
www.csgb.dk

RESEARCH REPORT 2019

CENTRE FOR STOCHASTIC GEOMETRY
AND ADVANCED BIOIMAGING

Mads Stehr and Anders Rønn-Nielsen

Tail Asymptotics of an Infinitely Divisible Space-Time Model
with Convolution Equivalent Lévy Measure

No. 09, September 2019



Tail Asymptotics of an Infinitely Divisible
Space-Time Model with Convolution Equivalent

Lévy Measure

Mads Stehr1 and Anders Rønn-Nielsen2

1Centre for Stochastic Geometry and Advanced Bioimaging (CSGB),
Department of Mathematics, Aarhus University

2Center for Statistics, Department of Finance, Copenhagen Business School,

Abstract

We consider a space-time random field on Rd × R given as an integral of a
kernel function with respect to a Lévy basis with a convolution equivalent
Lévy measure. The field obeys causality in time and is thereby not continuous
along the time-axis. For a large class of such random fields we study the
tail behaviour of certain functionals of the field. It turns out that the tail
is asymptotically equivalent to the right tail of the underlying Lévy measure.
Particular examples are the asymptotic probability that there is a time-point
and a rotation of a spatial object with fixed radius, in which the field exceeds
the level x, and that there is a time-interval and a rotation of a spatial object
with fixed radius, in which the average of the field exceeds the level x.

Keywords: Convolution equivalence; infinite divisibility; Lévy-based modelling;
asymptotic equivalence; sample paths for random fields

1 Introduction

In the present paper we investigate the extremal behaviour of a space-time random
field (Xv,t)(v,t)∈B×[0,T ] defined by

Xv,t =

∫

Rd×(−∞,t]
f(|v − u|, t− s)M(du, ds), (1.1)

whereM is an infinitely divisible, independently scattered random measure on Rd+1,
d ∈ N, f is some kernel function, and B and [0, T ] are compact index sets. We
think of v and t as the position in space and time, respectively. Similarly, the first d
coordinates ofM refers to the spatial position, while the last coordinate is interpreted
as time. The random field defined in (1.1) is a causal model in the sense that Xv,t

only depends on the noise, accounted for by M , up to time t, i.e. the restriction of
M to Rd × (−∞, t]. We shall make continuity assumptions on f ensuring that X is
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continuous in the space-direction. Discontinuities in the time-direction will however
be possible, and we therefore have to pay particular attention to the assumptions
on f to obtain sample paths that are both continuous in space and càdlàg in time;
see Definition 2.2, Assumption 2.3, and Theorem 5.7 below.

Lévy-driven moving average models, where a kernel function is integrated with
respect to a Lévy basis, provide a flexible and tractable modelling framework and
have been used for a variety of modelling purposes. Recent applications that, sim-
ilarly to (1.1), include both time and space are modelling of turbulent flows ([2])
and growth processes ([10]). Spatial models without an additional time axis have
e.g. been applied to define Cox point processes ([8]) and have served as a modelling
framework for brain imaging data ([9, 19]). Lévy-based models for a stochastic pro-
cess in time have gained recent popularity in finance. A simple example is a Lévy-
driven Ornstein-Uhlenbeck process, with f(t) = e−λt, that has e.g. been used as a
model for option pricing as illustrated in [3]. In [18] estimators for the mean and
variogram in Lévy-driven moving average models are proposed, and central limit
theorems for these estimators are derived.

In this paper, we will assume that the Lévy measure ρ of the random measureM
has a convolution equivalent right tail ([5, 6, 13]). Note that convolution equivalent
distributions, as studied in the present paper, have heavier tails than Gaussian
distributions and lighter tails than those of regularly varying distributions. We derive
that certain functionals of the field will have a right tail that is equivalent to the
tail of the underlying Lévy measure. More precisely, we show that for a functional
Ψ satisfying Assumptions 3.1, 3.5 and 3.8 given below, there exist known constants
C and c such that

P(Ψ(X) > x) ∼ Cρ((x/c,∞)) as x→∞.

Measures with a convolution equivalent tail cover the important cases of an inverse
Gaussian and a normal inverse Gaussian (NIG) basis, respectively; see [16] and
references therein.

We give three important examples of the functional Ψ to illustrate the generality
of the setting. The simplest is Ψ(X) = supv,tXv,t, where it is concluded that under
appropriate assumptions on f it holds that supv,tXv,t asymptotically has the same
right tail as ρ. A second example, see Example 3.3, involves the spatial excursion
set at level x and time t

Ax,t = {v ∈ B : Xv,t > x}.

Under some further regularity conditions we show that the asymptotic probability
that there exists a t for which the excursion set at level x contains some rotation
of an object with a fixed radius has a tail that is equivalent with the tail of ρ. In
the last example, see Example 3.4, we show a similar result for the probability that
there is a time-interval and a translation and rotation of some fixed spatial object
such that the field in average, over both the time-interval and the resulting spatial
object, exceeds the level x.

In [4] sub–additive functionals of similar random fields, also with convolution
equivalent tails, are studied. Here it is shown that under appropriate regularity
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conditions there exists constants C1 < C2 and a constant c such that

C1ρ((x/c,∞)) ≤ P(Ψ(X) > x) ≤ C2ρ((x/c,∞)).

Note that the functional Ψ in the present paper is not necessarily required to be sub–
additive. In particular, the functional corresponding to the excursion set framework
is indeed not sub–additive.

In [16] and [17] the extremal behaviour of spatial random fields on the form

Xv =

∫

Rd

f(|v − u|)M(du) (v ∈ B)

is studied, when M is assumed to have a convolution equivalent Lévy measure.
Here assumptions are imposed on the kernel function f to ensure that v 7→ Xv

is continuous. Under some further regularity conditions it is shown in [16] that
supv∈BXv has a tail that is asymptotically equivalent with the tail of the underlying
Lévy measure. In [17] this result is extended to the asymptotic probability that
there exists a rotation of fixed spatial object that is contained in the excursion set
Ax = {v ∈ B : Xv > x}.

In [7], results for a moving average process on R, obtained as an integral with
respect to a Lévy process with convolution equivalent tail, are derived. Here the
process (Xt)t∈[0,T ] is given by

Xt =

∫ t

−∞
f(t− s)M(ds) ,

where, again, M has a convolution equivalent Lévy measure. In agreement with the
similar but more general result of the present paper for the field defined in (1.1) it
is derived in [7] that suptXt has a tail that asymptotically is equivalent with this.

The paper is organised as follows. In Section 2 we formally define the random field
(1.1) and introduce some necessary assumptions for the field to be well defined and
to have sample paths that are continuous in space and càdlàg in time. In Section 3
we state and prove the main result for a general functional Ψ and introduce two
specific examples of the functional. Some of the proofs in this section will apply
many of the same techniques as in [16] and [17] and are therefore deferred to the
Appendix (page 25). In Section 4 we state conditions for each of the two examples
under which we afterwards show that the main result can be obtained. Section 5 is
devoted to showing that under appropriate regularity conditions, the field defined
in (1.1) is continuous in space and càdlàg in time.

2 Preliminaries and initial assumptions

We define a Lévy basis to be an infinitely divisible and independently scattered ran-
dom measure. Then the random measureM on Rd+1 is independently scattered, such
that for all disjoint Borelsets (An)n∈N ⊆ Rd+1, the random variables (M(An))n∈N
are independent and furthermore satisfyM(∪n∈NAn) =

∑
n∈NM(An). Furthermore,

M(A) is infinitely divisible for all Borelsets A ⊆ Rd+1.
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Moreover, in this paper we assumeM to be a stationary and isotropic Lévy basis
on Rd+1. With m(·) denoting the Lebesgue measure, and C(λ † Y ) = logEeiλY the
cumulant function for a random variable Y , this means that the random variable
M(A) has Lévy-Khintchine representation

C(λ †M(A)) = iλam(A)− 1
2
λ2θm(A)

+

∫

A×R

(
eiλx − 1− iλx1[−1,1](x)

)
F (du, dx),

(2.1)

where a ∈ R, θ ≥ 0 and F is the product measure m ⊗ ρ of the Lebesgue measure
and a Lévy measure ρ. The notion of the so-called spot variable M ′ will be useful.
It is a random variable equivalent in distribution to M(A) when m(A) = 1.

We assume that the Lévy basis M has a convolution equivalent Lévy measure ρ
with index β > 0: ρ has an exponential tail with index β, i.e.

ρ((x− y,∞))

ρ((x,∞))
→ eβy as x→∞, (2.2)

for all y ∈ R, and it furthermore satisfies the convolution property

(ρ1 ∗ ρ1)((x,∞))

ρ1((x,∞))
→ 2

∫

R
eβyρ1(dy) <∞ as x→∞, (2.3)

where ρ1 is the normalized restriction of ρ to (1,∞) and ∗ denotes convolution.
For later reference, we list the mentioned properties as part of the following

assumption.

Assumption 2.1. The Lévy basis M on Rd+1 is stationary and isotropic with a
convolution equivalent Lévy measure ρ with index β > 0, that is, M satisfies (2.1)
to (2.3). Moreover, ρ satisfies

∫

|y|>1

ykρ(dy) <∞ for all k ∈ N. (2.4)

Note that the integrability along the right tail is already given from the exponen-
tial tail property, and since ρ is a Lévy measure it also satisfies

∫
[−1,1]

y2ρ(dy) <∞.
Also, by [21, Theorem 25.3], (2.4) is equivalent to finite moments E|M ′|k < ∞ of
the spot variable. In Sections 2 to 4, it is assumed that Assumption 2.1 is satisfied.

We write the tail of ρ as ρ((x,∞)) = L(x) exp(−βx), so for all y ∈ R, (2.2)
implies that

L(x− y)

L(x)
→ 1 as x→∞. (2.5)

Equation (2.5) implies that the mapping x 7→ L(log(x)) is slowly varying. A conse-
quence is (see formula (3.6) in [17]) that for all γ > 0 there exist x0 > 0 and C0 > 0
such that

L(αx)

L(x)
≤ C0 exp((α− 1)γx) for all x ≥ x0, α ≥ 1. (2.6)

Before proceeding to defining the kernel function f and consequently the field X,
we introduce a continuity property called t-càdlàg which is essential in this paper.
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Definition 2.2 (t-càdlàg). A field (yv,t)(v,t) is t-càdlàg if it for all (v, t) satisfies

lim
(u,s)→(v,t−)

yu,s exists in R, and lim
(u,s)→(v,t+)

yu,s = yv,t. (2.7)

In defining the field X = (Xv,t)(v,t)∈B′×T ′ below, we make the following assump-
tion on the integration kernel f . This assumption, together with Assumption 2.1, is
sufficient to ensure the existence of the integral (2.9) defining Xv,t; see [15, Theo-
rem 2.7]. Furthermore, as shown in Theorem 5.7, these assumptions guarantee the
existence of a t-càdlàg version of X.

Assumption 2.3. The kernel f : [0,∞) × R → [0,∞) is bounded, it satisfies
f(x, y) = 0 for all x ∈ [0,∞) and y < 0, it is integrable in the sense that

∫

Rd

∫

R
f(|u|, s)dsdu <∞,

and it is Lipschitz continuous on [0,∞)× [0,∞), that is, there is CL ∈ (0,∞) such
that

|f(x1, y1)− f(x2, y2)| ≤ CL|(x1, y1)− (x2, y2)| (2.8)

for all (x1, y1), (x2, y2) ∈ [0,∞)× [0,∞).

Let B ⊆ Rd be a compact set with strictly positive Lebesgue measure, and
consider [0, T ] for deterministic 0 < T <∞. For r, ` ≥ 0 fixed, define the expanded
sets B′ = B ⊕ Cr(0) = {x + y : x ∈ B, |y| ≤ r} and T ′ = [0, T + `]. Here
Cr(u) ⊆ Rd is the d-dimensional closed ball with radius r and center in u ∈ Rd.
Under Assumptions 2.1 and 2.3 we define the random field X = (Xv,t)(v,t)∈B′×T ′ by

Xv,t =

∫

Rd×R
f(|v − u|, t− s)M(du, ds). (2.9)

Note that alternatively we can write

Xv,t =

∫

Rd×(−∞,t]
f(|v − u|, t− s)M(du, ds)

due to the assumptions on f . Thus X has a causal structure in the time direction
in the sense that Xv,t only depends on M restricted to the subset Rd × (−∞, t].

We are ultimately interested in extremal probabilities of the form

P
(
Ψ((Xv,t)(v,t)∈B′×T ′) > x

)
, (2.10)

where Ψ : RB′×T ′ → R is a functional satisfying some assumptions that will be given
in Section 3. For notational convenience, we usually write Ψ(yv,t), when applying Ψ
to a field (yv,t)(v,t)∈B′×T ′ , however, when it is necessary to clarify the indices of the
field, we write it fully. For the type of functionals Ψ we shall consider, it will be
convenient to make some further assumptions on the kernel. The following Assump-
tion 2.4 clearly implies Assumption 2.3 above. In Sections 2 to 4, Assumption 2.4 is
assumed satisfied.
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Assumption 2.4. The kernel f : [0,∞) × R → [0,∞) satisfies f(0, 0) = 1 and
f(x, y) = 0 for all x ∈ [0,∞) and y < 0. Moreover,

∫

Rd

∫

R
sup
v∈B′

sup
t∈T ′

f(|v − u|, t− s)dsdu <∞,

and f is Lipschitz on [0,∞)× [0,∞), i.e. it satisfies (2.8). Lastly, there is a constant
C1 such that

f(x, y) ≤ C1

|(x, y)|+ 1
for all (x, y) ∈ [0,∞)× R. (2.11)

It turns out that the infinite divisibility ofM is inherited to the field X. We shall
spend the remainder of this section establishing this property and use it to obtain
a useful representation of the field as an independent sum of a compound Poisson
term and a term with a lighter tail than exponentials. The procedure is inspired by
a similar technique used in [16], [17] and [20]. Here, we present the procedure fully
to introduce all relevant notation.

The cumulant function of Xv,t takes the form, cf. [15, Theorem 2.7],

C(λ †Xv,t) = iλa

∫

Rd

∫

R
f(|v − u|, t− s)dsdu

− 1
2
θλ2

∫

Rd

∫

R
f(|v − u|, t− s)2dsdu

+

∫

Rd

∫

R

∫

R

(
eif(|v−u|,t−s)λz − 1− if(|v − u|, t− s)λz1[−1,1](z)

)
ρ(dz)dsdu.

A similar expression can be obtained for any finite linear combination of Xv,t’s by
substitution f with a relevant linear combination of f ’s. Thus, all finite-dimensional
distributions of (Xv,t)(v,t)∈B′×T ′ are infinitely divisible, and consequently any count-
ably indexed field (Xv,t) is infinitely divisible. Define the countable set K = (B′ × T ′)
∩ Qd+1, and let ν = (m ⊗m ⊗ ρ) ◦H−1 be the measure on (RK,B(RK)) defined as
the image-measure of H on m⊗m⊗ ρ, where H : Rd × R× R→ RK is given by

H(u, s, z) = (zf(|v − u|, t− s))(v,t)∈K.

Then direct manipulations show that ν is the Lévy measure of (Xv,t)(v,t)∈K, and
furthermore the Lévy-Khintchine representation is

C(β † (Xv,t)(v,t)∈K)

= i
∑

(v,t)

βv,tav,t − 1
2
θ

∫

Rd

∫

R

(∑

(v,t)

βv,tf(|v − u|, t− s)
)2

dsdu

+

∫

RK

(
ei

∑
(v,t) βv,tzv,t − 1− i

∑

(v,t)

βv,tzv,t1[−1,1]K(z)
)
ν(dz)

for suitable (av,t)(v,t)∈K ∈ RK. Here β ∈ RK with βv,t 6= 0 for at most finitely
many (v, t) ∈ K. From the infinite divisibility, (Xv,t)(v,t)∈K can be represented as the
independent sum

Xv,t = X1
v,t +X2

v,t.
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The field (X1
v,t)(v,t)∈K is a compound Poisson sum

X1
v,t =

N∑

n=1

V n
v,t,

where N is Poisson distributed with intensity ν(A) <∞ and

A =
{
z ∈ RK : sup

(v,t)∈K
zv,t > 1

}
.

The finiteness of ν(A) follows from arguments similar to those of [16, Lemma A.1].
The fields ((V n

v,t)(v,t)∈K)n∈N are i.i.d. with common distribution ν1 = νA/ν(A), that is,
the normalization of the restriction of ν to A. Also (X2

v,t)(v,t)∈K is infinitely divisible
and has Lévy measure νAc , the restriction of ν to Ac.

It will be essential that there exist extensions of the fields (X1
v,t) and (X2

v,t) to
B′ × T ′ with t-càdlàg sample paths. In law, each of the fields (V n

v,t) can be represented
by (Zf(|v−U |, t−S))(v,t)∈K, where (U, S, Z) ∈ Rd×R×R has distribution F1, the
normalized restriction of F to the set

H−1(A) =
{

(u, s, z) ∈ Rd × R× R : sup
(v,t)∈K

zf(|v − u|, t− s) > 1
}
.

Hence, clearly a t-càdlàg extension (Vv,t)(v,t)∈B′×T ′ exists, and it is represented by
(Zf(|v−U |, t−S))(v,t)∈B′×T ′ . As X1 is a finite sum of such fields it also has an exten-
sion to B′ × T ′ which is t-càdlàg. As mentioned above and shown in Theorem 5.7,
the entire field (Xv,t)(v,t)∈B′×T ′ has a version with t-càdlàg sample paths, and hence
also X2 has en extension with such paths.

3 Functional assumptions and main theorem

In this section we introduce assumptions on Ψ and related functionals, and we
derive the main theorem on the asymptotic behaviour of the extremal probability
P(Ψ(Xv,t) > x) as x→∞. As the proofs of some of the results follow the same ideas
as in [16] and [17], we refer to the Appendix (page 25) for these.

Throughout this section we shall assume the following.

Assumption 3.1. The functional Ψ : RB′×T ′ → R satisfies

(i) For all deterministic fields (yv,t)(v,t)∈B′×T ′ and all a ≥ 0 and b ∈ R it holds
that

Ψ(a yv,t + b) = aΨ(yv,t) + b.

(ii) Ψ is increasing, i.e.
Ψ(yv,t + zv,t) ≥ Ψ(yv,t)

whenever the field (zv,t)(v,t)∈B′×T ′ satisfies that zv,t ≥ 0 for all (v, t) ∈ B′ × T ′.
(iii) For all x > 0, u ∈ Rd and s ∈ R, there is a functional ψx,u,s : RB′×T ′ → R

such that

Ψ
(
a f(|v − u|, t− s) + yv,t

)
> x if and only if ψx,u,s(yv,t) < a

for all a ≥ 0 and all fields (yv,t).
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Proposition 3.2. The functionals Ψ and ψx,u,s satisfy

(i) ψx,u,s is decreasing, that is, for all x > 0, u ∈ Rd and s ∈ R and all fields (yv,t)

ψx,u,s(yv,t) ≥ ψx,u,s(yv,t + zv,t)

if zv,t ≥ 0 for all (v, t) ∈ B′ × T ′.
(ii) For all fields (yv,t) and any constant y ∈ R,

ψx,u,s(yv,t + y) = ψx−y,u,s(yv,t).

(iii) For all x > 0, u ∈ Rd and s ∈ R and all fields (yv,t),

ψx,u,s(yv,t) ≥ ψx,u,s(y
∗) =

x− y∗
Ψ((f(|v − u|, t− s))(v,t))

,

where y∗ = sup(v,t)∈B′×T ′ yv,t.

Proof. Statement (i) is seen as follows: Let x, u, s be fixed, and assume for contra-
diction the existence of ε > 0 such that ψx,u,s(yv,t)+ε = ψx,u,s(yv,t+zv,t). Now choose
a such that a − ε ≤ ψx,u,s(yv,t) < a, and therefore ψx,u,s(yv,t + zv,t) ≥ a. However,
appealing to Assumption 3.1(ii) and Assumption 3.1(iii) we also conclude that

x < Ψ(af(|v − u|, t− s) + yv,t) ≤ Ψ(af(|v − u|, t− s) + yv,t + zv,t),

so also ψx,u,s(yv,t + zv,t) < a; a contradiction.
Part (ii) and (iii) are seen using Assumption 3.1(i) and Assumption 3.1(iii).

Before giving two examples of functionals easily seen to satisfy Assumption 3.1,
we introduce some notation. Let D ⊆ Cr(0) ⊆ Rd be a fixed spatial object, and for
all rotations R ∈ SO(d) and translations v ∈ Rd, define DR(v) = RD+ v. Similarly,
let D(v) = D + v. Furthermore, let I(t) = [t, t + `] for all t ≥ 0. In Example 3.3
below we assume that the set D in fact has radius r/2 ≥ 0, by which we mean there
is α ∈ Sd−1 such that {−αr/2, αr/2} ⊆ D ⊆ Cr/2(0).

Example 3.3. Suppose we are interested in the probability that there exist a time-
point t, a translation v0 and a rotation R of a given set D such that the field
exceeds the level x on the entire set {t} × DR(v0). More formally, we assume that
D ⊆ Cr/2(0) ⊆ Rd has radius r/2 and study the probability

P
(
there exist t ∈ [0, T ], v0 ∈ B,R ∈ SO(d) : Xv,t > x for all v ∈ DR(v0)

)
.

To put this within the more general framework introduced in (2.10), we define Ψ by

Ψ(yv,t) = sup
t∈[0,T ]

sup
v0∈B

sup
R∈SO(d)

inf
v∈DR(v0)

yv,t.

Consequently (obtained by straightforward manipulations),

ψx,u,s(yv,t) = inf
t∈[0,T ]

inf
v0∈B

inf
R∈SO(d)

sup
v∈DR(v0)

x− yv,t
f(|v − u|, t− s) .
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Example 3.4. Suppose we are interested in the probability that there is a time-
interval and a location and rotation of the fixed spatial object D, in which the
average of the field exceeds the level x. For this, let D ⊆ Cr(0) ⊆ Rd be given and
consider the probability

P
(
there exist t0 ∈ [0, T ], v0 ∈ B,R ∈ SO(d) : 1

K

∫

DR(v0)

∫

I(t0)

Xv,tdtdv > x
)
,

where K =
∫
D

∫ `
0

1 dtdv. The set D can both be of full dimension in Rd and a subset
of some lower dimensional subspace. In either case, dv refers to the relevant version
of the Lebesgue measure. The special cases of

P
(
there exist t ∈ [0, T ], v0 ∈ B,R ∈ SO(d) : 1

K

∫

DR(v0)

Xv,tdv > x
)
,

with a time-point instead of an interval (and K defined appropriately), and

P
(
there exist t0 ∈ [0, T ], v ∈ B : 1

K

∫

I(t0)

Xv,tdt > x
)
,

with a single spatial point, will be covered by the general formulation of the example,
simply be defining

∫
I(t0)

Xv,tdt = Xt0,v when ` = 0, and
∫
DR(v0)

Xv,tdv = Xt,v0 when
D = {0} and hence DR(v0) = {v0}. In the same spirit, the special case of

P
(
there exist t ∈ [0, T ], v ∈ B : Xv,t > x

)

corresponds to letting ` = 0 and D = {0}. To put this example in the framework of
functionals, we define

Ψ(yv,t) = sup
t0∈[0,T ]

sup
v0∈B

sup
R∈SO(d)

1
K

∫

DR(v0)

∫

I(t0)

yv,t dtdv,

leading to

ψx,u,s(yv,t) = inf
t0∈[0,T ]

inf
v0∈B

inf
R∈SO(d)

x− 1
K

∫
DR(v0)

∫
I(t0)

yv,t dtdv
1
K

∫
DR(v0)

∫
I(t0)

f(|v − u|, t− s) dtdv
.

For the further arguments to hold it will be important that ψx,u,s converges in
a particular way as x → ∞. The following assumption is satisfied under further
case specific assumptions on the kernel f in each of the Examples 3.3 and 3.4 as
illustrated in Section 4.

Assumption 3.5. With the functionals Ψ and ψx,u,s as in Assumption 3.1, there
exists c such that

c = Ψ((f(|v − u|, t− s))(v,t)) (3.1)

for all (u, s) ∈ B × [0, T ], and Ψ((f(|v − u|, t−s))(v,t)) < c for all (u, s) 6∈ B× [0, T ].
Furthermore, for all (u, s) ∈ B × [0, T ] there is a functional λu,s : RB′×T ′ → R, such
that

ψx,u,s(yv,t)−
x

c
+ λu,s(yv,t)→ 0 (3.2)

as x→∞, holds for all t-càdlàg fields (yv,t)(v,t)∈B′×T ′.
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The following proposition is easily seen from Assumption 3.1 and Proposition 3.2.

Proposition 3.6. With c and λu,s as in Assumption 3.5 it holds that

(i) If the field (yv,t)(v,t)∈B′×T ′ is constantly equal to y ∈ R, then

λu,s(yv,t) = λu,s(y) =
y

c
.

(ii) For all constants y ∈ R and fields (yv,t),

λu,s(yv,t + y) = λu,s(yv,t) +
y

c
.

(iii) λu,s is increasing.

In the remainder of this section, it as assumed that also Assumption 3.5 is sat-
isfied.

The first step in proving the asymptotic behaviour of the extremal probability
P(Ψ(Xv,t) > x) is to consider the asymptotic behaviour of extremal sets of a single
jump-field V = (Vv,t)(v,t)∈B′×T ′ with distribution ν1.

Theorem 3.7. Let (Vv,t)(v,t)∈B′×T ′ have distribution ν1 and let (yv,t)(v,t)∈B′×T ′ be
t-càdlàg. As x→∞, it holds that

P(Ψ(Vv,t + yv,t) > x)

L(x/c) exp(−βx/c) →
1

ν(A)

∫

B

∫ T

0

exp (βλu,s(yv,t)) dsdu. (3.3)

Proof. For sufficiently large x > 0 we find

ν(A)P(Ψ(Vv,t + yv,t) > x)

= F
({

(u, s, z) ∈ Rd × R× R+ : Ψ
(
zf(|v − u|, t− s) + yv,t

)
> x

})

= F
({

(u, s, z) ∈ Rd × R× R+ : ψx,u,s(yv,t) < z
})

=

∫

B×[0,T ]

L (ψx,u,s(yv,t)) exp (−βψx,u,s(yv,t))m(du, ds)

+

∫

(B×[0,T ])c
L (ψx,u,s(yv,t)) exp (−βψx,u,s(yv,t))m(du, ds).

(3.4)

First we show that the latter integral is of order o(L(x/c) exp(−βx/c)) as x→∞.
Let y∗ = sup(v,t)∈B′×T ′ yv,t. Using Proposition 3.2(iii) and that x 7→ L(x) exp(−βx)
is decreasing, we obtain that the second integral in (3.4) is bounded from above by
∫

(B×[0,T ])c
L

(
x− y∗

Ψ(f(|v − u|, t− s))

)
exp

(
−β x− y∗

Ψ(f(|v − u|, t− s))

)
m(du, ds).

Let h(u, s;x) denote the integrand. For all (u, s) ∈ (B× [0, T ])c we have Ψ(f(|v − u|,
t− s)) < c. In combination with (2.5) and (2.6), this implies the existence of γ > 0
and C > 0 such that

h(u, s;x)

L(x/c) exp(−βx/c) ≤ C exp(−γx)
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for sufficiently large x. Thus, h(u, s;x) is of order o(L(x/c) exp(−βx/c)) at infinity.
By dominated convergence, also the integral is of order o(L(x/c) exp(−βx/c)) if we
can find an integrable function g : Rd × R→ R such that

h(u, s;x)

L(x/c) exp(−βx/c) ≤ g(u, s)

for all (u, s) ∈ Rd × R. Returning to (2.6) we see that for all 0 < γ < β/c there is
C > 0 and x0 > y∗ such that

h(u, s;x)

L(x/c) exp(−βx/c)
≤ C exp

(
−(x0 − y∗)(β − γc)

( 1

Ψ(f(|v − u|, t− s)) −
1

c

)) (3.5)

for all x ≥ x0. SinceB′ × T ′ is bounded we can choose b ∈ (0,∞) such thatB′ × T ′ ⊆
Cb(0) ⊆ Rd+1, where Cb(0) is the (d + 1)-dimensional ball with radius b and center
0 ∈ Rd+1. For all (u, s) 6∈ Cb(0) we obtain from (2.11) that there is a constant C
such that

Ψ(f(|v − u|, t− s)) ≤ sup
(v,t)∈B′×T ′

f(|v − u|, t− s)

≤ sup
(v,t)∈Cb(0)

f(|v − u|, t− s) ≤ C

(|(u, s)| − b+ 1)
,

where we in the first inequality used Assumption 3.1(i) and (ii). It follows that (3.5)
is integrable.

It remains to show that the first integral in (3.4) has the desired mode of con-
vergence. For this, we have from (3.2), the representation of L, and the fact that ρ
has an exponential tail, that for any (u, s) ∈ B × [0, T ],

L (ψx,u,s(yv,t)) exp (−βψx,u,s(yv,t))
L
(
x
c

)
exp

(
−β x

c

) → exp (βλu,s(yv,t))

as x→∞. Since x 7→ L(x) exp(−βx) is decreasing, we find using Proposition 3.2(iii)
that for sufficiently large x,

L (ψx,u,s(yv,t)) exp (−βψx,u,s(yv,t))
L
(
x
c

)
exp

(
−β x

c

)

≤ L
(
x−y∗
c

)
exp

(
−β x−y∗

c

)

L
(
x
c

)
exp

(
−β x

c

) ≤ C exp(βy∗/c),

for any (u, s) ∈ B × [0, T ], where, according to (2.5), C is such that L
(
x−y∗
c

)
/L
(
x
c

)
≤

C. As B× [0, T ] is compact, the upper bound is integrable over B× [0, T ] and (3.3)
then follows by dominated convergence.

The next step is to extend the relation (3.3) to an asymptotic result for P(Ψ(V 1
v,t

+ · · ·+ V n
v,t + yv,t) > x), where, for i = 1, . . . , n, V i are independent and identically
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distributed with common distribution ν1. Here it will be useful to recall that each
V i can be represented by (Zif(|v − U i|, t − Si))(v,t)∈B′×T ′ , where (U i, Si, Zi) has
distribution F1. Before being able to extend (3.3), we need a final assumption on
the existence of a function φ ensuring sufficient integrability properties.

For the assumption we need some notation representing a deterministic version
of the sum V 1

v,t + · · ·+ V n
v,t. Thus let for each i = 1, . . . , n the field (yiv,t)(v,t)∈B′×T ′ be

given by
yiv,t = zif(|v − ui|, t− si),

where all zi ≥ 0, ui ∈ Rd and si ∈ R.

Assumption 3.8. There exists a function φ : Rd × R→ [0,∞) such that

φ(u, s)

{
= c for (u, s) ∈ B′ × T ′
< c for (u, s) 6∈ B′ × T ′, (3.6)

where c > 0 is the constant defined in (3.1), and there is b > 0 and a constant C2

such that
φ(u, s) ≤ C2

|(u, s)| − b+ 1
(3.7)

for all (u, s) with |(u, s)| > b.
The function φ satisfies

Ψ
( n∑

i=1

yiv,t

)
≤

n∑

i=1

ziφ(ui, si), (3.8)

and

sup
s∈[0,T ]

sup
u∈B

λu,s

( n∑

i=1

yiv,t

)
≤ 1

c

n∑

i=1

ziφ(ui, si). (3.9)

The definition of φ along with (3.7) ensures that the tail of Zφ(U, S) is asymp-
totically equivalent to ρ((x/c,∞)) and hence, Zφ(U, S) is convolution equivalent
with index β/c; see Lemma 3.9 below. Equation (3.8) then provides a convolution
equivalent upper bound of the extremal probability for the functional Ψ of a sum
of jump-fields. Finally, finiteness of relevant exponential moments of λu,s applied to
jump-fields is ensured by (3.9). This result is seen in Theorem 3.10 below.

In the remainder of this section it is also assumed that Assumption 3.8 is sat-
isfied. The proof of Lemma 3.9 below follows by similar arguments as the proof
of Theorem 3.7 above, however, for completeness the proof can be found in the
Appendix.

Lemma 3.9. Let (U, S, Z) have distribution F1. Then, as x→∞,

P(Zφ(U, S) > x)

L(x/c) exp(−βx/c) →
1

ν(A)
m(B′ × T ′). (3.10)

In particular, the distribution of Zφ(U, S) is convolution equivalent with index β/c
and

E
[
exp
(β
c
Zφ(U, S)

)]
<∞. (3.11)
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As mentioned, the convolution equivalence of Zφ(U, S) is translated into a convo-
lution equivalent upper bound for the extremal probability of a sum of jump-fields.
Here (3.8) is applied together with the relation F ∗n(x) ∼ nF (x)

(∫
eβyF (dy)

)n−1,
x → ∞, when F is a convolution equivalent distribution with index β, F ∗n is its
n-fold convolution, and F is its tail. For this relation see e.g. [6, Corollary 2.11].

In Theorem 3.10 below, a similar convolution equivalence for the sum of jump-
fields is obtained.

Theorem 3.10. Let V 1, V 2, . . . be i.i.d. fields with common distribution ν1, and
assume that (yv,t)(v,t)∈B′×T ′ is t-càdlàg. For all n ∈ N it holds that

P(Ψ(V 1
v,t + · · ·+ V n

v,t + yv,t) > x)

P(Ψ(V 1
v,t) > x)

→ n

m(B × [0, T ])

∫

B

∫ T

0

E
[
exp

(
βλu,s(V

1
v,t + · · ·+ V n−1

v,t + yv,t)
)]

dsdu

as x→∞.

Recall that the field X1 is defined as the compound Poisson sum with i.i.d. jump-
fields V 1, V 2, . . . and an independent Poisson distributed variable N with intensity
ν(A) < ∞. The following result on the extremal behaviour of X1 follows from
Theorem 3.10 by conditioning on the value of N .

Theorem 3.11. For each (u, s) ∈ B× [0, T ], E
[
exp

(
βλu,s(X

1
v,t)
)]
<∞. For a field

(yv,t)(v,t)∈B′×T ′ satisfying (2.7),

P(Ψ(X1
v,t + yv,t) > x)

L(x/c) exp(−βx/c) →
∫

B

∫ T

0

E
[
exp

(
βλu,s(X

1
v,t + yv,t)

)]
dsdu

as x→∞.

Now recall that we write the field X = (Xv,t)(v,t)∈B′×T ′ defined in (2.9) as the
independent sum X = X1 + X2, where X1 is the compound Poisson sum of fields
with distribution ν1. Also, the fields in the decomposition can be assumed to be
t-càdlàg. One can show that the tail of sup(v,t) X

2
v,t is lighter than that of Ψ(X1

v,t),
which is equivalent to the tail of ρ by Theorem 3.11. Combining this fact with [13,
Lemma 2.1], an argument based on independence and dominated convergence can
be used to conclude Theorem 3.13 below from Theorem 3.11.

Lemma 3.12. For all (u, s) ∈ B × [0, T ] it holds that E [exp (βλu,s(Xv,t))] <∞.

Theorem 3.13. Let the field X be given by (2.9), where the Lévy basis M sat-
isfies Assumption 2.1 and the kernel function f satisfies Assumption 2.4. Let the
functionals Ψ and λu,s satisfy Assumptions 3.1 and 3.5, respectively. Then

lim
x→∞

P(Ψ(Xv,t) > x)

ρ((x/c,∞))
=

∫

B

∫ T

0

E [exp (βλu,s(Xv,t))] dsdu.
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4 Example results

In this section we return to Examples 3.3 and 3.4 to show versions of Theorem 3.13
when Ψ is specifically given as in the examples. We make further assumptions on
the kernel f that guarantee Assumptions 3.5 and 3.8.

In the setting of Example 3.3 we assume the following.

Assumption 4.1. The kernel f : [0,∞) × R → [0,∞) is decreasing in both coor-
dinates on [0,∞) × [0,∞), and it is strictly decreasing in the point (r/2, 0) in the
sense that

f(x, y) < f(r/2, 0) for all (x, y) ∈
(
[r/2,∞)× [0,∞)

)
\
{

(r/2, 0)
}
. (4.1)

Moreover, the derivative f1(x) = ∂f
∂x

(x, 0) exists for all x ≥ 0, and there is a function
g such that

g(x) = f1(r/2)(x− r/2) + f(r/2, 0) (4.2)

for all x ∈ [0, r], where also f(x, 0) ≤ g(x) for all x ∈ [0, r].

Such a g exists in particular when f is concave on [0, r]. The following lemma
shows that Assumption 3.5 is satisfied when the kernel satisfies Assumption 4.1.

Lemma 4.2. If Ψ and ψx,u,s are given as in Example 3.3 and f satisfies Assump-
tion 4.1, then Assumption 3.5 is satisfied with c = f(r/2, 0). Furthermore, for a
t-càdlàg field y = (yv,t)(v,t)∈B′×[0,T ], the functional λu,s takes the form

λu,s((yv,t)(v,t)∈B′×[0,T ]) = λu
(
(yv,s)v∈B′

)

for a functional λu : RB′ → R.

Proof. From [17, Lemma 3.1] we have, for fixed s ∈ [0, T ] and for all u ∈ B, a
functional λu such that

inf
v0∈B

inf
R∈SO(d)

sup
v∈DR(v0)

x− yv,s
f(|v − u|, 0)

− x

f(r/2, 0)
+ λu((yv,s)v∈B′)→ 0 (4.3)

as x→∞. with λu,s defined by λu,s((yv,t)(v,t)∈B′×[0,T ]) = λu((yv,s)v∈B′), we claim that
Assumption 3.5 is satisfied. For notational convenience, we write C = −λu(yv,s).

For all sufficiently large x, we can choose tx ∈ [s, T ], vx ∈ B and Rx ∈ SO(d)
such that

sup
v∈DRx (vx)

x− yv,tx
f(|v − u|, tx − s)

= inf
t∈[0,T ]

inf
v0∈B

inf
R∈SO(d)

sup
v∈DR(v0)

x− yv,t
f(|v − u|, t− s) .

With y∗ = sup(v,t)∈B′×[0,T ] yv,t and y∗ = inf(v,t)∈B′×[0,T ] yv,t, we then find

x− y∗
infv∈DRx (vx) f(|v − u|, tx − s)

≤ sup
v∈DRx (vx)

x− yv,tx
f(|v − u|, tx − s)

≤ sup
v∈DRx (u)

x− yv,s
f(|v − u|, 0)

≤ x− y∗
f(r/2, 0)

.
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Going to the limit x → ∞ and using that infv∈DR(v0) f(|v − u|, t − s) ≤ f(r/2, 0),
shows infv∈DRx (vx) f(|v−u|, tx−s)→ f(r/2, 0) as x→∞. Since in fact the inequality
infv∈DR(v0) f(|v − u|, t− s) < f(r/2, 0) is true for all (v0, t) 6= (u, s) and R ∈ SO(d),
the convergence implies that also vx → u and tx → s. We will show the desired
convergence

sup
v∈DRx (vx)

x− yv,tx
f(|v − u|, tx − s)

− x

f(r/2, 0)
→ C (x→∞)

by contradiction. Since

sup
v∈DRx (vx)

x− yv,tx
f(|v − u|, tx − s)

≤ inf
v0∈B

inf
R∈SO(d)

sup
v∈DR(v0)

x− yv,s
f(|v − u|, 0)

,

we assume the existence of ε > 0 and a sequence (xn), xn →∞, such that

sup
v∈DRn (vn)

xn − yv,tn
f(|v − u|, tn − s)

− xn
f(r/2, 0)

≤ C − ε (4.4)

for all n, where tn = txn , vn = vxn and Rn = Rxn . By t-càdlàg properties of the
y-field, we can find n0 such that

sup
v∈B′

∣∣∣∣
yv,tn − yv,s
f(|v − u|, 0)

∣∣∣∣ ≤
ε

2

for all n ≥ n0. Consequently and using that f is decreasing and (4.4)

sup
v∈DRn (vn)

xn − yv,s
f(|v − u|, 0)

− xn
f(r/2, 0)

≤ sup
v∈DRn (vn)

xn − yv,tn
f(|v − u|, 0)

− xn
f(r/2, 0)

+
ε

2

≤ sup
v∈DRn (vn)

xn − yv,tn
f(|v − u|, tn − s)

− xn
f(r/2, 0)

+
ε

2
≤ C − ε

2
,

which contradicts the limit relation (4.3).

Theorem 4.3. Let the field X be given by (2.9), where the Lévy basis M satisfies
Assumption 2.1 and the kernel function f satisfies Assumptions 2.4 and 4.1. Let
D ⊆ Cr/2(0) have radius r/2 > 0 and let Ψ be defined by

Ψ(yv,t) = sup
t∈[0,T ]

sup
v0∈B

sup
R∈SO(d)

inf
v∈DR(v0)

yv,t.

Furthermore, let λu,s be the functional given in Lemma 4.2 and write c = f(r/2, 0).
Then

lim
x→∞

P(Ψ(Xv,t) > x)

ρ((x/c,∞))
=

∫

B

∫ T

0

E [exp (βλu,s(Xv,t))] dsdu.
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Proof. The result follows from Theorem 3.13 and Lemma 4.2 once we show the
existence of a function φ satisfying Assumption 3.1. Now define φ as

φ(u, s) = f(r/2, 0) 1B′×[0,T ](u, s)

+ sup
t∈[0,T ]

sup
v∈B⊕Cr/2

f(|v − u|, t− s) 1(B′×[0,T ])c(u, s).

By (4.1), φ satisfies (3.6). Choosing b > 0 such that B′ × [0, T ] ⊆ Cb(0), we use
(2.11) to find a constant C such that

φ(u, s) ≤ sup
(v,t)∈Cb(0)

f(|v − u|, t− s) ≤ C

|(u, s)| − b+ 1

whenever |(u, s)| > b. Hence (3.7) is also satisfied.
Appealing to Lemma 4.2 and [17, Lemma 3.2],

λu,s(yv,t) =
1

2f(r/2, 0)
sup

α∈Sd−1

(yu+αr/2,s + yu−αr/2,s) (4.5)

for all (u, s) ∈ B × [0, T ], if D = {−αr/2, αr/2} for some α ∈ Sd−1. Adapting the
proof of [17, Lemma 3.3] to this time-dependant setting, it is seen using (4.5) that
(3.8) and (3.9) follow when it is shown that

1
2
(yiu+αr/2,s + yiu−αr/2,s) ≤ ziφ(ui, si)

for all (u, s) ∈ B × [0, T ], α ∈ Sd−1,
(4.6)

with yiv,t defined as just before Assumption 3.8. Since f is decreasing in both coor-
dinates,

1

2

(
yiu+αr/2,s + yiu−αr/2,s

)
≤ zi

2

(
f(|u+ αr/2− ui|, 0) + f(|u− αr/2− ui|, 0)

)
.

Using the upper bound g assumed by (4.2), arguments as in [17, Lemma 3.3] show
that (4.6) is satisfied when (ui, si) ∈ B′ × [0, T ]. When (ui, si) ∈ (B′ × [0, T ])c it is
immediately seen that

1
2

(
yiu+αr/2,s + yiu−αr/2,s

)
≤ zi sup

t∈[0,T ]

sup
v∈B⊕Cr/2

f(|v − ui|, t− si) = ziφ(ui, si).

This concludes the proof.

In the setting of Example 3.4 the following is assumed.

Assumption 4.4. For the set D ⊆ Cr(0) ⊆ Rd the kernel function f satisfies
∫

D(v0)

∫

I(t0)

f(|v − u|, t− s)dtdv <
∫

D

∫ `

0

f(|v|, t)dtdv (4.7)

for all (v0, t0) 6= (u, s) ∈ Rd × R.
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Lemma 4.5. Let y = (yv,t)(v,t)∈B′×T ′ be a t-càdlàg field. For all (u, s) ∈ B × [0, T ]
it holds that

inf
t0∈[0,T ]

inf
v0∈B

inf
R∈SO(d)

x− 1
K

∫
DR(v0)

∫
I(t0)

yv,t dtdv
1
K

∫
DR(v0)

∫
I(t0)

f(|v − u|, t− s) dtdv

− x

c
+ sup

R∈SO(d)

1
c

1
K

∫

DR(u)

∫

I(s)

yv,tdtdv → 0

(4.8)

as x→∞, where c = 1
K

∫
D

∫ `
0
f(|v|, t)dtdv. That is, with Ψ and ψx,u,s as in Exam-

ple 3.4, and with λu,s(yv,t) = supR
1
c

1
K

∫
DR(u)

∫
I(s)

yv,tdtdv, Assumption 3.5 is satis-
fied.
Proof. For all sufficiently large x > 0, choose tx ∈ [s, T ], vx ∈ B and Rx ∈ SO(d)
with

inf
t0,v0,R

x− 1
K

∫
DR(v0)

∫
I(t0)

yv,t dtdv
1
K

∫
DR(v0)

∫
I(t0)

f(|v − u|, t− s) dtdv

=
x− 1

K

∫
DRx (vx)

∫
I(tx)

yv,t dtdv
1
K

∫
DRx (vx)

∫
I(tx)

f(|v − u|, t− s) dtdv
.

By definition of tx and vx we find that
x− y∗

1
K

∫
DRx (vx)

∫
I(tx)

f(|v − u|, t− s) dtdv

≤
x− 1

K

∫
DRx (vx)

∫
I(tx)

yv,t dtdv
1
K

∫
DRx (vx)

∫
I(tx)

f(|v − u|, t− s) dtdv

≤ inf
R∈SO(d)

x− 1
K

∫
DR(u)

∫
I(s)

yv,t dtdv
1
K

∫
D(u)

∫
I(s)

f(|v − u|, t− s) dtdv

=
x− supR∈SO(d)

1
K

∫
DR(u)

∫
I(s)

yv,t dtdv

c
,

where y∗ = sup yv,t. Since 1
K

∫
DR(v0)

∫
I(t0)

f(|v − u|, t − s) dtdv < c for all (v0, t0) 6=
(u, s) and any R ∈ SO(d), we conclude that 1

K

∫
DRx (vx)

∫
I(tx)

f(|v − u|, t−s) dtdv → c

and consequently vx → u and tx → s as x→∞. Since the field (yv,t) is t-càdlàg, we
furthermore find that, as x→∞,

sup
R∈SO(d)

∫

DR(vx)

∫

I(tx)

yv,t dtdv → sup
R∈SO(d)

∫

DR(u)

∫

I(s)

yv,t dtdv.

Recalling that 1
K

∫
DRx (vx)

∫
I(tx)

f(|v − u|, t− s) dtdv ≤ c for all x, and turning to the
inequalities above, we conclude (4.8) by

0 ≤
x− supR

1
K

∫
DR(u)

∫
I(s)

yv,t dtdv

c
−

x− 1
K

∫
DRx (vx)

∫
I(tx)

yv,t dtdv
1
K

∫
DRx (vx)

∫
I(tx)

f(|v − u|, t− s) dtdv

≤
1
K

∫
DRx (vx)

∫
I(tx)

yv,t dtdv − supR
1
K

∫
DR(u)

∫
I(s)

yv,t dtdv

c

≤
supR

1
K

∫
DR(vx)

∫
I(tx)

yv,t dtdv − supR
1
K

∫
DR(u)

∫
I(s)

yv,t dtdv

c
→ 0
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as x→∞.

Theorem 4.6. Let the field X be given by (2.9), where the Lévy basis M satisfies
Assumption 2.1 and the kernel function f satisfies Assumptions 2.4 and 4.4. Let
D ⊆ Cr(0) ⊆ Rd for r ≥ 0 be given, and let Ψ be defined by

Ψ(yv,t) = sup
t0∈[0,T ]

sup
v0∈B

sup
R∈SO(d)

1
K

∫

DR(v0)

∫

I(t0)

yv,t dtdv,

where K =
∫
D

∫ `
0

1 dtdv. Furthermore, let c = 1
K

∫
D

∫ `
0
f(|v|, t)dtdv. Then

lim
x→∞

P(Ψ(Xv,t) > x)

ρ((x/c,∞))

= m(B × [0, T ])E
[
exp
(
β sup
R∈SO(d)

1
c

1
K

∫

DR(u)

∫

I(s)

Xv,tdtdv
)]
,

where (u, s) ∈ B × [0, T ] is chosen arbitrarily.

Proof of Theorem 4.6. The result follows from Theorem 3.13 and Lemma 4.5 once
we show the existence of a function φ satisfying Assumption 3.1. Note that the
integrand in the limit in Theorem 3.13 is constant due to the stationarity of X and
λu,s. Define

φ(u, s) = c 1B′×T ′(u, s)

+ sup
t0∈[0,T ]

sup
v0∈B

1
K

∫

D(v0)

∫

I(t0)

f(|v − u|, t− s)dtdv 1(B′×T ′)c(u, s).

By (4.7), φ satisfies (3.6). Choosing b > 0 such that B′ × T ′ ⊆ Cb(0), we use (2.11)
to find a constant C such that

φ(u, s) ≤ sup
(v,t)∈Cb(0)

f(|v − u|, t− s) ≤ C

|(u, s)| − b+ 1

whenever |(u, s)| > b. Hence (3.7) is also satisfied. Now let n ∈ N be fixed, and let
(yiv,t)(v,t)∈B′×T ′ for i = 1, . . . , n be t-càdlàg fields. Then

Ψ
( n∑

i=1

yiv,t

)
= sup

t0∈[0,T ]

sup
v0∈B

sup
R∈SO(d)

1
K

∫

DR(v0)

∫

I(t0)

n∑

i=1

yiv,t dtdv

≤
n∑

i=1

sup
t0∈[0,T ]

sup
v0∈B

sup
R∈SO(d)

1
K

∫

DR(v0)

∫

I(t0)

yiv,t dtdv

=
n∑

i=1

Ψ(yiv,t).

Furthermore, if yiv,t = zif(|v − ui|, t− si), it is easily seen that Ψ(yiv,t) ≤ ziφ(ui, si),
and hence, (3.8) is satisfied. Since

sup
s∈[0,T ]

sup
u∈B

λu,s(y
i
v,t) =

1

c
Ψ(yiv,t),

(3.9) is also satisfied, which concludes the proof.
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As mentioned in Example 3.4, the case of P(supt∈[0,T ] supv∈BXv,t > x) follows
from Theorem 4.6 by letting ` = 0 and D = {0}. In this case, the constant c =
f(0, 0) = 1 and (4.7) translates into f(|v0−u|, t0−s) < f(0, 0) for all (v0, t0) 6= (u, s),
or equivalently f(x, y) < f(0, 0) for all (x, y) 6= (0, 0).

Theorem 4.7. Let the field X be given by (2.9), where the Lévy basis M satisfies
Assumption 2.1 and the kernel function f satisfies Assumption 2.4 and f(x, y) <
f(0, 0) for all (x, y) 6= (0, 0). Then

lim
x→∞

P(supt∈[0,T ] supv∈BXv,t > x)

ρ((x,∞))
= m(B × [0, T ])E [exp (βXu,s)] ,

where (u, s) ∈ B × [0, T ] is chosen arbitrarily.

5 Continuity properties

The main purpose of this section is to show that the field defined in (2.9) has a
version with t-càdlàg sample paths. This result will be obtained in Theorem 5.7 be-
low. However, the proof involves showing two other results on continuity properties
of related random fields of independent value. Therefore these results are formu-
lated as separate theorems; see Theorems 5.2 and 5.4 below. Only the main results,
Theorems 5.2, 5.4 and 5.7, are stated fully with all assumptions included in the
statement. The rest are to be understood in relation to the context. As stated in
Section 2, Assumption 2.1 on the Lévy basis is partly used to guarantee that the
field is t-càdlàg. However, if the aim is solely to obtain the t-càdlàg property, we can
relax the assumption. In this section we therefore consider Assumption 5.1 below.
It will both be referred to with the dimension of the Lévy basis being d and d + 1.
Thus, both the assumption and the subsequent Theorem 5.2 will be formulated with
m ∈ N indicating the dimension.

Assumption 5.1. The Lévy basis M on Rm is stationary and isotropic satisfying
(2.1). Moreover, the Lévy measure, denoted ρ, satisfies

∫

|y|>1

ykρ(dy) <∞ for all k ∈ N. (5.1)

For the first result in this section, consider a compact set K ⊆ Rm and define
the random field Y = (Yv)v∈K by

Yv =

∫

Rm

h(|v − u|)M(du), (5.2)

where M is a Lévy basis on Rm satisfying Assumption 5.1. It is shown in [16,
Theorem A.1] that such a field has a continuous version when h : [0,∞) → R
satisfies certain properties including being differentiable. Under much less restrictive
assumptions on the kernel function h, we show that this is still the case. We only
assume that h is bounded and integrable

∫

Rm

h(|u|)du <∞, (5.3)
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and that h is Lipschitz continuous. That is, there exist CL > 0 such that

|h(x)− h(y)| ≤ CL|x− y| (5.4)

for all x, y ≥ 0. Having Assumption 5.1 satisfied for the basis M and (5.3) and (5.4)
satisfied for the bounded kernel function ensures in particular that the integral (5.2)
exists; see [15, Theorem 2.7].

To show continuity, we appeal to a result in [1], in which finite moments and
cumulants of the spot variableM ′ of the basisM are needed. As already mentioned,
(5.1) is equivalent to saying that M ′ has finite moments and thus cumulants of any
order; see [14, Corollary 3.2.2] for the relation between moments and cumulants.

Theorem 5.2. If the field Y is given by (5.2) with the Lévy basisM on Rm satisfying
Assumption 5.1, and if the kernel is bounded and satisfies (5.3) and (5.4), then the
field has a continuous version.

Proof. For r ∈ R and n ∈ N we shall consider moments of the form E[(Yv+r − Yv)n].
Note that only indices in K are relevant, so in particular, 0 ≤ |r| ≤ diam(K). By
(5.4) and the triangle inequality, there is a finite C such that

∣∣h(|v + r − u|)− h(|v − u|)
∣∣ ≤ C|r|.

Now let κn[ · ] denote the nth cumulant of a random variable; for a brief overview
of the relation between cumulants and moments we refer to [14, Chapter 3] and in
particular [14, Corollary 3.2.2]. The cumulants κn of the difference Yv+r − Yv satisfy
κ1[Yv+r − Yv] = 0 and, for n > 1,

|κn[Yv+r − Yv]| ≤
∣∣κn[M ′]

∣∣
∫

Rm

∣∣h(|v + r − u|)− h(|v − u|)
∣∣ndu

≤
∣∣κn[M ′]

∣∣Cn−1|r|n−1

∫

Rm

∣∣h(|v + r − u|)− h(|v − u|)
∣∣du ≤ Cn|r|n−1,

where Cn ≥ 0 is a finite constant, chosen independently of r and v ∈ K by

Cn =
∣∣κn[M ′]

∣∣Cn−12

∫

Rm

h(|u|)du <∞,

see e.g. [18, Appendix A] for the cumulant formulas. Consequently, for all n ∈ N,
there exist finite constants C ′n and natural numbers n′ ≥ n/2 such that

E[(Yv+r − Yv)n] ≤ C ′n|r|n
′

with the equality n′ = n/2 whenever n is even; see [14, Corollary 3.2.2]. Using the
fact that |r| ≤ diam(K), we find finite C ′ ≥ 0 and η > 4(m+ 1) such that

E|Yv+r − Yv|4(m+1) ≤ C ′4(m+1)|r|2m|r|2 ≤
C ′|r|2m
|log|r||1+η

for all v ∈ K. From a corollary to [1, Theorem 3.2.5] we conclude that (Yv)v∈K has
a continuous version on K.
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Next, we consider a field indexed by Rd ×R allowing for discontinuities in time,
and we show that it has a t-càdlàg version. For compact sets K ⊆ Rd and [0, S],
S > 0, we let the random field Z = (Zv,t)(v,t)∈K×[0,S] be given by

Zv,t =

∫

Rd

∫

[0,t]

g(|v − u|)M(ds, du), (5.5)

where M is a Lévy basis satisfying Assumption 5.1 with m = d + 1, and the inte-
gration kernel g : [0,∞) → R is assumed to be bounded, integrable and Lipschitz
continuous, i.e. it satisfies (5.3) and (5.4); again with m = d+ 1.

Choose 0 = t0 < · · · < tn in [0, S] and v ∈ K. Arguing as in Section 2, the
cumulant function for (Zv,t1 , Zv,t2 − Zv,t1 , . . . , Zv,tn − Zv,tn−1) can be found to be

C(λ † (Zv,t1 , Zv,t2 − Zv,t1 , . . . , Zv,tn − Zv,tn−1))

=
n∑

j=1

(tj − tj−1)
(
iλja

∫

Rd

g(|v − u|)du− 1
2
θλ2

j

∫

Rd

g(|v − u|)2du

+

∫

Rd

∫

R
eig(|v−u|)λjz − 1− ig(|v − u|)λjz1[−1,1](z)ρ(dz)du

)

where λ = (λ1, . . . , λn) ∈ Rn. By a change of measure, we see for fixed v ∈ K that
(Zv,t)t∈[0,S] is a one-dimensional Lévy process in law. In the following we shall extend
this to a result concerning the process of random fields indexed by time.

In this section we will often consider the field as being a collection of real-valued
functions defined on space K or K̃ = K ∩Qd, with the functions indexed by time in
[0, S] or S̃ = [0, S] ∩Q. As such we introduce the notation Zt = (Zv,t)v∈K , with the
entire field denoted by Z = (Zt)t∈[0,S] when considered as a collection of random
functions. We use the same notation when space and time are indexed by K̃ and
S̃, respectively, although when it is unclear which is meant and it is necessary to
distinguish the cases, we explicitly state it.

Let t ∈ [0, S] be fixed and choose v1, . . . , vn ∈ K. Then (Zv1,t, . . . , Zvn,t) has
cumulant function given by

C(λ † (Zv1,t, . . . , Zvn,t)) = tia

∫

Rd

n∑

j=1

λjg(|vj − u|)du

− t1
2
θ

∫

Rd

( n∑

j=1

λjg(|vj − u|)
)2

du

+ t

∫

Rd

∫

R
ei

∑n
j=1 λjg(|vj−u|)z − 1− i

n∑

j=1

λjg(|vj − u|)z1[−1,1](z)ρ(dz)du.

(5.6)

Replacing (a, θ, ρ) by (ta, tθ, tρ), we see from (5.6) that Zt is the type of field defined
in (5.2). Thus, by Theorem 5.2, (Zv,t)v∈K̃ is almost surely uniformly continuous. This
holds jointly for all rational time points t ∈ S̃, and therefore a version of (Zt)t∈S̃
can be chosen with Zt being continuous for all t ∈ S̃, i.e. it has values in the space
of real-valued functions on the compact set K. It will be useful in the following
that this space equipped with the uniform norm, here denoted (C(K,R), ‖·‖∞), is a
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separable Banach space; see [11, Theorem 4.19]. The following lemma concerns this
specific version of (Z)t∈S̃ taking its values in (C(K,R), ‖·‖∞).

Lemma 5.3. The process (Zt)t∈S̃ is a Lévy process in law, i.e. each Zt has an in-
finitely divisible distribution, the process has stationary and independent increments,
and it is stochastically continuous with respect to the uniform norm.

Proof. As Zt is a version of the field studied in (5.6) for each t ∈ S̃, also the cumulant
function for (Zv1,t, . . . , Zvn,t) will be as in (5.6). With similar considerations, but
heavier notation, it can be realised that for v1, . . . , vn ∈ K and 0 = t0 < t1 < · · · <
tm ∈ S̃, and defining Zn

tj
= (Zv1,tj , . . . , Zvn,tj) for j = 1, . . . ,m, it holds that

C(λ † (Zn
t1
, Zn

t2
− Zn

t1
, . . . , Zn

tm − Zn
tm−1

))

=
m∑

j=1

C(λj † Zn
tj
− Zn

tj−1
) =

m∑

j=1

C(λj † Zn
tj−tj−1

),

where λ = (λ1, . . . , λn) and each λj ∈ Rn, and the natural convention Zn
0 = (0, . . . , 0)

is applied. This shows that (Zt)t∈S̃ has stationary and independent increments.
To show stochastic continuity it suffices to show that

lim
n→∞

P(‖Ztn‖∞ ≥ ε) = 0

for any rational sequence (tn) satisfying tn ↓ 0. As (C(K,R), ‖·‖∞) is a separable
Banach space, this is equivalent to showing that Ztn converges to δ0 in law in the
uniform norm, where δ0 is the degenerate probability measure concentrated at 0. For
t ∈ S̃, let νt denote the distribution of Zt and let ν̂tn be its characteristic function
defined on the dual space of C(K,R), see [12, Section 1.7]. Since (C(K,R), ‖·‖∞)
is separable, νt is a Radon measure [12, Proposition 1.1.3] and the results in [12,
Chapters 2 & 5] apply. Due to the infinite divisibility, ν1 = νtn ∗ ν1−tn for any
n ∈ N (assuming tn ≤ 1), and we conclude that {νtn} is relatively shift compact [12,
Theorem 2.3.1]. Following the proofs of [12, Propositions 5.1.4 & 5.1.5] we obtain
that limn→∞ ν̂tn → 1 uniformly on bounded sets of the dual space. Combining [12,
Propositions 2.3.9 & 1.8.2] shows that Ztn converges in law to δ0 as claimed.

The next theorem states that the field Z defined in (5.5) indeed has a t-càdlàg
version.

Theorem 5.4. Let the field Z be given by (5.5) such that the Lévy basis M on Rd+1

satisfies Assumption 5.1 with m = d + 1, and the bounded kernel g satisfies (5.3)
and (5.4), with m = d. There is a field Z ′ = (Z ′v,t)(v,t)∈K×[0,S] that is a version of Z,
i.e. P(Z ′v,t = Zv,t) = 1 for all (v, t) ∈ K × [0, S], and such that lims↓tZ ′s(ω) = Z ′t(ω)
and lims↑tZ ′s(ω) exists with respect to ‖·‖∞ for all ω. Furthermore, the map v 7→ Z ′v,t
from K into R is continuous for all t ∈ [0, S]. In particular, Z ′ has t-càdlàg sample
paths.

The desired t-càdlàg version will be an extension of the field (Zt)t∈S̃ studied
in Lemma 5.3. Thus, (Zt)t∈S̃ will still be a version chosen such that each Zt is a
continuous random field. The result relies on a sequence of lemmas that are shown

22



using an adaption of the ideas of [21, Theorems 11.1 & 11.5] and [21, Lemmas
11.2-11.4] for Lévy processes on R. Lemmas 5.5 and 5.6 are shown using similar
techniques for the Lévy process (Zt)t∈S̃, and therefore we omit the proofs here, and
refer to the Appendix (page 25) for completeness.

For the statement and proof of these lemmas, the following notation will be
useful. We say that Z(ω) has ε-oscillation n times in a set M ⊆ Q ∩ [0,∞) if there
exist t0 < t1 < · · · < tn ∈M such that

‖Ztj(ω)−Ztj−1
(ω)‖∞ = sup

v∈K
|Zv,tj(ω)− Zv,tj−1

(ω)| > ε

for all j = 1, . . . , n. We say that Z(ω) has ε-oscillation infinitely often in M if it has
ε-oscillation n times in M for any n ∈ N. Consider Ω1 given by

Ω1 = {ω ∈ Ω | lim
s∈Q,s↓t

Zs(ω) exists with respect to ‖·‖∞ for all t ∈ [0, S] and

lim
s∈Q,s↑t

Zs(ω) exists with respect to ‖·‖∞ for all t ∈ [0, S]}.

Furthermore define the sets

Ak = {ω ∈ Ω | Z(ω) does not have 1
k
-oscillation infinitely often in S̃},

and from these define Ω′1 = ∩k∈NAk. Each Ak is measurable as each Zt is continuous
on K for t ∈ S̃, such that ‖·‖∞ = supv∈K | · | = supv∈K̃ | · |.

Lemma 5.5. Ω′1 ⊆ Ω1.

Lemma 5.6. P(Ω′1) = 1.

Having established that the lims∈Q,s↓tZs and lims∈Q,s↑tZs exist almost surely, we
now prove the main result Theorem 5.4 on the existence of a t-càdlàg version of Z.

Proof of Theorem 5.4. we have P(Ω′1) = 1 by Lemma 5.6. For all t ∈ [0, S], define
Z ′t(ω) = 1Ω′1(ω)(lims∈Q,s↓tZs(ω)), where the limit is with respect to ‖·‖∞, and exists
according to Lemma 5.5. The càdlàg-assertion is trivially true for ω 6∈ Ω′1. Now
consider ω ∈ Ω′1 but suppress ω in ease of notation. By definition of Z ′t,

∀ε > 0 ∃N ∀s ∈ (t, t+ 1
N

) ∩Q : ‖Z ′t −Zs‖∞ < ε. (5.7)

Let (tn) be any sequence satisfying tn ↓ t. Fix ε > 0, and let N ∈ N satisfy (5.7)
with the bound ε

2
. There is n0 ∈ N such that |tn − t| < 1

N
for all n ≥ n0. Now fix

such n. By another application of (5.7) there exist Nn such that tn+ 1
Nn
≤ t+ 1

N
and

‖Z ′tn − Zs‖∞ < ε
2
for all s ∈ (tn, tn + 1

Nn
) ∩ Q. For any of those s we in particular

find that
‖Z ′tn −Z ′t‖∞ ≤ ‖Z ′tn −Zs‖∞ + ‖Z ′t −Zs‖∞ < ε.

As this is true for all n ≥ n0 we conclude that Z ′ = (Z ′t)t∈[0,S] is right-continuous
with respect to ‖·‖∞. Similar arguments show that Z ′ has limits from the left and
that the limits are unique. The mapping v 7→ Z ′v,t is continuous because the space
(C(K,R), ‖·‖∞) is complete, and Z ′t is defined as the limit of such functions.
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We now argue that Z ′ is indeed a version Z. If (tn) ⊂ S̃ with tn ↓ t then
Zv,tn

P−→ Zv,t for all v ∈ K as (Zv,t)t∈[0,S] is a Lévy process in law and thus especially
stochastically continuous. Since P(Ω′1) = 1 we have Zv,tn → Z ′v,t almost surely, and
by uniqueness of limits we conclude that P(Z ′v,t = Zv,t) = 1 for all (v, t) ∈ K × [0, S].

It remains to show that Z ′ is t-càdlàg. Since we for given (v, t) ∈ K × [0, S] can
write

|Z ′v,t − Z ′u,s| ≤ |Z ′v,t − Z ′u,t|+ ‖Z ′t −Z ′s‖∞
for any choice of (u, s) ∈ K× [0, S], we conclude that lim(u,s)→(v,t+) Z

′
u,s = Z ′v,t, from

the continuity of Z ′t and the uniform càdlàg property of (Z ′t)t∈[0,S]. Similar arguments
give that the limit lim(u,s)→(v,t−) Z

′
u,s exists in R and that it is unique.

Theorem 5.7 below is stated under Assumption 2.1. However, in order to establish
t-càdlàg sample paths, the milder Assumption 5.1 would have been sufficient.

Theorem 5.7. Let the field X = (Xv,t)(v,t)∈B′×T ′ be given by (2.9), where the Lévy
basis M satisfies Assumption 2.1 and the kernel function f satisfies Assumption 2.3.
Then X has a version with t-càdlàg sample paths.

Proof. We decompose the field (Xv,t) as

Xv,t =

∫

Rd×[0,t]

f(|v − u|, t− s)− f(|v − u|, 0)M(ds, du)

+

∫

Rd×(−∞,0)

f(|v − u|, t− s)M(ds, du) +

∫

Rd×[0,t]

f(|v − u|, 0)M(ds, du).

By Theorem 5.4, choosing g(·) = f(·, 0), the third term has a t-càdlàg version.
Due to continuity of the integrands, the first and second terms have continuous
versions by arguments similar to those in the proof of Theorem 5.2: Defining the
continuous function φ : [0,∞)× R→ R by

φ(x, y) = 1[0,∞)(y)
(
f(x, y)− f(x, 0)

)
,

the first term above reads

Y ′v,t =

∫

Rd×[0,∞)

φ(|v − u|, t− s)M(du, ds) = Yv,t + yv,t,

where yv,t = EY ′v,t and Yv,t = Y ′v,t − yv,t. The field (Yv,t) is continuous by previous
arguments replacing the assumptions (5.3) and (5.4) by the conditions

∫

Rd

∫ ∞

0

∣∣φ(|u|, T + `− s)
∣∣dsdu <∞ (5.8)

and the Lipschitz continuity of φ
∣∣φ(|u1|, t1 − s)− φ(|u2|, t2 − s)

∣∣ ≤ C
∣∣(u1 − u2, t1 − t2)

∣∣

for all u1, u2 ∈ Rd and t1, t2 ∈ T ′. These conditions are easily seen to be satisfied
under Assumption 2.3. As

yv,t = y0,t = E[M ′]

∫

Rd

∫ ∞

0

φ(|u|, t− s)dsdu <∞

the deterministic field (yv,t) is continuous by a dominated convergence argument
using (5.8). The continuity of the second term follows similarly.
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Appendix: Supplement

A Proofs of Section 3

Proof of Lemma 3.9. For sufficiently large x we find that

P(Zφ(U, S) > x) =
1

ν(A)
F
({

(u, s, z) ∈ Rd × R× R+ : zφ(u, s) > x
})

=
1

ν(A)

∫

B′×T ′
L
(x
c

)
exp
(
−βx

c

)
m(du, ds)

+
1

ν(A)

∫

(B′×T ′)c
L
( x

φ(u, s)

)
exp
(
−β x

φ(u, s)

)
m(du, ds),

where the first term equals L(x/c) exp(−βx/c) times the desired limit. The result
follows when the latter integral is shown to be of order o(L(x/c) exp(−βx/c)), as x→
∞. Let h(u, s;x) denote the integrand. For all (u, s) 6∈ B′ × T ′ we have φ(u, s) < c.
Combined with (2.5), this implies the existence of γ > 0 and C > 0 such that

h(u, s;x)

L(x/c) exp(−βx/c) ≤ C exp(−γx)

for sufficiently large x. Thus, the integrand h(u, s;x) is o(L(x/c) exp(−βx/c)) at
infinity. By dominated convergence, the integral is of order o(L(x/c) exp(−βx/c)) if
we can find an integrable function g : Rd × R→ R such that

h(u, s;x)

L(x/c) exp(−βx/c) ≤ g(u, s)

for all (u, s) ∈ Rd × R. Returning to (2.6) we see that for all 0 < γ < β/c there is
C > 0 and x0 such that

h(u, s;x)

L(x/c) exp(−βx/c) ≤ C exp
(
−x0(β − γc)

( 1

φ(u, s)
− 1

c

))
(A.1)

for all x ≥ x0. Since B′ × T ′ is bounded, we can choose b ∈ (0,∞) such that
B′ × T ′ ⊆ Cb(0), where Cb(0) is the (d + 1)-dimensional ball with radius b and
center 0 ∈ Rd × R. Turning to (3.7) and choosing b sufficiently large, we conclude
that the right hand side of (A.1) is integrable over the complement of Cb(0). This
shows the desired order of convergence.

From [13, Lemma 2.4(i)] the distribution of Zφ(U, S) is convolution equivalent
with index β/c. The integrability result follows from [13, Corollary 2.1(ii)].

Corollary A.1. If V 1, V 2, . . . are i.i.d. fields with distribution ν1, then

E
[
exp
(
β sup
u∈B

sup
s∈[0,T ]

λu,s((V
1
v,t + · · ·+ V n

v,t)(v,t))
)]

<∞

for all n ∈ N.
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Proof. Because each V i can be represented by (Zif(|v − U i|, t − Si)(v,t)∈B′×T ′ , the
result follows from (3.9) and (3.11).

Proof of Theorem 3.10. We will show the claim by induction over n: We note that
the case n = 1 follows easily from Theorem 3.7. Now assume that the result holds
true for some n ∈ N and let for convenience V ∗n = V 1 + · · · + V n. Also, let y∗ =
sup(v,t)∈B′×T ′ yv,t. Using (3.8) and the representation V i = Zif(|v − U i|, t− Si), we
find

P(Ψ(V ∗nv,t + V n+1
v,t + yv,t) > x)

≤ P
( n∑

i=1

Ziφ(U i, Si) >
x− y∗

2
, Zn+1φ(Un+1, Sn+1) >

x− y∗
2

,

Ψ(V ∗nv,t + V n+1
v,t + yv,t) > x

)

+ P
( n∑

i=1

Ziφ(U i, Si) ≤ x− y∗
2

,Ψ(V ∗nv,t + V n+1
v,t + yv,t) > x

)

+ P
(
Zn+1φ(Un+1, Sn+1) ≤ x− y∗

2
,Ψ(V ∗nv,t + V n+1

v,t + yv,t) > x
)
.

(A.2)

The first term in (A.2) is bounded from above by

P
( n∑

i=1

Ziφ(U i, Si) >
x− y∗

2

)
P
(
Zn+1φ(Un+1, Sn+1) >

x− y∗
2

)
.

In Lemma 3.9 we showed that the distribution of Ziφ(U i, Si) is convolution equiv-
alent with index β/c, and hence, from [6, Corollary 2.11] and (3.10), both factors
are asymptotically equivalent to ρ1((x/(2c),∞)) as x → ∞. Following the proof
of [5, Lemma 2] we see that the product is o((ρ1 ∗ ρ1)((x/c,∞))), and as such the
first term in (A.2) is o(ρ1((x/c,∞))) due to the convolution equivalence of ρ1. By
Theorem 3.7 it is of order o(P(Ψ(V 1

v,t) > x)) as x→∞.
By independence, the two remaining terms in (A.2) divided by P(Ψ(V 1

v,t) > x)
are

∫

Cx

P(Ψ(
∑n

i=1 z
if(|v − ui|, t− si) + V n+1

v,t + yv,t) > x)

P(Ψ(V 1
v,t) > x)

× F⊗n1 (d(u1, s1, z1; . . . ;un, sn, zn))

+

∫

C̃x

P(Ψ(V ∗nv,t + z1f(|v − u1|, t− s1) + yv,t) > x)

P(Ψ(V 1
v,t) > x)

F1(d(u1, s1, z1)),

(A.3)

where F⊗n1 is the n-fold product measure of F1 and

Cx =
{

(u1, s1, z1; . . . ;un, sn, zn) :
n∑

i=1

ziφ(ui, si) ≤ x− y∗
2

}
,

C̃x =
{

(u1, s1, z1) : z1φ(u1, s1) ≤ x− y∗
2

}
.
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Above we used the representation V i = Zif(|v−U i|, t−Si) again. By Theorem 3.7
and the induction assumption, the integrands of (A.3) have the following limits as
x→∞,

f1(u1, s1, z1; . . . ;un, sn, zn)

=

∫
B

∫ T
0

exp (βλu,s(
∑n

i=1 z
if(|v − ui|, t− si) + yv,t)) dsdu

m(B × [0, T ])
,

f2(u1, s1, z1)

=
n
∫
B

∫ T
0
E
[
exp

(
βλu,s(V

1
v,t + · · ·+ V n−1

v,t + z1f(|v − u1|, t− s1) + yv,t)
)]

dsdu

m(B × [0, T ])
,

respectively. When integrated with respect to the relevant measures we find
∫
f1(u1, s1, z1; . . . ;un, sn, zn)F⊗n1 (d(u1, s1, z1; . . . ;un, sn, zn))

+

∫
f2(u1, s1, z1)F1(d(u1, s1, z1))

=
n+ 1

m(B × [0, T ])

∫

B

∫ T

0

E
[
exp

(
βλu,s(V

1
v,t + · · ·+ V n

v,t + yv,t)
)]

dsdu,

which is the desired expression. To show convergence of the integrals in (A.3), using
Fatou’s lemma, it suffices to find integrable functions g1(u1, s1, z1; . . . ;un, sn, zn;x)
and g2(u1, s1, z1;x) that are upper bounds of the integrands such that their limits
exist when x→∞ and such that

∫
g1(u1, s1, z1; . . . ;un, sn, zn;x)F⊗n1 (d(u1, s1, z1; . . . ;un, sn, zn))

+

∫
g2(u1, s1, z1;x)F1(d(u1, s1, z1))

→
∫

lim
x→∞

g1(u1, s1, z1; . . . ;un, sn, zn;x)F⊗n1 (d(u1, s1, z1; . . . ;un, sn, zn))

+

∫
lim
x→∞

g2(u1, s1, z1;x)F1(d(u1, s1, z1))

as x→∞. Using (3.8) and properties of Ψ, we can choose the functions

g1(u1, s1, z1; . . . ;un, sn, zn;x) = 1Cx

P(Z1φ(U1, Z1) > x− y∗ −∑n
i=1 z

iφ(ui, si))

P(Ψ(V 1
v,t) > x)

and
g2(u1, s1, z1;x) = 1C̃x

P(
∑n

i=1 Z
iφ(U i, Zi) > x− y∗ − z1φ(u1, s1))

P(Ψ(V 1
v,t) > x)

.

From Theorem 3.7 and (3.10) we find that

P(Z1φ(U1, S1) > x) ∼ m(B′ × T ′)
m(B × [0, T ])

P(Ψ(V 1
v,t) > x) (A.4)
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as x → ∞. The fact that the distribution of Z1φ(U1, S1) is convolution equivalent
and in particular has an exponential tail implies

g1(u1, s1, z1; . . . ;un, sn, zn;x)→ m(B′ × T ′)
m(B × [0, T ])

exp
(β
c

(
y∗ +

n∑

i=1

ziφ(ui, si)
))

as x→∞. Similarly, (A.4) and an application of [6, Corollary 2.11] gives

g2(u1, s1, z1;x)

→ m(B′ × T ′)
m(B × [0, T ])

n exp
(β
c

(y∗ + z1φ(u1, s1))
)(

E exp
(β
c
Z1φ(U1, S1)

))n−1

as x→∞, and we conclude that
∫

lim
x→∞

g1(u1, s1, z1; . . . ;un, sn, zn;x)F⊗n1 (d(u1, s1, z1; . . . ;un, sn, zn))

+

∫
lim
x→∞

g2(u1, s1, z1;x)F1(d(u1, s1, z1))

=
m(B′ × T ′)
m(B × [0, T ])

(n+ 1) exp(βy∗/c)
(
E exp

(β
c
Z1φ(U1, S1)

))n
. (A.5)

For notational convenience, we let µ denote the distribution of Ziφ(U i, Si). Then,
again by [6, Corollary 2.11] and (A.4), (A.5) equals

lim
x→∞

m(B′ × T ′)
m(B × [0, T ])

µ∗(n+1)((x− y∗,∞))

µ((x,∞))
= lim

x→∞
µ∗(n+1)((x− y∗,∞))

P(Ψ(V 1
v,t) > x)

. (A.6)

Furthermore, we see

P(Ψ(V 1
v,t) > x)

(∫
g1(z1; . . . ; zn;x)µ⊗n(d(z1; . . . ; zn)) +

∫
g2(z;x)µ(dz)

)

=

∫ (x−y∗)/2

0

µ((x− y∗ − z,∞))µ∗n(dz) +

∫ (x−y∗)/2

0

µ∗n((x− y∗ − z,∞))µ(dz).

Since, in particular, the tails of µ and µ∗n are exponential with index β/c, we see from
[5, Lemma 2] that the sum of integrals is asymptotically equivalent to µ∗(n+1)((x−y∗,
∞)). Returning to (A.6) concludes the proof.

Before proving the theorem on the extremal behaviour of X1, we need the fol-
lowing lemma for a dominated convergence argument.

Lemma A.2. Let V 1, V 2, . . . be i.i.d. fields with distribution ν1, and let (U, S, Z)
be distributed according to F1. There exist a constant K such that

P(Ψ(V 1
v,t + · · ·+ V n

v,t) > x) ≤ KnP(Zφ(U, S) > x)

for all n ∈ N and all x ≥ 0.
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Proof. By Lemma 3.9 the distribution of Zφ(U, S) is convolution equivalent, and it
follows from [6, Lemma 2.8] that there is a constant K such that

P
( n∑

i=1

Ziφ(U i, Si) > x
)
≤ KnP(Zφ(U, S) > x),

for i.i.d. variables (U1, S1, Z1), (U2, S2, Z2), . . . with distribution F1. The result fol-
lows directly from (3.8).

Proof of Theorem 3.11. From (3.9) and the representation V i = (Zif(|v − U i|,
t− Si))(v,t), we see that

E
[
exp
(
βλu,s(X

1
v,t)
)]
≤ exp

(
ν(A)

(
E[exp(β

c
Zφ(U, S)]− 1

))
.

The first claim now follows from (3.11).
For the limit result, we find by independence and Lemma A.2,

P(Ψ(X1
v,t + yv,t) > x)

= e−ν(A)

∞∑

n=1

ν(A)n

n!
P(Ψ(V 1

v,t + · · ·+ V n
v,t + yv,t) > x)

≤ P(Zφ(U, S) > x− y∗)e−ν(A)

∞∑

n=1

ν(A)nKn

n!
,

where y∗ = sup(v,t) yv,t and e−ν(A)
∑∞

n=1
ν(A)nKn

n!
< ∞. With the convention that

V 1
v,t + · · ·+ V n−1

v,t = 0 for n = 1, by dominated convergence, Theorems 3.7 and 3.10
and Lemma 3.9 yield

lim
x→∞

P(Ψ(X1
v,t + yv,t) > x)

L(x/c) exp(−βx/c)

=
n

ν(A)
e−ν(A)

∞∑

n=1

ν(A)n

n!

∫

B

∫ T

0

E
[
eβλu,s(V 1

v,t+···+V n−1
v,t +yv,t)

]
dsdu

= e−ν(A)

∞∑

n=0

ν(A)n

n!

∫

B

∫ T

0

E
[
eβλu,s(V 1

v,t+···+V n
v,t+yv,t)

]
dsdu

=

∫

B

∫ T

0

E
[
eβλu,s(X1

v,t+yv,t)
]

dsdu.

This concludes the proof.

Proof of Lemma 3.12. First we show that

E exp(γ sup
(v,t)∈B′×T ′

X2
v,t) <∞ (A.7)

for all γ > 0. Applying arguments as in Section 2, we write X2 as the independent
sum X2

v,t = Y 1
v,t + Y 2

v,t. Here Y 1 is a compound Poisson sum

Y 1
v,t =

M∑

k=1

Jkv,t
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with finite intensity ν(Ac ∩D) < ∞ and jump distribution ν2 = νAc∩D/ν(Ac ∩D),
where D = {z ∈ RK : inf(v,t)∈K zv,t < −1}. Furthermore, Y 2 is infinitely divisible
with Lévy measure νAc∩Dc , the restriction of ν to the set Ac ∩ Dc = {z ∈ RK :
sup(v,t)∈K |zv,t| ≤ 1}. By arguments as before, both fields have t-càdlàg extensions
to B′ × T ′. For each k, Jkv,t ≤ 0 for all (v, t) ∈ B′ × T ′ almost surely, and in partic-
ular E exp(γ sup(v,t)∈B′×T ′ Y

1
v,t) < ∞ for all γ > 0. As (Y 2

v,t)(v,t)∈B′×T ′ is t-càdlàg on
the compact set B′ × T ′, we find that P(sup(v,t)∈B′×T ′ |Y 2

v,t| < ∞) = 1. Since also
νAc∩Dc({z ∈ RK : sup(v,t)∈K |zv,t| > 1}) = 0, we obtain from [4, Lemma 2.1] that
E exp(γ sup(v,t)∈B′×T ′ |Y 2

v,t|) <∞ for all γ > 0, which yields the claim (A.7).
Appealing to properties of λu,s we find that

λu,s(Xv,t) ≤ λu,s
(
X1
v,t + sup

(v,t)∈B′×T ′
X2
v,t

)
= λu,s(X

1
v,t) +

sup(v,t)∈B′×T ′ X
2
v,t

c
.

The assertion now follows from (A.7) and the first claim of Theorem 3.11.

Proof of Theorem 3.13. Let π be the distribution of (X2
v,t)(v,t)∈B′×T ′ . Conditioning

on (X2
v,t)(v,t) = (yv,t)(v,t) we find by independence that

P(Ψ(Xv,t) > x)

P(Ψ(X1
v,t) > x)

=

∫ P(Ψ(X1
v,t + yv,t) > x)

P(Ψ(X1
v,t) > x)

π(dy) =

∫
f(y;x)π(dy)

with f(y;x) = P(Ψ(X1
v,t + yv,t) > x)/P(Ψ(X1

v,t) > x), which, according to Theo-
rem 3.11, satisfies

f(y;x)→ f(y) =

∫
B

∫ T
0
E
[
exp

(
βλu,s(X

1
v,t + yv,t)

)]
dsdu

∫
B

∫ T
0
E
[
exp

(
βλu,s(X1

v,t)
)]

dsdu

as x→∞. By another application of Theorem 3.11 and since

∫
f(y)π(dy) =

∫
B

∫ T
0
E [exp (βλu,s(Xv,t))] dsdu

∫
B

∫ T
0
E
[
exp

(
βλu,s(X1

v,t)
)]

dsdu
,

the proof is completed if we can find non-negative and integrable functions g(y;x)
and g(y) = limx→∞ g(y;x) such that f(y;x) ≤ g(y;x) and such that

∫
g(y;x)π(dy)→

∫
g(y)π(dy)

as x→∞. With y∗ = sup(v,t)∈B′×T ′ yv,t we use the function

g(y;x) = P(Ψ(X1
v,t) + y∗ > x)/P(Ψ(X1

v,t) > x)

which, according to properties of λu,s and Theorem 3.11, satisfies

g(y;x)→ g(y) = exp(βy∗/c)

as x → ∞. From [13, Lemma 2.4(i)] and Theorem 3.11 the distribution of Ψ(X1
v,t)

is convolution equivalent with index β/c. Now let G and H denote the distributions
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of Ψ(X1
v,t) and sup(v,t)∈B′×T ′ X

2
v,t, respectively. If H(x) = o(G(x)), x→∞, it follows

from the integrability statement (A.7) and [13, Lemma 2.1] that
∫
g(y;x)π(dy) =

P(Ψ(X1
v,t) + sup(v,t)∈B′×T ′ X

2
v,t > x)

P(Ψ(X1
v,t) > x)

→ E exp
(β
c

sup
(v,t)∈B′×T ′

X2
v,t

)
=

∫
g(y)π(dy)

as x→∞. From (A.7) we find that limx→∞ eγxP(sup(v,t)∈B′×T ′ X
2
v,t > x) = 0 for all

γ > 0. Combined with the convolution equivalence of the distribution of Ψ(X1
v,t),

this yields H(x) = o(G(x)) and the claim follows.

B Proofs of Section 5

Proof of Lemma 5.5. Let ω ∈ Ω′1 and (sn) ⊂ S̃ such that sn ↓ t ∈ [0, S]. For all
k ∈ N there exists N ∈ N such that

‖Zsn(ω)−ZsN (ω)‖∞ ≤ 1
k

for all n ≥ N. (B.1)

This is seen by contradiction as follows: Assume that for any N ∈ N there exists
n ≥ N such that

‖Zsn(ω)−ZsN (ω)‖∞ > 1
k
.

Now fix p ∈ N. By this there exist n0 < n1 < n2 < · · · < np such that

‖Zsnj
(ω)−Zsnj−1

(ω)‖∞ > 1
k

for j = 1, . . . , p

and we conclude that Z(ω) has 1
k
-oscillation p times in S̃ for any p. Hence ω ∈ Ack,

which is a contradiction. From (B.1) and the fact that the metric space (C(K,R), ‖·‖∞)
is complete, we know that limn→∞Zsn(ω) exists with respect to ‖·‖∞ as a continuous
function on K. To show uniqueness of the limit, let (tn) ⊂ S̃ be another sequence
such that tn ↓ t. Then limn→∞Zsn(ω) = limn→∞Ztn(ω): Let (rn) be the union of
(sn) and (tn) ordered such that rn ↓ t. Then similarly for any ε > 0 there is N ′ such
that

‖Zrn(ω)−ZrN′ (ω)‖∞ < ε
2

for n ≥ N ′.

Also there is N ∈ N such that (sn)n≥N , (tn)n≥N ⊆ (rn)n≥N ′ , and hence

‖Zsn(ω)−Ztn(ω)‖∞ ≤ ‖Zsn(ω)−ZrN′ (ω)‖∞ + ‖Ztn(ω)−ZrN′ (ω)‖∞ < ε

for all n ≥ N . Thus, the limit lims∈Q,s↓tZs(ω) exists uniquely with respect to ‖·‖∞.
Similarly for lims∈Q,s↑tZs(ω).

We let

B(p, ε,D) = {ω ∈ Ω : Z(ω) has ε-oscillation p times in D},
with D ⊆ Q ∩ [0,∞), and

αε(r) = sup{P(‖Zt‖∞ ≥ ε) : | t ∈ [0, r] ∩Q}.
Note that a direct consequence of the stochastic continuity from Lemma 5.3 is that
αε(r)→ 0 as r → 0 for all ε > 0.
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Lemma B.1. Let p be a positive integer, D = {t1, . . . , tn} ⊆ Q∩ [0,∞) and u, r ∈ Q
such that 0 ≤ u ≤ t1 < · · · < tn ≤ r. Then P(B(p, 4ε,D)) ≤ (2αε(r − u))p.

Proof. We will show the statement by induction in p. For this, define

Ck = {‖Ztj −Zu‖∞ ≤ 2ε, j = 1, . . . , k − 1, ‖Ztk −Zu‖∞ > 2ε} ,
Dk = {‖Ztk −Zr‖∞ > ε}

and note that C1, . . . , Cn are disjoint and

B(1, 4ε,D) ⊆
n⋃

k=1

{‖Ztk −Zu‖∞ > 2ε} =
n⋃

k=1

Ck

=
n⋃

k=1

(Ck ∩Dc
k) ∪ (Ck ∩Dk)

⊆ {‖Zr −Zu‖∞ ≥ ε} ∪
n⋃

k=1

(Ck ∩Dk).

By the Lévy properties in Lemma 5.3 we have P(‖Zr − Zu‖∞ ≥ ε) ≤ αε(r − u)
and furthermore that P(Ck ∩ Dk) = P(Ck)P(Dk) ≤ P(Ck)αε(r − u). The fact that
C1, . . . , Cn are disjoint then implies

P(B(1, 4ε,D)) ≤ P(‖Zr −Zu‖∞ ≥ ε) +
n∑

k=1

P(Ck ∩Dk) ≤ 2αε(r − u),

which is the desired expression for p = 1. We now assume the result to be true for
arbitrary p ∈ N. We define the sets

Fk = {ω : Z(ω) has 4ε-oscillation p times in {t1, . . . , tk},
but does not have 4ε-oscillation p times in {t1, . . . , tk−1}} ,

Gk = {ω : Z(ω) has 4ε-oscillation one time in {tk, . . . , tn}}.

Then F1, . . . , Fn are disjoint, and P(Fk ∩Gk) = P(Fk)P(Gk) for all k = 1, . . . , n due
to the Lévy properties. Also B(p, 4ε,D) = ∪nk=1Fk, and furthermore

B(p+ 1, 4ε,D) =
n⋃

k=1

(Fk ∩Gk)

with the inclusion ⊆ seen as follows: If ω ∈ B(p + 1, 4ε,D) then Z(ω) has 4ε-
oscillation p + 1 times in some {tn0 , . . . , tnp+1} ⊆ D with n0 < n1 < · · · < np+1.
Hence there is k ≤ np such that ω ∈ Fk. Also ‖Ztnp+1

(ω)− Ztnp
(ω)‖∞ > 4ε and as

such also ω ∈ Gk. From the induction assumption, the case p = 1 and the fact that
F1, . . . , Fn are disjoint we find that

P(B(p+ 1, 4ε,D)) =
n∑

k=1

P(Gk)P(Fk) ≤ 2αε(r − u)P
( n⋃

k=1

Fk

)

= 2αε(r − u)P(B(p, 4ε,M)) ≤ (2αε(r − u))p+1 .
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Proof of Lemma 5.6. To show that P(Ω′1) = 1 it suffices to prove P(Ack) = 0 for any
fixed k ∈ N. Since αε(r)→ 0 as r ↓ 0 for any ε > 0, we can choose ` ∈ N such that
2α1/(4k)(S/`) < 1. Then by continuity of P we get

P(Ack) ≤ P(Z has 1
k
-oscillation infinitely often in S̃)

≤
∑̀

j=1

P(Z has 1
k
-oscillation infinitely often in [ j−1

`
S, j

`
S] ∩Q)

=
∑̀

j=1

lim
p→∞

P(B(p, 1
k
, [ j−1

`
S, j

`
S] ∩Q)).

Now fix j = 1, . . . , `, and enumerate the elements of [ j−1
`
S, j

`
S]∩Q by (tm)m∈N. From

Lemma B.1 we know that

P(B(p, 1
k
, {t1, . . . , tn})) ≤ (2α1/(4k)(

S
`
))p

for any n ∈ N. By continuity of P we see that

P(B(p, 1
k
, [ j−1

`
S, j

`
S] ∩Q)) = lim

n→∞
P(B(p, 1

k
, {t1, . . . , tn})) ≤ (2α1/(4k)(

S
`
))p

which tends to 0 as p → ∞ since ` is chosen such that 2α1/(4k)(S/`) < 1. As this
holds for all j = 1, . . . , ` we conclude that P(Ack) = 0.
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