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Abstract

Second-order variational type equations for spatial point processes are estab-
lished. In case of log linear parametric models for pair correlation functions,
it is demonstrated that the variational equations can be applied to construct
estimating equations with closed form solutions for the parameter estimates.
This result is used to fit orthogonal series expansions of log pair correlation
functions of general form.
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1 Introduction

Spatial point processes are models for sets of random locations of possibly inter-
acting objects. Background on spatial point processes can be found in Møller and
Waagepetersen (2004), Illian et al. (2008) or Baddeley et al. (2015) which gives
both an accessible introduction as well as details on implementation in the R pack-
age spatstat. Moments of counts of objects for spatial point processes are typically
expressed in terms of so-called joint intensity functions or Papangelou conditional
intensity functions which are defined via the Campbell or Georgii-Nguyen-Zessin
equations (see the aforementioned references or the concise review of intensity func-
tions and Campbell formulae in Section 2). In this paper we consider a third type
of equation called variational equations.

A key feature of variational equations compared to Campbell and Georgii-Nguyen-
Zessin equations is that they are formulated in terms of the gradient of the log inten-
sity or conditional intensity function rather than the (conditional) intensity itself.
Variational equations were introduced for parameter estimation in Markov random
fields by Almeida et al. (1993). The authors suggested the terminology ‘variational’
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due to the analogy between the derivation of their estimating equation and the
variational Euler-Lagrange equations in partial differential equations. The resulting
equation consisted in an equilibrium equation involving the gradient of the log condi-
tional probability of the Markov random field. Later, Baddeley and Dereudre (2013)
obtained variational equations for Gibbs point processes and exploited them to infer
a log-linear parametric model of the conditional intensity function. Coeurjolly and
Møller (2014) established a first-order variational equation for general spatial point
processes and used it to estimate parameters in a log-linear parametric model for
the intensity function.

The first contribution of this paper is to establish second-order variational equa-
tions. The second-order properties of a spatial point process are characterized by the
so-called pair correlation function which is a normalized version of the second-order
joint intensity function. We assume that the pair correlation function is translation
invariant and also consider the case when it is isotropic. Since the new variational
equations are based on the gradient of the log pair correlation function, they take a
particularly simple form for pair correlation functions of log-linear form.

Our second contribution is to propose a new non-parametric estimator of the
pair correlation function. The classical approach is to use a kernel estimator, see
e.g. Møller and Waagepetersen (2004). More recently, Jalilian et al. (2019) inves-
tigated the estimation of the pair correlation function using an orthogonal series
expansion. In the setting of their simulation studies, the orthogonal series estimator
was shown to be more efficient than the standard kernel estimator. One drawback,
however, is that the orthogonal series estimator is not guaranteed to be non-negative.
We therefore propose to use our second-order variational equation to estimate coef-
ficients in an orthogonal series expansion of the log pair correlation function. This
ensures that the resulting pair correlation function estimator is non-negative. We
compare our new estimator with the previous ones in a simulation study and also
illustrate its use on real datasets.

2 Background and main results

2.1 Spatial point processes

Throughout this paper we let X be a spatial point process defined on Rd. That
is, X is a random subset of Rd with the property that the intersection of X with
any bounded subset of Rd is of finite cardinality. The joint intensity functions ρ(k),
k ≥ 1, are characterized (when they exist) by the Campbell formulae (equations)
(see e.g. Møller and Waagepetersen, 2004): for any h : (Rd)k → R+ (with R+ the
non-negative real numbers)

E
6=∑

u1,...,uk∈X
h(u1, . . . , uk)

=

∫
· · ·
∫
h(u1, . . . , uk)ρ

(k)(u1, . . . , uk)du1 . . . duk.

(2.1)
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More intuitively, for any pairwise distinct points u1, . . . , uk ∈ Rd,

ρ(k)(u1, . . . , uk)du1 · · · duk
is the probability that for each i = 1, . . . , k, X has a point in an infinitesimally small
region around ui with volume dui. The intensity function ρ corresponds to the case
k = 1, i.e. ρ = ρ(1). The pair correlation function is obtained by normalizing the
second-order joint intensity ρ(2):

g(u, v) =
ρ(2)(u, v)

ρ(u)ρ(v)
(2.2)

for pairwise distinct u, v and where g(u, v) is set to 0 if ρ(u) or ρ(v) is zero. Intuitively,
g(u, v) > 1 [g(u, v) < 1] means that presence of a point at u increases [decreases]
the probability of observing a further point at v and vice versa. We assume that X
is observed on some bounded domain W ⊂ Rd with volume |W | > 0 and without
loss of generality we assume that ρ(u) > 0 for all u ∈ W (otherwise we just replace
W by {u ∈ W | ρ(u) > 0} provided the latter set has positive volume).

We will always assume that X is second-order intensity reweighted stationary
(Baddeley et al., 2000), meaning that its pair correlation function g is invariant by
translations. We then, with an abuse of notation, write g(v − u) for g(u, v) for any
u, v ∈ Rd. We will also consider the case of an isotropic pair correlation function in
which case g(v − u) depends only on the distance ‖v − u‖.

For the presentation of the second-order variational type equation in the next
section some additional notation is needed. For a function h : Rd → R which is
differentiable on Rd, we denote by

∇h(w) =
{
∂h

∂w1

(w), . . . ,
∂h

∂wd
(w)

}>
, w ∈ Rd

the gradient vector with respect to the d coordinates. The inner product is denoted
by a ‘·’ and for h : Rd → Rd, a multivariate function such that each component is
differentiable on Rd, we define the divergence operator by

div h(w) =
d∑

i=1

∂hi
∂wi

(w).

2.2 Second-order variational equations

In this section, we present our new second-order variational equations. The proofs
of the results are given in the Appendices.

Theorem 2.1. Assume X is second-order intensity reweighted stationary. Let h :
Rd → Rd be a componentwise continuously differentiable function on Rd. Assume
that g is continuously differentiable on Rd, that ‖h‖‖∇g‖ ∈ L1(Rd), and that there
exists a sequence of increasing bounded domains (Bn)n≥1 such that Bn → Rd as
n→∞, with piecewise smooth boundary ∂Bn and such that

lim
n→∞

∫

∂Bn

g(w)h(w) · ν(dw) = 0 (2.3)
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where ν stands for the outer normal measure to ∂Bn. Then

E
{ 6=∑

u,v∈X∩W
e(u, v)∇ log g(v − u) · h(v − u)

}

− E
{ 6=∑

u,v∈X∩W
e(u, v) div h(v − u)

}
, (2.4)

where e : Rd×Rd → R+ denotes the function e(u, v) = {ρ(u)ρ(v)|W ∩Wv−u|}−1 for
any u, v ∈ Rd and where Ww denotes the domain W translated by w ∈ Rd.

We note that condition (2.3) is in particular satisfied if the function h is com-
pactly supported.

We next consider the case where the pair correlation function is isotropic, i.e. for
any u, v ∈ Rd there exists g0 : R+ → R+ such that g(u, v) = g(v− u) = g0(‖v− u‖).

Theorem 2.2. Assume X is second-order intensity reweighted stationary with iso-
tropic pair correlation function g0. Let h : R+ → R be continuously differentiable on
R+. Assume that g0 is continuously differentiable on R+ and that either

t 7→ h(t)g′0(t) ∈ L1(R+)

and lim
n→∞
{g0(n)h(n)− g0(0)h(0)} = 0

(2.5)

or
t 7→ td−1h(t)g′0(t) ∈ L1(R+)

and lim
n→∞
{nd−1g0(n)h(n)− g0(0)h(0)1(d = 1)} = 0.

(2.6)

Then we have the two following cases. If (2.5) is assumed,

E
{ 6=∑

u,v∈X∩W

e(u, v)

‖v − u‖d−1h(‖v − u‖)(log g0)
′(‖v − u‖)

}

= −E
{ 6=∑

u,v∈X∩W

e(u, v)

‖v − u‖d−1h
′(‖v − u‖)

}
, (2.7)

where e(u, v) = {ρ(u)ρ(v)|W ∩ Wv−u|}−1 for any u, v ∈ Rd. Instead, if (2.6) is
assumed,

E
{ 6=∑

u,v∈X∩W
e(u, v)h(‖v − u‖)(log g0)′(‖v − u‖)

}

= −E
[ 6=∑

u,v∈X∩W
e(u, v)

{
(d− 1)

h(‖v − u‖)
‖v − u‖ + h′(‖v − u‖)

}]
. (2.8)

We stress that the derivatives involved in Theorem 2.2 are derivatives with re-
spect to t ≥ 0. Like for Theorem 2.1, conditions (2.5) and (2.6) are in particular
satisfied if h is compactly supported in (0,∞).
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2.3 Sensitivity matrix

In the next section we use empirical versions of (2.7) and (2.8) to construct esti-
mating functions for a parametric model of an isotropic pair correlation function g0
depending on a K-dimensional parameter β, K ≥ 1. We here investigate the ex-
pression for the associated sensitivity matrices.

Consider functions h1, . . . , hK all fulfilling (2.5) and possibly depending on β.
By stacking the K equations obtained by applying these functions for h1, . . . , hK in
(2.7) we obtain the estimating function

6=∑

u,v∈X∩W

e(u, v)

‖v − u‖d−1h(‖v − u‖)(log g0)
′(‖v − u‖)

+

6=∑

u,v∈X∩W

e(u, v)

‖v − u‖d−1h
′(‖v − u‖)

(2.9)

where h and h′ are vector functions with components hi and h′i. The sensitivity
matrix is obtained as the expectation of the negated derivative (with respect to β)
of (2.9). After applying (2.7) once again after differentiation we obtain the sensitivity
matrix

S(β) = −E
6=∑

u,v∈X∩W

e(u, v)

‖v − u‖d−1h(‖v − u‖)
d

dβ>
(log g0)

′(‖v − u‖).

Applying the Campbell theorem and converting to polar coordinates, we obtain

S(β) = −ςd
∫ ∞

0

h(t)

[
d

dβ>
(log g0)

′(t)

]
g0(t)dt,

where ςd is the surface area of the d-dimensional unit ball. In case of (2.8) we obtain
a similar expression,

S(β) = −ςd
∫ ∞

0

h(t)

[
d

dβ>
(log g0)

′(t)

]
g0(t)t

d−1dt.

By choosing h(t) = −ψ(t) d
dβ
(log g0)

′(t) for some real function ψ, S(β) becomes at
least positive semi-definite.

3 Estimation of log linear pair correlation function

We now consider the estimation of an isotropic pair correlation function of the form

log g0(t) = β>r(t) = β> {r1(t), . . . , rK(t)}> (3.1)

where the functions rk : R+ → R, k = 1, . . . , K are known. Following Section 2.3,
the idea is to apply Theorem 2.2 K times to functions hi, i = 1, . . . , K, of the form
hi(t) = −ψ(t) ∂

∂βi
(log go)

′(t) = −ψ(t)r′i(t) where the function ψ : R+ → R will be
justified and specified later. It is then remarkable that we obtain a simple estimating
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equation of the form Aβ+ b = 0. The sensitivity matrix discussed in Section 2.3 is
S(β) = −EA. Provided A is invertible we obtain the explicit solution

β̂ = −A−1b. (3.2)

The matrix A and the vector b are specified in the following corollary.

Corollary 3.1. Let ψ : R+ → R. Assume that ψ and rk (k = 1, . . . , K) are re-
spectively continuously differentiable and twice continuously differentiable on R+.
Assume either that

t 7→ ‖r′(t)‖2ψ(t) ∈ L1(Rd)

and lim
n→∞

ψ(n)r(n)>r′(n)− ψ(0)r(0)>r′(0) = 0
(3.3)

or
t 7→ td−1‖r′(t)‖2ψ(t) ∈ L1(Rd)

and lim
n→∞

nd−1ψ(n)r(n)>r′(n)− ψ(0)r(0)>r′(0)1(d = 1) = 0.
(3.4)

If (3.3) is assumed, we define the (K,K) matrix A and the vector b ∈ RK by

A =

6=∑

u,v∈X∩W

e(u, v)

‖v − u‖d−1ψ(‖v − u‖)r
′(‖v − u‖){r′(‖v − u‖)}> (3.5)

b =

6=∑

u,v∈X∩W

e(u, v)

‖v − u‖d−1 {ψ
′(‖v − u‖)r′(‖v − u‖) + ψ(‖v − u‖)r′′(‖v − u‖)} (3.6)

where again the edge effect factor is e(u, v) = {ρ(u)ρ(v)|W ∩ Wv−u|}−1 for any
u, v ∈ Rd. Instead, in case of (3.4), we define

A =

6=∑

u,v∈X∩W
e(u, v)ψ(‖v − u‖)r′(‖v − u‖){r′(‖v − u‖)}> (3.7)

b =

6=∑

u,v∈X∩W
e(u, v)

{
(d− 1)

ψ(‖v − u‖)r′(‖v − u‖)
‖v − u‖

+ ψ′(‖v − u‖)r′(‖v − u‖) + ψ(‖v − u‖)r′′(‖v − u‖)
}

(3.8)

Then, the equation
Aβ + b = 0 (3.9)

is an unbiased estimating equation.

Proof. The proof consists in applying Theorem 2.2 with h(t) = −ψ(t)r′k(t) for k =
1, . . . , K and in noticing that (log g0)′(t) = β>r′(t) = r′(t)>β.

We note that if ψ is compactly supported in [0,∞), then (3.3) or (3.4) are
always valid assumptions. Another special case is also interesting: let d > 1 and
ψ = 1, then (3.4) is true if for any k, l = 1, . . . , K, t 7→ td−1r′k(t)

2 ∈ L1(Rd) and
limn→∞ nd−1rk(n)r′l(n) = 0. This simple condition is for instance satisfied if the rk’s’
are exponential covariance functions.
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The results above are e.g. applicable to the case of a pair correlation function
for a log Gaussian Cox process with covariance function given by a sum of known
correlation functions scaled by unknown variance parameters. Assuming a known
correlation function is on the other hand quite restrictive. However, any log pair
correlation function can be approximated well on a finite interval using a suitable
basis function expansion so that we can effectively represent it as a log linear model.
We exploit this in Section 4 where we consider the case where the functions rk are
basis functions on a bounded real interval.

Remark 3.2. In the more general case of a translation invariant pair correlation
function of log linear form

log g(w) =
K∑

k=1

βkrk(w) = β>r(w) (3.10)

where rk(w), k = 1, . . . , K, are K known functions assumed to be continuously
differentiable on Rd, we can also obtain an estimating equation of the form (3.9)
using Theorem 2.1 instead of Theorem 2.2. We omit the details.

Remark 3.3. In applications of (3.5)–(3.6) for d = 2 or (3.7)–(3.8) for d ≥ 1 the
division by ‖v−u‖d−1 or ‖v−u‖ may lead to numerical instability for pairs of close
points u and v. This can be mitigated by a proper choice of the function ψ. In the
spatial case of d = 2 we propose to define ψ(t) = (t/b)2(1 − (t/b))2 1(t ∈ [0, b]) for
some b > 0. With this choice of ψ the divisors ‖v − u‖d−1 = ‖v − u‖ cancel out
preventing very large or infinite variances of (3.5)–(3.8).

Remark 3.4. The quantities (3.5)–(3.8) depend on the unknown intensity function. If
the intensity function is constant equal to ρ > 0 we can multiply (3.9) by ρ2 whereby
the resulting estimating equation no longer depends on ρ. Thus g0 can be estimated
without estimating ρ. Otherwise, the intensity function has to be estimated first, for
instance in a parametric way, see Guan et al. (2015), and plugged into (3.5)–(3.8).

4 Variational orthogonal series estimation of the
pair correlation function

In this section we consider the estimation of an isotropic pair correlation function
g0 on a bounded interval [rmin, rmin + R], 0 ≤ rmin < ∞ and 0 < R < ∞, using a
series expansion of log g0. Let {φk}k≥1 denote an orthonormal basis of functions on
[0, R] with respect to some weight function w(·) ≥ 0, i.e.

∫ R
0
φk(t)φl(t)w(t)dt = δkl.

Provided log g0 is square integrable (with respect to w( · )) on [rmin, rmin + R], we
have the expansion

log g0(t) =
∞∑

k=1

βkφk(t− rmin) (4.1)

where the coefficients βk are defined by βk =
∫ R
0
g0(t+ rmin)φk(t)w(t)dt.

We propose to approximate log g0 by truncating the infinite sum up to some
K ≥ 1 and obtain estimates β̂1, . . . , β̂K using (3.9). The resulting estimate thus

7



becomes

̂log g0,K(t) =
K∑

k=1

β̂kφk(t− rmin).

In the sequel this estimator is referred to as the variational (orthogonal series) esti-
mator (VSE for short). The approach is related to Zhao (2018) who also considers
an estimating equation approach to estimate a pair correlation function of the form
(4.1) but for a number m > 1 of independent point processes on R. The approach
in Zhao (2018) further does not yield closed form expressions for the estimates of
the coefficients.

Orthogonal series estimators have already been considered by Jalilian et al.
(2019) who expand g0 − 1 instead of log g0. They propose very simple unbiased
estimators of the coefficients but the resulting estimator of g0, referred to as the
OSE in the sequel, is not guaranteed to be non-negative.

4.1 Implementation of the VSE

Examples of orthogonal bases include the cosine basis with w(r) = 1, φ1(r) = 1/
√
R

and φk(r) = (2/R)1/2 cos{(k − 1)πr/R}, k ≥ 2. Another example is the Fourier-
Bessel basis with w(r) = rd−1 and

φk(r) =
21/2

RJν+1(αν,k)
Jν(rαν,k/R)r

−ν , k ≥ 1,

where ν = (d−2)/2, Jν is the Bessel function of the first kind of order ν and {αν,k}∞k=1

is the sequence of successive positive roots of Jν(r). In the context of the variational
equation (3.9) we need that the basis functions φk have non-zero derivatives in order
to estimate βk. This is not the case for φ1 of the cosine basis. We therefore consider
in the following the Fourier-Bessel basis.

Let bk = 1[k ≤ K], k ≥ 1. The mean integrated squared error (MISE) for log g0
of the VSE over the interval [rmin, R + rmin] is

mise( ̂log g0,K) = ςd

∫ rmin+R

rmin

E{ ̂log g0,K(r)− log g0,K(r)}2w(r − rmin)dr (4.2)

= ςd

∞∑

k=1

E(bkβ̂k − βk)2 = ςd

∞∑

k=1

[
b2kE{β̂2

k} − 2bkβkEβ̂k + β2
k

]
.

Jalilian et al. (2019) chose K by minimizing an estimate of the MISE for g0. We
have, however, not been able to construct a useful estimate of (4.2). Instead we
choose K by maximizing a composite likelihood cross-validation criterion

CV(K) =

6=∑

u,v∈X∩W :
rmin≤‖u−v‖≤rmin+R

log[ρ(u)ρ(v) exp[ ̂log g0,K−{u,v}(‖v − u‖)]

−
6=∑

u,v∈X∩W :
rmin≤‖u−v‖≤rmin+R

log

∫

W 2

1[rmin ≤ ‖u− v‖ ≤ rmin +R]ρ(u)ρ(v)

× exp[ ̂log g0,K(‖v − u‖)]dudv
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where ̂log g0,K−{u,v} is the estimate of log g0 obtained using all pairs of points in X
except (u, v) and (v, u). This is a simplified version of the cross-validation criterion
introduced by Guan (2007a) in the context of non-parametric kernel estimation of
the pair correlation function.

For computational simplicity and to guard against overfitting we choose inspired
by Jalilian et al. (2019) the first local maximum of CV(K) larger than or equal to
two rather than looking for a global maximum. Note that when A and b in (3.9)
have been obtained for one value of K, then we obtain the A and b for K+1 by just
adding one new row/column to the previous A and one new entry to the previous b.

4.2 Simulation study

We study the performance of our variational estimator using simulations of point
processes with constant intensity 200 on W = [0, 1]2 or W = [0, 2]2. We consider the
case of a Poisson process for which the pair correlation function is constant equal
to one, a Thomas process (parent intensity κ = 25, dispersal standard deviation
ω = 0.0198 and offspring intensity µ = 8), a variance Gamma cluster process (par-
ent intensity κ = 25, shape parameter ν = −1/4, dispersion parameter ω = 0.01845
and offspring intensity µ = 8), and a determinantal point process (DPP) with ex-
ponential kernel K(r) = exp(−r/α) and α = 0.039. The pair correlation functions
for the four point process models are shown in Figures 2 and 3 in the usual scale as
well as in the log scale. The Thomas and variance Gamma processes are clustered
with pair correlation functions bigger than one while the DPP is repulsive with pair
correlation function less than one. In all cases we consider R = 0.125 and we let
rmin = 0 for Poisson, Thomas, and variance Gamma. For the DPP the log pair cor-
relation function is not well-defined for r = 0 and we therefore use rmin = 0.01 in
case of the DPP. We use (3.5) and (3.6) for computing A and b and referring to
Remark 3.3 we let b = rmin+R. For each point process we generate 500 simulations.

4.2.1 Estimates of coefficients

Equations (3.5) and (3.6) are derived from (2.7) in which g0 is the true pair cor-
relation function. In practice, when considering a truncated version of (4.1), the
estimating equation (3.9) is not unbiased which results in bias of the coefficient esti-
mates. This is exemplified in case of the Thomas process in the left plot of Figure 1
which shows boxplots of the first two coefficient estimates when (4.1) is truncated to
K = 2. In the right plot, (4.1) is truncated to K = 8 which means that the truncated
version of (4.1) is very close to the Thomas pair correlation function. Accordingly,
the bias of the estimates is much reduced. However, the estimation variance increases
when K is increased. This emphasizes the importance of selecting an appropriate
trade-off between bias an variance. The plots in Figure 1 also show how the variance
of the coefficient estimates decreases when the observation window W is increased
from [0, 1]2 to [0, 2]2.
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Figure 1: Estimates of the first K coefficients when (4.1) is truncated to K = 2 (left)
or K = 8 (right) in case of the Thomas process. White points correspond to the true
coefficient values. Observation window is either W = [0, 1]2 or W = [0, 2]2.

4.2.2 Comparison of estimators

In addition to our new VSE, we also for each simulation consider the OSE proposed
by Jalilian et al. (2019) (using the Fourier-Bessel basis and their so-called simple
smoothing scheme) and a standard non-parametric kernel density estimate (KDE)
with bandwidth chosen by cross-validation (Guan, 2007b; Jalilian and Waagepeter-
sen, 2018). Figures 2 and 3 depict means of the simulated OSE and VSE estimates
of g0 and log g0 as well as 95% pointwise envelopes. The variational estimator has
larger variability whereas the bias can be smaller or larger than the OSE depending
on the model.

Table 1 summarizes the root MISE (square root of (4.2)) for the three estimators
across the four models.

The root MISEs are larger for the variational estimator than for the OSE and
the KDE except in the Poisson case where the KDE has larger MISE than the VSE.
Table 1 also reports the average of the selected K for the variational estimator and
the OSE. The averages of the selected K’s are pretty similar for the Poisson and
DPP models while the OSE tends to select higher K than the variational method
for the Thomas and variance Gamma point processes.

We have also compared the computing time to evaluate the OSE and VSE. The
OSE is generally cheaper except when the number of points and R are large, see
also the case of Capparis in Section 4.3.
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Figure 2: Mean VSE (red curves) and OSE (blue curves) of g0 (first column) and log g0
(right column) for Poisson (first row) and Thomas (second row) point processes with W =
[0, 2]2. In each plot, the dashed black curve is the true pair correlation or log pair correlation
function. The envelopes represent pointwise 95% probability intervals for the estimates.
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Figure 3: Mean VSE (red curves) and OSE (blue curves) of g0 (first column) and log g0
(right column) for variance gamma (first row) and determinantal (second row, rmin =
0.01) point processes with W = [0, 2]2. In each plot, the dashed black curve is the true
pair correlation or log pair correlation function. The envelopes represent pointwise 95%
probability intervals for the estimates.

Table 1: Square-root of the MISE for different estimates of log g0, observation windows
and models. The figures between brackets correspond to the average of the selected Ks.
The NA’s are due to occurrence of non-positive estimates. (?: in this setting one replication
produced an outlier and is omitted in the root MISE estimation)

Window OSE VSE KDE

Poisson [0, 1]2 0.027 (2.1) 0.051 (2.2) 0.093
[0, 2]2 0.012 (2.0) 0.024 (2.2) 0.037

Thomas [0, 1]2 0.0995 (3.7) 0.1418? (2.7) 0.111
[0, 2]2 0.044 (4.2) 0.063 (2.9) 0.053

Variance Gamma [0, 1]2 0.099 (6.5) 0.148 (3.8) 0.110
[0, 2]2 0.050 (9.6) 0.072 (5.3) 0.057

DPP [0, 1]2 NA (3) 0.1622 (3.6) NA
[0, 2]2 NA (4.1) 0.1582 (5.2) NA
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4.3 Data example

We apply the three estimators to the data example considered in Jalilian et al.
(2019). That is, we consider point patterns of locations of Acalypha diversifolia
(528 trees), Lonchocarpus heptaphyllus (836 trees) and Capparis frondosa (3299
trees) species in the 1995 census for the 1000m× 500m Barro Colorado Island
plot (Hubbell and Foster, 1983; Condit et al., 1996; Condit, 1998). The intensity
functions for the point patterns are estimated as in Jalilian et al. (2019) using log-
linear regression models depending on various soil and topographical variables. The
estimated pair correlation functions are shown in Figure 4.
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Figure 4: Estimates of g0 for the three species Acalypha (left), Capparis (middle) and
Lonchocarpus (right).

In case of Capparis and Lonchocarpus, VSE and OSE are quite similar while the
kernel estimate is markedly different from the other estimates for small lags. For
Acalypha, all estimates differ for small lags. The three estimates are very similar for
large spatial lags for all species. The selected number K for the VSE are 3, 9 and 5
for Acalypha, Capparis, and Lonchocarpus, while OSE selects K = 7 for all species.
In the case of Capparis, the computation time (4200 seconds) is higher for the OSE
than for the VSE (1244 seconds) due to the high number of points for this species.

5 Discussion

In this paper we derive variational equations based on second order properties of a
spatial point process. It is remarkable that in case of log-linear parametric models
for the pair correlation function, it is possible to derive variational estimating equa-
tions which have closed form solutions for the unknown parameters. We exploit this
to construct new variational orthogonal series type estimators for the pair correla-
tion function. In contrast to previous kernel and orthogonal series estimators, our
new estimate is guaranteed to be non-negative. For large data sets, the new estima-
tor is further computationally faster than the previous orthogonal series estimate.
However, in terms of accuracy as measured by MISE, the new estimator does not
outperform the previous estimators. In the data example, the new estimator and the
OSE gave similar results.

We believe there is further scope for exploring variational equations. For instance,
one could use non-orthogonal bases for expanding the log pair correlation function

12



instead of the orthogonal Fourier-Bessel basis used in this work. One might e.g. in
future work consider so-called frames (Christensen, 2008) or spline bases.
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A Proof of Theorem 2.1

Proof. Using the Campbell theorem (2.1) and since ∇ log g = (∇g)/g, we start with

A := E
{ 6=∑

u,v∈X∩W
e(u, v)∇ log g(v − u) · h(v − u)

}

=

∫

W

∫

W

1

|W ∩Wv−u|
∇g(v − u) · h(v − u)
g(v − u)ρ(u)ρ(v) ρ(2)(u, v)dudv

=

∫

W

∫

W

∇g(v − u) · h(v − u)
|W ∩Wv−u|

dudv.

Using first the invariance by translation of h and ∇g, second Fubini’s theorem, and
third a change of variables, this reduces to

A =

∫

Rd

∇g(w) · h(w)dw.

By assumption, we have using the dominated convergence theorem,

A = lim
n→∞

An where An :=

∫

Bn

∇g(w) · h(w)dw.

We can now use the standard trace theorem (see e.g. Evans and Gariepy (1992))
and obtain

An = −
∫

Bn

g(w)(div h)(w)dw +

∫

∂Bn

g(w)h(w) · ν(dw).

From (2.3), we deduce from the dominated convergence theorem that

A = lim
n→∞

An = −
∫

Rd

g(w)(div h)(w)dw.

Finally, using successively a change of variable and the Campbell theorem we get

A = −
∫

W

∫

W

(div h)(v − u)
|W ∩Wv−u|

ρ(2)(u, v)

ρ(u)ρ(v)
dudv

= −E
{ 6=∑

u,v∈X∩W
e(u, v) (div h)(v − u)

}

which proves (2.4).

B Proof of Theorem 2.2

Proof. Both (2.7) and (2.8) are proved similarly. We focus only on (2.8) and follow
the proof of Theorem 2.1. Using the Campbell theorem (2.1), the fact (log g0)

′ =
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g′0/g0 and finally a change to polar coordinates, we have

A := E
{ 6=∑

u,v∈X∩W
e(u, v)(log g0)

′(‖v − u‖)h(‖v − u‖)
}

=

∫

W

∫

W

1

|W ∩Wv−u|
g′0(‖v − u‖)h(‖v − u‖)
g0(‖v − u‖)ρ(u)ρ(v)

ρ(2)(u, v)dudv

=

∫

W

∫

W

g′0(‖v − u‖)h(‖v − u‖)
|W ∩Wv−u|

dudv

=

∫

Rd

g′0(‖w‖)h(‖w‖)dw

= ςd

∫ ∞

0

td−1g′0(t)h(t)dt.

Using the dominated convergence theorem, partial integration and (2.6) we have
∫ ∞

0

td−1g′0(t)h(t)dt = lim
n→∞

∫ n

0

td−1g′0(t)h(t)dt

= − lim
n→∞

∫ n

0

td−1g0(t)

{
(d− 1)h(t)

t
+ h′(t)

}
dt

= −
∫ ∞

0

td−1g0(t)

{
(d− 1)h(t)

t
+ h′(t)

}
dt.

A change to polar coordinates and the Campbell theorem again lead to

A = −
∫

Rd

g0(‖w‖)
{
(d− 1)h(‖w‖)

‖w‖ + h′(‖w‖)
}
dw

= −
∫

W

∫

W

{
(d− 1)h(‖w‖)

‖w‖ + h′(‖w‖)
}

ρ(2)(u, v)

ρ(u)ρ(v)|W ∩Wv−u|
dudv

= −E
[ 6=∑

u,v∈X∩W
e(u, v)

{
(d− 1)

h(‖v − u‖)
‖v − u‖ + h′(‖v − u‖)

}]
.
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