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Abstract

This paper deals with reconstructing an object from its digital 2- or 3-dimensional
image. Inspired by similar work in the field, we restrict ourselves to consider images
of objects of a certain regularity called r-regularity, which is why we start by deriving
some results on the geometric properties of such sets.

The images that we focus on are constructed by placing the r-regular object in a
grid, and then colouring grid squares (or cubes, when we work in three dimensions)
black if they are completely inside the object, white if they are completely outside
the object, and grey if they contain a boundary point of the object. In this way, we
obtain a digital image with just the three colours black, white and grey; we call such
an image a trinary image.

We then develop some results on possible pixel configurations in trinary images
of 2-dimensional r-regular objects and use these configurations to propose a recon-
struction algorithm that takes an image of an r-regular object as input, and outputs
a reconstructed object. We proceed to obtain some results on the similarity between
the original and reconstructed object in order to quantify how well the reconstruction
algorithm works.

Our digitisation model is rather idealised, so we also try to adapt our reconstruc-
tion algorithm to noisy images. In a noisy image, the pixel intensities have been
distorted, meaning that our digitisation model no longer fit such images. We try to
use our knowledge about ideal images to spot which pixels have changed colours due
to noise, and propose an algorithm to try to find the original colours of the pixels
that have changed colours due to noise. We also construct another algorithm to try
to find a noise-free image from a noisy one.

Finally we return to digital images without noise, but this time in three dimensions.
Inspired by earlier work in the field we show that given the black voxels in a digital
image of an r-regular object at a reasonable resolution, it is possible to reconstruct
the topology of the original object in the sense that we can construct an object with
smooth boundary that has the same topological features as the original one.
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Resumé

Denne afhandling handler om at rekonstruere 2- og 3-dimensionelle objekter fra
digitale billeder af dem. Inspireret af tidligere arbejde på området fokuserer vi på
objekter der opfylder en særlig regularitetsbetingelse kaldet r-regularitet, hvorfor vi
også vil udlede nogle resultater om de geometriske egenskaber for sådanne mængder.

De billeder, vi har fokus på, er lavet ved at placere et r-regulært objekt i et gitter,
og så farve hvert gitterkvadrat (eller gitterkube, når vi arbejder i tre dimensioner) sort
hvis det er helt indeholdt i objektet, hvidt hvis det er helt indeholdt i komplementet
til objektet, og gråt hvis det indeholder noget af objektets rand. Derved opnår vi et
digitalt billede med de tre farver sort, hvid og grå - vi kalder et sådant billede for et
trinært digitalt billede.

Vi udleder diverse resultater om mulige pixelkonfigurationer i et trinært billede
af et 2-dimensionalt r-regulært objekt og bruger disse til at bygge en rekonstruktion-
salgoritme, som tager et trinært billede af et r-regulært objekt som input og leverer
et rekonstrueret object som output. Derefter viser vi nogle resultater om ligheden
mellem det oprindelige og rekonstruerede objekt for at kvantificere præcisionen af
rekonstruktionsalgoritmen.

Da de billeder, vi arbejder med, er temmelig idealiserede, forsøger vi også at
tilpasse vores rekonstruktionsalgoritme til billeder med støj. I billeder med støj
er pixelintensiteterne blevet forvrænget, således at vores digitaliseringsmodel ikke
længere passer på det observerede billede. Vi forsøger at bruge vores viden om de
idealiserede billeder til at spotte, hvilke pixels der har ændret farve på grund af støj,
og foreslår en algoritme til at prøve at finde de oprindelige farver på de pixels, som
har ændret farve på grund af støj. Vi udvikler også en anden algoritme til at forsøge
at genfinde det ideale billede ud fra det støjede.

Til sidst koncentrerer vi os igen om digitale billeder uden støj, men denne gang i
tre dimensioner. Inspireret af tidligere arbejde på området viser vi, at givet de sorte
voxels i et digitalt billede af et r-regulært objekt med passende billedopløsning kan
man rekonstruere topologien af det oprindelige objekt i den forstand, at man kan
konstruere et objekt med glat rand, som har de samme topologiske egenskaber som
det oprindelige objekt.
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Preface

This thesis consists of one paper, three paper drafts, one of which is also on arXiv,
and a supplement to the paper draft on arXiv. We have included a short background
chapter where we introduce the field, along with the important definitions related
to the work in this thesis. The thesis is the result of three years of PhD studies at
Department of Mathematics, Aarhus University, supervised by Andrew du Plessis,
also from Department of Mathematics, Aarhus University. Furthermore, one of
the papers, Reconstructing Objects from Noisy Images at Low Resolution has been
made in collaboration with Prof. Aasa Feragen, who was then at the Department of
Computer Science at University of Copenhagen, Denmark.

The papers included in this thesis are

• du Plessis, Andrew and Svane, Helene: On r-regularity. Paper draft, 2019
• Svane, Helene and du Plessis, Andrew: Reconstruction of r-regular Objects from

Trinary Images. arXiv:1903.10942
• Svane, Helene: A Stronger Result on the Similarity between an r-regular Object

and Its Reconstruction from a Trinary Image. Paper draft. 2019
• Svane, Helene and Feragen, Aasa: Reconstruction of Objects from Noisy Images

at Low Resolution, Graph-based Representations in Pattern Recognition, 2019.
• Svane, Helene and du Plessis, Andrew: Preservation of Topology during Digiti-

sation of a 3-dimensional r-regular Object. Paper draft, 2017

Of these three papers, I have contributed comprehensively to both the research
and the writing of the second, third and fourth. The main work and writing of the
first paper, On r-regularity, has mainly been carried out by Andrew du Plessis, and
some of it dates back to before the beginning of my Ph.D. studies. My contribution
has been to some of the calculations, along with proof-reading and illustrations. The
research in the paper Preservation of Topology during Digitisation of a 3-dimensional
r-regular Object has been carried out by both Andrew du Plessis and myself in
collaboration, and I have done the writing. This paper and large parts of the paper
Reconstruction of r-regular Objects from Trinary Images were also included as a part
of my progress report. Furthermore, parts of the paper On r-regularity has earlier
been included in the appendix of the Ph.D. thesis of Sabrina Tang Christensen.

The papers Reconstruction of Objects from Noisy Images at Low Resolution and
partly Reconstruction of r-regular Objects from Trinary Images were finished for
submission during my research stay at the Department of Computer Science, Hunter
College, City University of New York, USA, and I would like to thank Prof. Katherine
St. John, who I visited there, for valuable discussions in this process, as well as
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for great hospitality. The work in this thesis has been presented at the following
workshops:

• 19th Workshop on Stochastic Geometry, Stereology, and Image Analysis, Mar-
seille, France, May 2017

• Internal CSGB Workshop, Denmark, November 2017
• Conference on Stereology, Spatial Statistics and Stochastic Geometry (S4G),

Prague, Czech Republic, June 2018
• 20th Workshop on Stochastic Geometry, Stereology and Image Analysis, Sand-

bjerg, Denmark, 2019
• 12th International Workshop on Graph-based Representations in Pattern Recog-

nition, Tours, France, June 2019

The results in the paper Topological Reconstruction of r-regular Sets that is also
available on arXiv, appears in this thesis with minor changes.
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Chapter 1

Introduction

Understanding digital images and the information they contain is a subject of growing
interest. This thesis deals with several aspects of analysis and reconstruction of objects
from their digitisations, i.e. their images. The overall goal is to use digital images
of objects to come up with a good reconstruction of the objects, according to some
reconstruction criteria. What is precisely meant by a ‘good’ reconstruction may differ
between different situations and for different images, depending on what features of
the original object one is interested in knowing, and what quality the input image
has. The task is thus to take a discrete representation, i.e. an image, of a continuous
object, and then infer as much as possible about the object from the information
stored in the discrete representation.

In this thesis, we build a model to describe the discretisation process that takes
a continuous object and outputs a discrete representation (the image) of it. We work
with two different classes of images. The first class consists of ideal images, which are
images that exactly fit the image model that we have built. For this class of images
we may reconstruct an object quite accurately since the entire set-up is idealised.
The second class consists of noisy images, which are images where technical issues
in the camera, dust on the lens or similar real-world interference distorts the signal
from the object of interest, so that the resulting image no longer fit out model of the
digitisation process. For noisy images a good reconstruction of the original object
may not be a easily obtained, but the treatment of such images holds much more
relevance to real-world applications.

We will give a summary of the results obtained in this thesis, but before we start
doing that, we give a small introduction to the important notions and models used in
the thesis, along with some basic notation. We then give an overview of the content
of each of the chapters in the thesis, including the main results and ideas. Finally,
we relate the work in this thesis to related work done in the field.

1.1 Background

We consider objects in Euclidean space Rn, equipped with the usual Euclidean
distance, which will be denoted by d( · , · ) or ‖ · − · ‖. The corresponding inner
product will be denoted 〈 · , · 〉. An open ball in Rn of radius r and centre c will be
denoted by Br(c). In most of our applications, we will put n = 2 or n = 3.

Let X be a subset of Rn. We will denote the interior of X by Int(X), the closure
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2 Chapter 1. Introduction

by X and the boundary by ∂X. The distance from a point y to the set X is denoted
by δX(y), or someimes simply d(X, y). We measure the distance between two sets
A,B ∈ Rn by means of the Hausdorff distance dH , which is defined by

dH(A,B) = max
(
sup
x∈A

inf
y∈B

d(x, y), sup
y∈B

inf
x∈A

d(x, y)
)
.

We will work with images of objects constructed in the following way:

Definition 1.1. Let µ denote the n-dimensional Lebesgue-measure. Let X ⊆ Rn be
a Lebesgue-measurable set and d > 0 a number. Then dZn is a lattice and to each
point p of this lattice, there is an n-square C = C(p) of side length d whose centre
lies at p. We associate an intensity

λC = µ(C ∩X)
dn

to each such n-dimensional square, calculating the fraction of the square that is
covered by the object.

The (ideal) digital image I of X by the lattice dZn is the collection of grid points
and associated intensities, and may be thought of (or visualised as) the collection of
lattice squares C(p), p ∈ dZn, each coloured a shade of grey corresponding to the
associated intensity, see Figure 1.1.

Figure 1.1: Example of a digital image. Left: Original object, Middle: Digital image of the
object, Right: Trinary digital image of the object.

A discrete representation of a continuous object, such as an image, is known as a
discretisation of the object. We will sometimes omit the term ideal when it is obvious
which kind of digitisation we are dealing with. The squares C(p), p ∈ dZn are called
pixels when n = 2, and voxels when n = 3. In the following, we will assume that X is
a black object on a white background, so that pixels (respectively voxels) of intensity
1 are black, pixels (respectively voxels) with intensity 0 are white, and the remaining
pixels will be a shade of grey, corresponding to their associated intensities λC .

The motivation behind this model for digital images is that such images are made
from the measurements of a collection of sensors sitting in a grid, each at a distance
d from its nearest neighbour, and each of these sensors is measuring the amount of
light coming from a square of side length d around it, and colours a square in the
same position of the image accordingly.

In this thesis, we will mainly be dealing with what we call trinary images:

Definition 1.2. Let X ⊆ Rn be a Lebesgue-measurable set and d > 0. The (ideal)
trinary digital image J of X is the ideal digital image I of X by the lattice dZn with
all grey intensities set to 0.5.
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In this way, the visualisation of trinary images will only consist of black, white
and grey pixels, so we will only see three colours in a trinary digital image – hence the
term trinary. An example of a trinary image is shown in Figure 1.1, right. Although
ideal digital images in general contain a lot more information than trinary digital
images do, the trinary images have turned out to be easier to work with in pratice.
Note also that with the above definition, a trinary image J will remain the same,
even when the intensities of the underlying ideal image I are calculated as

λC = ϕ

(
µ(C ∩X)

dn

)
for each C(p), p ∈ dZn and some function ϕ : [0, 1]→ [0, 1] such that ϕ(x) = 0 if and
only if x = 0, and ϕ(x) = 1 if and only if x = 1. Hence when we are only considering
trinary images, we will often introduce the underlying ideal images with this more
general intensity notion than the one we used in Definition 1.1.

In Paper C, we will also be considering noisy images. We think of these as ideal
images where some of pixel intensities have been altered, so that the intensities of
the pixels no longer match what we would expect to see in an ideal digital image.

When trying to infer anything about an object from its digital image, it is
necessary to impose some regularity constraint on the object. We hence assume the
objects that we are working with to be r-regular, as has been done in many other
places in the literature on digital geometry:

Definition 1.3. Let X ⊆ Rn be closed and r > 0. X is said to be r-regular if for
any point x ∈ ∂X, there exists two r-balls Br(xb) ⊆ X and Br(xw) ⊆ XC such that

Br(xb) ∩Br(xw) = {x}.

Figure 1.2: A set X is r-regular if there at each boundary point p of X are an r-ball inside
X and an r-ball outside X whose boundaries meet in exactly at p - here such balls are shown

for three different boundary points.

Intuitively, the notion of r-regularity ensures that the r-regular object cannot
have a boundary with too many curlicues, or have sections with too narrow necks,
see Figure 1.2. When the size of the ball r compared to the grid size d is reasonable,
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this in particular means that all important features of the r-regular X object is
caught by the ideal image of X by the lattice dZn. This is the case when r is greater
that the pixel or voxel diameter, so that in dimension 2, we assume that d

√
2 < r,

and in dimension 3, we assume that d
√

3 < r. Hence we will assume that r is greater
that the pixel or voxel diameter in this thesis.

Furthermore, we assume that the r-regular sets that we are working with are
bounded (and hence compact), and that the boundary ∂X does not intersect a pixel
corner anywhere. The latter assumption is not unreasonable: Indeed, given a curve
in R2 (or a manifold in R3), the probability of hitting that curve (or manifold) by a
randomly placed lattice dZ2 (or dZ3) is zero.

Before we give a summary of each of the papers in this thesis, we need to introduce
the notion of isotopy:

Definition 1.4. Let M , N be manifolds and I an interval. An isotopy from N to
M is a smooth map F : N × I →M such that for each t ∈ I the map

Ft : N →M, x 7→ F (x, t)

is an embedding. When such a map exists, the maps F0 and F1 are called isotopic.
When N = M , the map Ft is a diffeomorphism for each t ∈ I and F0 = IdM , F

is called an ambient isotopy. Two smooth embeddings f0, f1 : N → M are called
ambiently isotopic if there exists an ambient isotopy F : M × I → M such that
f1 = F1 ◦ f0.

1.2 The papers

1.2.1 r-regularity

When working with reconstruction from digital images it is necessary to put some
constraint on the sets that are being considered, because the digitisation process
wipes away features that are small compared to the pixel size. It is therefore useful to
assume that no such features exist in the sets of interest. Within the field, it is thus
standard custom to impose some regularity constraint on the sets considered, such
that sets subject to this constraint exhibit useful properties, such as ensuring that
their boundaries only has a controllable amount of curlicues, and that they always
have a minimal thickness. Authors (e.g. [5, 6, 12, 15]) have formulated such regularity
criterions in slightly different ways. The first part of this paper aims to prove that
many of these regularity notions are actually equivalent, or almost equivalent, so
that we may denote them all by r-regularity, as stated in Definition 1.3.

We show the following:

Theorem 1.5. Let X ⊆ Rn be a closed set and r > 0. The following are equivalent:

(i) X and Rn \X are both unions of closed r-balls,
(ii) X is r-regular,
(iii) X is r-regular and its boundary ∂X is a C1 manifold,
(iv) X and Rn \X are C1 submanifolds-with-boundary of Rn, and the unit normal

vector field pointing out of X on the common boundary of X and Rn \X is
Lipschitz with Lipschitz constant 1

r ,
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(v) X and Rn \X have reach r.

Here, reach is the notion introduced by Federer [6], defined by

Definition 1.6. Let A be a closed subset of Rn, r > 0 and δA : Rn → R+ the
function measuring the distance from a point to A. Then A has reach r if every point
x ∈ Rn with δA(x) < r has a unique nearest point in A

The above result does not only unify the regularity constraints from several
authors who have been working in the field, it also provides a toolbox for working
with r-regular sets, since different formulations of the definition of r-regularity may
be preferred for different applications.

Note that in the paper, we will define a set to be r-regular if it satisfy condition
(i) of this theorem, but the theorem shows that either definition may be used. We
also remark that since item (ii) and (iii) are equivalent, the boundary of an r-regular
set is a C1 manifold - a result that was also proven in [4].

The next part of the paper develops a toolbox for working with r-regular set.
Much of this part of the paper was also included as an appendix in the PhD thesis
of Tang Christensen [2], who needed them in order to prove some of her main work.

The third part of the paper is devoted to showing the following:

Theorem 1.7. Let X ⊆ Rn be an r-regular set for some r > 0, and let 0 < ε < r.
Then X can be approximated arbitrarily close by smooth (r − ε)-regular set, which is
ambiently isotopic to X.

Note that r-regular sets are C1-manifolds but may not in general be smooth
or even C2 (See e.g. [4] for a counterexample), so this sort of smoothing may be
interesting if one wants to use differential geometry on an r-regular set.

The final part of the paper deals with smooth curves of curvature 1
r and their

relations to geodesics on smooth r-regular sets. We show that geodesics on smooth
r-regular sets have curvature at most 1

r , and then go on to consider curves with a
so-called r-spindle property:

Definition 1.8. Let x, y ∈ Rn and ` be the line segment between them. The r-spindle
generated by ` is the intersection of all r-balls whose boundaries intersect both x
and y.

A closed smooth arc α ⊆ Rn is said to have r-spindle property if every closed
sub-arc α′ of α is contained in the r-spindle with endpoints the endpoints of α′.

In particular, geodesics on r-regular sets satisfy this property. We show that a
smooth closed curve α satisfying the r-spindle property has a Lipschitz condition
on its unit tangent vector field, and that it have curvature at most 1

r . We also show
that such a curve have reach r, and that the angle between a tangent vector to α
and the line ` joining the endpoints of α is at most the spindle angle of the spindle
generated by `.

1.2.2 Reconstruction of r-regular Objects from Trinary Images

This paper deals with the reconstruction of 2-dimensional r-regular objects from
their trinary images. It was originally written in connection with the work presented
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in Paper C, Reconstructing Objects from Noisy Images at Low Resolution, and was
therefore put on arXiv, see [16]. The version in this thesis has some minor changes
from the current version on arXiv. Most of the technical results in this paper were
also presented in connection with the qualifying exam.

With inspiration from a paper by Stelldinger and Köthe [15], we adopt the notion
of weak s-similarity:

Definition 1.9. Let A,B ⊆ R2 be bounded sets and s > 0. We call A and B weakly s-
similar if there exists a homeomorphism f : R2 → R2 such that x ∈ A ⇐⇒ f(x) ∈ B
and the Hausdorff distance between the two set boundaries satisfies dH(∂A, ∂B) < s.

The main result of the paper is to show the following:

Theorem 1.10. Given a trinary image of an r-regular object X by a lattice dZ2

with d
√

2 < r, it is possible to construct an object Γ that is weakly d-similar to X,
where d is the pixel side length.

The reconstructed object is constructed from the image in the following way:
Whenever two grey pixels share an edge, we place an auxiliary point on that edge
(its exact position depends on the exact configuration), see Figure 1.3, left. We then
argue that this endows the auxiliary points with a natural ordering, so that we may
speak of ’consecutive auxiliary points’. Then through each three consecutive auxiliary
points, we may fit a unique circle arc, see Figure 1.3, right. This means that each
two consecutive auxiliary points are connected by two circle arcs, one starting in one
of the points, the other one ending at the other point. Interpolating between these
two curves for every two consecutive auxiliary points using a bump function we get
a continuous curve, forming the boundary of the reconstructed set, see Figure 1.4.

From here on out, the result relies for a large part on the characterisation of
trinary pixel configurations admitted in an image of an r-regular set. Using several
results from the article on r-regularity described above, we among other things
arrive at a complete characterisation of trinary 3 × 3 pixel configurations, as well
as a list of trinary 4 × 4 pixel configurations with 2 × 2 grey pixels in the middle.
In this way, we are able to characterize all building blocks present in an image of
an r-regular object by a lattice dZ2 with d

√
2 < r. Considering the original and

reconstructed boundary in each of these building blocks separately, we find upper
bounds on the Hausdorff distance between the original and reconstructed set in each
of these configurations, thus eventually arriving at the conclusion that the original and
reconstructed set boundaries are closer than d apart in Hausdorff distance. Finally,
we find a homeomorphism of R2 taking X to the reconstructed set by using the
Annulus Theorem and the fact that both ∂X and the reconstructed curve separate
white pixels from black ones.

Already when this paper was first being written, the authors suspected that the
main result could be improved, either by considering a stronger notion of similarity
than that of weak similarity, or by proving weak s-similarity between reconstruction
and original for an s < d. Both of these improvements to the main statement were
later obtained, and they are the topic of the next paper, A Stronger Result on the
Similarity Between an r-regular Object and its Reconstruction from a Trinary Image,
which is written as a supplement to this paper.

The reconstruction algorithm itself also leaves room for improvement. In this
paper, the main focus has been on constructing a set that is weakly d-similar to
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Figure 1.3: We make a reconstruction from a trinary image by first plotting auxiliary points
on the boundaries of the grey pixels (left), and thereafter then connecting three consecutive

auxiliary points by circle arcs (right).

Figure 1.4: Interpolating these arcs to get a smooth curve (the yellow one in the right
figure). The black curve in the right figure is the boundary of the original object.
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the original, meaning that the reconstructed set is close to the original in Hausdorff
distance, and that the two sets have the same topological properties. Apart from
these, there may also be other properties than one wishes a good reconstruction to
have. For instance, since the original set was assumed to be r-regular, one might wish
the reconstructed set to be (r − ε)-regular for some small ε > 0. This article does
not investigate what regularity the reconstructed set has, or discuss if the regularity
can be improved.

This paper works exclusively with trinary images made from ideal digital images,
but one may argue that in disregarding the exact intensities of each grey pixel when
moving from digital images to trinary images, we are throwing a lot of information
away. Another interesting topic for research could therefore be to study if a more
precise reconstruction algorithm could be made from the ideal digital image than
from its trinary version. If a reconstruction algorithm was proposed for ideal digital
images, another interesting topic for study could be if such a reconstructed set would
have the same digital image as the original one. The advantage of working with
trinary images is, however, that there are only finitely many pixel configurations of a
given size, enabling us to break up the problem f estimating Hausdorff distance into
finitely many cases. This is partly the motivation for studying trinary images in this
paper. Another part of the motivation for working with trinary images comes from
our work on removing noise from images, as introduced in the paper Reconstructing
Objects from their Noisy Images at Low Resolution: We try to remove noise from
images by removing spurious grey (or black, or white) pixels appearing in places
where they could not have been in an ideal image of an r-regular object. But if a
grey pixel, after the addition of noise, is still grey, it is not possible to know how
much noise were added to it using our method. We therefore wanted a result about
reconstructing objects from images where the exact intensities of the grey pixels were
unknown, leading to the work presented in this paper.

The proofs of some of the technical results in this paper have been moved to
an appendix. This protocol is quite normal in computer science papers, but less so
in mathematics papers. The paper is unpublished, but has been put on arXiv for
reference (see [16]) in connection with the acceptance of the paper Reconstructing
Objects from their Noisy Images at Low Resolution.

1.2.3 A Stronger Result on the Similarity Between an r-regular
Object and its Reconstruction from a Trinary Image

This paper draft is written as a continuation of the previous paper, Reconstruction of
r-regular Objects from their Trinary Images. Again, we are working with 2-dimensional
trinary images of r-regular objects constructed using a lattice dZ2 with d

√
2 < r. The

paper uses parts of the results regarding configurations in trinary images of r-regular
objects by lattices obtained in Reconstruction of r-regular Objects from their Trinary
Images, and the reconstructed set is constructed in the same way as in the previous
paper, but we fix the bump function used. The main result is a strengthening of the
result in Reconstruction of r-regular Objects from their Trinary Images, since we
instead of weak s-similarity now will consider the stronger notion strong s-similarity
of capturing similarity between sets:

Definition 1.11. Let A,B ⊆ R2 be bounded sets and s > 0. The sets A and B are
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called strongly s-similar if there exists a homeomorphism f : R2 → R2 such that
f(A) = B and for all x ∈ ∂A we have d(x, f(x)) < s.

The main theorem of this paper will be to show the following:

Theorem 1.12. Let I be a trinary digital image of an r-regular object by a lattice
dZ2 with d

√
2 < r, and let Γ be the set reconstructed from I as explained in Paper

B. Then the reconstructed set Γ and original set X are strongly d√
2 -similar, where d

again is the pixel side length.

Note that this result does not only strengthen the previous result because weak
similarity is replaced by strong similarity, but also because the similarity parameter
is improved from d to d√

2 .
Like in the previous paper, we have a collection of trinary pixel configurations

that may be found in the trinary image of r-regular objects by lattices dZ2 with
d
√

2 < r. In the grey pixels of each of these configurations, we put what we call a
line covering – a partition of the grey pixels into a set of disjoint lines, each with
one endpoint in a black pixel and one endpoint in a white pixel. The idea is to show
that we may push the reconstructed boundary along the lines of the line field until
we hit the boundary of the original set, and then extend the map defining this push
to a map of the entire plane. For this to work, we need to establish that such a
map is actually well defined and carries the boundary of the reconstructed set to
the boundary of the original set homeomorphically. This amounts to showing that
each line of the line covering intersects both set boundaries in exactly one point. For
the reconstructed set it is shown quite easily, since its boundary is a composition of
known circle arcs. The real work lies in determining the behaviour of the boundary of
the original set, since the only information available to us is that it is the boundary
of an r-regular set, and that it passes through the grey pixels. We find subsets of
the grey pixels where all boundary points of the original set is contained. This also
enables us to estimate the Hausdorff distance between the point of the reconstructed
set and the points of the boundary ∂X of the original set on each line of the line
covering.

The upper bound d√
2 on the similarity between the original and reconstructed

set is not necessarily the optimal one, but we believe that improving this bound
significantly requires a large amount of extra work. With the existing reconstruction
algorithm, it will be hard to get the similarity accuracy below d

2 (it is easy to come up
with pixel configurations where the suggested homeomorphism moves points at least
this distance. So before venturing out to improve the bound d√

2 for the similarity
between the proposed reconstruction and the original object, one should consider if
it is worth the trouble.

Another option could be to change the reconstructed set. Other than possibly
improving the similarity parameter between the reconstructed set and the original,
one could hope to be able to obtain interesting properties on the set boundary, such
as (r−ε)-regularity for some suitably small ε. Likewise, like in the case of the previous
paper, we believe that it should be possible to make a more precise reconstruction
algorithm by taking exact pixel intensities into account, i.e. by considering ideal
digital images rather than trinary images. However, such work is beyond the scope
of this thesis.
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1.2.4 Reconstructing Objects from their Noisy Images at Low
Resolution

The work presented in this paper has been published in the proceedings for the 12th
International Workshop on Graph-based Representations in Pattern Recognition [17],
where the results were also presented in a talk. The work started out as an attempt
to accommodate the theory presented in the two previous articles, Reconstructioon
of r-regular Objects from Trinary Images and A Stronger Result on the Similarity
between an r-regular Object and Its Reconstruction from a Trinary Image, to images
that are more realistic to encounter in the real world. The basic idea behind the work
is that even though real-world images are not necessarily as nice as the digital images
of our model, we can regard an observed image as a slightly altered version of the
ideal digital image, and try to spot the alterations in pixel intensities by comparing
the observed image to the pixel configurations that we would expect to see in an
ideal trinary image of an r-regular object.

Again, we work with 2-dimensional images of r-regular objects by a lattice dZ2

with d
√

2 < r. But instead of working with the digital images from Definition 1.1,
we now consider digital images with noise. Different types of noise are modelled in
different ways, but common to them all is that the pixel intensities may have changed
from what they were in the ideal, digital image. We thus regard the observed image
as a pertubation of the ideal digital image.

From the paper Reconstruction of r-regular Objects from Trinary Images we get
a list of all the 3× 3 trinary configurations that may occur in an ideal digital image
of an r-regular object. We propose a method for removing noise from a noisy image
by comparing the observed 3× 3 pixel configurations in the noisy image to the 3× 3
trinary image configurations in the list. Loosely formulated, the idea is to replace
each of the observed, noisy configurations with one from the list that looks the most
like the observed one while also matching with the replacement configurations for
the neighbouring 3× 3 configurations. Thus we end up with a collection of trinary
3 × 3 configurations that all can occur in the digital image of an r-regular object,
and which match on their overlaps. From these configurations we may then piece
a trinary image together, containing only 3× 3 configurations which can occur in
the trinary image of an r-regular object – i.e. we attempt to recover the trinary,
noise-free image from the noisy one by replacing illegal 3× 3 configurations with ones
from the list of possible 3× 3 configurations. We formulate this as a linear integer
programming problem, which is solvable, but computationally NP-hard.

The solution provided by this technique outputs a globally optimal algorithm
(which is why we name the algorithm ‘The global algorithm’) with respect to a
certain optimality criterion, depending on the similarity between the output image
and the original one, see Figure 1.5. However, the computationality of this solution
makes it inconvenient to work with in real applications, so we also propose a local
approach for reconstructing the trinary image. Here, the idea is to start with a
trinary image and then improve it in steps, one configuration at a time, making the
trinary image look more like the observed, noisy one with each step. While doing
this, however, we have to be careful not no introduce configurations that does not
occur in any trinary image of an r-regular object. This algorithm is terminated when
we cannot change the trinary image in the proposed way without either making the
resulting reconstructed image differ more from the observed one than in the previous
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Figure 1.5: An example of the output of the global algorithm: The noisy image is the input
for the algorithm, and the output is shown on the right, together with a yellow curve showing
the boundary of the set that is reconstructed from the algorithm output. Compare to the

original set on the left.

step, or introducing trinary configurations that cannot occur in a trinary image of
an r-regular object. Hence this procedure produces a trinary image that is locally
optimal in the sense that its output cannot be refined further without performing
illegal steps.

The output of this algorithm depend greatly on how the algorithm is initiated,
and it turns out that the requirement about not introducing configurations that
cannot occur in trinary images of r-regular images is quite strict – for instance, it
makes it impossible to reconstruct loops. The output from this local algorithm is
therefore rather unstable, and a single output in general gives a rather poor result.
We therefore suggest using a combination of several outputs with different initiations
to reconstruct the trinary image. However, such a combination may in contain 3× 3
trinary configurations which do not occur in trinary images of r-regular objects by
a lattice dZ2 with d

√
2 < r – which was not what we wanted. We may then either

choose to use the output anyway – accepting that it is not a correct reconstruction –
or we may patch it up using the global algorithm that we mentioned first (sending us
back to an NP-hard algorithm). As it turns out, the combination of several outputs
from this local algorithm, used as an input for the global algorithm, gives pretty
good output. On the downside, it is still very computationally heavy.

It would be interesting to have some result on the precision of the global algorithm.
However, it is not clear how such precision should be measured. One idea could be to
calculate the probability that a pixel that was supposed to be black is reconstructed
as a white pixel or vice versa. However, our attempts on achieving such a result has
hitherto been fruitless, since the seemingly local problem – the question of whether
one pixel is reconstructed correctly – turns out to be a global problem, as the action
of changing the colour of one pixel implies that an entire 3 × 3 has to be change,
which in turn means that the neighbouring configurations are changed accordingly,
and so on. Nonetheless, we hope that it is at least possible to put a bound on the
precision of the algorithm by looking at the configurations locally.

More work could also be put into bringing down the computation time for the
global algorithm. Since the problem is an integer linear programming problem, any
solution will remain NP-hard, but the graph for the underlying problem contains
a lot of structure which may be exploited in the implementation of the solution
algorithm.

Another interesting thing to consider in relation to this paper could be to
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investigate if the graph problem can be reformulated in another way. More specifically,
in the paper presented in this thesis, we look at all 3× 3 configurations in an image,
but one could imagine only looking at some of them, so that two pixel configurations
share at most 3 pixels (and not at most 6, as is the case in the proposed algorithm).

Also the local algorithm leaves a lot of room for improvement. As mentioned
earlier, the requirement that we only add configurations that can occur in trinary
digital images of r-regular objects in all steps of the algorithm is rather strict, and
since we only care about the configurations in the final step of the algorithm, it may
be possible to obtain better output by loosening the requirements on the images in
the intermediate steps.

In this way, the work presented in this paper is a presentation of an idea, but
there is still a lot of work that could be put into investigating its properties and
improving its weaknesses.

1.2.5 Topological Reconstruction of r-regular Sets

In this paper, we work in three dimensions and consider digital images like the ones
defined in Definition 1.1 of an r-regular object X by a lattice dZ3 with d

√
3 < r. We

let V (X) denote the black pixels of the image (called the inner Jordan Digitisation
of X by e.g. [8]) and prove the following:

Theorem 1.13. Let X be an r-regular set and d > 0 satisfy d
√

3 < r. Let V (X)
denote the set of black pixels in a digital image of X by a lattice dZ3. Then it is
possible to construct a set Z from V (X) such that Z is ambiently isotopic to X.

The ambient isotopy between Z and X implies that the reconstructed set Z has
the same topological properties as the original set. The work in this paper was also
presented in connection with the qualifying exam for the PhD.

The procedure for proving this statement copies the approach of Tang Christensen
[2], who proved an equivalent statement for another digitisation model called Gauss
digitisation of r-regular objects by a lattice dZ3 with 0.95571d < r. However, since
we use a different digitisation model, we need the stronger assumption d

√
3 < r on

our regularity parameter r and voxel side length d in order to prove an equivalent
statement. The steps of the proof are the same as in Tang Christensen’s thesis, but
since we work with a different digitisation model, we need to adapt the model-specific
proofs to our situation or, in some cases, change the proofs altogether.

The steps of the proof are the following: Let V (X) denote the set of black voxels
in the digital image of an r-regular object X by a lattice dZ3 with d

√
3 < r. We

first prove that there is a 1 : 1-correspondence between connected components of
X and connected components of V (X), and also a 1 : 1-correspondence between
connected components of XC and of V (X)C . Note that if r < d

√
3, this would not

be true in general, hence d
√

3 < r is the best possible bound on d and r that we can
hope for in order to obtain the result. We then proceed to find a complete list of
all possible 2× 2× 2 configurations of black and non-black voxels, and prove that
some of these do not occur in the digital image of an r-regular object by a lattice
dZ3 with d

√
3 < r. We may then prove that our reconstructed set Z is contained

in a set homeomorphic to ∂X × [−1, 1] in such a way that it separates the sides
∂X × {−1} and ∂X ×{1}. For sets with this property, we may copy the approach of
Tang Christensen [2] to show first that ∂Z and ∂X are homeomorphic, then that
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they are isotopic. Extending this isotopy to an ambient isotopy, we finally arrive at
the result.

The largest part of the work in this paper was put into proving that certain voxel
configurations do not occur. The toolbox for these arguments comes from the paper
On r-regularity. However, much of the heavy footwork on constructing the set Z was
done in [2] and is not specific to her digitisation model, so we may use these parts of
her work directly.

1.3 Related work

The task of reconstructing sets from their digital images is the task of deriving as
much information about an object as possible from a discrete representation of it.
One usually starts with a model for the digitisation process, and then investigates
what information is kept during a digitisation under that model. Not all objects are
well-suited for reconstruction from digital images at a given resolution. For example,
object features on a sub-pixelar scale may easily be wiped away in a digitisation
process. Therefore, many authors have dealt with the class of r-regular sets, see for
instance [2, 9, 11–15]. These sets cover a wide range of shapes and objects and they
have turned out to produce well-behaved digital images, which justifies that such sets
are of interest in their own right and motivates investigating their properties further.

The precise definition of r-regularity differs a little from author to author. In
[4, 5], an open set X is said to be r-regular if and only if both X and XC are unions
of open balls. However, in these papers, it is implicitly assumed that ∂X = ∂X

C ,
which is not necessarily true for r-regular sets defined this way. This motivates our
introduction of r-regular sets in Paper A as closed sets X where X and XC are both
unions of closed r-balls, because then ∂X = ∂XC follows automatically. However,
we show that our definition is equivalent to the definition in [4, 5] if we incorporate
the extra assumption that ∂X = ∂X

C .
In [5], an alternative characterisation of r-regular sets is given in terms of a

Lipschitz condition on the boundary, plus an extra technical assumption. We show
that the extra assumption may be replaced by the assumption that X and XC are
both manifolds with boundary.

In [12], Serra introduces the regular model as the class of compact sets that are
morphologically open and closed with respect to a closed ball of radius r, and then
remarks that this implies that each boundary point is contained in two closed r-balls
included in X and XC , respectively. This is in accordance with our Definition 1.1,
and with the definition in [11], where Pavlidis states that a square grid dZ2 and a
set X are compatible if X is r-regular in the sense of Definition 1.1, and d

√
2

2 < r.
Our definition of r-regularity is also used in [9, 13, 15], though r-regularity is called
par(r)-regularity in [9].

Since r-regularity of a set X implies the existence of a unique nearest point in ∂X
for all points in Rn with δ∂X(x) < r, we have also related the notion of r-regularity
to the notion of reach defined in Definition 1.6, and first introduced by Federer in
[6].

Since different definitions of r-regularity may be preferred in different situations,
showing equivalence between these different notions of r-regularity is a strong result
that allows us to attack problems concerning r-regular sets from many different
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angles.
The process of obtaining a digitisation, i.e. of representing a continuous object in

a discrete way, may be modelled in different ways. Many authors (see [2, 8, 12–15])
consider Gauss digitisation (also called subset digitisation), which makes a discrete
representation of a continuous object X by placing X in a grid and colouring the
Voronoi cells around each grid point black if the grid point is contained in X, and
white otherwise. Serra [12] considers a 2-dimensional hexagonal grid, which gives him
hexagonal Voronoi-cells. Pavlidis [11] considers a 2-dimensional square grid, giving
him square pixels. Stelldinger and Köthe consider any 2-dimensional grid in [14, 15],
and both Stelldinger et al. [13] and Tang Christensen [2] consider 3-dimensional
square grids. We, too, consider square grids in first 2 and later 3 dimensions in this
thesis, but we model images differently from the Gauss digitisation model. When
creating images using Gauss digitisation, the resulting image is black-and-white, and
corresponds to a doing a sampling of X by a grid. We, however, will think of images
as created by a collection of sensors, each of which detects the light intensity of the
object in a small area near the sensor. If the sensors are placed in a square grid
and they each measure the light intensity of the object in a small square with the
sensor as its midpoint, we will assume that the intensity that they measure is equal
to the fraction of the square that is covered by the object. Colouring the squares
corresponding to the sensor measurements, we thus obtain a grey-scale digital image
where the intensity of each pixel is equal to the fraction of that pixel covered by
the object. This way of modelling a digital image seeks to mimic the way real-world
images are obtained. Our way of modelling images as defined in Definition 1.1 is a
special case of the model introduced in [9], where Latecki et al. model the intensity of
pixels as a monotonic function of the fraction of a pixel covered by a square. Latecki
et al. goes on to thresholding their images, thus ending up with black and white
images again. In this thesis, we will try to use the information contained in the pixel
intensities, or at least in the knowledge that pixels can be either black, grey or white
– therefore we, too, end up simplifying our obtained images further before we start
reconstructing the objects.

Reconstructing objects from their images has been studied by many other authors,
obtaining various reconstruction results for various models of digital images. Pavlidis
[11], Serra [12], Stelldinger and Köthe [14, 15], Tang Christensen [2] and Latecki et al.
[9] all reconstructed an object from its image that resembled the original one. They
had different notions of what ’resemble’ should mean, and for all except the latter
one, they start with a Gauss digitisation of their object, as opposed to our approach.
The exception is Latecki et al., who show that given a grey-scale digitisation of
an r-regular object by a lattice of a certain size, the union of black pixels after
applying any threshold to the image is homotopy equivalent and even homeomorphic
to the original one (the homeomorphism is proved under the assumption that the
r-regular object in question is a manifold with boundary, and they conjecture this to
be true for all r-regular sets. This was later proved in [4]). All the above mentioned
approaches used a union of pixels as their reconstructed object. This means, however,
that the boundary of their reconstructed sets had corners. In contrast to this, we
obtain reconstructions with smooth boundaries.

In our method for reconstructing objects from noisy images we do not make many
assumptions on the nature of the noise on the image. This is in contrast to some of
the other approaches to reconstructing images from suboptimal images. For instance,
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in [15], Stelldinger and Köthe deals with reconstructing objects from blurred images.
The problem of noise removal has also been tackled with more practical approaches,
including deep convolutional neural networks [10]. Such approaches usually also
deal with pixel classification (and hence not sub-pixelar reconstruction). The usual
problems with neural networks are, however, that the need large training sets to
function, which may not always be available.

Other standard algorithms for finding the boundaries of a digitised set from its
image are Active Shape Models, [1, 3, 7]. In these models, the idea is to start with a
curve representing a guess for the boundary of the digitised object, and then let the
curve flow guided by some forces arising from edges in the image, curve smoothness
and similar. Active shape models rely on some initial guess for the shape that one
wishes to find in the image, and they require a lot of parameters that must be chosen
wisely to obtain a good result - two problems that we try to work around in Paper C.

In Paper D we return to the idealised, noise-free images, but take the whole
framework of images of r-regular sets to the next dimension, literally speaking. We
prove that in 3 dimensions, the set of black voxels in a three-dimensional image of
an r-regular set under certain restrictions on the image resolution gives rise to a set
with the same topological features as the original one. This work is heavily inspired
by the work started by Stelldinger et al. [13] and completed by Tang Christensen [2],
who proved a corresponding result for Gauss digitisations of r-regular objects in R3.
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Paper A

On r-regularity

By Andrew du Plessis and Helene Svane

A.1 Definitions and basic results

The notion of r-regularity was originally developed independently by Serra [] and
Pavlidis []. The object was to describe a classes of objects for which reconstruction
from digital images preserved certain topological and/or geometrical features. Various
versions of the definition have since been used by many authors ([],[],[]). Here is yet
another version:

Definition A.1. Let X be a closed subset of Rn, and let r ∈ (0,∞). X is r-regular
if X and Rn \X are both unions of closed r-balls.

The first section of the paper will show that this definition is equivalent, or at
least very closely related, to many of the alternative definitions which have been
used previously. The remainder of the paper will discuss some geometry of r-regular
sets and their boundaries which will be useful in applications.

Theorem A.2. Let r ∈ (0,∞) and let X be a closed subset of Rn. Then following
are equivalent:

(i) X is r-regular;
(ii) For each z ∈ ∂X there exist closed r-balls A ⊂ X, B ⊂ Rn \X such that

A ∩B = {z};
(iii) ∂X is a C1 (n− 1)-submanifold of Rn and for each z ∈ ∂X there exist closed

r-balls A ⊂ X, B ⊂ Rn \X such that A ∩B = {z};
(iv) X and Rn \X are C1 n-dimensional submanifolds-with-boundary of Rn, and

the unit normal vector field {N(z)|z ∈ ∂X} on their common boundary pointing
out of X satisfies the Lipschitz condition

‖N(z1)−N(z2)‖ ≤ 1
r‖z1 − z2‖ for all z1, z2 ∈ ∂X;

(v) X and Rn \X are of reach r.

17
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The notion of reach in Theorem A.2, (v) was introduced by Federer in his classic
paper from 1959 [4].

Definition A.3. Let A be a closed subset of Rn, r ∈ (0,∞) and δA : Rn → R+
denote the distance to the set A. Then A has reach r if, for all x ∈ Rn such that
δA(x) < r, x has a unique nearest point in A.

This is a much more general notion than r-regularity. For example, if A has non-
empty interior it does not imply that ∂A is a C1-submanifold of Rn: for example, it
is a classical theorem that any closed convex set in Rn has reach r for any r ∈ (0,∞).

Definition A.4. Let x ∈ Rn, A ⊂ Rn. Then the distance from x to A is

δA(x) = inf{‖x− a‖ | a ∈ A}.

It is well-known, and easy to see, that:

(i) if A is closed, then there exists a ∈ A such that δA(x) = ‖x− a‖,
(ii) |δA(x)− δA(y)| ≤ ‖x− y‖ for all x, y ∈ Rn.

Proposition A.5. Let X be a closed subset of Rn, and let r ∈ (0,∞). Then the
following are equivalent:

(i) X is r-regular
(ii) for each z ∈ ∂X there exist closed r-balls A ⊂ X, B ⊂ Rn \X such that

A ∩B = {z}.

Proof.

(i) ⇒ (ii): Let z ∈ ∂X. Since X is closed, ∂X = X ∩ Rn \X, and thus there exist
closed r-balls A ⊂ X and B ⊂ Rn \X such that z ∈ A∩B. If A and B meet in more
than one point then IntA ∩ IntB is not empty. But

IntA ∩ IntB ⊂ A ∩B ⊂ X ∩ Rn \X = ∂X,

and thus ∂X contains a non-empty open set. But this is not possible because X is
closed. So A ∩B = {z}.

(ii)⇒(i): It is immediate that ∂X ⊂ X, so X is closed.
Let x ∈ X. If δ∂X(x) ≥ r, then x ⊂ Br(x) ⊂ X, where Br(x) is the closed r-ball

with centre x. Otherwise, δ∂X(x) = s < r. Since ∂X is closed, there exists z ∈ ∂X
with ‖x − z‖ = s. Let C be the closed s-ball with centre x; then z ∈ C ⊂ X. Let
A ⊂ X, B ⊂ Rn \X be closed r-balls with A∩B = {z}. Now z ∈ C ∩B. Arguing as
in the first half of the proof, we have C ∩B = {z}. It follows that A, B, C share a
common tangent hyperplane at z, and that C ⊂ A. In particular, x is contained in a
closed r-ball contained in A.

Thus X is a union of closed r-balls. A similar argument, with the roles of X and
Rn \X interchanged, shows this also holds for Rn \X, completing the proof.

Definition A.6. X is r-regular if one of the two equivalent statements (i), (ii) of
Proposition A.5 holds. Notice that X is r-regular if, and only if, Rn \X is r-regular.
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Proposition A.7. Let X be r-regular. Let z ∈ ∂X and let s ∈ (0, r]. Then there is
a unique closed s-ball α(z, s) with z ∈ α(z, s) ⊂ X, and a unique closed s-ball β(z, s)
with z ∈ β(z, s) ⊂ Rn \X.

Proof. Let α ⊂ X, β ⊂ Rn \X be closed r-balls such that α ∩ β = {z}.
Let C be a closed s-ball, with s ∈ (0, r], in X such that z ∈ C. Arguing as in the

first half of the proof of Proposition A.5, C ∩ β = {z}. It follows that α, β, C share
a common tangent hyperplane at z, and that C ⊂ α. If s = r, this shows that α = C,
so α = α(z, r) is the unique closed r-ball in X containing z. If s < r, C = α(z, s) is
the unique closed s-ball contained in α(z, r) which is tangent to α(z, r) at z.

Now let C be a closed s-ball, with s ∈ (0, r], in Rn \X such that z ∈ C. Arguing
as above, if s = r then β = C so β = β(z, r) is the unique closed r-ball in Rn \X
containing z, and if s < r, C = β(z, s) is the unique closed s-ball contained in β(z, r)
which is tangent to β(z, r) at z.

Corollary A.8. Let X be r-regular. Then ∂X is of reach r.

Proof. We must show that for any y ∈ Rn such that δ∂X(y) < r, there is a unique
point z ∈ ∂X such that ‖y − z‖ = δ∂X(y).

Let y ∈ X be such that δ∂X(y) = s < r. Since ∂X is closed, there exists z ∈ ∂X
such that ‖y − z‖ = s. The closed s-ball with centre y is contained in X, and
contains z; thus it is α(z, s). Since s < r, α(z, s) \ {z} ⊂ Intα(z, r) ⊂ Int(X). Thus
α(z, s) ∩ ∂X = {z}, and z is the unique point in ∂X such that ‖y − z‖ = s.

Now let y ∈ Rn \X be such that δ∂X(y) = s < r, and let z ∈ ∂X be such that
‖y − z‖ = s. Arguing as above, the closed s-ball with centre y is β(z, s), and z is the
unique point in ∂X such that ‖y − z‖ = s.

Definition A.9.
(i) For s ∈ [0, r], let

Us = {x ∈ Rn | δ∂X(x) < s},

and let π : Ur → ∂X be defined by setting π(x) to be the nearest point in ∂X
to x, for every x ∈ Ur.

(ii) For each z ∈ ∂X let N(z) be the outward-pointing unit normal at z to the
boundary of the closed r-ball α(z, r) ⊂ X; notice that −N(z) is then the
outward-pointing unit normal to the boundary of the closed r-ball β(z, r) ⊂
Rn \X.

Remark A.10. It follows from Corollary A.8 that

(i) if z ∈ ∂X and s ∈ (−r, r) then π(z + sN(z)) = z; here z + sN(z) ∈ X if s ≤ 0,
z + sN(z) ∈ Rn \X if s ≥ 0.

(ii) if x ∈ X is such that δ∂X(x) = s < r then x = π(x)− sN(π(x)); similarly, if
x ∈ Rn \X is such that δ∂X(x) = s < r then x = π(x) + sN(π(x)).

Remark A.11. Duarte and Torres adopt a different approach to r-regularity in [2];
they define a subset U ⊂ Rn to be r-regular if both U and Rn \ U are connected
unions of open r-balls. (The connectedness assumption seems irrelevant; it is not
used anywhere in [2].)
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The statement of Proposition 5 of their paper [2] is essentially that for such
U , Proposition A.5, (ii) holds for U . The proof of that proposition contains an
error, however; there is an implicit assumption that ∂U = ∂(Rn \ U), but this is
not necessarily true. For example, consider U = Rn \ (B ∪ L), where B is a closed
r-ball, and L is either a point or a closed bounded line segment with δB(L) ≥ 2r.
Then U is a connected union of open r-balls, as is Rn \ U = Int(B), an open r-ball,
but ∂U = ∂B ∪ L whilst ∂(Rn \ U) = ∂B. The difficulty is resolved by the following
proposition:

Proposition A.12. Let U ⊂ Rn be an open set with ∂U = ∂(Rn \ U). Then the
following are equivalent:

(i) U is r-regular,
(ii) U and Rn \ U are both unions of open r-balls.

Proof.

(i) ⇒ (ii): We suppose that U is r-regular. Observe that ∂U = ∂(Rn \ U); = ∂U
by assumption. For any x ∈ U , we will exhibit an open r-ball containing x which
avoids ∂U . Since the ball is connected, this will in fact show that it is contained in
U .

Suppose first δ∂U (x) ≥ r. Then the open r-ball with centre x avoids ∂U = ∂U .
Otherwise, suppose δ∂U (x) ∈ (0, r]. Then x is contained in Int(α(π(x), r)), an

open r-ball avoiding ∂U = ∂U .
Thus U is a union of open r-balls. A similar argument, replacing U with Rn \ U ,

shows that Rn \ U is also a union of open r-balls.

(ii) ⇒ (i): Suppose U and Rn \ U are unions of open r-balls. Let z ∈ ∂U , and let
{xi} ⊂ U be a sequence converging to z. For i = 1, 2, . . . let Ai be an open r-ball
containing xi and contained in U , and let ai be the centre of Ai. We have

‖ai − z‖ ≤ ‖ai − xi‖+ ‖xi − x‖ < r + ‖xi − z‖ (∗)

Since ‖xi−z‖ i→∞−−−→ 0, {ai} is bounded, and thus has a convergent subsequence, with
limit a, say. Replacing {ai} with this subsequence, and {xi} with its corresponding
subsequence, we can suppose xi → x and ai → a. Letting i → ∞ in (∗) gives
‖a− z‖ ≤ r.

Since Ai ∩ ∂U is empty, we have δ∂U (ai) ≥ r; letting i → ∞ gives δ∂U (a) ≥ r.
Combining this with the previous inequality gives

‖a− z‖ = r = δ∂U (a),

so the closed r-ball A with centre a contains z and is contained in U .
We have z ∈ ∂U = ∂(Rn \U) = ∂U . Arguing as above with U replaced by Rn \U

yields a closed r-ball B with z ∈ B and B ⊂ Rn \ U .
It now follows from Proposition A.5 that U is r-regular.

Theorem A.13. Let X be r-regular. Then:
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(i) The map N : ∂X → Rn is Lipschitz continuous with Lipschitz constant 1/r,
i.e. ‖N(y)−N(z)‖ ≤ (1/r)‖y − z‖ for all y, z ∈ ∂X.

(ii) Let s ∈ [0, r), and let Us = {x ∈ X | δ∂X(x) < s}. Then the restriction π|Us is
Lipschitz continuous with Lipschitz constant r

r−s , i.e. ‖π(x)−π(y)‖ ≤ r
r−s‖x−y‖

for all x, y ∈ Us.

(iii) Let f : Ur → R be given by f(x) = 〈x− π(x), N(π(x)〉. Then f is continuously
differentiable, with gradient function given by grad f(x) = N(π(x)) for all
x ∈ Ur.

(iv) ∂X = f−1(0) is a C1 (n − 1)-dimensional submanifold of Rn and X is a C1

n-dimensional submanifold-with-boundary of Rn.

Remark A.14. This theorem is a slight sharpening of results of Duarte and Torres,
see in particular Propositions 6, 7 and 8 of [2]. Our proof will also follow theirs quite
closely, but with a few improvements and a correction.

We begin with two technical lemmas which are slight improvements of Lemmas 3
and 4 of [2].

Lemma A.15. Let r > 0, let u, v, w ∈ Rn, and suppose

(a) ‖v‖, ‖w‖ = r

(b) ‖u+ (v + w)‖ ≥ 2r, ‖u− (v + w)‖ ≥ 2r

Then

(i) ‖v − w‖ ≤ ‖u‖

(ii) |〈v + w, u〉| ≤ 1
2(‖u‖2 − ‖v − w‖2)

(iii) |〈u, v〉| ≤ 1
2‖u‖

2, |〈u,w〉| ≤ 1
2‖u‖

2

(iv) |〈v − w, u〉| ≤ ‖u‖2

(v) 〈v, v − w〉 = 1
2‖v − w‖

2 ≤ 1
2‖u‖

2, 〈, w − v〉 = 1
2‖w − v‖

2 ≤ 1
2‖u‖

2.

Proof.

(i): Using the parallelogram identity and the hypothesis (a), we have

‖v + w‖2 + ‖v − w‖2 = 2‖v‖2 + 2‖w‖2 = 4r2,

so that ‖v + w‖2 = 4r2 − ‖v − w‖2.
Using the parallelogram identity and the hypothesis (b), we have

2‖u‖2 + 2‖v + w‖2 = ‖u+ (v + w)‖2 + ‖u− (v + w)‖2 ≥ 8r2,

so that ‖v + w‖2 ≥ 4r2 − ‖u‖2.
Hence 4r2 − ‖v − w‖2 ≥ 4r2 − ‖u‖2, so ‖v − w‖2 ≤ ‖u‖2 and ‖v − w‖ ≤ ‖u‖.
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(ii): Using hypothesis (b),

4r2 ≤ ‖u± (v + w)‖2 = ‖u‖2 ± 〈2u, v + w〉+ ‖v + w‖2.

Substituting for ‖v + w‖2 as in the proof of (i), we have

4r2 ≤ ‖u‖2 + 4r2 − ‖v − w‖2 ± 2〈u, v + w〉,

so ∓2〈u, v + w〉 ≤ ‖u‖2 − ‖v − w‖2 and |〈u, v + w〉| ≤ 1
2(‖u‖2 − ‖v − w‖2).

(iii): We have

|〈u, v〉| = |12(〈u, v + w〉 − 〈u, v − w〉)| ≤ 1
2(|〈u, v + w〉|+ |〈u, v − w〉|).

Using (ii) and the Cauchy-Schwary inequality gives

|〈u, v〉| ≤ 1
2(1

2(‖u‖2 − ‖v − w‖2) + ‖u‖‖v − w‖).

Write t = ‖v − w‖/‖u‖, so, using (i), 0 ≤ t ≤ 1. The inequality above may be
rewritten

|〈u, v〉| ≤ (1
4(1− t2) + 1

2 t)‖u‖
2.

The function t 7→ 1
4(1− t2) + 1

2 t has derivative
1
2(1− t), so is monotone increasing

on [0, 1], and thus takes its maximum value on [0, 1], 1
2 , when t = 1. It follows that

|〈u, v〉| ≤ 1
2‖u‖

2.

Interchanging the roles of v, w gives

|〈u,w〉| ≤ 1
2‖u‖

2.

(iv): Applying the Cauchy-Schwarz inequality and (i) gives

|〈v − w, u〉| ≤ ‖v − w‖‖u‖ ≤ ‖u‖2.

(v): We have, using hypothesis (a),

‖v − w‖2 = 〈v − w, v − w〉 = 2〈v, v − w〉 − 〈v + w, v − w〉
= 2〈v, v − w〉 − (‖v‖2 − ‖w‖2) = 2〈v, v − w〉,

so, using (i),
〈v, v − w〉 = 1

2‖v − w‖
2 ≤ 1

2‖u‖
2.

Interchanging the roles of v, w gives

〈w,w − v〉 = 1
2‖w − v‖

2 ≤ 1
2‖u‖

2.

Lemma A.16. With u, v, w ∈ Rn as in Lemma A.15, let s ∈ (0, r), let sv, sw ∈ R be
such that |sv|, |sw| ≤ s, and let v′ = sv

r v, w
′ = sw

r w.
Then ‖u‖ ≤ r

r−s‖u+ w′ − v′‖.
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Proof. By the Cauchy-Schwarz inequality, we have

‖x‖ ≥ |〈x, u〉|
‖u‖

.

Applying this with x = u+ w′ − v′ gives, applying Lemma A.15,(iii),

‖u‖‖u+ w′ − v′‖ ≥ |〈u+ w′ − v′, u〉|
= |‖u‖2 + sw

r 〈w, u〉 −
sv
r 〈v, u〉|

≥ ‖u‖2(1− 1
2 |
sw
r | −

1
2 |
sv
r |)

≥ ‖u‖2(1− s
r ).

It follows at once that

‖u‖ ≤ 1
1− s

r

‖u+ w′ − v′‖ = r

r − s
‖u+ w′ − v′‖.

Proof of Theorem A.13.

(i): We must prove that the unit normal vector field N : ∂X → Rn satisfies
‖N(x)−N(y)‖ ≤ 1

r‖x− y‖ for any x, y ∈ ∂X. It is clear that this holds when x = y;
so suppose x 6= y. According to Proposition A.7 there are unique closed r-balls
Ax, Ay ⊂ X and Bx, By ⊂ Rn \X such that Ax ∩ Bx = {x}, Ay ∩ By = {y}. It
follows that

Int(Ax) ∩ Int(By) = ∅, Int(Ay) ∩ Int(Bx) = ∅. (∗)
Write ax, bx, ay, by for the centres of Ax, Bx, Ay, By respectively. Then (∗) is equivalent
to

‖ax − by‖ ≥ 2r, ‖bx − ay‖ ≥ 2r. (∗∗)
It follows from the Definition A.9, (ii) that

ax = x+ rN(x), bx = x− rN(x), ay = y + rN(y), by = y − rN(y),

so (∗∗) is equivalent to

‖x− y + rN(x) + rN(y)‖ ≥ 2r, ‖x− y − (rN(x) + rN(y))‖ ≥ 2r.

Applying Lemma A.15, (i), with v = rN(x), w = rN(y), and u = x − y gives
‖rN(x)− rN(y)‖ ≤ ‖x− y‖, whence ‖N(x)−N(y)‖ ≤ 1

r‖x− y‖, as claimed.

(ii): Let x, y ∈ Us. We have, following Remark A.10, (ii), that

x− π(x) = sxN(π(x)), y − π(y) = syN(y),

for some |sx|, |sy| < s. Applying Lemma A.16 with

u = π(x)− π(y), v = rN(x), w = rN(y), v′ = x− π(x), w′ = y − π(y),

gives

‖π(x)− π(y)‖ ≤ r
r−s‖π(x)− π(y) + (x− π(x))− (y − π(y)‖

= r
r−s‖x− y‖,

as claimed.
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(iii): It is enough to prove that, for any s ∈ (0, r), there exists C > 0 such that

|f(y)− f(x)− 〈y − x,N(π(x))〉| ≤ C‖x− y‖2

for all x, y ∈ Us. We will apply Lemma A.15, (iii) and (v), with

u = π(x)− π(y), v = rN(π(x)), w = rN(π(y)).

Notice that y − π(y) = syN(π(y)) for some sy ∈ (−s, s).
A direct calculation shows

|f(y)− f(x)− 〈y − x,N(π(x))〉|
= |〈y − π(y), N(π(y))〉 − 〈x− π(x), N(π(x))〉 − 〈y − x,N(π(x))〉|
= |〈y − π(y), N(π(y))−N(π(x))〉+ 〈π(x)− π(y), N(π(x))〉|
= | sy

r2 〈w,w − v〉+ 1
r 〈u, v〉|

≤ s
r2 |〈w,w − v〉|+ 1

r |〈u, v〉|
≤ s+r

2r2 ‖u‖2.

Now, by (ii), ‖u‖ = ‖π(y)− π(x)‖ ≤ r
r−s‖y − x‖, so

|f(y)− f(x)− 〈y − x,N(π(x))〉| ≤ s+r
2(r−s)2 ‖y − x‖2,

completing the proof.

(iv): Since x − π(x) is parallel to N(π(x)) for all x ∈ Ur, it is immediate that
∂X = f−1(0). Since f is C1 and grad f(x) = N(π(x)) 6= 0 for all x ∈ Ur, ∂X = f−1(0)
is a C1 (n− 1)-dimensional submanifold of Ur, so of Rn. Since f−1(−r, 0] is a collar
neighbourhood of ∂X in X, X is a C1 n-dimensional submanifold-with-boundary of
Rn.

Proposition A.17. Let r ∈ (0,∞) and let X be a closed C1 n-dimensional subman-
ifold with boundary of Rn. Suppose that the outward-pointing unit normal vector field
{N(z) | z ∈ ∂X} of its boundary ∂X satisfies

‖N(z1)−N(z2)‖ ≤ 1
r‖z1 − z2‖ for all z1, z2 ∈ ∂X.

Then X has reach r.

Proof. Let y0 ∈ Rn be such that there are two distinct points x1, x2 ∈ X with

‖x1 − y0‖ = ‖x2 − y0‖ = δX(y0).

Then y0 /∈ X; and x1, x2 ∈ ∂X.
Thus the distance-squared function δ2

y0 from y0, given by δ2
y0(x) = ‖y − y0‖2

for y ∈ Rn has, when restricted to ∂X, minima at both x1 and x2. Since ∂X is a
C1-submanifold and δ2

y0 is smooth, it follows that grad δ2
y0 is orthogonal to ∂X at

both y1 and y2. Since grad δ2
y0(y) = 2(y− y0)2 for all y ∈ Rn, we thus have x1 − y0 is

parallel to N(x1) and x2 − y0 is parallel to N(x2), whence

x1 − y0 = tN(x1), x2 − y0 = tN(x2),
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where t = ‖x1 − y0‖ = ‖x2 − y0‖ and . Subtracting these equations gives x1 − x2 =
t (N(x1)−N(x2)) , so

‖N(x1)−N(x2)‖ = 1
t ‖x1 − x2‖.

But we have ‖N(x1)−N(x2)‖ ≤ 1
r‖x1 − x2‖, so 1

t ≤
1
r , or r ≤ t = δX(y0). Thus if

y ∈ Rn has distance less than r from X, there is a unique nearest point in X to y;
that is, X has reach r, as claimed.

We have now proved most of Theorem A.2. Proposition A.5 proves A.2 (i)⇐⇒ A.2
(ii), Theorem A.13 proves these are equivalent to A.2 (iii) and imply A.2 (iv), and
Proposition A.17 applied to both X and Rn \X proves A.2 (iv) =⇒ A.2 (v). It
thus remains to prove that A.2 (v) =⇒ A.2 (ii). We require some results on reach.

Proposition A.18. Let r > 0 and let A ⊂ Rn be a closed set of reach r. Then Rn \A
is a union of open balls of radius r.

The proof relies on a result of Federer from [4]:

Lemma A.19. Let A ⊂ Rn be a closed set, let

Unp = {x ∈ Rn | x has a unique nearest point in A},

and, for x ∈ Unp, write π(x) for the nearest point in A to x.
Let a ∈ A, v ∈ Rn, and suppose

τ = sup{t ≥ 0 | a+ tv ∈ Unp and π(a+ tv) = a} ∈ (0,∞).

Then a+ τv /∈ Int(Unp).

Proof. See [4, Theorem 4.8 (6)]. The argument is rather subtle; it requires [4, Theo-
rem 4.7 (6)], and [4, Theorem 4.8 (3), (4) and (5)].

Lemma A.20. With the notation of Lemma A.19, if a+ tv ∈ Unp and π(a+ tv) = a
for some t ≥ 0 then a+ t′v ∈ Unp and π(a+ t′v) = a for all t′ ∈ [0, t].

Proof. The closed ball B(t) with centre a+ tv and radius t‖v‖ meets A only at a. If
t′ ∈ [0, t], then the closed ball B(t′) with centre a+ t′v and radius t′‖v‖ is contained
in B(t); so B(t′) meets A only at a. Thus a is the unique nearest point in A to a+ t′v,
so a+ t′v ∈ Unp and π(a+ t′v) = a.

Proof of Proposition A.18. We will use the notation of Lemma A.19. Let x ∈ Rn \A.
We must find an open r-ball in Rn \A containing x.

Suppose δA(x) ≥ r. Then the open r-ball with centre x is contained in Rn \A.
Now suppose δA(x) < r. Then x ∈ Vr = {z ∈ Rn | δA(z) < r}, an open neighbour-

hood A; since A has reach r, Vr ⊂ Int(Unp). Let a = π(x) and v = x − a. Notice
that ‖v‖ = δA(x) < r. Let

τ = sup{t ∈ [0, r/‖v‖) | a+ tv ∈ Unp and π(a+ tv) = a}.

We claim that τ = r/‖v‖. For suppose τ < r/‖v‖. Then

τ = sup{t ≥ 0 | a+ tv ∈ Unp and π(a+ tv) = a}
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and Lemma A.19 implies a + τv /∈ Int(Unp). Since Vr ⊂ Int(Unp), it follows that
a+ τv /∈ Vr, so δA(a+ τv) ≥ r. However,

δA(a+ τv) ≤ ‖(a+ τv)− a‖ = τ‖v‖ < r,

a contradiction. So τ = r/‖v‖, as claimed.
It thus follows from Lemma A.20 that a + tv ∈ Unp and π(a + tv) = a for all

t ∈ [0, r/‖v‖). Equivalently, the closed ball B(t) with centre a+ tv and radius t‖v‖
meets A only at a, for all t ∈ [0, r/‖v‖). It follows that W ⊂ Rn \A, where

W =
⋃

t∈[0,r/‖v‖)
B(t) \ {a}.

Now it is easy to see that W is the open ball with centre a+ (r/‖v‖)v and radius
(r/‖v‖)‖v‖ = r. Also, since ‖v‖ < r, W contains the centre of B(1), which is x.
So there is an open ball of radius r in Rn \ A which contains x, as required. This
completes the proof.

We can, finally, prove Theorem A.2 (v) =⇒ (ii):

Proposition A.21. Let X be closed, and suppose that X and Rn \X are of reach
r. Then X is r-regular.

Proof. We have, by Proposition A.18, that Rn \X and Rn \ (Rn \X) = Int(X) are
unions of open r-balls.

Let U = Int(X). Then ∂U = ∂X = ∂(Rn\U), and it follows from Proposition A.12
that U = X is r-regular.

Remark A.22. Duarte and Torres claim, in [3],§5, that the implication Theo-
rem A.2 (iv) =⇒ (i) does not hold in general. They claim that the C1 2-dimensional
submanifold-with-boundary whose interior is the bounded region of the complement
of the curve sketched in Figure A.1 is a counter-example for r greater than half the
width of the central narrow connection, apparently because the unit normal vectors
along the boundary of the connection (the two blue normal vectors) are parallel.

Figure A.1: The above 2-dimensional submanifold with boundary is not a counter-example
to the implication iv)⇒ i) from Theorem ...,

However, this does not imply that the distance between these vectors is zero
– we are considering outward-pointing normals, so the distance between those on
the upper and lower parts of the boundary of the connection is 2. So this is not a
counter-example.
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A.2 Some geometry of r-regular sets

Proposition A.23. Let X ∈ Rn be r-regular, let a ∈ (0, r), and let

X ′ = {x ∈ X | δ∂X(x) ≥ a}.

The X ′ is (r − a)-regular.

Proof. It is immediate that X ′ is closed.

Figure A.2: Left: The position of the points in the lemma in the case where 2a < r. Right:
The position of the points i the lemma in the case where 2a ≥ r.

Let {N(z) | z ∈ ∂X} be the outward-pointing unit normal bundle for ∂X. Then

∂X ′ = {x ∈ X | δ∂X(x) = a} =
⋃

z∈∂X
{z − aN(z)}.

For z ∈ ∂X, let z′ = z − aN(z) ∈ ∂X ′, and let z′′ = z − rN(z) = z′ − (r − a)N(z),
see Figure A.2.

Let y′ ∈ ∂X ′, y′ 6= z′; so y′ = y − aN(y) for some y ∈ ∂X, y 6= z.
We have ‖z′′ − y‖ ≤ ‖z′′ − y′‖+ ‖y′ − y‖ = ‖z′′ − y′‖+ a. Now z′′ is the centre of

the closed r-ball α = α(z, r) with z ∈ α ⊂ X which meets ∂X at z; so r ≤ ‖z′′ − y‖.
Thus r < ‖z′′ − y′‖+ a, whence r − a < ‖z′′ − y′‖.

Thus the closed (r − a)-ball with centre z′′ meets ∂X ′ only at z′; it also follows
that it is is contained in X ′.

Now let z∗ = z′ + (r − a)N(z) = z − (2a− r)N(z); so z∗ 6= X ′.
Consider first the case where 2a < r, so that z∗ ∈ Rn \X – this case is shown on

the left in Figure A.2. Let y′ ∈ ∂X ′, y′ 6= z′; so y′ = y−aN(y) for some y ∈ ∂X, y 6= z.
Let w be a point of intersection of ∂X and the line segment joining y′ to z∗, and
notice that w cannot be equal to z. We have ‖z∗ − y′‖ = ‖z∗ − w‖ + ‖w − y′‖.
Also, ‖y′ − w‖ ≥ a, since δ∂X(y′) = ‖y′ − y‖ = a, and ‖z∗ − w‖ ≥ r − 2a, since
δ∂X(z∗) = ‖z∗− z‖ = r− 2a. So ‖z∗− y′‖ ≥ a+ (r− 2a) = r−a, and thus the closed
(r − a)-ball with centre z∗ meets ∂X ′ at z′, and is contained in Rn \X ′.

Now consider the case 2a ≥ r (shown on the right in Figure A.2); here z∗ ∈ X.
Let y ∈ ∂X ′, y′ 6= z′; so y′ = y − aN(y) for some y ∈ ∂X, y 6= z. Since δ∂X(y′) = a,
we have

a ≤ ‖y′ − z‖ ≤ ‖y′ − z∗‖+ ‖z∗ − z‖ = ‖y′ − z∗‖+ 2a− r,
so that ‖y′ − z∗‖ ≥ a − (2a − r) = r − a. Thus again the closed (r − a)-ball with
centre z∗ meets ∂X ′ at z′, and is contained in Rn \X ′.

It now follows from the arguments of Proposition A.5 that X ′ is (r − a)-regular,
as claimed.
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Corollary A.24. Let X be r-regular, let a ∈ (−r, r), and define

Xa =
{
X ∪ Ua a ≥ 0
X \ U|a| a < 0

Then Xa is (r − |a|)-regular.

Proof. For a ≤ 0, notice that Xa = {x ∈ X | δ∂X(x) ≥ −a} is of the same form as
X ′ in Proposition A.23, hence Xa is (r + a)-regular in this case.

For a ≥ 0, remember that Rn \X is also r-regular. Thus since

Rn \Xa = {x ∈ Rn \X | δ∂X(x) ≥ a},

the set Rn \Xa is again of the same form as in Proposition A.23, implying that
Rn \Xa is (r−a)-regular. But if this is true for Rn \Xa, it is also true for the closure
of its complement which is Xa, by Remark A.6.

Remark A.25. We may note that the ∂Xa are C1 submanifolds of Rn, by Theo-
rem A.13, (iv), and that they share a common normal bundle, in the sense that if
z′ ∈ ∂Xa, then z′ = z − aN(z) for some unique z ∈ ∂X, and the normal for ∂Xa at
z′ is N(z). This allows us to extend the domain of the normal vector field N to all
of Ur.

Remark A.26. For a ≤ 0, the set Xa of Corollary A.24 can also be written in terms
of the function f from Theorem A.13 as Xa = X \ f−1((a, r)). Likewise, for a ≥ 0,
we may write Xa = X ∪ f−1((r, a]).

Proposition A.27. Let X be r-regular, and let a1, a2 ∈ (−r, r), a1 < a2.

(i) f−1[a1, a2] has C1 boundary ∂Xa1 ∪ ∂Xa2.
(ii) f−1[a1, a2] is C1-diffeomorphic to ∂X × [0, 1].

Proof.

(i): Clearly f−1[a1, a2] has boundary f−1({a1, a2}), which is C1 by the remark
above, and equal to ∂Xa1 ∪ ∂Xa2 by the preceding corollary.

(ii): We observe that f−1[a1, a2] = {x + sN(x) | x ∈ ∂X, s ∈ [a1, a2]}, so that
ϕ : X × [0, 1] → f−1[a1, a2] given by ϕ(x, t) = x + ((1 − t)a1 + ta2)N(x) is a
homeomorphism. It is not, however, a C1-diffeomorphism when N is not continuously
differentiable. Instead, we consider η : Ur → Rn, a close C1 approximation to
N : Ur → Rn, where N is extended to all of Ur as explained in Remark A.25. Let γ
be an integral curve of η. We note that

d

dt
(f ◦ γ)(t) = grad fγ(t)γ

′(t) = 〈N(γ(t)), η(γ(t))〉,

which we can suppose is uniformly close to 1. It now follows from general theory
that there is an open neighbourhood W of f−1(a1) × {0} in f−1(a1) × R and a
C1-diffeomorphism Γ : W → Ur such that t 7→ Γ(x, t) is the complete integral curve
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through x, for each x ∈ f−1(a1). In particular, Γ−1(f−1(a2)) is a C1-submanifold of
W , indeed a graph manifold over f−1(a1),

Γ−1(f−1(a2)) = {(x, T (x)) | x ∈ f−1(a1)},

where T : f−1(a1) → (0,∞) is a C1-function. Define now ψ : f−1(a1) × [0, 1] →
f−1[a1, a2] by

ψ(x, t) = Γ(x, t(a2 − a− 1)
T (x) );

this gives the required C1-diffeomorphism.

Definition A.28. Let X ⊂ Rn be an r-regular set; and let Ur and π : Ur → ∂X be
as defined in Definition A.9.

A retraction ρ : X ∪ Ur → X is then defined by

ρ(y) =
{
π(y) y ∈ Ur \X,
y y ∈ X.

Since π(y) = y for y ∈ ∂X, ρ is continuous.

Proposition A.29. (Stelldinger et al.) Let X ⊂ Rn be an r-regular set, let x, y ∈ X
with ‖x− y‖ < 2r, and let L ⊂ Rn be the line-segment from x to y. Then:

(i) L ∈ X ∪ Ur and ρ|L is injective, so that ρ(L) is a simple curve in X joining x
to y.

(ii) Let B be an s-ball, s ≤ r, with x, y ∈ B. Then ρ(L) ⊂ B.

Proof.

(i): Let z ∈ L \ X. We have‖x − z‖ + ‖y − z‖ = ‖x − y‖ < 2r, so at least one
of ‖x − z‖, ‖y − z‖ < r, and thus δ∂X(z) = δX(z) < r, so z ∈ Ur. It follows that
L ⊂ X ∪ Ur.

Suppose now z1, z2 ∈ L with z1 6= z2 and ρ(z1) = ρ(z2); = w, say. Thus z1, z2 ∈
ρ−1(w) = {w + sN(w) | s ∈ [0, r)}. In particular, at least one of z1, z2 – let us say z1
for definiteness – is contained in the open line segment ` = {w+ sN(w) | s ∈ (0, 2r)},
which, in the notation of Proposition A.7, is contained in the interior of β(w, r), so
in Rn \X.

The unique affine line containing x and y also contains z1 and z2 between them.
` is a connected open subset of this line which intersects L (at z1) but does not meet
its end-points x and y (which are contained in X). It follows that ` ⊂ L. This gives a
contradiction, since ` has length 2r, while L has length < 2r. Thus our supposition
was false, and ρ is injective.

(ii): Let z ∈ L \X, and write w = ρ(z), so that z = w + tN(w) for some t ∈ (0, r).
Let P be the affine plane containing L and w. Then C = P ∩B is an s′-disc, for some
s′ ∈ (0, s] containing L, whilst A = P ∩β(w, r) (using the notation of Proposition A.7)
is an r-disc, because P contains the centre w + rN(w) of β(w, r). M = A ∩ L is line
segment whose interior is contained in Rn \X, and so avoids x and y; since z ∈M
we conclude that M ⊂ L, see Figure A.3.



30 Paper A

Figure A.3: The circle C contains L, while M = A ∩ L is contained in L.

Let S(A) be the intersection of A with its mirror image across the affine line `
containing L; similarly let S(C) be the intersection of C with its mirror image across
`. Clearly M = `∩S(A), and M ⊂ L ⊂ S(C). The lemma immediately following this
proof will show that S(A) ⊂ S(C); thus z ∈ S(A) ⊂ S(C) ⊂ C, and we can conclude
that ρ(L) ⊂ C.

Definition A.30. Let L be a closed line-segment in Rn of length |L| ≤ 2r; then the
r-spindle S(L, r) generated by L is the intersection of all r-balls whose boundaries
each contain both end-points of L.

When L has length 2r, there is just one r-ball containing L (with L as a diameter),
so in this case S(L, r) is this ball.

When L has length less than 2r and n = 2 there are just two closed r-balls (or,
since n = 2, r-discs) whose boundaries contain both end-points of L, each the mirror-
image of the other in the affine line containing L; and S(L, r) is the intersection of
these two discs, see Figure A.4, left.

Figure A.4: Examples of spindles in two (left) and three (right) dimensions.

When L has length less than 2r and n ≥ 3 we consider restriction to an affine
plane P containing L. Any r-ball containing the end-points of L in its boundary
intersects P in an s-disc, for s ≤ r, the case s = r being attained by the two such
r-balls with centres in P . It follows from the n = 2 case of the following lemma that
the intersection of all these discs is the r-spindle SP (L, r) generated by L in P . Since
distinct affine planes containing L intersecting only in L, we see that S(L, r) is the
union of the SP (L, r) for all affine planes P containing L, see Figure A.4, right.

Lemma A.31.
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(i) Let 0 < s ≤ r, and let M ⊆ N ⊆ Rn be closed line segments of length less than
2s. Then S(M, r) ⊆ S(N, s).

(ii) Let M be a closed line segment of length |M | < 2r in Rn. Then S(M, r) is the
intersection of all closed balls of radius at most r which contain M .

Proof.

(i): We begin with the case n = 2, and let a, b be the end-points of M . Then

S(M, r) = {x ∈ R2 | the angle ∠axb is obtuse, with sin(∠axb) ≤ |M |2r }.

This follows easily from the fact, already known to Euclid, that the angle subtended
by a chord at points of a circle is constant in the corresponding major arc and minor
arc, together with a calculation of the sine of this angle. If the circle has radius r and
the chord has length l, then this sine is l/2r, for both the major and the minor arc.

We also have, of course,

S(N, s) = {x ∈ R2 | the angle ∠cxd is obtuse, with sin(∠cxd) ≤ |N |2s },

where c, d are the end-points of N .
Now let x ∈ S(M, r). Then ∠axb is obtuse, so the larger angle ∠cxd is too. Also,

|M | ≤ |N | and r ≥ s, so
|M |
2r ≤

|N |
2s ,

and x ∈ S(N, s), as required.
Now consider the general case, and intersect with affine planes P containing M .

By the observations in the definition above, S(M, r) ∩ P = SP (M, r) and S(M, r) is
the union of the SP (M, r). Similarly, S(N, s) is the union of the SP (N, s). By what
we have just proved in the two-dimensional case, SP (M, r) ⊂ SP (N, s) for all P ; so
S(M, r) ⊂ S(N, s), as claimed.

(ii): Write S for the intersection of all closed balls of radius at most r which contain
M . By definition, S ⊂ S(M, r).

Let C be a closed s-ball containing M , where s ≤ r. Then the intersection of C
with the affine line containing M is a closed line-segment N containing M . By the
first part of the proof, S(M, r) ⊂ S(N, s) ⊂ C. Thus S(M, r) ⊂ S.

Addendum A.32. Let M be a closed line segment of length |M | < 2r in Rn. Then
S(M, r) is the intersection of all closed balls of radius strictly less than r which
contain M .

Proof. Let S be the intersection of all closed balls of radius strictly less than r which
contain M . Then clearly S(M, r) ⊂ S.

Let x ∈ S. Clearly x ∈ S(M, s) for all s ∈ (1
2 |M |, r). We must show x ∈ S(M, r).

Intersecting with the affine plane containing M and x allows us to reduce to the case
n = 2. Let a, b be the end-points of M . The characterisation of spindles in the case
n = 2 in Lemma A.31, (i) shows that ∠axb is obtuse, with

sin(∠axb) ≤ |M |2s
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for all s ∈ (1
2 |M |, r). Taking the limit as s→ r gives

sin(∠axb) ≤ |M |2r ,

and the spindle characterisation from the proof of Lemma A.31, (i) gives x ∈ S(M, r),
completing the proof.

Corollary A.33. Let X ⊂ Rn be an r-regular set, let x, y ∈ X with ‖x − y‖ < 2r,
and let L ⊂ Rn be the line-segment from x to y. Then ρ(L) ⊂ S(L, r).

Proof. This is immediate from Proposition A.29, (ii) and the definition of spindles.

Remark A.34. For the approach of Stelldinger et al to Proposition A.29 and
Corollary A.33, see [7], Theorem 6 and Lemma 8.

Addendum A.35. Let X ⊂ Rn be an r-regular set, let x, y ∈ X with ‖x− y‖ < 2r,
and let L ⊂ Rn be the line-segment from x to y. Then orthogonal projection Π of Rn

onto the affine line ` containing L gives a homeomorphism ρ(L)→ L.

Proof. Let v, w ∈ ρ(L) be such that Π(v) = Π(w) = z. Assume without loss of
generality that ‖v − z‖ ≥ ‖w − z‖, see Figure A.5

Figure A.5: if two points v and w both lie in Π−1({z}) with ‖v − z‖ ≥ ‖w − z‖ for some
z ∈ L, then the point xv that is mapped to v by ρ is not mapped to its unique nearest point,

yielding a contradiction.

Let xv ∈ L be such that ρ(xv) = v, i.e. v is the unique nearest point to xv. Then
the closed ball B‖v−xv‖(xv) meets Π−1({z}) in a closed (n− 1)-dimensional ball C of
radius ‖v − z‖, centered at z, and v ∈ ∂C. Since ‖v − z‖ ≥ ‖w − z‖, we must have
that w lies in C, and hence w ∈ B‖v−v‖(xv). But then w is a point in X that is as
not further from xv than v – a contradiction, since v was the unique nearest point to
xv.

Definition A.36. The spindle angle of a two-dimensional spindle S(L, r) is the
acute angle ϕ between L and the boundary arcs of S(L, r). An easy calculation shows
sinϕ = |L|

2r , where |L| is the length of L.
The spindle angle of a higher dimensional spindle S(L, r) is the spindle angle of

SP (L, r) for any affine plane P containing L.
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Lemma A.37. Let X ⊂ Rn be r-regular, and let x, y ∈ ∂X, with 0 < ‖x− y‖ < 2r;
write L for the line segment joining x and y. Then the angles between L and the
tangent spaces to ∂X at x and y and are at most the spindle angle of S(L, r).

Proof. It is enough to show this holds at x. Let T be the tangent space to ∂X at x,
N its orthogonal complement. We observe first that y /∈ N .
(For suppose otherwise. Then L is be contained in the interior an an r-ball tangent
to ∂X at x, so that y is contained either in Int(X) or Rn \X, contradicting y ∈ ∂X.)
Let P be the affine plane through x containing L and N , so that the angle between
L and T is the angle between L and T ∩ P . Choose orthonormal coordinates in P
so that x = (0, 0), y = (|L|, 0) and let θ be the anticlockwise angle between L and
T ∩ P . Reflecting in the x-axis if necessary, we can suppose that θ ∈ (0, π2 ). The
two closed r-balls tangent to ∂X at x have centres on N at (−r sin θ, r cos θ) and
(r sin θ,−r cos θ). Since y ∈ ∂X, neither of these balls has y in its interior, so we
must have

(−r sin θ − |L|)2 + (r cos θ)2 ≥ r2, (r sin θ − |L|)2 + (−r cos θ)2 ≥ r2.

Since θ ∈ (0, π2 ), the first of these is always satisfied. The second expands to |L|2 −
2r|L| sin θ + r2 ≥ r2, so is equivalent to |L| ≥ 2r sin θ, so to sin θ ≤ |L|

2r ; so θ is at
most the spindle angle of S(L, r), as claimed.

Proposition A.38. Let X ⊂ Rn be an r-regular set. Let x, y, z be three non-collinear
points in X, and suppose that x, y, z ∈ C, where C ⊂ Rn is a closed s-ball, for some
s ∈ (0, r). Let T be the plane triangle in Rn with vertices x, y, z, and write Lx, Ly, Lz
for the three sides of T , respectively opposite x, y, z.

Then there exists a continuous map σ : T → X such that

(i) σ(T ) ⊂ C,
(ii) σ = ρ on Lx ∪ Ly ∪ Lz,

Proof. Let ∆ be the plane triangle in R3 with vertices (1, 0, 0), (0, 1, 0), (0, 0, 1), so
that

∆ = {(s, t, u) ∈ R3 | s, t, u ∈ [0, 1] and s+ t+ u = 1}.
The map ϕ : ∆→ T defined by ϕ(s, t, u) = sx+ ty+uz for (s, t, u) ∈ ∆ is continuous
and bijective (because of the non-collinearity of x, y, z), so is a homeomorphism, and
the points of T are uniquely and continuously parametrised by ϕ.

We will define σ : T → X via this parametrisation:

σ(sx+ ty + uz)

=

ρ
[
(1− u)ρ

(
1
s+t(sx+ ty)

)
+ uz

]
for (s, t, u) ∈ ∆ \ {(0, 0, 1)},

z for (s, t, u) = (0, 0, 1).

We must see that σ is well-defined.
This is clear when (s, t, u) = (0, 0, 1), where σ(z) = z ∈ X ∩ C. Now suppose

(s, t, u) ∈ ∆ \ {(0, 0, 1)}. Observe first that ws,t = 1
s+t(sx + ty) ∈ Lz. Since C is

convex Lz ⊂ C, so is of length at most 2s, the diameter of C. Since s < r, it follows
from Proposition A.29 that ρ|Lz exists and that ρ(Lz) ⊂ C. Thus ρ(ws,t) is defined
and contained in C.
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Next, observe that vs,t,u = (1− u)ρ(ws,t) + uz is contained in the line-segment
Ks,t from ρ(ws,t) to z. These end-points are both in C, so applying Proposition A.29
again, ρ|Ks,t is defined and ρ(Ks,t) ⊂ C. Thus σ(sx+ ty + uz) = ρ(vs,t,u) is defined
and contained in C; so σ is well-defined, and σ(T ) ⊂ C.

We must also see that σ is continuous. This is clear from the definition on T \{z},
since ρ is continuous. To study continuity at z, let {(sn, tn, un) |n ∈ N} be a sequence
in ∆ \ {(0, 0, 1)} converging to (0, 0, 1). We must show that σ(snx+ tny + unz)→ z
as n→∞.

For all n ∈ N, wsn,tn = 1
sn+tn (snx+ tny) ∈ Lz, so ρ(wsn,tn) ∈ ρ(Lz). Since Lz is

compact, so is ρ(Lz), so ‖ρ(wsn,tn)− z‖ is bounded.
Now consider vsn,tn,un = (1− un)ρ(wsn,tn) + unz. We have

‖vsn,tn,un − z‖ = ‖(1− un)ρ(wsn,tn) + unz − z‖ = ‖(1− un)(ρ(wsn,tn)− z)‖
= (1− un)‖ρ(wsn,tn)− z‖,

which converges to 0 as n→∞, because ‖ρ(wsn,tn)− z‖ is bounded and 1− un → 0
as n→∞. Thus vsn,tn,un → z as n→∞, whence, since ρ is continuous,

σ(snx+ tny + unz) = ρ(vsn,tn,un)→ ρ(z) = z

as n→∞, as required.
Finally, we compute σ on the edges of T . We note first that σ(z) = z = ρ(z).
Lz is parametrised by t 7→ (1− t)x+ ty, t ∈ [0, 1], and

σ((1− t)x+ ty) = ρ(ρ((1− t)x+ ty)) = ρ((1− t)x+ ty),

so σ|Lz = ρ|Lz.
Ly \ {z} is parametrised by u 7→ (1− u)x+ uz, u ∈ [0, 1) and

σ((1− u)x+ uz) = ρ((1− u)ρ(x) + uz)) = ρ((1− u)x+ uz),

so σ|Ly = ρ|Ly.
Similarly, Lx \ {z} is parametrised by u 7→ (1− u)y + uz, u ∈ [0, 1) and

σ((1− u)y + uz) = ρ((1− u)ρ(y) + uz)) = ρ((1− u)y + uz),

so σ|Ly = ρ|Ly, completing the proof.

Remark A.39. With the notation of the preceding proposition, it is immediate
that σ(T ) is contained in the intersection Pr(T ) of all closed balls of radius less than
r which contain T . This set is a little difficult to describe in general, but can often
be usefully approximated. As an example, and for later use, consider the case n = 3,
and suppose that the circumcircle C for T (that is, the unique circle containing
x, y and z) has radius s < r. Then Pr(T ) is contained in the intersection of all
closed balls of radius less than r which contain C in their boundaries, which is in
fact the intersection of the two closed r-balls containing C in their boundaries, the
r-lens Lr(C) associated with the circle C. Intersecting with the three closed r-balls
containing T with centres in the plane spanned by T and whose boundaries pass
through two of vertices of T yields the reduced r-lens Rr(C).



A.2. Some geometry of r-regular sets 35

Remark A.40. Stelldinger et al. claim a stronger result in the case n = 3 in [7],
Lemma 11:

Let X ⊂ R3 be an r-regular set, let x, y, z ∈ X be such that ‖x−y‖, ‖y− z‖, ‖z−
x‖ < 2r, and let T be the plane triangle with vertices x, y, z. Then Stelldinger et al.
claim

(i) ρ|T : T → X is well-defined,
(ii) ρ(T ) ⊂ Pr(T ),
(iii) ρ(T ) is homeomorphic to a closed disc.

All three of these are false in the generality claimed. Consider

X = {x ∈ R3 | ‖x‖ ≥ r};

it is easy to see that X is r-regular.

Figure A.6: None of the three claims in Remark A.40 are true. Indeed, consider an r-
regular set like the blue one in the above figure (all our counter-examples are drawn in 2D,
although they are actually 3-dimensional). The first figure is a counter-example to the first
claim, the second figure is a counter-example to the second claim, and the third figure is a

counter-example to the third claim.

(i): Suppose x1 = d(1, 0, 0), y1 = d(−1
2 ,
√

3
2 , 0), z1 = d(−1

2 ,−
√

3
2 , 0), where d ∈

(r, 2√
3r). Then T1, the triangle with vertices x1, y1 and z1, is an equilateral triangle

with side-length d
√

3 ∈ (r
√

3, 2r), see Figure A.6, left. We observe 0 ∈ T1 and 0 /∈ X,
but ρ cannot be defined there, because there is not a unique nearest point to 0 in ∂X
– which is the sphere of radius r and centre 0. Thus ρ|T1 : T1 → X is not well-defined.

(ii): Consider the equilateral triangle T2 with vertices x2 = −3
2d(1, 0, 0), y2 =

y1, z2 = z1, see Figure A.6, middle. These vertices are all contained in X. Then T2 is
also an equilateral triangle with side-length d

√
3 ∈ (r

√
3, 2r), and its circumcircle C2

has centre (−d, 0, 0) and radius d. We note that 0 /∈ T2, so ρ|T2 is well-defined, with
ρ(T2) ⊂ X; indeed, it is easy to see that ρ(T2) = T2 \ {x ∈ R3 | ‖x‖ < r}.

We claim that T2 is not contained in any closed ball of radius less than d. For
suppose T2 ⊂ B, where B ⊂ R3 is a closed ball of radius e ∈ (d

√
3

2 , d). Let L1, L2, L3
be the sides of T2 opposite x2, y2, z2, respectively. Observe that T ∪⋃3

i=1 S(Li, d) = D,
the plane disc with boundary C2. By Lemma A.31 S(Li, d) ⊂ S(Li, e) ⊂ B; so D ⊂ B.
But this is impossible, since D has diameter 2d, while B has diameter 2e < 2d. So
no such B exists, proving the claim.
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It follows that Pr(T2) is empty; so ρ(T2) 6⊂ Pr(T2).

(iii): Let x3, z3 be the end-points of a closed minor arc A of a circle C of radius r
centered at 0; and let y3 lie in the interior of A, see Figure A.6, right. Since C ⊂ ∂X,
x3, y3, z3 ∈ ∂X ⊂ X. Let T3 be the triangle with vertices x3, y3, z3; it is a genuine
triangle, since x3, y3, z3 are not collinear. Notice that T3 \ {x3, y3, z3} 6⊆ X. Since
its vertices lie in a minor arc of C, T3 does not contain the centre of C, which is
0; so ρ|T3 is well-defined. Since ρ is given by radial projection to ∂X away from 0
on Rn \ (X ∪ {0}), we have ρ(T3) = A. Certainly, then, T3 is not homeomorphic to
ρ(T3).

It is also possible to give examples with the triangle vertices in X \ ∂X. Let a, b
be the midpoints of the sides of T3 opposite x3, y3, respectively. Then ‖a‖, ‖b‖ < r.
Let

ε = 1
2 min{ r

‖a‖
− 1, r

‖b‖
− 1},

let x′3 = (1+ε)x3, y
′
3 = (1+ε)y3, z

′
3 = (1+ε)z3, and let T ′3 be the triangle with vertices

x′3, y
′
3, z
′
3. Then ρ|T ′3 is well-defined, and ρ(T ′3) = T ′3 \ {x ∈ R3 | ‖x‖ < r}, which is

the union of the arc A with three disjoint sets D1, D2, D3 each homeomorphic to a
closed disc; so ρ(T ′3) is not homeomorphic to T ′3.

It turns out that (i) and (ii) are correct if it is also assumed that the three points
x, y, z ∈ X lie in a closed ball of radius strictly less than r, as in Proposition A.38,
but we will not prove this here, since the map σ of Proposition A.38 will suffice for
our purposes.

However, even with this extra condition, (iii) does not hold in general, as the
examples T3 and T ′3 show – since the vertices involved there can be chosen arbitrarily
close together.

A.3 Smoothing r-regular sets

We will show that, given any r′ < r, any r-regular set in Rn can be arbitrarily closely
approximated by r′-regular sets with smooth boundary. The arguments will make use
of convolution. We recall some definitions (see e.g. [5]). Let ϕ : Rn → R be continuous,
with compact support. The support radius of ϕ is σ := inf{s | suppϕ ⊂ B(s, 0)}.

Let V ⊂ Rn be open, and let g : V → Rm be a continuous map. The convolution
of g by ϕ is the map

ϕ ∗ g : Vσ → Rm

given by
ϕ ∗ g(x) =

∫
Bσ(0)

ϕ(y)g(x− y)dy

for x ∈ Vσ; here Vσ = {x ∈ V |Bσ(x) ⊂ V }. For fixed x ∈ Vσ we can make the change
of variables z = x− y, giving the useful alternative formulation

ϕ ∗ g(x) =
∫
Bσ(x)

ϕ(x− z)g(z)dz.
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Definition A.41. A mollifier is a smooth map ϕ : Rn → [0,∞) with compact
support such that

∫
Rn ϕ(y)dy = 1.

Remark A.42. It is well-known that mollifiers exist: for example, let ψ : Rn → [0,∞)
be given by

ψ(x) =

exp( 1
‖x‖2−1) if ‖x‖ < 1,

0 otherwise;

then ψ : Rn → [0,∞) given by ψ(x) = ψ(x)/
∫

Rn ψ(y)dy for x ∈ Rn is a mollifier with
support radius 1, and ψε : Rn → [0,∞) given by ψε(x) = 1

εnψ(xε ) for x ∈ Rn is a
mollifier with support radius ε, for any ε > 0.

Convolution with mollifiers leads to smooth approximations:

Theorem A.43. Let V ⊂ Rn be open, and let g : V → Rm be a continuous map, ϕ
a mollifier with support radius σ.Then:

(i) ϕ ∗ g is smooth, and Dk(ϕ ∗ g) = (Dkϕ) ∗ g for k ∈ N;

(ii) If g is Ck, then Dk(ϕ ∗ g) = ϕ ∗ (Dkg);

(iii) If g satisfies a Lipschitz condition with constant κ, then so does ϕ ∗ g.

(iv) If g satisfies a Lipschitz condition with constant κ, then

‖ϕ ∗ g(x)− g(x)‖ < κσ for all x ∈ Uσ.

Proof.

(i): See [5], (2.3) (i).

(ii): See [5], (2.3) (ii).

(iii): Let x, x′ ∈ Vσ. Then

‖ϕ ∗ g(x)− ϕ ∗ g(x′)‖ =
∥∥∥∥∥
∫
Bσ(0)

ϕ(y)(g(x− y)− g(x′ − y))dy
∥∥∥∥∥

≤
∫
Bσ(0)

ϕ(y)‖g(x− y)− g(x′ − y)‖dy

≤
∫
Bσ(0)

ϕ(y)κ‖x− x′‖dy

= κ‖x− x′‖.
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(iv): Let x ∈ Vσ. Then

‖ϕ ∗ g(x)− g(x)| =
∥∥∥∥∥
∫
Bσ(x)

ϕ(x− z)(g(z)− g(x))dz
∥∥∥∥∥

≤
∫
Bσ(x)

ϕ(x− z)‖g(z)− g(x)‖dz

≤
∫
Bσ(x)

ϕ(x− z)κ‖z − x‖dz

<

∫
Bσ(x)

ϕ(x− z)κσdz

=κσ.

Now let X ⊂ Rn be an r-regular set, and let Us for 0 < s < r, π : Ur → ∂X, N :
∂X → Rn, and f : Ur → R be as defined in Definition A.9 and Theorem A.13.

Lemma A.44.
(i) f satisfies a Lipschitz condition with constant 1, i.e.

|f(x)− f(y)| ≤ ‖x− y‖forallx, y ∈ Ur,

(ii) grad f |Us satisfies a Lipschitz condition with constant 1
r−s , i.e.

‖grad f(x)− grad f(y)‖ ≤ 1
r−s‖x− y‖forallx, y ∈ Us.

Proof. Let us prove the claims separately.

(i): Without loss of generality we can suppose f(x) ≥ f(y). We then have

|f(x)− f(y)| = f(x)− f(y) = δXf(y)(x);≤ ‖x− y‖

since y ∈ Xf(y), where Xf(y) is the set introduced in Corollary A.24.

(ii): By Theorem A.13, (iii), grad f |Us = N ◦ π|Us. By Theorem A.13, (i) and (ii),
N and π|Us satisfy Lipschitz conditions with constants 1

r ,
r
r−s , respectively. It follows

that grad f |Us satisfies a Lipschitz condition with constant the product of these,
1
r ·

r
r−s = 1

r−s , as claimed.

Proposition A.45. Let ϕ : Rn → [0,∞) be a mollifier with support radius σ, and
suppose σ < s < r.

(i) |ϕ ∗ f(x)− f(x)| < σ for all x ∈ Ur−σ,
(ii) ‖ grad(ϕ ∗ f)(x)− grad f(x)‖ < σ

r−s for all x ∈ Us−σ,

Proof. We prove the claims separately.
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(i): This follows at once from Theorem A.43, (iv) and Lemma A.44, (i).

(ii): It follows from Theorem A.43, (ii) that grad(ϕ ∗ f) = ϕ ∗ grad f , so the result
follows from Theorem A.43, (iv) and Lemma A.44, (ii).

Lemma A.46. Suppose s < r − σ; and define M : Us → Rn by

M(x) = grad(ϕ ∗ f)(x)
‖ grad(ϕ ∗ f)(x)‖ .

Then
‖M(x)−M(y)‖ ≤ 1

r−s−σ‖x− y‖ forallx, y ∈ Us.

Proof. Let x, y ∈ Us. Write a = ‖ grad(ϕ ∗ f)(x)‖, b = ‖ grad(ϕ ∗ f)(y)‖ and c =
‖ grad(ϕ ∗ f)(x)− grad(ϕ ∗ f)(y)‖. Let θ be the angle between grad(ϕ ∗ f)(x) and
grad(ϕ ∗ f)(y). By the cosine rule, c2 = a2 + b2 − 2ab cos θ; so

cos θ = a2 + b2 − c2

2ab .

Since θ is also the angle between the unit vectors M(x) and M(y), we have

‖M(x)−M(y)‖2 = 2− 2 cos θ = 2− 2
(
a2 + b2 − c2

2ab

)
= c2 − (a− b)2

ab
≤ c2

ab
.

Now ‖ grad f(x)‖ = ‖ grad f(y)‖ = 1, so by Proposition A.45, (ii) a, b ≥ 1 − σ
r−s ,

whence, applying also Lemma A.44, (ii) and Theorem A.43, (iii),

‖M(x)−M(y)‖ ≤ 1
1− σ

r−s
c = 1

1− σ
r−s
‖ grad(ϕ ∗ f)(x)− grad(ϕ ∗ f)(y)‖;

≤ 1
1− σ

r−s

1
r − s

‖x− y‖ = 1
r − s− σ

‖x− y‖.

Theorem A.47. Let X ⊂ Rn be an r-regular set. Let ε ⊂ (0, r4). Then there exists
an (r − ε)-regular set X̃ with C∞ boundary and a C1 isotopy Ψs, s ∈ [0, 1] of Rn to
itself such that Ψ0 is the identity, Ψ1(X̃) = X and such that ‖Ψs(x)− x‖ < ε

2 for all
x ∈ Rn and s ∈ [0, 1].

Proof. Let Us for 0 < s < r, π : Ur → ∂X, N : ∂X → Rn, and f : Ur → R be as
defined in Definition A.9 and Theorem A.13.

Let ϕ : Rn → [0,∞) be a mollifier with support radius σ ≤ ε
2 . Write g for the

smooth function ϕ ∗ f : Ur−σ → R, and let Z = g−1(0). It follows from Proposi-
tion A.45, (i) with s = r − σ that Z ⊂ Uσ, and from Proposition A.45, (ii) that
grad g is non-zero on Uσ, so on Z. Thus 0 is a regular value for g; so Z is a smooth
(n − 1)-submanifold of Uσ. Note that Z separates f−1([−σ, σ]), since g(x) > 0 if
f(x) ≥ σ and g(x) < 0 if f(x) ≤ −σ. Thus Z is the boundary ∂X̃ of the closed set

X̃ = (g−1(−∞, 0] ∩ f−1([−σ, σ]) ∪X−σ.
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Note also that the unit normal vector field Ñ : ∂X̃ → Rn on ∂X̃ pointing out of X̃ is
the restriction to Z of the map M defined in Lemma A.46; thus, since ∂X̃ = Z ⊂ Uσ,
Ñ satisfies the Lipschitz condition

‖Ñ(z)− Ñ(z′)‖ ≤ 1
r − 2σ‖z − z

′‖forz, z′ ∈ ∂X̃.

Since σ ≤ ε
2 , it follows from Theorem A.2, (iv) =⇒ (i), that X̃ is (r − ε)-regular.

Let r̃ = r− ε, and, as in Definition A.9 let Ũs = {x ∈ Rn | δ∂X̃ < s} for 0 < s ≤ r̃,
and define π̃ : Ur̃ → ∂X̃ so that, for any x ∈ Ũr̃, π̃(x) is the unique nearest point in
∂X̃ to x. As in Theorem A.13, (ii), π̃ is continuous. As in Theorem A.13, (iii), define
f̃ : Ũr̃ → (−r̃, r̃) so that f̃(x) = (x − π̃(x)) · Ñ(π̃(x)) for all x ∈ Ũr̃; as there, f̃ is
also continuous.

Define Φ : ∂X̃ × (−r̃, r̃)→ Ũr̃ by

Φ(z, s) = z + sÑ(z)forall(z, s) ∈ ∂X̃ × (−r̃, r̃).

Since Ñ is smooth, so in Φ. We claim that Φ is a smooth diffeomorphism.
To see this, note first that Φ is a homemorphism, since its inverse is the continuous

map (π̃, f̃) : Ũr̃ → ∂X̃× (−r̃, r̃). Thus, by the inverse function theorem, to see that Φ
is a diffeomorphism it suffices to show that DΦ is nowhere singular, that is, we must
show, for any (z0, t0) ∈ Z× (−r̃, r̃) and (u, v) ∈ T (Z× (−r̃, r̃)(z0,t0) = TZz0 ×R, that

DΦ(z0,t0)(u, v) = 0implies(u, v) = (0, 0).

Differentiating gives

DΦ(z0,t0)(u, v) = u+ vÑ(z0) + t0DÑ(z0)(u).

Since‖Ñ(z)‖ = 1 for all z ∈ Z, DÑz0(v) is orthogonal to Ñ(z0), so, since also
u ∈ TZz0 is orthogonal to Ñ(z0), DΦ(z0,t0)(u, v) = 0 implies vÑ(z0) = 0 and
u+ t0DÑz0(u) = 0. The first of these conditions implies v = 0. As to the second, we
note that, since Ñ satisfies a Lipschitz condition with constant 1

r̃ , we have‖DÑz0‖ ≤ 1
r̃ ,

and thus

‖u+ t0DÑz0(u)‖ ≥ ‖u‖ − ‖t0DÑz0(u)‖
≥ ‖u‖ − |t0|‖DÑ‖‖u‖

≥
(

1− |t0|
r̃

)
‖u‖.

Since |t0| < r̃, it follows that the second condition implies u = 0.
Thus Φ is indeed a diffeomorphism. In particular, its inverse is smooth, so

π̃ is smooth. It follows that π̃|∂X : ∂X → Z is C1. We claim that it is a C1-
diffeomorphism.

We begin by showing it is bijective:

Surjectivity: We have seen that Z separates U ε
2
, so that for any y ∈ U ε

2
the line-

segment {π(y)+sN(π(y))|s ∈ (− ε
2 ,

ε
2)} meets Z, at z, say. Since this line segment also

meets y, δZ(y) < ε. Thus if δZ(y′) ≥ ε then y′ /∈ U ε
2
. It follows that ∂X is contained

in and separates Ũε. Thus for any z ∈ Z, the line-segment {z + sÑ(z) | s ∈ (−ε, ε)}
meets ∂X, at x, say. Thus z = π̃(x); and we have shown that π̃|∂X : ∂X → Z is
surjective.
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Injectivity: Suppose that it is not injective, so there exist y1, y2 ∈ ∂X and z ∈ Z
with y1 6= y2 such that π̃(y1) = π̃(y2) = z. Since Z separates U ε

2
, any point in ∂X has

distance less that ε
2 from Z, and thus y1, y2 ∈ Ũ ε

2
. Thus y1, y2 lie on the line-segment

{z + sÑ(z) | ‖s‖ < ε
2}, so ‖y1 − y2‖ ≤ ε. The r-spindle with end-points y1, y2 thus

has spindle angle α with sinα ≤ ε
2r ; by A.37, the angle between the line L joining

y1 and y2 and the tangent spaces to ∂X at y1 and y2 is at most α. Of course L is
parallel to Ñ(z). We calculate, for i = 1, 2,

‖Ñ(z)−N(yi)‖ =
∥∥∥∥ grad g(z)
‖ grad g(z)‖ − grad f(yi)

∥∥∥∥
≤ ‖ grad g(z)
‖ grad g(z)‖ − grad g(z))‖+ ‖ grad g(z)− grad f(yi)‖

= |‖ grad g(z)‖ − 1|+ ‖ grad g(z)− grad f(yi)‖
= |‖ grad g(z)‖ − ‖ grad f(z)‖|+ ‖ grad g(z)− grad f(yi)‖
≤ 2‖ grad g(z)− grad f(z)‖+ ‖ grad f(z)− grad f(yi)‖;

≤ 2ε
r − ε

,

by Proposition A.45, (ii) and Lemma A.44, (ii), since z ∈ Uσ and σ < ε
2 . If β is the

angle between Ñ(z) and T (∂X)yi , then π
2 − β is the angle between Ñ(z) and N(yi),

and the cosine rule gives

sin β = cos
(
π

2 − β
)

= 1− 1
2‖Ñ(z)−N(yi)‖2;≥ 1− 1

2

( 2ε
r − ε

)2
.

But β ≤ α, so sin β ≤ sinα, whence

1− 1
2

( 2ε
r − ε

)2
≤ ε

2r .

Write ε = ar; then the inequality above becomes

1− 2a2

(1− a)2 ≤
a

2 .

An easy calculation shows this inequality does not hold for a ∈ (0, 0.388), so does not
hold under our hypothesis ε ∈ (0, r4). This contradiction shows that π̃|∂X : ∂X → Z
is injective.

Thus π̃|∂X : ∂X → Z is bijective.
We remark that a similar calculation to that in the surjectivity argument above

the above shows that Ñ(π(y)) cannot be parallel T (∂X)y for any y ∈ ∂X.
Consider π̃ ◦ Φ| : Φ−1∂X → Z. Since π̃|∂X : ∂X → Z is bijective, as is Φ,

π̃ ◦Φ| : Φ−1∂X → Z is bijective. Since, for any z ∈ Z, Φ−1 maps the line {z+sN(z) |
s ∈ (−r̃, r̃)} to the line z × (−r̃, r̃), it follows from the remark above that the lines
z × (−r̃, r̃) are nowhere tangent to Φ−1∂X. Thus the projection p : Z × (−r̃, r̃)→ Z
maps tangent spaces to Φ−1∂X isomorphically to tangent spaces to Z, and thus, since
p is its own differential everywhere, it is an immersion when restricted to Φ−1∂X.
But p = π̃ ◦ Φ, since Φ−1 = (π̃, f̃). So p| = π̃ ◦ Φ| : Φ−1∂X → Z is a bijective C1
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immersion, so, via the inverse function theorem, is a C1 diffeomorphism, whence,
composing with Φ−1, π̃|∂X : ∂X → Z is a C1 diffeomorphism.

The inverse to p| : Φ−1∂X → Z is necessarily of form z 7→ (z, q(z)) for z ∈ Z,
where q : Z → (−r̃, r̃) is a C1 function; so ψ = (π̃|∂X)−1 : Z → ∂X is given by
z 7→ z + q(z)Ñ(z) for z ∈ Z. We note that since ∂X ⊂ Ũ ε

2
, q(z) ∈ (− ε

2 ,
ε
2) for all

z ∈ Z.
Consider now real numbers a > 0 and b, and the function η : R→ R given by

ηa,b(t) =
{
b exp(1 + a2

t2−a2 ) if|t| < a,

0 otherwise;

ηa,b is a smooth function. Calculation of its first two derivatives shows that |ηa,b|
has maximum |b|, attained when t = 0, and that |η′a,b| has, to seven significant
figures, maximum 2.170357 |b|a attained when t2 =

√
3a2. Let χa,b : R→ R be given

by χa,b(t) = t+ ηa,b(t) for t ∈ R. It is clear that χa,b is smooth, and varies smoothly
with a and b. If the maximum value of |η′a,b| is strictly less than 1 then χ′(t) > 0 for
all t; it follows that χ is a smooth diffeomorphism such that χa,b(t) = t for |t| ≥ a,
|χa,b(t)− t| ≤ |b| for all t ∈ R, and χa,b(0) = b.

Define now Xs : Z × (−r̃, r̃)− Z × (−r̃, r̃) by

Xs(z, t, s) =
(
z, χ r̃

2 ,sq(z)
(t)
)

for (z, t) ∈ Z × (−r̃, r̃) and s ∈ [0, 1]. Since |sq(z)| ≤ ε
2 for all z ∈ Z and s ∈ [0, 1],

we have
|sq(z)|
r̃/2 ≤ ε

r̃
= ε

r − ε
;≤ 1

3

by our hypothesis ε ∈ (0, r4); so χ r̃
2 ,sq(z)

is a smooth diffeomorphism for all z ∈ Z

and s ∈ [0, 1]. It follows that, for s ∈ [0, 1], Xs is a C1 isotopy of Z × (−r̃, r̃) such
that Xs(z, t) = (z, t) for |t| ≥ r̃

2 and ‖X(z, t)− (z, t)‖ ≤ ε
2 for all (z, t) ∈ Z × (−r̃, r̃),

and such that X0 is the identity and X1 maps Z × {0} to Φ−1∂X. It now follows
that, for s ∈ [0, 1], Ψs = Φ ◦Xs ◦ Φ−1 : Ũr̃ → Ũr̃ is a C1 isotopy such that Ψs is the
identity on Ũr̃ \ Ũ r̃

2
, ‖Ψ(x)− x‖ ≤ ε

2 for all x ∈ Ũr̃, and such that Ψ0 is the identity

and Ψ1 maps Z = ∂X̃ to ∂X. Extending by the identity on Rn \ Ũr̃ gives the isotopy
claimed, completing the proof.

A.4 Schur’s Theorem and applications

Theorem A.48 (Schur’s Theorem). Let α be a closed C2 arc in Rn, α a closed
C2 arc in R2, both of length L; we suppose the arcs both parametrized by arc length
s ∈ [0, L]. Suppose also that the curvature κ of α is everywhere positive, and that α
and the line segment ` joining its end-points together form the boundary of a convex
set. Suppose further that the curvature κ of α satisfies κ(s) ≤ κ(s) for all s ∈ [0, L].

Then
‖α(L)− α(0)‖ ≥ ‖α(L)− α(0)‖.
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Moreover, if ‖α(L) − α(0)‖ = ‖α(L) − α(0)‖, then κ = κ and there exists a
regular motion M of Rn such that M ◦ α(s) = α(s)× 0 ⊂ R2 × Rn−2 ≡ Rn.

Proof. See [1], pp. 36-7.

Addendum A.49. Under the hypotheses of the theorem α is a simple arc.

Proof. It is clear from the hypotheses of Theorem A.48 that α is simple.
Let x, y ∈ α be distinct points, and let x, y ∈ α be the corresponding points in α

with respect to the joint arc-length parameter; x, y are clearly distinct. Let β ⊂ α
be the arc with end-points x, y, β ⊂ α the arc with end-points x, y. Applying the
result of Theorem A.48 to β and β gives ‖x− y‖ ≥ ‖x− y‖. Thus, since x and y are
distinct, so are x and y.

Corollary A.50 (Schwarz’ Theorem). Let α be a closed C2 arc in Rn with
curvature everywhere ≤ 1

r , and suppose that the distance between its end-points x, y
is ≤ 2r. Write Lα for the length of α. Let C be a circle of radius r containing x and
y; let A0, A1 be the two arcs of C with end-points x and y. Write L0 and L1 for the
lengths of A0 and A1, respectively; we may suppose L1 ≥ L2. Then either Lα ≥ L1
or else Lα ≤ L2.

Proof. See [1], p. 38.

We relate these results with spindles:

Proposition A.51. Let α be a closed C2 arc in Rn of length Lα, with curvature
everywhere ≤ 1

r . Suppose that the distance between its end-points x, y is ≤ 2r. Then
α is contained in the r-spindle with end-points x, y if, and only if, Lα ≤ rπ.

Figure A.7: We name the curve segments, points and angles as in this figure.

Proof. We show the two directions.

‘If’: We suppose Lα ≤ rπ. Let B be any closed ball of radius r with x and y
contained in its boundary ∂B. It follows from the definition of r-spindles (Definition
A.30) that it is enough to show that α ⊂ B.

Suppose otherwise, so that there is a point z ∈ α with z /∈ B, see Figure A.7. Let
γ : [0, 1]→ Rn be a parametrization of α with γ(0) = x, γ(1) = y; then z = γ(s0) for
some s0 ∈ [0, 1]. Let

s1 = max{∈ [0, s0] | γ(s) ∈ B}, s2 = min{s ∈ [s0, 1] | γ(s) ∈ B}.
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Since γ is continuous, B is closed, and γ(s0) /∈ B, we have s1 < s0 < s2, and
α′ = γ([s1, s2]) is a closed arc meeting B only at its end-points, which lie in ∂B. Let
b be the centre of B. The radial projection p : Rn \ {b} → ∂B has partial derivatives
with absolute value less than 1 at any point outside B, so the length of π(α′) is
less than the length Lα′ of α′. Since the shorter great circle arc A in ∂B joining the
end-points of α′ is the shortest path between these points, it has length LA at most
the length of π(α′), so LA < Lα′ . However, Lα′ ≤ Lα;≤ rπ by hypothesis; so by
Corollary A.50 Lα′ ≤ LA. This contradiction shows that our supposition was false,
completing the proof.

‘Only if’: We suppose that α is contained in the r-spindle S with end-points x, y.
Let ϕ ∈ (0, π] be the angle subtended at the centre of a circle C of radius r through
x and y. We claim that Lα ≤ rϕ - which will of course complete the proof. We argue
by contradiction. So suppose that Lα > rϕ. Let z ∈ α be such that the subarc α′ of
α between x and z has length rϕ. Clearly z ∈ S \{y}, so ‖z−x‖ < ‖y−x‖ - because
the sphere of radius ‖y − x‖ centred at x meets S only at y. But, by Theorem A.48,
‖z − x‖ ≥ ‖y − x‖, since α′ and the minor arc of C with end-points x, y have the
same length, and C has curvature 1

r . This contradiction shows our supposition to be
false, concluding the proof.

This result is relevant to the study of smooth r-regular sets in Rn:

Lemma A.52. Let X ⊂ Rn be r-regular with smooth boundary ∂X. Then any
geodesic arc in ∂X has curvature everywhere ≤ 1

r .

Proof. Since ∂X is smooth, so is the outward-pointing unit normal vector field
N : ∂X → Rn.

Let J ⊂ R be an interval, γ : J → ∂X an arc-length-parametrized geodesic curve.
Thus, for any s ∈ J , γ′′(s) is parallel to N(γ(s)) for all s ∈ J . Now for all s ∈ J ,
γ′(s) ∈ T (∂X)γ(s), so γ′(s) ·N(γ(s)) = 0. Differentiating with respect to s gives

γ′′(s) ·N(γ(s)) + γ′(s) · (N ◦ γ)′(s) = 0foralls ∈ J.

Thus, since ‖γ′(s)‖ = 1 for all s ∈ J , the curvature κ(s) of γ at s is given by

κ(s) = ‖γ′′(s)‖ = ‖γ′′(s) ·N(γ(s))‖ = ‖ − γ′(s) · (N ◦ γ)′(s)‖ ≤ ‖(N ◦ γ)′(s)‖.

Now N : ∂X → Rn satisfies a Lipschitz condition with constant 1
r , by Theo-

rem A.2 (iv), so

‖N(γ(s+ h))−N(γ(s)‖ ≤ 1
r
‖γ(s+ h)− γ(s)‖foralls, s+ h ∈ J.

Dividing the inequality above by |h| and letting h→∞ gives

‖(N ◦ γ)′(s)‖ ≤ 1
r
‖γ′(s)‖ = 1

r
;

so κ(s) ≤ 1
r for all s ∈ J , completing the proof.

Remark A.53. In the case n = 2, ∂X is a disjoint union of smooth curves, which are
therefore geodesic; it follows that these boundary curves have curvature everywhere
≤ 1

r .
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Lemma A.54. Let X ⊂ Rn be a smooth r-regular set, and let x, y ∈ ∂X be such
that ‖x− y‖ < 2r. Then there is a geodesic arc joining x and y.

Proof. Let π : Ur → ∂X be as defined in Definition A.9. Each point on the line
` joining x and y has distance less than r from either x or y, so is contained in
Ur. Since π is continuous, π(`) is connected, so x and y lie in the same connected
component of ∂X. So by the Hopf-Rinow theorem [6], there exists a shortest path
joining x and y, which is a smooth geodesic.

Definition A.55. A closed smooth arc α ⊂ Rn has the r-spindle property if every
closed sub-arc α′ of α is contained in the r-spindle with end-points the end-points of
α′.

Proposition A.56. Let α ⊂ Rn be a smooth closed arc with the r-spindle property,
and let t : α→ Rn be a smooth unit tangent vector field for α. Then

(i)
‖t(z1)− t(z2)‖ ≤ ‖z1 − z2‖forallz1, z2 ∈ α,

(ii) the curvature of α is everywhere ≤ 1
r .

Proof. We prove each claim separately.

Ad (i): Let z1, z2 ∈ α, let β be the sub-arc of α with end-points z1, z2, and let S
be the r-spindle with end-points z1, z2. Then β ⊂ S, and thus the angles between
t(z1), t(z2) and the line joining z1 to z2 are ≤ the spindle angle ϕ (Lemma A.37) of
S. It follows that the angle θ between t(z1) and t(z2) is ≤ 2ϕ.

Thus, using the cosine rule, a double-angle formula, and the spindle angle calcu-
lation of Lemma A.37,

‖t(z1)− t(z2)‖2 = 2− 2 cos θ
≤ 2− 2 cos(2ϕ)
= 2− 2(1− 2(sinϕ)2) = (2 sinϕ)2

=
(1
r
‖z1 − z2‖

)2
,

so
‖t(z1)− t(z2)‖ ≤ 1

r
‖z1 − z2‖,

as claimed.

Ad (ii): Let γ : [0, L] → Rn be an arc-length parametrization of α such that
γ′(s) = t(γ(s)) for s ∈ [0, L]. Thus, by (i), for s, s+ h ∈ [0, L],

‖γ′(s+ h)− γ′(s)‖ ≤ 1
r
‖γ(s+ h)− γ(s)‖.

We suppose h 6= 0. Then dividing by |h| and letting h→ 0 gives

‖γ′′(s)‖ ≤ 1
r
‖γ′(s)‖; = 1

r
.

Since ‖γ′′(s)‖ is the curvature of α at γ(s), this completes the proof.
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Corollary A.57. A smooth arc α ⊂ Rn has the r-spindle property if, and only if,

(i) the distance between the end-points of α is ≤ 2r,
(ii) α has curvature ≤ 1

r everywhere,
(iii) α has length ≤ rπ.

Proof. This follows at once from Propositions A.51 and A.56 (ii).

We conclude with two further consequences of the r-spindle property.

Proposition A.58. Let α ⊂ Rn be a smooth closed arc with the r-spindle property.
Let ` be the line-segment joining the end-points of α, and let ϕ be the spindle angle
of the r-spindle S generated by `. Then the angle between ` and any tangent vector
to α is at most ϕ.

Figure A.8: We name the points, angles and curve as in this figure.

Proof. This is clear for the tangent vectors at the end-points x and y of α. Let z be
any other point in α, let `′ be the line segment joining x and z, and let S′ be the
r-spindle with end-points x and z, see Figure A.8. Then S′ ⊂ S, by A.31, (ii). The
angle between a tangent vector t to α at z and `′ is at most the spindle angle ϕ′ of
S′, and thus the angle between t and ` is at most ϕ′ plus the angle θ between ` and
`′. But θ + ϕ′ is also the maximum angle between ` and tangent vectors to S′ at x;
since S′ ⊂ S, it follows that θ + ϕ′ ≤ ϕ, completing the proof.

Proposition A.59. Let α ⊂ Rn be a smooth closed arc with the r-spindle property.
The α has reach r.

Proof. Let x ∈ Rn be such that there exist distinct points z1, z2 ∈ α such that‖x−
z1‖ = ‖x− z2‖ = δα(x). Write d = δα(x). We claim that d ≥ r. Suppose the contrary,
that d < r. The ball B with centre x and radius d is such that z1, z2 ∈ ∂B. Since
d < r, the r-spindle S with end-points z1, z2 exists, and is contained in B, by A.31,
(ii). Indeed, S ∩ ∂B = {z1, z2}. Now the sub-arc α′ of α with end-points z1, z2 is
contained S, so there are points of α′ in the interior of B; so there exists z3 ∈ α such
that ‖x − z3‖ < d. This contradicts the assumption d = δα(x), so our supposition
was false, and d ≥ r. Thus if x ∈ Rn is such that δα(x) < r, then x has a unique
nearest point in α, and α is of reach r.
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Paper B

Reconstruction of r-regular
Objects from Trinary Images

By Helene Svane and Andrew du Plessis

Abstract

We study digital images of r-regular objects where a pixel is black if it is completely
inside the object, white if it is completely inside the complement of the object, and grey
otherwise. We call such images trinary. We discuss possible configurations of pixels
in trinary images of r-regular objects at certain resolutions and propose a method
for reconstructing objects from such images. We show that the reconstructed object
is close to the original object in Hausdorff norm, and that there is a homeomorphism
of R2 taking the reconstructed set to the original.

B.1 Introduction

The purpose of this paper will be to introduce a way to reconstruct objects from
their grey-scale digital images. More specifically, we focus on objects that are small
compared to the image resolution and satisfy a certain regularity constraint called
r-regularity. The notion of r-regularity was developed independently by Serra [5] and
Pavlidis [4] to describe a class of objects for which reconstruction from digital images
preserved certain topological features. They both consider subset digitisation, that is,
digitisation formed by placing a grid on top of an object and then colouring an cell
black if its midpoint is inside the object, and white if the cell midpoint is outside the
complement of the object. This way a binary image is produced, and Pavidis and
Serra consider the set of black cells as the reconstructed set. Serra showed that if the
grid is hexagonal and the object satisfies certain constraints related to r-regularity,
the original and reconstructed sets have the same homotopy, and Pavlidis showed
that for a square grid and for certain r-regular sets, the set and its reconstruction
are homeomorphic. Later on, Stelldinger and Köthe [7, 8] argued that the concepts
of homotopy or homeomorphism were not strong enough to fully capture human
perception of shape similarity. Instead they proposed two new similarity criterions
called weak and strong r-similarity, and showed that under certain conditions, an

49
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r-regular set and its subset digitisation by a square grid are both weakly and strongly
r-similar. We, too, will consider the notion of weak r-similarity in this paper.

However, Serra, Pavlidis, Stelldinger and Köthe were modelling images using
subset digitisation, which outputs a binary image. In contrast to this approach,
Latecki et al. [3] modelled an image by requiring the intensity in each pixel to be a
monotonic function of the fraction of the pixel covered by the object. This way they
seek to model a pixel intensity as the light intensity measured by a sensor in the
middle of the pixel, and the result is a grey-level image much like the ones obtained
in real situations. They show that after applying any threshold to such an image
of an r-regular object with certain constraints, the set of black pixels has the same
homotopy type as the original object and, in the case where the original object is a
manifold with boundary, the two are even homeomorphic. They also conjecture that
all r-regular objects are manifolds with boundary. This was later proven by Duarte
and Torres in [2].

We will model our images in the same way as Latecki et al. did, namely by
requiring each pixel intensity to be a monotonic function of the fraction of the pixel
covered by the object. In contrast to the above reconstruction approaches, we do not
wish to use a set of pixels as our reconstructed set, but rather to construct a new set
with smooth boundary that we may then use as the reconstruction. Also in contrast
to the above, we will not consider binary images, but keep the information stored in
the grey pixels in our endeavour to make a more precise reconstruction.

When working with reconstruction, one should decide which properties one wishes
the reconstructed object to share with the original one. Should the reconstructed
set have the same topological features as the original one? Should the reconstructed
set be close to the original one? Should a digitisation of the reconstructed set yield
the same image as the original set? Should the reconstructed set be r′-regular for
some r′ close to r? Though all of these comparison criteria may be justified and an
ideal reconstruction should satisfy them all, it is hard to construct such a set. In
this paper, we will therefore focus on constructing a set that is close to the original
one in Hausdorff norm (which will be introduced in the following), has a smooth
boundary, and is homeomorphic to the original set. This means that we show that
our reconstructed set and the original are weakly r-similar in the sense of [8].

B.2 Basic definitions and theorems about r-regular
sets

Let us start by establishing some terminology. Let X ⊂ R2 be a set. We will denote
the closure of X by X, the interior of X by Int(X) and the boundary of X by ∂X.
The complement R2 \X will be denoted by XC . The set X is compact if and only if
X is closed and bounded.

The Euclidean distance between two points x and y in R2 will be denoted by
d(x, y) or, occasionally, by ‖x− y‖.

For an s > 0, we let Bs(x) = {y ∈ R2 | d(x, y) < s} be the open ball with centre
x and radius s. For a line segment L we will denote the length of L by |L|.

A part of the goal will be to construct a set Γ from a digital image, such that
the boundary of Γ is close to the boundary of the original set. The intuitive concept
of closeness between two sets is captured by the Hausdorff distance: For X,Y ⊆ R2,
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the Hausdorff distance dH between X and Y is given by

dH(X,Y ) = max{sup
x∈X

inf
y∈Y

d(x, y), sup
y∈Y

inf
x∈X

d(x, y)}.

The set of compact sets of R2 equipped with the Hausdorff metric is a complete
metric space.

The digital images that we will be working with in this paper are formed in the
following way:

Definition B.1. Let X ⊆ R2 be a set and dZ2 ⊆ R2 a grid with side length d. To
each grid square C, we assign an intensity λ given by

λ = ϕ

(area(X ∩ C)
d2

)
∈ [0, 1],

where ϕ : [0, 1]→ [0, 1] is a function with ϕ(0) = 0, ϕ(1) = 1 and ϕ((0, 1)) ⊆ (0, 1).
The digitisation of X is the matrix of intensities. We will visualise it as the

collection of pixels of side length d, each coloured a shade of grey corresponding to
the value of λ.

Let V (X) denote the black pixels of this digitisation of X. We will sometimes
refer to V (X) as the black digitisation pixels of X.

To make sure that the objects in the images we are considering are not arbitrarily
strange, we will follow in the footsteps of previous approaches and only consider
r-regular sets:

Definition B.2. Let r > 0. A closed set X ⊆ Rn is said to be r-regular if for
each x ∈ ∂X there exists two r-balls Br(xb) ⊆ X and Br(xw) ⊆ XC such that
Br(xb) ∩Br(xw) = {x}, see Figure B.1.

Figure B.1: An r-regular set X is a set where each boundary point belongs to both the
boundary of an open r-ball contained in X and the boundary of an open r-ball contained in

XC

In general, we believe that a reconstruction from a digital image can be made
more accurately by taking the intensities of the grey pixels into account, and we
are currently working on this idea. However, in this paper we restrict ourselves to
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looking at images where each pixel is considered to be either black, grey or white,
without taking the exact intensities of the grey pixels into account. This leads to the
notion of trinary images:

Definition B.3. A trinary digital image is a digital image where the intensities of
all grey pixels are set to 0.5.

These trinary images will be our main interest in this paper. Note that the colour
of a pixel (black, grey or white) does not depend on the monotonic function ϕ used
for calculating the pixel intensities – in fact, a pixel in a trinary image of an object X
is black if it is contained in X, white if it is contained in XC and grey if ∂X passes
through it.

When we make the digital image of an r-regular object by a lattice dZ2, we can
in general not be certain that there are any black or white pixels in the image – for
instance, if d is large compared to r, all pixels could contain an r-ball, which would
mean that the image would be all grey. Since we cannot hope to make a very good
reconstruction in this case, we will put a restriction on the relationship between the
r and d:

Convention B.4. Throughout the following, we assume that X is a bounded r-
regular set and that d

√
2 < r. We also assume that ∂X does not pass through a

pixel corner.

Note that the boundedness condition on X implies that X is compact.
Pavlidis [4] defines a grid dZ2 and a set X to be compatible if X is r-regular

with d
√

2 < r. With this restriction, since d
√

2 is the diameter of a pixel, each black
r-ball contains the pixel that its centre belongs to, meaning that each black r-ball is
centered in a black pixel. Similarly the centre of each white r-ball is contained in a
white pixel. This means that for each component of X yields at least one black pixel,
and each component of XC yields at least one white pixel. Latecki et al. showed that
for a compatible grid dZ2 and set X, the set V (X) of black pixels is homeomorphic
to X. Hence X and V (X) have the same topological features. Furthermore, the
above conditions ensure that we do not get too large grey areas, as will be clear in
the following section. We will only concern ourselves with images that capture all of
the objects photographed, and not just a part of them.

Let us introduce the notion of weak r-similarity, as introduced in [6, 8].

Definition B.5. LetA,B ⊆ R2 be bounded sets and r > 0. We callA andB weakly r-
similar if there exists a homeomorphism f : R2 → R2 such that x ∈ A ⇐⇒ f(x) ∈ B
and the Hausdorff distance between the set boundaries satisfies dH(∂A, ∂B) < r.

The overall purpose of this paper will be to show the following:

Theorem B.6. Let I be a digital image of an r-regular set X by a lattice dZ2 with
d
√

2 < r. We may construct an object Γ from I such that Γ and X are weakly
d-similar, where d is the pixel side length.

We believe that the above result may be strengthened to prove strong d + ε-
similarity between the two for a suitable ε, but such a result is beyond the scope of
this paper.

A large part of the proof of Theorem B.6 will be to prove the following:
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Theorem B.7. Let I be a digital image of an r-regular set by a lattice dZ2 with
d
√

2 < r. We may construct an object Γ from I such that dH(∂Γ, ∂X) < d, where
dH is the Hausdorff distance.

To start working with r-regular sets, we first sum up some basic statements about
them:

Proposition B.8 (Proposition A.5). Let A ⊆ Rn be a closed set and r > 0. Then
the following are equivalent:

(i) At any point x ∈ ∂X there exist two closed r-balls Br ⊆ A and B′r ⊆ AC such
that Br ∩B′r = {x}.

(ii) The sets A and AC are equal to unions of closed r-balls.

Definition B.9. For δ > 0, we denote the δ-tubular neighbourhood of ∂X in R2 by
Nδ = {x ∈ R2 | d(x, ∂X) < δ}.

Lemma B.10 (Duarte & Torres, [2], Lemma 5). Let X be an r-regular set. For
each x ∈ Nr there is a unique point π(x) ∈ ∂X satisfying d(x, ∂X) = d(π(x), x).
Hence there is a well-defined projection π : Nr → ∂X.

Theorem B.11 (Theorem A.13, (ii)). The projection map π : Nr → ∂X is
continuous.

Another important fact that we will be using heavily is the following:
There is a retraction ρXC : Nr → XC ∪ ∂X (that we will sometimes just denote

by ρ) defined by

ρXC (x) =
{
x if x ∈ XC ∪ ∂X,
π(x) otherwise,

and likewise a retraction ρX : Nr → X defined by

ρX(x) =
{
x if x ∈ X,
π(x) otherwise.

These retractions will prove to be crucial in later arguments, since they have some
useful properties.

We now state some results about ρ := ρXC . However, the similar results for ρX
also hold.

Proposition B.12 (Stelldinger et al., [6]). Let x, y ∈ XC with d(x, y) < 2r and
let L ⊆ Rn be the line segment between them. Then

(i) The line segment L is a subset of XC ∪Nr, and ρ|L is injective,
(ii) For s < r and Bs any s-ball containing x and y, ρ(L) is a subset of Bs.

Definition B.13. Let L ⊆ Rn be a closed line segment of length |L| < 2r. Then the
r-spindle S(L, r) around L is the intersection of all closed balls of radius r whose
boundaries contain both endpoints of L. If x and y are the endpoints of L, we will
sometimes write S(x, y, r) in stead of S(L, r).
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Lemma B.14 (du Plessis and Tang Christensen, A.20 [1]). Let L be a closed
line segment in R2 of length |L| < 2r. Then the maximal distance from a point in the
r-spindle S(L, r) to L is r −

√
r2 − L2

4 .

Lemma B.15 (Lemma A.31,(ii)). Let L ⊆ Rn be a closed line segment of length
|L| < 2r. Then the r-spindle S(L, r) is the intersection of all closed balls of radius
at most r that contain L.

Corollary B.16 (Corollary A.33). Let x, y ∈ XC with d(x, y) < 2r and let L ⊆ Rn

be the line segment between them. Then ρ(L) is a subset of the r-spindle S(L, r).

Remark B.17. Since the projection π satisfy π = ρX ◦ ρXC = ρXC ◦ ρX , the above
corollary is also true for π. Hence, we will in the following repeatedly be using that
whenever x, y ∈ ∂X are two boundary points with d(x, y) < 2r and L is the line
between them, there is a path π(L) in ∂X joining them such that π(L) ⊆ S(L, r).

B.3 Impossible configurations at a resolution
satisfying d

√
2 < r

Before we start reconstructing the original r-regular object, we need some results
on which configurations of 3× 3 pixels of grey, black and white pixels can occur in
the digital image of an r-regular object by a lattice dZ2 where d

√
2 < r. We can put

together all possible configurations of 3× 3 pixels with a computer programme that
takes the possible configurations of 2× 2 pixels as input. All possible configurations
of 2× 2 pixels are shown in Figure B.2, up to rotation and interchanging of black
and white. We have made a MatLab programme that combines these configurations
in all possible ways. If we do this, we get (up to rotation, mirroring and switching of
black and white pixels) the configurations in Figure B.3.

Figure B.2: The only possible configurations of 2× 2 pixels, up to rotation and switching
of black and white. Note that we have used Lemma B.24, part (ii), which is stated below.

Note that not all the configurations in Figure B.3 can occur in the image of
some r-regular object by a lattice (dZ)2 with d

√
2 < r. We would like to remove

configurations that do not occur from the list in the Figure. To do so, we need to
prove a series of lemmas. Their proofs are mainly geometric and rather technical, so
we will put them in an appendix instead of presenting them here.

First of all, let us start with a definition, borrowed from Pavlidis’ book [4].
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Figure B.3: All possible combinations of the allowed 3 × 3 pixel configurations, up to
rotation, mirroring and interchanging of black and white pixels.

Definition B.18. Two pixels are direct neighbours (abbreviated d-neighbours) if
the respective cells share a side. Two pixels are indirect neighbours (abbreviated
i-neighbours) if those cells touch only at a corner. The term neighbour denotes either
type.

In the following lemmas, we will only be considering pixel configurations in images
of r-regular objects by lattices dZ2 with d

√
2 < r according to our convention, but

for brevity we will omit this requirement from the lemma statements. We remark
that any result stated in the following also holds if the roles of black and white are
switched.

Lemma B.19. Consider four pixels as in Figure B.4, left. Suppose ∂X intersects
the edge l between the two pixels B and C more than once. Then one of the pixels A
and D is black, and the other one is white. The same result is true if l is tangent to
∂X in a point.

Similarly, consider eight pixels as in Figure B.4, right. Suppose ∂X intersects
the line l between the pixels B1 ∪B2 and C1 ∪ C2 more than once. Then for either
i = 1 or i = 2, one of the pixels Ai and Di is black, and the other one is white. The
same result is true if l is tangent to ∂X in a point.

Lemma B.20. Consider a configuration as the one in Figure B.5. The pixel named
A in the figure must be black, and the the pixel named D must be white.

Lemma B.21. Consider a configuration of 3 × 3 pixels, where the middle one is
grey. Then at least one of its 8 neighbour pixels is not grey.

Lemma B.22. Consider a configuration of 3× 3 pixels as in Figure B.6, where the
centre pixel is grey and has centre c. Let p = π(c) be the point of ∂X that is nearest
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Figure B.4: Left: If the boundary ∂X intersects the edge between the pixels B and C twice,
then one of pixels A and D is black, and the other is white. Right: If ∂X intersects the line
between B1 ∪B2 and C1 ∪ C2, the for either i = 1 or i = 2, one of Ai, Di is black, and the

other one is white.

Figure B.5: Consider a configuration as the left one, and name the pixels in this configuration
as in the right figure. If a configuration as the left one occurs in a digital image of an r-regular

object with d
√

2 < r, then pixel A must be black, and pixel D must be white.

Figure B.6: In Theorem B.22, we consider 3× 3 pixels, where the middle one is grey.
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to c, and let Br(xb) ⊆ X, Br(xw) ⊆ XC be the black and white r-balls tangent to
∂X at p. Suppose ‖c − xb‖ ≤ ‖c − ww‖, and that xb belongs to the lower left pixel
(which is hence black).

Then the upper right pixel is white.

Figure B.7: If a grey pixel has four grey d-neighbours as in the left figure, it must have a
black and a white i-neighbour sitting diagonally across from each other. Equivalently, if a
grey pixel does not have a black and a white i-neighbour sitting across from each other as in

the right figure, it cannot have four grey d-neighbours.

Remark B.23. Theorem B.22 and Lemma B.21 combined tell us that a grey pixel
C with four grey d-neighbours must always have a black and a white i-neighbour
whose common vertices with C sit diagonally across from each other, see Figure B.7,
left. Equivalently, if a grey pixel C does not have a black and a white neighbour
sitting opposite of each other, then at least one of its d-neighbours is not grey.

(a) (b) (c)

Figure B.8: Consider configurations of two black and a grey pixel (we do not assume
anything about the colour of the dotted pixels). If a grey and two black pixels sit in a
configuration as in (a) or (b), then the pixels A and B must also be black. If a grey and two
black (or two white) pixels sit in a configuration as in (c), then either the pixels A1, A2, A3

are all black, or the pixels B1, B2, B3 are all black.

Lemma B.24. The following holds:

(i) Consider 2× 3 pixels as in Figure B.8(a) with the grey and black pixels placed
relative to each other as in the figure. Then pixels A and B must necessarily be
black.

(ii) Consider 2× 2 pixels as in Figure B.8(b), with the grey and black pixels placed
relative to each other as in the figure. Then A must necessarily be black.
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(iii) Consider 3× 3 pixels as in Figure B.8(c), with the grey and black pixels placed
relative to each other as in the figure. Then either the pixels A1, A2, A3 are
all black, or the pixels B1, B2, B3 are all black.

Figure B.9: We consider 6 grey pixels in a 2×3 configuration and show that ∂X ∩ (G1∪G2)
belongs to the red set in the figure, and that one of the pixels K1, K2 must be black, and

the other one white.

Lemma B.25. Consider a configuration of 6 grey pixels as in Figure B.9, with pixels
Gi, i = 1, . . . , 6, and K1 and K2 as in the figure. Then the following holds:

(i) One of the pixels K1, K2 must be black, and the other one white,
(ii) The set ∂X ∩ (G1 ∪ G2) belongs to the set of points in G1 ∪ G2 that are no

further than (
√

2− 1)d from the common edge of G1 ∪G2 (i.e. the red set in
the figure).

(iii) The boundary ∂X intersects the common boundary of pixel Gi and Gi+1 at
least once for i = 1, 3, 5.

Lemma B.26. A configuration as the one in Figure B.10 left cannot occur.

Figure B.10: The configuration to the left cannot occur in the digital image of an r-regular
object with d

√
2 < r, for if it did, one of the pixels that are coloured red in the figure on the

right would have a colour that is incompatible with any legal configuration.

Lemma B.27. A configuration as the one in Figure B.11 cannot occur.
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Figure B.11: The configuration in this figure cannot occur in the image of an r-regular
object with d

√
2 < r.

Theorem B.28. Up to rotation, mirroring and interchanging of black and white,
any 3× 3 configuration of pixels is one of those shown in Figure B.12.

Figure B.12: Up to rotation, mirroring and interchanging of black and white colours, these
are the only 3× 3-configurations that can occur in the digital image of an r-regular object

by a lattice (dZ)2 with d
√

2 < r.

For the following, it is also useful to know which 4 × 4-configurations with a
2 × 2 centre of grey pixels may occur in a digital image of an r-regular object
by a lattice dZ2. We may have a computer find these by combining all possible
3 × 3-configurations from Figure B.12, along with rotations, mirror images and
inverses of these configurations (where we by ’inverse’ of a configuration mean
the configuration where the roles of black and white have been exchanged). After
removing configurations that violate Lemma B.25, this yields the configurations in
Figure B.13 (up to rotations, mirroring and interchanging of black and white). We
aim to remove configurations from the list if they cannot occur in a digital image
like the ones we are considering.

Lemma B.29. The configuration in Figure B.14 cannot occur.

Lemma B.30. The left configuration in Figure B.15 cannot occur.

Lemma B.31. The boundary ∂X cannot intersect all four boundary edges of a
configuration of 2× 2 grey pixels.
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Figure B.13: These are all possible combinations of the configurations in Figure B.12, their
inverses, rotations and mirror images.

Figure B.14: We show that this configuration cannot occur in the digitisation of an r-regular
object.

Figure B.15: The right configuration does not occur in the digitisation. If it did, one of the
red pixels in the figure on the right would have to be non-grey by Theorem B.25.
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Theorem B.32. The only possible configurations of 4× 4-configurations that have
2× 2 grey pixels in the middle are the ones shown in Figure B.16.

Figure B.16: The 33 possible configurations of 4× 4 pixels with the centre pixels grey, up
to rotation, reflection and interchanging of black and white.

Note that the converse is not true: There are configurations in Figure B.16 that
does not occur in any image of an r-regular object by a lattice dZ2 with d

√
2 < r.

But since the proofs of this are rather technical and their results are not relevant to
our further progress, we will not discuss them here.

B.4 Reconstruction of the boundary of the set

All the work done in the previous section was leading up to the development of a
reconstruction algorithm, which we will introduce in this section. The idea is to use
circle arcs to approximate the boundary of the original object. The reconstructed set
will not in general be r-regular.

Before we start, we will introduce some points, called auxiliary points, that our
reconstructed boundary must pass through. These are defined differently for different
grey pixels. Thus we proceed to define

Definition B.33. A grey pixel sitting in a 2×2 configuration of grey pixels is called
complex. A grey pixel that is not sitting in a 2 × 2 configuration of grey pixels is
called simple.

We now introduce the auxiliary points needed for the constructing a reconstruction
algorithm for an image.

Consider a pixel edge shared by two grey pixels A and B. If A ∪B belongs to a
configuration of 2× 2 grey pixels, we introduce an auxiliary point at the midpoint
of this configuration. If they do not, we introduce a point on the midpoint of their
common edge, see Figure B.17. (Note that A ∪B may be part of two different 2× 2
configurations of grey pixels at the same time. In that case, we introduce two auxiliary
points, one at the centre of each of the two 2× 2 configurations).

Lemma B.34. All simple grey pixels have between one and three auxiliary points on
their boundary. All complex grey pixels have either one or two grey auxiliary points
on their boundary.

Proof. For the simple pixels, consider all possible configurations in Figure B.12. For
the complex pixels, consider all possible configurations in Figure B.16.
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Figure B.17: Left: If two grey pixels share an edge and are not part of a 2× 2 configuration
of grey pixels, we introduce an auxiliary point (red) at the midpoint of their common edge.
Right: If on the other hand the two pixels are part of the same 2× 2 configuration of grey

pixels, we introduce an auxiliary point at the centre of this 2× 2 configuration.

Lemma B.35. A simple pixel with just one auxiliary point on its boundary must
share this point with a simple pixel that has three auxiliary points on its boundary.
On the other hand, a simple pixel with three auxiliary points on its boundary must
share exactly one of these points with a simple pixel that has just one auxiliary point
on its boundary.

Proof. Consider all cases as presented in Figure B.12, and use Lemma B.20.

We will now remove the auxiliary point of all simple pixels that have only one
auxiliary point. By the above lemmas, this now means that all simple pixels have
zero or two auxiliary points on their boundary, and all complex pixels have one or
two auxiliary points on their boundary.

Lemma B.36. In each 2×2 configuration of grey pixels there are exactly 3 auxiliary
points – one at the centre and two on the configuration boundary.

Proof. Each 2 × 2-configuration of grey pixels sits in one of the configurations in
Figure B.16 (up to rotation, mirroring and interchanging of colours). Hence we get
the above theorem by checking all possible cases.

Definition B.37. Two auxiliary points p, q are called neighbours if there exists a
grey pixel having both p and q on its boundary.

Theorem B.38. Each auxiliary point p has exactly two neighbours.

Proof. Consider an auxiliary point p, sitting on the boundary of pixel C. If p is the
centre of some 2× 2 configuration of black pixels, then by Lemma B.36 there are
only two auxiliary points on the boundary of this configuration as claimed.

Suppose instead that p is the midpoint of the edge between some pixels C, C ′.
Then C is either simple (and hence has two auxiliary points on its boundary), or it
is complex and hence has another auxiliary point in a corner of C. In both cases,
p has a neighbour on the boundary of C, and by a similar argument, it also has a
neighbour on the boundary of C ′. So p has two neighbouring auxiliary points.

The next step is to approximate the boundary of X with curve segments: Consider
an auxiliary point and its two neighbouring auxiliary points. We approximate ∂X
by circle arc segments through these three points (or, if the points are collinear, by
line segments). This means that there are two curve segments through each two
neighbouring auxiliary points sitting on the boundary of the same pixel C, one
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starting in one of the points, the other ending in the other point. Each of these
curve segments are graphs over the straight line L through the points, so we may
write them as γ1 : [0, |L|]→ R and γ2 : [0, |L|]→ R. Then choosing a bump function
ϕ : [0, |L|] → [0, 1] with ϕ(0) = 1 and ϕ(|L|) = 0, we may patch a connected
curve γ together by putting γC(t) = (1− ϕ(t))γ1(t) + ϕ(t)γ2(t) in each pixel C, see
Figure B.18. The resulting curve γC is then also a graph over L, and the curve γ is a
smooth embedded submanifold of R2.

Figure B.18: The curve γ1 (blue) and the curve γ2 (green) are patched together inside C
using a bump function. This produces the curve γC (dashed red curve).

Lemma B.39. The path γC is contained in the area bounded by γ1 and γ2.

Proof. Since γC is a graph over a line L and it is a convex combination of a point
on γ1 and a point on γ2, the curve γC must lie between these two points, and hence
also between the curves γ1 and γ2.

Figure B.19: Auxiliary points sitting in one of these configurations around the red pixel
are exemptions to Lemma B.40.

Lemma B.40. Consider two neighbouring auxiliary points on the boundary of some
pixel C not sitting in a configuration like the ones in Figure B.19.

(i) If the two neighbouring auxiliary points are the endpoints of the edge shared by
C and some other pixel C ′, then the curve γC is contained in C ∪ C ′.

(ii) If the two neighbouring auxiliary points are not the endpoints of some edge of
C, then the curve γC is contained in C.

Proof. We start by proving the lemma for the arc segments γ1 and γ2: We can
consider all possible positions of three neighbouring auxiliary points, see Figure B.20.
Consider auxiliary points p1, p2 sitting in configurations around a red pixel as in any
of the five figures to the left. A calculation (or a look at the figures!) then shows
that save for auxiliary points in configurations as the ones shown in Figure B.19, all
possible circle arcs through two auxiliary points sitting on a red pixel are contained
in that red pixel.

Now, lets argue that γC is contained in C: By Lemma B.39, γC is contained in
the area AC bounded by γ1 and γ2. Since γ1 and γ2 are both contained in C which
is convex, AC is also contained in C. Hence γC must also be contained in C. This
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Figure B.20: The figure shows all possible positions of two auxiliary points on the boundary
of some pixel C (the red ones in the figure), and all circle arcs through these two and a third

auxiliary point. The radii of the circle arcs are also calculated.

proves (ii). Part (i) is proved in the same way, but now considering the rightmost
figure in Figure B.20.

Proposition B.41. The curves γC have no self-intersections, and do not intersect
each other. Hence each component of γ is a simple closed curve.

Proof. Since each segment γC is a graph over some straight line L, we only need to
show that two segments γC and γC′ do not intersect. By Lemma B.39 it suffices to
show that the area AC bounded by two arcs γ1 and γ2 in a pixel C does not intersect
the area AC′ bounded by two arcs γ′1 and γ′2 in another pixel C ′.

Consider the possible circle arcs shown in Figure B.20. With the exception of
auxiliary points sitting in configurations like the ones in Figure B.19, all arc segments
stay inside the pixel(s) containing both of the auxiliary points they join. Since no
pixel can have more than two auxiliary points on their boundary, the only possible
way that two curve segments can intersect is if one of them, say γC , is made using
a curve γ1 connecting points in a configuration like the one in Figure B.19. But
by going through all possible configurations where such a γ1 could occur one can
conclude that γ cannot intersect itself in this case either.

That each segment of γ is a simple closed curve follows from the fact that the
segments γC always connect two neighbouring auxiliary points, and that all auxiliary
points have two neighbours. If a component of γ were not a closed curve, it would
have an endpoint (since all components of γ are bounded) – but γ is the merge
of curve segments between neighbouring auxiliary points, meaning that such an
endpoint only can occur in one of the auxiliary points. But since all auxiliary points
have two neighbouring auxiliary points, this is impossible.

Theorem B.42. For each component of ∂X, there is exactly one component of γ.
Each component of γ separates the boundary components of a connected component
A of the set of grey pixels.

Proof. Let ∂X ′ be a component of ∂X, and let A be the set of grey pixels containing
points of ∂X ′. Note that A cannot have any grey neighbour pixel B, since this would
imply that B contained a point from another component of ∂X, which would further
imply that two points on different components of ∂X lay closer than 2d

√
2 – a

contradiction by Corollary B.16 applied to π. Therefore A is a connected component
of the set of grey pixels.

Consider any chain of grey pixels in A, where each pixel in the chain is a neighbour
of both the previous and the next pixel in the chain, and each pixel appears in the
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chain no more than once. Assume that the first pixel and last pixel of the chain have
at least two grey d-neighbours. We aim to show that the first and last pixel in such
a chain are connected by a segment of γ.

By construction, each pixel in such a chain has at least two grey d-neighbours,
hence at least one auxiliary point on its boundary. If a pixel C in the chain has only
one auxiliary point on its boundary, its two grey d-neighbours must sit in a 2× 2
configuration including C, and hence one of its grey d-neighbours must have two
auxiliary points on its boundary. Hence if we replace C by its d-neighbours with
two auxiliary points on their boundary, we still get a chain of pixels in A. Repeating
this, we end up with a chain of pixels where all pixels in the chain have two auxiliary
points on their boundary. The construction of γ then yields a segment of γ through
this pixel chain.

Now by r-regularity of X, A must be larger than 2 pixels and therefore have at
least one pixel with two grey d-neighbours. Hence A contains at least one component
of γ. If A contained two components γ′, γ′′ of γ, we could pick a chain of grey pixels
connecting two pixels containing a point of γ′ and a point of γ′′, respectively. Then by
the above, the auxiliary points on the first pixel would be connected to the auxiliary
points on the last pixel by a segment of γ. But then, γ′ and γ′′ would be connected –
a contradiction, since they were assumed to be distinct components. In conclusion,
for any component of ∂X, there is exactly one component of γ.

For the second part of the statement, consider a chain of pixels following a
boundary component ∂A′ of A. By the first part, this chain yields a segment of γ′
which is a closed curve containing ∂A′, but not containing any other component of
the boundary of A. Hence γ′ separates any component of ∂A from the others – in
particular, there can be at most two boundary components of A, and γ separates
them. In fact, there are always two components of ∂A: Any point x ∈ ∂X ′ has a
black and a white

√
2d-ball osculating at x, and these balls contain the pixels in

which they are centred. Since ∂X ′ separates the two balls and hence the two pixels
where they are centred, so does A. But then A must have two different boundary
components, and both ∂X ′ and γ′ separates these two components.

Since the set of grey pixels separates the white pixels from the black, the above
theorem actually implies that γ also separates the white pixels from the black (in
the sense that any curve from a black to a white pixel must intersect γ). We may
conclude (via the Jordan Curve Theorem) that each component of γ separates R2

into two sets, a bounded and an unbounded. From now on, γ is the boundary of the
reconstructed set, which we define as follows:

Definition B.43. We define the reconstructed set Γ to be the bounded set having γ
as boundary.

B.5 Hausdorff distance between the boundaries of the
original set and the reconstruction

We are now ready to look at the Hausdorff distance between our reconstruction and
the original object. Let us start by proving a lemma:
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Figure B.21: A point q ∈ ∂X that belongs to a pixel with two black neighbouring pixels
that share an edge must belong to the ball Bd(p).

Lemma B.44. Consider a grey pixel C as the one in Figure B.21, with two black
(or two white) neighbouring pixels sharing a vertex. Let p be the vertex of C which
does not belong to the two black (or white) neighbouring pixels. If q ∈ ∂X ∩ C, then
q ∈ Bd(p).

Proof. Let q be as above. Then q belongs to a component of ∂X that must enter
and leave C in two places, say in points x1 and x2. These points belong to one of
the edges of C having p as a corner. Let L be the line segment between x1 and x2.

Now q must belong to π(L), which in turn must belong to S(L, r) by Corol-
lary B.16, which again is contained in any ball of radius less than r containing L
by Lemma B.15. The ball Bd(p) contains both of the edges of C that have p as an
endpoint, meaning that it also contains x1 and x2 and consequently L, S(L, r) and
q.

Now that we have a suggestion for a reconstruction of the boundary of the original
set, we aim to show how good this approximation is. The first step will be to prove
the following:

Theorem B.45. Any point of ∂X has a distance of at most d to the curve γ
consisting of curve segments γC . Hence sup

y∈∂X
inf
x∈γ

d(x, y) ≤ d.

This theorem, however, requires some additional lemmas:

Lemma B.46. If two neighbouring auxiliary points sit on the common boundary
edge of two grey pixels C1 and C2, then the curve γC1 = γC2 is contained in the set
C ′ of points in C1 ∪ C2 that lie at a distance of 0.133d from the common edge of C.

Proof. If two auxiliary points sit at the common boundary edge e of pixels C1 and
C2, then they must sit on the ends of e, i.e. be the two common vertices of C1 and
C2.

By Lemma B.40, part (i), γC1 = γC2 belongs to C1∪C2. Let γ1 and γ2 be the two
arc segments whose merge is γC1 . Then both are circle arcs of radius no smaller than
s =

√
65
8 (see Figure B.20), hence they are contained in the spindle S(e, s) whose

height is (s−
√
s2 − 1

4)d ≈ 0.133d. Thus, no point on γ1 or γ2 is further away than
0.133d from e. Since the curve γC1 belongs to he area bounded by γ1 and γ2 by
Lemma B.39, we must also have that γC1 belongs to C ′.

Lemma B.47. If two auxiliary points sit on two edges of a pixel C sharing a corner
p, then γC is contained in Bd(p) ∩ C.
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Proof. We know from Lemma B.40 that γC belongs to C. Therefore we only need to
show that γC belongs to Bd(p). By Lemma B.39 it suffices to show that the area A
between the two curves γ1 and γ2 belongs to Bd(p). In fact, since Bd(p) is convex, it
is even enough to show that γ1 and γ2 both belong to Bd(p). This can be done by a
calculation for all possible cases, or by looking at Figure B.22.

Lemma B.48. If two neighbouring auxiliary points on the boundary of some pixel
C neither sit on the same edge of C, nor in a configuration as the ones shown in
Figure B.19, then the distance between any point of ∂X in C and the curve γC is
less than d.

Proof. Consider two auxiliary points on the boundary of pixel C. Suppose they sit
on two opposite edges e1, e2 of C. If furthermore the two points do not sit in one of
the configurations in Figure B.19, then by Lemma B.40, the curve γC belongs to C.
Hence the curve γC must run from one side of C to the other side without crossing
the boundary of C, see Figure B.22 left. Thus, projecting any point in C to γC along
a line parallel to e1 moves it no further than a distance d. Hence all points of C is
closer than d to γC .

Figure B.22: Two different ways that a curve γ can pass through a pixel C with two
auxiliary points on its boundary.

On the other hand, suppose the two auxiliary points on the boundary of C sit on
the midpoints of two edges e1, e2 sharing a vertex p, see Figure B.22, right. Then C
is a simple pixel, and since its auxiliary points do not sit on opposite edges, it cannot
be one of the simple pixels that we removed auxiliary points from (by the proof of
Lemma B.35). So C must have two grey d-neighbour pixels sharing the vertex p, and
two non-grey d-neighbour pixels sharing the vertex opposite of p, as in Figure B.22
right. Let us assume these two non-grey pixels to be black.

Consider a point q ∈ C ∩ ∂X. By Lemma B.44, q must belong to the ball Bd(p).
Then, since the path γC is also contained in this ball by Lemma B.47, and since γC
runs from e1 to e2, we hit γC somewhere if we move a point in Bd(p) ∩ C along a
radius of Bd(p). Such a movement displaces the point a distance of at most d− 1

2
√

2d,
since this is the maximal distance between a point on γC and a point on ∂Bd(p) on
the same radius of Bd(p). Hence a point of ∂X ∩ C is at most a distance d from
γC .
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Proof of Theorem B.45. By Lemma B.48, the theorem holds for any point of ∂X
contained in a pixel with two auxiliary points not sitting on the same edge, and
not sitting in one of the configurations of Figure B.19. We therefore need to show
the result for points on ∂X contained in i) grey pixels with two auxiliary points
sitting on the same edge, ii) the special cases in Figure B.19, iii) grey pixels with
one auxiliary point on their boundary and iv) grey pixels with zero auxiliary points
on their boundaries.

Ad i): By Lemma B.46, γC1 must belong to the set C ′ of points in C1 ∪ C2 closer
than 0.133d to e, and by Lemma B.25, all points of ∂X in C1 ∪ C2 must be closer
than (

√
2 − 1)d to e. Since the curve γC1 runs from one side of C ′ to the other,

then pushing a point p ∈ ∂X ∩ C ′ orthogonally to e inside C1 ∪ C2, we must hit
γC1 at some point. The displacement made in this manner can be no larger than
(
√

2− 1 + 0.133)d ≈ 0.55d, hence any point of (C1 ∪C2)∩ ∂X is closer than 0.55d to
γC1 = γC2 .

Figure B.23: Both of the configurations excepted from Lemma B.40 must sit in a configu-
ration like the one shown above. We aim to show that the red rectangle cannot contain any

points of ∂X.

Ad ii): Now consider instead either of the cases from Figure B.19. Such a configu-
ration must necessarily sit in a configuration like in Figure B.23, by considering the
possible configurations involving 2 × 2 grey pixels in Figure B.16. We will aim to
show that the rectangle T in the figure, which shares two vertices with pixel C and
has the other two vertices at the midpoints of the vertical pixel edges of C, does not
contain any points of ∂X.

Look at the blue line L separating the two upper grey pixels from the lower. Since
there are grey pixels on both sides of L, ∂X must pass it somewhere, and since both
endpoints of L are black, ∂X must pass L at least twice. Then there must be some
point p in one of the two upper pixels where ∂X has a horisontal tangent, which
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means that the centres of the black and white
√

2d-balls meeting at this point sit on
the vertical line through p. Since the pixels above the 2× 2 grey pixels are black in
the figure, the upper ball osculating ∂X at p must be black, and the lower must be
white.

By Corollary B.16 applied to π, the part of ∂X which lies between two points
in ∂X ∩ L must be contained in the spindle S(L, r) (shown in the figure), which
contains points no further from L than (

√
2− 1)d. So p cannot be further above L

than (
√

2− 1)d.
Now, if p belonged to the right upper grey pixel, the centre of the white ball

osculating ∂X at p would belong to a grey pixel and hence colour that pixel white.
So p belonging to the upper left grey pixel is not possible. Therefore p must belong
to the upper left pixel, and be no further from L than (

√
2− 1)d. The centre of the

white
√

2d-ball osculating ∂X at p must therefore lie in the white pixel, no further
than

√
2d from p and hence no further from the common edge between the white

pixel and pixel C than (
√

2− 1)d (i.e. somewhere in the light blue rectangle of the
white pixel in the figure). But any

√
2d-ball centred centred in the top half of the

white pixel must contain T , i.e. the bottom half of pixel C. This means that the
white ball osculating ∂X at p must contain all of T , and therefore T cannot contain
any points of ∂X.

A calculation shows that no point of γC lies further above L than 0.041d. Hence
if we take any point q in C \ T and push it along a vertical line towards γC , we can
do this without moving q more than a distance 0.541d. In conclusion, any point of
∂X ∩ C is closer than d to γC .

Figure B.24: A pixel C with just one
auxiliary point on its boundary must sit

in a configuration as the above.
Figure B.25: A grey pixel with zero aux-
iliary points on its boundary must sit in
this configuration of pixels. Then any cir-
cle arc through the auxiliary points of D
and one of its neighbours must look like

one of the above
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Ad iii): Consider a grey pixel C with only one auxiliary point p on its boundary.
By construction, C must be complex and have two grey neighbouring pixels, and
two non-grey neighbouring pixels, see Figure B.24. By Lemma B.44, all points of
∂X ∩ C must belong to the ball Bd(p). Hence the distance from a point in ∂X ∩ C
to p is less than d. Since p belongs to γ, this proves the claim in this case.

Ad iv): Consider a grey pixel C without any auxiliary points on its boundary. By
construction, it means that C is a simple grey pixel with one grey d-neighbour pixel
D, and three non-grey d-neighbour pixels, see Figure B.25.

Now, the boundary ∂X must pass the common edge e of C and D in order
to pass into and out of pixel C. Hence the part of ∂X that is inside C must be
contained in S(e, r).But S(e, r) contains no points in C that are further from e than
√

2d−
√

2d2 − d2

4 < 0.1d, since this is the height of the spindle.
Furthermore, D must have one auxiliary point on the midpoint of each vertical

edge – let us call these p1 and p2. Then, an arc segment γ1 through p1 and p2 and
a third auxiliary point of one of the grey pixels neighbouring C must lie above the
straight line connecting p1 and p2 (one need only consider all possible cases, as is
done in Figure B.25).

Concludingly, any point p in C ∩ ∂X is closer than 0.1d to e, and any point in e
is closer than d

2 to γD. This means that the distance from p to γ is less than 0.6d < d.
This finishes the proof that any point of ∂X is closer than d to γ.

For any point x in ∂X, there is a point y′ in γ that is no further than a distance d
from x, meaning that

inf
y∈γ

d(x, y) ≤ d(x, y′) ≤ d.

Thus we get
sup
y∈∂X

inf
x∈γ

d(x, y) ≤ d.

This proof is the first step on our way towards showing that ∂X and γ are close
to each other in Hausdorff distance. The second step is taken when we prove the
following:

Theorem B.49. Any point of γ has at most distance d to the boundary ∂X of the
original set X. Hence sup

y∈γ
inf
x∈∂X

d(x, y) ≤ d.

The proof of this theorem is very similar to the proof of Theorem B.45. Again,
we split the proof into a couple of lemmas.

Lemma B.50. Consider a simple pixel C with two auxiliary points on either of two
opposing edges. Then any point of γC is closer than d to some point of ∂X.

Proof. Notice that C must sit in one of the two configurations of Figure B.26. For
the first configuration, pick a point p ∈ γC ⊆ C. The horisontal line in C through p
has a black and a white endpoint, meaning that it must contain a point of ∂X. Since
p is no further than 0.62d from the endpoints of this line, there must be a point in
∂X that is closer than 0.62d < d to p.
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Figure B.26: A simple pixel C with auxiliary
points on opposite edges must sit in one of the

configurations above.

Figure B.27: A simple pixel C with
auxiliary points on vertex-adjacent
edges must sit in the configuration

above.

For the second configuration, pick again a point p in γC ⊆ C. Let D be the pixel
above C. Notice that ∂X must enter and leave D by crossing e in order for D to be
grey and both endpoints of e to be black. Then by Corollary B.16 with ρ replaced
by π, any point of ∂X in D must belong to the spindle S(e, r) which contains points
no further from e than

√
2d−

√
2d2 − d2

4 < 0.1d, by Lemma B.14. So, any point of
∂X ∩ (C ∪D) must either belong to C or be no further from e than 0.1d. On the
other hand, a calculation shows that the path γC is closer than 0.5d to e.

Consider a vertical line in C ∪D through p. There has to be a point on this line
belonging to ∂X, since its endpoints have different colours. Either this particular
point belongs to C (in which case they can be no further apart than 0.62d by the
first part of the proof), or it belongs to D. If it belongs to D, it is no further from e
than 0.1d, and since p is in turn no further than 0.5d from e, the point in question
belonging to ∂X must be closer than d to p.

Lemma B.51. Consider a simple pixel C with two auxiliary points located at the
midpoint of two vertex-adjacent edges of C. Then no point of γC is further away
from ∂X than d.

Proof. A pixel C as described above must sit in a configuration as the one in
Figure B.27. Let q denote the vertex of C where the two edges containing auxiliary
points meet. Let p ∈ γC ⊆ C.

Consider the line in C through p and q. Since it has endpoints of different colours,
it must contain a point s in ∂X. By Lemma B.44, any point of ∂X ∩C must belong
to the ball Bd(q), and by Lemma B.47, so must p. Hence p and s both sit on a radius
of the ball Bd(q). By looking at the possible curves γC , such two points cannot be
further apart than a distance d − 1

2
√

2d. So any point p ∈ γC is closer than d to
∂X.

Lemma B.52. Consider a complex pixel C with two auxiliary points located at the
endpoints of some edge e of C. Then no point of γC is further away from ∂X than d.

Proof. The pixel C must sit in a configuration as the one in Figure B.28, by means
of Lemma B.25. By Lemma B.40, part (i) γC must belong to C ∪D.
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Figure B.28: A complex pixel C with
auxiliary points at the endpoints of one of
its edges e must sit in a configuration as

the one above.

Figure B.29: A complex pixel C with
auxiliary points at two vertices of C lo-
cated opposite of one another must sit in

a configuration as the one above.

Now pick a point p ∈ γC , and look at the vertical line in C ∪D through p. Since
this line has endpoints of different colours, it must contain a point q ∈ ∂X. By
Lemma B.25 again, q must belong to the set of points in C ∪D that are no further
than d

2 from the common edge e of C and D, and by Lemma B.46 p is no further
than 0.133d from e. Hence p and q cannot be further than 0.55d < d from each
other.

Lemma B.53. Consider a complex pixel C with two auxiliary points located at
vertices of C diagonally opposite each other. Then no point of γC is further away
from ∂X than d.

Proof. A pixel C as in this lemma must sit in a configuration as the one in Figure B.29,
by means of Lemma B.22. Let p1 and p2 denote the two auxiliary points on the
boundary of C.

A calculation shows that any circle arc through p1, p2 and an auxiliary point
neighbouring p2 has radius greater than d. Hence any such circle arc is contained in
the spindle S(L, d) where L is the line segment between p1 and p2, by Lemma B.15.
By the same lemma, this means that any such circle arc γ1 is contained in any ball
of radius d containing L. The same holds for the area bounded by the two circle arcs
γ1 and γ2 (since S(L, d) is also convex), and hence also for γC . Thus, if we can find
some point q in ∂X such that the d-ball around q contains L and hence S(L, d) as
well as γC , then any point of γC must be closer than d to ∂X.

Consider the line M connecting the black and white vertex of C. Since its
endpoints have different colours, it must contain some point q ∈ ∂X. Since the
distance between any point in M and p1, p2 is less than d everywhere, the ball Bd(q)
contains p1 and p2 and hence the spindle S(L, d) between them, and we are done.

Lemma B.54. Suppose C is a complex pixel with an auxiliary point on one of its
edge midpoints and another auxiliary point at one of the vertices of C. Then any
point of γC is closer than d to ∂X.

Proof. A pixel as the one in this lemma must sit in a configuration as the one shown
in Figure B.30.
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Figure B.30: A complex pixel as the one
in Lemma B.54 must sit in a configuration
as the one above. Then ∂X must either
intersect the upper edge of C (the upper
blue dashed line), or it must intersect the
right vertical edge of C (the lower blue

line).

Figure B.31: The only case where γC

may not stay inside C is when C sit in
a configuration as the one above. In this
case, the part of γC inside D must belong

to the red set.

There are two cases: Either γC is contained in C or it is not.
Suppose first that γC ⊆ C. Note that ∂X must intersect the left vertical edge

of C once, since the endpoints of this edge has different colours. It cannot intersect
the edge multiple times by Lemma B.19. Let q1 be the intersection between the left
vertical edge of C and ∂X.

Now, ∂X must intersect the boundary of C in at least two points, one of which is
q1. Suppose that ∂X intersects C somewhere on the upper edge of C, say in a point
q2. Let L be the line between q1 and q2. Then by Corollary B.16 there is a path π(L)
in ∂X from q1 to q2 contained in S(L, r), and by changing q2 if necessary, we may
assume that π(L) does not intersect the upper edge of C except at q2, hence it stays
inside C. Let s be the upper left vertex of C.

Since Bd(s) contains the left and upper edge of C, it contains both q1, q2 and
hence L. Since d < r, this also means that it contains S(L, r) by Lemma B.15, hence
it contains the path π(L). It also contains γC , which can be seen by considering the
possible cases in Figure B.20.

Now, take any point p on γC . Then it belongs to a radius of Bd(s). Since π(L)
runs from one side of C to another inside C ∩Bd(s), there must also be a point q
on π(L) lying on the same radius of Bd(s) as p. But then q and p can be no further
than d apart, so the lemma is true in this case.

If on the other hand γC belongs to C, but there are no points of ∂X on the upper
edge of C, then there must be a point q2 ∈ ∂X on the right edge of C. Let L be
the line between q1 and q2. By Corollary B.16, there must be a path π(L) in ∂X
connecting q1 and q2, and this path can nowhere intersect other edges of C.

Again pick a point p in γC , and look at the vertical line in C containing p. This
line must be intersected by π(L) in some point q, since π(L) connects the two sides
of C. But then p ∈ γC and q ∈ ∂X both lie on the same line of length d, hence they
can be no further than d apart, as claimed. This concludes the proof in the case
where γC is contained in C.

Finally, assume γC is not contained in C. Then one of the curve segments γ1 and
γ2 are not contained in C - let us say it is γ1. Copying the results from before, we see
that all points of γC inside C are closer than d to some point of ∂X, so it remains to
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show this for points of γC outside C. Such points must lie in the set A bounded by
γ1 and one of the edges of C (the red set in Figure B.31).

Notice that the only case where the curve segment γ1 is not contained in C is
when C sit in a configuration as the one in Figure B.31. Let D be the pixel above C
in this configuration.

The boundary ∂X must intersect the boundary of D at least twice in order for
D to be grey. By Lemma B.19, ∂X cannot intersect the right boundary of D twice.
Hence it must intersect the common edge e of C and D at least once, say in a point
q.

Now, a calculation shows for any point q′ ∈ e, the ball Bd(q′) contains all of A.
In particular, the ball Bd(q) contains all of A and hence any point of γC in D, so any
such point can be no further away from ∂X than d. This concludes the proof.

Proof of Theorem B.49. The curve γ consists of a curve segments γC for each pixel
C with two auxiliary points on its boundary. Hence the theorem follows from the
Lemmas B.50, B.51, B.52, B.53 and B.54.

Furthermore, for any point x in γ, there is a point y′ in ∂X that is no further
than a distance d from x, meaning that

inf
y∈∂X

d(x, y) ≤ d(x, y′) ≤ d.

Thus we get
sup
y∈γ

inf
x∈∂X

d(x, y) ≤ d.

Corollary B.55. The reconstructed boundary γ is closer than d to the boundary of
X.

Proof. Combining Theorems B.45 and B.49, we get that

sup
y∈γ

inf
x∈∂X

d(x, y) ≤ d and sup
x∈∂X

inf
y∈γ

d(x, y) ≤ d,

hence
dH(γ, ∂X) = max

(
sup
y∈γ

inf
x∈∂X

d(x, y), sup
x∈∂X

inf
y∈γ

d(x, y)
)
≤ d.

B.6 Homeomorphism between Object and
Reconstruction

Let us now finish the proof of Theorem B.6. We need to show that there is homeo-
morphism taking the reconstructed set Γ to the original set X. To do so, let us start
with a lemma:

Lemma B.56. Let M ⊆ R2 be a set homeomorphic to S1 × [−1, 1], and let m ⊆M
be the subset homeomorphic to S1 × {0}. Let γ : S1 → M be a closed curve. Then
there is a homeomorphism f : R2 → R2 taking γ to m fixing points in the unbounded
component of R2 \M .
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Proof. Since there exists a homeomorphism of R2 taking the outer boundary com-
ponent Mo of M to the unit circle by Schoenflies’ Theorem, we may assume that
Mo is the unit circle. By the Annulus Theorem, the set A between Mo and γ is
homeomorphic to the annulus S1× [1

2 , 1] – let g denote this homeomorphism. We may
assume that g is the identity on Mo – if this is not the case, then after reversing the
orientation of the map g|Mo if necessary there is an isotopy from g(Mo) to Mo which
we may extend to an ambient isotopy of A in a small tubular neighbourhood of g(Mo)
in M , and composing the result of this isotopy with g we get a homeomorphism that
is the identity on Mo.

We may continuously extend g to a map g1 of all of R2 by extending it by the
identity on the unbounded component of MC

o (since the map g|γ → g(γ) may be
extended to a map of the disc bounded by γ) . Thus we get a map g1 : R2 → R2

taking γ to 1
2S

1 and fixing points in the unbounded component of R2 \Mo.
Repeating the above with γ replaced by m, we also get a map g2 : R2 → R2

taking S1 × {0} to 1
2S

1. Hence the composition g−1
1 ◦ g2 : R2 → R2 takes S1 × {0} to

γ and fixes points in the unbounded component of Mo.

Theorem B.57. There is a homeomorphism H : R2 → R2 taking X to Γ. Hence X
and Γ are weakly d-similar.

Proof. Note that by Theorem B.42 γ separates black pixels from white ones, and
there is a 1-1 correspondence between components of ∂X and components of γ.

Consider an outermost component ∂X ′ of ∂X. Since ∂X ′ is a manifold of di-
mension 1, it is homeomorphic to S1. Thus its tubular neighbourhood Nd

√
2(∂X ′)

is homeomorphic to S1 × [−1, 1] (see [1], Proposition A.10) via a map h that takes
the points of each normal line of length 2

√
2 to a fiber {x} × [−1, 1] in S1 × [−1, 1],

and takes ∂X ′ to S1 × {0}. Moreover, h−1(S1 × {−1}) is a subset of the set of white
pixels, and h−1(S1 × {−1}) is a subset of the black pixels. Since the boundary γ of
the reconstructed set Γ separates black and white pixels, this means that there is a
component γ′ of γ in Nd

√
2(∂X ′).

Then by Lemma B.56 there is a homeomorphism f1 : R2 → R2 taking γ′ to ∂X ′
and fixing points in the unbounded component of h−1(S1 × {1}). Since ∂X ′ and γ′
both separates black pixels from white, any component of ∂X inside ∂X ′ also lies
inside γ′. Hence f1 also takes any component of ∂X inside ∂X ′ to the inside of γ′.

Applying the above technique to the other components of ∂X, we thus get a
series of homeomorphisms f1, f2, . . . , fn that each takes one component ∂Xi of ∂X to
a component γi of γ. Since each homeomorphism fixes the points of the unbounded
component of ∂XC

i , the composition fn ◦ · · · ◦ f1 : R2 → R2 that starts by mapping
the outer component(s) of ∂X to γ and then works its way in, sends ∂X to γ. Since
it also sends bounded sets to bounded sets and Γ was the bounded set bounded by γ
and X was compact, this means that H := fn ◦ · · · ◦ f1 takes X to Γ.

Since there is a map of R2 taking X to Γ, and since dH(∂X, γ) ≤ d by Corol-
lary B.55, they are weakly d-similar.
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B.7 Example of the reconstruction algorithm

Example B.58. An example of this algorithm is shown in Figure B.32. In this
figure, we used the bump function

ϕ(t) =


1 if x = 0,
0 if x = 1,
1− 1

1 + exp( 6
7x −

6
7−7x)

otherwise.

It seems from our example that the curves ∂X and γ may be even closer than d.

Figure B.32: Example of the algorithm: The thin black line is the outline of the original
r-regular set, from which the image came. The yellow line is the reconstructed boundary of

the original set.

B.8 Conclusion

In this paper we have presented restrictions on pixel configurations in digital images
of r-regular objects at a reasonable resolution. We have used these restrictions to
reconstruct the original object by constructing an object with smooth boundary that
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is weakly d-similar to the original object (where d is the side length of each pixel).
This tells us that our reconstruction is not far from the original object and has the
right topology, and though that ensures that the sets are not fundamentally different,
sadly it is not quite enough to cover all aspects of human perception of similarity, as
discussed in [8], [6].Ongoing work is aiming at showing that the reconstructed object
is in fact strongly s-similar to the original one for a suitable s.

We do by no means believe that a Hausdorff distance of d between the original
object and our reconstructed object is the optimal – in fact, we are working on
obtaining even stronger bounds on their Hausdorff difference. We also believe that
taking the actual intensities of each pixel into account can result in even more precise
reconstruction, though there is still a lot of work to be done before we are ready to
prove this.

The object that our reconstruction method outputs will in general not be r-regular.
We may, since the boundary of the reconstructed set consists of the join of finitely
many curve segments, calculate the maximal curvature of a reconstructed set – but
note that a maximal curvature or 1

s is not enough to ensure that our reconstructed
set is s-regular. Thus we have left the question of regularity of the reconstruction out
of this paper, though it is also be an interesting aspect of the reconstruction process.

B.9 Appendix: Proofs of the lemmas from Section B.3

We here include the proofs that were omitted in Section B.3. To lighten the notation,
we will measure distances in units of d, so that each grid square has side length
1, and the assumption r > d

√
2 becomes r >

√
2. Note that if X is r-regular and

r >
√

2, X is in particular
√

2-regular (cf. [1], Proposition A.2).

Proof of Lemma B.19. Let x and y be two points on a line of length |l| < 2
√

2 and
let L be the line segment between them.

Since the distance from x to y is less that 2
√

2, there must be a path π(L) in ∂X
between them, where π is the projection onto ∂X, see Section B.2. Since ∂X is a
C1-manifold and the projection is continuous and fixes the endpoints, there must be a
point p on π(L) such that the tangent to ∂X at p is horisontal. Let p = (p1, p2). Since
p ∈ ∂X and X is an

√
2-regular set, there are balls B√2(xb) ⊆ X and B√2(xw) ⊆ Xc

such that B√2(xb) ∩B√2(xw) = {p}, and since the tangent to ∂X at p is horisontal,
the centres xb and xw must lie on the vertical line through p.

Note that p ∈ π(L) ⊆ S(L,
√

2). By Lemma B.14, the thickness of S(L,
√

2) is
√

2−
√

2− L2

4 ≤
√

2−
√

2− |l|24 . So d(p, L) ≤
√

2−
√

2− |l|24 . Then

d(xb, L) ≤ d(xb, p) + d(p, L) ≤ 2
√

2−
√

2− |1|
2

4

and
d(xb, L) > d(p, xb)− d(p, L) >

√
2− (

√
2−

√
2− |l|

2

4 ) =
√

2− |l|
2

4

If |l| = 1 this means that d(xb, L) ≤ 1.51 and d(xb, L) > 1. So if we name the pixels
as in Figure B.4, this means that xb belongs to either A or D in this case – let us
say D. Then D must be black. In fact, since the first and last inequalities are sharp,
the common edge of B and C must be interior points of X, and hence it contains no
intersection points. A symmetric argument for xw shows that xw must belong to A,
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hence A must be white, and that the common edge of A and B cannot contain any
points of ∂X.

If l = 2, then in d(xb, L) ≤ 2
√

2 − 1 and d(xb, L) > 1. Name the pixels as in
Figure B.4. If p ∈ B1 ∪ C1, then the centres cb, cw of the white and black balls
must belong to A1 and D1, respectively, since they lie on a vertical line through p.
Similarly if p ∈ B2 ∪ C2, then the centres cb, cw of the white and black balls must
belong to A2 and D2, respectively.

If ∂X is tangent to l at a point p′, replacing p with p′ in the above argument
shows the result.

Proof of Lemma B.20. Let us name the two grey pixels in the configuration B and
C as in the right part of Figure B.5. Choose boundary points xC ∈ C and xD ∈ D.
Both of these points are contained in a ball B√5/2(p), where p is the midpoint of the
common edge e of pixel B and C. By Corollary B.16 and Lemma B.15 applied to
the projection π instead of ρ, there is a path γ in ∂X from xC to xD contained in
B√5/2(p). This path must pass the line containing e, and since it cannot do so if
passing this line means entering a black pixel, it must in fact pass the edge e. The
endpoints of e are both black, hence if ∂X passes e once, it must also pass e a second
time, as ∂X separates black points from white ones.

But then by Lemma B.19 A must be black and D must be white (it cannot be
the other way around, because then a black and a white pixel would share a corner,
meaning that ∂X passes through that corner – which is against our assumptions).

Proof of Lemma B.21. Let c be the centre point of the grey pixel C. Assume c ∈
X (the other case is similar). Then c belongs to a black ball of radius

√
2 by

Proposition B.8, hence the centre of this black ball belongs to B√2(c) and thus to
either C or one of its neighbours. Since the pixel containing the centre of the black
ball must be entirely contained in the black ball, said pixel must be black. Hence
one of the neighbours of C must be black.

Figure B.33: We aim to show that the centre of the white ball tangent to ∂X at p belongs
to the red set Y .

Proof of Lemma B.22. Place the configuration in a coordinate system as in the figure,
such that the pixels have side length 1. The aim will be to show that xw lies so close
to the upper right pixel that the white ball Br(xw) contains the pixel.
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Note first that the line l through xb and c passes an edge of the black pixel, say
the right edge. Let a be this intersection point, see Figure B.33. To study the limit
case, we will first assume that xb = a.

Since d(a, c) < r, then by rotating the line segment from a to c about c with an
angle π one sees that the line segment of length 2r from a through c has an endpoint
xw = (x1, x2) with x1 ≥ 0.

Let b be a point directly above a such that ∠abc = π
2 , and let d be a point directly

above a such that ∠adxw = π
2 , see Figure B.6. Finally, let t = d(a, b)− 1

2 ≥ 0.
Now, tan(∠bac) = d(b,c)

d(a,b) = 1/2
1/2+t ≤ 1, so ∠bac ≤ π

4 . Thus we have that d(d,xw)
2
√

2 =
sin(∠bac) ≤ sin

(
π
4
)

= 1√
2 , so x1 = d(d, xw) − 1 ≤ 1. So 0 ≤ x1 ≤ 1. Also, by

rotational symmetry and since d(a, c) ≤ r, we must have x2 ≥ −1 + t.
Let Y be the intersection of the four r-balls with centres (0, 0), (1, 0), (0,−1) and

(1,−1) (the corners of the upper right pixel) – this is the red set in Figure B.34.
Then Y is a convex set containing (0, 0), (1, 0), (0,−1) and (1,−1), and hence the
entire upper right pixel. Any point in Y is closer than r to all the points (0, 0), (1, 0),
(0,−1) and (1,−1), so an r-ball with centre in Y contains all of the upper right pixel.
Hence we aim to show that xw ∈ Y .

Notice that the two triangles abc and adxw are equiangular. Hence

1 + x1

2
√

2
=

1
2

d(a, c) =
1
2√

(t+ 1
2)2 + 1

4

⇒ t =
√

2
(x1 + 1)2 −

1
4 −

1
2 .

Furthermore, we have that

8 = (2 + t+ x2)2 + (1 + x1)2,

so

x2 =
√

8− (1 + x1)2 − 2− t =
√

8− (1 + x1)2 − 3
2 −

√
2

(x1 + 1)2 −
1
4

So we may express x2 as a function of x1. Since 0 ≤ x1 ≤ 1 and x2 ≥ −1, we need
only check that xw lies under the upper border of Y on the interval [0, 1], i.e. we
must check that x2(x1) lies under the function

f̃(x1) =


√

2− (x1 − 1)2 − 1 x1 ≤ 1
2 ,√

2− x2
1)− 1 x1 ≥ 1

2 ,

on [0, 1]. However, it turns out to be easier to check that x2(x1) lies under the graph
of the function

f(x1) =
{

(
√

7− 1
2)x1 0 ≤ x1 ≤ 1

2 ,

−(
√

7− 1
2)x1 + (

√
7− 1

2) 1
2 ≤ x1 ≤ 1.

Note that f([0, 1]) ⊆ Y , since the image of f is just the union of two line segments,
both of which have endpoints in the convex set Y .
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To show that x2 lies somewhere below f , note first that

d2

dx2
1
x2 = −

√
8− (x1 + 1)2 − (x1 + 1)2√

8− (x1 + 1)23

+ 4√
2(x1 + 1)2 − 1

4(x1 + 1)4
3 −

6√
2(x1 + 1)6 − 1

4(x1 + 1)8

≤ 4√
2(x1 + 1)2 − 1

4(x1 + 1)4
3 −

6√
2(x1 + 1)6 − 1

4(x1 + 1)8

= 1
2(x1 + 1)3

 3x2
1 + 6x1 − 13√

2(x1 + 1)2 − 1
4(x1 + 1)4

3


≤ 0,

where the first inequality comes from the fact that the first two terms of the derivative
is negative, and the last inequality comes from observing that 3x2

1 + 6x1 − 13 ≤ 0 on
[0, 1].

Now, we want to show that f − x2 ≥ 0. Note that since f is (piecewise) linear,
we get that

d2

dx2
1
(f − x2) = d2

dx2
1
(−x2) ≥ 0

on [0, 1/2] and [1/2, 1], so d
dx1

(f − x2) is increasing. Now,

d

dx1
(x2) = − 1 + x1√

8− (1 + x1)2 + 2√
2

(1+x1)2 − 1
4

1
(1 + x1)3 ,

so on [0, 1/2]

d

dx1
(f − x2) =

√
7− 1

2 + 1 + x1√
8− (1 + x1)2 −

2√
2

(1+x1)2 − 1
4

1
(1 + x1)3

≥ d

dx1
(f − x2)|x1=0

=
√

7− 1
2 + 1√

7
− 4√

7
> 0,

and on [1/2, 1],

d

dx1
(f − x2) = −

√
7 + 1

2 + 1 + x1√
8− (1 + x1)2 −

2√
2

(1+x1)2 − 1
4

1
(1 + x1)3

≤ d

dx1
(f − x2)|x1=1

= −
√

7 + 1
2 + 1− 1

2
< 0.
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So f − x2 is increasing on [0, 1/2] and decreasing on [1/2, 1]. Hence, on [0, 1/2]

(f − x2)(x1) ≥ (f − x2)(0) = −
√

7
2 + 3

2 > 0

and similarly, on [1/2, 1]

(f − x2)(x1) ≥ (f − x2)(1) = 0.

Putting the last two equations together we see that f(x1)− x2(x1) ≥ 0 everywhere
on [0, 1], so x2 ≤ f as claimed. So if xb = a, then xw belongs to the set Y .

Figure B.34: Close-up on the upper right pixel. The red graph is the graph of x2(x1),
and the blue graph is the graph of f(x1). The point (x1, x2) on l is chosen such that

d((x1, x2), a) = 2r, and hence xb lies closer to c than (x1, x2) does.

Suppose now that xb is just any point in the lower left pixel that is closer than√
2 to c, and suppose that the line l through xb and c leaves the lower left pixel in a

point a on the right pixel edge. Then (0, 1− t) lies on l and inside Y . By what we
just showed, the point (x1, x2), x1 ≥ 0, on l that is at a distance 2r from a is also
in Y , hence the entire line segment from (0, 1− t) to (x1, x2) is in Y , since Y was
convex, see Figure B.34. But noticing that r ≥ d(a, c) = d(c, (0, 1− t)), we get that

d(xb, (0, 1− t)) = d(xb, c) + d(a, c) ≤ 2r

and
d(xb, (x1, x2)) = d(xb, a) + d(a, xw) ≥ d(a, xw) = 2r.

Combining these equations, we see that d(xb, (0, 1− t)) ≤ d(xb, xw) ≤ d(xb, (x1, x2)).
Hence xw belongs to the line segment between (0, 1 − t) and (x1, x2) which was
contained in Y , so xw ∈ Y .

Proof of Lemma B.24. Let us show (i). Let x and y be corner points of the two pixels
as in Figure B.8(a), and let L denote the line between them.

If there are points of XC in L, then ∂X must either be tangent to X or intersect
L in several points (since the endpoints of L clearly all belong to X). By Lemma B.19
this means that either the pixel above C or the pixel below pixel B is white. Both of
these pixels share a corner with a black pixel. By the proof of Lemma B.19, the black
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corner point must be an interior point of XC and hence white – a contradiction. So
L ⊆ Int(X).

If B is not black, pick white points b ∈ Int(B) and c ∈ Int(C). Let Lbc denote
the line between them. Then there is a path ρXC (Lbc) in XC ∪ ∂X connecting b and
c, and this path belongs to all balls of radius less than r that contains both b and c,
(cf. Section B.2). In particular, ρXC (Lbc) ⊆ B√2(x), since this ball contains all of B
and all of C.

Let γ be the piecewise linear path from z through x and y to w. Then γ is contained
in Int(X) and separates B from C inside B√2(x). Hence ρXC (Lbc) must intersect γ
somewhere, but this is impossible, since γ ⊆ Int(X) and ρXC (Lbc) ⊆ XC ∪ ∂X. So
B cannot contain any white points, and hence it must be black.

A similar reasoning can be applied to A: If A is not black, pick a white point
a ∈ A, and let Lac denote the line between a and c (where c ∈ C is the point we
chose earlier). Then there is a path ρXC (Lac) in XC ∪ ∂X connecting a and c, and
this path must belong to the ball B√2(x). But since γ also separates A from C inside
B√2(x), ρXC (Lac) must intersect γ somewhere. However, this is impossible, since
γ ⊆ Int(X) and ρXC (Lac) ⊆ XC ∪ ∂X as before. So A cannot contain any white
points, and hence it must also be black.

The second part of this proof also proves (ii). To prove (iii), we apply Lemma B.22
to argue that one of the pixels A1, A2, A3, B1, B2, B3 is black.

Indeed, suppose none of the pixels A1, A2, A3, B1, B2, B3 were black. Then
A1, A3, B1 and B3 would have to be grey, since black and white pixels cannot be
neighbours by assumption. But then by Remark B.23, either A2 or B2 would have to
be black – a contradiction. So at least one of the pixels A1, A2, A3, B1, B2, B3 has
to be black. If A1, A3, B1 or B3 is black, we are in situation (i) and may use this
proof to complete the proof of (iii). If A2 is black, and neither A1 nor A3 is black,
Lemma B.20 shows that both B1 and B3 is black, and we are again in the situation
of case (i). If A2 and either A1 or A3 is black, we are in the situation of case (i). The
proof works equivalently if B2 is black. This proves (iii).

(a) We consider 2× 3 grey
pixels and wish to show
that ∂X ∩ (G1 ∪G2)

belongs to the red set in
the figure, and that one of
the pixels K1, K2 must be
black, the other one white.

(b) If both K1 and K2
were white, then points xa

and xc would be joined by
a path in XC ∪ ∂X, and so

would points xb, xd.

(c) The projection π yields
a path γ in ∂X from p34
through p12 to p56, and
this path lives inside the

spindles between points p34
and p12, and points p12 and

p56.
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Proof of Lemma B.25. Let us start by discussing (i).
Consider G1 as in Figure B.35(b), and look at the configuration of 3× 3 pixels

with G1 as the centre pixel. Then all but the three upper d-neighbours of G1 are grey.
By Remark B.23, the upper d-neighbour K1 of G1 cannot be grey, hence it must be
either black or white. By the same reasoning, K2 must be either black or white.

It remains to prove that K1 and K2 cannot have the same colour, so suppose
that K1, K2 are both white. Let xa, xb be the lower corners of K1 and xc, xd the
upper corners of K2, as in Figure B.35(b). Note that these points are all elements of
XC ∪ ∂X.

Let Lac be the line segment between xa and xc, and let Lbd be the line segment
between xb and xd. Since d(xa, xc) = d(xb, xd) = 2 < 2

√
2, the map ρ maps these

line segments to continuous paths in XC ∪ ∂X by projecting points of Int(X) to ∂X
and fixing all other points.

Now, Lac and Lbd cannot both be contained entirely in XC , since this would
imply that ρXC kept them fixed. But since G1, G2 were grey, they must contain a
point of Int(X) which in turn would belong to some black r-ball Br(x) ⊆ X. However,
an interior point of such an r-ball would have to intersect the boundary of G1 ∪G2,
which hence cannot be a subset of XC ∪ ∂X.

So assume that ρXC does not fix Lac. Then there is a point q on Lac that belongs
to Int(X), hence since xa, xc ∈ XC , there must be a point in ∂X on the line segment
between xa and q, and another point in ∂X on the line segment between q and
xc. But then ∂X intersects Lac twice, so by Lemma B.19, either pixel G5 or G6
is not grey – a contradiction. Therefore K1 and K2 cannot have the same colour,
completing the proof of (i).

For (iii), let N be the line separating the upper three grey pixels from the lower
three grey pixels. We wish to prove that ∂X intersects N on the common edge of Gi
and Gi+1, for i = 1, 3, 5.

Let again Lac be the vertical line separating G3 and G4 from the other grey pixels,
and similarly, let Lbd be the vertical line separating G5 and G6 from the others. Pick
a boundary point xi in each of the grey pixels Gi, i = 1, . . . , 6, and let Lij be the
line segment joining xi and xj , i, j = 1, . . . , 6.

Using the projection π : Nr → ∂X, we know that there is a path π(L12) in ∂X
from x1 to x2, and this path must necessarily cross N somewhere. If it passes Lac on
the way, it must do so at least twice. By Lemma B.19, this would imply that either
G5 or G6 would not be grey, which yields a contradiction. Hence π(L12) does not
intersect Lac, and by a symmetric argument, it does not intersect Lbd either. So it
must intersect N at a point p12 on the common edge of G1 and G2.

A similar argument shows that the line segments π(L34) must intersect N in a
point p34 on the common edge of G3 and G4, and that π(L56) intersects N in a point
p56 on the common edge of G5 and G6, respectively. This proves (iii).

For (ii), note that we have three points p12, p34 and p56 of ∂X on N . Using
the projection on the line segments between them, we get a path γ in ∂X from p34
through p12 to p56, and this path must live inside the spindles S(p12, p34,

√
2), and

S(p12, p56,
√

2), see Figure B.35(c).
Since the maximum height of such a spindle is

√
2− 1, then γ must belong to

the red part of the pixels G1 ∪G2. Note that there cannot be any other elements of
∂X in G1 ∪G2 than those of γ, because ∂X can only intersect each of the lines Lac
and Lbd once by Lemma B.19, and these two points of intersection must be exactly
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the ones on γ.
So since the path γ belongs to the red part of G1 ∪G2, the proof is complete.

Proof of Lemma B.26. Suppose this configuration did occur, and look at the 3× 3-
configuration that also includes the three pixels to the right of it (see Figure B.10,
right). Not all of the red pixels can be grey, since this would violate Lemma B.22
and Lemma B.21. Hence one of them must be another colour, say black.

If the upper red pixel were black, Lemma B.20 would require the bottom grey
pixel to be white – a contradiction.

If the middle red pixel were black, then by the first part of Lemma B.24 one
of the grey ones in the middle column of the configuration would be so, too – a
contradiction again.

If the bottom red pixel were black, then by the third part of Lemma B.24 one
of the grey ones in the middle column of the configuration would be so, too – yet
another contradiction.

Hence there can be no legal way to colour the red pixels, so this configuration
cannot occur.

Figure B.36: The configuration to the left in this figure cannot occur in the image of
an r-regular object with d

√
2 < r. As a first part of the proof, we aim to show that the

configuration is part of a larger configuration looking like the one on the right.

Proof of Lemma B.27. Before we go on to the proof, we will state and prove the
following lemma for later use:

Lemma B.59. Let v1, . . . vn ∈ R2 and let A = conv(v1, . . . , vn). Let r > 0. Then⋂
x∈ABr(x) = ⋂n

i=1Br(vi).

Proof. It is clear that ⋂x∈ABr(x) ⊂ ⋂ni=1Br(vi), since vi ∈ A for all i. Hence we
need to show the other inclusion.

Let p ∈ ⋂ni=1Br(vi), and x ∈ A. We aim to show that p ∈ Br(x). Since x ∈ A,
we may write x as x = ∑n

i=1 αivi for a set of scalars αi ≥ 0 satisfying ∑n
i=1 αi = 1.

Then

‖x− p‖ =
∥∥∥ n∑
i=1

αivi − p
∥∥∥ =

∥∥∥ n∑
i=1

αivi −
n∑
i=1

αip
∥∥∥ ≤ n∑

i=1
αi‖vi − p‖ ≤

n∑
i=1

αir = r,

since p ∈ Br(vi) for all i. This shows that p ∈ Br(x) for arbitrary x ∈ A, hence
p ∈

⋂
x∈ABr(x).
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Now we turn to the proof of Lemma B.27.
Suppose the configuration did occur. Let us first argue that then it must be a

part of a larger configuration looking like the one in Figure B.36, right. Let us name
the pixels as in Figure B.36, left.

Since the top 2×3 pixels K1−K6 are grey and K8 is white, the upper d-neighbour
of K2 must be black by Lemma B.25, as indicated in Figure B.36 centre.

Similarly, look at the 3× 3 configuration centred at K4 (this is the one with the
blue frame in Figure B.36, middle). This configuration has a grey centre and a white
corner pixel. Combining Remark B.23 and Lemma B.24, this means that either left
d-neighbour of K1 or the left d-neighbour of K4 (the two darker red pixels in the
figure) must also be black. The equivalent is true for the 3× 3 configuration centred
at K6. By Lemma B.24 (i) or (iii), if one of the two dark red pixels to the left is
black, then the upper dark red pixels must be black, and so must the 4 red pixels in
the top row in Figure B.36, middle, too. So if the configuration did occur in a digital
image, it would have to sit in a configuration like the one in Figure B.36, right.

Now, consider the two red points p1 and p2 at the top corners of the centre pixel
K5 in Figure B.36 right. These cannot be black: If they were, then ∂X must intersect
one of the edges of K1 and K3 at least twice, which would violate Lemma B.19. So
they must both be white.

Now, since all corners of the centre pixel K5 are white and the pixel itself is grey,
the boundary ∂X must intersect at least one edge of K5 at least twice. It cannot
be the bottom edge, and it cannot be either of the two vertical edges either by
Lemma B.19, so ∂X must intersect the line between p1 and p2 at least twice. We
now aim to show that this line is in fact contained in the set of white points, so that
it cannot contain any points of ∂X, giving us a contradiction.

Figure B.37: Left: Since p1 is white, it must lie in a white
√

2-ball B centred somewhere
inside B√2(p1) (the blue circle). Since B contains neither p2 nor p3, the centre of B must lie
between the two dashed lines. Right: A point in the left part of the blue set T ′ must belong

to the triangle with vertices p, v and w.

Since p1 is white, it is contained in some white
√

2-ball B. The centre of B lies
somewhere inside B√2(p1). Since B cannot contain the black corner p3 of K1 (see
Figure B.37 left), its center must lie closer to p1 than to p2, hence it must lie to the
right of the vertical line midway between the two points. Likewise, B cannot contain



86 Paper B

both p1 and p2 without also containing the entire line between them, so the centre of
B must also lie closer to p1 than to p2, that is, to the left of the vertical line midway
between the two points.

Finally, the centre of B can only belong to a white pixel. Hence it must belong
to the bright blue part of the white pixel in Figure B.37, left. Let us call this set T .

Next, consider the grey pixel K7, and let p4 be its lower left corner. Since T is a
part of the upper left quarter of K8, a point in T is further from p4 than from any
of the other three corners of K7. Hence if the white ball B contained p4, it would
contain all of K7 which would then not be grey. So the centre of B must lie further
away from p4 than

√
2, hence outside the ball B√2(p4). Let T ′ = T \ B√2(p4), the

blue set in Figure B.37, right.
By calculating the intersection p between the boundaries of B√2(p1) and B√2(p4)

inside the white pixel K8, we find that they intersect in a point that is a distance
1
10(2
√

15− 5) ≈ 0.27 from the left edge K8 and a distance
√

3/20 ≈ 0.39 from the
top edge of K8.

Let m be the midpoint of the line between p1 and p2. A calculation shows that
d(p,m) <

√
2, so m ∈ B√2(p). Any point of T ′ to the right of p is closer to m than

p is, so any ball centred here must also contain m.
Consider a point in T ′ left of p. Such a point must be contained in the triangle

with corners p, v and w as seen in Figure B.37, right. Here v is the upper left vertex
of K8, and w is the point on the edge K8 that is directly above p. A calculation
shows that m ∈ B√2(p) ∩B√2(v) ∩B√2(w), which by Lemma B.59 means that m
belongs to B√2(x) for any x in the left part of T ′. Since the same was true for any
point right of p, m belongs to B√2(x) for any x ∈ T ′. But since p1 also belongs to
B√2(x) for any x in T ′, any white ball containing p1 also contains m, and hence the
line segment from p1 to m.

Repeating this argument for p2, any white ball containing p2 also contains m,
and hence it contains the entire line segment from m to p2.

But then each point on the line segment from p1 to p2 is contained in a white
ball – a contradiction.

Proof of Theorem B.28. Combining Lemmas B.24, B.19, B.20, B.21, B.22, B.26
and B.27, we get the result with the exception of the configuration located at (23, 17)
in Figure B.3. But this configuration is also impossible: Let C be the grey centre
pixel. C must contain some boundary point p ∈ ∂X, so there would have to be a
white ball of radius r tangent to ∂X at p. But such a ball would have to contain
points of one of the black pixels around C – a contradiction.

Proof of Lemma B.29. Look at the centre point c of the 4× 4 pixels. Suppose it is
white (the case where it is black is symmetric). Then one of the grey pixels having c
as a vertex has only white vertices (in the figure, it would be the lower left pixel).
Call this pixel A.

Since A s grey, the boundary ∂X must intersect one of its edges, and since all
of its corners are white, an edge intersected by ∂X must be intersected at least
twice. Note that only the edges of A that are shared with another grey pixel can be
intersected by ∂X. But then by Lemma B.19, one of the grey pixels in the figure
would have to be non-grey – a contradiction. So this configuration cannot occur.
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Proof of Lemma B.30. The proof follows from Lemma B.25: Look at the two pixels
in the column to the right of the configuration (the red ones in Figure B.15, right).
These cannot both be grey, since that would violate Theorem B.25, so at least one
of them must have another colour. Say that one of them is black (the other case
is symmetric). Depending on which one of the red pixels is black, some part of
Lemma B.24 tells us that the 2 × 4 configuration in Figure B.15 must have more
black pixels than what is the case – a contradiction. So the configuration cannot
occur.

Proof of Lemma B.31. Let C denote the 2 × 2 configuration of grey pixels. By
Lemma B.19, if any edge of C is intersected by ∂X multiple times, then one of the
pixels in C would not be grey – a contradiction. So if ∂X intersects all edges of C, it
only intersects each edge once. Hence C has two black vertices on one diagonal and
two white vertices on the other. Let L be the line connecting the black vertices and
M the line connecting the white vertices.

There is a black path ρX(L) in X connecting the two black corners of the pixel.
By Corollary B.16 and Lemma B.15, this path must belong to B√2(p), where p is
the centre of C.

Similarly, there is a path ρXC (M) in XC ∪ ∂X connecting the two white vertices
and contained in B√2(p). If ρXC (M) contains points of ∂X, we may push these
points a little along the normal vector field of ∂X to get a path ρ̃ in XC connecting
the white vertices of C. This alteration can be made in the interior of B√2(p) since
the endpoints of M are not boundary points, hence ρ̃ is also contained in C.

But then we have a black path in B√2(p) separating the white vertices of C,
and a white path in B√2(p) connecting them. This means that the two paths must
necessarily intersect each other in a point that must be both black and white – a
contradiction. So ∂X cannot intersect all four edges of C.

Proof of Theorem B.32. Combining Lemmas B.29, B.30 and B.31 yields most of the
result. The only configuration remaining is the one centred at (45, 22) in Figure B.13.
But this is also not possible: If it where, the middle grey pixels would contain some
boundary point p ∈ ∂X. Then there would be a white

√
2-ball with p in its boundary,

and such a ball would either be centred inside the 4× 4 pixels of the configuration,
or in one of the pixels neighbouring the configuration. Since the pixel containing the
centre of the white ball is white itself, the white ball cannot be centred inside the
configuration. But it also cannot be centred in one of the pixels neighbouring the
configuration, since this would mean that a white pixel and a black one were sharing
boundary points, which is against our assumption.
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Supplement B

A Stronger Result on the
Similarity between An r-regular
Object and Its Reconstruction
from a Trinary Image

By Helene Svane

BB.1 Introduction

This section was written after the drafted paper in Chapter B, and is intended to be
read as a continuation of that paper. Indeed, its main result is a strengthening of
the result in Chapter B, and we use the same framework and a portion of lemmas
from that chapter.

In their paper Shape Preservation during Digitisation: Tight Bounds Based on
Morphing Distance, Stelldinger and Köthe discuss how to define a similarity criterion
for sets, that capture human perception of set similarity. They come up with two
notions, one of which is the weak s-similarity that we already discussed in Chapter B.
The other one is called strong s-similarity:

Definition BB.1. Let A,B ⊆ R2 and s > 0. The sets A and B are called strongly
s-similar if there exists a homeomorphism f : R2 → R2 such that f(A) = B and for
all x ∈ ∂A we have ‖f(x)− x‖ < s.

It is clear from this definition that two strongly s-similar sets are in particular
weakly s-similar, hence strong s-similarity is a stronger notion than weak s-similarity.

This chapter will continue to consider trinary images as defined in B.3, of r-regular
sets satisfying the convention B.4. Furthermore, we will reconstruct a set Γ from a
trinary image in the same way as we did in Section B.4, but we will fix the bump
function ϕ to be

ϕ(x) =


1

1+exp( 6|L|
7x −

6|L|
7(|L|−x) )

for 0 < x < |L|

0 for x = 0
1 for x = |L|
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The aim of this paper will be to prove the following:

Theorem BB.2. Let Γ be the set reconstructed from the digital image of an r-
regular object X, where the pixel side length d of the pixels of the digital image satisfy
d
√

2 < r. Then Γ and X are strongly d√
2 -similar.

The main idea in this proof will be to write the grey pixels as a disjoint union of
line segments. Let us define

Definition BB.3. Let A ⊆ R2 be a bounded set. A line covering of A is a partition
of A into disjoint line segments with endpoints on the boundary of A.

We will now aim to construct a line covering on the set of grey pixels and show
that we may push ∂X to γ along the lines of this line covering in a continuous way.
This is only possible after a slight modification of ∂X, as we will elaborate on in a
later section.

Before we get to defining the line covering, we need to establish some more basics
about pixel configurations in trinary images of r-regular sets.

BB.2 Possible configurations of 4× 4 pixels with 2× 2
grey centre pixels

The aim of this section is to improve the result in Theorem B.32 on possible 4× 4
pixel configurations with 2× 2 grey pixels in the middle. This will allow us to divide
the remaining 4×4 configurations with 2×2 grey pixels in the middle into categories,
such that configurations in the same category share some similar features. We will
also prove some small results on pixel configurations in general, which will turn out
to be important later.

Figure BB.1: The upper left corner of a pixel C sitting in a configuration as the one above
must always be white.

Lemma BB.4. Consider a pixel C sitting in one of the configurations in Figure BB.1,
mid or right. Its upper left corner must be white.

Proof. Consider such a pixel C. If its upper left corner was black, the boundary ∂X
would intersect one of the edges of C multiple times: it must intersect the boundary
of C in order for C to be grey, and it must intersect each edge of C an even number
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of times in order for all of the corners of C to be black. But this is impossible by
Lemma B.19.

Convention BB.5. Unless otherwise stated, we name pixels in a 3 × 3 or 4 × 4
configuration as in Figure BB.2.

Figure BB.2: Unless otherwise stated, we name pixels in a 3× 3 or a 4× 4 configuration
as in this figure.

Figure BB.3: For each of these configurations, we aim to find the vertices of a polygon
containing the red part of the black pixel

Lemma BB.6. Consider configurations like in Figure BB.3, where we have a point
p = (0, 0) at the origin, and let q = (d, 0). Let K2 be the black pixel K2 := [0, d]×[d, 2d]
in Figure BB.3.

i) For s = (−d, 2d), the set A1 := K2 ∩ (B√2d(p)) \ (B√2d(s) ∪ B√2d(q))) is
contained in the convex hull of the points v1 = (0, d), v2 =

(
d
2 , d

√
2− 1

4

)
,

v3 =
(
d
2 ,
√

15d+10d
10

)
and v4 =

(
2d
√

15−5d
10 ,

√
15d+10d

10

)
.

ii) For s = (−d, d), the set A2 := K2∩(B√2d(p))\(B√2d(s)∪B√2d(q))) is contained
in the convex hull of the points w1 =

(√
3d−d
2 ,

√
3d+d
2

)
, w2 =

(√
15d
10 , 2d

√
15+5d
10

)
,

w3 =
(
d
2 , d

√
2− 1

4

)
and w4 =

(
d
2 ,
√

3d+d
2

)
.

iii) For s = (−d, 0) and K1 := [−d, 0] × [d, 2d], the set A3 := (K1 ∪ K2) ∩
(B√2d(p) \ (B√2d(s) ∪B√2d(q))) is contained in the convex hull of the points
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u1 = (0, d), u2 =
(
−d

2 , d
√

2− 1
4

)
, u3 =

(
−13d

50 ,
√

2d
)
, u4 =

(
13d
50 ,
√

2d
)
and

u5 =
(
d
2 , d

√
2− 1

4

)
.

Proof. We start by proving i). Note that a calculation shows that the points v1,
v2 and v4 are the intersection points of the three circles ∂B√2d(p), ∂B√2d(q) and
∂B√2d(s) in K2. Since the line segment from v1 to v2 is a secant in B√2d(q), it does
not belong to A1. Similarly, the line from v1 to v4 is a secant in B√2d(s), hence it also
lies outside A1. Now v3 is the point that makes a right angle with v2 and v4, which
both lie on the boundary of A1. The line segments from v2 to v3 and from v3 to v4
both lie outside B√2d(p) by a calculation, hence also outside A1. So the boundary of
the convex hull of v1, v2, v3 and v4 lies outside A1. Since the line from v2 to v4 lies
inside A1, the convex hull of v1, v2, v3 and v4 must contain A1, as claimed.

The proof of ii) is nearly identical to the proof of i). The points w1, w2 and w3
are the intersection points between the three balls ∂B√2d(p), ∂B√2d(q) and ∂B√2d(s)
in K2, and the line segments from w1 to w2 and from w2 to w3 lie outside A2. The
point w4 is the point that makes a right angle with w1 and w3, and the line segments
from w4 to x3 and from w1 to w4 also lie outside all three balls by a calculation,
hence outside A2. The polygon with vertices w1, w2, w3 and w4 contains A2, which
proves the claim in this case.

For iii), notice that u1, u2 and u5 are points where the circles intersect, and that
u3 and u4 and the line between them both lie above any set contained in B√2d(p), so
in particular outside A3. The line segments from u1 to u2 and from u5 to u1 are also
outside A3, since these line segments are secants of B√2d(s) and B√2d(q), respectively.
Furthermore, the angle of the line from u2 to u3 with the x-axis is greater than the
angle of the tangent to B√2d(p) at u2 with the x-axis, hence the line segment from
u2 to u3 is outside A3, and similarly with the line segment from u4 to u5. So A3
must be contained in the set spanned by u1, u2, u3, u4 and u5, as claimed.

Figure BB.4: Consider the above configuration types. We aim to find a set containing the
centre of a ball containing p.
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Lemma BB.7. Consider one of the configurations in Figure BB.4, placed in a
coordinate system with p at the origin and with the colours of the red pixels unspecified.
Let vi, wi and uj be as in Lemma BB.6, i = 1, 2, 3, 4, j = 1, 2, 3, 4, 5.

(i) In configurations of type A from the figure, the set conv(⋂4
i=1B

√
2d(wi), p) is

white. In configurations of type B, either the set conv(⋂4
i=1B

√
2d(wi), p) is

white or the set conv(⋂4
i=1B

√
2d(w′i), p) is white, where w′i is the reflection of

wi in the line y = x.

(ii) In configurations of type A′ and D, the set conv(⋂4
i=1B

√
2d(vi), p) is white.

(iii) Let p and q in configurations of type E be black points with d(p, q) = l < d. If a
component of ∂X in the lower grey pixel has two endpoints on the line between
p and q, the set ⋂3

i=1B
√

2d(ti) is white, where t1 = (0,
√

2d), t2 = (l,
√

2d) and

t2 =
(
l
2 , d

√
2− l2

4

)
.

(iv) Consider a configuration of type C. If the line segment from the point q to some
point (0, l) is black for some l ∈ [0, d), the set ⋂5

i=1B
√

2d(ui) ∩
⋂3
i=1B

√
2d(ti)

is white (where t1 = (0,
√

2d), t2 = (l,
√

2d) and t2 =
(
l
2 , d

√
2− l2

4

)
)

Proof. Name the pixels according to the convention. Let us start with (i):
Consider first a configuration of type A in Figure BB.4. By Lemma BB.4 applied

to the grey pixel K10, p must be white. Hence there is a white
√

2d-ball B√2d(cw)
containing p, whose centre cw must belong to B√2d(p). The pixel containing cw must
be white since B√2d(cw) contains the entire pixel containing its centre, therefore cw
can only belong to the white pixel K3 in configuration A (since K11 cannot be white
without a white and black pixel sharing a corner, which is against our assumption).
When cw belongs to K3, it contains the two lower vertices of K3 along with p. Hence
it cannot contain the point q too, for if it did, it would contain all corners of the grey
pixel K7, and hence all of K7, which would then not be grey. Thus cw 6∈ B√2d(q).
Furthermore, since s is a black point, we must have s 6∈ B√2d(cw) or, equivalently,
cw 6∈ B√2d(s). So, in short, cw belongs to K3 ∩ (B√2d(p) \ (B√2d(q) ∪B√2d(s))). By
Lemma BB.6, this set is contained in conv(w1, w2, w3, w4), so by Lemma B.59„ since
cw ∈ conv(w1, w2, w3, w4), the set ⋂4

i=1B
√

2d(wi) is contained in B√2d(cw), and is
thus white. Since B√2d(cw) also contains p, it must in fact contain the entire set
conv(⋂4

i=1B
√

2d(wi), p), which is thus white.
Similarly, in configurations of type B the point p must be white and hence

contained in a white ball B√2d(cw) whose centre cw ∈ B√2d(p) must be contained
in a white pixel. Hence cw can only belong to the white pixels K3 or K8. We may
as well assume that cw belongs to K3, because the argument for the other case
corresponds to reflecting the entire configuration in the line y = x. As with the
case for configuration A, if cw ∈ B√2d(q) then B√2d(cw) would contain the entire
grey pixel K7 which would then not be grey, and since s is a black point, we must
also have cw 6∈ B√2d(s). So cw belongs to K3 ∩ (B√2d(p) \ (B√2d(q) ∪ B√2d(s))),
which by Lemma BB.6 ii) is contained in conv(w1, w2, w3, w4). By Lemma B.59, this
means that the set ⋂4

i=1B
√

2d(wi) is contained in the white set B√2d(cw). Again,
since B√2d(cw) also contains p, it must contain conv(⋂4

i=1B
√

2d(wi), p), which is then
white.
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Now, let us look at (ii): In both configuration A′ and D, the point p is white
by Lemma BB.4 applied to K10, hence there is a white ball B√2d(cw) containing p,
meaning cw ∈ B√2d(p). Since the pixel containing cw is white, cw must belong to the
only white pixel intersecting B√2d(p) in configuration A, namely K3.

In configuration D, cw can belong to either the white pixelK3 in the configuration,
or to K8 (but not to K7, since a black and a white pixel would then be sharing a
corner). If cw ∈ K8, then B√2d(cw) would contain the left and lower edge of the grey
pixel K7, hence the only non-white edge of K7 would be the left vertical edge. But
then ∂X would have to intersect that edge at least twice in order for K7 to be grey -
a contradiction by Lemma B.19. So cw must belong to K3 in both configuration A′
and D.

If B√2d(cw) contained q in either configuration A′ or D, it would contain all
corners of, and hence all of the grey pixel K7, meaning that K7 would not be grey.
So cw 6∈ B√2d(q) in both cases.

Since cw belongs to K3 and to B√2d(p), but not to B√2d(q), it must belong
to the lower left quarter {(x, y) ∈ R2 | 0 ≤ x ≤ d

2 , d ≤ y ≤ 3d
2 } of K3. Hence

cw is further from the point s than it is from any other corner of K2. Thus, if
B√2d(cw) contained s, it would also contain all the other corners of K2, and hence
it would contain the entire grey pixel K2 – a contradiction. So cw 6∈ B√2d(s). In
short, the point cw in configurations A′ or D is contained in the white pixel K2 and
in B√2d(p) \ (B√2d(q) ∪ B√2d(s)), and by Lemma BB.6 i), this set is contained in
conv(v1, v2, v3, v4). By Lemma B.59 again, this implies that the set ⋂4

i=1B
√

2d(vi) ⊆
B√2d(cw), meaning that this set is white. Since p ∈ B√2d(cw) as well, the entire set
conv(⋂4

i=1B
√

2d(vi), p).
For (iii), look at configuration E in Figure BB.4 and assume that p, q are black

points, and that a component of ∂X in the lower grey pixel has two endpoints on
the line from p to q. Then the part of ∂X in the lower grey pixel must be contained
in S(p, q,

√
2d), and there must be a point a in ∂X in the lower grey pixel where

∂X has a horisontal tangent. This means that there must be a white ball B√2d(cw)
osculating ∂X at a, and its centre cw must lie in [0, l] × [d,

√
2d] since it must

belong to a white pixel and it can be no further than d
√

2 from the lower grey pixel.
Furthermore, since p and q were black, we must have p, q 6∈ B√2d(cw) or equivalently
cw 6∈ B√2d(p) ∪B√2d(q). With t1, t2 and t3 as in the formulation of the lemma, this
means that cw must lie somewhere underneath the line between t1 and t2. Since the
line from t1 to t3 and the line from t2 to t3 are contained in B√2d(p) ∪B√2d(q), we
must also have that cw lies above these lines. This proves that cw lies in the triangle
spanned by t1, t2 and t3. Consequently, the set B√2d(t1) ∩ B√2d(t2) ∩ B√2d(t3) is
contained in B√2d(cw) by Lemma B.59, hence B√2d(t1) ∩B√2d(t2) ∩B√2d(t3) is a
white set.

For (iv), assume first that p is a white point. Again, this means that there is a
white ball B√2d(cw) whose centre cw ∈ B√2d(p) is contained in a white pixel. Hence
cw is either contained in one of the white pixels K2, K3 in the figure, or in one
of the red pixels K5, and K8. Suppose cw belonged to K5. Then B√2d(cw) would
contain p, s and s + (0, d), hence it would contain the left and lower edge of grey
pixel K6 in the figure. Since K6 also has a white upper edge, ∂X would have to
enter and leave K6 through its right edge – a contradiction by Lemma B.19. So
cw 6∈ K5, and by a symmetric argument cw 6∈ K8. So cw must belong to K2 ∪K3.
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If B√2d(cw) contained s, it would contain the entire grey pixel K6, since cw is
closer to the upper corners of K6 than to the lower ones, and B√2d(cw) contains
p. But K6 cannot be contained in B√2d(cw) since K6 is grey, hence cw 6∈ B√2d(s).
Furthermore, cw 6∈ B√2d(q) by a symmetrical argument. Hence cw is contained
(K2 ∪ K3) ∩ (B√2d(p) \ (B√2d(s) ∪ B√2d(q))). By Lemma BB.6, this means that
cw ∈ conv(u1, u2, u3, u4, u5), implying that ⋂5

i=1B
√

2d(ui) is contained in the white
set B√2d(cw) in this case.

Assume instead that p is a black point. Then, all corners of K11 are black, hence
∂X must intersect any edge of K11 an even number of times. It cannot intersect the
left or right edge of K11 twice by Lemma B.19, and since there must be a segment of
∂X in K11, ∂X must intersect the line from p to q at least twice. If the line segment
from q to (l, 0) is black, ∂X must intersect the line segment between p and (l, 0) at
least twice. But then, by point (iii), the set ⋂3

i=1B
√

2d(ti) is white.
Since we do not know whether p is black or white, we can only say for sure that⋂5

i=1B
√

2d(ui) ∩
⋂3
i=1B

√
2d(ti) is white, since this set is white in both cases.

Figure BB.5: Consider a configuration as the one on the left, where the colours of the red
pixels are unspecified. Such a configuration must sit in a configuration as the one on the

right, and the point q must be black.

Lemma BB.8. Consider a configuration as the one on in Figure BB.5 left, where
the colours of the red pixels are unspecified. Such a configuration must sit in a
configuration as the one on the right, and the point q must be black.

Proof. Name the pixels according to convention, and suppose as in the figure that
K15 is white. Then by Lemma B.25, (i) K3 must be white.

Any configuration of 3×3 pixels with K10 as the centre must have a white pixel at
either K5 or K9 - just consider all cases, see Theorem B.28. In any case, Lemma B.24
tells us that the pixels K1, K2 and K5 must be white, hence the configuration must
look like the one in Figure BB.5, right. By Lemma BB.4, q must be a black point.

Theorem BB.9. None of the 4 × 4 configurations displayed in Figure BB.6 can
occur in the digital image of an r-regular object by a lattice dZ2 with d

√
2 < r.

Proof. Let us start by looking at the left configuration in Figure BB.6. Place the
configuration in a coordinate system with the midpoint p of the configuration at the
origin. Then p sits in a configuration of type B from Lemma BB.7, from which it



96 Supplement B

Figure BB.6: None of the 4× 4 pixel configurations above can occur in the image of an
r-regular object by a lattice dZ2 with d

√
2 < r.

then follows that the set H = conv(⋂4
i=1B

√
2d(wi), p) is white, where w1, w2, w3 and

w4 are as in Lemma BB.6, ii).
A calculation shows that H contains p, the upper corners of pixel K7, and the

point (0.72d, 0). Hence the upper, left and right edge of K7 are white, and so is the
line segment from p to (0.72d, 0). Since K7 is grey, any component of ∂X in K7 must
have endpoints on somewhere on the line L between the points (0.72d, 0) and (d, 0).
So by Lemma BB.7 (iii) applied to K7, K11 and the points (0.72d) and (d, 0), the
set ⋂3

i=1B
√

2d(t′i) is black (where the t′i are the reflections of the ti from the lemma
in the line x = d

2). But a calculation shows that the grey pixel K16 is contained in
the black set ⋂3

i=1B
√

2d(t′i) – a contradiction. So this configuration is impossible.

Figure BB.7: Both of the middle configurations in Figure BB.6 mid must sit in a larger
configuration such as the above.

Let us show that the second, third and fourth configuration of Figure BB.6 does
not occur. When naming the pixels according to convention, notice that the only
difference between the three are the colours of pixels K3 and K4. Since we will not
use information about the colour of these pixels in our proof, it follows that the proof
will work for all three configurations.

The second, third and fourth configuration in Figure BB.7 must all sit in a
configuration as the one in Figure BB.7 by Lemma BB.8. Placing the configuration in
a coordinate system with p at the origin, we see that p sits in a configuration of type
A′ from Lemma BB.7. Thus by (ii) of that lemma, the set S := conv(⋂3

i=1B
√

2d(vi), p)
is black. A calculation shows that the midpoint m = (0, d2) on the line between p
and q is contained in S.

Now, q is also placed in a configuration of type A′ from Lemma BB.7, hence by a
symmetrical argument, there is a white set H := conv(⋂3

i=1B
√

2d(v′i), q) containing
m (where the v′i are the image of the vi under the suitable isometry). But then m
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belongs to both a black and a white set – a contradiction. Thus the second, third
and fourth configuration of Figure BB.6 cannot occur.

Figure BB.8: These are the only possible configurations of 4 × 4 pixels with 2 × 2 grey
pixels in the middle that can occur in the digital image of an r-regular object by a grid dZ2

with d
√

2 < r.

Corollary BB.10. The only possible configurations of 4× 4 pixels with 2× 2 grey
pixels in the middle are the ones in Figure BB.8.

Proof. This follows from Theorem B.32 and Theorem BB.9.

We now divide the configurations of Corollary BB.10 into four categories, as
indicated by the boxes in Figure BB.8. As shown, the first category A will consist of
the 6 configurations in the top row, the second category B will consist of the two
configurations on the left side of second row, the third category C will consist of
the remaining configurations in second row plus the configurations in the third and
fourth row, and the final category D will consist of the configurations in the last row.
Notice that the categories are related to the configurations from Lemma BB.7: The
midpoint of a configuration in Category A sits in a configuration of type A and A’
from the lemma, the midpoint of a configuration in Category B sits in a configuration
of type B from the lemma, the midpoint of a configuration in Category C sits in
a configuration of type C from the lemma and the midpoint of a configuration in
Category D sits in a configuration of type D from the lemma.

Theorem BB.11. Consider a configuration as the one in Figure BB.9. It is always
possible to determine what colour the corners a and b are.
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Figure BB.9: In a pixel configuration as the one on the left, it is always possible to
determine the colours of the points a and b.

Proof. Let us start by arguing that the two points a and b cannot have different
colours. Indeed, suppose they did, and that a were white and b were black.

If b is black, the common edge e of K5 and K6 would belong to the interior of
X – if it contained any points of intersection with ∂X, it would either contain one
such point with vertical tangent, or it would contain several such points since the
endpoints of e are black. In both cases, Lemma B.19 would yield a contradiction.
Therefore e is contained in Int(X).

Place the configuration in a coordinate system with b at the origin, so that
K5 and K6 are the pixels to the upper left and upper right of b, respectively (see
Figure BB.9, left). Since both K5 and K6 are grey, they contain points x ∈ K5 ∩ ∂X
and x′ ∈ K6 ∩ ∂X. Let L be the line between x and x′. Then π(L) is a path in ∂X
from x to x′. This path is contained in any ball of radius less than

√
2d containing

x and x′, so in particular it is contained in B√5d/2(0, d2), since this ball contains all
of K5 and all of K6, and hence also x and x′. Hence π(L) must pass the y-axis in a
point where d−d

√
5

2 < y < d+d
√

5
2 , and since it cannot cross the black part of this line,

it must in fact cross the line segment between b and q. By a similar argument, ∂X
must pass the x-axis in a point between b and p.

Since b were black, there is be a black ball B√2d(cb) of radius
√

2d containing b,
and it is centred somewhere in B√2d(b). It cannot contain q, for if it did, it would
contain the entire line segment from b to q, contradicting the fact that there is a
path in ∂X intersecting this line segment. Similarly, it cannot contain p, for if it did,
it would contain the entire line segment from b to p, and hence also the point of ∂X
on this line segment.

Since cb can only belong to a black pixel because the pixel containing cb is
contained in the black ball B√2d(cb), we must have that cb ∈ K3 ∩B√2d(b). Since a
is white, cb 6∈ B√2d(a). Putting all these together, we have that cb ∈ K3 ∩B√2d(b) \
(B√2d(a) ∪ B√2d(p)). By Lemma BB.6 this means that cb ∈ conv(w1, w2, w3, w4),
where the wi’s are as in the lemma.

Repeating this argument for the white point a, we find that there is a white ball
B√2d(cw) with cw ∈ conv(w′1, w′2, w′3, w′4), where w′i is the point wi rotated an angle
π about the centre c of pixel K5.

But for all i, both the points wi and the points w′i are contained in B√2d(c),
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hence c belongs to both B√2d(cb) (which was black) and to B√2d(cw) (which was
white) by Lemma B.59 – a contradiction. So the two points a and b must always
have the same colour.

Using Lemma BB.4 and considering all the cases in Figure BB.8 containing the
configuration from figure BB.9, we see that it is always possible to determine the
colour of a or b.

Figure BB.10: Left: A configuration from category D must sit in a larger configuration like
the one on the left. Right: We consider a configuration within category D. The colours of
the four left pixels (red) of such a configuration may vary, therefore we make no assumptions

about those. We aim to determine which colours the blue pixels can have.

Lemma BB.12. A configuration from category D must sit in a larger configuration
such as the one in Figure BB.10, left.

Proof. While the colour of the leftmost four pixels differ within category D, all
configurations in category D share the colours of the rightmost 12 pixels. We aim
to determine the colours of the blue pixels neighbouring such a configuration, see
Figure BB.10, right.

Assume as in the figure that the configuration from category D has more black
pixels than white (the opposite case is symmetric). Then by Theorem BB.11 and
Lemma BB.4, the centres p, q of both 2 × 2 configurations of grey pixels in the
4× 4-configuration from category D must be white.

Now, look at the 4× 4 configuration centred around q. This configuration must
also belong to category D, and it must be one of the configurations of category D
with more black pixels than white, otherwise q would be black by Lemma BB.4 and
Theorem BB.11. Looking at all possible configurations satisfying these two criteria,
we see that they all have black pixels where the blue pixels in Figure BB.10, right,
are. Hence the proof follows.

BB.3 Area containing ∂X

This section is devoted to determining restrictions on, where the boundary ∂X can
lie in 2× 2 grey pixels.
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Figure BB.11: Any point of ∂X in the centre four pixels in any of the above configurations
is contained in the blue set in that configuration

Theorem BB.13. In any of the pixel configurations in Figure BB.11, the part of
∂X in the centre 2× 2 pixels is contained in the blue set in the figure. The green sets
in the figure are contained in XC , and the dark grey sets are contained in X.

Proof. We start by explaining how the green and grey sets are found. Place all 4× 4
configurations in a coordinate system with the configuration centre at the origin.

Consider a configuration from category A in Figure BB.8. The centre point
p belongs to a configuration of type A from Lemma BB.7, and in some cases
also to a configuration of type A′ from the same lemma. Hence by (i) the set
H := conv(⋂4

i=1B
√

2d(wi), p) is white, and therefore does not contain any points of
∂X. These are the green sets in the configurations of category A in Figure BB.11.

In the third and fourth configurations in category A, the pixel K12 is grey. Let q
be the upper right corner of K12. Then q is the centre of a pixel in a configuration of
type C from Lemma BB.7, and a calculation shows that the point (0.72d, 0) belongs
to H along with p, and so the line segment from p to (0.72d, 0) is white. Thus, by
Lemma BB.7, (iv), the set ⋂5

i=1B
√

2d(ui) ∩
⋂3
i=1B

√
2d(ti) is black - this is the black

set in the configurations of category A where K12 is grey.
For a configuration from category B, the set H := conv(⋂4

i=1B
√

2d(w′i), p) is
again white (possibly after a reflection of the configuration in the line y = x) by
Lemma BB.7, (i). A component of ∂X ∩ K7 must have endpoints on the part of
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the edge between p and (0, d) that is outside H, which (by a calculation) means
between the points (0.72d, 0) and (0, d). By Lemma BB.7, (iii) this means that the
set S := ⋂3

i=1B
√

2d(t′i) is black (where l = 0.28d and the t′i have been translated to
fit the lemma). This is the black set in the figure. Note that the set S contains K16,
and so the second configuration in category D has in fact not been reflected in the
line y = x, – if it had, K16 would not have been grey. The first configuration from
category B may still have been reflected.

Consider a configuration from category C. Many of these contain a configuration
like the one from Lemma BB.8, hence a point corresponding to the point q in Lemma
BB.8 sits in a configuration of type A′ from Lemma BB.7B By (ii) of Lemma BB.7,
this means that the set H := conv(⋂4

i=1B
√

2d(v′i), p) has the same colour as q, (where
the v′i are the vi under a suitable isometry). So whenever such a configuration occurs,
we have coloured the corresponding set in the appropriate colour - green sets belong
to XC , black sets to X.

Furthermore, we have applied Lemma BB.6 (iv) where possible to obtain more
sets that are either contained in X or XC . This provides us with the remaining green
and black areas in the configurations of category C in Figure BB.11.

Finally, consider a configuration in category D. By Lemma BB.7, (ii) applied to the
configuration centre, the set H1 := conv(⋂4

i=1B
√

2d(v′i), p) is white, where the v′i are
the reflections of the vi in the y-axis. By a symmetric argument applied to the lower left
corner q of pixel K3 (and using Lemma BB.12), the set H2 = conv(⋂4

i=1B
√

2d(v′′i ), q)
is also white, where the v′′i are the reflections of the v′i in the line y = 1−x. Combining
these, we get that H = H1 ∪ H2 is contained in XC - In Figure BB.11, H is the
green set in the configurations of category D.

In the first configuration in category D, the point q = p − (d, 0) is the centre
in a configuration of type C from Lemma BB.7 since the point p is white, and the
line segment from p to p− (0.54d) is contained in H and thus white. Hence by (iv)
of that lemma, the set S := ⋂5

i=1B
√

2d(u′i) ∩
⋂3
i=1B

√
2d(t′i) is white, (where the u′i

and the t′i are the image of the ui and ti under a suitable isometry that makes the
considered configuration match the one from Lemma BB.7). S is the black set in
the first configuration from category D. Similarly, in the latter two configurations
from category D, a component of ∂X ∩K6 must have endpoints somewhere on the
line segment between the points (d, 0) and (0.54d, 0), since all other points on the
boundary of K6 are either contained in the white set H or in a white pixel. Thus
by Lemma BB.7, (iii), the set S := ⋂3

i=1B
√

2d(t′i) is black, where the t′i are the ti
under a suitable isometry applied to make the configuration match the one from the
lemma.

These considerations explain how the green and grey sets in Figure BB.11 are
found.

Now, we only need to explain how we find the blue sets in the figure.
Let Θ denote the four grey centre pixels in any configuration, and let p be the

midpoint of Θ. We note that Θ can only contain one segment of ∂X: Indeed, if α, β
were distinct components of Θ ∩ ∂X, they would have four endpoints a1, a2, b1, b2
on the boundary of Θ. But by Lemma B.31, these four cannot all belong to different
edges of Θ, and by Lemma B.19, two of them cannot belong to the same edge of Θ
either, so there cannot be four points in ∂X ∩ ∂Θ. Therefore Θ can only contain one
component of ∂X. Let a1, a2 denote the two points of ∂X ∩ ∂Θ.
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We remark also that if L is the line between a1 and a2, then π(L) ⊆ Θ: If this
were not the case, then π(L) ⊆ ΘC except at the endpoints, since ∂X ∩ Θ only
contains one component of ∂X. But then the composition of ∂X ∩Θ and π(L) would
be a closed path in ∂X ∩ B√2d(p), which is impossible, since such a path cannot
contain a black or white r-ball, and therefore it cannot be the boundary of some
component of X or XC . So π(L) ⊆ Θ.

This means that any point of ∂X∩Θ belongs to π(L), and therefore to S(L, d
√

2).
In a configuration from category A or B, all points of ∂Θ are contained in a white

or black set except the ones on the line segment L1 between (−d, d) and (−0.86d, d),
and the line segment L2 between the points (d, 0.11d) and (d,−0.03d), and since L1
and L2 both have one endpoint in a white set and one endpoint in a black set, they
must each contain a point of ∂X - say a1 ∈ L1 and a2 ∈ L2.

Now every point of ∂X in Θ must belong to π(L), which in turn must belong to
S(L, d

√
2). Since a calculation shows that L1, L2 ⊆ B√2d(q) where q = (0.39d, 1.24d),

we must in particular have that every point of ∂X∩Θ belongs to S(L, d
√

2) ⊆ B√2d(q).
Remember that points on ∂X also cannot belong to neither the green sets H nor
the black sets S in the figure, meaning that in a configuration from category A or
category B, all points of ∂X ∩ Θ must belong to (B√2d(q) ∩ Θ) \ (H ∪ S) - these
are the blue sets in category A or category B in the figure. Note that since the first
configuration in Category B may have been reflected in the line y = x, the blue set
may have been reflected too – therefore we have drawn two blue sets in the figure, to
illustrate that we cannot determine to which of the two ∂X belongs.

Likewise if Θ is the four centre pixels in a configuration from Category D: The line
segment L1 between (d, 0) and (d, d) has a black and a white corner, and therefore L1
contains at least one of the points a1 of ∂X ∩ ∂Θ. Similarly, a calculation shows that
the line segment L2 between the points (−d,−0.05d) and (−d, 0.18d) has a black and
a white endpoint in any configuration from category D, hence the other point a2 of
∂X∩∂Θ must belong to L2. Since L1, L2 ⊆ B√2d(q′) for q′ = (−0.24d, 0.97d), we must
have ∂X ∩Θ ⊆ π(L) ⊆ B√2d(q′), and since points of ∂X cannot belong to neither a
black set S or a white set H, we must in fact have that ∂X ∩Θ ⊆ B√2d(q′) \ (S ∪H).
In some of the configurations in Category D, pixel K9 is black, so we may even
replace L2 with the line segment between (−d, 0) and (−d, 0.18d), and in these cases
conclude that ∂X ∩Θ ⊆ B√2d(0, d) \ (S ∪H) by a similar calculation. These sets
are the blue ones in the configurations from category D in Figure BB.11.

Finally, consider a configuration from category C. We remark the following:

Observation: Let a1 and a2 be the points in ∂X ∩ ∂Θ. If L′ ⊆ Θ is a line segment
whose endpoints have different colours, there must be a point a3 ∈ ∂X∩L′ ⊆ ∂X∩Θ.
Let Lij be the line segment from ai to aj for i, j = 1, 2, 3. Then the composition of
π(L13) and π(L32) is a path in ∂X connecting a1 to a2 and containing a point a3 ∈ Θ,
hence it is equal to π(L12). So π(L12) is in fact contained in S(L13, d

√
2)∪S(L32, d

√
2),

which is a smaller set than S(L12, d
√

2).
If a1 belongs to some line segment L1 and a2 belongs to some line segment L2,

then ∂X ∩Θ belongs to( ⋂
x:L1,L′⊆B√2d(x)

B√2d(x)
)
∪
( ⋂
x:L2,L′⊆B√2d(x)

B√2d(x)
)
.
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If we had another line segment L′′ ⊆ Θ with the same properties as L′, we would by
the same reasoning have that ∂X ∩Θ belongs to( ⋂
x:L1,L′⊆B√2d(x)

B√2d(x)
)
∪
( ⋂
x:L′,L′′⊆B√2d(x)

B√2d(x)
)
∪
( ⋂
x:L2,L′′⊆B√2d(x)

B√2d(x)
)
,

and so on for additional line segments. We may thus find the blue sets containing ∂X
by finding intersections of d

√
2-balls containing line segments with different endpoints.

Figure BB.12: If Θ (bounded by the red line) is a part of 2× 3 grey pixels, then ∂X must
intersect the left edge of Θ no further than 0.3693d from the common corner of K1 and K5.

The next thing to note is the following: Suppose Θ is a part of a configuration
of 2 × 3 grey pixels such as in Figure BB.12, where Θ is the set bounded by the
red curve, and the pixels are named as in the figure. Then, by Lemma B.25, ∂X
intersects the line between the upper and lower 3 grey pixels three times: once in a
point x1 on the common edge of K1 and K4, once in a point x2 on the common edge
of K2 and K5, and once in a point x3 on the common edge of K3 and K6. Let L12 be
the line segment between x1 and x2. Then π(L12) is a path in ∂X connecting x1 and
x2, and hence it must intersect ∂Θ in a point a1 ∈ S(L12, d

√
2) ⊆ S(L, d

√
2), where

L is the line segment separating K1 ∪K2 from K4 ∪K5. By Lemma B.25, a1 must
be closer than

√
2d− d to the common corner of K1 and K5. So the line segment L1

containing a1 is the vertical line segment of length 2
√

2− 2d centred at the common
corner of K1 and K5.

Note that in a configuration of category C, ∂X can intersect no vertical edge of a
pixel in Θ twice by Lemma B.19, and so ∂X must always intersect the horisontal edge
between two pixels in Θ at least once. We may use these edges when determining the
blue set. When Θ is part of a 2× 3 configuration of grey pixels as in Figure BB.12,
∂X intersects the line between the upper and lower grey pixels three times, and so
we may also apply Lemma B.25 in this case.

The blue sets are now found in the following way: We determine two line segments
on ∂Θ containing a1 and a2 using the remarks above. We then choose one or more
line segments in Θ whose endpoints have different colours (we often choose the line
determining the shortest distance between the green and black sets in a configuration,
and/or a horisontal edge between two pixels in Θ), and then we apply the observation
above by finding intersections of balls containing each consecutive pair of line segments.
This gives us the blue sets in the figure. The line segments that were used have been
drawn.
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BB.4 Line covering on the grey pixels

This section is devoted to defining the line covering on the set of grey pixels, but
first, we will prove the following:

Lemma BB.14. Place a configuration from category B in a coordinate system with
the configuration midpoint at the origin. Then the top left square Q = [d4 , d]× [d4 , d]
of pixel K7 is white, and it contains no points of γ, the boundary of the reconstructed
set Γ.

Proof. The centre p of a configuration from category B sits in a configuration of type
B from Lemma BB.7, hence by (i) of that lemma, the set H = conv(⋂4

i=1B
√

2d(wi), p)
is white, where the wi’s are as defined in Lemma BB.6. A calculation shows that H
contains the corners of Q, and hence all of Q. Thus Q is white.

To see that Q contains no points of γ, just look at all possible circle arcs through
auxiliary points. Since Q contains none of these circle arcs, it cannot contain any
point between such two, and therefore it contains no points of γ.

With this result, we might as well consider the top left square of a grey pixel like
in Lemma BB.14 to be non-grey, so we will do this from now on.

Figure BB.13: We put a line covering on the set of grey pixels as shown in this figure. We
make no assumptions as to the colour of the red pixels.

We now put a line covering on the grey pixels as shown in Figure BB.13: In
configurations of type (i) and (ii), the lines in the covering are all parallel and they are
orthogonal to the lower pixel edge. In a configuration of type (iii), the line covering
consists of lines pointing radially out from the corner of the white pixel.

For complex pixels, the line covering for configurations of category A-D look as
in the lower row of Figure BB.13. Using Lemma BB.14, we have coloured the upper
left quarter of pixel K7 white in a configuration from category B, and we do not
define the line covering on this part of the pixel. The lines of this line covering always
point either radially away from a corner, or are orthogonal to a pixel edge. There are
a few thing to note about this line covering:
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• The line covering is defined on all grey pixels (except for the corner Q of pixels
in configurations of category B), since it is defined on all possible configurations
for both simple and complex pixels,

• The line covering is well-defined: Indeed, it is constructed in such a way that
whenever two of the configurations in Figure BB.13 overlap, the lines of the line
covering match on the overlap (even when this overlap is only a pixel boundary
edge). Lemma BB.12 plays an important role in seeing this.

• The lines of the line covering do not intersect, (hence it is indeed a line covering)

The idea is now to show that we can push ∂X along the lines of this line covering
through homeomorphisms. This is not immediately possible, so we need to start by
straightening ∂X out a bit. Then we push the straightened ∂X to γ, and result of
this process will be a homotopy of R2 through homeomorphisms, taking ∂X to γ
and displacing each point of ∂X no more than d√

2 .
To construct such a pushing map, we must show that the boundary γ of the

reconstructed set Γ intersects all lines of the line covering in exactly one point. When
this is proven, it implies that the set of grey pixels is homeomorphic to γ × [−1, 1].
Hence if we straighten ∂X out to a curve H(∂X) that also intersects all lines of the
line covering in exactly one point, H(∂X) is a continuous graph over γ, and therefore
pushing H(∂X) towards γ is a continuous operation.

BB.5 Intersections with the lines of the line covering

We would like to show that ∂X only hits each line in the line covering once. Unfortu-
nately, this turns out not to be entirely true, as it may fail in pixel configurations
of type (iii) from Figure BB.13. However, in this case we do a little trick to avoid
problems – but we will get back to this later. For now, we will just show for the
remaining configurations of Figure BB.13 – one by one – that the boundary ∂X only
hits each line of the line covering once in these configurations.

Figure BB.14: If ∂X has a vertical tangent at a point p in a pixel C, then C sits in one of
the above configurations.

Lemma BB.15. Suppose that ∂X has a vertical tangent at some point p in a grey
pixel C. Then C sit in one of the configurations in Figure BB.14

Proof. Let C = [0, d]2 in a coordinate system, and let p = (p1, p2) ∈ C. Then
p1, p2 ∈ [0, d], but by symmetry, we may as well assume p1 ∈ [d2 , d].

Now, since ∂X has a vertical tangent at p, there must be two balls B√2d((cb, p2)),
B√2d((cw, p2)) osculating at p, and their centres both lie on the horisontal line y = p2
through p. Let us say that the centre (cw, p2) of the white ball lies to the left of p.
Since d((cw, p2), p) =

√
2d, this implies cw ∈ [d2 − d

√
2, d− d

√
2] ⊆ [−d, 0], hence the

centre of the white ball belongs to the left horisontal neighbour of C, meaning that
this neighbour pixel must be white.
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Since d((cb, p2), (cw, p2)) = 2d
√

2, we must then have cb ∈ [−d+ 2d
√

2, 2d
√

2] ⊆
[d, 3d]. But then C sits in a configuration like either the left one in Figure BB.14
(if cb ∈ [2d, 3d] and the right neighbour of C is also grey), or the right one in
Figure BB.15 (if either cb ∈ [d, 2d] or cb ∈ [2d, 3d] and the left neighbour of C is
black).

Theorem BB.16. Each line of the line covering intersects ∂X exactly once in each
simple pixel C of type (i) or (ii) in Figure BB.13.

Proof. Since each line of the line covering in such a simple pixel C has one black and
one white endpoint, and since ∂X separates the black pixels from the white, each
line of the line covering must intersect ∂X in at least one point. Suppose a line of
the line covering intersected ∂X twice, say in points x and y. Let L be the (vertical)
line between x and y. Then there would be a path π(L) in ∂X ∩ S(L,

√
2d) from

x to y, and since the lines of the line covering are all vertical in this case, then by
Rolle’s theorem, there would be a point q on this path that had vertical tangent.
As q must belong to a S(L, d

√
2), it must belong to either C or to the left or right

neighbour pixel of C. But neither C nor its two horisontally neighbouring pixels
belong to a configuration like the one in Lemma BB.15 – a contradiction. Hence ∂X
cannot intersect a line of the line covering in simple pixels of type (i) or (ii) twice.

Theorem BB.17. Each line of the proposed line covering intersects ∂X exactly
once in each complex configuration of category A,B C or D.

Figure BB.15: A configuration from category A (left), B (middle), or D (right) must sit in
a configuration like the above.

Proof. Since the line covering cover all of the grey pixels and ∂X belongs to the set of
grey pixels, every point on ∂X belongs to some line of the line covering. Furthermore,
since every line in the line covering has a black and a white end point, there must be
a point of ∂X on every line. Hence the claim follows if we can show that ∂X does
not hit any line more than once.

Let Θ be the four grey pixels in the centre of a configuration of category A, B
or C. Then ∂X ∩ Θ can only consist of one connected component since ∂X ∩ ∂Θ
cannot contain more than three points by Lemma B.31 and Lemma B.19. Similarly,
if Ψ it the 3× 3 pixels centred at a point u in a configuration from category D (See
Figure BB.15, right), then Ψ ∩ ∂X can only have one connected component, because
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Ψ sits in a larger configuration as in Figure BB.15, right, meaning that ∂X can only
intersect the upper and right edge of Ψ, and it can only intersect each of these edges
once by Lemma B.19.

We now aim to show that the component of ∂X in Θ (or in Ψ in a configuration
from Category D) can only intersect a line from the line covering once.

Observe the following: Suppose the boundary ∂X intersected a line a of the line
covering at least twice, say in points p1 and p2. Let L be the line between p1 and p2.
Then there is a C1 path π(L) in ∂X from p1 to p2 belonging to S(L,

√
2d), and this

means that there must be a point of ∂X in S(L,
√

2d) that has a tangent parallel
to a. Furthermore, π(L) ⊆ Θ, because if not, then the union of π(L) and ∂X ∩Θ
would be a closed curve contained in a ball of radius d

√
2 centred at the centre of

Θ, but such a curve cannot be the boundary of a component of X, since it cannot
contain a ball of radius d

√
2.

Thus, if a ⊆ Θ and the component Θ∩∂X of ∂X does not have a tangent parallel
to a, it cannot intersect a twice, and therefore ∂X cannot intersect a twice, see
Figure BB.16.

Similarly, if a ⊆ Ψ and ∂X crosses a twice, there is a point on ∂X ∩Ψ where the
tangent of ∂X is parallel to a. Let a1, a2 be the endpoints of ∂X ∩Ψ – then one of
them lies on the vertical line through t and the other on the horisontal line through
s. Picking a third point a3 ∈ ∂X on the line segment between u and u′ and letting
Lij be the line segment between ai and aj , we see that ∂X ∩ Ψ must be equal to
π(L13) ∪ π(L23), because ∂X ∩Ψ only contains one component. Thus, in this case
it suffices to show that the paths π(L13) and π(L23) do not have a tangent that is
parallel to any line of the line covering that they intersect.

We are now ready to prove the theorem, one configuration at a time. We place
each configuration in a coordinate system with the configuration centre at the origin.
When we measure the angle between the x-axis and a line, we measure it in degrees,
and we give a number in the interval (−90◦, 90◦] that is positive if the slope of the
line is positive, and negative if the slope of the line is negative.

Figure BB.16: If ∂X (black curve) intersected a line a ⊆ Θ twice (blue line), there would
be a point on the path ∂X ∩Θ where the tangent to ∂X was parallel to a.

Category A: Consider a configuration from Category A, as shown in Figure BB.15,
left (all configurations in category A have black, grey and white pixels as shown in
the figure – only the intensities of the red pixels vary within Category A). Place the
configuration in a coordinate system with the configuration centre p at the origin, and
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let q, s and t be the pixel corners as shown in the figure. By Lemma BB.7, (i) the set
H = conv(⋂4

i=1B
√

2d(wi), p) is white, where w1, w2, w3, w4 are as in Lemma BB.6.
Notice that the point s′ = (−86d

100 , d) ∈ H, and hence is white. Since the point s is
black, there must be a point x1 ∈ ∂X on the line segment between s and s′.

Furthermore, since the horisontal line through p has endpoints of different colours,
∂X must intersect it somewhere at a point x3, and by Theorem BB.13, x3 must
belong to the line segment between the points p and p′ := (0,−0.12d).

So we have a point x1 on the line segment between s and s′, and a point x3 on
the line segment between p and p′. The distance d(x1, x3) is smaller than 1.502d. The
spindle angle v of the spindle S(x1, x3,

√
2d) is thus smaller than sin−1

(
1.502d
2
√

2d

)
<

32.1◦, see Figure BB.17.

Figure BB.17: We aim to compare the possible angles in [−α− v,−α+ v] to the angles
between lines of the line covering and the x-axis.

The angle α between the line segment from x1 to x3 and the x-axis must also satisfy
−53◦ < α < −45◦. Let T be the tangent to a point on the path in ∂X∩S(x1, x3,

√
2d)

from x1 to x3. By Proposition A.58, the angle between T and the x-axis must belong
to the interval [α− v, α+ v] ⊆ [−53◦ − 32.1◦;−45◦ + 32.1◦] = [−85.1◦;−12.9◦]. On
the other hand, the angle between any line of the line covering in K6 ∪ K10 and
the x-axis belongs to the interval [0◦; 90◦]. Thus no tangent to ∂X on the path in
∂X ∩ S(x1, x3,

√
2d) from x1 to x3 has the same angle with the x-axis as the lines

of the line covering, and thus the path in ∂X ∩ S(x1, x3,
√

2d) from x1 to x3 must
intersect each line exactly once.

It remains to show that ∂X cannot intersect any line of the line in K7∪K11 twice.
This follows by a similar calculation: The boundary ∂X intersects the vertical line
through the point t in a point x2. Then d(x3, x2) < 1.502d, hence the spindle angle of
S(x2, x3,

√
2d) is less than sin−1

(
1.502d
2
√

2d

)
< 32.1◦. Furthermore, the angle between the

line segment from x2 to x3 and the x-axis lies in the interval [−45◦, 48.2◦], so a point on
the part of ∂X that connects x2 and x3 inside the spindle S(x2, x3,

√
2d) has a tangent

whose angle with the x-axis belongs to [−45◦− 32.1◦; 48.2◦+ 32.1◦] = [−77.1◦, 80.3◦].
Meanwhile, the angle between the lines of the line covering in these two pixels and
the x-axis is always 90◦, hence the result follows.

Category B: This category only contains two configurations, and these two have
the non-red pixel of Figure BB.15, middle in common. Let us place the configura-
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tion in a coordinate system with p at the origin. By Lemma BB.7, either the set
conv(⋂4

i=1B
√

2d(wi), p) or the set conv(⋂4
i=1B

√
2d(w′i), p) is white, where w1, w2, w3

and w4 are the points from Lemma BB.6, and w′i is the reflection of wi in the line
y = x, for i = 1, 2, 3, 4. We may assume that conv(⋂4

i=1B
√

2d(wi), p) is white: By
Theorem BB.13, if conv(⋂4

i=1B
√

2d(w′i), p) is white in a configuration from category B,
then the pixel K1 is contained in a black set. Thus, if the red pixel K1 in Figure BB.15
is black, we may reflect the entire configuration in the line y = x if necessary to ensure
that conv(⋂4

i=1B
√

2d(wi), p) is white, and if K1 is grey, then conv(⋂4
i=1B

√
2d(w′i), p)

cannot be white, meaning that conv(⋂4
i=1B

√
2d(wi), p) is white.

By Theorem BB.13, the set S := ⋂3
i=1B

√
2d(ti) is then black, where t1 =

(72d
100 ,−

√
2d), t2 = (d,−

√
2d) and t3 = (86d

100 ,−d
√

2−
(

14d
100

)2
). A calculation shows

that u := (d,−0.028d) ∈ S, hence u is a black point.
As for configurations from category A, there is a point x1 ∈ ∂X on the line

segment between s and s′, and there is another point x3 ∈ ∂X on the line segment
between p and p′ = (0,−0.12d), since both segments have endpoints of different
colours.

Now, by the calculation from before, the angle between the x-axis and a tangent
at any point on the path in ∂X ∩S(x1, x3,

√
2d) from x1 to x3 must lie in the interval

[−85.1◦;−12.9◦]. The angle between the x-axis and any line of the line covering is
however always contained in [0◦, 90◦], hence by the observation above, the path in
∂X ∩ S(x1, x3,

√
2d) from x1 to x3 intersects no line of the line covering more than

once.
Let t be the pixel corner as shown in Figure BB.15, middle. The points u and t also

have different colours, hence there is a point x2 ∈ ∂X on the line segment between
them. Then there exists a path in ∂X ∩ S(x2, x3,

√
2d) between x2 and x3. Since

d(x2, x3) < 1.01d, the spindle angle v of S(x2, x3,
√

2d) is less than sin−1
(

1.01
2
√

2

)
< 21◦.

The angle between the line segment from x2 to x3 and the x-axis lies in [−7◦, 7◦],
hence angle between the x-axis and the tangent of ∂X at any point on the path in
∂X ∩ S(x2, x3,

√
2d) from x2 to x3 belongs to [−28◦, 28◦].

Now, S(x2, x3,
√

2d) must belong to the set [0, d]× [−d, 0.1d]. Any line of the line
covering that hits this set has an angle with the x-axis that belongs to the interval
[38.7◦, 90◦]. Hence no point on the path from x2 to x3 has a tangent that is parallel
to a line that hits the path, and therefore the path must intersect each line of the
line covering exactly once.

Category C: Consider a configuration in category C, and suppose that ∂X inter-
sects a line a of the line covering twice. This would mean that there were a point
p ∈ ∂X∩S(a,

√
2d) on the path in ∂X connecting these two intersection points where

∂X had a vertical tangent. Since p ∈ S(a, d
√

2), the point p must lie somewhere
inside the 8 pixels K5 −K12. Furthermore, since ∂X has a vertical tangent at p, by
Lemma BB.15 this would imply that the pixel containing p sat in a configuration
like either of the ones in Figure BB.14. But this is not the case for any of the pixels
K5 −K12 in any of the configuration from category C, hence ∂X cannot intersect a
line of the line covering in a configuration of category C twice.
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Configuration D: Consider a configuration in category D instead. The config-
uration must sit in a larger configuration as the one in Figure BB.15, right by
Lemma BB.12. Let us name the 16 leftmost pixels of this configuration according
to the convention. Now place the configuration in a coordinate system with p at
the origin, and name the points as in Figure BB.15, right. By Theorem BB.13, the
set H = conv(⋂4

i=1B
√

2d(v′i), p) ∪ conv(⋂4
i=1B

√
2d(v′′i ), q) is white, where v′i is the

reflection in the y-axis of the point vi from Lemma BB.6, and v′′i is the reflection of
v′i in the line y = d− x, for i = 1, 2, 3, 4. A calculation shows that H contains the
triangle with vertices p, q and v′1, hence this triangle is white.

Now ∂X must intersect the line segment between t and p in a point x1; a compo-
nent of ∂X ∩K6 cannot have two endpoints on the left edge of K6 by Lemma B.19,
and it cannot have any endpoints at the upper white edge or the white edge between
p and v1. Hence it must have at least one endpoint x1 on the line segment between t
and p. Similarly, ∂X must intersect the line segment between the points q and s in a
point x2.

Then there is a path in ∂X ∩ S(x1, x2,
√

2d) ⊆ ∂X ∩ B√2d(v′1) from x1 to x2.
This path must intersect the line segment between u and u′ := (d,−d) in a point x3,
since u and u′ have different colours.

Now, since x1 and x3 lie on the line segments between t and p and between u and
u′, respectively, we must have d(x1, x3) ≤ 2d, hence the spindle angle v of the spindle
S(x1, x3,

√
2d) must be smaller than sin−1

(
1√
2

)
= 45◦. Furthermore, the angle α

between the line segment from x1 to x3 and the x-axis lies in the interval (0, 45◦).
But then the angle between the x-axis and the tangent of ∂X at a point on the

path in ∂X from x1 to x3 in S(x1, x3,
√

2) must belong to the interval (α−v, α+v) ⊆
(0◦ − 45◦; 45◦ + 45◦) = (−45◦, 90◦).

Meanwhile, the angle between the x-axis and a line of the line covering right of
the vertical line through t and left of the line through u and u′ belong to the set
(−90◦;−45◦] ∪ {90◦}. A symmetric argument shows that the same is true for lines of
the line covering in Category D that do not lie between the line through u, u′ and
the vertical line through t. Hence no tangent to ∂X in a configuration of category
D is parallel to a line of the line covering, so each line intersects ∂X exactly once
between x1 and x3.

We now know that in all but one of the configurations in Figure BB.13, the
boundary ∂X can only intersect each line of the line covering once. As mentioned
earlier, this is unfortunately not necessarily the case in pixels of type (iii) (a counter-
example is shown in Figure BB.18. We therefore need to pertube ∂X a little so that
it only intersects each line in the line covering once in this case, too. Note that we
need to make sure that this small pertubation does not move points of ∂X too far:

Lemma BB.18. Consider a simple pixel of type (iii) in Figure BB.13. There is
a homeomorphism H : R2 → R2, fixed on points of ∂X outside pixels of type (iii),
taking ∂X to a set H(∂X) that only hit each line of the line covering once. This
mapping moves points of ∂X no more than d

√
2− d

√
2− 1

2 .

Proof. Let C be a simple pixel of type (iii), see Figure BB.15. We only need to move
a part of ∂X if there is a line a of the line covering in C that ∂X intersect more
than once, and by Theorem BB.16 and Theorem BB.17, this is only possible for lines
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Figure BB.18: The only cases where ∂X (dashed line) can intersect lines of the line covering
more than once are cases like the above.

of the line covering inside a pixel of type (iii). Suppose therefore that ∂X intersects
a line a in C twice. Let x ∈ ∂X be a point on one of the edges of C and y ∈ ∂X a
point on another edge of C. Let L be the line between x and y.

There is a path π(L) in ∂X contained in S(x, y,
√

2d), and this path must also
be contained in the interior of the ball B|L|/2(x+y

2 ) centred at the midpoint of L and
containing x and y in its boundary. If B|L|/2(x+y

2 ) contained any point p of ∂X not
in π(L), then d(p, x) ≤ |L| < d

√
2, so the projection π of the line segment from x to

p would give a curve in ∂X contained in B|L|/2(x+y
2 ), and likewise the projection π

of the line segment from y to p would give a curve in ∂X, contained in B|L|/2(x+y
2 ).

Then the composition of these two paths with π(L) would give a closed curve in
∂X, contained in a ball of radius |L|2 . Such a curve could not be the boundary of
a component of X, since it cannot contain a ball of radius d

√
2 – a contradiction.

Thus B|L|/2(x+y
2 ) ∩ ∂X = π(L).

By Addendum A.35, orthogonal projection Π : S(L,
√

2d)→ L of π(L) onto L is
a homeomorphism. We can extend it to a homeomorphism H̄ of Bfrac|L|2(x+y

2 ) that
is fixed on the boundary: for p ∈ π(L), we map each line Π−1(p)∩Bfrac|L|2(x+y

2 ) to
itself by the piecewise linear mapping taking p to Π(p). This map displaces the point
p ∈ π(L) no more than the spindle height, which is largest when d(x, y) = |L| =

√
2d,

in which case the spindle height is d
√

2− d
√

2− 1
2 ≈ 0.19d.

The homoeomorphism H̄ does not move any other points of ∂X than those in
B|L|/2(x+y

2 ), which by the argument above are only the points on π(L). The result
of H̄ is that we have moved a segment of ∂X that may have intersected a line of
the line covering more than once to a straight line in C between two grey edges,
and such a line certainly cannot intersect a line of the line covering in C more than
once. Extending the map H̄ by the identity to all of R2 and applying it to all simple
pixels of type (iii), we get a homeomorphism H : R2 → R2 taking ∂X to a set that
intersects each line of the line covering only once, and displacing points on ∂X no
more than d

√
2− d

√
2− 1

2 .
Now, after applying this homeomorphism, the moved boundary H(∂X) is equal

to ∂X in pixels not of type (iii) from Figure BB.13, and in pixels of type (iii), it is
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equal to a line segment from a point on one grey edge of the pixel to a point on the
other grey edge. Hence H(∂X) only intersects each line of the line covering once.

This proof completes the argument for showing that ∂X (after some small
modification) only intersects each line of the line covering once. However, we need to
establish the corresponding result for the boundary of the reconstructed set γ:

Theorem BB.19. The curve γ intersects each line of the line covering in exactly
one point.

Proof. By Theorem B.42, the curve γ separates black pixels from white in the sense
that any path from a black to a white pixel must intersect γ somewhere. Since all
lines of the line covering has one endpoint in a black pixel and one endpoint in
a white pixel, this in particular means that γ must intersect each line of the line
covering at least once. We aim to show that it cannot intersect any line more than
once.

Note that a line of the line covering cannot intersect two different segments γC ,
γC′ (where C and C ′ are pixels): Indeed, no line of the line covering intersects two
pixels with two auxiliary points on their boundary, so when γC ⊆ C and γC′ ⊆ C ′,
no line of the line covering can intersect both. If γC was not contained in C, it would
belong to either K7 ∪ K11 in a configuration of Category A, or to K6 ∪ K10 in a
configuration of Category D. Since no line of the line covering leaves K7 ∪K11 in a
configuration of Category A, and similarly no line of the line covering leaves K6∪K10
in a configuration of Category D (See Figure BB.13), no line of the line covering can
intersect two distinct segments γC and γC′ . Thus it suffices to show that no segment
γC can intersect a line of the line covering twice.

Let C be a pixel with 2 auxiliary points on its boundary, and let L be the line
between these. If a line of the line covering intersects a point in C, it also intersects
L – just look at all possible configurations. Hence if γC ⊆ C, any line of the line
covering that intersect γC must also intersect L. If γC 6∈ C, the same is still true –
again by considering all possible cases. Therefore it is sufficient to check that a line
of the line covering that hits L is not intersected twice by γC .

By the construction of γ in Section B.4, each segment γC of γ is a graph over
the line segment L connecting the endpoints of γC . If γC intersected a line a of the
line covering twice, it would contain a point where the tangent of γC was parallel to
a. We aim to show that this cannot be the case.

Let us start by considering the simple pixels of type (i), (ii) in Figure BB.13. A
simple pixel C of type (i) or (ii) has an auxiliary point on the midpoint of each of
its vertical edges, hence γC is a graph over the horisontal line connecting these two
auxiliary points. Such a graph cannot have a vertical tangent, hence γC cannot cross
a vertical line of the line covering more than once.

Consider now a pixel C whose auxiliary points are sitting in one of the config-
urations in Figure BB.19. Let L be the line between the auxiliary points on the
boundary of C, and let us give L the orientation indicated by the arrow in the figure.
Identify L with the line segment from (0, 0) to (|L|, 0) in R2 and think of γC as
a graph over L with this orientation, i.e. γC : L → R2. We find the maximal and
minimal derivative of γC , which we can then translate to the maximal and minimal
angle between L and a tangent line of γC . Let us calculate the angle in degrees, and
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Figure BB.19: Two auxiliary points on the boundary of a complex pixel C may sit in a
configuration as in the above figure left or middle. The auxiliary points on a simple pixel of
type (iii) sit in a configuration as the right one. Considering γC to be a graph over the line
L between these points, we may find the maximal and minimal derivative of γC , which can
then be translated to the maximal and minimal angle between L and a tangent line of γC .

let it be given by a number in (−90◦, 90◦] such that the degree is positive when the
derivatives are positve, and negative when the derivatives are negative.

γ′C

√
5d
2

√
130d
4 ∞

√
5d
2 [− 1

3 ,
1
3 ] [− 1

3 , 0.129] [− 1
3 , 0.154]

√
130d
4 [−0.129, 1

3 ] [− 1
8 ,

1
8 ] [− 1

8 , 0.059]

∞ [−0.154, 1
3 ] [−0.059, 1

8 ] {0}

Table BB.1: For each choice of radius of γ1 and γ2, we may calculate an interval containing
γ′C .

Look at a simple pixel C of type (iii), see Figure BB.13. Let L be the line between
the auxiliary points on its boundary, and identify L with the line segment from (0, 0)
to (

√
2d
2 , 0), with the orientation specified in Figure BB.19, right. Then the angle

between L and a line of the line covering hitting L belongs to (−90◦,−45◦]∪ [45◦, 90◦]
since all such lines point out radially from the point

(
d

2
√

2d ,
d

2
√

2d

)
. On the other

hand, γC is composed of the two curves γ1 and γ2, and there are three possibilities
for each of these. For each possible pair of γ1 and γ2 we may calculate the derivative
of γC – this is done in Table BB.1. We see that for any possible γ1, γ2, we have
γ′C ∈ [−1

3 ,
1
3 ], meaning that the angle between L and a tangent of γC belongs to

[tan−1(−1
3), tan−1(1

3)] ⊆ [−18.44◦, 18.44◦]. Hence no tangent of γC is parallel to a
line of the line covering hitting L, so γC cannot intersect any line more than once.

Now, consider a complex pixel C of the left type in Figure BB.19. Such pixels
only appear in configurations of category D, and by Lemma BB.12, configurations
of category D always appear in a configuration like the one in Figure BB.10. Let L
be the line segment between the two auxiliary points on the boundary of C. Identify
L with the line segment from (0, 0) to (d

√
2, 0) in R2 and assume that the lines of

the line covering that hit L all point out radially from the point p :=
(√

2d
2 ,

√
2d
2

)
.

Then the angle between a line of the line covering hitting L and L itself belongs to
(−90◦,−45◦] ∪ [45◦, 90◦].

The curve γC is a merge of two circle arcs γ1 and γ2, and going through all cases,
we see that there are only three possibilities for γ1, and three possibilities for γ2
(once we have fixed p and remember Lemma BB.12). For each possible radius of γ1
and each possible radius of γ2 we may calculate an interval that the derivative γ′C
of γC = ϕγ1 + (1 − ϕ)γ2 belongs to – this is done in Table BB.2. Looking at this
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γ′C

√
170d
12

√
10d
2

5
√

10d
4

√
170d
12 [− 6

7 ,
6
7 ] [− 1

2 ; 6
7 ] [−0.305; 6

7 ]
√

10d
2 [− 6

7 ; 1
2 ] [− 1

2 ,
1
2 ] [−0.187, 6

7 ]

5
√

10d
4 [− 6

7 ; 0.305] [− 6
7 , 0.187] [− 2

11 ,
2

11 ]

Table BB.2: For each possible radius of γ1 and each possible radius of γ2, we may calculate
the interval that the derivative of γC = ϕγ1 + (1− ϕ)γ2 belongs to.

table, we see that γ′C ∈ [−6d
7 ,

6d
7 ] no matter which curves are used for γ1 and γ2. But

this means that the angle between L and a tangent to γC belongs to the interval
[− tan−1(6

7), tan−1(6
7)] ⊆ [−41◦, 41◦]. So the angle between a tangent of ∂X and L is

nowhere as great as the angle between a line of the line covering and L. Hence γC
cannot intersect a line of the line covering more than once.

Now, look at a complex pixel sitting in position K6 in either a configuration of
category A or B, see Figure BB.8. The corresponding part γK6 of γ is contained
in K6, and the auxiliary points on the boundary of K6 sit in a configuration like
the one in Figure BB.19, middle. Let L6 be the line between these auxiliary points,
and identify it with the line segment from (0, 0) to (

√
5
4d, 0) in a coordinate system.

In configurations of Category A, the lines of the line covering hitting K6 point out
radially from the point (

√
5d

10 ,
√

5d
5 ), hence the angle between a line of the line covering

and the line L6 belongs to the interval [63.4◦, 90◦]∪ [−90◦,−26.5◦]. In a configuration
from category B, the lines of the line covering hitting L6 are either parallel to the
pixel boundary, hence at angle of 63.4◦ with L6, or pointing out radially from the
point (9

√
5d

20 , 3
√

5d
20 ). Hence the angle between L6 and a line of the line covering hitting

L6 in a configuration from category B belongs to the set [63.4◦, 90◦] ∪ [−90◦,−70◦].

γK6

√
85d
4

√
130d
4 ∞

√
10d
4 [−0.334, 1] [−0.455, 1] [−0.389, 1]
√

65d
8 [− 1

4 ,
2
3 ] [−0.353, 2

3 ] [−0.286, 2
3 ]

5
√

2d
4 [− 1

4 ,
1
3 ] [−0.226, 1

3 ] [−0.155, 1
3 ]

Table BB.3: For each possible radius of γ1 and each possible radius of γ2, we may calculate
the interval that the derivative of γK6 = ϕγ1 + (1− ϕ)γ2 belongs to. Note that a radius of
∞ means the case where the circle arc is not an actual arc, but a line. The above are the

possibilities for K6 in category A or B.

On the other hand, look at the circle arcs γ1 and γ2 merging into γK6 . There
are three possibilities for γ1, and three possibilities for γ2 (two possibilities for
category A, one for category B). Like before, we may calculate the maximum and
minimum derivatives for the composition of such curve segments. This has been
done in Table BB.3. We can see from the table that for any two choices of γ1 and
γ2, the derivative γ′K6

of γK6 belongs to the interval [−0.455, 1]. This corresponds
to saying that the angle between the tangent of γK6 in a point and L6 lies in the
interval [tan−1(−0.455), tan−1(1)] ⊆ [−24.5◦, 45◦].
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So no tangent of γK6 is parallel to a line of the line covering hitting L6, thus γK6

can hit no such line twice. By symmetry, the above argument also means that in
a configuration of Category B, the path γK11 cannot intersect any lines of the line
covering more than once. This proves the statement for configurations of Category B.

Suppose there is an auxiliary point on the midpoint of the edge betweenK7 andK8
in a configuration of category A, and let L7 be the line between the two auxiliary points
on the boundary of K7, with the orientation specified in Figure BB.19. Then the path
segment γK7 must be of the same type as the ones in Table BB.3, hence like before,
the angle between the tangent to γK7 and L7 belongs to [tan−1(−0.286), tan−1(1)] ⊆
[−16◦, 45◦]. On the other hand, the angle between L7 and any line of the line covering
hitting L7 is tan−1(2) ≈ 63.4◦, so no tangent of γK7 is parallel to a line of the line
covering hitting L7, and hence γK7 does not hit any line twice.

Finally, if the two auxiliary points on the boundary of K7 sit on a horisontal line,
no point of γK7 can have a vertical tangent since γK7 is a graph over the line L7.
But then γK7 cannot hit any line of the line covering more than once, and by the
above reasoning, this also means that any line of the line covering hitting γK7 in a
point is only hit once by γ. This proves the result for configurations of category A.

Applying the same kind of reasoning, we see that if two auxiliary points on the
boundary of a complex pixel K in category C sit on a horisontal line L, then no
tangent of γK can be vertical since γK is a graph over L. Hence γK cannot intersect
a line of the line covering twice in this case.

γ′K6

√
85d
4

√
130d
4 ∞

5
4 [−0.311, 1

2 ] [− 1
5 ,

1
2 ] [−0.224, 1

2 ]
√

85
4 [−0.211, 1

4 ] [− 1
5 ,

1
4 ] [−0.117, 1

4 ]

∞ [−0.117, 1
4 ] [− 1

5 , 0.0942] {0}

Table BB.4: The interval containing γ′K6
for different choices of radii of the curves γ1 and
γ2.

Suppose instead that one of the centre pixels in a configuration of category C, say
K6, has two auxiliary points on its boundary, sitting like the ones in Figure BB.19,
middle. Let L be the line connecting them. Then γK6 is composed of two circle arcs γ1
and γ2, and there are three possible choices for each of these curves. Identifying L with
the line segment between the points (0, 0) and

(√
5d
2 , 0

)
in a coordinate system, we

may, like before, calculate the minimal and maximal derivative of γK6 for each choice of
γ1 and γ2. This is done in Table BB.4. We see that γ′K6

∈ [−0.311, 1
2 ] no matter which

circle arcs γ1 and γ2 the curve γK6 is composed of. Hence the angle between L and a
tangent line of γK6 belongs to the interval [tan−1(−0.311), tan−1(1

2)] ⊆ [−17.2◦; 26.6◦].
On the other hand, the angle between L and each line of the line covering hitting
L is tan−1(−2) ≈ −63.4◦, so no point of γK6 has a tangent parallel to a line of the
line covering hitting L. Hence γK6 only hits lines of the line covering intersecting
L once, so any line of the line covering intersecting γK6 is only intersected once by
γ. Applying this argument to the remaining centre pixels of a configuration from
category C, we get the result for pixels in category C.

Now, consider a configuration in category D as in Figure BB.8. We already
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showed that γK7 does not intersect any line of the line covering twice. Thus we need
to show that the same thing goes for γK6 or γK10 , depending on which of K6 and
K10 γ passes through.

Note first that if there are two auxiliary points on the boundary of K6 sitting on
a horisontal line, then γK6 cannot intersect a line of the line covering more than once,
since γK6 is a graph over a horisontal line and hence cannot have a vertical tangent.

γ′K6

√
85d
4

√
130d
4 ∞

√
170d
12 [−0.348, 3

5 ] [−0.22, 3
5 ] [−0.262, 3

5 ]

Table BB.5: Depending on the choice of γ2, the derivative of γK6 lies in the above intervals
when there is an auxiliary point on the midpoint of the edge between K5 and K6

γ′K10

√
85d
4

√
130d
4 ∞

5
√

10d
4 [− 1

4 ,
1
7 ] [−0.146, 1

5 ] [−0.068, 1
7 ]

Table BB.6: Depending on the choice of γ2, the derivative of γK10 lies in the above intervals
when there is an auxiliary point on the midpoint of the edge between K9 and K10

Suppose instead that there is an auxiliary point on the midpoint of the edge
between K5 and K6, and let L6 be the line between the auxiliary points on the
boundary of K6, with the orientation specified in Figure BB.19. Let us look at the
possible tangents of γK6 . For this choice of auxiliary point, γ1 is fixed, but there
are three possible choices for γ2. Depending on the choice of γ2, the derivative
of γK6 lies in the intervals in Table BB.5, hence for any choice of γ2, we have
γ′K6
∈ [−0.348, 3

5 ]. Consequently, the angle between L6 and a tangent of γK6 lies in
[tan−1(−0.348), tan−1(3

5)] ⊆ [−19.19◦, 30.97◦]. On the other hand, the angle between
γK6 and a line of the line covering hitting L6 is tan−1(−2) ≈ −63.43, so no tangent of
γK6 is parallel to a line of the line covering hitting γK6 , and hence γ cannot intersect
such a line twice.

Likewise, if there is an auxiliary point on the midpoint of the edge between K9
and K10, let L10 be the line between the auxiliary points on the boundary of K10,
with the orientation specified in Figure BB.19. The arc γ1 used for constructing γK10

is fixed, but there are three possible choices for γ2. Depending on the choice of γ2,
the derivative of γK10 lies in the intervals in Table BB.6. Hence for any choice of γ2,
we have γ′K10

∈ [−0.348, 3
5 ] and consequently, the angle between L10 and a tangent of

γK10 lies in [tan−1(−1
4), tan−1(1

5)] ⊆ [−14.04◦, 11.31◦]. On the other hand, the angle
between γK10 and a line of the line covering hitting L10 is tan−1(2) ≈ 63.43, so no
tangent of γK10 is parallel to a line of the line covering hitting γK10 , and hence γ
cannot intersect such a line twice. Thus γ cannot intersect a line of the line covering
in a configuration of category D more than once.

Now, since both γ and H(∂X) are continuous curves that intersect each line of
this line covering exactly once, we may map H(∂X) to γ by projecting along the
lines homeomorphically. This yields a homeomorphism from H(∂X) to γ that may
be extended to a homeomorphism G supported on the grey pixels, mapping each



BB.5. Intersections with the lines of the line covering 117

line of the line covering to itself piecewise linearly while also mapping the point of
H(∂X) on each line to the point of γ on the same line. The composed map

F : R2 → R2, F (p) = G(H(p))

is then a homeomorphism taking ∂X to γ, and hence also taking X to Γ, as we
wanted. The only thing left to prove in order to get the main result, is that the map
F displaces points of ∂X no more than d√

2 .

Theorem BB.20. The map F satisfies ‖p−F (p)‖ ≤ d√
2 for all points in ∂X. Hence

X and Γ are strongly d√
2 -similar.

Proof. The map H only displaces points of ∂X in simple pixels of the third type in
Figure BB.13, so for points in any other types of pixels, we may as well ignore the
map H) and just calculate the distance between points of ∂X and points of γ on
each line of the line covering.

Note first that for simple pixels of the second type in Figure BB.13, the fact that
the distance between a point of ∂X and a point of γ on the same line of the line
covering is closer to each other than d√

2 follows by the proof of Theorem B.45 and
Lemma B.50.

Consider now a simple pixel C of the first type in Figure BB.13, top left. Any
circle arc used in building γC has a radius greater than

√
5d
2 , hence is no further

than
√

5d−d
2 from the top or bottom edge of C. γC cannot be further from the top or

bottom of C than the circle arcs used for building γC . Hence since any point of ∂X
lies either between the top of C and γC , or between the bottom of C and γC , any
point of ∂X in C is also closer than

√
5d−d
2 to γC .

Let us instead look at a simple pixel C of the third kind in Figure BB.13. After
applying the map H of Lemma BB.18, H(∂X) is a straight line from one grey edge
of C to the other.

Let (0, 0) be the point in C where the lines of the line covering originate from,
and let the two grey edges of C be parallel to the x-axis and y-axis in a coordinate
system. Then H(∂X)∩C is a line from a point on the x-axis to a point on the y-axis,
so it lies beneath the line y = d− x.

Now, suppose γC is composed of circle arcs γ1 and γ2. A calculation shows that
no point of γ1 is further than

√
5d−
√

2d
2 from (0, 0). Thus, for any point b of ∂X ∩ C

below the line y = d
2 −x, the distance to a point of γC on the same line through (0, 0)

as b is less than
√

5d−
√

2d
2 . Meanwhile, no matter the choice of γ1, the curve γC lies

between the lines y = d
2 − x and y = d− x. Writing these lines in polar coordinates,

we see that γC lies between the lines r1(θ) = d
cos(θ)+sin(θ) and r2(θ) = d

2(cos(θ)+sin(θ)) ,
hence the distance along a line through (0,0) between points on these two curves
is no greater than maxθ∈[0,π/2](r1(θ)− r2(θ)) = d

2 . Hence pushing a point of H(∂X)
lying between these two lines towards γC along the lines of the line covering displaces
the point no more than d

2 . Since furthermore H only displaced points of ∂X at most
0.19d, the composition of H and the push along the lines of the line covering can
displace a point no more than 0.69d, as claimed.

Category A: Consider a point x ∈ ∂X sitting in one of the four grey centre pixels
of a configuration from category A, see Figure BB.20. Name the four centre pixels A,
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Figure BB.20: A configuration in Category A looks like the one above. Points of ∂X in
the four grey centre pixels must belong to the blue set.

B, C and D as in the figure. Then x either belongs to C ∪D or to A ∪ B. Let us
treat these two cases separately.

Suppose x ∈ C ∪ D. By the proof of Theorem BB.13 for category A, the set
H := conv(⋂4

i=1B
√

2d(wi), p) is white, and ∂X intersects the upper edge of D in a
point x1 located between the points s and s′ = (−86d

100 , d). ∂X also intersects the
common edge of A and B in a point x2, since ∂X must intersect ∂A twice, and it
cannot intersect the left edge of A because this edge is contained in the white set H,
nor can it intersect the right edge of A twice by Lemma B.19.

Let L12 be the line between x1 and x2. Then there is a path π(L12) in ∂X ∩
S(L12, d

√
2) ⊆ ∂X∩S(s, t,

√
2d)\H between them, where s and t are corners of pixel

A and D, respectively (see Figure BB.20). Note that S(s, t,
√

2d) \H is contained
in the ball B√2d(

√
15d
10 , 2

√
15d+5d
15 ). Then π(L12) intersect the line between A ∪ B

and C ∪ D in B√2d(
√

15d
10 , 2

√
15d+5d
15 ) \ H, so somewhere between the points p and

p′ := (0,−0.086d). Call this point of intersection x3 with ∂X, and let L13 be the
line between x1 and x3. Then π(L13) ⊆ C ∪D, since x1 and x3 are the only points
from ∂X on the boundary of C ∪ D by Lemma B.19. Hence all points of ∂X in
C ∪D belong to S(L13, d

√
2) ∩ (C ∪D) ⊆ BR(q), where q = (0, d) and R = 1.086d.

Furthermore, BR′(q) ⊆ H for R′ = 0.409d, so ∂X ∩ (C ∪D) ⊆ BR(q) \BR′(q).
On the other hand, the part of boundary Γ of the reconstructed set in C ∪D is

γD, and γD is a merge between two circle arcs γ1 and γ2. Furthermore, γD belongs
to the set bounded by γ1 and γ2. Any such two circle arcs γ1, γ2 are contained in the
space between the circle arcs ∂B√10d/2((d4 ,

3d
4 )) and ∂B√130d/4((−11d

4 ,−3d
4 )) (just

consider all cases). A calculation shows that for R′ =
√

170d−
√

130d
4 ≈ 0.409d, the ball

BR′(q) is disjoint from ∂B√130d/4((−11d
4 ,−3d

4 )). Since γD ⊆ B√130d/4

(
−11d

4 ,−3d
4

)
,

BR′(q) cannot contain any points of γD. Similarly, a calculation shows that the ball
BR(q) contains any circle arcs γ1, γ2 through auxiliary points on the boundary of D,
hence γD ⊆ BR(q).

In short, we have that γD, ∂X ∩ (C ∪D) ⊆ BR(q) \BR′(q). Since the lines of the
line covering hitting C ∪D are pointing out radially from q, this means that on each
line, the distance between the point of ∂X and the point of γ hitting that line is
smaller than R−R′ ≈ 0.677d < 0.7d, as claimed.
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Suppose in stead that x ∈ A∪B. If A∪B are the middle pixels in a configuration
of 2× 3 grey pixels, we are done by item i) of the proof of Theorem B.45. Suppose
therefore that they are not. Then the pixel K12 right of B must be black. Since
S(s, t,

√
2d) contains all points of ∂X in B, no point of ∂X in B can be further from

the common edge of A and B than the southernmost point of the spindle, which is a
distance

√
2d − 2d

√
15+5d
10 ≈ 0.1396d from the common edge of A and B. Points of

∂X in A must lie outside the white set H, thus must lie closer to the common edge
of A and B than the point u := (d, 0.102d) does. So any point of ∂X in A ∪ B is
closer than 0.14d to the common edge of A and B.

Furthermore, notice that any point on the two circle arcs ∂B√10d/2((d4 ,
3d
4 )) and

∂B√130d/4((−11d
4 ,−3d

4 )) is closer than d
2 to the common edge of A and B. But then

the same holds for a point of γA, since γA belongs to the set bounded by the two
circle arcs. So since points of ∂X ∩ (A ∪ B) are closer than 0.14d to the common
edge of A and B, and points of γA are closer than d

2 to the common edge of A and
B, the vertical distance between points of ∂X ∩ (A ∪B) and points of γA is smaller
than 0.64d < 0.7d to each other, as claimed.

Figure BB.21: A configuration from category B looks like the above. ∂X belongs to the
blue set in the figure.

Category B: Consider a configuration from category B. It has black, grey and
white pixels as the configuration in Figure BB.21, and only the colour of the red
pixel in the figure may vary within the category. Name the pixels and points as in
the figure.

Place the configuration in a coordinate system with p at the origin. By Theo-
rem BB.13, the set H := conv(⋂4

i=1B
√

2d(wi), p) is white (possibly after reflecting
the configuration in the line y = x), where the wi are the ones from Lemma BB.6. By
Theorem BB.13 again, points of ∂X in A∪B∪C∪D belong to B√2d(0.39d, 1.24d)\H.

Now the curve γD lies between the two circle arcs through the auxiliary points
on the boundary of D, hence it certainly lies between the most extreme cases of
such circle arcs, namely the minor arc of ∂B√130d/4((−11d

4 ,−3d
4 )) and the minor

arc of ∂B5
√

2d/4(5d
4 ,

5d
4 ). Therefore γD ∈ B√130d/4((−11d

4 ,−3d
4 )) ∩ B5

√
2d/4(5d

4 ,
5d
4 ).
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We may parametrise these arcs as γ1(y) =
√

130d2

16 −
(
y + 3d

4

)2
− 11d

4 and γ2(y) =

−
√

50d2

16 −
(
y − 5d

4

)2
+ 5d

4 for 0 ≤ y ≤ d.
Since points of ∂X in D lie in B√2d(0.39d, 1.24d), they lie right of the circle

arc describing its boundary, namely the curve f1(y) = −
√

2− (y − 1.24)2d+ 0.39d,
y ∈ [d4 , d]. Since points of ∂X also lie left of H, they in particular lie left of γ1, since
γ1 ⊆ H. Similarly, since γD lie right of γ2, it in particular lies right of f1, since
γ2 ⊆ B√2d(0.39d, 1.24d). So in short, both γD and ∂X lie between the curves γ1 and
f1. The maximal horisontal distance between these curves is ‖f1 − γ1‖∞ < 0.64d.
Hence when the lines of the line covering on a configuration as in Figure BB.21 are
horisontal, then pushing γ to ∂X along the lines of the line covering displaces each
point less than 0.7d, as claimed.

Similarly, look at the part of the configuration where the lines of the line covering
are vertical, that is, the set [d4 , d] × [−d, d4 ]. In this set, points of ∂X lies inside
B√2d(0.39d, 1.24d), hence above the line y = 1.24d−d

√
2. Points of ∂X also lie under

the line y = 0.11d, since points above this line belong to H.
Meanwhile, points of γ intersecting vertical lines of the line covering belong to γB

and lie between the two circle arcs whose merge is γB. We know these two circle arcs
precisely, because we know the auxiliary points that they pass through – these are
the circle arcs in pixel B in Figure BB.21, and they are arcs of ∂B5

√
2d/4(5d

4 ,
5d
4 ) and

∂B√85d/4

(
3d
2 ,

7d
4

)
. Calculating γB, we see that it must lie between the two horisontal

lines y = −d
2 and y = 0. In particular, both the points of γ and the points of ∂X

that intersect a vertical line of the line covering lie between the lines y = 0.11d and
y = −d

2 , hence the distance along a vertical line of the line covering between points
of ∂X and points of γ is no greater than 0.61d, as claimed.

It remains to show that points of ∂X and points of γ on a non-vertical, non-
horisontal line of the line covering are closer than 0.7d. Note therefore that the ball
Bd/4

(
d
4 ,

d
4

)
lies outside B√130d/4

(
− 11d

4 ,−3d
4
)
and belongs to both B5

√
2d/4(5d

4 ,
5d
4 )

and B√85d/4

(
3d
2 ,

7d
4

)
. This means that the ball Bd/4

(
d
4 ,

d
4
)
does not contain points

of γ. Since Bd/4
(
d
4 ,

d
4
)
also lies inside H, it does not contain any points of ∂X.

A calculation shows that points in the set [−d, d4 ]2 ∩B√2d(0.39d, 1.24d) lie inside
the ball B7d/8(d4 ,

d
4), hence any point of ∂X hitting a non-vertical, non-horisontal

line of the line covering must belong to B7d/8(d4 ,
d
4 ) \Bd/4(d4 ,

d
4 ). Another calculation

shows that the same is true for points of γ in this set (simply check that it holds
for any circle arc that may be used in constructing γB and γD). So both points of γ
and points of ∂X hitting a non-vertical, non-horisontal line of the line covering are
contained in B7d/8(d4 ,

d
4 ) \Bd/4(d4 ,

d
4 ). Since the line covering points out radially from

(d4 ,
d
4), this means that a point of ∂X and a point of γ on the same line of the line

covering can be no further than 7d
8 −

d
4 = 5d

8 < 0.7d apart, as claimed.

Category C: Consider a point p ∈ ∂X located in one of the four grey centre
pixels of a configuration from Category C. If p belongs to one of the two centre
pixels of a 2 × 3 configuration of grey pixels, we are done by the proof of i) in
Theorem B.45. Suppose therefore that p is not a centre pixel of a 2× 3 configuration
of grey pixels. Then p must belong to a grey pixel sitting in a configuration like A
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Figure BB.22: If p belongs to a configuration in category C, but does not belong to the
two centre pixels of a configuration of 2× 3 grey pixels, p must belong to a grey pixel sitting

in a configuration like either A or B in this figure.

or B in Figure BB.22. Let us name the four grey centre pixels of this configuration
according to the figure.

Now, ∂X must intersect the right edge of pixel A exactly once since the endpoints
of this edge have different colours, and using Lemma B.19. Let us call the intersection
point x1. Furthermore, ∂X must intersect the edge between A and B at least once,
since a component of ∂X ∩B cannot cannot have both endpoints on the left edge
edge of B by Lemma B.19. Let us name the intersection point x2. Similarly, ∂X
must intersect the common edge of pixels C and D at least once, either by the same
reasoning (if pixel K5 is white or pixel K9 is black), or by Lemma B.25 (if both
pixels K5 and K9 are grey. Let x3 be the intersection between ∂X and the common
edge of C and D.

Now, place the configuration in a coordinate system with the common vertex of
pixels A, B, C and D at the origin. There is a path in ∂X connecting x1 and x2 and
contained in S(x1, x2,

√
2d), which is again contained in B√2d((

√
3d+d
2 ,−

√
3d−d
2 )) ∩

B√2d((
d
2 , d

√
2− 1

4)), since these balls contain both the lower and right edge of A.
Furthermore, there is a path in ∂X from x2 to x3 contained in S(x2, x3,

√
2d) ⊆

S(L,
√

2d), where L is the line segment separating A ∪D from B ∪ C. Composing
these two paths, we get a path τ from x1 through x2 to x3 which is contained in the
part of B√2d((

√
3d+d
2 ,−

√
3d−d
2 )) ∪ S(L,

√
2d) that belongs to grey pixels – this is the

blue set in the figure. Note that the only points of ∂X in A ∪B are the points on τ ,
since no edge of A∪B can have more than one intersection with ∂X by Lemma B.19.
Hence ∂X ∩ (A ∪B) ⊆

(
B√2d((

√
3d+d
2 ,−

√
3d−d
2 )) ∪ S(L,

√
2)
)
∩ (A ∪B).

Now, look at the curve γA, which is the part of the reconstructed curve γ that is
contained in A ∪B. By Lemma B.39, it is contained in the convex hull of two circle
arcs γ1 and γ2. If we can show that any point in this convex hull may be pushed to
∂X via the lines of the line covering without pushing it further than 0.7d, we are
done.

It suffices to check the circle arcs of the circles ∂B√85d/4(3d
2 ,−

7d
4 ) and ∂B5d/4(0, 5d

4 ),
since any other circle arc through auxiliary points lie between these two. We therefore
need to maximise the distances between the functions γ1(x) =

√
85d2

16 − (x− 3d
2 )2− 7d

4 ,

γ2(x) = −
√

25d2

16 − x2 + 5d
4 describing these two circle arcs, and the functions
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f1(x) = −d
√

2− x2 + d and

f2(x) =


d
√

2− x2 − 1 if 0 < x < d (
√

3−9)
√

13+13
√

3+13
52 ,

d

√
2−

(
x−

√
3+1
2

)2
−
√

3d−d
2 if d (

√
3−9)

√
13+13

√
3+13

52 < x < d

that bounds the blue area of A ∪ B that may contain points of ∂X. Maximising
these distances, we see that ‖γ1 − f1‖∞ ≈ 0.65d < 0.7d, ‖γ1 − f2‖∞ = d

2 < 0.7d,
‖γ2 − f1‖∞ = d

2 < 0.7d and ‖γ2 − f2‖∞ ≈ 0.67d < 0.7d.
Now, since any two centre pixels in a configuration from category C either are the

centre of 2× 3 grey pixels or sit in a configuration as in Figure BB.22, this completes
the proof in this case.

Figure BB.23: Points of ∂X ∩ (A ∪ B ∪G) belongs to the part of the blue ball that lies
outside the green set.

Category D: Consider a configuration from Category D. By Lemma BB.12, it
must sit in a configuration like the one in Figure BB.10. Let us name the points and
grey pixels as in this figure.

By Theorem BB.13, the set H := conv(⋂4
i=1B

√
2d(v′i), p)∪conv(⋂4

i=1B
√

2d(v′′i ), q)
is white, where v′i and v′′i are as in the theorem. This is the green set in Figure BB.23.

The boundary ∂X must intersect the common edge of C and D: Indeed, a
component of ∂X ∩D must have two endpoints on the boundary of D, but since the
upper and right edge of D are white, these endpoints can only lie on the lower or left
edge of D. Since ∂X cannot intersect the left edge of D twice by Lemma B.19, one
of these endpoints must belong to the lower edge of D, so ∂X intersects this edge at
least once, say in a point x1.

By a symmetrical argument, ∂X must intersect the common boundary of E
and F in a point x2. Let L12 be the line between x1 and x2. Then there is a path
π(L12) in ∂X ∩ S(x1, x2,

√
2d) ⊆ B√2d(v) \ H connecting x1 and x2 which must

necessarily pass through A, B and G. Since ∂X can only intersect the common edge
of F and G once, and also intersect the common boundary of B and C at most once
by Lemma B.19, the only points in ∂X ∩ (A ∪B ∪G) are the ones on the path from
x1 to x2, which all belong to B√2d(v), where v = (d, 0).

B√2d/2(v)∩(A∪B∪G) ⊆ H, so B(
√

2d)/2(v) contains no points of ∂X in A∪B∪G.
Checking the possible circle arcs used in building γA, we can also conclude that
γA belongs to B√2d(v) \ B(

√
2d)/2(v). Since the lines of the line covering that hit
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A∪B ∪G point out radially from v, this means that on each line, there is a point of
∂X and a point of γA that are no more than

√
2d −

√
2d
2 = d

√
2

2 apart, as claimed.
This proves the result for the pixels A, B and G. It remains to prove the result in
pixels C and D (since E and F are symmetric to C and D).

If C ∪D are the two centre pixels of a 2× 3 configuration of grey pixels, we are
done by part i) in the proof of Theorem B.45, so let us consider the case where the
left d-neighbour of either C or D is not grey.

Figure BB.24: If pixels C and D are not the centre column of a configuration of 2× 3 grey
pixels, a configuration in Category D looks either like the one on the left, or like the one on

the right (where we do not wish to specify the colours of the red pixels).

Suppose first that the left d-neighbour of C is black, and hence the left d-neighbour
of D is grey, see Figure BB.24, left. Since ∂X must enter and leave B ∪ C through
the edge between s := (−d, 0) and u := (d, 0), any point in ∂X ∩ C must belong to
S(s, u, d

√
2) ⊆ B√2d(v). Furthermore, any point of ∂X in D must belong to D \H.

Now, any circle arc used to build γD lies beneath the circle arc ∂B√85d/4(−3d
2 ,−

7d
4 )

(this is the upper circle arc in D in Figure BB.24, left). Furthermore, since this
arc is contained in H, any point of ∂X in C ∪ D must also lie south of it. In
short, any point of γ in C ∪ D and any point of ∂X in C ∪ D must lie between
the circle arcs ∂B√85d/4(−3d

2 ,−
7d
4 ) ∩ D and ∂B√2d(vi) ∩ C. Hence the maximum

vertical distance between two such points is bounded by the maximum distance
between these two circle arcs. We may parametrise these circle arcs by putting
f1(x) =

√
85d2

16 − (x− −3d
2 )2 − 7d

4 and f2(x) = −d
√

2− x2 + d for −d ≤ x ≤ 0. A
calculation shows that ‖f1 − f2‖∞ ≈ 0.638d < 0.7d. Hence the proof is true in this
case.

Suppose now instead that the left d-neighbour of D is white, hence the left
d-neighbour of C is grey, see Figure BB.24, right. Then by Theorem BB.13, there is
a black set S = B√2d(t′1) ∩B√2d(t′2) ∩B√2d(t′3), where the ti are as in the theorem.
A calculation shows that S contains G = conv((−d,−d), (−d,−d

2), (0,−d
2), (0,−d)),

which is the entire lower half of pixel C (G is the dark grey part of C in Figure BB.24,
right).

Now looking at all possible circle arcs used in constructing γC , we see that they
all are contained in C \G. The same goes for any point of ∂X in C. Any point of ∂X
in D is no further than

√
2d− d

√
2− 1

4 from the common edge of C and D, because
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this is the height of the spindle S(s, p,
√

2d). So any point of γ and any point of ∂X in
C is at most d

2 from the common edge of C and D, and any point of γ and any point
of ∂X in D is at most

√
2d− d

√
2− 1

4 from the common edge of C and D. Hence

any point of γ and any point of ∂X in C ∪D is at most d
2 + d

√
2− d

√
2− 1

4 ≈ 0.59d
apart vertically, proving the claim in this case.



Paper C

Reconstructing Objects from
Noisy Images at Low Resolution

By Helene Svane and Aasa Feragen

This paper was published in the proceedings for the 12th International Workshop
on Graph-based Representations in Pattern Recognition1, which was held in Tours,
France, in June 2019. It tries to accommodate the theory developed in the earlier
papers to images that we may realistically encounter in the real world. The paper is
included here in the printed version.

1Helene Svane and Aasa Feragen. Reconstructing objects from noisy images at low resolution.
In Graph-Based Representations in Pattern Recognition, pages 204–214, Cham, 2019. Springer
International Publishing. ISBN 978-3-030-20081-7.

125
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Abstract. We study the problem of reconstructing small objects from
their low-resolution images, by modelling them as r-regular objects. Pre-
vious work shows how the boundary constraints imposed by r-regularity
allows bounds on estimation error for noise-free images. In this paper
we present a graph-based framework for reconstructing noise-free images
from noisy ones. We provide an optimal, but potentially computation-
ally demanding algorithm, as well as a greedy heuristic for reconstructing
noise-free images of r-regular objects from images with noise.

Keywords: Object reconstruction · r-regularity

1 Introduction

Whenever new imaging techniques enable us to improve image resolution, we find
something smaller scale or further away that we would like to investigate. As a
result, the ability to reconstruct objects whose size is on a similar scale as the
resolution, is and remains a highly relevant problem, which finds applications in
fields as diverse as microscopy and astronomy, see Figure 1, left. Reconstruction
of such small objects is hampered by the fact that all information about the
object is contained in just a few pixel intensities. In this paper we assume that
the imaged object satisfies r-regularity, which reduces the possible complexity of
the object and therefore enables inference with bounds on precision (see Section
2 for a precise definition of r-regularity).

Previous work by Du Plessis and Svane [8] studied ideal images of r-regular
objects. By ideal images, we mean images of completely black objects placed on
completely white backgrounds, taken with a perfect camera so that the intensity
of each pixel is exactly equal to the fraction of the pixel that is covered by
the original object. In real life, ideal images are rare, maybe even non-existent.
Hence we would like to use our knowledge of ideal images to reconstruct r-regular
objects from their noisy images. The strength of this approach is that there are

? This research was supported by Centre for Stochastic Geometry and Advanced
Bioimaging, funded by a grant from the Villum Foundation. The authors thank
François Lauze for valuable discussions.
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relatively strict limitations on which configurations of black, grey and white
pixels can occur in an ideal image of an r-regular object. Thus, by considering
noisy images as distortions of the ideal one, we aim to use these limitations to
deduce the most likely corresponding ideal image. From this idealised image, we
apply techniques developed for ideal images to suggest a reconstruction of the
original object.

Fig. 1. Left: Noisy image of distant galaxies from [9]. Astronomers are interested in
knowing the shape of such galaxies: Are they circular, ellipsoid or do they have spiral
arms?
Right: An r-regular set with osculating r-balls shown.

We formulate the idealisation of a noisy image as a graph problem which can
be solved using integer linear programming (ILP); this is explained in Section 3.
As finding an optimal solution using ILP is NP-hard, we also suggest a less com-
putationally demanding greedy algorithm, which makes stepwise locally optimal
improvements starting from a trivial initialization.This algorithm generally pro-
duces a suboptimal output, but in practice it performs well when run multiple
times.

2 Related Work

While ”object reconstruction” aims to infer any geometric or topological prop-
erty of the original object, the ultimate goal is to reconstruct the object itself,
a task which largely coincides with image segmentation. Modern image segmen-
tation algorithms such as deep convolutional neural networks [6] work as pixel
classifiers which cannot possibly return the underlying object itself. At the very
best, they return an ideal image of the object. Our proposed algorithm thus
should not be viewed as an alternative to these segmentation tools, but rather
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as a tool to be used together with them, estimating object boundaries from pixel
classification output.

2.1 Related segmentation algorithms

A number of classical image segmentation algorithms aim to estimate object
boundaries from images. For instance, variational segmentation algorithms aim
to estimate either the object [7] or its boundary [1, 2, 5, 11] by optimizing a func-
tional which measures the fit between the proposed object (boundary) and the
image. In Active Shape Models [3], this is done with the additional information
of a statistical object model. In [4], simulated annealing is used to reconstruct the
entire object (and therefore, implicitly, its boundary) using a statistical image
model based on thermodynamics.

As these methods are based on non-convex optimization, they are not guar-
anteed to find an optimal solution, and therefore work best when one has some
initial idea about what object to find. In contrast, under the assumption of r-
regularity, [8] obtain bounds on the error of the reconstructed object boundary,
at least in the non-noisy case. We therefore propose estimating the optimal non-
noisy image from a noisy one, as explained in Section 3. The object boundary
can then be reconstructed from the non-noisy image with guarantees.

Note, additionally, that the assumption of r-regularity is a local restriction
on the shape of the original object, and not a global assumption as the one that
is needed in e.g. the Active Shape Model approach [3].

2.2 Reconstructing r-regular objects from ideal images

The strength of our approach is the assumption of r-regularity of the objects
that we are looking for, since this puts restrictions on their possible ideal images.
Let us introduce the concept of r-regularity:

Definition 1. Let r ∈ (0,∞). A closed set X ⊆ Rn is said to be r-regular if,
for any point p ∈ ∂X, there exist two balls Br(xb) ⊆ X and Br(xw) ⊆ Xc of
radius r such that Br(xb) ∩Br(xw) = {p}, see Figure 1, right.

In [8], du Plessis and S. studied digital images of r-regular objects constructed
in the following way:

Definition 2. Let X ⊆ R2 be a subset and (dZ)2 ⊆ R2 a lattice. To each lattice
square C, we assign an intensity λ ∈ [0, 1] given by

λ =
Area(X ∩ C)

d2
∈ [0, 1].

The image of X (by (dZ)2) is now the collection of pairs (C, λ) of lattice cubes
and their corresponding intensities.
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In this paper, we will consider noisy images. In a noisy image, the intensities
are distorted, so it will most likely be hard to use intensities for reconstruction.
Hence, we may as well restrict ourselves to only consider pixels as being either
black, grey or white. We therefore introduce the following:

Definition 3. Let I be an image. The trinary image J (of I) is the image I
where all grey values are set to 0.5. If I is ideal, we call J the trinary ideal
image.

Theorem 1 (Proved in [8]). Let J be a trinary ideal image of an r-regular
object X by a lattice (dZ)2, with d

√
2 < r. Then we can construct an object Y

from J such that dH(∂X, ∂Y ) < d, where dH denotes the Hausdorff distance.
The running time for this reconstruction algorithm on an n×n image is O(n2).

Empirical results suggest that we can improve the Hausdorff distance between
object and reconstruction, but for now it will have to remain a conjecture.

In the process of proving this theorem, the following theorem popped up,
and it will be essential later on:

Theorem 2 (Proved in [8]). In the trinary ideal image of an r-regular object
by a lattice (dZ)2 with d

√
2 < r, there are at most 562 different configurations

of 3×3 pixels. These are the ones shown in Figure 2, along with their rotations,
mirror images and interchanging of black and white colours.

Furthermore, there are limits on which configurations can be combined with
which in such an image.

Fig. 2. Up to rotation, mirroring and interchanging of black and white pixels, these
are the only 3× 3 configurations of pixels we expect to see in the image of an r-regular
object with d

√
2 < r
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3 Noisy images

Consider a noisy image I of an r-regular object X where d
√

2 < r. We want to
use our knowledge of trinary ideal images of r-regular objects to find the trinary
ideal image of X from the noisy one. Henceforth, the only ideal images we will be
working with will be trinary, so we will often omit the word ’trinary’ for brevity.
We will say that a noisy image I has an underlying (trinary) ideal image J that
is not observed.

By Theorem 2 there is a collection C = {Ck}k∈K of ideal 3× 3 pixel config-
urations that we may see in the image of an r-regular set when d

√
2 < r. We

use these to formulate the problem as a graph problem. Let Ii,j denote the 3×3
pixels centered at the (i, j)’th pixel of the noisy image I.

Over each configuration Ii,j in I, the ideal configurations in C are possible
configurations in the same position of the underlying ideal image J . These ideal
configurations form the vertices of a graph. An ideal configuration Ck ∈ C sitting
over the noisy configuration Ii,j is given a weight pi,jk measuring the similarity
between Ck and Ii,j . Two ideal configurations are connected by an edge if they
sit over neighbour configurations in I and match on their overlap, see Figure 3.
By ’neighbour configurations’ we here mean any two 3×3 configurations sharing
6 pixels.

The problem is now to choose an ideal configuration over each noisy config-
uration in I, such that the chosen configurations match their neighbours on the
overlap, and the sum of their similarity weights are maximised. If this problem
is solved, we may piece an ideal image together from the configurations chosen.
This image is then optimal in the sense that the sum of its similarity weights is
maximal among all ideal images.

The problem can be formulated as an integer linear programming problem
in the following way: Let

c
(i,j)
k =

{
1 if k’th configuration is chosen at position (i, j)

0 otherwise
.

The sum to be maximised is then

∑

i,j,k

c
(i,j)
k p

(i,j)
k ,

where ∑

k∈K
c
(i,j)
k = 1

for each (i, j), since we only choose one configuration over each configuration in
the noisy image. Stacking c

(i,j)
k to a vector c, let A be the adjacency matrix of

the graph. Requiring that each chosen configuration is connected to its chosen
neighbour configuration may be formulated as

Ac ≥ Bc,
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6 Svane and Feragen

Fig. 3. Over each 3×3 configuration in a noisy image I, we have a set of possible config-
urations for the underlying image J . These configurations form the vertices of a graph
and are given weights quantifying their deviation from the observed configuration. Two
configurations are connected by an edge if they sit over neighbour configurations in I
and match on their overlap.
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Algorithm 1 Pseudo-code for the local algorithm

INPUT Noisy image I
Ĵ = Suggestion for I, initialised to an all white image.
Weights =Matrix of weights of the configurations in current Ĵ
[XMin, Y Min] =Position of minimal value of Weights
Update configuration at position [XMin, Y Min] in Ĵ to configuration with a black
pixel in the middle, and greys around it.
Update Weights to match this new Ĵ
NbList =Positions of horisontal/vertical neighbour configurations of altered ones.
k = 0
while k=0 do

TempNbList=NbList;
Find the entry (i, j) in TempNbList where changing white pixels of corresponding
configuration in Ĵ to greys and centre pixel to black would cause the largest
increase in Weights(i, j).
if Such a configuration exists then

Check if this update of Ĵ contains any illegal configurations
if It does not then

Update Ĵ
Update Weights
Update NbList by adding positions of neighbour configurations

else
Remove position (i, j) from TempNbList

end if
else

k = 1
end if

end while
if n connected component are expected in the image then

Repeat the above n times
end if

where B is a diagonal matrix whose (l, l)’th element is the number bl of neighbour
configurations of configuration l.

Solving these equations is a well-known optimisation problem with a range
of software options available, of which we used CPLEX [10].

4 A greedy local algorithm

As ILPs are generally NP-hard, the running time for the above algorithm quickly
increases for large images. Therefore, we also tried another approach: We start
with one solution to the graph problem and try to improve it.

Let I be a noisy image with underlying ideal image J . We suggest the greedy
algorithm detailed in Algorithm 1, which was implemented in MatLab.
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5 Similarity weights

In Section 3 we needed weights pi,jk on ideal configurations Ck measuring their
similarity to an observed noisy configuration Ii,j . We propose to construct the
weights as follows:

Let p1 be a pixel from the noisy image and p2 a trinary pixel from one of the
ideal configurations. We measure the distance between p1 and p2 with a function
d̂ given by

d̂(p1, p2) =

{
0 if p2 = 0.5 and 0 < p1 < 1

|p1 − p2| otherwise

We can then define the weight pi,jk as

pi,jk =

√∑3
r,s=1d̂(Ii,j(r, s), Ck(r, s))2,

where Ii,j(r, s) denotes the (r, s)’th entry in Ii,j .

6 Experiments

Results from both the ILP algorithm and the greedy local algorithm are shown
in Table 1. The noisy images were obtained from ideal ones by adding Gaussian
white noise with mean 0 and variance 0.1. The greedy algorithm was run several
times with different starting points (s.p.), giving different outputs. The results
using the three most likely starting points are shown in columns 3-5. In column 6
the minimum of 8 outputs of the greedy algorithm with different starting points
is shown. Since the minimum image may contain configurations not in the list
from Theorem 2, we may not use our reconstruction algorithm on it. Therefore
we have used the ILP algorithm on it to remove illegal configurations, see column
7. Finally, in column 8 we have used the ILP algorithm directly on the noisy
image. The yellow lines in the figures in column 3-5 and 7-8 are reconstructed
boundaries from Theorem 1.

7 Discussion

The ILP algorithm reconstruction to the far right in Table 1 works well, although
there are more grey pixels in the reconstructed image than in the original one.
This may partly be due to boundary effects, since configurations near the bound-
ary have fewer neighbour configurations they need to match.

The main problem with the ILP algorithm is that the NP-hardness makes it
very time-consuming. Several tests indicate that for images only slightly bigger
than those in this paper, the ILP algorithm is so slow that it is of no practical
use.

The running time for the greedy algorithm is O(n4 log2 n) for an n×n image,
but images with many white pixels are processed faster than images with many
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10 Svane and Feragen

black pixels. In practical cases, the greedy algorithm is much faster and therefore
easier to work with. However, results from the greedy algorithm are generally not
as nice as results from the ILP algorithm. The output quality depends greatly on
the starting point and the algorithm is not good at finding large black areas or
the right number of components. This is due to the construction of the algorithm,
which may still be improved. The algorithm can also not reconstruct loops, since
this requires addition of a configuration not in the list C.

All of these flaws are present in the outputs of the greedy algorithm in Table
1. However, the superposition is a good approximation of the object, and when
the ILP and greedy algorithms are used together, we get a good suggestion for
the reconstruction as seen in column 7 of the table. Empirical results seem to
indicate that the running time of the ILP algorithm on the superposition of the
outputs from the greedy algorithm is a bit shorter than the running time of the
ILP algorithm used directly on the noisy image, but note that the ILP algorithm
used with the greedy algorithm is still rather slow since the ILP is still solving
an NP-hard problem.

To sum up, the ILP algorithm gives the best output, but its running time
must be brought down if it is to be of practical relevance. The greedy algorithm
is faster, but the quality of the output is less reliable. We are still working on
improving running time and output for both algorithms.

References

1. Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours 22(1), 61–79 (1997)
2. Chan, T., Vese, L.: Active contours without edges. IEEE TIP 10(2), 266–277 (2001)
3. Cootes, T.F., Taylor, C.J.: Active shape models – ”smart snakes”. In: BMVC

(1992)
4. Geman, S., Geman, D.: Stochastic relaxation, Gibbs distributions, and the

Bayesian restoration of images. TPAMI 6(6), 721–741 (1984)
5. Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active Contour Models. IJCV 1(4),

321–331 (1988)
6. Litjens, G.e.: A survey on deep learning in medical image analysis. MedIA 42, 60

– 88 (2017)
7. Mumford, D., Shah, J.: Optimal approximations by piecewise smooth functions

and associated variational problems. Comm. Pure Appl. Math. 42, 577–684 (1989)
8. du Plessis, A., Svane, H.: Reconstruction of r-regular objects from tri-

nary images, 2018. Available at https://drive.google.com/drive/folders/

1qxnDkmvXI3JQVlgTPCz2k4aPt_BUSv-u?usp=sharing

9. SDSS, S.D.S.S.: https://www.sdss.org
10. V12.8.0, I.I.C.O.S.: www.cplex.com
11. Yezzi, A., Kichenassamy, S., Kumar, A., Olver, P., Tannenbaum, A.: A geometric

snake model for segmentation of medical imagery. IEEE TMI 16(2), 199–209 (1997)

References 135





Paper D

Preservation of Topology during
Digitisation of a 3-dimensional
r-regular Object

By Helene Svane and Andrew du Plessis

Abstract

We study what information is contained in the set of black voxels of a grey-scale
image of an object X ⊆ R3. We have shown that under reasonable assumptions on
the regularity of the object X and the resolution of the three-dimensional image, it is
possible to construct an object from the black voxels that have the same topological
features as the original object X.

D.1 Main Theorem

We study the following kind of digitisations of an object:

Definition D.1. Let X ⊆ Rn be a Lebesgue-measurable set and d > 0 a number.
Then dZn is a lattice and to each point p of this lattice, there is a cube C = C(p)
of side length d whose centre lies at p. Let µ be the three-dimensional Lebesgue
measure and ϕ : [0, 1]→ [0, 1] a function such that ϕ(x) = 1 if and only if x = 1, and
ϕ(x) = 0 if and only if x = 0. We associate an intensity

λC = ϕ
(µ(C ∩X)

dn

)
to each such cube that is a function of the fraction of the square that is covered by
the object.

The digital image I of X by the lattice dZ3 is the collection of grid points and
associated intensities, and may be thought of (or visualised as) the collection of lattice
cubes C(p), p ∈ dZn, each coloured a shade of grey corresponding to the associated
intensity so that cubes with intensity λC = 1 are black, cubes with intensity λC = 0
are white, and cubes of other intensities are a shade of grey.
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Let V (X) (or sometimes just V ) denote the set of black voxels in this digital
image. In correspondance with the terminology introduced in [5], we will sometimes
refer to V (X) as the inner Jordan digitisation of X (by a lattice dZ3).

Since we will work with the inner Jordan digitisations in this paper, it is not
important how the exact intensities of the non-black voxels are calculated, as long as
the only black voxels of the image are the ones inside the object.

In the following, we will consider r-regular objects:

Definition D.2. Let r ∈ (0,∞). A closed set X ⊆ R3 is said to be r-regular if, for
any point p ∈ ∂X, there exists two balls Br(xb) ⊆ X and Br(xw) ⊆ Xc or radius r
such that Br(xb) ∩Br(xw) = {p}.

An equivalent definition of r-regularity is to say that X is r-regular if and only if
X and XC are both unions of closed r-balls, see Theorem A.2.

To measure the similarity between an object and its reconstruction, we use the
notion of isotopy:

Definition D.3. Let M , N be manifolds and I an interval. An isotopy from N to
M is a smooth map F : N × I →M such that for each t ∈ I the map

Ft : N →M, x 7→ F (x, t)

is an embedding. When such a map exists, the maps F0 and F1 are called isotopic.
When N = M , the map Ft is a diffeomorphism for each t ∈ I and F0 = IdM , F

is called an ambient isotopy. Two smooth embeddings f0, f1 : N → M are called
ambiently isotopic if there exists an ambient isotopy F : M × I → M such that
f1 = F1 ◦ f0.

In this paper, the main theorem will be the following:

Theorem D.4. Let X be an r-regular object and d > 0 a number satisfying d
√

3 < r.
Let V (X) be the inner Jordan digitisation of X by a lattice dZ3.

It is possible to construct a set Z from the inner Jordan digitisation V (X) that
is ambiently isotopic to X.

This theorem implies that we given a digital image I of an r-regular object X at
a reasonable resolution can construct an object Z from the image such that Z has
the same topological features (number of connected components, number of holes
etc.) as X. Hence we can in a sense reconstruct the topology of X from its digital
image.

There are two key assumptions in our main theorem: Firstly, we require X to be
r-regular, and secondly, we require that d

√
3 < r. The first assumption is to make

sure that the set X is ’nice’ enough to give us a chance of reconstructing it (see
Figure D.1(a)), and the second assumption is to make sure that the resolution is
good enough to distinguish key features of the object, see Figure D.1(b).

D.2 Tang Christensen’s Work

In her Ph.D.-thesis [2], Tang Christensen considered a problem similar to the one that
we are adressing. She also used a digitisation of an object to reconstruct the topology
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(a) (b)

Figure D.1: (a): A two-dimensional figure of the digitisation of a set X. The upper and
lower X-sets (left) yield the same digital image (right), but their topology are quite different.
So in this case, we cannot hope to recover an object from the image that has the same
topology as the original one. However, the upper set is not r-regular for any r > 0. (b): If
the resolution of our image is too small, we will not be able to reconstruct the topology of
the original object. While the upper digital image is clearly a picture of a torus, the lower

digital image cannot detect the hole in the middle of the torus.

of the object. However, she used another kind of digitisation than we do, known
as Gauss Digitisation in [5], and considered sets with another regularity. Therefore
we cannot apply her results directly. Instead, we modify her technique to prove our
main theorem. Thus, it is appropriate to give a short overview of what she did in
her thesis. She considered the following kind of digitisation:

Definition D.5. Let dZ3 be a cubic lattice and A ⊆ R3 an r-regular set with
d
√

3
2 < r. Let the set A0 = A∩ dZ3 denote the digitisation of A, and let V (A) denote

the corresponding voxel reconstruction of A given by

V (A) = ∪l∈A0V (l),

where V (l) is a d× d× d-cube with centre l.

The set V (A) is sometimes denoted the subset digitisation or the Gauss digitisation
in the literature, see [5]. Tang Christensen denotes it by the voxel reconstruction.

Her main result corresponds to ours:

Theorem D.6 (Tang Christensen’s Main Result). Let dZ3 be a cubic lattice
and A an r-regular set with 0.95571d < r. Then it is possible to construct an object Z
from the Gauss digitisation V (A) such that Z is ambiently isotopic to A, and hence
contains the same topological information as the original object A.

Tang Christensen proved the following, as a step towards her main result:

Theorem D.7. There is a 1:1-correspondence between connected components of A
and connected components of V (A).

For both her and our situations, the following holds:
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n)

Figure D.2: Possible configurations of a 2× 2× 2-cube with at most 4 black voxels. The
remaining possible configurations correspond to (a)-(h) with the colours inverted.

Lemma D.8. Up to rotation, reflection an inversion of the colours, there are 14 pos-
sible colour combinations of black and non-black voxels in each 2×2×2-configuration,
see Figure D.2.

Proving this lemma is merely a question of doing combinatorics; for instance,
if the 2 × 2 × 2-cube contain exactly 2 black voxels, these two either share a face,
an edge or a corner, and up to rotation and reflection, each of these can happen in
exactly one way. If the 2× 2× 2-cube contains 0,1,3 or 4 cubes, one can arrive at
the possible configurations by similar reasoning, and if it contains 5,6,7 or 8 black
voxels, then switching the colours of the black and non-black voxels one can use the
arguments from the cases with 0-4 black voxels. We leave the details out.

Now, Tang Christensen introduced the following:

Definition D.9. A voxel reconstruction is a quasi-manifold (with boundary) if it
satisfies:

(i) The only configurations of black voxels (up to rotational and reflectional
symmetry) are (a)-(g), (i), (j) and (l) of Figure D.2, together with (a)-(g) with
the colours inverted.

(ii) Configurations (d) and (g) are only allowed when paired with their own or
each other’s complement as illustrated in Figure D.3;

(iii) Any pair of black voxels in the same component of the voxel reconstruction is
connected by a chain of face-adjacent black voxels.

Theorem D.10. The black voxel reconstruction V (A) of an r-regular set A by a
lattice of side length d, 0 < 0.95571d < r, is a quasi-manifold.
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(a) (g) paired with
its own inverse.

(b) (g) paired with
the inverse of (d).

(c) (d) paired with
its own inverse.

(d) (d) paired with
the inverse of (g).

Figure D.3: The only possible occurences of configurations (d) and (g) from Figure D.2.
Note that the second and fourth configurations are each others inverses.

Theorem D.11. Given a quasi-manifold V , it is possible to insert and remove
wedges from V to obtain a topological manifold W . Furthermore, the edges and
vertices of W may be smoothed in arbitrarily small neighbourhoods to obtain a smooth
manifold Z.

In her thesis [2], Appendix B, Tang Christensen thoroughly explains how the sets
W and Z are constructed. She then proves the following:

Proposition D.12. There is a set T diffeomorphic to ∂A× [−1, 1], with boundaries
T−1 ' ∂A× {−1}, T1 ' ∂A× {1}, such that

• The intersections ∂Z ∩ T−1 and ∂Z ∩ T1 are empty,
• The boundary ∂Z of Z is a subset of Int(T ) = f−1((−d

√
3, d
√

3)),
• The boundary ∂Z separates T in the sense that T \∂Z consists of two connected

components, one containing T−1 ' A×{−1}, the other containing T1 ' A×{1}.

The main idea to prove the main theorem D.6 is to use the following corollary of
the Poincare-Hopf Theorem and the above theorem:

Proposition D.13. [Proposition 2.20 in [2]] Let M , N be compact smooth n-
manifolds without boundary, and let T be a set diffeomorphic to M × [−1, 1]. Let T−1,
T1 be the subsets of T corresponding to M × {−1}, M × {1}, respectively, under this
diffeomorphism. Suppose N ⊂ T in such a way that N separates T , i.e. there are
open sets U ⊃ T−1 and V ⊃ T1 such that T \N = U q V is a disjoint union.

Let v be a continuous, nowhere zero vector field on T and suppose v points inwards
at T−1, outwards on T1 and is transverse to N . Then

χ(M) = χ(N),

where χ is the Euler characteristic.

Tang Christensen introduces a vector field satisfying the requirements of Proposi-
tion D.13 on the set T from Proposition D.12, which allows her to combine these
above two results to get

Corollary D.14. χ(∂Z) = χ(∂A). In particular, ∂A and ∂Z are homeomorphic.

This corollary is crucial, because it allows us to apply the following theorem to
Tang Christensen’s situation:
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Theorem D.15 (Chazal and Cohen-Steiner, [1]). Let M,N ⊆ R3 be two com-
pact, orientable surfaces such that

• M is homeomorphic to N ,
• N is included in a set T homeomorphic to M × [−1, 1],
• N separates the sides of T in the sense that T \N consists of two connected

components, one containing T−1 ' M × {−1}, the other containing T1 '
M × {1}.

Then N and M are isotopic through an isotopy in T .

Applying this theorem to her situation and using isotopy extension on T , we get
the following, which imply Tang Christensen’s Main Theorem D.6:

Theorem D.16. Let Z be the smoothed voxel reconstruction of an r-regular set A
by a grid dZ3. Then ∂Z is ambiently isotopic to ∂A.

These were the ideas that Tang Christensen used, at that we will copy.
Going through Tang Christensen’s work, it turns out that she uses the symmetry

between the white and the black voxels that is present in her digitisation model, so
whenever she showed things for the black voxels, they would automatically hold for
the white voxels as well. We are not quite as lucky, so we need to take extra care.
Thus, diving into her approach, we see that in order to apply it to our digitisation
model, we should reformulate Theorem D.7 as

Theorem (Reformulation of Tang Christensen’s Theorem D.7). There is
a 1:1-correspondence between connected components of A and connected components
of V (A). Furthermore, there is a 1:1-correspondence between components of AC and
components of V (A)C .

We should also reformulate point iii) in the definition of a quasi-manifold, so the
definition becomes the following

Definition (Reformulation of Definition D.9). A voxel reconstruction is a quasi-
manifold (with boundary) if it satisfies:

(i) The only configurations of black voxels (up to rotational and reflectional
symmetry) are (a)–(g), (i), (j) and (l) of Figure D.2, together with (a)–(g)
with the colours inverted.

(ii) Configurations (d) and (g) are only allowed when paired with their own or
each other’s complement as illustrated in Figure D.3;

(iii) Any pair of black voxels in the same component of the voxel reconstruction
V (X) is connected by a chain of face-adjacent black voxels. Furthermore, any
pair of non-black voxels in the same component of the complement V (X)C
of the voxel reconstruction is connected by a chain of face-adjacent non-black
voxels.

In order to apply Tang Christensen’s approach to our setup, we need to prove
that those of Tang Christensen’s theorems that are specific to her digitisation model
also holds for our digitisation model. That means that we have to prove the following:
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• There is a 1:1-correspondence between components of X and components of
V (X), and also between components of XC and components V (X)C .

• V (X) is a quasi-manifold (in our reformulated sense),
• There is a set T satisfying the requirements of Proposition D.12.

The rest of the paper we will be dealing with these problems, one at a time.

D.3 Preliminaries

Before we start, we should mention some important facts about r-regular sets, which
we will use excessively in the following.

Definition D.17. For δ > 0, we denote the δ-tubular neighbourhood of ∂X in R3

by Nδ = {x ∈ R3 | d(x, ∂X) < δ}.

Proposition D.18 (Duarte & Torres, [4]). Let X ⊆ Rn be an r-regular set. Then
there is η : ∂X → R3 such that

• η is a normal vector field along ∂X,
• ‖η(x)‖ = r for every x ∈ ∂X,
• Lip(η) ≤ 1.

Lemma D.19 (Duarte & Torres, [3]). Let X be an r-regular set. For each x ∈ Nr

there is a unique point π(x) ∈ ∂X such that d(x, ∂X) = d(π(x), x). Hence there is a
well-defined projection π : Nr → ∂X, and this map is continuous.

The corresponding theorems in Duarte and Torres [3, 4] only shows this theorem
on Nr/2, However, the proof works just as well on Nr by Theorem A.13, (ii).

Theorem D.20 (Proven in A.13,(iii)). Let f : Nr → R be the function given by

f(x) = 1
r
〈x− π(x), η(π(x))〉.

Then f is C1 and the zero set of f is f−1({0}) = ∂X.

In this last theorem, we have modified the function from Duarte and Torres’
papers [3, 4] by a factor of 1

r . However, this does not change the results.
With our definition f measures the (signed) distance between a point and the

boundary of X, since x − π(x) and η(π(x)) are parallel (cf. Remark A.10). The
theorem implies the main result of Duarte and Torres’ paper [3]:

Theorem D.21 (Duarte & Torres [3]). Let X ⊆ Rn be an r-regular set. Then
∂X is a co-dimension one manifold of class C1.

One can come up with examples of r-regular sets that are C1, but not C2 (see
[3]), so this is the best we can hope for in terms of smoothness of r-regular sets.

Proposition D.22 (Proven in A.27). Let −r < s1 < s2 < r and let f be the
function from Theorem D.20. Then
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(i) f−1([s1, s2]) has manifold boundary f−1({s1}) ∪ f−1({s2})
(ii) f−1([s1, s2]) is diffeomorphic to ∂X × [−1, 1].

Furthermore, we have a retraction ρ : N → XC∪∂X from Definition A.28 defined
by

ρ(x) =
{
x if x ∈ XC ∪ ∂X
π(x) otherwise

,

This retraction will be crucial in later arguments, since it has some nice properties:

Proposition D.23 (Stelldinger et al., [6]). Let x, y ∈ XC with d(x, y) < 2r and
let L ⊆ Rn be the line segment between them. Then

(i) The line segment L is a subset of XC ∪Nr, and ρ|L is injective,
(ii) For s < r and Bs any s-ball containing x and y, ρ(L) is a subset of Bs.

Definition D.24. Let L ⊆ Rn be a closed line segment of length |L| < 2r. Then the
r-spindle S(L, r) is the intersection of all closed balls of radius r whose boundaries
contain both endpoints of L.

Lemma D.25 (Proven in Addendum A.32). Let L ⊆ Rn be a closed line segment
of length |L| < 2r. Then the r-spindle S(L, r) is the intersection of all closed balls of
radius less than r that contain L.

Corollary D.26 (Proven in Corollary A.33). Let x, y ∈ XC with d(x, y) < 2r
and let L ⊆ Rn be the line segment between them. Then ρ(L) is a subset of the
r-spindle S(L, r).

When x, y ∈ XC are white points and L is the line between them, we will call the
path ρ(L) between them a white path (even though it may contain points in ∂X).

Another useful fact will be the following:

Theorem D.27 (Proven in A.38). Let x, y, z be three non-collinear points in
a closed s-ball Bs, s ∈ (0, r), and let T be the triangle that they span. Write Li
for the edge of T opposite vertex i. Then there exists a continuous map σ : T →
Bs ∩ (XC ∪ ∂X) such that

(i) The image σ(T ) of T under σ is a subset of Bs,
(ii) The function σ is equal to the function ρ on Lx ∪ Ly ∪ Lz.

D.4 Reconstructing topological features

D.4.1 Correspondence between components of X and V (X)

We now turn return to our setup, where X is an r-regular object and V (X) is the
inner Jordan digitisation of X by a lattice dZ3 with d

√
3 < r.

As already explained, one of the ingredients needed to apply Tang Christensen’s
work to our situation is to show that there is a correspondence between components
of X and V (X), so that is what we will do in this section.
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Theorem D.28. There is a 1:1-correspondence between connected components of X
and connected components of V (X).

This result is established through a series of results. First, we need to know that
the reconstruction actually detects all components of X:

Lemma D.29. Every connected component X ′ of X contains at least one black voxel
in its digital reconstruction.

Proof. Let X ′ be a connected component of X. Then X ′ is also r-regular, so in
particular there is a ball Br(x) ⊆ X ′. Let V (l) be the voxel containing x, centred at
l. Since diamV (l) = d

√
3 < r, this means that V (l) ⊆ Br(x) ⊆ X, and hence V (l)

must be black.

Lemma D.30. The reconstruction of a connected component of X is also connected.

Proof. Consider two black cubes V (l), V (l′) in V (X ′), the inner Jordan digitisation of
X ′. If V (l) and V (l′) both contain elements y, y′ of X	 = {x ∈ X | d(x, ∂X) > d

√
3},

pick a path in X	 from y to y′ – this is possible since X	 is connected. Then any
voxel that this path enters must be black: a point in such a voxel can be no further
away from X	 than d

√
3, whereas elements of XC must be strictly further away

than d
√

3. Hence the path from y to y′ gives rise to a path of black voxels from V (l)
to V (l′).

On the other hand, if V (l) does not contain a point of X	, then d
2 ≤ d(l, ∂X) <

d
√

3− d
2 . Let y denote the point π(l)− d

√
3

r η(π(l)). Then the point y lies on the line
through l and normal to ∂X at π(l), and d(y, ∂X) = d

√
3. Thus

d(y, l) = d(y, ∂X)− d(l, ∂X) ≤ d
√

3− d

2 <
3d
2

so y must belong to a neighbouring voxel V (m), since points not in a neighbouring
voxel is at least a distance 3d

2 away from l. And by our previous argument, since
y ∈ X ′	, V (m) must be black. Since any black voxel is adjacent to a black voxel
containing an element of X ′	, and since any voxels containing elements of X ′	 can be
connected through a chain of black voxels, we must have that V (X ′) is connected.

The final lemma that we need in order to prove Theorem D.28 is the following:

Lemma D.31. Let X denote the set of connected components of X. Then

V (X) =
⋃

X′∈X
V (X ′),

and this union is disjoint.

Proof. It should be clear that V (X) = ⋃
X′∈X V (X ′), so the only tricky part is to

show that this union is disjoint. But this is clear, since for connected components X ′
and X ′′, V (X ′) ⊆ X ′ and V (X ′′) ⊆ X ′′, which are disjoint.
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Proof of Theorem D.28. Let X ′ be a connected component of X. By Lemma D.29
X ′ contains a voxel, hence for each connected component of X, there is at least one
black voxel in X ′. By Lemma D.31, black voxels belonging to different connected
components of X are not connected through a chain of black voxels, so for each
component X ′, there is at least one connected component of V (X). By Lemma D.30,
there must in fact be exactly one connected component of V (X) for every connected
component of X. Since any voxel of V (X) belong to some connected component of
X, we get a 1:1-correspondence.

A similar result is true for the complement:

Theorem D.32. The connected components of XC is in 1:1-correspondence with
the connected components of V (X)C .

Proof of Theorem D.32. The proof of this is similar to what we just did. Let V (X)C
denote the set of non-black voxels in the reconstruction of X.

Let Y ′ be a connected component of XC . Then there is a white ball Br(xw) ⊆ Y ′.
The voxel V (l) containing xw must be contained in Br(xw) and hence be white, so
each component of XC contains at least one non-black voxel.

Assume V (l1) and V (l2) are non-black voxels that each contain an element y1, y2
of Y ′. Since Y ′ is connected, there is a path in Y ′ connecting y1 and y2. Each point of
this path is contained in a white ball, hence each point of the path must belong to a
non-black voxel. So the path gives rise to a path of non-black voxels connecting V (l1)
and V (l2), showing that the set of non-black voxels containing points of a connected
component Y ′ is connected. Thus any connected component of XC gives rise to a
connected component of V (X)C . If we can show that these connected components
are disjoint, we would have a 1:1-correspondence between components of XC and
components of V (X)C .

Consider two connected components Y ′ and Y ′′ of V (X)C and two voxels V (l1)
containing a point y1 ∈ Y ′ and V (l2) containing a point y2 ∈ Y ′′. If V (l1) and V (l2)
are adjacent, then d(y1, y2) ≤ 2d

√
3 < 2r. Let L denote the line between y1 and

y2. By the previous section, there is a path ρ(L) in XC ∪ ∂X from y1 to y2, and
since ∂X has a nice normal vector field, we can push this path a little along the
normal vector field of ∂X to obtain a path in XC from y1 to y2. But then y1 and y2
belong to the same connected component of V (X)C , contradicting the assumptions.
Hence two voxels containing points from two different connected components cannot
be adjacent, so each connected component of XC give rise to a distinct connected
component of V (X)C , as claimed.

D.5 Configurations

The next thing that we need to prove in order to apply Tang Christensen’s results
is that the inner Jordan digitisation V (X) is a quasi-manifold. This is a key point
in the argument, and also something that requires some work. To do this, we need
to consider which configurations cannot occur in the digital image of an r-regular
object by a lattice dZ3 with d

√
3 < r. This section is devoted to such considerations.

Now, the aim of this section will be to show the following two theorems:
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Theorem D.33. Assume r > d
√

3. In the inner Jordan digitisation V (X) of an
r-regular set X by a lattice dZ3, neither of the following configurations of black and
non-black configurations can occur:

The grey cubes in these figures represents the non-black voxels, and the blue cubes
represent voxels of unspecified colour.

Theorem D.34. Assume r > d
√

3. In the inner Jordan digitisation V (X) of an
r-regular set X by a lattice (dZ)3, neither of the following configurations of black
and non-black configurations can occur, and nor can their inverses:

Furthermore, the following configuration cannot occur:

We remark that Theorem D.34 implies the first bullet point in the quasi-manifold
definition, while the second bullet point in the quasi-manifold definition follows from
Theorem D.33.

From now on, we will measure all lengths in units of d. We let X be an r-regular
set with d

√
3 < r. Tote that a set that is r-regular for some r >

√
3 in particular is√

3-regular. Let r′ = d
√

3 from now on.
In our arguments we will repeatedly need some basic facts, so we will go through

these first. The following is perhaps the most important:

Lemma D.35. Consider a configuration of 8 voxels in a 2× 2× 2-cube centered at
x ∈ R3 and suppose A1, . . . , An, n ∈ {3, 4}, are (some of the) non-black voxels in this
configuration. Pick a white point xi in the interior of each Ai and let Li,j denote the
straight line segment from xi to xj. Suppose the configuration allows the following:

• There exists a simple black path γ : [0, 1]→ Br′(x)∩X from one boundary point
of Br′(x) to another, such that γ(0), γ(1) ∈ ∂Br′(x) and γ((0, 1)) ⊆ Int(X),
see Figure D.4,
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• The composition of the paths ρ(Li,i+1), i = 1, 2, . . . , n and ρ(L1n) is linked with
γ̃ in Br′(x), where γ̃ is the path obtained from γ by joining the endpoints of γ
with an arc in ∂Br′(x).

Then the configuration cannot occur in inner Jordan digitisation of an r-regular
set, see Figure D.4.

Figure D.4: It is impossible for the image of ρ on the boundary of a polygon spanned by
four white points in a ball Br′(x) to be linked with a path γ ∈ Br′(x) ∩ Int(X).

Proof. Consider a configuration of voxels that allows the above conditions to be
satisfied.

If n = 3, let G be the triangle with corners at the xi’s, and if n = 4, let G be
the union of two edge-adjacent triangles with corners at the xi’s. Note that in both
cases, the boundary of G will be line segments Lij .

Let H : D → G be a homeomorphism, where D is a closed 2-disc. Note that (each
of) the triangle(s) of G are mapped by σ to a subset of Br′(x) by Theorem D.27, since
all xi’s are interior points of one of the voxels. Thus σ(G) ⊆ Br′(x) ∩ (XC ∪ ∂X).

Define the map F : ∂D × [0, 1]→ σ(G) ⊆ Br′(x) ∩ (XC ∪ ∂X),

F (x, t) = σ(H(tx))

Then F is a continuous homotopy from σ ◦ H|∂D = ρ ◦ H|∂D to a constant map
σ(H(0)).

Now γ((0, 1)) ⊆ Int(X), so σ(G) ∩ γ((0, 1)) = ∅, which means that ρ ◦H|∂D is
homotopic to a constant map in Br′(x) \ γ∗.

On the other hand, ρ(H(∂D)) = ρ(∂G) is the path formed by composing the
ρ(Li,i+1) and ρ(L1,n) for i = 1, 2, . . . , n− 1. Since it is linked with γ̃, the homology
class of ρ(∂G) in H1((γ(0, 1))C) is non-trivial, so the curve cannot be null-homotopic
in Br′(x)\γ((0, 1)) – a contradiction. So a situation like the one in this lemma cannot
occur in the reconstruction of an r-regular surface.

Lemma D.36. Let A := [0, 1] × [−1, 0] × [0, 1] and B := [−1, 0] × [0, 1] × [0, 1] be
two grey voxels sharing an edge (see Figure D.5, left), and let x1 ∈ A, x2 ∈ B be
two white points. Let L be the line segment between x1 and x2. Then the path ρ(L)
must intersect the plane P containing (1, 1,±1) and (−1,−1,±1) inside a rectangle
R with vertices (1, 1,−1), (−1,−1,−1), (1, 1, 2) and (−1,−1, 2).



D.5. Configurations 149

Figure D.5: Left: The path ρ(L) between cubes A and B must intersect the blue plane P
somewhere inside the black rectangle R. Right: The r-ball centered at the origin contains
both A and B, and hence any spindle between two points in these cubes. It intersects the

plane P somewhere beneath the level z = 2.

Proof. Let L be the line segment between x1 and x2 and note that ρ(L) ⊆ S(L, r),
which is the intersection of all closed balls of radius less than r containing L. It might
therefore be a good idea to look at smartly chosen balls.

Note that the ball Br′(0, 0, 0) contains both A and B, and hence any spindle
between them, see Figure D.5, right. The maximum z-coordinate value for a point in
this sphere is

√
3, so any r-spindle between A and B must intersect P somewhere

beneath the plane z =
√

3 < 2.
Similarly, the ball Br′(0, 0, 1) also contains all of A and all of B, but does not

contain any points with a z-coordinate less than 1 −
√

3 > −1. So any r-spindle
between A and B must intersect P somewhere above the plane z = −1.

Now let c1 = (−1
2 ,−

1
2 ,

1
2) and consider the ball Br′(c1). It contains all of A and

all of B. The maximum x-coordinate for a point in P ∩Br′(c1) is x =
√

6−1
2 < 1. So

any r-spindle between A and B must intersect P in a point (x, x, z) where x < 1.
A similar argument with c2 = (1

2 ,
1
2 ,

1
2) and the ball Br′(c2) shows that an r-

spindle between A and B must intersect P in a point (x, x, z) where x > −1, see
Figure D.6.

Thus the white path ρ(L) must pass the plane P somewhere inside the interior
of the rectangle with vertices (1, 1,−1), (−1,−1,−1), (1, 1, 2) and (−1,−1, 2).

Lemma D.37. Let n ≥ 2 and consider the two stacks of black voxels C := [1, 2]×
[0, 1]× [0, n] and D := [0, 1]× [1, 2]× [0, n], see Figure D.7. Then the interior points
of the rectangle R spanned by the corners (2, 0, 0), (2, 0, n), (0, 2, 0) and (0, 2, n) all
belong to the interior of X.
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Figure D.6: The plane P . The intersection (dark blue area) of the plane P with the four balls
is contained in the rectangle (bright blue) in P with vertices (1, 1,−1), (−1,−1,−1), (1, 1, 2)

and (−1,−1, 2).

Figure D.7: The situation in Lemma D.37, in the case where n = 2 The hard part is to
show that elements on the red line l cannot belong to ∂X

.
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Proof. The statement is clear for all points in R \ ∂R that does not belong to the
open line segment l between (1, 1, 0) and (1, 1, n), since such points belong to the
interior of black cubes and hence the interior of X. So we only need to consider the
points of l.

But if (1, 1, p) ∈ l was in fact a boundary point of X, for some p ∈ (0, n), then
there would exist a white r′-ball tangent to X at (0, 0, p). However, such a ball would
have non-empty intersection with either C or D, contradicting the fact that C and
D are both black.

Lemma D.38. Let A := [0, 1]× [0, 1]× [0, 1] and B := [0, 1]× [0, 1]× [−1, 0] be two
grey voxels sharing a face as in Figure D.8, and let x1 ∈ Int(A), x2 ∈ Int(B) be two
white points. Let L be the line segment between x1 and x2. If the path ρ(L) intersects
the plane P containing (1, 0,±1) and (0, 1,±1), then it does so inside the rectangle
R with vertices (1, 0,±1) and (0, 1,±1).

Proof. Note that ρ(L) is contained in the r-spindle S(L, r) which in turn is contained
in every closed ball of radius less than r containing L, and hence also in every open
ball of radius less than r containing L. Consider the open ball Br′(0, 0, 0). This
ball contains both Int(A) and Int(B). In particular it contains both x1 and x2, and
therefore S(L, r). Now ∂Br′(0, 0, 0) ∩ P is a circle centered at the origin and with
radius 1, see Figure D.8, and such a circle is contained in the rectangle R with
vertices (1, 0,−1), (1, 0, 1), (0, 1,−1) and (0, 1, 1).

Since Br′(0, 0, 0) was open, points in Br′(0, 0, 0) intersects P somewhere in the
interior of R.

Figure D.8: The ball Br′(1,−1, 0) contains A and B and intersects the plane P in a circle
of radius 1 centered at the origin

So if the path ρ(L) intersects the plane P , it does so somewhere in the interior of
R.

We are now ready to prove Theorem D.33. Let us treat the cases one at a time.
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D.5.1 Left configuration from Theorem D.33

Consider the configuration in Figure D.9.

Figure D.9: The configuration that we are now considering, seen from two different angles.
We do not wish to assume anything about the colour of the blue voxels in the figure.

Let us as usual start by naming the grey cubes as in the figure:

A := [0, 1]× [0, 1]× [1, 2]
B := [0, 1]3

C := [0, 1]× [0, 1]× [−1, 0]
D := [−1, 0]× [−1, 0]× [1, 2]
E := [−1, 0]× [−1, 0]× [0, 1]
F := [−1, 0]3

Remember that by Lemma D.36, the path ρ(L) between any two white points
in B and E, respectively, intersects the plane P containing the points (±1,∓1, 0)
and (±1,∓1, 1) somewhere inside the rectangle R with corners (1,−1,−1), (1,−1, 2),
(−1, 1,−1) and (−1, 1, 2). Notice that in our setup, the middle part Q := {(x, y, z) ∈
R | z ∈ [0, 1]} of that rectangle is black since it is contained in black voxels, so in fact
such a path can only pass P somewhere above the level z = 1 or somewhere below
z = 0.

Lemma D.39. In the configuration in Figure D.9, there exists a ball Br′(x), a closed
white path L ∈ Br′(x) and a simple black path γ ∈ Br′(x) with end points in ∂Br′(x)
such that L is linked with γ inside Br′(x).

Proof. Choose white points xA ∈ Int(A), xB ∈ Int(B), xC ∈ Int(C), xD ∈ Int(D),
xE ∈ Int(E) and xF ∈ Int(F ), and let Lij denote the line segment between xi and
xj .

Consider the path a consisting of the join of the three path segments ρ(LBA),
ρ(LAD) and ρ(LDE). It is a path joining xB to xE that cannot pass P under the
level z = 0 by Lemma D.38 and Lemma D.36, and hence it has to pass P somewhere
above z = 0. Let us orient the path such that it starts at xB and ends at xE . This
path must pass the plane P somewhere inside R, because this is true for each of the
path segments ρ(LBA), ρ(LAD) and ρ(LDE).

Similarly, the path b consisting of the path segments ρ(LBC), ρ(LCF ) and ρ(LEF )
is a path joining xB and xE , and must intersect P somewhere below z = 0 for the
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same reasons. Let us orient this path such that it starts at xE and ends at xB. Again,
this path must pass the plane P somewhere inside R, because this is true for each of
the path segments ρ(LBC), ρ(LCF ) and ρ(LEF ).

Consider any path γ in Q, the black part of P , that run from one side {(1,−1, t) |
t ∈ [0, 1]} of Q to the other {(−1, 1, t) | t ∈ [0, 1]}. Extending this path by adding a
sufficiently large arc connecting the end points, we get a closed curve γ̃ that is linked
with ab, since ab intersect P somewhere inside the rectangle R, see Figure D.10.

Figure D.10: The situation that we are considering. The figure shows the configuration,
projected onto the plane P . The red path is the path ab, connecting the six white points.
Any path γ (such as the blue path in this figure) inside Q (the black part of the rectangle)
that has an endpoint on each side of Q can be connected with an arc in P that is so big that

the composition of γ and the arch is linked with ab.

Put c = ρ(LBE), oriented so that it starts at xB and ends at xE . Then, if link(g, h)
denotes the linking number of two path g and h,

1 = link(ab, γ̃) = link(ac̄cb, γ̃) = link(ac̄, γ̃) + link(cb, γ̃),

showing that either ac̄ or cb has non-trivial linking number with γ̃. Let us say that
cb is linked with γ. Because cb is the composition of the path segments ρ(LBC),
ρ(LCF ), ρ(LEF ) and ρ(LBE) that all belong to spindles of line segments of points in
Br′(0, 0, 0), so must cb. Since cb is linked with γ for any path γ in Q that connects
the sides of Q, we can in particular choose Q to be the piecewise linear path from
(1,−1, 1) through (0, 0, 1

2) to (−1, 1, 1). Then the end points of γ will belong to
∂Br′(0, 0, 0), which was what we wanted.

This lemma has now brought us in the situation of Lemma D.35, so we may now
conclude that the configuration in Figure D.9 cannot occur.
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Figure D.11: The configuration of black and grey voxels that we consider, shown from two
different angles. We do not wish to assume anything about the colour of the blue voxels in

the figure.

D.5.2 Right configuration from Theorem D.33

Consider the configuration in Figure D.11. We wish to prove that this cannot occur.
For this pick a white point x1 ∈ A := [0, 1] × [−1, 0] × [0, 1] and a white point

x2 ∈ B := [−1, 0]× [0, 1]× [0, 1], and let L be the straight line between them. Then
d(x1, x2) < 2r, so there is a white path ρ(L) between them that is contained in the
r-spindle S(L, r).

Consider the plane P through the points (1, 1,±1), (−1,−1,±1). By Lemma D.36,
the path ρ(L) passes P somewhere inside the rectangle R with vertices (1, 1, 2),
(1, 1,−1), (−1,−1, 2) and (−1,−1,−1). The interior of R is black since it is contained
in black voxels (see Figure D.12) and cannot contain any boundary points of X by
Lemma D.37, so ρ(L) cannot pass P here – a contradiction. Thus the configuration
in Figure D.11 cannot occur.

Figure D.12: We argue that the path ρ(L) between a point in A and a point in B (the
grey cube behind the plane) must pass the plane P somewhere inside the black part of P .

Now, combining the results of Subsections D.5.2 and D.5.1, we get Theorem D.33.

We now proceed to the proof of Theorem D.34. We consider the configurations



D.5. Configurations 155

one at a time:

D.5.3 Third configuration three from Theorem D.34

Consider the configuration in Figure D.13. Once again, we wish to rule out the
possibility of this occurring in a digitisation of an object.

Figure D.13: The configuration we will show cannot occur. The voxel hidden behind the
figure is also black, so that this configuration consists of four grey and four black voxels. The

grey voxels have been named for later use.

We can start by naming the four grey voxels as in the figure, such that

A := [0, 1]× [−1, 0]× [0, 1],
B := [0, 1]× [−1, 0]× [−1, 0],
C := [−1, 0]× [−1, 0]× [0, 1],
D := [−1, 0]× [0, 1]× [−1, 0].

The aim will now be to apply Lemma D.35. To this end we will prove the following:

Lemma D.40. Consider the configuration in Figure D.13. There is a white path
L ⊆ Br′(0, 0, 0) that runs once around a simple black piecewise linear path γ with
endpoints (1, 1, 1), (−1,−1, 1).

Proof. Pick white points xA, xB, xC , xD, one in the interior of each of the four grey
voxels A, B, C, and D. Each of these will be closer than 2r′ to any one of the others.
Let γ be the piecewise linear path from (1, 1, 1) through (0, 0, 1− ε) to (−1,−1, 1)
for some small ε. Let Lij be the straight line between xi and xj . We would like L to
be a composition of white path segments ρ(Lij), so we need to look at how these
behave.

Let P be the plane through (1, 1,±1), (−1,−1,±1), see Figure D.14 – this plane
contains γ. By Lemma D.36, ρ(LAC) has to pass P somewhere inside the rectangle
R with corners (1, 1,−1), (1, 1, 2), (−1,−1,−1) and (−1,−1, 2), and since the lower
half of this rectangle is black and does not contain any boundary points of X by
Lemma D.37, ρ(LAC) must in fact pass P in a point (x, x, z) where z ∈ [1, 2], as in
the figure. So ρ(LAC) passes P somewhere above γ.

Similarly, the white path ρ(LBD) must pass P somewhere inside the non-black
part of the rectangle with corners (1, 1,−2), (1, 1,−1), (−1,−1,−2) and (−1,−1,−1).
So ρ(LBD) passes P somewhere below γ.
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Figure D.14: The path ρ(LAC) intersects the plane P somewhere inside the blue rectangle
R. Since most of this rectangle is black, the path must intersect R somewhere above the

plane z = 1.

By Lemma D.38, if ρ(LAB) passes P , it does so somewhere in the interior
of the rectangle with vertices (1, 1,−1), (−1,−1,−1), (1, 1, 1) and (−1,−1, 1). But
this rectangle is black, and contains no boundary points of X in the interior by
Lemma D.37, so ρ(LAB) cannot pass P . By a similar argument, ρ(LCD) cannot pass
P either.

Composing the paths ρ(LAB), ρ(LBD), ρ(LDC) and ρ(LCA) we thus get a closed
path that winds once around γ, and hence is also linked with γ. Note that this path
is contained i Br′(0, 0, 0), since all points x1, x2, x3 and x4 are contained in this
ball.

Now we are in the situation of Lemma D.35, so we conclude that this configuration
cannot occur.

D.5.4 First, second and fourth configuration from Theorem D.34

Consider the configuration in Figure D.15. We will not assume anything on the
colours of the blue voxels, as we wish to prove that this configuration cannot occur
regardless of what colours they may have. If we can show this, it follows that neither
of the configurations (h), (k) or (n) from Figure D.2 can occur, and nor can their
inverses.

Assume that xA is a white point in the interior of A := [0, 1]3 and that xB is a
white point in the interior of B := [−1, 0]× [−1, 0]× [0, 1], and look at the line LAB
between them. Then ρ(LAB) is a path in XC ∪ ∂X between the two points, since
d(xA, xB) < 2r′.

Consider the plane P containing the vertices (1,−1,±1), (−1, 1,±1). We wish to
determine where the white path ρ(LAB) intersects this plane for the first time, starting
from xA. By Lemma D.36, ρ(LAB) must intersect P somewhere inside the rectangle
R with vertices (1,−1,−1), (1,−1, 2), (−1, 1,−1), (−1, 1, 2), see Figure D.16.

Notice that the middle part of the rectangle is black, so the white path cannot
intersect P in this part of the rectangle. We wish to show the following:
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Figure D.15: The configuration we are considering. The voxel that is hidden is also blue,
and we do not assume anything about the colour of the two blue voxels.

Figure D.16: The intersection between P and any r-spindle between a point in A and a
point in B lies inside the rectangle R. Thus, the white path between xA and xB also intersects
this rectangle. To the left, both the rectangle R and the configuration we consider are shown,
and to the right the rectangle is shown on its own. In the latter figure, the middle part of
the rectangle is coloured black, since we know that this part of the rectangle is contained in

black voxels, and hence it is contained in X.

Lemma D.41. The path ρ(LAB) must intersect the plane P for the first time
somewhere above the plane z = 1.

Proof. Assume that this is not the case. Then the path intersects P for the first time
somewhere beneath the black rectangle. Suppose ρ(LAB) passes P for the first time
somewhere in the voxel C := [0, 1]× [−1, 0]× [−1, 0], see Figure D.16. Then ρ(LAB
must also enter C for the first time (coming from A somewhere on the same side of
the plane P as A. We investigate through which face(s) of C the path ρ(LAB) can
enter C for the first time when coming from A.

It cannot enter through one of the black faces of C, since ρ(LAB) is a white path.
It also cannot enter through one of the blue faces in the Figure D.17, since these
faces lie on the opposite side of P , and ρ(LAB) has not passed P yet by assumption.
This leaves two faces.

Now ρ(LAB) belongs to S(LAB, r′), and thus to any ball of radius less than r′
containing LAB. If we let c = (−1

2 ,
1
2 ,

1√
2), then Br′(c) contains all of Int(A) and

Int(B), and thus all spindles between them.
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Figure D.17: We assume that the white path ρ(LAB) enters the cube C. It cannot happen
at the two black faces of C since the path is white, and it cannot happen through the blue

faces, since they are on the wrong side of P .

The ball Br′(c) does not intersect the two remaining sides of the cube C, since

d(c, (1, y, z)) =
√(
−1

2 − 1
)2

+
(1

2 − y
)2

+
( 1√

2
− z

)2

≥

√(3
2

)2
+
(1

2

)2
+
( 1√

2

)2
=
√

3 = r′

when −1 ≤ y, z ≤ 0, and similarly on the face {(x, y,−1) | 0 ≤ x ≤ 1,−1 ≤ y ≤ 0},
see Figure D.18. Since ρ(LAB) belongs to Br(c), it cannot enter the cube C through
either of the two white faces of C, and hence it cannot enter C before passing through
P the first time.

Figure D.18: The green ball contains A and B, but does not intersect C in a non-black face
on the same side of P as xA. The right hand picture shows only C and the sphere. Notice

that the figures have been rotated to give a better picture of what is happening.

So ρ(L) has to pass P somewhere above the black rectangle the first time. (In
fact our argument shows that if ρ(L) ever enters C, it must do so in the part of
R3 \ P containing xB, and it must also leave C in this part of R3). So ρ(L) is not
wound around the black rectangle.

In short, we have a white path ρ(LAB) that passes over the black piecewise
linear path γ through (−1, 1, 1), (0, 0, 1

2) and (1,−1, 1). The aim will now be to use
Lemma D.35. We will start by proving the following:
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Lemma D.42. There exists a white path L in Br′(0, 0, 0) that runs once around the
piecewise linear path γ from (−1, 1, 1) through (0, 0, 1

2) to (1,−1, 1).

Proof. We already have a white path ρ(LAB) that passes over the black piecewise
linear path γ. We now wish to show that neither the path ρ(LBD) from xB to xD,
nor the path ρ(LAD) from xA to xD, pass over γ, because then the result will follow
from composing the three paths ρ(LAB), ρ(LBD) and ρ(LAD).

Figure D.19: The green sphere Br′((− 1
2 ,−

1
2 ,−

√
5
2 + 1)) contains both B and D (the two

rightmost grey cubes), but ρ(LBD) must intersect the plane P (light blue) in a point that is
not in the interior of X, so somewhere under γ

Consider the ball Br′((−1
2 ,−

1
2 ,−

√
5
2 + 1)). A computation shows that this

ball contains all of B and all of D,(see Figure D.19) and thus any r-spindle
between these two cubes. It also intersects P under the path γ: If (x,−x, z) ∈
P ∩Br′((−1

2 ,−
1
2 ,−

√
5
2 + 1)), then z ≤ 1. Hence if the path from xB to xD, ρ(LBD),

passes through P , then it does so somewhere under the level z = 1. But since ρ(LBD)
is non-black, it must in fact pass P somewhere under the level z = 0, since the
rectangle R is black in the part where 0 ≤ z ≤ 1. So if the path ρ(LBD) passes
through P somewhere under the level z = 1, it must also pass P somewhere under γ.

A similar argument shows that if ρ(LAD) passes P , it also does so somewhere
beneath γ.
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So what we end up with now is a white path ρ(LAB) from xA to xB that passes
P somewhere over γ, and a white path ρ(LBD) ∪ ρ(LAD) from xA to xB passing P
somewhere under γ. Putting all three paths together, this yields a white path L in
the ball Br′(0, 0, 0) that winds once around γ.

Having established this result, we can now apply Lemma D.35 to conclude that
the configurations in Figure D.15 cannot occur in the digital reconstruction of an
r-regular set.

D.5.5 Configuration of two black voxels sharing just one corner

Consider the configuration of voxels in Figure D.20. We wish to show that this cannot
occur.

Figure D.20: The configuration that we are considering. The voxel hidden on the backside
of the cube is also grey.

The origin o in this configuration is black and cannot belong to ∂X: If it did,
there would be a white ball tangent to the origin, which is impossible since any such
ball would contain a part of one of the black voxels.

Let p ∈ ∂X be the boundary point closest to o, i. e. p = π(o). Then there are
two cases: Either the line from o to p passes through a black voxel, or it does not.
We treat these two cases separately.

Lemma D.43. Assume that the line through o and p does not pass through one of
the black voxels. Then the configuration in Figure D.20 cannot occur.

Proof. Let θ be the smallest angle between the position vector of p and the axes, say
the z-axis.

Since p is a boundary point, there exists two balls Br′(xb) ⊆ X and Br′(xw) ⊆ XC

such that Br′(xb)∩Br′(xw) = {p}. As p is the closest boundary pointto o, the tangent
plane to ∂X at p is orthogonal to the position vector of p, and thus the centres xb,
xw of the balls both lie on the line through p and o. The aim will be to show that
the centre xb of the black ball lies inside a grey voxel, for if this is the case, the voxel
would be black, which gives a contradiction.

Let us look at the plane containing p and the z-axis, see Figure D.21.
Now, p was the nearest boundary point to o, meaning that it can be no further

away from o than r′ =
√

3. Hence one of the centres of the balls xb or xw must lie
on the opposite site of o from p, and since the ball with this centre must contain o
which was black, we must in fact have that xb lies on the opposite site of o than p.
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Figure D.21: The situation viewed in the plane containing the z-axis and p.

Since xb lies on the line through p, in a distance r′ to p, it is furthest from the origo
when p is as close as possible to the origo. So we need a limit on how close p can be
to the origo.

The white ball Br(xw) is tangent to ∂X at p, and the point (0, 0, 1) is black, so
p cannot be so close to o that this white ball contains (0, 0, 1). Thus p can get no
closer to o than in the situation on the drawing, where (0, 0, 1) is a boundary point
of Br(xw).

Let L be the length of the part of the line through p and o that is contained in
the other non-black voxel, see Figure D.21. Then

L = 1
cos θ ,

and using the law of cosines on the triangle with corners (0, 0, 1), o and xw and the
fact that the circle has radius r′ =

√
3, we have

cos θ = ‖xw‖
2 + 1− 3

2‖xw‖
.

This equation may be rewritten as a quadratic equation in ‖xw‖ having the (non-
negative) solution

‖xw‖ = cos θ +
√

cos2 θ + 2.

Putting these two together we get that

‖p‖+ L = ‖xw‖ −
√

3 + L = 1
cos θ + cos θ +

√
cos2 θ + 2−

√
3.
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Since θ was the smallest angle between the position vector of p and one of the axes,
we must have θ ≤ π

2 . A computation now shows that the minimum value of ‖p‖+ L
is greater than r′, which means that xb lies inside the grey voxel.

So the centre of the black sphere would lie inside a grey voxel in this case, which
would force the grey voxel to be black – a contradiction.

Thus we only need to consider the case where the line from o to p passes through
a black voxel.

Lemma D.44. Assume that the line between o and the nearest boundary point p of
∂X passes through one of the black voxels. Then the configuration in Figure D.20
cannot occur.

Proof. Assume that the line from p to o passes through a black voxel. Continuing
along the line from p past o we would then enter the other black voxel. As before,
somewhere on the line between o and p we would have two points xb, xw such that
Br′(xw) ⊆ Xc, Br′(xb) ⊆ X and Br′(xw) ∩ Br′(xb) = {p}. Our aim will now be to
show that Br′(xb) contains one of the grey voxels, which would force the grey voxel
to be black and thereby give us a contradiction. In order to do this, we need to know
how far the centre of an r-ball containing a voxel V can be be from that voxel.

Concider a voxel V as in Figure D.22, with the vertices named as in the figure.
Let q = (1

2 ,
1
2 ,

3
2). Then q ∈ Br′(ai) and q ∈ Br′(bi) for all i. Since the same thing

Figure D.22: We are considering a voxel V as the bright blue one. A sphere of radius
√

3
centered in the blue pyramid C on top of V will contain all of V .

holds for each corner, i.e. ai, bi ∈ Br′(aj) and ai, bi ∈ Br′(bj) for all i, j, and since all
of these spheres are convex, the convex hull C of the bi’s and q must also lie in all
these spheres. So an r′-ball centered in C must contain all ai’s and bi’s, and hence
all of C. We will call C a pyramid attached to V .

Now the aim is to show that xb belongs to one of the pyramids of the grey
voxels, since this would force the corresponding voxel to be black, which would be a
contradiction, see Figure D.23.

First of all, note that
√

3 ≥ d(p, o) ≥ 1, since p cannot lie inside the black voxel
that the line between the two points pass through. We now want to find the minimal
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Figure D.23: Left: The center xb of the black ball must lie on the line through o and p (red)
in a distance of

√
3 from p. We show that in this case, xb must lie in one of the pyramids

attached to the lower grey voxels. Right: Close-up of the lower black voxel and the three
pyramids attached to the neighbouring grey voxels

distance between o and the place c where the line leaves one of the pyramids attached
to the grey voxels, see Figure D.23.

The line through p enters one of the pyramids at o, and must thereafter exit that
pyramid in a point c on a face opposite of o. So we must find the smallest distance
between a corner of a pyramid and a point on one of the faces opposite that corner.

Consider just a single pyramid as the one in Figure D.24, and suppose that our
line enters it at o and leaves at one of its far faces, for instance the far face where
1−x ≤ y ≤ x. The coordinate for a point on this face is of the form (1− t, s, t) where
t ∈ [0, 1

2 ] and t ≤ s ≤ 1− t. Thus

d((0, 0, 0), (1− t, s, t))2 = (1− t)2 + s2 + t2 ≥ (1− t)2 + 2t2 ≥ 2
3 ,

so that d((0, 0, 0), c) ≥
√

2
3 everywhere. But then

d(p, c) = d(p, o) + d(o, c) ≥ 1 +
√

2
3 >
√

3.

So since d(p, xb) =
√

3 < d(p, c), xb must belong to one of the pyramids, which
would force one of the grey voxels to be black – a contradiction.

These two lemmas put together show that the configuration in Figure D.20 cannot
occur.

Now, combining the results of Subsections D.5.3, D.5.4 and D.5.5, and noting
that the configurations in Theorem D.34 are all treated in these subsections, along
with the inverses of the first four configurations, we have proved Theorem D.34.
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Figure D.24: A pyramid. We imagine a line that enters the pyramid at o and leaves at one
of the opposite faces

D.6 Quasi-manifold property

This section is devoted to show that V (X) satisfy the quasi-manifold requirements in
our reformulated sense. Let us show that point (iii) of the quasi-manifold definition
is satisfied by our digitisation.

Theorem D.45. Let X ′ be a connected component of X. Then any two voxels in
V (X ′) are connected through a chain of face-adjacent voxels.

Proof. Consider a connected component X ′ of X and two black cubes V(l),V(l′) in
V (X ′). By Theorem D.28 they belong to the same connected component, so there is
a chain Γ of black voxels connecting them. We thus only need to show that we can
replace Γ by a chain Γ′ of face-adjacent black voxels.

Since the last of the configurations in Theorem D.34 cannot occur, then whenever
two black voxels in Γ are vertex-adjacent, one of them must share a face and the other
an edge with a third black voxel that we may then add to Γ. Similarly, whenever
two black voxels are edge-adjacent, then they either both share a face with a third
black voxel (which we may then add to the chain), or Theorem D.33 tells us that
they must both share an edge with a third black voxel. If this is the case, then going
through the possibilities for the neighbouring voxels and using Theorem D.34 they
must be connected through a chain of face-adjacent black voxels. Hence in both cases
there will be black voxels that we can add to Γ to obtain a chain of face-adjacent
black voxels.

Again, a similar result holds for XC , but the proof is a bit different:

Theorem D.46. Any two voxels containing points from the same connected compo-
nent of XC are connected through a chain of face-adjacent voxels.

Proof. By the proof of Theorem D.32, there is a chain of voxels connecting any
two non-black voxels V (l1) and V (l2). If two voxels V (l) and V (l′) in this chain
are adjacent, then the same proof shows that there is a white path γ connecting
two white points y1 ∈ V (l) and y2 ∈ V (l′). Each point on this path is white and
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hence contained in the interior of a white ball, so each voxel containing a point of γ
must be non-black. Hence if V (l) and V (l′) are not face-adjacent, we may add voxels
containing points of γ to get a path of face-adjacent non-black voxels from V (l) to
V (l′), as we wanted.

Using Tang Christensen’s definition of a quasi-manifold, we now have

Theorem D.47. The black voxel reconstruction of an r-regular set by a lattice of
side length d, 0 < d

√
3 < r, is a quasi-manifold.

Proof. Remember that we have to check that V (X) satisfies the following three
requirements:

(i) The only configurations of black voxels (up to rotational and reflectional
symmetry) are (a)–(g), (i), (j) and (l) of Figure D.2, together with (a)–(g) with
the colours inverted.

(ii) Configurations (d) and (g) are only allowed when paired with their own or
each other’s complement as illustrated in Figure D.3;

(iii) Any pair of black voxels in the same component of the voxel reconstruction
V (X) is connected by a chain of face-adjacent black voxels. Furthermore, any
pair of non-black voxels in the same component of the complement V (X)C
of the voxel reconstruction is connected by a chain of face-adjacent non-black
voxels.

Requirement (i) is satisfied if we can rule out the possibility of configurations (h),
(k), (m) and (n) from Figure D.2. But this follows from Theorem D.34

For requirement (ii), let us start by considering which configurations of four
voxels is allowed underneath a configuration of type (d). Since the configuration
in Figure D.9 was ruled by Theorem D.33, at least one of the voxels under the
non-black voxels in the bottom of (d) has to be black. If this is the case, both of
the voxels under the black voxels in (d) must also be black, since we otherwise
would get one of the forbidden configurations of Theorem D.34. Thus either all or
all but one of the voxels under configuration (d) must be black, and in this case we
end up in the scenario of Figure D.3(c) or D.3(d), respectively. Applying the same
kind of argumentation to configuration (g), we get that (g) can only occur in the
configurations on Figure D.3(a) or D.3(b).

Requirement (iii) is satisfied by Theorem D.45 and Theorem D.46, which concludes
the proof.

We can now insert wedges in V (X) in exactly the same way that Tang Christensen
did in Section 2.3.2 and B.2 of her thesis [2], since this process is done independently of
the choice of r or the type of reconstruction, but only uses the possible configurations
of voxels. We thus obtain the wedged reconstruction W (X) of X. The insertion
and removal of wedges from V (X) is done in such a way that it does not split any
component of V (X) or V (X)C in two, implying that there still is a 1:1-correspondence
between components of X and components of W (X), and also between components
of XC and components of W (X)C . This implies the following:

Corollary D.48. The connected components of ∂X are in 1:1-correspondence with
the connected components of ∂W (X).
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Proof. As mentioned, the wedging is done in such a way that there is a 1:1-
correspondence between components of X and components of W (X), and also
between components of XC and components of W (X)C . This implies the following:

Suppose ∂X has k components. By a corollary to the Jordan-Brouwer Separation
Theorem, this means that ∂X separates R3 in k+ 1 connected components, and each
component is either a subset of X or a subset of XC . Hence

k + 1 = #{components of X}+ #{components of XC}
= #{components of W (X)}+ #{components of W (X)C}

Since ∂W (X) divides R3 into l + 1 components, where l is the number of connected
components of ∂W (X), and since each component of R3\∂W (X) is either a connected
component of W (X) or of W (X)C , then l = k. Hence ∂X and ∂W (X) have the
same number of connected components.

D.7 Finding a set T with the required properties

If we could apply Proposition D.13 to M = ∂X and N = ∂W (X), they would have
the same Euler characteristic and hence be homeomorphic, since they are 2-manifolds.
But in order to apply this theorem, we need a set T diffeomorphic to ∂X × [−1, 1]
containing ∂W (X) as in the proposition, a non-zero vector field v on T satisfying the
requirements, and a way to get around the problem of ∂W (X) not being a smooth
manifold.

To address the last issue first, Tang Christensen replaced W (X) by a smoothed
version of W (X) that we will denote by Z. The smoothening procedure is described
in [2], Section B.2 and it may be done such that W (X) is only altered arbitrarily
little. Let d

√
3 < s < r and let Z be a smoothing of W (X) that has been made in so

small a neighbourhood that dH(V (X), Z) < ε, where ε = r − s and dH denotes the
Hausdorff distance.

Tang Christensen provides us with a suggestion for the set T and a vector field on
T with the required properties, so if we can just show that T satisfies the requirements
of Proposition D.13 in our situation as well, we can use her suggestion for v, Z and
T to prove that ∂Z and ∂X are homeomorphic using Proposition D.13. We make a
suggestion for T similar to the one that Tang Christensen made:

Definition D.49. Put T = f−1([−s, s]), where f is the function from Theorem D.20.
By Proposition A.27, T is diffeomorphic to ∂X × [−1, 1], and its boundary is ∂T =
f−1({−s, s}).

With this definition, the set T consists of points x ∈ R3 that is closer than
s > d

√
3 to ∂X.

We need to check that T satisfies the requirements of the Proposition D.12:

Proposition D.50. Let T be as above, and let T−1, T1 be the two boundary compo-
nents of T . Let Z be the smoothened version of W (X) as described in [2]. Then

• The intersection ∂Z ∩ T−1 and ∂Z ∩ T1 are empty,
• The boundary ∂Z of Z is a subset of Int(T ) = f−1((−s, s)),
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• The boundary ∂Z separates T .

Proof. Let T̃ = f−1([−d
√

3, d
√

3]) ⊆ T , and let T̃1, T̃−1 be the two boundary
components of T̃ . Note that T̃ ⊂ T .

Consider a point x ∈ ∂V (X), the inner Jordan digitisation of X. Since x is a
boundary point, it must belong to a non-black voxel V (l). Such a non-black voxel
must contain a white point p ∈ XC , and since XC is open, we may assume that p is
an interior point of this voxel. Since V (X) ⊆ X, x is a black point and thus

d(x, ∂X) ≤ d(x, p) < d
√

3.

Since an element y of T̃−1 ∪ T̃1 satisfies d(y, ∂X) = d
√

3 > d(x, ∂X) and x ∈ ∂V (X)
was arbitrary, we must have ∂V (X) ∩ (T̃−1 ∪ T̃1) = ∅, and ∂V (X) ⊆ Int(T ), since
Int(T ) consists of the points that are closer than d

√
3 to ∂X. But since Z was ε = r−s

close to V (X), this in particular means that Z ⊆ Int(T ), and ∂Z ∩ (T−1 ∪ T1) = ∅.
Furthermore, ∂V (X) separates the sides of T̃ : Any point y ∈ T̃−1 satisfies

d(y, ∂X) = d
√

3 by the above, hence the voxel containing y must be black, and
thus y ∈ V (X). Similarly, a point y′ ∈ T̃1 satisfies d(y′, ∂X) = d

√
3, so the voxel

containing y′ must be non-black. Thus any path from a point in T̃−1 to a point in
T̃1 must pass from a black to a non-black pixel somewhere, implying that ∂V (X)
separates the sides of T̃ . Since Z was ε close to V (X), it must also separate the sides
of the slightly larger set T .

Since we have proved all the necessary items listed in Section D.2, we get the
following theorems for free. The first one follows from Proposition D.13, used on T
and ∂Z and the vector field defined in [2].

Theorem D.51. The set ∂Z is homeomorphic to ∂X.

The second theorem comes from the above, together with Theorem D.15 used on
the manifolds ∂Z, ∂X, and the isotopy extension theorem:

Theorem D.52. The set Z is ambiently isotopic to X.

So, as the last theorem tells us, given the voxel reconstruction V (X) of of an
r-regular set X by a lattice (dZ)3, d

√
3 < r, it is possible to construct an object Z

that is ambiently isotopic to X.
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