[30] we get, that wi(ax) > n for all € RZ. The proof follows closely the proof, that
wr(z) > k for all z €R.

The first result of the paper deals with how many points have better approximation
than n. We say, that a point x € R¢ is k-very well approximable, if there exists an
e > 0 and infinitely many polynomials P € Z[ X7, ..., X ] of total degree at most k,
such that

|P(x)| < H(P) ("),

It turns out, that the set of k-very well approximable points is small.

Theorem 9. Lebesque almost all x € R is not k-very well approzimable. In particular,
wi(x) =n for Lebesque almost all x € RY.

In fact, we prove something a bit stronger, as we show it not only for the Lebesgue
measure, but for any absolutely decaying Federer measure. For the definition of
absolutely decaying Federer measure see the paper.

The next result goes in the other direction and deals with k-badly approximable
points. We call a point x € R? k-badly approximable, if there exists an C' = C(k,x),
such that

|P(x)| 2 CH(P)™,

for all non-zero polynomials P € Z[ X7, ..., X,4] of total degree at most k. If we let By
be the set of k-badly approximable points, then from the work of Beresnevich, Bernik,
Kleinbock and Margulis [6] it follows, that A\;(By) = 0. On the other hand we can
show, that it has not only full dimension, but it is even thick.

Theorem 10. Let B € R be an open ball and let M € N. Then

M
dlmHBﬁ ﬂBk =d.
k=1
The next result in the paper is about (k,¢)-Dirichlet improvable points and k-
singular points. We call a point @ € R? (k,¢)-Dirichlet improvable if there exists a
Qo € N, such that for any @ > Qg there exists a polynomial P € Z[ X, ..., Xy] of total
degree at most k, such that

H(P)<eQ and |P(z)| <eQ™".
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From [30] it follows, that for € > 1 any point satisfies the definition, and hence
the set of (k,e)-Dirichlet improvable points is only interesting for e < 1. If a point is
(k,e)-Dirichlet improvable for any e > 0, we call it k-singular.

For a k-friendly measure, for the definition see the paper, but for instance \;, we
show that for ¢ small enough, the set of (k,e)-Dirichlet improvable points is a null
set.

Theorem 11. Let p be a k-friendly measure on R%. Then there is an €y = €o(d, p),
such that the set of (k,e)-Dirichlet improvable points has measure zero for any € < .
In particular, the set of k-singular vectors has measure zero.

Finally, we say that a point & € R? is k-algebraic, if there exists a polynomial
P e Z[Xy,...,X,] of total degree at most k, such that P(x) = 0. Furthermore, we
say that a point x € R¢ is algebraic of total degree k, if it is k-algebraic, and x does
not vanish at any polynomial of total degree less than k.

If a point is k-algebraic, then it is also k-singular, so a relevant question is, whether
there exists a k-singular point that is not k-algebraic? At least for d > 2 this turns
out to be the case. For d =1 it is unknown.

Theorem 12. For d > 2, for any k > 1, there exists a k-singular point in R? which is
not k-algebraic.

We also improve on Theorem 11 in the special case of the Lebesgue measure \,.

Theorem 13. For any d, the set of x which are (k,e)-Dirichlet improvable for some
e <1 and some k, has Lebesgue measure zero.

Theorem 13 tells that in the case of the Lebesgue measure, the set

U {xeR?:x is (k,e)-Dirichlet improvable}

O<e<1

is a null set, whereas Theorem 11 only tells that

U {:v eR?: x is (k,e)-Dirichlet improvable} :

O<e<eg

is a null set for some g7 dependent on the measure. So Theorem 13 in some sense
says, that in the case of the Lebesgue measure, we can let ¢ grow to 1, and still have
a null set.

The final result of the paper is a higher dimensional version of Roth’s Theorem.

Theorem 14. Let o = (v, ..., aq4) € RY be an algebraic vector of total degree more
than k. Then for any € > 0 there are only finitely many non-zero polynomials P €
Z[Xy,...,Xq] of total degree at most k with

|P(e)| < H(P) "),

The proofs of Theorems 9, 10, 11 and 14 follow the same underlying pattern.
First, the proof is reduced to the existence of non-zero integer linear combinations of
the monomials X7, Xo, ..., X1 X1 Xk satisfying some criteria dependent on the
number of monomials, n. Second, we realise that the one dimensional version of the
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theorem is shown by using some powerful theory to establish the existence of non-
zero integer linear combinations of the monomials X, X2, ..., X* satisfying the same
criteria, but this time dependent on k, the number of monomials in this case. Third,
we use the powerful theory on the monomials X1, Xo,..., X, 1 X1 X* The cost of
using it on these, is that the criteria is now dependent on n, which is exactly what we
want.

The powerful theory that is used in each of the cases is the work of Kleinbock,
Lindenstrauss and Weiss [12], Beresnevich [4], Kleinbock and Weiss [14] and Schmidt’s
Subspace Theorem [26].

The proofs of Theorems 12 and 13 is more or less direct consequences of the work
of Shah [27] and of Kleinbock and Weiss [13].

2.3 Solution of Cassels’ Problem on a Diophantine
Constant over Function Fields

This paper takes its starting point in a failed attempt to get results in twisted in-
homogeneous Diophantine approximation over the formal Laurent series over F,, by
the help of homogeneous dynamics.

Shapira showed in [28] the following theorem on twisted inhomogeneous Diophant-
ine approximation.

Theorem 15. For any 7,6 € R, Lebesgque almost all («, 5) € R? satisfy
liminfn|(na —~)||(ns -d)| = 0. (2.2)

Here [(-)| means the distance to the nearest integer. The proof of the theorem
builds heavily on the connection between Diophantine approximation and dynamical
systems, and is proved by means of homogeneous dynamics.

Our attempt was to prove the analogue of Theorem 15 over the formal Laurent
series, which would require us to understand homogeneous dynamics over the formal
Laurent series. My personal goal was to understand how well methods of homogen-
eous dynamics can be used in Diophantine approximation over formal Laurent series
over F,, and even though the attempt was a failure, I gained valuable information to-
wards my goal. Understanding the limitations and strenghts of a method is extremely
valuable.

The idea of the proof of Theorem 15 is fairly clear. It can be split into the
following steps. First, we find a more general question about unimodular lattices, or
more precisely translated unimodular lattices called grids. We let X3 be the space
of unimodular lattices in R2, and let Y3 be the space of grids in R3. We define the
product function N : R* - R by N((a,b,c)?) = abc. Furthermore, we define the
product function on subsets P : P(R3) - P(R) by P(B) = {N(b):be B} for any
B e P(R3). For a grid y € Y3, we say it is dense product, DP, if

P(y) =R.
Furthermore, for a lattice x € X3, we say it is grid dense product, GDP, if

Plo+v) -R
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for all v € R3.
For u = («, 5)' € R? we define the lattice

I = Z3.

O O =
O = O
— X Q

Theorem 15 is now a consequence of the following more general theorem.
Theorem 16. For Lebesque almost all u € R?, h, is GDP.

The second step is to realise, that the diagonal action on X3 plays nicely together
with being GDP. We let A = {diag(e*1,e?2,ef) 1 t1,ty,t3 € R, t1 + 1o +t3 =0} be the set
of diagonal matrices in SL3(R) with positive diagonal entries. A acts on X3 and Y3
in the following way: For a € A,b € SL3(R) and v € R3, we have a(bZ?) = (ab)Z? and
a(bZ? +v) = (ab)Z3 + av.

We let a € A,y € Y3, and note that P(ay) = P(y). Furthermore, for y, € Ay, we
have

P(yo) € P(y), (2.3)

and hence in particular if yq is DP, then so is y. This implies in turn, that for zg, x € X3,
if xo € Az, is GDP, then x is GDP. (2.4)

The third step is to show the existence of a zy € X3 which is GDP. It is in this
step, that most of the hard work is done, so we will postpone the discussion until after
the the forth step.

The forth step is to show, that Lebesgue almost all u € R2 have Ah, = X3. This
is a well known fact from homogeneous dynamics. It is a mixed consequence of the
fact, that for ¢ > 0, a, = diag(e’, et,e72t), the unstable horospherical subgroup of a; is

Ug (ay) = {hu:ue]RQ},

that the action of a; is ergodic, and that the Haar measure on X3 restricts nicely to
Ug (ay). For more details see |28, Lemma 4,8|.
From step three there exist a zy € X3 which is GDP. From step four it follows,
that for almost all u € R2, x4 € Ah,,, and hence from (2.4) Theorem 16 follows.
Going back to step three, the fact, that such a x exists is by no means clear, but
follows from the following surprising theorem, together with the fact that there exist
lattices with compact A-orbits.

Theorem 17. If xo, T € X3, AT is compact and T € Azo N Azo, then zo is GDP.

The proof of Theorem 17 follows the following line: Let w € R3, and consider the
orbit closure F' = A(xg+ w). Furthermore, we consider grids in F' of a special form
F={jeF:{j=%+v, for some v e R3}. It can be shown, that F # @, so we let j € F.

Now one of two cases arise: Either ¢ € F has a non-compact A orbit, in which case
it can be shown, that Ay contains Z + v for all v € R3, which then implies ¢ is DP, and
hence zy +w is DP.

The other case is, that Ay is compact. In this case we want to show, that F' is
sufficiently big.
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For each pair 1 <4,j <3,i# j and t € R, let u; ;(¢) be the 3 x 3 matrix with 1 on
the diagonal, ¢ on the (7,7) place and 0 elsewhere.

Now for each 7 € F c F, we show that there exists a non-zero t € R, and a pair
(4,7), such that u; ;(t)y € F. Next we realise, that not only does this extra point lie
in F, but if fact for any s € R,¢, we have that u; j(s)y € F. Now for each £ € R there

is a w € § with all coordinates different from zero, and a s € R, ¢, such that

N(uij(s)w) = N(w)(-Ls+1) =,

()

and hence it follows from 2.3, that

§ € P(ui;(s)y) € Pui;(s)y) € Pao +w),

which implies that z¢ + w is DP. So for all w € R3, we have, that xy +w is DP, so xq
is GDP.

We are now ready to explain the deeper reason why the proof does not work over
formal Laurent series over IF,.

First, most of it works, and even become slightly prettier. We want A to be a two
parameter group of diagonal matrices in SL3(F,((X™1))), so we let

A ={diag(X*, X!, X™) : k,{,meZk+l+m=0}.

Furthermore, A acts on the space of grids in F,((X~!))3. Now step one and two still
works, and a lot of Theorem 17, that is step three, still work. In fact due to the
ultrametric property only the second of the cases arise. The thing that goes wrong is
when we try to move from the existence of a t € R, such that u, j(t)g € F', to it being
true for any s € R, t.

In the real case, we have, that

{% s diag(ay,as,a3) € StabA(j&)} (2.5)

J

is dense in R,. Now for a € Stab4(7), we have that

au;;(£)§ = auqy(t)a™ af = gy (ot = usy(—ot)

a; a;
lies in F, and combined with (2.5) being dense in R,, we get that u; ;(s)y € F for
every s € R,t.

Now this is where it goes wrong, because in the formal Laurent series case, we
have no hope of having the analogue of (2.5) being dense in the monic formal Laurent
series. Even in the unlikely case, that Stabs(7) = A, we only have, that (2.5) is the
set of monic monomials, which is not dense in the set of monic formal Laurent series.

Since step three failed, we never got around to check the details of whether step
four holds true.

The lecture to be learned from the attempt is the following: If we want to apply
the methods of homogeneous dynamics to do Diophantine approximation in the field
of formal Laurent series, we might not be able to use the methods, if they require
underlying denseness results.
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Now, if you are really not interested in dynamics, you could have started the
summary here, but then you would have missed out on the fun.

Discouraged, we turned to another approach on inhomogeneous Diophantine ap-
proximation over formal Laurent series, the approach of linear algebra.

For 6,7y e F,((X1)), we define
c(6,7) = inf [IN[[(NO -)[,
where the infimum is taken over the non-zero N € F,[X]. Furthermore, we define
BAg = {7 eF (X)) :c(0,7) >0},
c(6) =supc(0,7)
ol

and
c= iIelf c(0).

By using linear algebra, we are able to prove the following theorems:
Theorem 18. For every 0 e F,((X1)) the set BAy has full hausdorff dimension.

Theorem 19.
c=q>
The most surprising is, that at present the value of ¢ in the real case is only known
to satisfy
3 68
—<e<—,
32 483
so we are determining a constant whose value is unknown in the real case.
We also show higher dimensional version of these theorems, using what we call
generalised weights. A function g = (g1,...94) : No > N¢ is called a generalised
weight, if for all 1 < s < d the function g in non-decreasing, and

igs(h) =h

for every h € Ny. One can think of a generalised weight as sending 0 to 0, and for
each subsequent value, it increases one of the coordinates by one.
Given a generalised weight g and 6,~ € F,((X1))?, we define

gs(deg N)

deg N |<N08 - 78>| :

(07 =l IV

Furthermore, we define
BAy(g) = {'7 € IFq((‘X_l))d : 09(9,’)/) > 0}7
¢g(6) =supc(6,v)
¥

and
Cqg = i%f c(0).
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Theorem 20. For every generalized weight g and 0 € F,((X71))?¢, BAg(g) is non-
empty. Moreover, if

g 209

heN h
then BAg(g) has full Hausdorff dimension.

Theorem 21. Any generalised weight g satisfy
Cqg=(q

For the sake of clarity we will only sketch the ideas of the proofs in the one
dimensional theorems. The higher dimensional theorems follow the same idea, but
with added technical notation disrupting the picture of what is going on.

For a = 372 4000 0: X" € Fy((X™1)), we can for each 4, j € N associate its Hankel
matrix
0, -~ 0
Ali,j] =1 : :
Oi - Birja

Now, for a non-zero polynomial N of degree h, a v € F ((X!)) and an integer
¢ >0, we have that

INIUNO - <) =  Alh+1+h+1]-1n=mh1007),

where n is the coefficient vector of N, and () is the projection that maps 7 to
(71, ---,7)t In this way, the questions of interest is translated into questions about
non-zero solutions to systems of linear equations. In particular, we have, that v € BAy
if and only if there exist ¢ > 0, such that

Alh+1+0,h+1] -1 =Thi140(7) (2.6)

has no solution for A > 0 and m € Fi+1.
The next step is to get control of the rank of A[é, j]. To do this, we construct for
each £ > 0 two sequences Zy = {iy }o_o, Jo = {Jm }omep 10t an inductive fashion, by

1. jo=0,ig="1.

2. Jm+1 = min; {j : rank(A[iy,, j]) =4 }. If this minimum is not obtained, we let

jm+1 = 00.
3. If jins1 = 00, let dyy1 = 4y, Else let 4,41 = min, {i : rank(A[4, jme1]) =0 - £}.

Along this sequences we have sufficiently control of solutions to (2.6). For £ >0
we define I'; to be the set of v € F,((X!)) which for each m > 0,0 < j < jy41, the
equation

A[lmw.]]n = ﬂ-im(’Y)

has no solutions.

Now, this I'; contains as a subset a Cantor like set C,,, created by starting with
I, cutting it into a number of subintervals of the same length, then throwing some
of these away, and for each of the kept subintervals, we repeat the procedure. How



Bibliography 21

many subintervals we cut into, and how many subintervals we throw away, depends
on the sequence Z,. The limit set is what we call C,, and using methods from fractal
geometry, we get a lower bound on the dimension of C,,, and hence of I',. We get
that

dimHngl—%

for some explicit constant 0 < £ <1 depending only on gq.
Next, we get that for each ¢ > 0, the set I'y is contained in BAy, and hence

dimy BAg> 1 - %

but since this is true for each ¢ >0, we get Theorem 18.

For Theorem 19, we have that dimgy Iy > 0, and hence 'y #+ @. For each v eI'y, we
have, that ¢(6,v) > ¢2, and hence for each 0 € F,((X~!)) we have that c¢(0) > ¢~2.

In order to get the result, we show that if ¢(0) > ¢7!, then there exist a mg € Nu{oo},
such that A[m,m] is invertible exactly for 0 < m < mg. It is then a simple matter to
find a # not satisfying this, and hence ¢ = ¢72.
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A CANTOR SET TYPE RESULT IN THE FIELD OF FORMAL
LAURENT SERIES

STEFFEN H. PEDERSEN

Abstract: We prove a Khintchine type theorem for approximation of elements in the Cantor
set, as a subset of the formal Laurent series over F3, by rational functions of a specific type.

Furthermore we construct elements in the Cantor set with any prescribed irrationality expo-
nent > 2.

Keywords: formal Laurent series, diophantine approximation, metric theory.

1. Introduction

In [6] Khintchine proved, that for ¢ : R>; — Ry a continuous function with
x — 2219 (r) non-increasing, the set

W) = {f eR: ‘5 — g‘ < 1(q) for infinitely many g € Q}

of y-well approximable numbers has Lebesgue measure 0 if the series

> ai(q)

converges, and full Lebesgue measure if the series diverge. The analogues state-
ment in the field of formal Laurent series over finite fields was shown by de Mathan
in [4].

In [7] Levesly, Salp and Velani established a Khintchine type theorem for
-well approximable numbers in the Cantor set by rational numbers of the form
3,0 € N,

The first part of this paper will establish the analogous statement in the field
of formal Laurent series over [F3, where the Cantor set consists of those formal
Laurent series in the unit ball around 0 having only the coefficients 0 and 2.

2010 Mathematics Subject Classification: primary: 11J61; secondary: 11J83, 11K55



28

8 Steffen H. Pedersen

The second part of the paper will construct elements of the Cantor set with
any prescribed irrationality exponent > 2. This is the analogue of the result in 3|
by Bugeaud.

The proofs follow the approach from [7] and [3], but with the simplifications
and complications of working over an ultrametric field.

2. Preliminaries

Let F3 be the field with 3 elements and let F3[X] be the polynomial ring over
F3. We can introduce an absolute value on F3[X], by letting |P| = 349 ¥ for
P e F3[X]\ {0}, and |0] = 0. This in turn gives an absolute value on the rational
functions F3(X), and by completing with respect to this absolute value, we get
the field of formal Laurent series over F3, that is the set

Fs((X 1) = { Z a_, X ":a_, €Fzan # O} u {0},

where we have the absolute value

(o)
E a_, X"
n=—N

for the nonzero elements, and still |0] = 0. F3((X~!)) with the given absolute
value is an ultrametric space. We will restrict our attention to the unit ball in
F3((X 1)) around 0, that is the set

=3N

I={heF;((X ") :|hl <1}.

I is the set of formal Laurent series on the form

o0
E a_p, X"
n=1

where a_,, € F3, and where 0 is the element with all the coefficients a_,, = 0. We
can write the absolute value on I as

h| = 0, if h=0,
137N, if h#0, N=min{n:a_, #0}.

For x € F3((X~1)) we let B(z,3") be the ball around x with radius 3", and
fora_q1,...,a_y € F3 we let

Bla_i,...,a_¢)=Bla_1 X '+ +a_ X rHCL

This ball consists of those elements in I with the first ¢ coefficients given by
Q_1,...,0_yp.
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It follows from the definition of the absolute value that every ball have radius
37" for some n. In particular every ball inside I is of the given form. We denote
the radius of the ball B by r(B).

In this paper we will look at the Cantor set, but in the setting of formal Laurent
series. We define the ’Cantor set‘ as

C={hel:a_, € {0,2}}.

We let ¢ : {3" :n € N} — {377 :r € Z} be a function, and are going to study
the set

We(y) = {nec:|n-Zy| <v@™),

for infinitely many N € N, where g € F(N )},

where

F(N)={f e F3[X]: Coeff(f) C{0,2},deg f < N},

of ¥-well approximable elements in the Cantor set, by rational functions contained
in the Cantor set of a specific form. In this respect, we are concerned with intrinsic
Diophantine approximation.

For later we note that

#F(N) =2, (1)
and that

We(@p)=<heC:he U B <%,¢(3N)) for infinitely many N € N 3 |
geF(N)

when expressed in terms of balls instead of approximation. So

We () =limsup Ay = {f € C: f € Ay for infinitely many N € N},

N —o0

where

Av= | B(%,w(gfv))

geF(N)

Just as with every metric, locally compact space we can introduce the notion
of Hausdorff measure, and Hausdorff dimension. We let f : Ryo — R>o be
a dimension function i.e. f is continuous, non-decreasing and satisfy f(0) = 0.
We can now define the Hausdorff f—measure in the following manner. For A C
F5((X~1)) and p > 0, we let B, be the family of countable open covers of A, by
balls B of radius 7(B) < p. We can now define the Hausdorff f—measure by
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If f is the dimension function given by f(z) = x° for a s > 0, we call it the
Hausdorff s—measure, and denote it by H*. We define the Hausdorff dimension
by

dimpy(A) =inf {s > 0: H*(A) =0}.

Using standard techniques we can determine the Hausdorff dimension of C, in
fact we have the following result.

Proposition 1. Let v = 222 For any ball B with r(B) < 1 and BNC # 0 we
have

HY(BNC)=r(B),
and in particular for B =1 we have

HY'(C)=1 and dimg (C) = 7.

Proof. Throughout the proof let B be a ball with BNC # @) and r(B) = 3~% < 1.
Then B = Bla_1,...,a_y4,] for some a_1,...,a_4, € F3.

For the upper bound, let p = 377 < 37%. Then B UC can be covered by the
collection of 27~ % balls

B = {B[a_l, ey gy (g4 1)y -y O] DA (g4 1), -+ G € {0, 2}}
of radius 377. We then have

dnf ST (r(B)) < Y (r(B) =2 0@ ) =270 = (37%) = (B)",
” B;eB B,eB’

since 37 = 2. By letting j — oo, we get that HY(BNC) < r(B)”, which gives the
upper bound.
For the lower bound let B be a cover of BNC by balls. Then we want to show

that
rB)Y < 3 (r(B))".
B;eB

First we may restrict the balls to lie in B, potentially decreasing the sum. If
the inequality holds true when summing over a subset of B, then it holds true when
summing over B. Since BNC is compact, due to balls in F3((X 1)) being clopen, we
can cover BNC by a finite subset of B. Furthermore if a ball B = Bla_1, ..., a_]
of radius 3¢ have one of a_1,...,a_g equal to 1, then BNC = ®, and we remove
it from the finite subcover. The remaining balls we denote by B’, and note that
B’ is a finite cover of B NC, each ball having nonempty intersection with C.

Let the smallest ball in B’ have radius 3=%. For balls B = Bla_1,...,a_] of
radius 37¢ > 37%, B can disjointly be split into three balls Ag, Ay, Ay of radius
37D by A; = Bla_1,...,a_g, i) for i =0,1,2. Now A4, NC = and

T(B)w _ (3—4)7 _ 37(3—(€+1))v — 2(3—(€+1))’v = 1(Ag)" + r(Az)",

so replacing the B by Ag and A, does not change the sum, and we still have a cover

of BNC.
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By iterating the procedure we end up with a cover of BN C by balls of radius
37%. Since it is a cover we must have at least 2¢~% such balls, and hence

SO B 2 Y r(Bi) > 23 =27 — (B,
B;eB B;,eB’
which is the lower bound. |

We are now ready to state the analogue of the main result of [7] in the setting
of formal Laurent series.

Theorem 2. Let f be a dimension function such that v~ f(r) is monotonic. Then

0T AWM x (37 < oo
?MWM”_%MQ Y () x (37) = oo

3. Toolbox

In this section we collect a lot of results which we will use in the rest of the paper.
We will need the following version of the diverging part of the Borel-Cantelli
lemma, Lemma 2.3 in [5].

Lemma 3. Let (X, u) be a finite measure space. Let A,, be a sequence of measur-
able subsets of X. If

Z p(A,) = oo,

then

N 2
. i (Zk:1 M(Ak:)>
p(limsup A;,) > limsup — .
n—»00 N —o00 Zn,m:l ,M(An N Am)

Furthermore we need the following generalisation of the Mass Transference
Principle, Theorem 3 in [2], but slightly simplified to the current setting.

For a dimension function f and a ball B inside C, that is a ball in the relative
topology, of the form B = B(x,r), we can define the transformation of B by f as
the ball

B! = B(a, f(r)'/7).
If the dimension function is just r +— r*® for some s > 0, we just write the

transformed ball as B®. In particular we have that BY = B.

Theorem 4 (The Generalised Mass Transference Principle). Let {B;},
be a sequence of balls in C with r(B;) — 0 asi — oco. Let f be a dimension function
such that x — =7 f(z) is monotonic. Suppose that any ball B C C satisfy

11— 00

HY <B N limsusz-f) =H7(B).
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Then any ball B C C satisfy

H’ (B N lim sup BZ) =1/ (B).
1—00
We will also need the theory of continued fractions over formal Laurent series
as first studied by Artin in [1]. Every rational function £ can be written uniquely
as a finite continued fraction

1
% = a0+ ————— = laoja, ..., an]
ay + ——
P
S
an
with ag,a1,...,a, € F3[X] and deg(ay),...,deg(a,) > 1. In a similar way every
x € F3((X 1))\ F3(X) can uniquely be written as an infinite continued fraction
1
xr =agp+ — 1 = lap; a1, az,...]
a; + ————
' 1

az + —

with a; € F3[X] for all i > 0, and deg(a;) > 1 for i > 1. We call the polynomials
a; the partial quotients of x, and the rational functions

P:

—J' = [ag; a1, ..., aj]
J

the convergents to x.
Furthermore, from the ultrametric property on F3((X 1)), we have that

P 1
|2

r—Ll=——
Qj laj1]|Q;

for all the convergents.
We will also need the Folding Lemma, Proposition 2 in [§].

Lemma 5 (Folding Lemma). If { = [ag;ay,...,ay] is a rational function, and
t is a polynomial with deg(t) > 1, then
—1)"
%+(th2) :[ao;ala"~7an7t7_an7"'a_a1]~

4. Proof of Theorem 2

Convergent case

Since
D FEM) x (3" < oo,

and since f is a dimension function, we have that ¢ (3") — 0 as n — 0.
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Let p > 0 be given. Then there exists an integer N,, such that
P(3") < p for all n > N,. (2)

Furthermore we may choose N, such that N, — oo as p — 0.
We can now cover We (1) by the countable collection of balls

c Uav=U U B(gree")

N>N, N>N, ge F(N)

each having radius < p by (2). Hence

ot Do frB) < 3 Y0 fWEY)

B;eB N>Npge]:(N)
= > fWBY) x #F(N)
N2>=N,
2N M) x 3Y) =0
N>=N,

as p — 0. So we have that
HI (We (1)) =0

in this case.

Divergent case
To simplify the notation we let y be the Hausdorff v-measure restricted to C, that
is

u(A) =HI(ANC)

for every Borel set A.
Furthermore we define

wew) = {hec: |h—Zx| <vE),
for infinitely many N € N, where g € ]-"*(N)},
where
F*(N) = {f € F3[X] : Coeff(f) C {0,2},deg f < N and £(0) = 2} .

We note that
H#F*(N) =21, (3)

and that just like before

Wi(p)=<qhelC:he U B( 3N)> for infinitely many N € N 3 |
geF*(N)
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when expressed in terms of balls instead of approximation, and

Wi () =limsup Ay = {f € C: f € A} for infinitely many N € N}

N —o0

where

av=UU B(&v6Y).

geF*(N)

Proving the divergent part of the theorem, but with W3 (¢) instead of We(¢),
proves the result since

W () C We(y) CC,
so we do that.

First, we prove the divergent part of the theorem in the special case when the
dimension function f is just the function r +— 77, that is the following theorem:

Theorem 6. (Wi (¢)) =p(C) =14 > 7, (¥(3") x 3™)7 = oco.
Proof. The proof is divided into six steps.

i) Without loss of generality we may assume that
P(3") < 37" for all n € N. (4)

If that was not the case, the function ¥, defined by ¥(r) = min {r‘l, qﬂ(r)},
would satisfy (4). Furthermore if U(3™) = 37" infinitely often, we have that

> (T(3") x 3") =

n=1

On the other hand if ¥(3™) = 37" only a finite number of times,

i ) x 3")7 i(\l/( x 3™)7 i ) x 3")7 = oo,
n=1 n=N n=N

for N sufficiently large. Since Wi (¥) C Wi (¢), we could just prove the
theorem with ¥ instead of .
ii) Let g,h € F*(n) be different. Then
g h g—nh

Xn  Xn| | Xn

B (% ¢(3")) nB (% ¢(3")> -y

due to the ultrametric property. This implies that A} is a disjoint union

A= | B(Leem)

geF*(n)

237" = 9(3"),

and hence

for every n € N.
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iii) For any ball B with 7(B) =3¢ < 1and BNC # (), if n > ¢, then
* 9 n n—{—1
: - - =
#{ger (n).B(Xn,w(?) )) _B} gn—t=1, (5)

This follows since any polynomial g € F*(n) has the coefficient ay = 2
and coefficients a,,_1,...,a; either 0 or 2. The requirement that the ball
B (%,1&(3")) is contained in B fixes the coefficients a,_1,...,a,_¢. The
remaining n — ¢ — 1 coefficients can be either 0 or 2 giving 2"~ ¢~! elements
in the set.

iv) We can now, under the assumptions of iii), compute

pBna) =p| [ BB (% vem)

geF*(n)
- > w(onn ()
geF*(n)
B e )
geEF™(n)

B( . (3"))CB

= ) w@EYy

geEF™(n)
B(s&%,%(3"))CB

2 ontty (g
where we have used Proposition 1. Since

2n 1l — (3M)Y x (374 x 377
we have that

(BN AL) = r(B) x ($(3") x 3)7 x 377, (6)

For B =1 it follows that

1(Az) = ($(3") x 3")7 x 377 (7)
for all n € N, and hence

S u(A;) = . (8)

v) We have the following quasi-independence result

Proposition 7. For n > m we have

(AT, NAR) < (A7) (A7) (9)
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Proof. Let 1(3™) = 37%. If n < ¢, then 37" > 37¢ = ¢(3™) and from
(4) we have 37" > ¢ (3™). Let g € F*(n),h € F*(m). Since g — hX"™™
evaluated in 0 is 2, we have that g — hX™ ™™ # 0, and hence

g h ‘_’g—hX"m

- _ b

>3
Xn o Xm ‘

From this we get that
B (<L u(")nB " pEm)) =0
Xn ) Xm ) ]
and by definition of A} and A}, we then have

Ay Ay =0,

which implies that
n(A, NAL) =0

and the quasi-independence is trivially satisfied.
If n > ¢ we have

pna) =u| L (B(Feem)na)
geEF*(m)

- > () )

geF*(m)

© S @Em) X (B3 x 37 x 37

geF*(m)
@ gm=t s ($(3™)7 x ($(3") x 3")7 x 377
= (3—7 x (H(3™) x 37")7) X (3—7 x (H(3") x 3%)'*)
M * *
D (AL x p(AL).
This concludes the proof of the quasi-independence. [ |

From (8) we can use Lemma 3 to get

2
(We (1)) = 1 (Zgﬂ M(AZ)) > i 1=1
=z l1msup 2 limsupl =1,
e Nooo SN (AR AL) T N

where the last inequality comes from the quasi-independence. Since we
trivially have

1= u(C) = p(Wg@)),
the result follows. [ |
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We will now deduce the diverging part of Theorem 2 from Theorem 6 by
a standard application of the Mass Transference Principle.

Proof. Without loss of generality we will assume that ¢ (3™) — 0 when n — oo,
since else W (¢) = C and the result is clear. By assumption we have that

2 JWEm) < (37 = o0

and r — 77 f(r) is monotonic. Define @ by 6(r) = [f(«(r))*/7]3, where [-]5 is

the function that rounds up to the nearest power of 3.

Then
Z ) x 3")7 = 0,

and from Theorem 6 we get that u(W7(#)) = p(C) = 1. This in turn implies that
W(BAWE(B)) = u(BC)
for any ball B C C. Now Theorem 4 gives
W (BN We(w) = 1 (BNC)

for any ball B C C. In particular for B = C we get the desired result. |

5. Irrationality exponent

For an element ¢ € F5((X 1)) we define the irrationality exponent of ¢ as

7(£) = sup {7- . ‘5 — %‘ < |h| for infinitely many E € F3(X)}

From Dirichlet’s theorem in the field of formal Laurent series we get that
7(€) > 2 for all £ € F3((X™1)).
Furthermore for ¢ : {3" : n € N} — R, a non-increasing function we define

K(y) = {5 el: ),5 - %‘ < ¢(|h|), for infinitely many % e Fg(X)} .

We now have the following theorem.

Theorem 8. Let 1) : {3" : n € N} — Ry be a non-increasing function such that
x + x%(x) is non-increasing and tends to 0 as 3" tends to infinity. For any
c€(0,3) the set

K@)\ Klep)nC

1s uncountable.
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From Theorem 8 we get the following result.

Corollary 9. For any T € [2, 00| there exist uncountably many elements in C with
irrationality exponent T.

Proof. For 7 € (2,00) we can use Theorem 8 with ¢(z) = 2~7. For 7 = 2 we can
use the function 1 (z) = (xlogx)~2. Finally for 7 = oo the element

f: 2X—n!
n=1

has the desired irrationality exponent, since the proof by Liouville for the corre-
sponding real case can be applied. In a similar way we can construct uncountably
many with irrationality exponent 7 = oc. |

Proof of Theorem 8. Let u;,v; = 1 and define recursively w;y; as the integer
satisfying
1 < 3ui+132vi9)(3%) < 3,

and v;11 by
Vi1 = Uiyl + 20;.

From the assumption on z — z?i(x) we get that the sequence {u;}, .y is
non-decreasing and tends to infinity as ¢ — oo.

From {u;},;.y we now construct the following sequence of rational functions:

Let

-1 P
u fd ;—Xul fd g
§u1 = [0 1= o = %o
w w u -1 —1 Py
Sup = [0; X", X" X = o + = v
u u u u u u u —1 —1 —1 P3
£U,3: [07_X 15X 2>X 17X 37_X 17_X 27)( 1] = le +XU2 +X1)3 = Xv3

where the element &, 1 is constructed from &, ,, by applying the Folding Lemma.
Since we are in characteristic 3, and {v;},cy is strictly increasing, each of the
rational functions is in C. They converge to the element &, ., € C. Furthermore
by construction each of the rational functions &, is a convergent of {yu oo-

We have that )

3vn+1

|€u,oo - 5u,n| - < ¢(3U"),

and hence &, o0 € KC(9).

For the other part it is sufficient to show that all the convergents g satisfy
J
P,
Eu,00 — 70| > c(|Q;1)
Qj

as the convergents are best approximants.
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For 20! < j < 2% we have that |aj;1| < 3“+1. Now

¢ _ by ;
e jaj 1] 1Q; I
but since
laj 1] 1Q;1* (1Q51) < 3 |Q;7 1(|Q;) < 3"+ 32U4)(3%) < 3
we have 5(10;)
YU51)
fu,oo - Q_] 3 > Cw(‘Q]D

and hence &, oo & K(ct).

In order to get uncountable many elements with the desired property, the
sequence {u;},.y can be modified in the following way. Define {u;}, y by u| = 1,
uh, = un and uy, ;€ {1,2}. By the same proof we get that each of the formal
Laurent series &y oo € K(¢) \ K(ctp) N C, and since there is uncountably many
such sequences, each giving different formal Laurent series, we have the desired
result. |

6. Concluding remarks

Let p be a prime, ¢ = p" for some n > 1, and F, the field with ¢ elements. We can
from F, construct the polynomials [F [X ] and the rational functions F,(X) with

absolute value ‘%| = qdegg—desgh for the non-zero rational functions, and |0| = 0.
Completing with respect to this absolute value gives the formal Laurent series
over .

Like before we restrict ourselves to the unit ball, that is elements of the form

o0

d anX",  a_n€F,

n=1

Let A C F, with 2 < #A < ¢, and construct the missing digit set

MDS(A) = {ia_nX” ta_y, € A} .

n=1

In the particular the case ¢ = 3 and A = {0,2} we just have MDS(A) = C.

The results of this paper also holds true in the more general setting of miss-
ing digit sets, as the proofs can be modified to this situation. We have that
the Hausdorff dimension of MDS(A) is y4 = % with H"A(MDS(A)) = 1.
Furthermore for a function ¢ : {¢" :n € N} — {q¢" :r € Z} we define the set
Wnmps(a) (¥) by

{h € MDS(A) : )h _ %\ < gV

for infinitely many N € N, where g € ]:A(N)},
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where
Fa(N) ={f € Fg[X]: Coeff(f) € A,deg f < N},
we have the following theorem.

Theorem 10. Let f be a dimension function such that r—7A f(r) is monotonic.
Then

0 if 3 oal1 F(gM) x (¢") < oo
HI(MDS(A)) if 3257, f(¥(g") x (¢")* = o0
Finally the results about irrationality exponents also hold true in the more

general setting. For an element ¢ € F ((X 1)) we define the irrationality exponent
in the same way as before as

HI (Wnps(a) () = {

7(§) = sup {T : ’& - %‘ < |h|™" for infinitely many % € IFq(X)} :

Furthermore for ¢ : {¢" : n € N} — R4 a non-increasing function and I the
unit ball in F,((X 1)) we define

K() = {§ el: ‘5' - %’ < (|h|), for infinitely many % € Fq(X)} :
and we have

Theorem 11. Assume that x — 2% () is non-increasing and tends to 0 as q"
tends to infinity. For any c € (0, %) the set

K () \ K(cy)) nMDS(A)
15 uncountable.

And the corresponding corollary

Corollary 12. For any T € [2,00] there exist uncountably many elements in
MDS(A) with irrationality exponent 7.
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SOME REMARKS ON MAHLER’S CLASSIFICATION IN HIGHER
DIMENSION

S. KRISTENSEN, S. H. PEDERSEN, B. WEISS

ABSTRACT. We prove a number of results on the metric and non-metric theory of
Diophantine approximation for Yu’s multidimensional variant of Mahler’s classific-
ation of transcendental numbers. Our results arise as applications of well known
results in Diophantine approximation to the setting of Yu’s classification.

1. INTRODUCTION

In [11], Mahler introduced a classification of transcendental numbers in terms of
their approximation properties by algebraic numbers. More precisely, he introduced
for each k € N and each « € R the Diophantine exponent

wi(x) =sup{w e R:|P(z)| < H(P)™
for infinitely many irreducible P € Z[ X ],deg(P) < k}. (1)

Here, H(P) denotes the naive height of the polynomial P, i.e. the maximum absolute
value among the coefficients of P.

Mabhler defined classes of numbers according to the asymptotic behaviour of these
exponents as k increases. More precisely, let

w(x) =limsup wk(x)
k—oo k

The number z belongs to one of the following four classes.

x is an A-number if w(x) =0, so that x is algebraic over Q.

x is an S-number if 0 < w(x) < .

x is a T-number if w(z) = oo, but wy(z) < oo for all .

x is a U-number if w(x) = oo and wy(x) = oo for all k large enough.

All four classes are non-empty, with almost all real numbers being S-numbers. Every
real number belongs to one of the classes, and the classes are invariant under algebraic
operations over Q.

In analogy with Mahler’s classification, Koksma [10] introduced a different classi-
fication based on the exponent

wi(a) = sup{w* e R:|z —a| < H(a)™" for infinitly many a € Q nR,deg(a) < k}.

In this case, H(a) denotes the naive height of «, i.e. the naive height of the minimal
integer polynomial of «. In analogy with Mahler’s classification, one defines w*(x)
and A*-, S*-, T*- and U*-numbers.

The reader is referred to the monograph [4] for an excellent overview of the classific-
ations and their properties. A particular property is that the classifications coincide,
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so that A-numbers are A*-numbers, S-numbers are S*-numbers and so on. The indi-
vidual exponents however need not coincide.

In [18], Yu introduced a classification similar to Mahler’s for d-tuples of real num-
bers. In brief, the classification is completely similar, except that the exponents wy(x)
are now defined in terms of integer polynomials in d variables.

An analogue of Koksma'’s classification was introduced by Schmidt [16]. However,
the relation between the two classifications is not at all clear, and it is conjectured
that the two classifications do not agree [16].

It is the purpose of the present note to study the Diophantine approximation prob-
lems arising within Yu’s classification. We recall the simple connection between the
questions arising from Mabhler’s classification, and the problem of Diophantine ap-
proximation with dependent quantities. A classical problem in Diophantine approx-

imation, given x = (xy,...,2q) € R% is to find w for which
Ja-xl < s o) for infnitely many 4= (a1, a0) €2, (2)
<1<
where as usual |- | denotes the distance to the nearest integer. Comparing (1) and

(2), one sees that one can define Mahler’s exponents wy by restricting the classical
problem to a consideration of vectors x belonging to the Veronese curve

Fz{(m,xQ,...,xk)eRk:xeR}.

Similarly, in order to understand the exponents arising in Yu’s classification, one
should once more consider the corresponding problem of a single linear form, but
replace the Veronese curve by the variety obtained by letting the coordinates consist
of the distinct non-constant monomials in d variables of total degree at most k, say.
The resulting Diophantine approximation properties considered in this case would
correspond to the multidimensional analogue of wy, i.e.

wi(x) = sup{w € R:|P(x)| < H(P)™™ for infinitely many
PeZ[Xy,...,X4],deg(P) < k}.

Throughout, let n = (k;d) -1 be the number of nonconstant monomials in d variables

of total degree at most k. In addition to the usual, naive height H(P), we will also
use the following modification H(P), which is the maximum absolute value of the

coefficients of the non-contant terms of P. The following is a slight re-statement of
[18, Theorem 1].

Theorem 1. For any x = (1,...,24) € R?, there exists c(k,x) > 0 such that for all
Q > 1, there is a polynomial P € Z[X1,...,Xy4] of total degree at most k and height
H(P)<Q, such that

|P(x)| < c(k,x)Q".
Replacing the condition H(P) < Q by H(P) < Q, we may always choose c(k,x) = 1.
The proof is essentially an application of the pigeon hole principle, and is com-
pletely analogous to the classical proof of Dirichlet’s approximation theorem in higher

dimension. As a standard corollary, one obtains the first bounds on the exponents
wi(x).

Corollary 2. For any x = (x1,...,x4) € R, there exists a c(k,x) >0 such that

|P(x)| <c(k,x)H(P)™,
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for infinitely many P € Z[ X1, ..., X4] of total degree at most k. In particular, wi(x) >
n.

The corollary tells us what the normalising factor in the multidimensional definition
of w(x) should be, namely the number of non-constant monomials in d variables of
total degree at most k.

Inspired by the above result, we will define the notions of k-very well approximable,
k-badly approximable, k-singular and k-Dirichlet improvable. We will then proceed to
prove that the set defined in this manner are all Lebesgue null-sets and so are indeed
exceptional. In the case of k-badly approximable results, we will also show that these
form a thick set, i.e. a set whose intersection with any ball has maximal Hausdorff
dimension. In fact, many of our results are somewhat stronger than these statements.
The properties are all consequences of other work by various authors (see below).
Finally, we will deduce a Roth type theorem from Schmidt’s Subspace Theorem [15].

It is not the aim of the present paper to prove deep results concerning Yu’s clas-
sification, but rather to examine the extent to which already existing methods have
something interesting to say about the classification.

2. RESULTS AND PROOFS

In each of the following subsections we introduce a property of approximation of
d-tuples of real numbers by algebraic numbers, and prove a result about it which
extends previous results known in case d = 1.

2.1. k-very well approximable points. A point x = (x,...,24) € R? is called
k-very well approximable if there exists € > 0 and infinitely many polynomials P €
Z[Xy,...,X4] of total degree at most k, such that

|P(x)] < H(P) ), (3)

In other words, x is k-very well approximable if the exponent n on the right hand
side in Corollary 2 can be increased by a positive amount. We will prove that this
property is exceptional in the sense that almost no points with respect to the d-
dimensional Lebesgue measure are k-very well approximable. In fact, we will show
that this property is stable under restriction to subsets supporting a measure with
nice properties.

We recall some properties of measures from [7]. A measure p on R is said to be
Federer (or doubling) if there is a number D > 0 such that for any x € supp(p) and
any r > 0, the ball B(x,r) centered at x of radius r satisfies

H(B(a:, 2r)) < Du(B(w,T)). (4)
The measure p is said to be absolutely decaying if for some pair of numbers C,a >0
M(B(x,r)ﬂﬁ(g))SC’(;) ,u(B(x,T)), (5)

for any ball B(x,7) with z € supp(x) and any affine hyperplane £, where £(¢) denotes
the e-neighbourhood of £. A weaker variant of the property of being absolutely
decaying is obtained by replacing r in the denominator on the right hand side of (5)
by the quantity

sup{c > 0: u({z € B(z,r) : dist(z, L) > c}) > 0}.
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In this case, we say that p is decaying. If the measure p has the property that

n(£) =0, (6)
for any affine hyperplane £, p is called non-planar. Note that an absolutely decaying
measure is automatically non-planar, but a decaying measure need not be non-planar.
Finally, u is called absolutely friendly if it is Federer and absolutely decaying, and is
called friendly if it is Federer, decaying, and non-planar.

Theorem 3. Let pu be an absolutely decaying Federer measure on R, For any k € N,
the set of k-very well approzimable points is a null set with respect to . In particular,
Lebesgue almost-no points are k-very well approximable.

Our proof relies on results of [7], in which the case d = 1 was proved.

Proof. Let f:R%— R be defined by f(x1,...,2q4) = (x1,22,...,xq125 1, 2%), so that
f maps (x1,...,24) to the n distinct nonconstant monomials in d variables of total
degree at most k. Clearly, f is smooth, and by taking partial derivatives, we easily
see that R™ may be spanned by the partial derivatives of f of order up to k.

From [7, Theorem 2.1(b)] we immediately see that the pushforward f.p is a friendly
measure on R". We now apply [7, Theorem 1.1}, which states that a friendly measure
is strongly extremal, i.e. for any 0 > 0, almost no points in the support of the measure
have the property that

n

H lqy; — i < ¢,
i=1
for infinitely many p € Z", q € N. Clearly, this implies the weaker property of ex-
tremality, i.e. that for any ¢’ > 0, almost no points in the support of the measure
satisfy
] < g ()
max[gy; - p;| < g : (7)
for infinitely many p € Z", g € N.
To get from the above to a proof of the theorem, we need to re-interpret this in
terms of polynomials. We apply Khintchine’s transference principle [5, Theorem V.IV]

to see that (7) is satisfied infinitely often if and only if

la-y —pl < H(aq) ", (8)
for infinitely many q € Z", p € Z, where ¢ > 0 can be explicitly bounded in terms of
n and ¢’. Now, y lies in the image of f, so that the coordinates of y consist of all
monomials in the variables (z1,...x4), whence any polynomial in these d variables
may be expressed on the form P(x) = q-y —p. The coefficients of P include all the
coordinates of q and hence H(P) > H(q), so that if (3) holds for infinitely many
P with € = §”, then (8) holds for infinitely many q,p. Since the latter condition is
satisfied on a set of u-measure zero, it follows that p-almost all points in R¢ are not
k-very well approximable.

The final statement of the theorem follows immediately, as the Lebesgue measure
clearly is Federer and absolutely decaying. 0

Some interesting open questions present themselves at this stage. One can ask
whether a vector exists which is k-very well approximable for all k. We will call such
vectors k-very very well approximable. It is not difficult to prove that the set of k-very
well approximable vectors is a dense Gs-set, so the question of existence can be easily
answered in the affirmative. However, determining the Hausdorff dimension of the set
of very very well approximable vectors is an open question. When d = 1, it is known
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that the Hausdorff dimension is equal to 1 due to work of Durand [6], but the methods
of that paper do not easily extend to larger values of d.

Taking the notion one step further, one can ask whether vectors x € R?% exist such
that for some fixed € > 0, for any k € N, there are infinitely many integer polynomials
P in d variables of total degree at most k, such that

[P(x)| < H(P)™ ™),

where as usual n = (k;d) -1, i.e. in addition to x being very very well approximable, we

require the very very very significant improvement in the rate of approximation to be
uniform in k. We will call such vectors very very very well approximable. Determining
the Hausdorff dimension of the set of very very very well approximable numbers is an
open problem.

2.2. k-badly approximable points. A point x = (z1,...,24) € R? is called k-badly
approzimable if there exists C' = C'(k,x) such that

|P(x)[ > CH(P)™,

for all non-zero polynomials P € Z[ X, ..., X4] of total degree at most k. In other
words, a point x € R? is k-badly approximable if the approximation rate in Corollary
2 can be improved by at most a positive constant in the denominator. Let Bj be the
set of k-badly approximable points. Note that each set By, is a null set, which is easily
deduced from the work of Beresnevich, Bernik, Kleinbock and Margulis [2]. We will
now show:

Theorem 4. Let B € R be an open ball and let M € N. Then

M
dim B n m Bk =d.
k=1

This statement is deduced from the work of Beresnevich [1], who proved the case
d=1.

Proof. Let ny, = (k;d) —1 as before, but with the dependence on k£ made explicit in nota-
tion. Let f: R? — R™ be given by f(z1,...,2q) = (21,22, ..., xq1 2y~ "), with the
monomials ordered in blocks of increasing total degree. Let rj, = nik, cee i, 0,...,0) ¢
R™ | where the non-zero coordinates are the first n; coordinates, so that r; is a prob-
ability vector.

We define as in [1] the set of r-approximable points for a probability vector r to be

the set

Bad(r) = {y = (Y1, ,Yn,, ) : for some C(y) >0,

max |qu; | > C(y)q™t, for any q € N}.

1<i<npg

Here, |z| denotes the distance to the nearest integer, and we use the convention that
2110 = (.

Let 1 <k < M be fixed and let x € R? satisfy that f(x) € Bad(ry). From [1, Lemma
1]) it follows, that there exists a constant C' = C'(k,x), such that the only integer
solution (ag, a1, ...,a,,) to the system

a0 + a1z + sy + -+ + Ay 1 Tg 2+ an x| <CHT, mzax|ai| < HY/mw
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is zero. Here, the choice of r; and the ordering of the monomials in the function f
ensure that the effect of belonging to Bad(ry) will only give a polynomial expression
of total degree at most k. Indeed, writing out the full equivalence, we would have the
first inequality unchanged, with the second being max; |a;| < H"*i, where the exponent
is the ¢’th coordinate of ry. If this coordinate is 0, we are only considering polynomials
where the corresponding a; is equal to zero.

Rewriting this in terms of polynomials, for any non-zero P € Z[Xq,..., X ] with
H(P) < HY" and total degree at most k, we must have

|P(x)|> CH™ > CH(P)™.

It follows that x € By, and hence f~!(Bad(ry)) € By. The result now follows by ap-
plying [1, Theorem 1], which implies that the Hausdorff dimension of the intersection
of the sets f~'(Bad(ry)) is maximal. O

Again, an interesting open problem presents itself, namely the question of uniform-
ity of the constant C'(k,x) in k. Is it possible to construct a vector in By for all k
with the constant being the same for all £7 And in the affirmative case, what is the
Hausdorff dimension of this set? A weaker version of this question would be to ask
whether there is some natural dependence of C'(k,x) on k, i.e. whether one can choose
C(k,x) = C(x)* or a similar dependence. We do not at present know the answer to
these questions.

2.3. (k,e)-Dirichlet improvable vectors and k-singular vectors. Let ¢ > 0. A
point x is called (k,¢e)-Dirichlet improvable if for any e there exists a @y € N, such
that for any @ > Qg there exists a polynomial P € Z[ X, ..., X 4] with total degree at
most k,

H(P)<eQ and |P(x)|<eQ™.

Note that we are now using H as a measure of the complexity of our polynomials.
In view of Theorem 1, if ¢ > 1, all points clearly have this property, and so the
property is only of interest when € < 1. A vector is called k-singular if it is (k,¢)-
Dirichlet improvable for every ¢ > 0.
We will need a few additional definitions before proceeding. For a function f : R% —
R”, a measure ;1 on R? and a subset B € RY with u(B) > 0, we define

If

= sup |f(x)]

xeBnsupp

Let C,a > 0 and let U € R? be open. We will say that the function f is (C,«)-good
with respect to o on U if for any ball B ¢ U with centre in supp p and any € > 0,

ptxe el <) <0 ) u(s)

| £l
We will say that a measure p on R? is k-friendly if it is Federer, non-planar and the
function f:R? - R given by f(z1,...,24) = (21, 22,...,zq25 1, 28) is (C, a)-good
with respect to u on R? for some C,a > 0.
We have

Theorem 5. Let p be a k-friendly measure on RY. Then there is an eq = £o(d, i)
such that the set of (k,e)-Dirichlet improvable points has measure zero for any € < &.
In particular, the set of k-singular vector has measure zero.
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In the case when d = 1, k > 2 and p being the Lebesgue measure on R, the result
is immediate from work of Bugeaud [3, Theorem 7], in which an explicit value of ¢ is
given, namely & = 273¥=3. Our proof is non-effective and relies on [9, Theorem 1.5].

Proof. Under the assumption on the measure pu, [9, Theorem 1.5] implies the existence
of an ¢y > 0 such that for all € < gg

fe(DIz(T)) =0 for any unbounded T ¢ a*.

Here, f is the usual function f(z1,...,24) = (21,29, ..., 2412571, 2%), a* denotes
) ) ) ) ) ) d *d)

the set of (n+ 1)-tuples of (to,t1,...,t,) such that ¢ty = ¥, ¢;, t; > 0 for each i, and
DI:(7) denotes the set of vectors y = (y1,...,y,) € R* for which there is a Tj such
that for any t € T with |[¢| > Tp, the system of inequalities

la-y -p| <éefo
|lqs| < geti i=1,...,n,

has infinitely many non-trivial integer solutions (q,p) = (q1,-..,qn,p) € Z"* ~ {0}.
Our result follows by specialising the above property. Indeed, we apply this to
e =&l <en*! and the central ray in a*,

T:{(t,%,...,%):tZIOg(%)n,QZ[80]+1,Q€N}.

The measure f,u is the pushforward under f of the k-friendly measure p. It follows
that the set of x € R? for which their image under f is in DIz(7) is of measure zero
for all & < ep*'. From the definition of DI: and the choice of a* and T, f(x) € DIz
if and only if there is a Qo > max{[gg] + 1,€e70/"}, such that for Q > Q, there exists
0, q1s - - - > Gn € Z With maxy<ic, |¢;| < €€t/ = Q, such that

I(q1, .- qn) - f(X) +qo| < et =ecQ™™.
Reinterpreting the right hand side of the above as a polynomial expression in x, this
recovers the exact definition of x being (k,e!/("+1))-Dirichlet improvable. O

Note that the proof in fact yields a stronger statement. Namely, by adjusting the
choice of a*, we could have put different weights on the coefficients of the approximat-
ing polynomials, thus obtaining the same result, but with a non-standard (weighted)
height of the polynomial.

As with the preceding results, some open problems occur. We do not at present
know if there exist a vector x, for which there are positive numbers e > 0, such that
x € DI(k,ey). If this is the case, determining the Hausdorff dimension of the set of
such vectors is another open problen. Additionally, the same questions can be asked
if we require € to be independent of k, i.e. if we ask for the existence of a vector
x € DI(k,¢) for all k.

Let us now say that x € R is k-algebraic if there exists a nontrivial polynomial
PeZ[Xy,...,X4] of degree at most k, such that P(x) = 0. It is clear that if x is k-
algebraic, then it is k-singular. In light of Theorem 5, it is natural to inquire whether
all k-singular points are k-algebraic. In this direction we have:

Theorem 6. For d > 2, for any k > 1, there exists a k-singular point in R which is
not k-algebraic.

The proof relies on results of [8]. For d = 1, much less appears to be known in
general. For k =2/ it follows from a result of Roy [13] combined with a transference
result (see [5, Theorem V.XII]) that the answer is affirmative. Roy further indicates
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in [14] that he has an unpublished result for k = 3, which would imply the analogue
of Theorem 6 in the case d = 1, k = 3. Already for k = 2, the construction is rather
involved and a general approach would be desirable.

Proof. Once more, for a fixed k, we take f as in the proof of Theorem 5. In the
notation of [8], it is clear that x € R? is k-singular if f(x) € Sing(n). Also f(x) is
totally irrational in the notation of [8] if and only if x is k-algebraic.

Since the image of f is a d-dimensional nondegenerate analytic submanifold of R",
for d > 2 we can apply [8, Theorem 1.2] to conclude that the intersection of f (R?)
with Sing(n) contains a totally irrational point. O

Theorem 5 does not give an explicit value of ¢y, and indeed the value depends on
the measure . However we can at least push ¢y to the limit ¢y ~ 1 in the case when
i is the Lebesgue measure on R¢ to obtain a result on the k-singular vectors.

Theorem 7. For any d, the set of x which are (k,e)-Dirichlet improvable for some
e <1 and some k, has Lebesgue measure zero.

The proof relies on the work of Shah [17].

Proof. This is a direct consequence of [17, Corollary 1.4], where the set A is chosen
to be the diagonal N' = {(N,...,N): N e N}. O

Note that once again, the result of Shah gives a stronger result in the sense that we
may take a non-standard height as in the preceding case and retain the conclusion.

2.4. Algebraic vectors. Our final result, which is again a corollary of known results,
is an analogue of Roth’s Theorem [12], which states that algebraic numbers are not
very well approximable. Schmidt’s Subspace Theorem, see e.g. [15], provides a higher
dimensional analogue of this result, and it is this theorem we will apply. We will say
that a vector a = (av, . .., aq) € R is algebraic of total degree k if there is a polynomial
Py € Z[ Xq,...,X4] of total degree k with P,(a) = 0 and if no polynomial of lower
total degree vanishes at a.

Theorem 8. Let a = (avy,...,aq) € R? be an algebraic d-vector of total degree more
than k. Then for any € > 0 there are only finitely many non-zero polynomials P €
Z[Xy,...,Xq] of total degree at most k with

|P()| < H(P) "),

k+d
where n = ( ; )— 1 as usual.

Proof. Since a in not algebraic of total degree at most k, by definition it follows that
the numbers 1, aq, ao, . .. ,ad_lo/j‘l, 0/3 are algebraically independent over Q. From a
corollary to Schmidt’s Subspace Theorem, [15, Chapter VI Corollary 1E], it follows

that there are only finitely many non-zero integer solutions (qo, ..., ¢,) to
|QO + O+ GO+ Gy Qg0+ qno/j| < ({21182}73 |qs|) (9.

This immediately implies the result.
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Solution of Cassels’ Problem on a

Diophantine Constant over Function
Fields

Efrat Bank *  Erez Nesharim T Steffen Hgjris Pedersen *

July 13, 2016

This paper deals with an analogue of Cassels’” problem on inhomoge-
neous Diophantine approximation in function fields. The inhomogeneous
approximation constant of a Laurent series 6 € F, ((%)) with respect to
v €F,((1)) is defined to be ¢(6,7) = inforner, g |N] - [(N0 —7)|. We show

t
that infequ((%)) SUD, e, (1)) c(0,7) = ¢ 2, and prove that for every 6 the

set BAg = {7y €F,((3)) : c(6,7) >0} has full Hausdorff dimension. Our

1

methods generalize easily to the case of vectors in F, ((;))d.

1 Introduction

For a real number 6, denote by (0) = 6 — LQ + %J the representative in [—%, %) of 0
modulo the integers, and let |f| denote the absolute value of 8. In these notation, |(6)]
is the distance from 6 to the integers.

A main topic in Diophantine approximation deals with the inhomogeneous approx-
imations of a real number (see [Cas57]). Given two real numbers 6 and 7, define the

inhomogeneous approximation constant of 6 with respect to v as

c(6,7) gi%\nl -[(nl — 7). (1)
Also define the set
BAgZ{yER : ¢(,7) > 0}. (2)

It was proved by [BW92| (cf. [Kim07] for a second proof):

*Department of Mathematics, University of Michigan, Ann Arbor MI, 48109, USA, ebank@umich.edu

fSchool of Mathematical Sciences, Tel Aviv University, Tel Aviv 69978, Israel, erezne-
sharim@post.tau.ac.il

fDepartment of Mathematics, Aarhus University, 8000 Aarhus C, Denmark, steffenh@math.au.dk
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Theorem 1.1. For every § € R\ Q, the set BAy has zero Lebesque measure.

On the other hand, the following result concerning BAjy is proved in [Tse09] (see also
[BW92, Theorem 2.3)):

Theorem 1.2. For every 6§ € R, the set BAy has Hausdorff dimension 1.

We mention that subsets of R? with positive Hausdorff dimension are uncountable,
and that subsets with positive Lebesgue measure in R? have maximal dimension, i.e.,
d (see [Fall4] for the definition of Hausdorff dimension). In view of that, Theorem 1.1
states that the set BAy is small, while Theorem 1.2 states that BA, is large, and in
particular, not empty. Therefore, for every 6 there exists a - such that ¢(6,~) > 0. This
leads to the definition of the following two constants:

c(f) = sup (6, 7) (3)
and »
c= 1I;f c(0). (4)

Khinchine [Khi26] proved that ¢ > 0. Davenport [Dav51] was the first to give an explicit
lower bound on ¢. The problem of finding the exact value of it was posed by Cassels
[Casb7, p.86]. According to [Mos12], the best estimate of ¢ was found in [God53]:

Theorem 1.3.
3 68
— << —.
32 7 T 483

In this work we study the analogues of these constants in the context of function fields.

Remark 1.4. Some authors consider a constant which is similar to the one defined in (4):

¢ i%f sup liminf |n| - [(n6 — 7)|. (5)

oY% n—oo

By definition we have ¢ < ¢, and we are not aware of any result regarding equality.
However, the function fields analogues of those constants coincide (cf. Theorem 3.11).

1.1 Higher Dimensions

Throughout the paper, we will denote vectors by bold symbols, and their coordinates
with superscripts. Assume d > 1. A weight in R is a vector r € R with r'4-- - +7r? =1,
r* >0 for any 1 < s < d. Given a weight r and 8,~ € R?, define the approzimation
constant with weight r of 8 with respect to v by

er(8,) 2 inf max (n]” |{n6* — 7))

n#0 1<s<d

and let
BAg(r) E{y€eR? : ¢, (6,7)>0}.
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As in the one dimensional case, define

e (0) = supci(6,7),
vy

and
- i%f o (0). (6)

A higher dimensional version of Theorem 1.1 is proved in [Shal3] by dynamical methods:

Theorem 1.5. For almost every 8 € R® (described explicitly), the set BAg (,...,%)
has measure zero.

The higher dimensional version of Theorem 1.2 appeared only recently in [BM15],
extending a result proved independently by [BHKV10] and [ET11] about the weight

1 1y.
r = (a,,a)
Theorem 1.6. For every weight v and 6 € R?, the set BAg (r) has dimension d.

As for (6); Cassels [Casb7, Theorem X| showed that o
lower bound was established in [BLO5]:

1) > (, and an explicit

1
dar d

Theorem 1.7. For every d > 1

We know of no results regarding ¢, for a general weight r.

1.2 The Function Fields Analogue of Diophantine Approximation

The function fields analogue of Diophantine approximation has been studied since the
work of Artin [Art24]. It is sometimes referred to as Diophantine approximation in
positive characteristic. Every statement in Diophantine approximation has an analogous
statement in this context. Let us introduce the dictionary which is used for translating
statements (and sometimes, their proofs) from one context to the other. Let ¢ be a prime
power, and let I, be the field with ¢ elements. Define an absolute value on F, [t] by
IN| = ¢deN for 0 # N € F, [t], and |0] = 0. Extend this definition to the fraction field,
the field of rational functions F, (t), by |4 = qlesM—degN where M, N € F, [t], N # 0.
The field I, ( (%)) of formal Laurent series in ¢ with finite number of non zero coefficients
of positive powers of ¢, is the completion of F, (¢) with respect to this absolute value.
Extending the absolute value continuously to F, ((%)), gives that the absolute value of
a non zero 0 € F, ((%)), written as
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where degf = max {—i : 6; # 0}, is

6] = g**&°.

2fpen(() - me)

is a natural set of representatives for elements in I, ((%)) up to the equivalence relation

of having a difference which is a polynomial. We denote (6) = > >~ 6;t~" and consider
it to be the representative of  in I. We call (0) and 6 — (#) the fractional part and the

polynomial part of 0, respectively. These definitions give the dictionary:

The set

F,[t] o 7
Fy(?) e Q
F, (1)) o> R
0] = g¢* e |0
|(0)] = dist (0,F, [t]) e~ [(0) =dist(6,2Z).

1.3 Previous Works in Inhomogeneous Approximation in Function
Fields

The analogue of inhomogeneous approximation in function fields was studied in [Mah41].
Recently, this subject has regained interest, parallel to a significant progress in the real
case [Krill, KN11, CF12, FK15]. Let us use the dictionary described above in order to
define the function fields analogues of (1), (2), (3) and (4). For 6, v € F, ((3)), denote

def

c(f,7) = ff [N]-[(N6 — )| (7)

where N varies over the non zero polynomials in F, [¢],

BAgd:“{yqu(<%))  c(6,) >0}, (8)

“ up | (NG —
e(#) = sup inf [N] - [(N6 = )1, (9)

and
= inf c(6). (10)

An analogue of Theorem 1.1 was proved in [KN11]:
Theorem 1.8. For every 0 € F, ((3)) \F, (t), the set BAg has zero measure.

The measure mentioned here is the natural measure on [y ((%)), which we will recall
in Section 2. Before we formulate higher dimensional analogues, let us introduce a more
general notion of weight which is more natural to this context. A generalized weight
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is a function g = (gl, e ,gd) : N — N? such that for every 1 < s < d the function
g° : N — N is non decreasing, and

for every h € N. Define the higher dimensional versions of (7), (8), (9), and (10): For
1\ d
any 6, v € T, ((;)) , let
9°(deg N)

def . ( s _ A8
cg (0,7) = jnf max [N| wn - [(N§" — %),

where, by convention, gséo) =1,

BAg (g) & {7 €F, (G))d tcg (0,7) > 0},

g (0) = sup cg (0,7) ,
¥

and

cg = i%f cg (0).
While the approach of [Shal3] is likely to give a proof for the function fields analogue of
Theorem 1.5, this line will not be pursued in this note. The reader is referred to [Gho07,
HPO02] to learn more about the dynamical approach towards Diophantine approximation

in function fields.

Remark 1.9. Any weight r in the sense of Section 1.1, induces a generalized weight g,
def def

by letting g,(0) = (0,...,0) and g.(h + 1) = g.(h) + e, where 1 < s < d is any index
satisfying
r*-(h+1)—gi(h) = max r"- (h+1) — g'(h) (11)

1<t<d

Note that for every h > 0, we have

Y rth= Y gi(h)=h. (12)

1<s<d 1<s<d

Therefore, there exists 1 < s < d such that

r*-(h+1) —gi(h) = . (13)

SUN

By induction on A, using (11) and (13), we conclude that

1
Sh—gi(h)>—(1—=
r gr()— ( d)?
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for every h > 0 and 1 < s < d. On the other hand, by (12) and (13) we get
r°h — gp(h) = Zrh gL ( <(d-1) 1—1
' t#£s ' a d ,

The upshot is that for any 8, € I, ((%))d, the approximation constant c¢g, (6,7) differs
from
def . s S
& (0,7) = (;ijvgggggllf\f\ (NG —2%)].

by a multiplicative factor smaller than ¢?. In particular, for every 8 € F, ((%))d, the set

BAg (r) £ {’yqu <(%)>d C e (60,7) >o},

1.4 Main Results

In this paper, we prove the function fields analogue of Theorem 1.6 and determine the
value of the function fields analogue of (10). More precisely, we show:

equals BAg (g;).

Theorem 1.10. BAy(g) # & for every generalized weight g and 6 € F, ((%))d More-
over, if

inf
hEN

then dim (BAg(g)) = d for every 0 € F, ((1))".
Theorem 1.11. Any generalized weight g satisfies c¢g = q 2

Remark 1.12. It should be mentioned that [Arm57, Agg69] deal with a related question
concerning products of linear forms. Assume Fj(z,y) = a;x + by, i € {1,2}, are two
linear forms with coefficients a;,0; € IF, (( )) Using the methods of [Davb1, Cas52], it
was proven that:

sup inf |Fy(z4+7,y+0)| |[Fa(z+v,y+08)| = laby —asbi| g (15)
v 0eF((+)) TVl

where the upper bound has been already proved in [Mah41, p. 519]. Given any 6 €
F, ((%)), take F} = 0x + y and Fy = z, and plug them into (15) to obtain:

sup inf \N+7| (NG + 6 +~0)| = ¢ 2 (16)
voery((3)) Ml

Note that forcing v = 0 and N # 0 can a priori make the left hand side of (16) bigger
or smaller, so one cannot apply (16) directly in order to estimate c(0).
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2 Measure and dimension

In order to prove BAg has the same Hausdorft dimension as [, ((%))d, we will construct
subsets of it by nested intersection. In this section we recall a general criterion which
gives rise to a lower bound on the Hausdorff dimension of such intersections.

2.1 Tree-like collections

Let X be a complete metric space with a metric p, and let ;1 be a Borel measure on X.
Following the terminology of [KW10], a collection C of compact subsets of X is called
tree-like if there exists a sequence of collections {C, }°_, such that C = J >_, C,, which
satisfy the following conditions:

1. Co = {Cy}, with Cy € X compact.

2. u(C) >0 for any C € C.

3. For any m € N and C,C" € C,,, either C = C" or p(CNC") = 0.

4. For any m € N and C € C,,1, there exists C' € C,, such that C C C".

5. For any m € N and C’ € C,,, there exists C' € C,,,1 such that C' C (.

Given a tree-like collection C = |J~_,C,, we define its limit set to be

coo:ﬁ U c

m=0CeCpn,
For each m € N define

pm = sup p(C),
ceCm

where p (C) = max, eo p(x, y), and

. H <UCECm+1, ccer C)
D,, = inf
C'&Cm 1(C")
A tree like collection is said to be strongly tree-like if, in addition:

6. pm — 0.

m—00

The following is a specific case of [KW10, Lemma 2.5]:

Theorem 2.1. Let X be a complete metric space with a metric p, and p be a Borel
measure. Assume that there exist constants ¢, > 0 such that

u(B(z,r)) > er, (17)
for any v € X and 0 < r < 1. Then any strongly tree-like collection C = |J,._,Cn
satisfies

Z;n:o log Dy,

dim Cy, > a — limsup
m—s00 log pm
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2.2 A metric and a measure on T, ((%))d

We shall make use of the standard metric and measure on F, (%)), which will be
denoted by p and p respectively. The metric p is defined by p(6,¢) = |0 — |, for all
0,0 € F, ((t)), where | - | stands for the absolute value on F, ((%)), as described in
Section 1.2. Note that the balls of this metric are of the form

B(0,g7") =0+t

for ¢ € Z and § € F, ((§)). The measure  is the Haar measure on Fy ((
by p(I) = 1. This measure is characterized by assigning a measure ¢~
radius ¢~¢, and by being invariant under addition.

)), normalized

1
t
* to any ball of

The metric and the measure on F, ((%))d are defined by

#1(8,) = max p(6", "),

1<s<d

for all 6, € F, (()) and
pd = x . ox o,
d many times. Note that for any ¢ > 0,
1 (B(6,q47°)) =q %,
<r < g7 we have
B(6,r)=B(0.¢7").

This proves that u¢ satisfies (17) with ¢ = 1 and a = d.

and that whenever ¢!

2.3 Cantor constructions in F, ((%))d

In this section we describe a construction of a tree-like collection in F, ((%))d, which
we refer to as a Cantor construction. To introduce the construction, we need some
additional notation; For any vector of non negative integers £ = (£*,...,¢%), denote

d
B
s=1
and Ff = Fg. Let mp : F, ((%))d — F% be the projection defined by
we(0) (0}, ... 0, ..., 08, 0h)".

. d
For convenience, we denote F) = {@} and m(.. 0)(8) = @ for any 8 € F,((1))". By
abuse of notation, let us use mp to denote the projection to the first £ coordinates from
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Iﬁ‘gl to FY, whenever £ > £, where this inequality should be understood coordinatewise.
For any v € F 5 define the cylinder of v by

[v] d:ef{BGId : me(0) =V},

and denote £ = £(v). For any h € N¢, denote ¢~ P = <q_h1, . ,q_hd). Given a collection
of cylinders C, define

¢ BC = {[u] : [me(u)] €C, £=~£(u)—h}.

Assume (€,,),-_, is a sequence of d dimensional non negative integer vectors. Let
(€,).°_, be any sequence of non negative integers satisfying ¢, < £,, for all m. Define a

((qlm)oo (qzlm)jnozo) Cantor construction as a set {C,, : m > 0} satisfying Cy = {I¢},

m=0"
.
Cerl g q Cma

and
| {C}\ Conia| = ¢,

for every m > 0 and C' € C,,. The limit set of such a construction is the set C, =

Mo Ucee, €, which we call a ((qem):zo, (q%)::o) Cantor set. If the sequences
(L)oo, (,)°_, are constant, and equal, say, to £, ¢’ respectively, then we shall call

such a set a (qe, qél) Cantor set.

2.4 Measure and dimension of Cantor constructions

o

First note that for any ((qem):nozo ; (qélm)
any m > 0, we have

m:O) Cantor construction {C,, : m > 0}, for

b _ ol
()9

CECmi1 CeCm

This follows from the fact that C,,.1 is composed of equal length cylinders which, there-
fore, have the same measure. This provides an expression for 1(Cs), and shows that if
|€,, — .| is bounded then

1(Cys) = 0.

We now apply Theorem 2.1 to get a lower bound on the dimension of Cantor sets:

Theorem 2.2. Assume Cy is a ((qem)oo (qan)oo ) Cantor set. If

m=0" m=0

m—1

min Z £, — o0, (18)

m—00
k=0

then

1 log g
dim(Cy) > d — lim sup — m _:%1 a1
m—oo miny -, £x 1084
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Proof. Let {C,, : m > 0} be the Cantor construction corresponding to Cs. So
C =, _,Cn is a tree-like collection. Moreover, we have that for every m > 0,

— min Z?:Bl Ly
)

Pm = 4

and _
£ Vil
mo— m / R - 1
(ol GRS k)

qm q

D, =

(18) implies that C is strongly tree-like. By Theorem 2.1, we get
" log D
dim(Cy) > d — limsup 20108 Di
m—300 log pi,
q

1 logh
> d — limsup ‘m_l;n_l a1l
m—oo miny - £ 1084

3 The One Dimensional Case

In this section we state and prove the one dimensional versions of Theorems 1.10 and
1.11. Our method of proof is inspired by [DL63], and utilizes a characterization of the
approximations of 6 by means of solutions to a certain linear system of equations.

3.1 The Corresponding Matrix of an Element in F, ((%))

Assume 0 € F, ((1)) is a Laurent series, and N = njt" + ...+ ng € F, [¢t] is a polynomial

of degree h. Then
(NO) = L1 (0)t ™" + Ly(O)t > + - -

where for any ¢ > 1,
Lz(9> = noei + n19i+1 +---+ nh9i+h.

For any v € F, ((%)) and ¢ > 0, one has

IN|- (NG = )| < g <= [(NO )] < g "0

| (19)

In order to write the above linear system of equations in a matrix form, let us define
A(#) to be the infinite matrix:

0, 0y
A(0) = 0y 03

10
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Denote the i x j sub-matrix of A(6):

0 - 0,

Oi o bicryy
In these notation, we may rewrite (19) as
IN|-[{NO — )| < ¢ = Ah+1+6h+1]-n=mu140(7). (20)

Here n is the coefficients vector of the polynomial N.

Consider the same matrix equation, where n is now a vector of variables. Note that
the matrix A[h+ 1+ ¢, h+ 1] is a (h+1+4¢) x (h+ 1) matrix. Therefore, for any ¢ > 0
and any fixed h, there exists a v € F, ((1)) such that equation (20) has no solutions
n € F/*1. This means that for any N of degree h, |[N|-[(N§ —v)| > ¢~ Our intent
is to construct elements v € F, ((1)) for which ¢(6,7) > ¢~@9. This is equivalent to
the equality on the right hand side of (20) to have no solutions for all A > 0 at once. To

this end, we carefully analyze the rank of the non square submatrices Ali, j].

Remark 3.1. We mention that for ’s such that A[m,m]| is invertible for all m > 0, our
construction is reduced to a slightly easier one. However, it should be noted that the
set of 6 for which this happens is a set of measure zero. Indeed, for 6 € F, ((%)) and
m > 0,

det (Alm + 1,m + 1]) = det (A[m,m]) Ozpns1 + F (61, -, O2m),

where F'(6y, -+ ,0q,) is an explicit polynomial which only involves 6y, - - - | 6, of 6 (and
not Oam1). Therefore, if det (A[m,m]) # 0 for all m, then

(b, 00m)
det (A [m,m])"

det(Am+1,m+1]) #0 <= 0Oyp11 #

Hence, the set of 6’s for which A[m,m] is invertible for all m > 0 is a (¢%, q¢) Cantor set.
As discussed in Section 2.4, such sets have measure zero.

3.2 Indices Construction

Given any 6 € F, ((%)) and an integer ¢ > 0, we define the sequences of indices Z, =
{im} o, To = {im 5 as follows:

1. jo=0,ip=".

2. jma1 =min{j : rank(Alin,, j]) = in}-
If this minimum is not obtained, we let 7,11 = oc.

3. If ji1 = o0, let 4,11 = iy,. Otherwise, define

im+1 = min{i : rank(A[i, jmi1]) =7 — £}

11
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For convenience, we write i_; = 0. Note that if det(A [m,m]) # 0 for all m > 0, then
im = (m + 1)¢ and j,, = m/l for all m > 0. The following lemma summarizes some
properties of these indices.

Lemma 3.2. Let Z;, J; be as defined above. If j,1q1 < 00, then i,.1 is defined, and the
indices satisfy:

1 g1 < g1 + L
2. s > i 4 L.
3. Jmt1 = Jm + L.

Proof. General facts about rank of matrices imply that
rank(Ali, j]) < min(i, ). (21)

and
rank(AlZ, j]) < rank(A[ + 1, ]), (22)

for every i,j > 0. By the definition of j,,.1, one has that i,, — rank(Alim, jms+1]) = 0.
On the other hand, putting i = j,1 + ¢ and j = jpuq in (21) gives (Jme1 +¢) —
rank(A[Jmi1 + 4, Jms1]) > €. By (22), any 7,5 > 0 satisfy (i +1) — rank(Afi + 1, 7]) <
i — rank(Ali, j]) + 1. Therefore, there exists some i, < i < jpy1 + ¢ for which ¢ —
rank(Al[Z, jm+i1]) = £. We conclude that i,,11 is well defined.

1. By the definition of i,,.1 and the above discussion, it satisfies 4,11 < Jya1 + L.

2. Since rank(Alim, jmi1]) = im, we have i, < jna1. It follows that
rank(A[i, jmy1]) = @ for any i < 4,,, while if ¢ > i,,, one has rank(A[i, jmi1]) > .
Using rank(Alim11, jm+1]) = tm+1 — ¢, we conclude that i1 > i, + .

3. Note that rank(Alim, jm]) = im — ¢, and that for all j < j,,, one has that
rank(Alim, j]) < 4, — €. By the definition of j,,; as the minimal j for which
rank(Alim, j]) = im, it follows that j,1 > jm + £

O

t
Jm = oo. Indeed, since 6 is rational, its coefficients sequence is eventually periodic,

i.e., there exist mg,p € N such that 8,, = 0,,1, for all m > my. Therefore, whenever
Jm = mo—+p, we must already have j,, = co. The implication holds in the other direction
as well. Assume that j,,,1 = oo for some m € N. Then there exists 0 # b € Fflm such
that b’ - (Afim,j]) = 0 for all j > 0 at once. Since the i-th row of A(f) consists of
the coefficients of (¢'~16), this means that > ", b*t*"'6 is a polynomial. Therefore 6 is
rational (this argument appears in [Har21, p.438]).

Remark 3.3. If 6 € F, (1)) is rational, i.e. 6 € F,(t), then there exists an m for which

12
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3.3 Main Proposition

The following proposition is the key ingredient of the proofs of our main results. To
prove it, we make use of the indices constructed in Section 3.2. In fact, the construction
of the indices serves as a way to bypass the fact that the matrices Alm,m| are not
necessarily invertible.

Proposition 3.4. For any 0 € I, ((%)), ¢ > 0 consider the indices sequences Ly, Jy
constructed in Section 3.2. Let I'y be the set of v € I, ((%)) such that for any m > 0
and 0 < j < Jms1, the equation

Alip, jl-n=m, (7) (23)
has no solutions. Then
1log 5
dimI, >1-— - ey
{ logq

Proof. Let Cy = {I}. For m > 0, assume that C,, is already defined. By definition,
rank(Alip, 7]) < i, — 1 for every j < ju1. Moreover, for every j < j' we have

{beFr : b Ali,j] =0} C{beF, : b Afiy, 5] =0"}.
Hence, there exists 0 # b, € Fim such that
(b)" - Alim, j] = 0,
for all j < juy1. Define:

Cony1 = U {m; (v):vem, (C), (by)-v#0}.

ceCm

Note that C,,41 is a set of sets. Finally, define
m=0 CECm

Let y € Cx. For m > 0 and 0 < 7 < j,,r1 we have that

(by)" - Alipn, j] = 0" and (b,,)" - m;, (v) # 0.

Therefore, there are no solutions to (23), and hence v € T',.

Claim 2: dim (Cu) > 1 — 12621
If jinq1 # oo for all m > 0, then Ci is a ((g™ 1), (g ~"m-171)" ) Cantor set.

Indeed, for every m > 0, recall that rank(Al[i,,_1, jm]) = @m—1, and hence, at least one



66

of the last ¢,, —i,,—1 coefficients of b,, is non zero. Therefore, for every v € F, ((%)) for
which 7; ! (m;,_, (7)) € Cp, there are exactly ¢'™~m=1~1 vectors u € Fim~m=1 for which

mwﬁ(ﬁwlﬁ))—o

u

Applying Lemma 3.2(2) m — 1 times, yields 4,,_1 > m/. Since ka:_ol I — k1 = b1,
it follows by Theorem 2.2 that
_q_ _9_
m+1logq_1 >1 110gq_1

dim (Cse) > 1 — i : _ - ,
i (Ceo) 21—l 5 Sopg 21T ogg

If there exists m > 0 for which j,,,1 = 0o, then C, is a non empty union of cylinders
of length i,,, and therefore has a positive measure, thus Hausdorff dimension one.  [J

3.4 The One Dimensional Case - Results

This section is devoted for the statements and proofs of Theorems 1.10 and 1.11 in the
one dimensional case.

Theorem 3.5. For every 6 € F, ((1)), dim (BAg) = 1.

Proof. Fix any ¢ > 0. Consider the sequences Z;, J; of indices from Section 3.2, and the
set I'y from Proposition 3.4. Assume v € I[',. By Proposition 3.4, for all m > 0 and
0 < j < Jms+1, there are no non zero solutions to (23). For any h € N, let m be such
that j,, < h+1 < jme1. In particular,

Alip, h+1] -n=m; (7), (24)

has no non zero solutions. Using Lemma 3.2(1), we get iy, < J +¢ < h+ 1+ L.
Therefore, the equation

Alh+ 146 h+1]-n=m100(7),

has no non zero solutions, as it is obtained from (24) by increasing the number of
equations. By (20), we get that

[N|- (NG —7)| =g~

for any 0 # N € F, [t]. Therefore, I'y C BAy. We apply Proposition 3.4 to bound the
dimension of BAy from below:

1log 5
dim BA@ Z dim (Fg) Z 1—- 1 .
? logq
Since the above holds for all £ > 0, and since 1 — %1015(;) § ﬁ 1, we conclude that
—00
dim (BAy) = 1. m
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Proposition 3.6. For every 6 € F, ((%)) one has that c(0) > ¢~2.

Proof. The proof of Theorem 3.5 shows that any v € I'; satisfies ¢(6,7) > ¢~2. Propo-
sition 3.4 implies dim (T';) > 0, hence in particular T'y # &. Therefore, c(§) > ¢ 2. O

We now give a property of the elements 6 € F, ((1)) for which ¢(6) > ¢~

Proposition 3.7. If ¢c(0) > ¢! then there exists mo € NU {oo} such that
Alm,m] is invertible exactly for 0 < m < my. (25)

Proof. Assume that there is no mg satisfying (25). Therefore, there are 0 < my; < mg <
oo such that A[m,m;] is not invertible and A[mg, ms| is invertible. By assumption,
there exists v such that

IN|- (N0 =) < ¢~ (26)

has no solutions 0 # N in [, [t]. By (20) with ¢ =0,
A[m,m|-n=m,(y) (27)

has no solutions 0 # n € F* for any m > 0 with n,, # 0. Therefore, there are
no non zero solutions to (27). In particular, A[mg, my] - n = m,,,(7) has no non zero
solutions n € Fy"2. However, A[my, my] is invertible, so we must have 7,,,(v) = 0. Since
my < mgy, we have 1, (7) = 0. Now, A[mq, m;] is non-invertible, therefore, the equation
A[my,mq] - T, (n) = 0 has non zero solutions, contradicting (27) for m;. O

Remark 3.8. In the extreme cases my = 1 and my = oo, the other implication also
holds. To see this, note that if det (A[m, m]) = 0 for all m > 0 then we must have 6 = 0.
Indeed, for any m > 0, assume that §; = ... = 6,,_; = 0. Then A[m, m| have 6,, on the
anti diagonal, and zeroes above it. Therefore, 0 = det (Alm,m]) = (6,,)™, so 6,, = 0.
For 6 = 0, any v # 0 does not have solutions for (27). If my = oo, choose v = 0. Since
A[m,m] is invertible for every m, the only solution to (27) is n = 0.

As a corollary of Propositions 3.6 and 3.7, we get:
Theorem 3.9. ¢ = ¢ 2.

Proof. One only needs to make sure that there exists § such that c() = ¢~2. It is enough
to find € which does not satisfy the conclusion of Proposition 3.7. Any 6 with ¢, = 0
and 0y # 0 works. O

We complete the discussion on the one dimensional case by showing that replacing
the inf by liminf in the definition of ¢(f, ) does not change the value of the constant:

Proposition 3.10. Let 6 € F, ((%)) . If e(0) =

sup, liminf {|N[[(N6 — )| : 0# N € F,[t]} > ¢! then there exists mg € N U {oo}
such that Alm,m| is either invertible for all m > mg or non invertible for all m > my.

15
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Proof. The proof here is similar to the proof of Theorem 3.7. Assume that there are
infinitely many pairs 0 < m; < mgy for which A [my, m,] is non invertible and A [mg, ms)
is invertible. This implies that (26) has infinitely many non zero solutions, hence, ¢ (0) <
¢~', which contradicts the assumptions of the proposition. O
Theorem 3.11. & = infy ¢ () = ¢ 2

Proof. By definition we have ¢ < ¢, so it is enough to find 0 for which ¢(6) < ¢~2. Define
0 by 0,,, =1 for the sequence my, = 2" —2 k =1,2,..., and 6,, = 0 for every other
m € N\ {my : k€ N}. For this § we have that Almy,my| is invertible because the
anti diagonal is full with ones, and below the anti diagonal there are only zeros. On the
other hand, A[my + 1, my + 1] is non invertible since the last row and column are zero.
Hence, by Proposition 3.10, ¢(6) < ¢—2. O

4 The General Case

We now turn to prove Theorems 1.10 and 1.11. To this end, we need to further generalize
our indices construction. Fix a generalized weight g, a vector 8 € IF, ((%))d and ¢ > 0,
and define the matrices

TR
1' 1
N O0ri Oorcires
NFE (29
d' d :
Ui O+

We construct the set of indices Zg ¢, Jg¢ the same way as in the one dimensional case.
This construction has the same properties as summarized in Lemma 3.2, as one can
prove by repeating the proof of Lemma 3.2 verbatim. The same argument works since
the rank is independent of the order of the rows.

Define the set

1) \* 9°(deg N+1+0)
BAe(g’@:{%FQ((z)) ©inf max [N| e \<N95—vs>|21}'

N#£01<s<d

For every 1 < s < d, we have ¢g°(n+ 1) < ¢g°(n) + 1 for all n. It follows that
BAg(g.0) C BAg (g). (29)

Note that for any polynomial N of degN = h, and every ¢ > 0, one has:

+ +0)
mMaxi<s<g |N| [(NO* — %) <1 <—

(30)
Ah+1+0h+1n=mg(v),
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where n is the coefficients vector of the polynomial N. This is the higher dimensional
version of (20). The next proposition is the higher dimensional version of Proposition
3.4, and the idea of the proof is the same. Therefore, we will mainly emphasize the
differences in the proof.

Proposition 4.1. Assume 68 € F, ((%))d, a generalized weight g, and ¢ > 0. Define
d

Lo (g, () as the set of all v € F, ((%)) such that for any m € N and 0 < j < ja1, the
equation

Alim, jIn = mg(i,,) () (31)
has no solutions n € ). Then g (g, () # @. Moreover, if

min g (4,,) — 00 (32)
m—0o0

then

1 log %
dim (Cy) > d — limsup 'm—i—. a1
m—oo MINg(iym_1) loggq

(33)

Proof. Let Cy = {]d}. In the same way as is in the proof of Proposition 3.4 define for
each m > 1 the sets C,,, vectors b,,, € ]Fzm and the set C.., but using the matrices (28),
and projections mg(;) instead of ;.

Claim 1: Cx CTg(g,0).
The argument is the same as in Proposition 3.4, but with the two aforementioned
changes.

o0

Claim 2: If jpn41 # oo for all m, then CL, is a ((qg(im)_g(imfl))mzo , (g im0
Cantor set.

An analysis like the one in Proposition 3.4 gives, that for each m > 0, and for each
C € Cy, there are exactly ¢ "=~ vectors v € mg(,)(C), for which (b,,)" - v = 0.

From the construction of C,,,, from C,,, we get the desired.

Claim 3: Tg(g,l) # @.
If ja1 # oo for all m, it follows since Cantor sets are non empty, that Cy, # @, and
hence I'g (g,0) # @.

If there exists m > 0 for which j7,,.1 = oo, then Cy is a non empty union of cylinders
of length g(i,,). Therefore it is non empty.

Claim 4: If
min g (i,,) — 0,

m—o0

then

1 log %5
dim (Cy) > d — limsup m.—l— o L
m—00 g(lm—l) lqu

If jni1 # oo for all m, then since ZZL:_OI g(ix) — g(ik—1) = g(im-1), the result follows
from Theorem 2.2.
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If there exists m > 0 for which j,,.1 = oo, then C,, has positive measure, and hence
dimension d. O

Proof of Theorem 1.10. Recall that we want to show that dim (BAy(g)) =d. Let £ >0
be any integer. By imitating the proof of Theorem 3.5, we get that I'g (g, ¢) C BAg (g, /).
By Proposition 4.1, we get T'g (g, ¢) # @&, and hence, BAg (g,¢) # @. To conclude the
second part of the theorem, we assume that (14) holds. Therefore, there exists r > 0
such that ming(h) > rh for all h. By applying Lemma 3.2(2) m times we see that for
every m > 0, i, > (m+1)¢. By the monotonicity of ¢° for all 1 < s < d, we thus obtain
that
min g (4,,) > ming ((m+ 1)¢) > r(m + 1){ —— 0.

m—00
Hence, condition (32) is satisfied. As a consequence of Proposition 4.1, the inequality
(33) also holds.
Finally,
dim BAg (g, ¢) > dim (I'g (g, ()
m+1 log qqu

> d — lim sup — y
m—oo MINEZ (Zm—l) Iqu
1

>d— —.

- rl

As ¢ > 0 is arbitrary, by (29) we get
dim BAg (g) = d.

]

Proof of Theorem 1.11. We want to show that ¢g = ¢~2. As in the proof of Propo-
sition 3.6, we note that I'g(g,1) is not empty. Therefore, ¢y (0) > g2 for every

0 cF, ((%))d To show equality, it is enough to find one 0 for which ¢g () = ¢ 2.
Let 1 < 51,59 < d be such that ¢°*(1) # 0 and ¢®(1) # ¢*2(2). If s; = sy, choose any
0 with 0] =0, 05' = 1 and 65" = 0. Otherwise, choose 6;' = 0, 65 = 1, ;> = 1 and
03 = 0. O
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