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Abstract

Dendritic spines, which are small protrusions on the dendrites of a neuron, are
of interest in neuroscience as they are related to cognitive processes such as
learning and memory. We analyse the distribution of spine locations on six dif-
ferent dendrite trees from mouse neurons using point process theory for linear
networks. Besides some possible small-scale repulsion, we find that one of the
spine point pattern data sets may be described by an inhomogeneous Poisson
process model, while the other point pattern data sets exhibit clustering be-
tween spines at a larger scale. To model this we propose an inhomogeneous
Cox process model constructed by thinning a Poisson process on a linear net-
work with retention probabilities determined by a spatially correlated random
field. For model checking we consider network analogues of the empirical F -,
G-, and J-functions originally introduced for inhomogeneous point processes
on a Euclidean space. The fitted Cox process models seem to catch the clus-
tering of spine locations between spines, but also posses a large variance in the
number of points for some of the data sets causing large confidence regions for
the empirical F - and G-functions.

Keywords: Empirical summary functions; Linear networks; Random fields;
Thinned point process.

1 Introduction

Point patterns on linear networks arise in a broad range of fields, where the network
for example represents roads, a river network, or a dendrite tree. This paper focuses
on the latter type of data: the left panel in Figure 1 shows six linear networks each
representing a dendrite tree from a mouse neuron grown in vivo. On the dendrites
small protrusions called spines are found that among other things help transmitting
electrical signals to the soma. In neuroscience, the behaviour of spines are of interest
as changes can be linked to changes in cognitive processes. The spine locations can
be viewed as a point pattern on the dendrite tree and thus analysed using point
process theory for linear networks.

Over the last two decades, methods for analysing point patterns on linear net-
works have been developed. Particularly, a network analogue of Ripley’s K-function

1



was first presented in Okabe and Yamada (2001) and later modified and extended
to the inhomogeneous case in Ang et al. (2012). When defining the K-function,
Ang et al. (2012) required that the underlying point process model fulfils an invari-
ance property called second-order pseudo-stationarity (an analogue to second-order
intensity-reweighted stationarity as introduced in Baddeley et al., 2000). This prop-
erty is fulfilled whenever the pair correlation function is isotropic, i.e. when it only
depends on the shortest path distance. Baddeley et al. (2017) showed that certain
constructions, e.g. special types of Cox point processes that lead to point processes
in the Euclidean space with an isotropic pair correlation function rarely result in
second-order pseudo-stationary point processes when adapted to linear networks.
Even without the requirement of pseudo-stationarity, there are only a limited num-
ber of point process models available for linear networks. For point processes on
directed acyclic linear networks, Rasmussen and Christensen (2019) presented both
regular and clustered models defined by a generalisation of the conditional inten-
sity function for temporal point processes. Anderes et al. (2017) supplied a list of
valid isotropic covariance functions for connected linear networks that can be used
to construct Cox point processes, particularly log Gaussian Cox processes (LGCPs;
see also Møller et al., 1998).

Only few studies use point process theory to analyse the behaviour of spines:
treating the dendrite tree as a directed tree, Rasmussen and Christensen (2019)
analysed one of the six spine point pattern data sets (hereafter, the ‘spine data’)
from Figure 1. The distribution of spines (and their shape) have further been in-
vestigated using point process theory in Jammalamadaka et al. (2013) (testing a
homogeneous Poisson process model) and Baddeley et al. (2014) (using multitype
Poisson process models to account for the shape classification) for in vitro grown
neurons. Based on the network K-function, Jammalamadaka et al. (2013) concluded
that a homogeneous Poisson process model seems adequate to describe the spine lo-
cations. However, Jammalamadaka et al. (2013) also stated that their results for the
in vitro setting are unlikely to hold in an in vivo setting.

Instead of Poisson process models, this paper suggests a new class of Cox process
models on a linear network. Such a model applies for an undirected graph and is
not a LGCP, but its construction still exploits a Gaussian random field so that the
covariance functions from Anderes et al. (2017) become useful. Moreover, seemingly
for the first time in connection to point process model fitting on linear networks,
we demonstrate the use of minimum contrast and composite likelihood estimation
procedures. Finally, we introduce new empirical summary functions and demonstrate
their usefulness for model checking.

The paper is organised as follows. The spine data is described in more detail in
Section 2 along with the general notion of a linear network. In Section 3 we discuss
existing as well as our new summary functions for point processes on linear networks;
these are used for analysing the spine locations in Section 4. We initially suggest to
model the spine locations by an inhomogeneous Poisson process model in Section 4.1,
but due to clustering between spines we propose in Section 4.2 an inhomogeneous
Cox process model. Lastly, we discuss in Section 5 possible extensions and future
research directions.
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Figure 1: Spine data sets for dendrite 1 to 6 (from top to bottom), where each main
branch is coloured black and the side branches grey and the ◦ marks the vertex closest
to the dendrite’s attachment to soma. Left: projection of the original three-dimensional
network onto a plane. Middle: spine locations on the simplified networks embedded in R2

so that distances are preserved. Right: non-parametric kernel intensity estimates.
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2 Dendritic spine data

Figure 1 shows six examples of a linear network. Specifically, a linear network is
a union L =

⋃N
i=1 Li of a finite number N of line segments Li ⊂ Rd, d ≥ 2, with

finite length and intersecting only at the end points. A linear network may also be
viewed as a graph consisting of a set of vertices and a set of weighted edges, where
the edges coincide with the line segments L1, . . . , LN , the vertices correspond to the
end points of these line segments, and the weight of an edge is the length of the
corresponding line segment.

Throughout this paper the distance between two points u, v ∈ L is measured by
the shortest path distance and is denoted by dL(u, v). For the spine data, the linear
network L is a tree, meaning that there is only one path between any pair of points
in L. Naturally, in other applications more complicated networks than a tree occur
in which case we may need to take more care when choosing the distance metric dL
(see Section 5 for details).

The linear networks visualised in the left column of Figure 1 are approximations
of the underlying apical dendrite trees which were extracted from six different mouse
neurons grown in vivo. The vertices of each of the linear networks are described by
three-dimensional coordinates which represent a spine location or another point
chosen to obtain the approximation. To simplify each of the networks, for any pair
of edges meeting at a vertex with degree two, we replace the two edges and the
vertex with one single edge, and to preserve distances within the network, we let the
weight of the new edge be the sum of the two old edges. Note that this transformation
of the original linear network into a simpler one, relies on the fact that the linear
network forms a tree. Further, to utilise the functionalities of the R-package spatstat
(Baddeley et al., 2015), we embed the simplified network in R2 in a way that also
preserves distances. The simplified and embedded versions of the networks are shown
in the middle column of Figure 1 along with the spine locations. As the models and
tools we use in Section 4 to analyse the spine data do not directly depend on the
three-dimensional coordinates but on distances, we can without loss of information
consider the spine locations as a point pattern on the simplified and embedded
network.

The spine data origin from six neurons, with two neurons from each of three
different mice. The numbering of the dendrites is as follows: dendrite 1 and 2 come
from mouse no. 1; dendrite 4 and 5 from mouse no. 2; and dendrite 3 and 6 from
mouse no. 3.

For each dendrite tree, we talk about two subsets: the main branch and the side
branches. Main branch refers to the tree’s stem, while side branches constitute the
rest of the tree. Figure 1 shows which parts of the original trees and the simplified
embedded trees belong to the main branch and which to the side branches. In the
following, L = Lm ∪ Ls denotes the whole dendrite tree, where Lm is the main
branch, and Ls is the union of the side branches. Further, nm and ns denote the
number of spines on Lm and Ls, respectively. Lastly, we let |B| denote the size of
B ⊆ L or more precisely the total length of the (partial) line segments constituting
B ⊆ L; note that |L| = |Lm| + |Ls|. Table 1 summarises the number of spines and
sizes for each dendrite tree.
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Table 1: Number of spines, length, and intensity estimates for the main and side branches
separately.

Dendrite nm ns |Lm| |Ls| ρ̂m ρ̂s

1 51 72 212 µm 202 µm 0.240 0.356
2 36 145 204 µm 430 µm 0.176 0.337
3 69 63 211 µm 202 µm 0.328 0.312
4 33 308 225 µm 652 µm 0.134 0.477
5 34 83 286 µm 450 µm 0.119 0.184
6 30 62 178 µm 250 µm 0.168 0.248

3 Point processes on linear networks

The six spine point pattern data sets are modelled as realisations of six point pro-
cesses defined on the six dendrite trees. In general, by a point process X on a
linear network L we mean a random finite subset of L; we use this generic nota-
tion throughout this paper. In this section we consider summary functions useful
for analysing point processes on linear networks, including the introduction of new
empirical summary functions.

3.1 Summary functions for first and second-order moment
properties

We assume that X has intensity ρ, that is, for B ⊆ L,

En(X ∩B) =

∫

B

ρ(u) dLu <∞, (3.1)

where n(X ∩ B) is the number of points from X falling in B and dL denotes in-
tegration with respect to one-dimensional arc-length along L. Intuitively, ρ(u) dLu
is the probability of X having a point in an infinitesimal small subset of L that
contains u and has size dLu. If the intensity ρ(·) ≡ ρ is constant, we say that X is
homogeneous; otherwise X is said to be inhomogeneous. In case of homogeneity, ρ
is the expected number of points per unit length.

We also assume that X has pair correlation function g, that is, for disjoint
A,B ⊂ L,

E {n(X ∩ A)n(X ∩B)} =

∫

A

∫

B

g(u, v)ρ(u)ρ(v) dLu dLv <∞.

We can interpret g(u, v)ρ(u)ρ(v) dLu dLv as the joint probability that two infinites-
imal small regions around u and v of size dLu and dLu, respectively, each contains
a point from X.

If the pair correlation function only depends on the shortest path distance, we say
that it is isotropic and write g(u, v) = g0{dL(u, v)}. When X has an isotropic pair
correlation function, the (geometrically corrected network) K-function introduced
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by Ang et al. (2012) can be expressed as

K(r) =

∫ r

0

g0(s) ds, r ≥ 0. (3.2)

Alternatively, K(r) may be written as an expectation with respect to a Palm distri-
bution, see Ang et al. (2012, Theorem 3). If the K-function or the pair correlation
function is expressible on closed form, we can use a minimum contrast or composite
likelihood procedure to estimate the model parameters; this is described further in
Section 4.2.2.

The simplest point process model is a Poisson process, which is characterised
by that n(X) follows a Poisson distribution with mean given by (3.1) with B = L
and further that the points of X conditioned on n(X) are independent and identi-
cally distributed, with density proportional to ρ. For a Poisson process, g ≡ 1 and
K(r) = r.

3.2 New empirical summary functions

For estimating the pair correlation function and the K-function we follow Ang et al.
(2012). These empirical summary functions can be used in minimum contrast or
composite likelihood estimation procedures as well as for model checking. Obvi-
ously, if the K-function or pair correlation function have been used to fit the model,
neither should be used to check the adequacy of the model. Due to the shortage of
summary functions for point processes on linear networks, we may let a simple vi-
sual comparison of the observed point pattern and simulations from the fitted model
serve as a model check. It is needless to say that a more rigorous model checking
would be preferred.

Therefore, we now introduce three purely empirical summary functions. These
are obtained by modifying the empirical F -, G-, and J-functions for inhomogeneous
point patterns on a Euclidean space (introduced by van Lieshout, 2011) to linear
networks. The modification simply consists of replacing the Euclidean space with
the linear network, introducing the shortest path distance instead of the Euclidean
distance, and adapting the notion of an eroded set to linear networks. The functions
are then defined as follows. Assume that the intensity ρ is known or has been esti-
mated by ρ̂ and that ρ̄ = infu∈L ρ̃(u) > 0, where either ρ̃ = ρ or ρ̃ = ρ̂. For r ≥ 0,
let L	r consist of the points in L with distance greater than r to any vertex of L
with degree one. Furthermore, let H ⊂ L be a finite ‘lattice’. For an observed point
pattern X = x, the empirical summary functions F̂ , Ĝ, and Ĵ are then defined for
r ≥ 0 by

F̂ (r) = 1−
∑

v∈H∩L	r

∏
u∈x: dL(u,v)≤r

{
1− ρ̄

ρ̃(u)

}

#(H ∩ L	r)
, (3.3)

Ĝ(r) = 1−
∑

v∈x∩L	r

∏
u∈x\{v}: dL(u,v)≤r

{
1− ρ̄

ρ̃(u)

}

#(x ∩ L	r)
, (3.4)

Ĵ(r) =
1− Ĝ(r)

1− F̂ (r)
, (3.5)
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where we restrict attention to r-values small enough to ensure that #(H ∩L	r) > 0
for F̂ (r) and that F̂ (r) < 1 for Ĵ(r).

In Ang et al. (2012), the K-function and its empirical estimate include a factor
that corrects for the network geometry, such that its shape can be compared for
point patterns on different networks. As it was not obvious to us how to extend such
a correction to F̂ , Ĝ, and Ĵ in a meaningful way, our definitions in (3.3)–(3.5) do
not correct for the network geometry. Further, we do not have any theoretical coun-
terpart to F̂ , Ĝ, and Ĵ and therefore their shapes alone can in general not be used
to conclude anything about e.g. the presence of regularity or clustering. However, F̂ ,
Ĝ, and Ĵ are still useful tools for providing a so-called global rank envelope; this is a
confidence region for a given test function obtained from simulations under a fitted
model (for details, see Myllymäki et al., 2017). In a global rank envelope procedure,
the shape of the test function for the data is compared to that of the simulations
and Myllymäki et al. (2017) discussed how this provides a test and an interval with
lower and upper bounds given by a liberal and a conservative p-value, respectively.

4 Modelling spine locations

In this section each of the six data sets is analysed with the aim of finding a model
that adequately describe the spine locations.

4.1 Fitting a Poisson process model

The simplest model we can propose is a Poisson process. To investigate the behaviour
of the spine intensity, we calculated the non-parametric intensity estimate suggested
by McSwiggan et al. (2016); the resulting estimates are seen in the right panel of
Figure 1. The spine intensity tend to be higher on the side branches than on the
main branch, except perhaps for dendrite 3. Therefore, we allowed the intensity of
the Poisson process to be different on the main and side branches, that is, recalling
the notation in Section 2,

ρ(u) = ρI(u∈Lm)
m ρI(u∈Ls)

s , u ∈ L, (4.1)

for non-negative parameters ρm and ρs; here I(·) denotes the indicator function. The
maximum likelihood estimates of the intensity parameters are easily found and given
by

ρ̂m =
nm
|Lm|

, ρ̂s =
ns
|Ls|

, (4.2)

cf. the notation in Section 2. These estimates are shown in Table 1.
To test whether the proposed inhomogeneous Poisson process model adequately

describes the spine locations, we performed global rank envelope tests using K as
test function, cf. Section 3.2. Results from these tests are shown in Figure 2. For all
dendrites the conservative p-value is below 3%, suggesting that the fitted Poisson
process models do not describe the spine locations adequately. Specifically, the em-
pirical K-functions for dendrite 2, 4, 5, and 6 fall above the global rank envelopes
for certain r-values, indicating that the spines tend to cluster at these distances.
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Further, for all six spine data sets the empirical K-function falls below the global
rank envelope for small r-values, indicating a small-scale repulsion between spines.
For dendrite 1 and 3, this small-scale repulsion is the only deviation from the Pois-
son process model revealed by the global rank envelope test. Disregarding the small
distances (r < 1 µm) for the global rank envelope test with K as test function, does
not change the p-intervals significantly for dendrite 2, 4, 5, and 6. For dendrite 1 and
3 on the other hand, the p-intervals change from (0.024, 0.040) to (0.048, 0.060) and
from (0, 0.019) to (0.160, 0.168), respectively, giving (most clearly for dendrite 3) no
evidence against the proposed Poisson process model. Global rank envelopes with a
concatenation of F̂ , Ĝ, and Ĵ as test function, and where distances less than 1 µm
were disregarded, are shown in Figure C.1 in Appendix C; these do not provide any
evidence against the Poisson process model for dendrite 1 and 3 either.
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Figure 2: For each spine data set: the empirical K-function for the data minus the K-
function for a Poisson process (solid line) along with 95% global rank envelopes (grey
region) based on 2499 simulations from the fitted inhomogeneous Poisson process model;
p-intervals for each of the associated global rank envelope tests are also displayed.

As the physical scale of the spine data is quite small (the dendrites range in size
from 412 µm to 876 µm, cf. Table 1) and as there is uncertainty in the exact choice of
the point representing a spine’s location, we must expect some degree of imprecision
and therefore we may not want to put too much value into the observed small-scale
repulsion. In the following we will not take the small-scale repulsion into account
but rather focus on modelling the large scale clustering.
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4.2 Fitting a Cox process model

In addition to inhomogeneity in the location of spines, Figure 1 also shows a tendency
to large bare areas where no spines occur. To model this behaviour we considered
a point process model introduced by Lavancier and Møller (2016) for the Euclidean
space, which is easily adapted to a linear network L. The point process is constructed
as a thinning of a Poisson process Y on L with intensity function ρY , where the
retention probabilities are determined by a random field Π = {Π(u) : u ∈ L} that
may be spatially correlated. That is, the point process is given by X = {u ∈ Y :
Π(u) ≥ R(u)}, where R = {R(u) : u ∈ L} consist of independent uniform random
variables on [0, 1], and where Π and R are independent. Thus X is a Cox point
process driven by the random field Λ = {ρY (u)Π(u) : u ∈ L}. We let

Π(u) = exp
{
−σ

2

2

k∑

j=1

Z2
j (u)

}
, u ∈ L, (4.3)

where k ∈ {1, 2, . . . } and σ2 > 0 are parameters, and Z1, . . . , Zk are IID zero-
mean unit-variance Gaussian random fields with correlation function c. If c(u, v) =
c0{dL(u, v)} depends only on the shortest path distance, we say that c is isotropic; see
Anderes et al. (2017) for a list of isotropic correlation functions for linear networks.
For the spine data, we considered the exponential correlation function, that is,

c(u, v) = exp{−βdL(u, v)}, u, v ∈ L, (4.4)

which is a valid correlation function for any parameter value β > 0 and any tree
network but not necessarily for other kinds of linear networks (see Section 5 for a
comment on this).

We have that E Π(u) = (1 + σ2)−k/2 and

E {Π(u)Π(v)} = {(1 + σ2)2 − (σ2)2c(u, v)2}−k/2,

implying that X has intensity

ρ(u) = (1 + σ2)−k/2ρY (u), u ∈ L, (4.5)

and pair correlation function

g(u, v) =

{
(1 + σ2)2

(1 + σ2)2 − (σ2)2c(u, v)2

}k/2
, u, v ∈ L, u 6= v. (4.6)

If c is isotropic, then g is isotropic and the K-function can be expressed by (3.2).
Closed form expressions of the K-function are given in Appendix A for c equal to
the exponential correlation function and k = 1, . . . , 5.

Note that for each u ∈ L, σ2
∑k

j=1 Z
2
j (u) in (4.3) follows a σ2χ2-distribution with

k degrees of freedom. That is, the skewness decreases as k increases, while the range
is stretched/compressed depending on the value of σ2. The larger σ2 is, the more Y
is thinned to obtain X and also the more variation in the thinning probabilities. The
pair correlation function in (4.6) is an increasing function of both σ2 and k. When c is
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given by (4.4), β controls the correlation of the retention probabilities: the smaller β,
the longer range of correlation in Π and thus larger coherent bare/populated areas
in X. Finally, the pair correlation function decreases towards 1, when β increases.

For the spine data, we still want to model the intensity function by (4.1), which
by (4.5) requires Y to have a similar intensity structure, that is,

ρY (u) = ρ
I(u∈Lm)
Y,m ρ

I(u∈Ls)
Y,s , u ∈ L, (4.7)

for non-negative parameters ρY,m and ρY,s.

4.2.1 Simulation

To perform model checking with global rank envelopes or to carry out simulation
studies, we need to be able to simulate point patterns from the model of interest.
Fortunately, it is straightforward to simulate a point pattern on L from the proposed
Cox process model by the following three steps:

(a) Simulate a discretised version of the random field Π by first simulating the
independent Gaussian random fields Zj, j = 1, . . . , k, at chosen grid locations
along the network and then transforming the random fields according to (4.3)
to obtain the retention probabilities.

(b) Simulate a point pattern y from a Poisson process on L with intensity ρY .
(c) Thin y using the retention probabilities simulated in (a).

4.2.2 Estimation procedure

In the following we describe a procedure for estimating the model parameters of the
proposed Cox process model where. For specificity we consider the case where c is
given by (4.4) and where ρY is given by (4.7).

To begin we assume that k is known, whereas the remaining parameters are
estimated through a two-step procedure (Waagepetersen, 2007; Waagepetersen and
Guan, 2009). In short, we first estimate (ρm, ρs) and then plug in these estimates in a
second-order procedure where (σ2, β) is estimated. Lastly, an estimate of (ρY,m, ρY,s)
can be found by using (4.5).

First, to estimate (ρm, ρs) we use the first order composite likelihood (Waage-
petersen, 2007) which simply corresponds to a Poisson likelihood yielding the esti-
mates in (4.2).

Second, as we know explicit formulas for the pair correlation and K-function, we
can estimate (σ2, β) using a minimum contrast procedure (Guan, 2009; Diggle, 2014)
or a second-order composite likelihood approach (Waagepetersen, 2007; Lavancier
et al., 2018). The latter is not considered here but described in Appendix B, where
results from a simulation study comparing the two approaches also can be found.
The simulation study suggests that the minimum contrast procedure provides far
more reliable estimates than the second-order composite likelihood.

For a chosen summary function T(σ2,β) which depends on (σ2, β), the minimum
contrast estimate of (σ2, β) is given by

(σ̂2, β̂) = arg min
(σ2,β)

∫ ru

rl

{
T̂ (r)p − T(σ2,β)(r)

p
}2

dr, (4.8)
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where 0 ≤ rl < ru and p > 0 are user-specified tuning parameters, and T̂ is an
empirical estimate of the summary function. In our case, T(σ2,β) is given by K or g0,
and T̂ is given as in Ang et al. (2012). A frequently seen choice is rl = 0, while general
recommendations of ru and p can be found in Guan (2009) and Diggle (2014) for
point patterns on the Euclidean space.

The minimum contrast procedure can easily be extended to include estimation
of k too, but a simulation study indicated that it may be difficult to estimate σ2 and
k simultaneously as an increase in k seemingly can be balanced out by an increase
in σ2. In practice we may therefore simply make a choice of k; for simplicity we
chose k = 1 in the following. Note that for both T = K and T = g0 the estimate
T̂ in (4.8) depends on the intensity (Ang et al., 2012); here we simply plug-in the
estimated intensity obtained in the first step of the estimation procedure.

A drawback of using T = g0 is the need of choosing a bandwidth for the non-
parametric kernel estimate ĝ0 presented in Ang et al. (2012). However, the simulation
study in Appendix B suggests that using T = g0 with the default bandwidth and ker-
nel from the spatstat-package generally performs better than T = K when fitting
the proposed Cox process model. This is consistent with results from a simulation
study in Lavancier and Møller (2016) for point processes on a Euclidean space.

In the simulation study found in Appendix B, we also investigated how different
choices of rl, ru, and p affect the estimates of σ2 and β given by (4.8). We observed
that the choice of ru often is a matter of trade-off between bias and variance: a large
value of ru may entail a large bias, while a small ru often leads to a greater variance
of the estimates. Furthermore, the best choice of ru seems to be quite depending
on what the true underlying model parameters are. For example, a larger range of
correlation in the retention probabilities, that is, a smaller value of β, requires a
larger ru. Naturally we should also take the size of the network into consideration
when choosing ru. In the simulation study we found that rl = 0 gives the best
estimates, and that p = 1 or p = 1/2 behave equally well for T = g0, while p = 1/4
is preferred over p = 1/2 for T = K. For parameter values yielding models close
to the Poisson process model, that is, when σ2 is close to zero or β is large, the
estimation procedures were not very successful regardless of the tuning parameters.
This does not come as a surprise as many combinations of σ2- and β-values yield
similar Poisson processes. Lastly, the estimation procedure seems quite stable with
respect to the choice of start parameter values for the optimisation algorithm (optim
in R) used to minimize (4.8).

4.2.3 Model fit and model check

The Cox process model was fitted to each of the spine data sets using the two-step
procedure with k = 1 fixed, cf. Section 4.2.2. For the minimum contrast procedure we
let T = g0, p = 1, and rl = 0 in accordance with the simulation results discussed in
Section 4.2.2. Further, we initially let ru = 15 and obtained a set of initial parameter
estimates for each data set. Then we performed a small simulation study based on
500 simulations from the initially fitted models to investigate which of ru = 15, 30, 50
results in the best estimates (in terms of bias and variance) for these specific models.
For dendrite 1, 3, and 6, the initially fitted models are close to the Poisson process
case, and as a consequence the model parameters are hard to estimate regardless
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of the choice of ru. However, for dendrite 2, 4, and 5, it seems that ru = 50 is the
best choice. Using ru = 50 for all six data sets, we obtained the parameter estimates
in Table 2. The fitted model for dendrite 3 is practically a Poisson process model
(in consistency with the conclusions made in Section 4.1) while the remaining fitted
models are not. In Figure C.2 in Appendix C, one simulation from each of the fitted
random fields Π is shown to illustrate the behaviour of the retention probabilities.
For example, σ̂2 is considerably larger for dendrite 5 than dendrite 1, resulting in
more fluctuating retention probabilities.

Table 2: Estimates of ρY,m, ρY,s, σ2, and β for each spine data set.

Dendrite ρ̂Y,m ρ̂Y,s σ̂2 β̂

1 0.312 0.463 0.686 0.037
2 0.275 0.525 1.427 0.020
3 0.328 0.312 5.170× 10−8 30.178
4 0.197 0.701 1.159 0.010
5 0.266 0.413 4.023 0.030
6 0.322 0.474 2.662 0.013

As discussed in Section 3.2, for the statistical analyses of point patterns on linear
networks there is only a limited number of options for model checking, especially
when the K-function or the pair correlation function have already been used to
estimate the model parameters. One simple option is to look at simulations from
the fitted model as in Figures C.3–C.8 in Appendix C. Comparing these simulations
visually to the observed point patterns, it seems that the simulations mimic the
behaviour of the data quite well. For a more rigorous model checking, we performed
global rank envelope tests with a concatenation of F̂ , Ĝ, and Ĵ as test function,
where distances less than 1 µm were disregarded as discussed in Section 4.1; results
are shown in Figure 3. Except from dendrite 4, where the data curve for Ĵ falls
below the global rank envelope for some of the smaller r-values, the tests do not
reveal any evidence against the fitted models. However, for some of the dendrites
(especially dendrite 6) the global rank envelopes for the part concerning F̂ and Ĝ
are very wide due to a large variance in the number of points.
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Figure 3: For each spine data set: the concatenation of F̂ , Ĝ, and Ĵ for the spine loca-
tions (black solid line) along with 95% global rank envelopes (grey region) based on 2499
simulations from the fitted Cox process model; p-intervals for each of the associated global
rank envelope tests are also displayed.
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5 Discussion

As discussed in Section 4.1, the spines seem to posses a small-scale repulsion, which
was not modelled by the Cox process proposed in Section 4.2. To accommodate
the repulsion, the inhomogeneous Poisson process Y used to build the Cox process
could be replaced by an inhomogeneous and repulsive point process. The simplest
case may be to use a dependent thinning as in a Matérn hard core process of type
I (Matérn, 1960, 1986): let Ỹ be an inhomogeneous Poisson process (with constant
intensity on the main branch respectively the side branches), and let

Y = {u ∈ Ỹ : dL(u, v) > h for all v ∈ Ỹ \{u}},
where h > 0 is a hard core parameter; that is, a point in Ỹ is included in Y if and
only if no other point in Ỹ is within distance h. However, it is doubtful whether an
expression for the K-function or the pair correlation function can be found for such
a Cox process model, posing new challenges with respect to parameter estimation.

To avoid using the rather ad hoc created summary functions F̂ , Ĝ, and Ĵ , it is
needed to develop new summary functions for (inhomogeneous) point processes on
linear networks for which we both have a theoretical interpretation and an estimate
that do not depend on the geometry of the network. We leave this challenging issue
for future research.

Rakshit et al. (2017) discussed the importance of how distance is measured when
analysing point patterns on a linear network and they generalised the K-function
to allow the use of any distance metric. In fact, following Anderes et al. (2017) all
methods as well as Poisson and Cox process models in this paper immediately apply
for more general linear networks, called graphs with Euclidean edges, when the cor-
relation function c is isotropic with respect to the shortest path distance as well as
another metric called the resistance metric. For the dendrite networks or any other
tree network, the resistance metric is equivalent to the shortest path distance. An-
deres et al. (2017) showed that correlation functions that are isotropic with respect
to the shortest path distance only are guaranteed to be valid for a small class of
linear networks, whereas they are valid for any linear network when considering the
resistance metric instead. Thus, depending on the network, it may be preferable to
consider the resistance metric over the shortest path distance when specifying a cor-
relation function. Anderes et al. (2017) provided a list of valid isotropic covariance
functions for graphs with Euclidean edges.

A Expressions for K

For the Cox point process presented in Section 4.2 with c equal to the exponential
correlation function in (4.4), the K-function is

K(r) =

∫ r

0

{
1− exp(−2βt)

(1 + 1/σ2)2

}−k/2
dt. (A.1)

Let α = (1 + 1/σ2)
−2, then K(r) is given by

1

β

{
log
(√

e2βr − α + eβr
)
− log

(√
1− α + 1

)}
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if k = 1,
1

2β
log

(
e2βr − α

1− α

)

if k = 2,

1

β

{√
e2βr − α log

(√
e2βr − α + eβr

)
− eβr

eβr
√

1− αe−2βr
+

1−
√

1− α log
(√

1− α + 1
)

√
1− α

}

if k = 3,
1

2β

{
α

α− e2βr
− α

α− 1
+ log

(e2βr − α
1− α

)}

if k = 4, and

1

β

{
α + e−βr(e2βr − α)3/2 log(

√
e2βr − α + eβr)− 4

3
e2βr

√
1− αe−2βr(e2βr − α)

− log(
√

1− α + 1) +
4
3
− α

(1− α)3/2

}

if k = 5.

B Simulation study concerning estimation
procedure

B.1 Second order composite likelihood

In Section 4.2 we fitted the parameters of the Cox process models using a two
step procedure involving a minimum contrast procedure for estimating σ2 and β.
Another option is to consider a second order composite likelihood approach (adapted
from Waagepetersen, 2007, to a point pattern on a linear network). That is, for
an observed point pattern x ⊂ L, the maximum composite likelihood estimate is
obtained by maximizing the log composite likelihood

CL(σ2, β) =

6=∑

u,v∈x
w(u, v) log{ρ̂(u)ρ̂(v)g(u, v)}

−
∫

L

∫

L

w(u, v)ρ̂(u)ρ̂(v)g(u, v)dLu dLv,

where w is a weight function and 6= over the summation sign means that u 6= v. We
can for example let

w(u, v) = I(dL(u, v) ≤ r0) (B.1)

for some user specified value r0. To estimate (σ2, β), we either directly maximise
(B.1) or alternatively solve the associated estimating equation obtained by setting
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the score equal to 0. The score function is in our set-up given by

∇CL(σ2, β)

=

6=∑

u,v∈x
w(u, v)

∇g(u, v)

g(u, v)
−
∫

L

∫

L

w(u, v)ρ̂(u)ρ̂(v)∇g(u, v) dLu dLv.
(B.2)

To improve the composite likelihood estimation procedure, Lavancier et al. (2018)
suggested an adaptive version of (B.2) where the weight function w depends on the
model parameters. We may for example let w be the indicator function given by

w(u, v) = I
( |g(u, v)− 1|

M(u, v)
> ε

)
, (B.3)

where M(u, v) = maxs∈{u,v}|g(s, s) − 1| and ε ∈ (0, 1) is a small user-specified
number, e.g. ε = 0.01 or ε = 0.05. Note that for an isotropic correlation function
g(u, v) = g0{dL(u, v)}, we have M(u, v) = |g0(0) − 1|. Another weight function
suggested in Lavancier et al. (2018) is

w(u, v) =

{
exp [1/{h(u, v)2 − 1}] for − 1 ≤ h(u, v) ≤ 1,

0 else,
(B.4)

where h(u, v) = εM(u, v)/{g(u, v)− 1}.
For approximating the double integral in (B.2) (or in the adapted version), note

that this is of the form
∫
L

∫
L
f(u, v) dLu dLv. We split up the integration area into

the line segments constituting L, that is,
∫

L

∫

L

f(u, v) dLu dLv =
∑

i,j

∫

Li

∫

Lj

f(u, v) dLu dLv.

Note that ρ̂(·) for the spine data is constant on any line segment Li (as the line
segment is either fully contained in Lm or Ls). Further, if L is a tree, w is given by
(B.1), (B.3), or (B.4), and g is isotropic, then f(u, v) = f0{dL(u, v)} depends only
on distance; this will ease the approximation of the integral:

∫

Li

∫

Lj

f(u, v) dLu dLv =





∫ |Li|
0

∫ |Lj |
0

f0(di,j + x+ y) dx dy if i 6= j,
∫ |Li|

0

∫ |Lj |
0

f0(|x− y|) dx dy if i = j,

where di,j = minu∈Li,v∈Lj
dL(u, v). Each of these integrals can then be approximated

by Monte Carlo integration using uniform variables on [0, |Li|] and [0, |Lj|].

B.2 Simulation study

In the following we describe and summarise results from a simulation study investi-
gating how well σ2 and β are estimated using either the minimum contrast procedure
with T = K or T = g0 (as described in Section 4.2.2) or the adaptive composite like-
lihood procedure using (B.3) or (B.4). We considered the network for dendrite 4 and
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simulated from the Cox process described in Section 4.2 with different parameter
values given in Table 3 and when k = 1 was fixed.

For the minimum contrast procedure we investigated different values of the tun-
ing parameters ru, rl, and p as well as different start parameters for the optimisation
algorithm, see Table 3. Here run no. 1 is the reference run from which one (or two)
model or tuning parameters are changed at the time. For run no. 1, we chose σ2 = 5
and β = 0.1 resulting in a model rather far away from the case of a Poisson process.
Note that decreasing β will increase the range of correlation in the thinning proba-
bility, whilst increasing σ2 will increase the probability of thinning. Thus a small β
and a large σ2 yield a model very different from the Poisson process. For each choice
of model parameters we simulated 500 point patterns and estimated (σ2, β) using
minimum contrast and for a few selected runs we also estimated (σ2, β) using the
adaptive composite likelihood method.

For the adaptive composite likelihood method the integral in (B.2) was approx-
imated using 106 simulations. Estimates of (σ2, β) were found by minimising the
length of the score over a 100 × 100 grid centred around the true values of σ2 and
β. The finer and broader grid, the better, but as a 100× 100 grid was already quite
time consuming we settled with that.

Table 3: Overview of runs made in the simulation study for the minimum contrast pro-
cedures. Here (σ2

∗, β∗) denote the start parameters for the optimisation algorithm and bw
is the automatically selected bandwidth used to calculate ĝ in spatstat.

Run no. σ2 β ρY,m ρY,s p for MCE-g (MCE-K) rl ru (σ2
∗, β∗)

1 5 0.1 0.8 1.2 1 (0.25) 0 30 (0.5, 0.5)
2 5 0.1 0.8 1.2 0.5 (0.5) 0 30 (0.5, 0.5)
3 5 0.1 0.8 1.2 1 (0.25) 0 50 (0.5, 0.5)
4 5 0.1 0.8 1.2 1 (0.25) 0 20 (0.5, 0.5)
5 5 0.1 0.8 1.2 1 (0.25) 0 30 (3, 0.2)
6 5 0.1 0.8 1.2 1 (0.25) 0 30 (0.2, 3)
7 5 0.1 0.3 0.7 1 (0.25) 0 30 (0.5, 0.5)
8 5 0.1 1 1 1 (0.25) 0 30 (0.5, 0.5)
9 5 0.5 0.8 1.2 1 (0.25) 0 30 (0.5, 0.5)
10 5 1 0.8 1.2 1 (0.25) 0 30 (0.5, 0.5)
11 1 0.1 0.8 1.2 1 (0.25) 0 30 (0.5, 0.5)
12 1 0.5 0.8 1.2 1 (0.25) 0 30 (0.5, 0.5)
13 5 0.1 0.8 1.2 1 (0.25) 2 ∗ bw 30 (0.5, 0.5)
14 5 0.1 0.8 1.2 1 (0.25) 0.5 ∗ bw 30 (0.5, 0.5)
15 5 0.1 0.8 1.2 1 (0.25) 2 30 (0.5, 0.5)
16 5 0.1 0.8 1.2 1 (0.25) 0.5 30 (0.5, 0.5)
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B.2.1 Results using the minimum contrast procedure

In the following we let MCE-K and MCE-g refer to minimum contrast estimation
with T = K and T = g0, respectively.

Histograms of the obtained estimates are shown in Figures B.1–B.4. In general
it seems that MCE-g performs better than MCE-K. For parameter values that
result in models close to the Poisson model, neither of the estimation procedures
estimate (σ2, β) successfully. For simulations more distinguishable from Poisson (as
for example run no. 1), the MCE-g gives more satisfactory estimates.

Neither MCE-g or MCE-K seem to be sensitive to the choice of start parameters
for the reference run. Further, for the reference run it seem that ru = 20 was the best
choice, but in general this depend on the model we are trying to fit and naturally
on the size of the network. The best choice of rl seem to be rl = 0, while p = 0.25
seems preferable over p = 0.5 for MCE-K, and p = 0.5 and p = 1 perform equally
well for the MCE-g. The choice of ru seem to be important with respect to bias and
variance: a too high ru may lead to a large bias, while a too smale ru may lead to
a large variance in the estimates. It is therefore recommendable to perform a small
simulation study for the specific network and proposed model at hand, such that
the best choice of ru can be made.

B.2.2 Results using the adaptive composite likelihood

For the CLE procedure we restricted ourselves to a small number of runs as the grid
search was very time consuming. Specifically, we simulated 500 point patterns from
the Cox process models with the parameters from run no. 1, 10, and 11 in Table 3. For
each choice of model parameters we estimated (σ2, β) using both weight functions
and ε = 0.05. Further, we also ran the CLE procedure with ε = 0.01 for the model
parameters from run no. 1. Figure B.5 shows histograms of the resulting estimates.
It is clear that for all three choices of model parameters the grid should be broader
in order to find the parameter values that give the smallest length of (B.2) and that
the estimates are worse than the ones obtained by the minimum contrast procedures.
Finally, there is no seemingly advantage of choosing one weight function over the
other or of choosing ε = 0.01 over ε = 0.05.
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Figure B.1: Estimates of σ2 and β using either MCE-g or MCE-K for 500 simulated
point patterns of models with parameters no. 1–4 in Table 3 (one set of parameters for
each row, starting with no. 1 in the top). From left to right: estimates of σ2 and β found
by MCE-K (column 1 and 2), followed by estimates of σ2 and β based on MCE-g (column
3 and 4). Blue dashed line is the true parameter value, and red dashed line is the mean
of the estimates. OBS: the histograms have been truncated such that estimates above 15
for σ2 (column 1 and 3) and 5 for β (column 2 and 4) have been omitted in the frequency
count; in each histogram it is stated how many values were discarded.
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Figure B.2: Estimates of σ2 and β using either MCE-g or MCE-K for 500 simulated
point patterns of models with parameters no. 5–8 in Table 3 (one set of parameters for
each row, starting with no. 5 in the top). From left to right: estimates of σ2 and β found
by MCE-K (column 1 and 2), followed by estimates of σ2 and β based on MCE-g (column
3 and 4). Blue dashed line is the true parameter value, and red dashed line is the mean
of the estimates. OBS: the histograms have been truncated such that estimates above 15
for σ2 (column 1 and 3) and 5 for β (column 2 and 4) have been omitted in the frequency
count; in each histogram it is stated how many values were discarded.
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Figure B.3: Estimates of σ2 and β using either MCE-g or MCE-K for 500 simulated
point patterns of models with parameters no. 9–12 in Table 3 (one set of parameters for
each row, starting with no. 9 in the top). From left to right: estimates of σ2 and β found
by MCE-K (column 1 and 2), followed by estimates of σ2 and β based on MCE-g (column
3 and 4). Blue dashed line is the true parameter value, and red dashed line is the mean
of the estimates. OBS: the histograms have been truncated such that estimates above 15
for σ2 (column 1 and 3) and 5 for β (column 2 and 4) have been omitted in the frequency
count; in each histogram it is stated how many values were discarded.
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Figure B.4: Estimates of σ2 and β using either MCE-g or MCE-K for 500 simulated
point patterns of models with parameters no. 13–16 in Table 3 (one set of parameters for
each row, starting with no. 13 in the top). From left to right: estimates of σ2 and β found
by MCE-K (column 1 and 2), followed by estimates of σ2 and β based on MCE-g (column
3 and 4). Blue dashed line is the true parameter value, and red dashed line is the mean
of the estimates. OBS: the histograms have been truncated such that estimates above 15
for σ2 (column 1 and 3) and 5 for β (column 2 and 4) have been omitted in the frequency
count ; in each histogram it is stated how many values were discarded.
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Figure B.5: Results from simulation study using adaptive composite likelihood: estimates
of β and σ2 for model parameters from run no. 1 (first row), 10 (second row), and 11 (third
row) with ε = 0.05 and run no. 1 with ε = 0.01 (fourth row); see Table 3. The two first
columns display estimates of σ2 and β (in that order) when using the indicator weight
function for the CLE procedure, while estimates in the two right columns are found using
CLE with the exponential weight function. Blue dashed line is the true parameter value,
red dashed line is the mean of the estimates.
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C Analysis of spine locations

This Appendix contains figures related to the analysis of the six spine data sets.
Figure C.1 shows 95% global rank envelopes under the fitted inhomogeneous Poisson
model using a concatenation of F̂ , Ĝ, and Ĵ as test function. Further, Figure C.2
show one simulation of the fitted random field Π for each network. Finally, each of
Figures C.3–C.8 display the data along with five simulated point patterns from the
fitted Cox process model.
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Figure C.1: For each spine data set: the concatenation of F̂ , Ĝ, and Ĵ for the spine
locations (black solid line) along with 95% global rank envelopes (grey region) based on
2499 simulations from the fitted inhomogeneous Poisson model; p-intervals for each of the
associated global rank envelope tests are also displayed.
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Figure C.2: For each dendrite tree, a simulated realisation of the random field Π deter-
mining the retention probabilities in the fitted Cox process models.
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Data Simulation

Simulation Simulation

Simulation Simulation

Figure C.3: Upper left corner: observed spine locations on dendrite 1. Remaining: simu-
lated point patterns from the fitted Cox process model. The simulated retention probabil-
ities used to obtain the point pattern in the upper right corner are shown in Figure C.2.
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Data Simulation

Simulation Simulation

Simulation Simulation

Figure C.4: Upper left corner: observed spine locations on dendrite 2. Remaining: simu-
lated point patterns from fitted Cox process model. The simulated retention probabilities
used to obtain the point pattern in the upper right corner are shown in Figure C.2.
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Data Simulation

Simulation Simulation

Simulation Simulation

Figure C.5: Upper left corner: observed spine locations on dendrite 3. Remaining: simu-
lated point patterns from fitted Cox process model. The simulated retention probabilities
used to obtain the point pattern in the upper right corner are shown in Figure C.2.
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Data Simulation

Simulation Simulation

Simulation Simulation

Figure C.6: Upper left corner: observed spine locations on dendrite 4. Remaining: simu-
lated point patterns from fitted Cox process model. The simulated retention probabilities
used to obtain the point pattern in the upper right corner are shown in Figure C.2.
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Data Simulation

Simulation Simulation

Simulation Simulation

Figure C.7: Upper left corner: observed spine locations on dendrite 5. Remaining: simu-
lated point patterns from fitted Cox process model. The simulated retention probabilities
used to obtain the point pattern in the upper right corner are shown in Figure C.2.
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Data Simulation

Simulation Simulation

Simulation Simulation

Figure C.8: Upper left corner: observed spine locations on dendrite 6. Remaining: simu-
lated point patterns from fitted Cox process model. The simulated retention probabilities
used to obtain the point pattern in the upper right corner are shown in Figure C.2.
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