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Summary

This dissertation takes on an applied probability approach to miscellaneous topics of
non-life insurance mathematics. It is based on five self-contained papers, Paper A–E.

Widely speaking, insurance provides protection from a financial loss. The insur-
ance market has a supply and a demand side. We exclusively consider the case where
it is an individual holding the risk, and an insurance company offering to take on
(some of) the risk in exchange for a premium.

First, in Paper A we consider a Markov renewal equation in a heavy-tailed
setting. The main objective is to find the asymptotic properties of this Markov
renewal equation, and as a step therefor, the asymptotics of random sums with
different degrees of heavy-tailedness are also studied. Markov renewal processes and
heavy tailed distributions are both tools used for explaining phenomena in observed
insurance data. The results in the paper are, however, also relevant to other fields of
research than actuarial science.

Next, we present studies aimed for the supply-side of insurance. In Paper B we
analyse, for the insurance company, the problem of finding the optimal premium
as a function of the fixed amount deductible level. The reserve of the company is
modelled by a diffusion approximation and the optimality criterion is either the ruin
probability or, if ruin certain, the expected time to ruin. In Paper C and Paper D, we
extend this idea to a competitive setting with two suppliers of insurance. In Paper C
we analyse the case where market frictions are present and in Paper D the case of
product differentiation. In both cases, we model the competition by a stochastic
differential game, where the largest company (in terms of initial capital) tries to push
their smaller competitor even further away, while the small company tries to pull
closer. In the market friction case, we consider Bertrand game and find closed-from
Nash equilibrium premiums, and in the product differentiation case, we consider a
Stackelberg game and find closed-form Stackelberg equilibrium premiums.

And finally, we finish with Paper E contributing to the theory of demand for
insurance. Here we question the simplicity of the product design in today’s insurance
market, where the standard and often only deductible structure available is the fixed
amount deductible. For different pricing mechanisms, we study the welfare loss of an
individual when being restricted to this trivial product design compared to being
offered a completely flexible one.
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Resumé

Denne afhandling benytter anvendt sandsynlighedsteori til at modellere diverse
problemer i skadesforsikringsmatematik. Den er baseret på fem selvstændige artikler,
ArtikelA–E.

Overordnet sagt tilbyder forsikring beskyttelse mod et økonomisk tab. Forsik-
ringsmarkedet har en udbuds- og efterspørgselsside. Vi betragter udelukkende det
tilfælde, hvor det er et individ, som bærer en risiko, og et forsikringsselskab, som
tilbyder at påtage sig (noget af) risikoen i gengæld for en præmie.

Vi starter med Artikel A, hvor vi betragter en Markov-fornyelsesligning i en
opstilling med tunge haler. Hovedmålet er at finde de asymptotiske egenskaber
for denne Markov-fornyelsesligning, og som et skridt på vejen dertil studeres også
asymptotikken af stokastiske summer med forskellige grader af tunge haler. Markov-
fornyelsesprocesser og fordelinger med tunge haler er begge værktøjer, der bruges til
at forklare fænomener observeret i forsikrings-data. Resultaterne i artiklen er dog
også relevante for andre forskningsområder end aktuarvidenskab.

Dernæst præsenterer vi artikler, der er rettet mod udbudssiden af forsikring. I
Artikel B analyserer vi for forsikringsselskabet, hvordan man kan finde den optimale
præmie som en funktion af selvrisikoen. Virksomhedens reserve er modelleret som en
diffusionsapproksimation, og optimalitetskriteriet er enten ruin sandsynligheden eller
den forventede tid til ruin, hvis ruin er uundgåelig. I Artikel C og Artikel D udvider
vi denne idé til en konkurrencemæssig konstruktion, hvor to selskaber udbyder
forsikring. I Artikel C analyserer vi tilfældet med markedsfriktion, og i Artikel D
tilfældet med produktdifferentiering. I begge tilfælde modellerer vi konkurrencen
ved et stokastisk differential spil, hvor den største virksomhed ihht. startkapital
forsøger at skubbe deres mindre konkurrent endnu længere væk, imens den mindste
virksomhed forsøger at hive sig nærmere. I tilfældet med markedsfriktioner betragter
vi et Bertrand spil og finder lukkede løsninger på Nash-ligevægtspræmier, og i
tilfældet med produktdifferentiering betragter vi et Stackelberg spil og finder lukkede
løsninger på Stackelberg-ligevægtspræmier.

Og endeligt afslutter vi med Artikel E, som bidrager til teorien om efterspørgsel
efter forsikring. Her sætter vi spørgsmålstegn ved, hvorvidt produktdesignet på nuti-
dens forsikringsmarked er for enkelt, hvor standardproduktet, som ofte er det eneste
udbudt, indeholder en fast selvrisiko. For forskellige prisfastsættelsesmekanismer un-
dersøger vi et individs velfærdstab, når det begrænses til dette trivielle produktdesign
sammenlignet med at blive tilbudt et fuldstændigt fleksibelt produktdesign.
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Preface

The dissertation is built on five papers, Paper A-E, presented in four chapters with
the following structure

Chapter 1

• Paper A: Markov dependence in renewal equations and random sums with
heavy tails. By Søren Asmussen and Julie Thøgersen. Published in Stochastic
Models, 2017.

Chapter 2

• Paper B: Optimal premium as a function of the deductible: customer analysis
and portfolio characteristics. By Julie Thøgersen. Published in Risks, 2016.

Chapter 3

• Paper C: Nash equilibrium premium strategies for push–pull competition
in a frictional non-life insurance market. By Søren Asmussen, Bent Jesper
Christensen and Julie Thøgersen. Published in Insurance: Mathematics and
Economics, 2019.

• Paper D: Stackelberg equilibrium premium strategies for push-pull compe-
tition in a non-life insurance market with product differentiation. By Søren
Asmussen, Bent Jesper Christensen and Julie Thøgersen. Published in Risks,
2019.

Chapter 4

• Paper E: Personal non-life insurance decisions and the welfare loss from flat
deductibles. By Mogens Steffensen and Julie Thøgersen. Published in ASTIN
Bulletin, 2019.

Each chapter has its own introduction due to the diversity of the papers. The
introductions present some preliminaries to the papers. A state-of-the-art is provided
in the papers, and will only supplemented in the introductions. The five papers are
self-contained and are presented as such. The presentation of the papers here aligns
with their published versions with the exception of minor adjustments. Notational
discrepancies among the chapters might occur. Each introduction and each paper is
ended by a reference list.
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Chapter 1

Markov renewal equations and
heavy tails

The first paper fills out a gap in the literature by finding the asymptotics of a Markov
renewal equation in the case where the measures involved are heavy-tailed and have
spectral radius smaller than one.

In the preliminaries, we will start by introducing a simple concept and increase
the level of abstraction little by little. Many of the concepts here has application to
multiple areas of study, especially queuing theory. However, we restrict the focus
solely to the connection to risk theory.

During a fixed period of time, we can split the uncertainty of the risk composed
by a portfolio into two: the random number of claims and the random sizes of the
claims reported. The aggregate expenses of claims during that period of time is then
a random sum, as introduced in Section 1.1.1. By generalising the claim number
to a continuous-time counting process, the random sum evolves over time. The
most common counting processes are the Poisson process and the renewal process,
which we define in Section 1.1.2. The Poisson process in particular gives rise to the
compound Poisson process, which is the standard process to model the development
of aggregate claim expenses of a portfolio, as we see in Section 2.1.4. As considered in
Wang and Yuen (2005), dependence can occur between different classes of insurance.
A car accident is an example of a source of event that may cause claims in multiple
classes, e.g. a damaged car in one class and personal injury in another. The aggregate
claims are then modelled by a double-sum, similar to the one studied in Theorem A.3
in Paper A.

Renewal processes leads on to renewal theory in Section 1.1.3, including the
renewal equation, a strong instrument that has a wide range of application. For
example, in Section 2.1.4 we see that the ruin probability, the most common measure
of risk in actuarial science, also satisfies a renewal equation.

Another concept with a wide range of application is Markov processes, which
we consider in Section 1.1.4. In non-life insurance, Markov processes may be used
for Markov-modulation, where the risk process (fx the claim frequency and/or the
claim sizes) is influenced by an external environment Markov process. A popular
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Chapter 1. Markov renewal equations and heavy tails

example is automobile insurance, where the risk process obviously depends on the
weather states, e.g., {icy, foggy, rainy, other}. References along this type of work
are; Asmussen (1989), Asmussen et al. (1995), Lu and Li (2005), and Zhu and Yang
(2008). Speaking of automobile insurance, Markov chains are also a common tool
for modelling the evolution of the classification of a policyholder in a bonus-malus
system (a merit system where the premium depends on the driver’s claim history).
For a thorough review of such systems, we refer to Denuit et al. (2007).

In Section 1.1.5 we consider the next extension, namely Markov renewal processes
and semi-Markov processes, introduced simultaneously by Levy (1954) and Smith
(1955). These processes can be considered as generalisations of both renewal processes
and Markov processes. Correspondingly, in extension to the Markov-modulated
models above, Reinhard (1984) and Janssen (1977) consider a risk process influenced
by an external environment semi-Markov process. In this section we also consider
the Markov renewal equation, the associated generalisation to the renewal equation
previously mentioned. Markov renewal equations are the main concern in Paper A
in a heavy-tailed setting.

In insurance, heavy-tailed claims relative to light-tailed claims, constitutes a
higher risk and is thus considered more “dangerous”. They tend to have large values
with many outliers. In actuarial sciences, subexponential is nearly considered to be
a synonym for heavy-tailedness. The class of subexponential distributions was first
introduced by Chistyakov (1964), followed independently by Chover et al. (1973).
Veraverbeke (1977) and Embrechts and Veraverbeke (1982) merged subexponential
distributions with risk theory by considering risk models with subexponential claim
sizes. One of their main results is stated in Section 2.1.4. A small overview of the
theory of heavy-tails appears in Section 1.1.6. The definitions here are similar to the
ones in Paper A and, as in the paper, we refer to Foss et al. (2013) for an extensive
treatment of the subject.

1.1 Prelimiaries
First we make a short note on notation. For a distribution F on R+, let F (x) be
the cumulative distribution function and F (x) = 1− F (x) the tail function. Let F
and G be distributions and let X ∼ F and Y ∼ G be independent random variables.
F ∗G then denotes the convolution of F and G,

F ∗G(x) =

∫ x

0

G(x− y)F (dy) =

∫ x

0

F (x− y)G(dy)

which is the distribution of the sum X + Y . The n-th fold convolution is defined
recursively as

F ∗n(x) =

∫ x

0

F ∗(n−1)(x− y)F (dy) where F ∗0(x) =

{
0 if x < 0,

1 if x ≥ 0.

Moreover, N = {1, 2, . . .} denotes the natural numbers, whereas N0 = N ∪ {0}.

2



Chapter 1. Markov renewal equations and heavy tails

1.1.1 Random sums

Let (Xi)i∈N be a collection of random variables, and N be a counting random variable
(taking values in N0) independent of the Xi’s. Define the random sum

S = X1 + · · ·+XN =
N∑
i=1

Xi (1.1)

using the convention S = 0 on {N = 0}. In most cases, the collection (Xi)i∈N is as-
sumed to be independent and identically distributed (i.i.d) with common distribution
F on R+. This assumption is also made here. (1.1) then has mean and variance

E[S] = E[N ]E[X1] and Var[S] = E[N ]Var[S] + E[S]2Var[N ],

respectively. Conditioned on N = n, S has the distribution F ∗n. The unconditional
compound distribution of S can then be found using the law of total probability,

FS(s) =
∞∑
n=1

F ∗n(s)P(N = n)

In insurance, N could be the number of claims in a given time interval and
X1, X2, . . . the claim sizes. S is then the total amount of claims during that time
interval.

1.1.2 Counting and compound processes

In previous section, the random counting variable N was considered for a fixed time
point. This can be generalised to a counting process (Nt)t≥0 that evolves in time.
The general definition of a counting process is briefly stated below.

Definition 1.1 (Counting process). (Nt)t≥0 is a counting process if (i) N(0)=0 a.s.,
(ii) Nt ∈ N0 for all t ≥ 0, and (iii) it is increasing, i.e. Nt ≤ Ns for 0 ≤ t < s.

Definitions here are similar to the ones in Mikosch (2009). In the insurance
example, the random variable Nt is the number of claims occurred by time t. The
claim arrives at times (Ti)i∈N0 that satisfies 0 = T0 ≤ T1 ≤ . . .. At the i’th arrival
time Ti, a claim of random size Xi occurs. As for the random sum in Section 1.1.1, the
sequence of claim sizes (Xi)i∈N are assumed to be i.i.d and independent of the arrival
times (Ti)i∈N0 . The claim number process is then defined as the counting process
Nt = #{i ≥ 1 : Ti ≤ t} for t ≥ 0. Let Wi = Ti − Ti−1 for i ≥ 1 be the inter-arrival
times. The arrival times can conversely be written as the sum Ti = W1 + · · ·+Wi.

The total claim amount process, i.e. the generalization of the random sum in the
previous section, is then the compound process

At = X1 + · · ·+XNt =
Nt∑
i=1

Xi (1.2)

3



Chapter 1. Markov renewal equations and heavy tails
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Figure 1.1

A sample path of (St)t≥0 is presented in Figure 1.1.
The most commonly used counting process to model the number of claims is

the homogeneous Poisson process. We will not discuss the inhomogeneous Poisson
process (having a parameter that is non-constant), so when we refer to Poisson
processes the homogeneity is implied.

Definition 1.2 (Poisson process). A Poisson process (Nt)t≥0 with intensity λ is
defined by the following properties

(i) It begins at zero, i.e. N(0) = 0 a.s.

(ii) It has stationary and independent increments. , hence for any n ≥ 1 and time
points t1 < t2 < . . . < tn, the increments Nt1 , Nt2 − Nt1 , . . . , Ntn − Ntn−1 are
mutually independent and Nti −Nti−1

∼ Nti−ti−1
.

(iii) It has cádlág sample paths, i.e. the sample paths are right continuous and left
limits exists.

(iv) The number of arrivals in any time interval of length T has an Poisson(λT )
distribution, hence Nt+T −Nt ∼ Poisson(λT ) for all t ≥ 0.

The terminology above (cádlág, stationary and independent/stationary incre-
ments, ect.) stems from Levy processes. However, it is a well-known fact, that the
Poisson process is a special case of renewal counting processes, defined as:

Definition 1.3 (Renewal process). Let (Wi)i∈N be an i.i.d. sequence of non-negative
random variables. Then

T0, Tn = W1 + · · ·+Wn for n ≥ 1 (1.3)

is a renewal process. The process Nt = #{i ≥ 1 : Tn ≤ t} for t ≥ 0 is the associated
renewal counting process.

4



Chapter 1. Markov renewal equations and heavy tails

This leads to the following alternative and perhaps more intuitive definition of
Poisson processes.

Definition 1.4 (Poisson process as renewal counting process). Let Wi in Defini-
tion 1.3 be exponentially distributed with parameter λ, then Nt = #{i ≥ 1 : Tn ≤ t}
is a Poisson process with intensity λ.

The exponential distribution is especially known for its memoryless property,
which allows for a Markov interpretation. In fact, it can be shown that the Poisson
process is the only renewal process that satisfies the Markov property in Definition
1.7.

When (Nt)t≥0 is a Poisson process, the random sum (1.2) becomes a compound
Poisson process. Compound Poisson processes is inevitable to mention, when it comes
to actuarial science. It the most common process to model outgoing claims in the
collective model, see 2.1.4.

Definition 1.5 (Compound Poisson process). Let (Nt)t≥0 be a Poisson process and
(Xi)i∈N a sequence of i.i.d. random variables independent of (Nt)t≥0, then (At)t≥0

defined by

At =
Nt∑
i=1

Xi,

is a compound Poisson process.

Let mY (x) = E[exp(xY )] be the moment generating function of the random
variable Y . The compound Poisson process then has the following mean, variance
and moment generating function,

E[At] = λtE[Xi], Var[At] = λtE[X2
i ]

mAt(x) = E[exp(xAt)] = exp(λ(mXi(x)− 1)).

1.1.3 Renewal equations
Of special interest in renewal theory is renewal equation,

Z(x) = z(x) +

∫ x

0

Z(x− y)dF (y) = z(x) + Z ∗ F (x), (1.4)

where z is a known non-negative function, Z an unknown non-negative function, and
F a measure on [0,∞). The equation also appears in Paper A as (1.3).

The corresponding renewal function, defined by

U(t) =
∞∑
i=0

F ∗(n)(t), (1.5)

is a key component to the solution of (1.4). The renewal function satisfies itself the
renewal equation

U(t) = F (t) +

∫ t

0

U(t− y)dF (y).

5



Chapter 1. Markov renewal equations and heavy tails

Consider a renewal counting process (Nt)t≥0 with i.i.d. inter-arrivals (Wi)i∈N
having common distribution FW . The renewal function

U(t) =
∞∑
i=0

F
∗(n)
W (t) = E[Nt] + 1

then describes the average behaviour of the renewal counting process. In relation to
insurance, the relevance is quite obvious, as it represents the expected number of
claims up till time t.

Under weak regularity conditions, see Resnick (2002), the renewal equation (1.4)
has the unique solution

Z(x) =

∫ x

0

z(x− y)U(dy) = z ∗ U(x).

In application we are often interested in the asymptotic behaviour as x→∞. Paper A
gives a summary of the asymptotic results, which depend on the mass of F .

1.1.4 Markov chains and processes
In order to distinguish, we use the terminology that a Markov chain is the discrete
time version denoted by (ξ(n))n∈N, whereas a Markov process is the continuous-time
version written (ξt)t≥0. Note that this notation used for differentiating between
discrete and continuous-time is not used consistently for other types of processes.

We define a Markov chain with a finite state space E ∈ Rd (or countable in which
case d =∞) as follows.

Definition 1.6 (Markov chain). (ξ(n))n∈N0 is a Markov chain with state space E if
it satisfies the Markov property

P(ξ(n) = kn | ξ(1) = k1, . . . , ξ(n− 1) = kn−1) = P(ξ(n) = kn | ξ(n− 1) = kn−1)

if P
(
ξ(1) = k1, . . . , ξ(n− 1) = kn−1

)
> 0, for any n ∈ N0 and all k1, . . . , kn ∈ E.

In order to complete the definition of a Markov chain properly, we furthermore
need two components. Firstly, the transition matrix Q = (qij)i,j∈E ∈ Rd×d defined
by qij = P(ξ(n) = i | ξ(n − 1) = j) in the homogeneous case, where the law of
the evolution of the system is independent of time. Secondly, an initial probability
distribution on the state space, namely qi = P(ξ(0) = i) for i ∈ E .

A Markov process (ξt){t≥0} is defined similarly by the continuous time version of
the Markov property.

Definition 1.7 (Markov process). (ξt){t≥0} is a Markov process with state space E
if it satisfies the Markov property

P(ξtn = kn | ξt1 = k1, . . . , ξtn−1 = kn−1) = P(ξtn = kn | ξtn−1 = kn−1) (1.6)

if P(ξt1 = k1, . . . , ξtn−1 = kn−1) > 0, for any 0 ≤ t1 < · · · < tn and all k1, . . . , kn ∈ E .
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Chapter 1. Markov renewal equations and heavy tails

A continuous-time Markov process can be perceived as a discrete-time Markov
chain combined with a time scale where the waiting times in-between jumps are
independent and exponentially distributed.

Indeed, more specifically, define the jump times of the Markov process recursively

T0 = 0, Ti = inf{t ≥ Ti−1 | ξt 6= ξTi−1
},

using the convention inf ∅ =∞. The embedded process (ξ(i))i∈N0 defined by ξ(i) = ξTi
is then a Markov chain. Further, the waiting times Wi = Ti − Ti−1 are independent
and exponentially distributed with parameter only depending on the current state
ξ(i− 1).

1.1.5 Markov renewal processes and Markov
renewal equations

As the name suggests, Markov renewal processes combine renewal processes and
Markov chains. We continue this discussion after the definitions are in place. Defini-
tions and statements in this section are to be found in Çinlar (1969).

Let (Xt)t≥0 be a stochastic process with a discrete state space E . Let Ti denote
the i’th jumping time with T0 = 0, and Wi = Ti − Ti−1 the interarrival time. Define
the sequence (ξ(n))n∈N0 defined by the successive states visited, i.e. ξ(n) = XTn . A
realisation of the system is depicted in Figure 1.2.

Xt

T0 T1

p
T2

p
Tn−1

p
Tn
p

Tn+1

p

W1 W2 Wn Wn+1

t

ξ(0)

ξ(1)

ξ(2)
ξ(n− 1)

ξ(n)

ξ(n+ 1)

Figure 1.2: Depiction of a Markov renewal process.

Definition 1.8 (Markov renewal process). The pair (ξ(n), Tn)n∈N0 is called a Markov
renewal process if

P(Wn ≤ t, ξ(n) = j | (ξ(0), T0), (ξ(1), T1), . . . , (ξ(n− 1) = i, Tn−1))

= P(Wn ≤ t, ξ(n) = j | ξ(n− 1) = i).

In extension hereof, it is natural to define semi-Markov processes.

Definition 1.9 (semi-Markov process). If (ξ(n), Tn)n∈N0 is a Markov renewal process,
then (Xt)t≥0 is a semi-Markov process.

7



Chapter 1. Markov renewal equations and heavy tails

The two following implications of Definition 1.8 clearly shows how Markov renewal
processes and semi-Markov processes are generalisations of Markov processes and
renewal processes.

(ξ(n))n∈N0 is a Markov chain. Hence, the construction of semi-Markov processes
are similar to that of Markov processes with the exception of the characterisation
of the inter-arrival times. Recall that for the Markov process the inter-arrival times
(Wi)i∈N are independent with an exponential distribution. However, for the semi-
Markov process, the inter-arrival times (Wi)i∈N are merely conditionally independent
given (ξ(n))n∈N0 . So where the Markov process satisfies the Markov property at
any given time, the semi-Markov process only satisfies it at jump instants. In
other words, the Markov process is a special case of semi-Markov processes, where
P(Wn ≤ t, ξ(n) = j | ξ(n− 1) = i) = qij(1− exp(−λit)) for some λi > 0.

On the other hand, the successive entrance times into state i ∈ E , namely
{Tn : ξ(n) = i}, constitute a renewal process. Hence, a Markov renewal process may
also interpreted as a system of renewal processes progressing simultaneously such
that the states of the successive renewals form a Markov chain.

A corresponding generalisation of the renewal equation is the Markov renewal
equation in (1.1) of Paper A, namely

Zi(x) = zi(x) +
∑
j∈E

∫ x

0

Zj(x− y)Fij(dy),

where E is a finite index set, (Zi)i∈E a set of unknown non-negative functions, (zi)i∈E
a set of non-negative known functions, and (Fij)i,j∈E a set of measures on [0,∞).

One of the main concern in Paper A is to find the asymptotics of the Markov
renewal equation in a heavy tailed setting, i.e. where the measures (Fij)i,j∈E are
related to a locally subexponential distribution, a property defined in the subsequent
section.

1.1.6 Heavy-tailed distributions
In general, a distribution F is said to be heavy-tailed if F does not possess any
positive exponential moments, that is

∫∞
−∞ exp(νx)F (dx) =∞ for all ν > 0. If, on

the contrary, a ν exists such that
∫∞
−∞ exp(νx)F (dx) <∞, then F is instead said to

be light-tailed. In practice, most commonly used heavy-tailed distributions belong to
the subexponential class defined below. Examples are; the log-normal distribution,
Pareto distributions, Weibull distributions having shape parameter less than one.

1.1.6.1 Subexponential distributions

First we define long-tailed distributions.

Definition 1.10 (Long-tailed distribution). A distribution F is long-tailed if it has
right-unbounded support, i.e. F (x) > 0 for all x, and

F (x+ y)

F (x)
→ 1 as x→∞ for any fixed y > 0. (1.7)
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Chapter 1. Markov renewal equations and heavy tails

Any long-tailed F is especially heavy-tailed. Next, we define subexponential
distributions.

Definition 1.11 (Subexponential distribution). F is subexponential if it is long-
tailed and

F ∗2(x)

F (x)
→ 2 as x→∞. (1.8)

Let X1 and X2 be i.i.d. with common subexponential distribution F . It follows
from the inclusion-exclusion formula that

P(max{X1, X2} > x) = P({X1 > x} ∪ {X2 > x})
= P(X1 > x) + P(X2 > x)− P(X1 > x,X2 > x)

= 2F (x)− F (x)2 ∼ 2F (x) ∼ F ∗2(x).

So the condition (1.8) of F being subexponential can be interpreted as the probability
of the set {X1 +X2 > x} being asymptotically equal to the probability of the subset
{max{X1, X2} > x}. This is also known as the principle of a single big jump.

If F ∈ S, then (1.8) can be generalised to the n-dimensional case

F ∗n(x)

F (x)
∼ n for all n ∈ N.

The interpretation is the same as in the two-dimensional case. The only significant
way the sum of independent F -distributed random variables can exceed some large
threshold x is if the maximum of the random variables exceeds that x.

1.1.6.2 Subexponential densities

We now proceed to subexponential densities. Following the same order as for subex-
ponential distributions, long-tailed properties are considered first.

Definition 1.12 (Long-tailed density). A density f is long-tailed if f(x) > 0 for all
sufficiently large x and

f(x+ y)

f(x)
→ 1 as x→∞ for any fixed y > 0.

Let F and G be distributions having densities f and g, respectively. The convo-
lution F ∗G then has density f ∗ g given by

f ∗ g(x) =

∫ x

0

f(x− y)g(y)dy

Definition 1.13. A density f is subexponential if it is long-tailed and

f ∗2(x)

f(x)
→ 2 as x→∞.

9
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Let Sac denote the class of subexponential densities. Note that Sac is a subclass
of S. Indeed, if the distribution F has a subexponential density f , then

F
∗2

(x) =

∫ ∞
x

f ∗2(y)dy ∼ 2

∫ ∞
x

f(y)dy = 2F (x).

Since subexponentiality is a tail property, it is sufficient for a distribution F to only
have a density f(x) for large x.

1.1.6.3 Local subexponential distributions

Finally, we want to define of local long-tailedness and local subexponentiality of a
distribution. We conclude by elaborating how local subexponentiality can be viewed
as an intermediate property of being subexponential and having a subexponential
density.

For a fixed and finite T > 0 define ∆ = (0, T ] and let

x+ ∆ ≡ {x+ y | y ∈ ∆} = (x, x+ T ].

It here becomes more apparent what is meant by local, namely that the distribution
is only considered on a fixed length interval (x, x + T ] when the location x of the
interval tends to infinity. The long-tailed property can be defined locally as follows.

Definition 1.14 (Local long-tailed distribution). A distribution F is ∆-long-tailed
if F (x+ ∆) > 0 for all sufficiently large x and

F (x+ y + ∆)

F (x+ ∆)
→ 1 as x→∞ for any fixed y > 0.

Similarly we can define local subexponentiality.

Definition 1.15 (Local subexponential distribution). F is ∆-subexponential if it is
∆-long-tailed and

F ∗2(x+ ∆)

F (x+ ∆)
→ 2 as x→∞.

Let S∆ denote the class of ∆-subexponential distributions. Then for any finite T ,
S∆ is a subclass of S, and if we were to allow T = ∞ the two classes coincide. It
appears that ∆-subexponential distributions possess many similar properties as the
ordinary subexponential distributions. A main and crucial difference is that the tail
function F (x) is monotone whereas F (x+ ∆) may not be.

A distribution F with a subexponential density f is ∆-subexponential for any
T > 0 since

F ∗2(x+ ∆) =

∫ x+T

x

f ∗2(y)dy ∼ 2

∫ x+T

x

f(y)dy = 2F (x+ ∆) as x→∞,

i.e Sac is a subclass of S∆.
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Paper A

A.1 Introduction
The occurrence of heavy tails has been argued repeatedly in a variety of application
areas covering insurance and finance (Embrechts et al. (1997)), telecommunications
and internet traffic (Adler et al. (1998)), optics (Barakat (1976)), cell proliferation
(Cao (2015)) and many more; a broad overview is in Resnick (2007). Correspondingly,
performance analysis of models for such situations has triggered a vast literature on
probabilistic features of heavy tails.

The present paper deals with two particular problems in this area. The first is
asymptotics of renewal-type equations of the form

Zi(x) = zi(x) +
∑
j∈E

∫ x

0

Zj(x− y)Fij(dy), i ∈ E , (1.1)

where E is a finite index set, (Zi)i∈E a set of unknown functions defined on [0,∞),
(zi)i∈E a set of non-negative known functions, and (Fij)i,j∈E a set of non-negative
heavy-tailed measures on [0,∞). The second is the tail behaviour of a random sum

S =
N∑
i=1

Xi, (1.2)

where N ∈ N is a light-tailed random variable and the Xi are non-negative heavy-
tailed random variables, such that certain types of dependence to be specified later
may occur.

The simple renewal equation

Z(x) = z(x) +

∫ x

0

Z(x− y)F (dy) (1.3)

is a classical structure in applied probability and occurs, for example, in branching
processes (Jagers (1975)), ruin problems (Feller (1971)) and ergodicity problems
for possibly non-Markovian processes (Asmussen (2003, p. VI.1)). The emphasis is
usually on asymptotic properties of Z(x) as x → ∞ where the simplest situation
is existence of a limit1 when F is a probability measure, that is, when ‖F‖ = 1
where ‖F‖ is the total mass of F . However, in the branching process example ‖F‖
is the expected number of children of an individual so obviously the case ‖F‖ 6= 1
is of interest. One then typically has an exponential order eγx of Z(x). Here γ > 0
when ‖F‖ > 1 and γ < 0 when ‖F‖ < 1 and F is light-tailed (this last situation
also occurs in Cramér-Lundberg asymptotics for ruin probabilities and queues, see
Asmussen (2003, p. V.7)). For ‖F‖ < 1 and F heavy-tailed, the order depends on a
delicate balance between the tails of F and z and in fact the results are more recent,
Asmussen et al. (2003) (see also Wang et al. (2014) for a closely related result).

The system (1.1) goes under the name of the Markov renewal equation, see
Asmussen (2003); this terminology stems from the case of

P =
(
‖Fij‖

)
i,j∈E

1This and the following statements require regularity conditions which we omit; see the citations
given.
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being stochastic, that is, the transition matrix of a Markov chain. In branching
processes, it occurs when individuals have several types, and in insurance and
finance, it relates to regime-switching; another relevant example comes from computer
reliability problems, Asmussen et al. (2016). The known asymptotic results on the
Zi(x) depend crucially on the spectral radius ρ = spr(P ): if ρ = 1, in particular if P
is stochastic, a limit exists whereas otherwise, similar to the simple case, the order is
exponential, eγx, where γ > 0 when ρ > 1 and γ < 0 when ρ < 1 and the Fij are
light-tailed. The gap is the case ρ < 1 and heavy tails. The main contribution of the
paper in the setting of (1.1) is to fill this gap. The result is stated as Theorem A.2
below. Three cases occur depending on whether the tail of the zi or the Fij dominate,
or if they are of same order. The conditions involve the non-standard concept of
local subexponentiality.

One main example of random sums like (1.2) is total claim distributions in
insurance: N is the number of claims in a given period and X1, X2, . . . are the claim
sizes that classically are taken i.i.d. and independent of N which is assumed light-
tailed (e.g. the negative binomial distribution is popular because of its interpretation
as a gamma mixture of Poissons). In credit risk, N could be the number of credit
defaults in a portolio and X1, X2, . . . the losses given default. With light-tailed
Xi, P(S > x) decays roughly exponential, with heavy tails the asymptotic form
is EN · P(X1 > x). Our main result in that direction, Theorem A.3 below, is an
extension to sums of the form

∑d
k=1

∑Nk
1 Xij where N1, . . . , Nd are dependent and the

distribution of Xij depends on i. For example in the insurance setting, (N1, . . . , Nd)
could be conditionally independent given (τ1, . . . , τd) with Poisson rate λk for Nk,
where τk is the time spent by some environmental process in state k in the period
[0, T ] (dependence occurs because τ1 + · · ·+ τd = T ). The main step in the proof of
Theorem A.3 is a version of a classical lemma due to Kesten on tail domination of
subexponential sums; for the proof of Theorem A.2 we also need a local version of
this.

The paper is organised as follows. Section A.2 starts with some necessary back-
ground, in particular on local subexponentiality, and proceeds to state the two main
results of the paper, Theorems A.2 and A.3 referred to above. The rest of the paper
is then proofs supplemented with miscellaneous results of some independent interest.
Sections A.3–A.5 give the random sum part in various settings. This together with
a number of additional steps then allows to conclude the proof of Theorem A.2
in Section A.6. It proceeds by first assuming P to be substochastic, thereby al-
lowing Markov chain interpretations, and finally link the general case to this by a
Perron-Frobenius type transformation.

A.2 Preliminaries and statement of
main results

For a distribution F on R+, let F (x) = F (0, x] be the cumulative distribution function
(c.d.f.) and F (x) = 1− F (x) = F (x,∞) the tail. If F and G are distributions and
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X and Y are independent random variables with distribution F and G, respectively,
then F ∗G denotes the convolution of F and G,

F ∗G(x) =

∫ x

0

G(x− y)F (dy) =

∫ x

0

F (x− y)G(dy),

which is the distribution of the sum X + Y .
We next briefly mention the most standard definitions and relations in the heavy-

tailed area. For a more detailed and thorough treatment, see Embrechts et al. (1997),
Foss et al. (2013). A distribution F is said to be heavy-tailed if F does not possess
any positive exponential moments, that is,

∫∞
−∞ exp(λx)F (dx) =∞ for all λ > 0. It

is long-tailed, written F ∈ L, if it has unbounded support and F (x+ y)/F (x)→ 1
as x→∞ for any fixed y ∈ R. Any F ∈ L is especially heavy-tailed. F is said to be
subexponential, written F ∈ S, if F ∗n(x)/F (x)→ n for all n (actually, it is sufficient
that this holds for n = 2). The intuition is that the only significant way the sum
of independent F -distributed random variables can exceed some large threshold x
is if the maximum of the random variables exceeds that x. This is also known as
the principle of a single big jump. Similarly, a density f is long-tailed if f(x) > 0
for all sufficiently large x and f(x + t)/f(x)→ 1 for any fixed t. If F and G have
densities f and g, respectively, the convolution F ∗G then has density f ∗ g given by
f ∗g(x) =

∫ x
0
f(x−y)g(y)dy. The density f of F is said to be subexponential, written

F ∈ Sac, if f is long-tailed and f ∗2(x) =
∫ x

0
f(x − y)f(y)dy ∼ 2f(x) as x → ∞.

Since subexponentiality is a tail property it is sufficient for a distribution F to only
have a density f(x) for sufficiently large x. Note that Sac is a subclass of S.

We proceed to the less standard concepts of local long-tailedness and subexpo-
nentiality, as introduced in Asmussen et al. (2003). The local property can be viewed
as intermediate between being long-tailed (subexponential) and having a long-tailed
(subexponential) density. First, we need to introduce some notation. For a fixed
T > 0 define ∆ = ∆T = (0, T ] and let x+ ∆ = {x+ y | y ∈ ∆} = (x, x+ T ].

Definition A.1. A distribution F is said to be ∆-long-tailed, written F ∈ L∆, if
F (x + ∆) > 0 for all sufficiently large x and F (x + y + ∆)/F (x + ∆) → 1 as
x→∞ for any fixed y. It is is ∆-subexponential, written F ∈ S∆, if F ∈ L∆ and
F ∗2(x+ ∆)/F (x+ ∆)→ 2.

Notice that if we allow T =∞ the class L∆ corresponds to the ordinary longtailed
distributions L; if T <∞, then L∆ ⊂ L. Similarly, S∆ ⊂ S for any finite T , and if we
allow T =∞ the two classes coincide. It appears that ∆-subexponential distributions
possess many similar properties as the ordinary subexponential distributions. A main
and crucial difference is that the tail function F (x) is monotone whereas F (x+ ∆)
may not be. Also, it it worth noticing that a distribution F with a subexponential
density is ∆-subexponential for any T > 0.

We are now ready to state our main results. Recall that P is the matrix with
ij’th element pij = ‖Fij‖, also I denotes the identity matrix.

Theorem A.2. Consider the Markov renewal equation (1.1). Assume that P is
irreducible with spr(P ) < 1 and that Fij(x+ ∆) ∼ pijcijG(x+ ∆) where cij > 0 and
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G is a ∆-subexponential distribution function for all T > 0. Define g(x) = G(x, x+1)
and Ij =

∫∞
0
zj(y) dy. Let dij be the ij’th element of the matrix (I−P )−1M (I−P )−1

with M = (pk`ck`)k,`∈E , and let kij be the ij’th element of
∑∞

0 P n = (I − P )−1.
Then three cases occur:

(i) Assume that zj is directly Riemann integrable and zj(x)/g(x)→ 0 for all j ∈ E .
Then

Zi(x) ∼
∑
j∈E

Ijdijg(x).

(ii) Assume that zj is directly Riemann integrable and zj(x)/g(x) → aj where
aj > 0 for at least one j ∈ E. Then

Zi(x) ∼
∑
j∈E

(Ijdij + kijaj) g(x).

(iii) Assume that zj(y)/Ij has a subexponential density for all j ∈ E and that
zj(x)/g(x)→∞ for all j. Then

Zi(x) ∼
∑
j∈E

kijzj(x).

Theorem A.3. Let N1, . . . , Nd be non-negative integer-valued r.v.’s and define

S =
d∑
i=1

Ni∑
j=1

Xij,

where Xij are mutually independent and independent of N1, . . . , Nd with distribution
Fi. Assume F i(x) ∼ ciF (x) for some F ∈ S and some c1, . . . , cd ≥ 0, where ci = 0
should be understood as Fi(x) = o(F (x)). If there for all i = 1, . . . , d are εi > 0 such
that E[(1 + εi)

Ni ] <∞, then

P(S > x) ∼
(
c1E[N1] + · · ·+ cdE[Nd]

)
F (x).

Note that N1, . . . , Nd are not assumed independent. A local version of Theorem A.3
is given below as Theorem A.7.

A.3 Random sums of subexponentials
A classical bound due to Kesten (Athreya and Ney (1972) , Embrechts et al. (1997))
states that for a subexponential distribution F0 and ε > 0 there exists a D0 =
D0(ε) > 0 such that

F ∗n0 (x) ≤ D0(1 + ε)nF0(x) for any x ≥ 0 and n ∈ N. (1.4)

We give here a version involving the convolution of the tails of multiple subexponential
distribution functions. It can be deduced from Foss and Richards (2010), but we
include the proof since it is much shorter in our set-up.
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Proposition A.4. Let F ∈ S, and let F1, . . . , Fd be distributions with Fi(x) ≤ c̃iF (x)
with c̃i ≥ 0 for i = 1, . . . , n. Then for every ε > 0 there exists a D = D(ε) such that
the following inequality holds:

F ∗n1
1 ∗ · · · ∗ F ∗ndd (x) ≤ D(1 + ε)nF (x) for all x ≥ 0 and n1, . . . , nd ∈ N (1.5)

where n = n1 + · · ·+ nd. Furthermore if Fi(x) ∼ ciF (x) with ci ≥ 0 for i = 1, . . . , n
then

F ∗n1
1 ∗ · · · ∗ F ∗ndd (x) ∼ (c1n1 + · · ·+ cdnd)F (x). (1.6)

Proof. Define the distribution function F0 by having tail

F0(x) = min{kF (x), 1}

with k = maxi=1,...,n c̃i. Note that taking the minimum (or multiplying by a positive
constant) will preserve properties as being cadlag and non-increasing. The minimum
will also ensure having values between [0, 1]. So F0 is indeed a distribution. Since
subexponentiality is a tail property and the class of subexponential distributions is
closed under tail equivalency, we must furthermore have F0 ∈ S. From the classical
Kesten bound it then follows that for every ε > 0 there is a D0 = D0(ε) such that
(1.4) holds. By construction Fi(x) ≤ F0(x), which implies that convolutions must
have the corresponding stochastic ordering,

F ∗n1
1 ∗ · · · ∗ F ∗ndd (x) ≤ F ∗n0 (x).

Combining with (1.4) we now only need to show that there exists a D = D(ε) such
that D0F0(x) ≤ DF (x). Let x0 be chosen to satisfy that F0(x) = kF (x) < 1 for all
x > x0 and F0(x) = 1 for all x ≤ x0. This is justified since the tail function F (x) is
non-increasing, which also implies that F (x) ≥ F (x0) for all x ≤ x0. In view of this,
we may take D = D0 max{k, 1/F (x0)}.

The asympotics in (1.6) easily follows. To this end, just notice that F ∗nii (x) ∼
niciF (x) for all i by standard subexponential theory and proceed by induction, using
that G1 ∗G2(x) ∼ (γ1 + γ2)F (x) if Gi(x) ∼ γiF (x) for i = 1, 2 and F ∈ S.

Kesten’s bound is commonly used as majorant in dominated convergence to find
the asymptotics of a randomly stopped sum of i.i.d. subexponential random variables.
Proposition A.4 can be used correspondingly for the multidimensional case which we
use to give the proof of Theorem A.3.

Proof. The law of total probability yields

P(S > x)

F (x)
=

∞∑
n1,n2,...,nd=1

P(N1 = n1, . . . , Nd = nd)
F ∗n1 ∗ · · · ∗ F ∗nd(x)

F (x)

→
∞∑

n1,n2,...,nd=1

P(N1 = n1, . . . , Nd = nd)(c1n1 + · · ·+ cdnd)

= c1E[N1] + · · ·+ cdE[Nd]
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using Proposition A.4 and dominated convergence; this is justified since Hölder’s
inequality implies that E[(1 + ε)N1+···+Nd ] <∞ if we take, say, 1 + ε = min{1 + ε1,
. . . , 1 + εd}1/d.

A.4 Random sums of local subexponentials

The objective of the following Lemma is to obtain an upper bound for the convolution
of local subexponential distribution functions. This is needed to expand the local
version of Kesten’s bound stated as Proposition 4 in Asmussen et al. (2003) to include
the convolution of several local subexponential distribution functions.

Lemma A.5. Let H ∈ S∆ for some ∆. Assume that G1 and G2 are distributions
satisfying

Gi(x+ ∆) ≤ biH(x+ ∆) for all x ≥ x0

with bi > 1 for i = 1, 2 and some sufficiently large x0. Then there is a constant A
independent of G1 and G2, such that

G1 ∗G2(x+ ∆) ≤ Ab1b2H(x+ ∆) for all x ≥ x0. (1.7)

Proof. Define

a = sup
u,v≥x0 : |u−v|≤1

H(u+ ∆)

H(v + ∆)

and notice that a is finite for sufficiently large x0 since H is ∆-subexponential, and
therefore especially ∆-longtailed. The convolution of interest can be split into two
parts,

G1 ∗G2(x+ ∆) =

∫ x

0

G2(x− y + ∆)G1(dy) +

∫ x+T

x

G2(0, x+ T − y]G1(dy)

≡ P1(x) + P2(x).

Consider the first term. Let k be the smallest integer such that x/k ≤ 1 and 1/k ≤ T .
Partition the interval (0, x] into k disjoint equally sized parts. For x ≥ x0 we can
write the first term as a sum and assess it as follows,

P1(x) =
k−1∑
i=0

∫ x(i+1)/k

xi/k

G2(x− y + ∆)G1(dy)

≤ b2

k−1∑
i=0

∫ x(i+1)/k

xi/k

H(x− y + ∆)G1(dy)

≤ ab2

k−1∑
i=0

∫ x(i+1)/k

xi/k

H(x− xi/k + ∆)G1(dy)
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≤ ab2

k−1∑
i=0

H(x− xi/k + ∆)G1(xi/k, x(i+ 1)/k)

≤ ab1b2

k−1∑
i=0

H(x− xi/k + ∆)H(xi/k + ∆)

where the summands can be evaluated backwards∫ x(i+1)/k

xi/k

H(x− y + ∆)H(dy) ≥ 1

a

∫ x(i+1)/k

xi/k

H(x− ix/k + ∆)H(dy)

=
1

a
H(x− ix/k + ∆)H(xi/k + ∆).

Inserting this upper bound for the summands yields the inequality

P1(x) ≤ a2b1b2

k−1∑
i=0

∫ x(i+1)/k

xi/k

H(x− y + ∆)H(dy)

= a2b1b2

∫ x

0

H(x− y + ∆)H(dy)

≤ a2b1b2H
∗2(x+ ∆).

Since H is ∆-subexponential there must be a finite δ such that

H∗2(x+ ∆) ≤ (2 + δ)H(x+ ∆) for all x ≥ x0

if x0 is sufficiently large. This provides the final inequality for the first term

P1(x) ≤ (2 + δ)a2b1b2H(x+ ∆).

Now, consider the second term. It follows directly that

P2(x) ≤
∫ x+T

x

G1(dy) ≤ b1H(x+ ∆) ≤ b1b2H(x+ ∆).

Altogether we now have

G1 ∗G2(x+ ∆) ≤ ((2 + δ)a2 + 1)b1b2H(x+ ∆).

This concludes the proof with A = (2 + δ)a2 + 1.

We can use this to obtain a local version of Proposition A.4.

Proposition A.6. Let F ∈ S∆ for some ∆, and let F1, . . . , Fd be distributions with
Fi(x + ∆) ∼ ciF (x + ∆) with ci ≥ 0 for i = 1, . . . , n. Then for every ε > 0 there
exists a D = D(ε) and a x0 = x0(ε) such that the following inequality holds

F ∗n1
1 ∗ · · · ∗ F ∗ndd (x+ ∆) ≤ D(1 + ε)nF (x+ ∆) (1.8)

for all x ≥ x0 and n1, . . . , nd ∈ N where n = n1 + · · ·+ nd. Furthermore

F ∗n1
1 ∗ · · · ∗ F ∗ndd (x+ ∆) ∼ (c1n1 + · · ·+ cdnd)F (x+ ∆).
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Proof. Let ε > 0 be given. From Proposition 4 in Asmussen et al. (2003) it follows
that for i = 1, . . . , d there is a Vi = Vi(ε) such that

F ∗nii (x+ ∆) ≤ Vi(1 + ε)niF (x+ ∆).

(1.8) can then be proven by induction using Lemma A.5. For d = 2 it follows directly
from the Lemma that there is an A such that

F ∗n1
1 (x+ ∆) ∗ F ∗n2

2 (x+ ∆) ≤ AV1V2(1 + ε)n1+n2F (x+ ∆).

Letting D = AV1V2 we have the desired inequality. Assume that (1.8) holds for d
distribution functions with constant D. Now consider the case with d+ 1 distribution
functions, then we have

F ∗n1
1 ∗ · · · ∗ F ∗nd+1

d+1 (x+ ∆) = (F ∗n1
1 ∗ · · · ∗ F ∗nd1 ) ∗ F ∗nd+1

d+1 (x+ ∆)

≤ ADVd+1(1 + ε)n1+···+nd(1 + ε)nd+1F (x+ ∆)

= ADVd+1(1 + ε)n1+···+nd+1F (x+ ∆).

From Corollary 2 in Asmussen et al. (2003), it follows that F ∗nii (x+∆) ∼ niciF (x+∆)
for i = 1, . . . , d, and using Proposition 3 in Asmussen et al. (2003) one can further
deduce that

F ∗n1
1 ∗ · · · ∗ F ∗ndd (x+ ∆) ∼ (n1c1 + · · ·+ ndcd)F (x+ ∆).

Theorem A.7. In addition to the assumptions of Theorem A.3 assume that F ∈ S∆

for some ∆ and Fi(x+ ∆) ∼ ciF (x+ ∆) for c1, . . . , cd ≥ 0. Then

P(S ∈ x+ ∆) ∼ (c1E[N1] + · · ·+ cdE[Nd])F (x+ ∆).

Proof. Use dominated convergence justified by Proposition A.6.

A.5 Random sums with subexponential
densities

Proposition 8 in Asmussen et al. (2003) shows a density version of Kesten’s bound.
We accordingly now seek to obtain a version of Theorem A.3 involving densities
instead. To do this, we need an upper bound for convolutions, as for the local
subexponential case.

Lemma A.8. Let F ∈ Sac have density f . Assume that f1 and f2 are densities
satisfying

fi(x) ≤ bif(x) for all x ≥ x0.

with bi > 1 for i = 1, 2 and some sufficiently large x0. Then there is a constant A
independent of f1 and f2, such that

f1 ∗ f2(x) ≤ Ab1b2f(x) for all x ≥ x0.
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Proof. Since f is longtailed then f(x) > 0 for all x ≥ x0 for x0 sufficiently large,
hence

a ≡ sup
y∈(0,x−x0)

f(x− y)

f(x)

is finite. Consider the partition

f1 ∗ f2(x) =

∫ x

0

f1(x− y)f2(y)dy

=

∫ x−x0

0

f1(x− y)f2(y)dy +

∫ x0

x−x0

f1(x− y)f2(y)dy +

∫ x

x0

f1(x− y)f2(dy)

≡ I1 + I2 + I3.

Now each term is assessed individually, starting with the first for x ≥ x0,

I1 ≤ b1

∫ x−x0

0

f(x− y)F2(dy) ≤ ab1

∫ x−x0

0

f(x)F2(dy) ≤ ab1b2f(x).

Analogously for the third term,

I3 =

∫ x−x0

0

f2(x− y)f1(y)dy ≤ ab1b2f(x).

Only the second term is left to be evaluated. Now let x ≥ 2x0, then it follows that

I2 = b1b2

∫ x0

x−x0

f(x− y)f(y)dy ≤ b1b2

∫ x

0

f(x− y)f(y)dy = b1b2f
∗2(x).

Since f is a subexponential density, if x0 is sufficiently large there must be a δ > 0
such that

f ∗2(x) ≥ (2 + δ)f(x) for all x ≥ x0.

Hence,
I2 ≤ b1b2(2 + δ)f(x).

To conclude the proof, let A = 2a+ 2 + δ.

Theorem A.9. Let F ∈ Sac have density f , and let f1, . . . , fd be densities with
fi(x) ∼ cif(x) with ci ≥ 0 for i = 1, . . . , n. Then for any ε > 0 there is a D = D(ε)
and a x0 = x0(ε) such that the following inequality holds

f ∗n1
1 ∗ · · · ∗ f ∗ndnd

(x) ≤ D(1 + ε)nf(x)

for all x ≥ x0 and n1, . . . , nd ∈ N where n = n1 + · · ·+ nd. Furthermore

f ∗n1
1 ∗ · · · ∗ f ∗ndnd

(x) ∼ (n1c1 + · · ·+ ndcd)f(x).

Proof. Analogous to Proposition A.6.
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A.6 Proof of Theorem A.2
Recall that P = (pij)i,j∈E is the matrix with entries defined by pij = ‖Fij‖, and ρ =
spr(P ) < 1 was defined as the Perron-Frobenius root of P . Let v the corresponding
right eigenvector. Then P nv = ρnv, which by strict positivity of v implies that the
ij’th element p(n)

ij of P n will decay at rate ρn.
We will first treat the case where in addition to ρ < 1 the matrix P is sub-

stochastic, which means that
∑

j pij ≤ 1, with strict inequality for at least one i. We
can then introduce an irreducible absorbing Markov chain (ξn)n∈N with state space
E ∪ {†} where † is the so-called coffin state. Let Q = (qij)i,j∈E∪{†} be the transition
matrix of (ξn)n∈N with qij = pij for i, j ∈ E . Since the state † is absorbing, it must
be that q†i = 0 and q†† = 1. This leaves qi† = 1−

∑
j∈E pij with at least one index

i such that qi† > 0 (due to P being substochastic). The time until absorbtion will
then be N = inf{n ≥ 0 : ξn = †}.

Let Tn denote the waiting time between jump n and n + 1. Then T0, T1, . . .
are conditionally independent given F = σ(ξ0, ξ1, . . .) with conditional distribution
function satisfying

Gij(t) = P(Tn ≤ t | F) = P(Tn ≤ t | ξn, ξn+1)

on {ξn = i, ξn+1 = j}, and the semi-Markov kernel F = (Fij)i,j∈E is defined by having
elements

Fij(t) = P(ξn+1 = j, Tn ≤ t | ξn = i) = qijGij(t).

Henceforth we will only consider i, j 6= †. Thus, Fij(t) = pijGij(t).
The solution of the Markov renewal equation (1.1) is given by Proposition 4.4 in

Asmussen (2003) as

Zi(x) =
∑
j∈E

Zij(x) where Zij(x) =

∫ x

0

zj(x− y)Uij(dy) (1.9)

with Markov renewal kernel Uij being the expected number of returns to state j ∈ E
before time t given that the Markov chain starts in state i ∈ E . That is,

Uij(t) =
∞∑
n=0

(F ∗n)ij(t) =
∞∑
n=0

Pi(ξn = j, Sn−1 ≤ t),

where Sn−1 = T0 + · · ·+ Tn−1. First, it is necessary to consider the local asymptotics
of Uij.

Lemma A.10. Under the assumptions of Theorem A.2,

Uij(t+ ∆) ∼ dijG(t+ ∆). (1.10)

Proof. Notice that the nth convolution of the semi-Markov kernel also can be defined
locally

(F ∗n)ij(t+ ∆) = Pi(ξn = j, Sn−1 ∈ t+ ∆).
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Rewriting the right-hand side using conditional expectations yields

Pi(ξn = j, Sn−1 ∈ t+ ∆) = Pi(ξn = j, T0 + · · ·+ Tn−1 ∈ t+ ∆)

= p
(n)
ij P(T0 + · · ·+ Tn−1 ∈ t+ ∆ | ξ0 = i, ξn = j)

= p
(n)
ij E

[
E
[
P(T0 + · · ·+ Tn−1 ∈ t+ ∆ | ξ0 = i, ξn = j) | ξ1, . . . , ξn−1

]]
= p

(n)
ij E

[
G

(n)
ij (t+ ∆)

]
,

where G(n)
ij denotes the distribution of the sum T0 + · · ·+ Tn−1 conditioned on the

Markov states ξ0 = i, ξ1, . . . , ξn−1, ξn = j.
Let N (n)

k` the the random variable counting the number of jumps from state k ∈ E
to state ` ∈ E before the nth jump, that is

N
(n)
k` =

n−1∑
m=0

1{ξm=k,ξm+1=`}.

Correspondingly, let N (n)
k`|ij be the random variable representing the number of jumps

from k ∈ E to ` ∈ E before jump n given that ξ0 = i and ξn = j, i.e. it is distributed
as N (n)

k` conditioned on ξ0 = i, ξn = j. This has expected value

E
[
N

(n)
k`|ij
]

= E
[
N

(n)
k`

∣∣ ξ0 = i, ξn = j
]

=
E
[∑n−1

m=0 1{ξ0=i,ξm=k,ξm+1=`,ξn=j}
]

P(ξ0 = i, ξn = j)

=

∑n−1
m=0 P(ξ0 = i, ξm = k, ξm+1 = `, ξn = j)

P(ξ0 = i, ξn = j)
=

∑n−1
m=0 p

(m)
ik pk`p

(n−m−1)
`j

p
(n)
ij

=

∑n−1
m=0(Pm)ikpk`(P

n−m−1)`j
(P n)ij

.

Recall that G(n)
ij is the distribution of the sum of the random variables T0, T1,

. . . , Tn−1 conditioned on the Markov chain until the nth jump knowing that it starts
in state i and ends in state j. Also, the distribution of Tm merely depends on ξm
and ξm+1. Therefore, G

(n)
ij can be interpreted as the random convolution

G
(n)
ij (t+ ∆) = ∗

k,`∈E
G
∗N(n)

k`|ij
k` (t+ ∆).

Applying Theorem A.7 the local asymptotics of G(n)
ij can then be specified as

E
[ ∗
k,`∈E

G
∗N(n)

k`|ij
k` (t+ ∆)

]
∼
(∑
k,`∈E

E
[
N

(n)
k`|ij
]
ck`

)
G(t+ ∆).

This asymptotic specification transfers to the semi-Markov kernel as follows

(F ∗n)ij(t+ ∆) ∼
∑
k,`∈E

n−1∑
m=0

(Pm)ikpk`(P
n−m−1)`jck`G(t+ ∆)
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and on to the Markov renewal kernel

Uij(t+ ∆) ∼
∞∑
n=0

∑
k,`∈E

n−1∑
m=0

(Pm)ikpk`(P
n−m−1)`jck`G(t+ ∆)

=
∑
k,`∈E

∞∑
m=0

∞∑
n=m+1

(Pm)ikpk`(P
n−m−1)`jck`G(t+ ∆).

Since P has spectral radius strictly less than 1, the infinite series above converges
with limits

∞∑
n=m+1

(P n−m−1)`j =
∞∑
k=0

(P k)`j = (I − P )−1
`j ,

∞∑
m=0

(Pm)ik = (I − P )−1
ik .

Thus,
Uij(t+ ∆) ∼

(∑
k,`∈E

(I − P )−1
ik pk`(I − P )−1

`j ck`

)
G(t+ ∆) ,

concluding the proof.

For the proof of Theorem A.2, it suffices in view of (1.9) to find the asymptotics
of the summands Zij(x) =

∫ x
0
zj(x− y)Uij(dy) in the solution of the Markov renewal

equation. As an introductory remark, notice that G ∈ S∆ for all T > 0 has the
implications

G(x, x+ 1/n] ∼ g(x)

n
for all n and

g(x+ y)

g(x)
→ 1 for all |y| < y0 <∞

for some appropriate y0. For a suitable A < x/2 decompose Zij(x) into three parts,
namely

Zij(x) =

(∫ A

0

+

∫ x−A

A

+

∫ x

x−A

)
zj(x− y)Uij(dy)

≡ J1(x,A) + J2(x,A) + J3(x,A).

We now consider and evaluate the three parts separately. In case i) of the Theorem
we have

J1(x,A) =

∫ A

0

zj(x− y)Uij(dy)

= g(x)

∫ A

0

zj(x− y)

g(x− y)

g(x− y)

g(x)
Uij(dy) = o(g(x))

when x→∞. Also

J2(x,A) =

∫ x−A

A

zj(x− y)Uij(dy) =

∫ x−A

A

zj(x− y)

g(x− y)
g(x− y)Uij(dy)

= o(1)

∫ x−A

A

g(x− y)Uij(dy) = o(g(x))

∫ x−A

A

g(x− y)

g(x)
Uij(dy).
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From this we can conclude

lim
A→∞

lim
x→∞

J2(x,A)

g(x)
= lim

A→∞
lim
x→∞

o(g(x))

g(x)
(U(x− A)− U(A)) = 0.

Finally, consider a finite partition of the interval (x − A, x] into n equally sized
intervals. A is now assumed to be an integer. Furthermore, let

z̄n(x) = sup
|y−x|≤ 1

n

z(y).

Then we can bound J3 from above by the upper Riemann sum

J3(x,A) =

∫ x

x−A
zj(x− y)Uij(dy) ≤

An−1∑
k=0

z̄n

(
k

n

)
Uij

(
x− k + 1

n
, x− k

n

]

∼ dij

An−1∑
k=0

z̄n

(
k

n

)
G

(
x− k + 1

n
, x− k

n

]

∼ g(x)
dij
n

An−1∑
k=0

z̄n

(
k

n

)
∼ g(x)

dij
n

∞∑
k=0

z̄n

(
k

n

)
as x→∞ and A→∞. Since z is assumed to be directly Riemann integrable, we
have

1

n

∞∑
k=0

z̄n

(
k

n

)
→ Ij

as n tends to infinity. So we have now obtained

lim sup
A→∞

lim sup
x→∞

J3(x,A)

g(x)
≤ dijIj.

Using the same approach with lim inf, a similar bound from below is obtained using
lower Riemann sums. This finishes case i).

Now consider case ii). The first of the decomposed parts has the asymptotics

J1(x,A) =

∫ A

0

zj(x− y)Uij(dy) ∼ ajg(x)

∫ A

0

g(x− y)

g(x)
Uij(dy)

∼ ajg(x)Uij(A)

which leads to

lim
A→∞

lim
x→∞

J1(x,A)

g(x)
= lim

A→∞
lim
x→∞

ajUij(A) = kijaj.

The second part in case ii) can also be evaluated as follows:

J2(x,A) =

∫ x−A

A

zj(x− y)Uij(dy) =

∫ x−A

A

zj(x− y)

g(x− y)
g(x− y)Uij(dy)

= O(1)

∫ x−A

A

g(x− y)Uij(dy).

26



Paper A

Notice the similarity to J2 in case i). Corresponding calculations show that J2(x,A) =
o(g(x)). J3 is also similar to case i), which concludes case ii).

In case iii) we are no longer able to consider the decomposition we have so far.
Instead, let Kj denote the probability measure with density zj(x)/Ij. Recall that
Kj ∈ S∆. Now let ∆ = (0, 1] and consider a new decomposition∫ x

0

zj(x− y)Uij(dy) =

∫ x−A

0

zj(x− y)Uij(dy) +

∫ x

x−A
zj(x− y)Uij(dy)

≡ I1(x,A) + I2(x,A),

where the second term satisfies

I2(x,A) ≤ A sup
y≤A
|zj(y)| Uij(x− A, x] = o(zj(x)).

Letting A tend to infinity in a slower rate than x (recall that we have chosen A
to be less than x/2) will preserve this inequaility. Now consider a corresponding
decomposition of the convolution Kj ∗ Uij.

(Kj ∗ Uij)(x+ ∆) =

∫ x

0

Kj(x− y + ∆)Uij(dy)

=

∫ x−A

0

Kj(x− y + ∆)Uij(dy) +

∫ x

x−A
Kj(x− y + ∆)Uij(dy)

≡ I ′1(x,A) + I ′2(x,A).

As for I2 we can evaluate I ′2(x,A) = o(zj(x)). Since zj ∈ L we have zj(x) ∼
Ij ·Kj(x+ ∆) for ∆ = (0, 1] and therefore I1(x,A) ∼ Ij · I ′1(x,A). This yields∫ x

0

zj(x− y)Uij(dy) ∼ Ij · (Kj ∗ Uij)(X + ∆).

Due to the assumption zj(x)/g(x)→∞ the use of Proposition 3 in Asmussen et al.
(2003) with c1 = 1 and c2 = 0 gives

Ij · (Kj ∗ Uij)(x+ ∆) ∼ kijIjK(x+ ∆) ∼ kijzj(x),

which concludes the proof of Theorem A.2 in the substochastic case.
If instead of P being substochastic it merely satisfies spr(P ) < 1, we define the

measure F̃ij(dx) = Fij(dx)vi/vj for i, j ∈ E and let P̃ be the matrix with elements
‖F̃ij‖ = ‖Fij‖vi/vj. P̃ will then be a substochastic matrix with row sums λ and
therefore it must also have spectral radius less than one. Letting Z̃i(x) = viZi(x)
and z̃i(x) = vizi(x) another renewal equation occurs

Z̃i(x) = z̃i(x) +
∑
j∈E

∫ x

0

Z̃j(x− y)F̃ij(dy) ,

which has the same properties as analysed previously in the substochastic case with
Markov kernel Ũij = Uijvi/vj . What we have already shown can therefore be applied
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with coefficients ãj, d̃ij, k̃ij and Ĩj. The assumption of the asymptotic properties of
Gij stated in Theorem A.2 implies that G̃ij(t+ ∆) = viGij(t+ ∆)/vj ∼ c̃ijG(t+ ∆),
where c̃ij = cijvi/vj and same relation transfers to d̃ij = dijvi/vj . Correspondingly for
k̃ij = Ũij(0,∞) = Uij(0,∞)vi/vj = kijvi/vj. Last to mention is Ĩj =

∫∞
0
z̃j(y)dy =

vj
∫∞

0
zj(y)dy = vjIj and ãj = vjaj. Inserting these into the asympotics of Z̃i gives

the same result as Theorem A.2. For example in case ii), the substochatic result
gives Z̃i(x) ∼

∑
j∈E(Ĩj d̃ij + ãj k̃ij)g(x) which translates to

Zi(x) =
1

vi
Z̃i(x) ∼ 1

vi

∑
j∈E

(
vjIj

vi
vj
dij + vjaj

vi
vj
kij

)
g(x)

=
∑
j∈E

(
Ijdij + ajkij

)
g(x).
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Chapter 2

Optimal premium selection as function
of the deductible

As in any other line of business, choosing the right price for a product in supply is
extremely important for creating and maintaining a healthy company. In insurance,
if the premium for an insurance policy is too low, it can lead to a loss per policy
on average and eventually putting the solvency for the company at risk. On the
contrary, if the premium is too high, the company risks its market share as they
might loose customers to the competitors. Much thought power has therefore been
invested into finding methods of premium calculation. In Paper B, we provide a way
of finding the premium optimally with respect to minimising probability of ruin for
insurance contracts including a deductible. This involves a three-stage analysis: First,
we consider the customer’s problem of choosing whether or not to insure. Next, we
find the portfolio characteristics, and finally, we solve the company’s minimization
problem. It is an extension of the work in Asmussen et al. (2013). In preparatory to
the paper, we want to consider an overview of the literature on the topic of premium
selection. As the number of papers are numerous, only a fraction is mentioned here.
A thorough review of premium calculation and their properties is provided in Laeven
and Goovaerts (2008).

Early risk theory, commonly referred to as the classical or individual theory of
risk, was mainly based on assessing risks individually. A portfolio was then simply
aggregated as the sum of individual risks using techniques such as the central limit
theorem and law of large numbers. Bohlmann (1909) reviews these methods. A
fundamental development in the approach to risk theory on portfolio level was due
to work of Lundberg (1909, 1919). The work was advanced mathematically, both the
arguments, the techniques, and the notation. It included continuous-time stochastic
processes, which not yet was rigorously defined at the time. Especially thanks to
Cramér (1930, 1955), it was developed into a coherent theory, known as the collective
theory of risk. The idea was to remove the focus from the risk of individuals, and
zoom out to the balance of the insurance company at a collective level. The standard
collective model by Cramér-Lundberg is considered in Section 2.1.4. As we see there,
the model includes an initial reserve, premium payments arriving at a constant rate
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and claim payments modelled by compound Poisson process. A particular quantity
of interest in relation to the reserve is the probability of ruin, which describes
how exposed the insurance company is to insolvency. Ruin probability is the most
considered measure of risk in actuarial science and has as a matter of consequence
been studied extensively. In Section 2.1.4 we further state some of the classical results
regarding the ruin probability. As seen here, analysing the ruin probability is rather
complex for the Cramér-Lundberg model. Only in a few cases an explicit expression
can be found. This motivates the use of diffusion approximations, known for their
readily available passage probabilities.

Several extensions to the Cramér-Lundberg model has been proposed since. In
Andersen (1957), the assumption of a Poisson counting process is relaxed to a
renewal counting process as defined in Section 1.1.3. Hence, inter-arrival times are
still assumed to be i.i.d., but generalised to have an arbitrary distribution rather
than an exponential. In real-life data, however, seasonal effects and trends (in both
claim frequency and sizes) are often observed, which is in disagreement with the i.i.d
assumption of the inter-arrival times. A solution to this could be to incorporate an
external environment process similar to the references mentioned in the introductory
discussion of Chapter A. De Finetti (1957) criticised the fact that in the Cramer-
Lundberg model, the reserve is expected to grow towards infinity when premiums
are loaded (that is, higher than the expected claim expenses). As a response to this,
the author argued that there must be an upper limit to the amount of reserve an
insurance company is allowed to accumulate, and if that limit is reached, the excess
is paid out as dividends to shareholders. Ruin is then certain, and therefore the
expected present value of dividends paid until ruin is introduced as the performance
measure. To the list of extensions we can add; investments, capital injections to fulfil
capital requirements (e.g. Solvency II), reinsurance, etc.

An indispensable input to modern actuarial science is the theory of stochastic
control, which provides methods of employing dynamic decision-making into insurance
models. Its relevance was clearly stated by Borch (1967): “The theory of control
processes seems to be ‘tailor-made’ for the problems which actuaries have struggled
to formulate for more than a century”. The first paper on stochastic control was by
Bellman (1958), the pioneer of dynamic programming (optimisation techniques for
sequential decision-making problems). The theory was further developed by, inter alia,
Florentin (1961) and Kushner (1962), who provided the first formal derivations of the
Hamilton-Jacobi-Bellman equation for diffusions. The general theory of stochastic
control is technically advanced. In Section 2.1.5 we make a short note on stochastic
control in extension to the diffusion approximation of the reserve. We intend only to
touch the surface of stochastic control, and therefore various regularity conditions
are omitted and notation is simplified to fit in. Azcue and Muler (2014) and the
monograph by Schmidli (2008) give proper treatments of stochastic control applied
to insurance and provide comprehensive literature reviews.

In Section 2.1.2 we mention some standard premium principles. A premium
principle is often based on the distributional properties of the risk. The most
rudimentary premium principle is the net premium principle, which is simply the
mean of the risk, unloaded. However, in order to avoid ruin, a loading is necessary.
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This leads to the expected value premium principle, the variance premium principle,
and the standard deviation premium principle. In insurance contracts the pure risk
itself is often altered by incorporating a deductible. In Section 2.1.3 we define and
discuss the purpose of deductibles. Insurance contracts between an individual and
an insurance company often only comes with a so-called fixed amount deductible.
This type of deductible structure is also the one considered in Paper B, C and D.
For a nuanced discussion on deductible structures, we refer to Paper E.

Another direction is to consider utility functions. The concept utility was for-
malised by von Neumann and Morgenstern (1947). They show that an agent adhering
to certain axioms of rationality has a utility function, and developed expected utility
techniques to handle quantifiable risk. A complex decision between random outcomes
then reduces to a comparison of real numbers. The construction of utility functions
has lead to the theory of risk attitudes and risk premiums, as discussed in Friedman
and Savage (1948) and Pratt (1964). Section 2.1.1 explains the relation between
utilities, risk attitudes and risk premiums. Utility is also the cornerstone of the
zero utility premium principle in Section 2.1.2, including the exponential premium
principle. These premium principles are discussed in Gerber (1974) in relation to the
property of additivity.

Combining utility functions with general equilibrium theory, Bühlmann (1980)
showed that taking general market conditions into account rather than letting a risk
be characterised by its own properties, it yields an economic premium principle, and
in a special case of independence the economic premium principle corresponds to
a change of measure studied by Esscher (1932), and is therefore referred to as the
Esscher premium principle. Staying in the genre of measure changes, in financial
theory inspiration to an additional way of pricing an insurable risk can be found
based on an arbitrage-free argument leading to the existence of a risk neutral pricing
measure. However, this is a discussion saved for Chapter 4.

In a different direction to the references mentioned so far, we have Asmussen
(1999), where an adapted premium rule is considered. Here the claim payments are
modelled by a compound Poisson process as in the Cramér-Lundberg model, but
the premium rate is exclusively based on past claim statistics. In this setting, the
ruin probability is studied.

We note that in Paper B, the individual is referred to as a customer, all though
she has the option not to buy the insurance product offered.

2.1 Preliminaries

2.1.1 Utility and risk attitudes

A utility function u(x) measures the satisfaction the individual gets of consuming or
owning x. It is a numerical representation of an individual’s preferences. It should
be increasing as holding/consuming x1 > x2 must yields u(x1) ≥ u(x2).

Let X be a non-negative random variable representing a risk of the individual.
An individual with wealth x can have one of the three attitudes towards risk
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• Risk averse: The risk averse individual has a concave utility function, and by
Jensen’s inequality

E[u(x−X)] ≤ u(x− E[X]).

Hence, the risk adverse individual prefers a predictable payoff at the cost of a
possibly lower expected payoff. Examples of concave utility functions used in
the literature are: exponential utility where u(x) = − exp(−ax))/a for a > 0,
quadratic utility where u(x) = x+ ax2 for a > 0, and logarithmic utility where
u(x) = log(x).

• Risk neutral : The risk neutral individual has a linear utility function,

E[u(x−X)] = u(x− E[X]).

• Risk loving : The risk loving individual has a convex utility function, and also
by Jensen’s inequality

E[u(x−X)] ≥ u(x− E[X]).

From the above it is clear that only the risk averse individual would be willing to
pay a premium larger than E[X] in order to avoid the risk X. If the individual has
no insurance, and experiences a loss of size X, then she would have expected utility
E[u(x−X)]. On the other hand, if she is insured (with no deductible), she pays a
premium p and is not exposed to the uncertainty of a loss and therefore has utility
u(x − p). The maximum premium the individual is willing to pay for insurance,
denoted π(X) and called the indifference premium, is chosen by

E[u(x−X)] = u(x− π(X)), (2.1)

i.e., where she is indifferent between insuring and not insuring. This creates an
interval [0, π(X)] of premium that the individual would be willing to accept.

2.1.2 Premium principles
A premium principle is a calculation rule for assigning a premium to a risk. Mathe-
matically, if P is the premium principle, then the premium charged by the insurance
company for assuming the risk X is

p = P(X).

As we saw in the previous section, a fundamental assumption for the existence of
an insurance market is that individuals are risk averse, and are therefore willing to
pay a premium p ≥ E[X] in order to avoid the risk X. If p = E[X] we say that the
premium is actuarially fair, and if else p > E[X], we say that the premium includes
a risk loading.

Next, we list a few standard example of premium principles, where θ is always
positive.
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• The net premium principle: P(X) = E[X]. This is the actuarially fair unloaded
premium.

• Expected value premium principle: P(X) = (1+θ)E[X], where θ is the so-called
safety loading. This premium principle has a risk loading proportional to the
mean.

• Variance premium principle: P(X) = E[X] + θVar[X]. This premium principle
has a risk loading proportional to the variance.

• Standard deviation premium principle: P(X) = E[X] + θ
√

Var[X]. This pre-
mium principle has a risk loading proportional to the standard deviation.

• Esscher’s premium principle: P(X) = E[X exp(θX)]/E[exp(θX)].

In terms of utility functions, the two following premium principles are standard.

• Equivalent utility principle: Let v(x) be the concave and increasing utility
function of the insurer. The premium is chosen to satisfy

v(x) = E[v(x+ Pv(X)−X)] (2.2)

where x is the initial wealth of the insurer.

• Exponential premium principle: If the utility function is exponential, v(x) =
− exp(−ax)/a, then by the equivalent utility principle

P(X) =
1

a
log
(
E[exp(aX)]

)
(2.3)

The equivalent utility principle corresponds to the analysis of (2.1) from the
insurer’s point of view. It is the minimum premium that the insurer is willing to
accept for assuming the risk. Hence, all premiums larger than Pv(X) would be
accepted by the insurer. So in order for both the individual and the insurer to agree
on a contract, the premium must be in the interval [π(X),Pv(X)].

2.1.3 Deductible
A deductible holds the insured accountable for a part of the loss. Hence, if the insured
experiences a loss X and has deductible structure h in her contract, then she must
pay h(X) herself, and the remaining X − h(X) is covered by the insurance company,
where h is a non-decreasing function. Adding a deductible to a contract serves the
purpose of

• Loss prevention: The insured is responsible for covering a part of the loss, and
can only claim the excess of the deductible to the insurance company. This
motivates the insured to prevent a loss from occurring.

• Loss reduction: As the deductible structure should be non-decreasing, the
insured has incentive to reduce the size of the loss.
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• Reduces administration costs : A deductible can rule out small losses from being
claimed. Small losses happen frequently, and administration costs of processing
them might exceed the claimed amount.

• Premium reduction: Deductibles decreases the risks transferred to the insurance
company, and as compensation the premium should be reduced, which can be
an important aspect for the insured, especially for individuals that are less risk
averse, and might prefer a high deductible in favour of a small premium.

The fixed amount deductible, considered in the paper of the present chapter, is
defined by h(X) = min(X,K) for some K ∈ R+.

2.1.4 Reserve models and ruin probabilities
Reducing to the essentials, a collective model of an insurance company’s reserve
should include the following components:

• initial reserve r0, which is the start-up capital of the insurance company.

• income from premium collection by a rate ct > 0 at time t.

• the expenses of claims modelled by a random sum,
∑Nt

i=1Xi at time t, where
(Nt)t≥0 is a counting process representing the number of claims and (Xi)i∈N are
the non-negative claims sizes commonly assumed to be independent of (Nt)t≥0.

Administrative and general costs, such as wages, rent, ect. are usually neglected. The
reserve at time t is then

Rt = r0 +

∫ t

0

ctdt−
Nt∑
i=1

Xi. (2.4)

The associated claim surplus process is

St =
Nt∑
i=1

Xi −
∫ t

0

ctdt.

The Cramér-Lundberg model is the standard collective model. It assumes that
the premium rate is constant, i.e. c = ct, that (Nt)t≥0 is a Poisson process as
in Definition 1.2 with intensity λ, and that the claim sizes (Xi)i∈N are i.i.d. and
independent of (Nt)t≥0, where we denote the common distribution by F with i’th
moment xi. Further, in accordance with previous notation, let (Ti)i∈N0 be the claim
arrival times, and (Wi)i∈N the inter-arrival times which, due to the Poisson assumption,
are i.i.d. with an exponential distribution. This is also the model mentioned in
Paper B.

A common concern in risk theory is the ruin probability,

ψ(r0) = P(τr0 <∞)
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where τr0 = inf{t ≥ 0 : Rt < 0 | R0 = r0} is the time of ruin, i.e. the first time that
the reserve becomes negative. The probability of survival is then φ(r0) = 1− ψ(r0).
Some is also concerned with the finite time ruin probability ψ(r0, T ) = P(τr0 < T ),
see, e.g., De Vylder and Goovaerts (1988) and Lefévre and Loisel (2008). However,
we exclusively consider the infinite-time ruin here. Further, we assume that the net
profit condition, c > x1λ, is satisfied. Otherwise, ruin happens with probability
one. Intuitively, the net profit condition says that on average, we should expect the
ingoing premium to at least cover the outgoing claims. This is equivalent with having
a positive safety loading, i.e. θ = c − λx1 > 0. Otherwise, the reserve would drift
negatively, eventually causing ruin with certainty.

The Pollaczek-Khinchin formula represents the ruin probability as the tail of a
compound geometric distribution,

ψ(r0) =
(

1− x1λ

c

) ∞∑
n=0

( x1λ

c

)n
F
∗(n)
X,I (r0), (2.5)

where FX,I is the integrated tail distribution

FX,I(r0) =
1

x1

∫ r0

0

F (u)du.

From this formula, it follows that the ruin probability is available explicitly in the
case of exponentially distributed claim sizes, i.e. F (x) = 1− exp(−bx) if x > 0 with
b > 0. The ruin probability then simplifies to

ψ(r0) =
1

1 + θ
exp
(
− bθ

1 + θ
r0

)
.

Another case where it is possible to get an exact formula is when r0 = 0, then
ψ(0) = (1 + θ)−1.

Implicitly stated above, the cases where the ruin probability can be found explicitly
are few. Therefore the focus in the literature has instead been redirected at creating
upper bounds for the ruin probability and examining the asymptotic behaviour. We
next outline some of the standard results within this regard of ruin theory. For further
interest, we refer to Asmussen and Albrecher (2010). We distinguish according to
the heavy-tailedness of the claim size distribution in the sense of Section 1.1.6.

Recall from Section 1.1.6 that claims are said to be light-tailed distributed if
there exists a ν > 0 such that mX(ν) < ∞. In this case, the moment generating
function of the claim surplus process,

mSt(x) = E[exp(xSt)] = exp
(
t(λ(mX(x)− 1)− cx)

)
,

is also finite on (0, ν). Applying the logarithm yields the cumulant generating function

κSt(x) = log(mSt(x)) = t
(
λ(mX(x)− 1)− cx

)
. (2.6)

Note that κSt(0) = 0 and has negative slope in this point as

κ′St(0) = t(λx1 − c) < 0 for t ≥ 0
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due to the net profit condition. κSt(x) is furthermore a convex function since

κ′′St(x) = tλE[X2 exp(xX)] > 0 for t ≥ 0.

From the established properties it follows that if there exists a γ > 0 such that
κSt(γ) = 0, or equivalently, such that

mX(γ) =
cγ

λ
+ 1, (2.7)

then it is unique. This γ is known as the adjustment coefficient (or the Lundberg
exponent). It features in two essential results in ruin theory.

The first is Lundberg’s inequality from Lundberg (1909) providing an upper
bound on the ruin probability.

Theorem 2.1 (Lundberg’s inequality). Assuming that the adjustment coefficient γ
exists, then

ψ(r0) ≤ exp(−γr0).

The second gives the asymptotics of the ruin probability and is due to Cramér
(1930).

Theorem 2.2 (Cramer’s ruin bound). Assume that the F has a density and that
the adjustment coefficient γ exists, then there is a constant C such that

ψ(r0) ∼ C exp(−γr0) as r0 →∞.

In the proof of Cramer’s ruin bound, it is useful to write the ruin probability as
a defective renewal equation,

ψ(r0) = qFX,I(r0) +

∫ r0

0

ψ(r0 − x)d(qFX,I(x))

where q = λx1/c < 1. We have previously seen this type of integral equation in
Section 1.1.3. Expressing the ruin probability as a renewal equation makes it possibly
to use renewal theory techniques to find the asymptotic properties.

For heavy-tailed claims, mX(ν) =∞ for all ν > 0. An adjustment coefficient can
therefore not exist, and the analysis above becomes inapplicable. Instead, considering
the subexponential subclass of heavy-tailed distributions, Embrechts and Veraverbeke
(1982) show that the ruin probability asymptotically behaves as follows.

Theorem 2.3. Assume that x1 <∞, that the claim size distribution has a density,
and that the integrated claim size distribution FX,I is subexponential. Then the ruin
probability satisfies

ψ(r0) ∼ λx1

c− λx1

FX,I(r0) as r0 →∞.
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It now becomes apparent how heavy-tailed claims endangers the solvency of
the insurance company. Theorem 2.2 states that for light-tailed claims the ruin
probability decays exponentially asymptotically, whereas in Theorem 2.3 we see that
for heavy-tailed claims, the ruin probability is of the same order as the integrated
tail of the claims. Hence, in the heavy-tailed case ruin can be spontaneously caused
by one large claim, corresponding to the principle of a single big jump discussed in
Section 1.1.6

The fact that first passage times are more easily calculated for diffusion processes
has lead to the idea of approximating the reserve by a diffusion. Iglehart (1969)
shows how a sequence of risk reserve processes converges weakly to the Brownian
motion with drift,

dR
(d)
t = µdt+ σdWt, R

(d)
0 = r0 (2.8)

where µ = c− λx1 and σ2 = λx2. The argument is based on compressing the time
scale, such that claims become many and small, meanwhile maintaining the first
two moment of the original reserve process. Iglehart (1969) further shows that for
a positive drift (corresponding to the net profit condition being satisfied), the ruin
probability of the sequence of risk reserves then converges to the ruin probability of
the diffusion approximation given by

P(τ (d)
r0

<∞) = exp
(
−2

r0µ

σ2

)
.

where τ (d)
r0 = inf{t ≥ 0 : R

(d)
t < 0 | R(d)

0 = r0} is the time of ruin for the diffusion
approximation.

We use this diffusion approximation to model the insurance company’s reserve in
Paper B, where the simple nature of the associated ruin probability is convenient in
the sense that a closed-form solution is obtainable for the optimal single-customer
premium.

2.1.5 A short note on stochastic control theory
Until now, we have only considered the bare case of the reserve model, where no
control is directly implemented. In reality, how the reserve develops depends on
a number of decisions made by the insurance company. We turn to the theory of
stochastic control to give a suitable formulation.

Assume that the reserve develops according the stochastic process (Ru
t )t≥0 with

dynamics governed by a control process u = (ut)t≥0 as follows

dRu
t = µ(Ru

t , ut)dt+ σ(Ru
t , ut)dWt, Ru

0 = r0. (2.9)

The control process u must take value in some admissible set U . The minimum
restrictions on admissibility are that the control has to be adapted to the filtration
generated by (Wt)t≥0, since it must only be based on events up to present time, and
that the dynamics in (2.9) admits a strong solution.

A value V u(t, x) is associated depending on the control process u and the current
value x = Ru

t of the reserve. The objective of interest is then the value function
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evaluated in the optimal control, V (t, x) = supu V
u(t, x). Obvious questions to ask

are; does there exist an optimal control, and if there does, how do we find it? Further,
what is the value function?

Letting τ be an exit time, and say that the insurance company wants to maximise

V u(t, x) = E
[∫ τ

t

e−ζ(s−t)v(Ru
s , us)ds+ e−ζ(τ−t)K(τ, Ru

τ )
∣∣∣Ru

t = x, t < τ
]

where v : R × U → R is a continuous reward rate, K : R × R → R a final reward,
and ζ a discounting parameter. So the insurance company wants to find the value
function V (t, x) and the optimal control process u∗ such that

V (t, x) = sup
u∈U

V u(t, x) = V u∗(t, x)

There are different types of controls depending on how it reacts to the reserve
process, e.g.

• Open loop controls : The control acts independently of the reserve process.

• Closed loop (or feedback) controls: The control process is adapted to the
filtration generated by (Ru

t )t≥0.

• Markovian controls: A subset of the closed loop controls, where the control
only depends on the current level of the reserve and not on the past. With
such controls, the diffusion (2.9) becomes a Markov process, which explains
the name.

In many problems, the optimal control is on a Markovian form, i.e. u∗t = u∗(R∗t ),
where (R∗t )t≥0 is the optimally controlled reserve. This is also the only type of control
considered here.

Paper B considers a setting where the insurance company offers an insurance
product with a premium p and fixed amount deductible K. It is stated in the paper
how the drift and variance of the reserve diffusion process are controlled by p, which
then is chosen to minimise the ruin probability, or, equivalently, maximise survival
probability. Compared to the general formulation above, this corresponds to letting
τu = τu(r0) = inf{t ≥ 0 : Ru

t < 0 | Ru
0 = r0} be the time of ruin of the controlled

process, v(Ru
s , us) = 0 for any control us ∈ U at any time s > 0, ζ = 0, and

K(τu, Ru
τu) = 1{τu=∞}, such that

V u(t, x) = E[1{τu=∞} |Ru
t = x, t < τ ] = P(τu(x) =∞)

= 1− P(τu(x) <∞) = 1− ψ(x) = φ(x).

Due to the use of diffusion approximation, we see in the ending discussion of the
previous section that the analysis is significantly simplified, which is also apparent
in Paper B, where we find that the optimal premium strategy is constant.

However, in cases where the value function is not directly available, one continues
by using dynamic programming techniques. Applying these tools, one is able to
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show that the value function can be characterised by the so-called Hamilton-Jacobi-
Bellman (HJB) equation, a partial differential equation describing the local behaviour
of the value function,

sup
u∈U
{AV (x)− δV (x) + v(x, u)} = 0,

where

Af(x) = lim
t↓0

1

t
E[f(Ru

t )− f(x) |Ru
0 = x] = µ(x, u)f ′(x) +

1

2
σ2f ′′(x)

is the infinitesimal generator of the process (Ru
t ){t≥0} with dynamics (2.9).

In this way, the global optimisation problem is reduced to a continuum of local
ones. Two important notes to this extend are: i) a solution to the HJB-equation is
not necessarily the value function in consideration. One needs to prove a so-called
verification theorem to ensure. ii) the HJB-equation obviously requires that the value
function is sufficiently smooth, which might not be the case. Then one needs to turn
to viscosity solutions. That is, however, well beyond the scope here.
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Paper B

Optimal premium as a function of the
deductible: Customer analysis and

portfolio characteristics
julie thøgersen

abstract. An insurance company offers an insurance contract (p,K), consisting of
a premium p and a deductible K. In this paper, we consider the problem of choosing
the premium optimally as a function of the deductible. The insurance company is
facing a market of N customers, each characterised by their personal claim frequency,
α, and risk aversion, β. When a customer is offered an insurance contract, she will,
based on these characteristics, choose whether or not to insure. The decision process
of the customer is analysed in detail. Since the customer characteristics are unknown
to the company, it models them as i.i.d. random variables; A1, . . . , AN for the claim
frequencies and B1, . . . , BN for the risk aversions. Depending on the distributions
of Ai and Bi, expressions for the portfolio size n(p;K) ∈ [0, N ] and average claim
frequency α(p;K) in the portfolio are obtained. Knowing these, the company can
choose the premium optimally, mainly by minimising the ruin probability.

keywords: microeconomic insurance; customer characteristics; portfolio size; aver-
age claim frequency; ruin theory
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B.1 Introduction

An insurance company has several instruments for stochastic control at its disposal.
Much studied are dividends, reinsurance and investment; see, e.g., Schmidli (2008).
The present paper concentrates on premiums and deductibles. These are also obvious
instruments, but have been somewhat less studied in the literature as such.

The standard model for the risk reserve Rt at time t is the Cramer–Lundberg
process:

Rt = r0 + ct− At,

where r0 is the initial reserve, c is the gross premium rate and (At)t≥0 is a compound
Poisson process with parameters λ and F . More explicitly, At =

∑Nt
i=1 Zi where

(Nt)t≥0 is a Poisson process with parameter λ counting the number of claims until
time t, and the Zi’s represent the (positive) claim sizes assumed to be i.i.d. and
independent of (Nt)t≥0, with common distribution F on (0,∞). Let z1 = E[Zi]
and z2 = E[Z2

i ]. The Cramer–Lundberg process can, due to the arguments in
Iglehart (1969), be approximated by the diffusion process:

dR(d)

t = µdt+ σdWt, R(d)

0 = r0 (2.1)

with µ = c−λ z1 and σ2 = λ z2. To put it briefly, this diffusion process is the Brownian
motion with drift that matches the mean and variance of the Cramer–Lundberg
process at any given point in time.

We will describe an insurance contract by a premium p and a deductible K. The
purpose, besides loss prevention and retention, of adding a deductible to a contract
is to avoid administrating the numerous number of small claims. The deductible is
therefore chosen to serve this purpose, and the premium will then be considered as a
function of the chosen deductible. We will consider the methods of how to find the
premium optimally in a given market. For simplicity, we assume that all (potential)
customers are offered the same insurance contract (p,K). We will also neglect the
market effects by assuming that only one company supplies insurance.

A possible extension is to allow the insurance company to offer different de-
ductibles and let the premium in the contract be regulated accordingly. A simple way
of doing so is to say that the entire market can be divided into disjoint sub-markets,
for example; one where there is a customer demand for a low deductible Kl, one for
a medium deductible Km and one for a high deductible Kh. Therefore, the offered
values of the deductibles will be {Kl, Km, Kh}, where there is a separate market for
each. It will then be possible to apply the same approach as considered here to each
of the sub-markets.

There are several types of deductibles. We will consider the classical fixed amount
deductible where the claims are truncated, so the loss for the insurance company in
relation to a claim Zi can be described by the random variable:

X (K)

i = (Zi −K)+ =

{
0, if Zi < K,

Zi −K, if Zi ≥ K.
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The risk reserve must therefore be modified:

Rt = r0 + ct− A(K)

t ,

where A(K)
t is the compound Poisson process with losses X (K)

i . Let x(K)
n denote the

n’th moment of X (K)
i . Notice that z1 = x(0)

1 and z2 = x(0)
2 , since the claims are

assumed to be positive. The results here thus contain the no-deductible case.
Assume that the insurance company is facing a market consisting of N potential

customers. Let n(p;K) ∈ [0, N ] denote the number of customers the insurance com-
pany attracts on the market when offering the contract (p,K). Obviously, increasing
the premium should lead to a loss of customers; therefore, it must be that ∂n(p;K)

∂p
≤ 0.

Furthermore, the average customer claim frequency in the portfolio will be denoted
as α(p;K). Raising the premium will make it less attractive to insure for customers
having low claim frequencies, and so, the average claim frequency of the portfolio
increases, i.e., ∂α(p;K)

∂p
≥ 0. This is commonly known as adverse selection. The gross

premium c and the aggregate claim frequency λ will then depend on the premium,
p, and the chosen deductible, K, as follows:

c(p;K) = n(p;K)p and λ(p;K) = n(p;K)α(p;K).

The drift and variance of the diffusion process (2.1) are modified accordingly:

µ(p;K) = n(p;K)p− λ(p;K)x(K)
1 − L = n(p;K)

(
p− α(p;K)x(K)

1

)
− L,

σ2(p;K) = λ(p;K)x(K)
2 = n(p;K)α(p;K)x(K)

2 .

In order to avoid trivialities, when minimising the ruin probability at a later stage, a
fixed liability payment rate L is introduced in the drift. Otherwise, the insurance
company can choose p to be infinitely large such that no customer will insure, and
the reserve will remain constantly at r0, yielding a ruin probability of zero. The term
liability is used in a broad sense. It covers any type of costs the insurance company
might have. Let ϕ(r0) denote the ruin probability as a function of the initial reserve
when the reserve is modelled by the diffusion process. For more background on
ruin theory, we refer to Asmussen and Albrecher (2010). In this reference, it is also
stated that when the drift µ(p;K) in the diffusion approximation is positive, then
ϕ(r0) = exp(−r0µ(p;K)/σ2(p;K)), and when the drift is negative, then ruin will be
certain, i.e., ϕ(r0) = 1 for any initial reserve r0.

For a given deductible, changing the premium will have a double-sided effect on
the drift (and profit) of the insurance company. Raising the premium will increase
the earnings per customer, but will also reduce the size of the portfolio and increase
the average claim rate due to adverse selection, and vice versa for decreasing the
premium. In order to say which effect is dominating, a specification of the portfolio
characteristics is needed.

First of all, we need to gain insight into the decision process of a customer.
In this context, we introduce a risk aversion parameter β and motivate a method
for incorporating risk aversion. See Rees and Wambach (2008) for a microeconomic
perspective of insurance.
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In a naive setting, the customers would have the same claim rate, implying the
average claim frequency to be constant, α(p;K) = α, and n(p;K) could be chosen
on some ad hoc form. In a more realistic setting, a market of potential customers
is non-homogeneous in the sense that they have different characteristics, namely
different α’s and β’s. A customer knows her own claim rate, but the insurer does not
possess this information about the customers. The claim rates are therefore modelled
as i.i.d. random variables A1, . . . , AN over the portfolio. Likewise for the risk aversion
parameter, which will be considered as the outcomes of the i.i.d. random variables
B1, . . . , BN . This results in some less ad hoc forms for the functions α(p;K) and
n(p;K) to characterise the portfolio. Once the portfolio characteristics are known,
the insurance company can use these to choose the premium optimally. The main
optimization problem considered is minimising the ruin probability, but this only
makes sense in case of a positive drift in the diffusion (2.1). In the case of a negative
drift ruin is certain, so the premium will be chosen to maximise the time to ruin.

The ideas here are very similar to the ones considered in Asmussen et al., 2013.
The present paper takes however a different approach to risk aversion and, as said,
incorporates deductibles. The work in Burnecki et al., 2004 also finds the price of
insurance as a function of the deductible for different types of deductibles, though not
exploiting the aspects of risk aversion. The work in Højgaard, 2002 also controls the
gross premium indirectly by controlling the safety loading. All in all, the contributions
of this paper are three-fold; analyzing the customer’s behavior in Section B.2, finding
portfolio characteristics in Section B.3 and choosing the optimal premium for the
insurance company in Section B.4. For examples and illustrations, see Section B.5.

B.2 Customer’s problem
A potential customer has to make a decision on whether to insure or not, given that
she is offered an insurance contract (p,K). If the customer chooses to insure, she
must pay a premium p at constant rate, but the customer can then report claims and
get the amount above the threshold K covered. More specifically, if the customer
experience a loss Zi, she will only report it to the insurance company if Zi ≥ K in
which case she has to pay K herself; otherwise, if Zi < K, there is no purpose of
reporting it, and she will have to cover the entire loss Zi. On the other hand, if the
customer chooses not to insure, she no longer has to pay p continuously. She will
instead have to cover all of the uninsured losses by herself.

For the moment, risk aversion is ignored, and the decision is made solely by
comparing the present values of the wealth generated by the two options. Later risk
aversion will be incorporated by pricing the excess uncertainty when not insuring
using the variance premium principle. Let VI denote the present value of insuring
and VNI of not insuring.

The customer is assumed to have a subjective discount rate d and access to a
risk-free asset with interest rate r in which all her wealth is assumed to be invested.
Furthermore, it is assumed that d > r to ensure finite asset valuation. The customer is
characterised by initial wealth w0 and claim frequency α. The customer is furthermore
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assumed to have infinite life length. Remark B.2 comments on this assumption. The
problem of the customer will then be identical every period, and the decision will
therefore not change over time.

We start by finding the present value of not insuring. As said, if the customer
chooses not to insure, she will have to cover every loss herself. Therefore, her wealth
will develop according to:

dwt = rwtdt− dAαt , (2.2)

where (Aαt )t≥0 is a compound Poisson process with parameters α and F , representing
the total loss until time t for the potential customer when not insuring. Hence,
Aαt =

∑Nα
t

i=1 Zi where (Nα
t )t≥0 is a Poisson process with parameter α assumed to be

independent of the Zi’s. Let (Ti)i∈N denote the arrival times of the Poisson process
(Nα

t )t≥0. Notice that (2.2) is an Ornstein–Uhlenbeck process driven by a Levy process
(namely, the compound Poisson process), and the solution is therefore explicitly
known as:

wt = exp(rt)
(
w0 −

∫ t

0

exp(−rs)dAαs
)

= exp(rt)
(
w0 −

Nα
t∑

i=1

exp(−rTi)Zi
)
.

The present value of the wealth when not insuring is evaluated as:

VNI = E
[∫ ∞

0

exp(−dt)dwt
]
.

Calculations given in Appendix B.I show that this can be reduced to:

VNI =
rw0

d− r
− z1α

d− r
.

On the other hand, if the customer chooses to insure, she will have to pay a
premium continuously and cover the parts of the claims below the deductible. Her
wealth will then have the following dynamics,

dwt = (rwt − p)dt− dAα,Kt , (2.3)

where (Aα,Kt )t≥0 is the compound Poisson process representing the total loss associated
with claims until time t for the customer when insuring, that is:

Aα,Kt =

Nα
t∑

i=1

min{Zi, K} =

Nα
t∑

i=1

(
K1{Zi≥K} + Zi1{Zi<K}

)
.

Once again, we are looking at an Ornstein–Uhlenbeck process driven by a Levy
process. This can be solved in the same way as seen previously,

wt = exp(rt)
(
w0 −

∫ t

0

exp(−rs)pdt−
∫ t

0

exp(−rs)dAα,Ks
)

= exp(rt)
(
w0 −

p

r

)
+
p

r
− exp(rt)

Nα
t∑

i=1

exp(−rTi)(K1{Zi≥K} + Zi1{Zi<K}).
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The present value of the wealth when insuring will therefore be:

VI = E
[∫ ∞

0

exp(−dt)dwt
]

=
rw0 − p
d− r

− α

d− r
E[K1{Zi≥K} + Zi1{Zi<K}].

Since the approach and calculations are very similar to the ones used when finding VNI ,
the details are skipped. We can now state the following.

Corollary B.1. Disregarding risk aversion, the customer will insure if and only if
VI ≥ VNI , which is equivalent to:

p ≤ αE[(Zi −K)1{Zi≥K}] = αE[X (K)

1 ] = αx(K)
1

Hence, a risk-neutral customer will insure if the net premium (taking deductibles
into account) exceeds the premium. She has no incentive to pay a loading in order
to avoid the risk.

Remark B.2. The customer is assumed to have an infinite life length. This is
obviously not realistic, but it is convenient for the analysis and not uncommon in
other areas of non-life insurance. For example, it the basis for the standard use of
the stationary distribution in bonus-malus systems; see the discussion in Asmussen
(2014).

It would be more realistic with a random life length τ . In this case, the discount
factor exp(−dt) has to be replaced by P(τ > t) exp(−dt) in the above formulas for
the present values, VNI and VI . This will in general change the analytic expressions.
Though note that in the case where τ is exponential with rate, say, ρ, the same
expressions appears with d replaced by d+ ρ. Due to the forgetfulness property of
the exponential distribution, the customer is still facing an identical problem every
period. This leads to obvious reinterpretations of the analysis of this section.

In order for insurance to make sense, the customer must of course have some
degree of risk aversion. We want to find which excess risk the customer is exposed to
when not insuring and how to price this risk when risk aversion is essential.

The first step is to notice that VNI also could have been derived in a more intuitive
way. Recall that all wealth is assumed to be invested in the risk-free asset. Therefore,
wealth itself has the dynamics dwt = rwtdt of a bank account. When accumulating
interest, this has present value:∫ ∞

0

exp(−dt)dwt =

∫ ∞
0

exp(−(d− r)t)rw0dt =
rw0

d− r
. (2.4)

When a non-insured customer has to pay a loss Zi at time Ti, she also loses a
possible interest rate income. Therefore, the total loss of paying Zi at time Ti can
be calculated using the formula (2.4) with the discounted loss exp(−rTi)Zi as w0.
Hence,

VNI =
rw0

d− r
− r

d− r
E
[ ∞∑
i=1

exp(−rTi)Zi
]
.
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Note that due to Campbell–Mecke’s formula (see, e.g., van Lieshout, 2000 for further
details), this is in fact equal to the expression for VNI found previously. Furthermore,
we have the following alternative characterization of VI ,

VI =
rw0 − p
d− r

− r

d− r
E
[ ∞∑
i=1

exp(−rTi)(K1{Zi≥K} + Zi1{Zi<K})
]

which could have been explained with a similar intuitive approach using truncated
losses.

The criteria of insuring in Corollary B.1 when disregarding risk aversion can then
be expressed as the inequality:

p ≤ E
[
r
∞∑
i=1

exp(−rTi)(Zi −K)1{Zi≥K}

]
.

The additional risk the customer is exposed to when not insuring can therefore be
captured by the random variable:

S(K) = r
∞∑
i=1

exp(−rTi)(Zi −K)1{Zi≥K} = r
∞∑
i=1

exp(−rTi)X (K)

i .

The next step is to find the maximum premium the risk averse customer is willing
to pay, also called her reservation price for this risk. Inspired by microeconomics,
one can let the customer’s preferences be represented by a concave utility function
u(·). Assume that the only risk the customer is concerned about when pricing is the
additional risk S(K) she is carrying when not insuring. The losses less than or equal
to the deductible is a risk that the customer is also facing, but cannot be insured
against; see Remark B.5 for further details. Inspired by Gerber and Pafum (1998),
the maximal premium P (K) the customer is willing to pay for an insurance of a risk
S(K) is the solution to the equation:

E[u(w − S(K))] = u(w − P (K)). (2.5)

Therefore, the customer’s reservation price satisfies that she is indifferent between
carrying the risk S(K) and paying the premium P (K).

A possible choice is to let the customer’s preferences be represented by an
exponential utility function,

ua(x) =
1

a
(1− exp(−ax)),

where a is a risk aversion parameter. The premium in (2.5) can then be solved
explicitly as:

Pexp(K) =
1

a
log
(
E
[
exp(aS(K))

])
. (2.6)

This is the same premium as found in Gerber (1974), where it is the insurer, not the
insured, pricing a risk. It is commonly known as the exponential premium principle
and is mostly used by the insurer in the literature.
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The object is to obtain an analytic expression for the premium, and this is
extremely complicated (if not impossible without having to make a lot of simplifying
assumptions) to get for Pexp(K). This is mainly due to S(K) being a sum of dependent
random variables caused by the dependence structure in the Ti’s. Thus, the additivity
property that Gerber (1974) proves the exponential premium principle possesses
cannot be used. To illustrate this complexity, a simple case example is presented in
Appendix B.III. In order to obtain a more simple expression, a second order Taylor
approximation of the logarithm in (2.6) around a = 0 is considered,

Pexp(K) ≈ E[S(K)] +
a

2
Var[S(K)].

Assessments about the premium will be based on the right-hand side hereinafter.
Let β = a/2 and introduce the notation:

Pvar(K) = E[S(K)] + βVar[S(K)]. (2.7)

This the well-known variance premium principle. It expands the net premium principle
by adding a risk loading that is proportional by a factor β > 0 to the variance of
the risk. Therefore, the customer is now further characterised by the risk aversion
coefficient β. Approximating the exponential premium principle by the variance
premium principle is a common approach; see, for example, Gerber and Pafum
(1998).

It is indeed possible to find an analytic expression for (2.7). Applying Campbell–
Mecke’s formula, it appears that the expectation term simply is:

E[S(K)] = αx(K)
1 .

The variance term in (2.7) is calculated using the total law of variance in Ap-
pendix B.II, giving the result:

Var[S(K)] =
rx(K)

2 α

2
.

The concluding premium is summarised below.

Corollary B.3. Given a deductible K, the customer is facing the excess risk S(K) =
r
∑∞

i=1 exp(−rTi)X (K)
i when not insuring and is willing to pay the following price for

an insurance:

Pvar(K) = αx(K)
1 + β

(
rx(K)

2 α

2

)
=

(
1 + β

rx(K)
2

2x(K)
1

)
αx(K)

1 . (2.8)

In Example B.9, the premium (2.8) is calculated explicitly for log-normally-
distributed claim sizes.

Remark B.4. The approach leads to a fairly classical premium calculation principle,
which in the literature is mostly seen from the insurer’s perspective. This motivates
the use of other already developed premium calculation principles applied from the
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the customer’s point of view. An example of such is the standard deviation principle,
where the premium depends on the mean and the standard deviation of the risk in a
linear structure,

Pstd(K) = E[S(K)] + β
√
Var[S(K)].

Since we already have expressions for the mean and the variance, we can write this
more explicitly as:

Pstd(K) = αx(K)
1 + β

√(
rx(K)

2 α

2

)
.

Another could simply be the expected value premium principle with a safety loading
depending on the individual’s risk aversion:

Pev(K) = (1 + ω(β))E[S] = (1 + ω(β))αx(K)
1 . (2.9)

The latter gives a simple expression, even though it still has a nice intuitive inter-
pretation. All evaluations in the following will be based on the variance premium
principle. However, do note that a similar approach can be used with other premium
calculation principles.

Remark B.5. The risk the customer is facing can be split into two. First of these is
the risk the customer cannot insure. This is the (part of the) losses that the customer
must pay regardless of insuring or not and is the uncertainty that appears in both
Vn and Vi. The monetary value at Time 0 of this risk can be deduced to:

S≤K = r
∞∑
i=1

exp(−rTi)(Zi1{Zi<K} +K1{Zi≥K}).

Second of these is the additional risk S(K) the customer can buy insurance to cover.
The maximum premium that the customer is willing to pay in (2.5) will be altered
as follows if she takes S≤K into consideration,

E[u(w0 − S≤K − S(K))] = E[u(w0 − S≤K − P (K))].

Using the exponential utility and solving yields:

P (K) =
1

a
log

(
E[exp(aS≤K + aS(K))]

E[exp(aS≤K)]

)
.

Proceeding to a similar second order Taylor approximation as seen previously,

Pexp(K) ≈ E[S(K)] +
a

2
Var[S(K)]− aCov(S≤K , S(K)),

it appears that in the final pricing formula, the assumption about the customer
only caring about pricing the excess risk S(K) regardless of S≤K corresponds mathe-
matically to assuming that Cov(S≤K , S(K)) ≈ 0. A similar comment is also made in
Gerber and Pafum (1998).
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B.3 Portfolio characteristics
A customer is characterised by her claim frequency α and risk aversion β. As
previously commented, these characteristics are most likely customer-dependent. The
insurance company therefore considers them as random variables being i.i.d. on the
market. The claim frequencies are represented by A1, . . . , AN , and the risk aversions
by B1, . . . , BN . First, we will consider the claim frequency as being random and the
risk aversion as constant. Next, we will reverse it, by modelling the risk aversion
as random and letting the claim frequency be constant. A third, more advanced,
possibility is of course to let the customer characteristics (α, β) be represented by
random vectors (A1, B1), . . . , (AN , BN ). This complicates the evaluations considerably
and is therefore left open by this paper.

In each case, we derive an expression for the portfolio size and for the average
claim frequency in the portfolio. These expressions will become explicit functions
when assuming a concrete distribution.

B.3.1 Stochastic claim frequencies
Consider the first case mentioned above, where the risk aversion is constant, and the
claim frequency of the customer is unknown to the insurance company and, therefore,
modelled by a random variable denoted by A. As said, we want to find the expected
size of the portfolio and the average claim rate in it.

From the reservation price in (2.8), it follows that a customer with characteristics
(α, β) will insure if the offered insurance contract (p,K) satisfies the inequality:

p ≤ αx(K)
1 +

βαr

2
x(K)

2 .

Since the claim frequency is modelled by a random variable, A, to the insurer, this
translates to the relation:

A ≥ 2p

2x(K)
1 + βrx(K)

2

.

The expected portfolio size will then be the probability of this event happening
multiplied by the size of the market, namely:

n(p;K) = P

(
A ≥ 2p

2x(K)
1 + βrx(K)

2

)
N.

This is the mean demand curve as a function of the premium and deductible. In the
following, it is assumed that N is large and that there is a continuum of customers,
such that the deviation from the actual demand curve is negligible.

The average claim frequency rate in the portfolio is the expected claim frequency
given that the customer chooses to insure, i.e.,

α(p;K) = E
[
A

∣∣∣∣ A ≥ 2p

2x(K)
1 + βrx(K)

2

]
.
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B.3.1.1 Exponentially distributed claim frequencies

When accounting for unobserved heterogeneity in the Bayesian claim experience
rating setting, the claim frequency is frequently assumed to be Γ(s, b) distributed,
for example, as in Pitrebois et al. (2003). In some cases there are empirical evidence
of s being close to one. See Bichsel (1964) for more discussion. This motivates the
assumption of an exponential distribution with parameter b of the claim frequency
A. Offering the contract (p,K), the customer will insure with probability:

P

(
A ≥ 2p

2x(K)
1 + βrx(K)

2

)
= exp

(
−b 2p

2x(K)
1 + βrx(K)

2

)
.

This yields a portfolio size of:

n(p,K) = exp

(
−b 2p

2x(K)
1 + βrx(K)

2

)
N.

The exponential distribution has a memoryless property, which implies E[A|A ≥ a] =
1/b+ a. The expected claim frequency of an insured customer will therefore be:

α(p,K) =
2p

2x(K)
1 + βrx(K)

2

+
1

b
.

This equation reflects adverse selection very clearly, since α(p,K) is linearly increasing
in p.

Remark B.6. If the customer’s reservation price was defined by the expected value
premium principle (2.9), the portfolio characteristics would be:

n(p;K) = P

(
A ≤ p

(1 + ω(β))x(K)
1

)
N,

α(p;K) = E
[
A

∣∣∣∣ A ≤ p

(1 + ω(β))x(K)
1

]
.

Assuming an exponentially-distributed claim frequency, the characteristics become:

n(p;K) = exp

(
−b p

(1 + ω(β))x(K)
1

)
N,

α(p;K) =
p

(1 + ω(β))x(K)
1

+
1

b
.

This is slightly easier to work with and has the advantage that ω(β) can be chosen
on a simple form.
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B.3.2 Stochastic risk aversions
Instead of letting a customer being represented by a stochastic claim frequency
and constant risk aversion, we now turn it around. Assume that the customer now
has a constant claim frequency α. This is indeed relevant to consider. For example,
everyone could be equally disposed to disaster caused by nature. Furthermore, assume
that the risk aversion is represented by a random variable B. The criterion (2.8) of
insuring for a given contract (p,K) can then be stated as:

B ≥ 2p− 2αx(K)
1

rx(K)
2 α

.

Therefore, the portfolio size will be characterised by:

n(p) = P
(
B ≥ 2p− 2αx(K)

1

rx(K)
2 α

)
N.

B.3.2.1 Gamma distributed risk aversions

Risk aversion is somewhat an abstract concept. It is therefore difficult to suggest a
distribution since there is limited literature available. Since the gamma distribution is
a popular choice for the claim frequency, we choose to consider the same distribution
for the risk aversion. Assuming that the risk aversion has an Γ(l, q) distribution, the
demand curve will have the form:

n(p) =
Γ(l, q(2p− 2αx(K)

1 )/(rx(K)
2 α))

Γ(l)
N.

In the case l ≈ 1, the distribution approximately reduces to an exponential distribu-
tion with parameter q, and the portfolio size will then simply be:

n(p) = exp

(
−q2p− 2αx(K)

1

rx(K)
2 α

)
N.

B.4 Ruin probability
In this section, we consider the optimization problem of the insurance company. It
mainly wants to minimise the ruin probability, but as this only makes sense for a
positive drift, the expected time to ruin is considered in the case of a negative drift.
The overall aim is to find the optimal premium as a function of the deductible.

When the controlled reserve develops according to a Brownian motion with
positive drift, Hipp and Taksar (2010) shows that minimising the ruin probability is
equivalent to maximising the following ratio µ/σ between the drift and volatility. In
our setting, this means maximising:

µ(p;K)

σ2(p;K)
=
p− α(p;K)x(K)

1

α(p;K)x(K)
2

− L

n(p;K)α(p;K)x(K)
2

. (2.10)
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This also follows from the relation ϕ(r0) = exp(−2r0µ(p;K)/σ2(p;K)). Recall that
if the drift is negative, then ϕ(r0) = 1.

As previously implied, if the market consists of risk-neutral customers, then
the drift of the diffusion process will be negative, making ruin certain. In order to
avoid this, it is assumed in the following that there is a sufficiently large degree of
risk aversion among the (potential) customers to satisfy the net profit condition
p > α(p;K)x(K)

1 for some p. Otherwise, there will be no motivation for selling
insurance.

Notice that if p = 0, the insurance company will offer insurance for free, and
so, µ(0;K) < 0 for any given K. Furthermore, due to the liability rate, L, the
diffusion will also have a negative drift when the premium becomes very high, since
no customer will then be interested in insuring, hence limp→∞ µ(p;K) < 0. Thus,
ruin will be certain for both p = 0 and p→∞.

Now, assume for some K that the premium is zero. What will then happen if
the premium was raised marginally? The insurance company will have nearly the
same amount of customers and, therefore, also the same amount of claims, but
the firm will get a small revenue when collecting premiums. Hence, µ(p,K) will
increase. Note, that this is under the assumption that the effect from portfolio size
decrease and adverse selection is smaller than the effect of raising the premium.
Conversely, what if the premium was so high that no customer would be interested in
insuring? Recall that there are N customers on the market and that each customer
has a reservation price for insurance (depending on the customer characteristics).
Therefore, if the insurance company sets the premium so high that it is above the
reservation price of all N customers, then no customer will insure. Though if the
company lowers the premium enough for it to become below the reservation price
of the most risky/risk adverse potential customers on the market, then under the
condition of p > α(p,K)x(K)

1 , the insurance company will obtain some revenue to
cover at least some of the liability cost. Hence, µ(p,K) will also increase when
lowering the premium for very large values. This tells us intuitively that if there is
an optimal premium, then it is not obtained for p = 0, nor in the limit p→∞, and
we thereby avoid trivialities when finding the optimal premium.

Abbreviate notation by µp(p,K) = ∂µ(p;K)
∂p

and similarly for αp(p,K) and np(p,K).
Assume that there is a unique p̃ that maximises the drift, i.e., satisfies the first order
conditions:

µp(p̃;K) = np(p̃;K)
(
p̃− α(p̃;K)x(K)

1

)
+ n(p̃;K)

(
1− αp(p̃;K)x(K)

1

)
= 0. (2.11)

This is equivalent to saying that p̃ must satisfy:

−np(p̃;K)

n(p̃;K)
=

1− αp(p̃;K)x(K)
1

p̃− α(p̃;K)x(K)
1

.

The intuitive interpretation is that the relative marginal change in the demand curve
must equal the relative marginal change in average net revenue per customer due to
a change in premium. Two cases then arise:
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(1) If µ(p̃;K) > 0, then ϕ(r0) < 1 for all r0 > 0, K > 0 and p in some bounded
open interval I ⊂ (0,∞) containing p̃.

(2) If µ(p̃;K) ≤ 0, then ϕ(r0) = 1 for all r0 > 0 and p > 0.

Notice that the drift is positive if the net profit per customer is greater than the
liability cost per customer, that is p−α(p;K) > L/n(p;K). This is more strict than
the net profit condition.

Since the current framework is very general, so will the results be. In every
concrete application, the existence of a unique solution must be verified. In Case (i),
an optimization criterion is given and proven in Theorem B.7.

Theorem B.7. When µ(p̃;K) > 0, the optimal premium minimising the ruin
probability must be a solution to the equation:

1− pαp(p;K)

α(p;K)
+

L

n(p;K)

(
np(p;K)

n(p;K)
+
αp(p;K)

α(p;K)

)
= 0.

Proof. Differentiating (2.10) with respect to the premium,

∂
(
µ(p;K)
σ2(p;K)

)
∂p

=
1− αp(p;K)x(K)

1

α(p;K)x(K)
2

−
(
p− α(p;K)x(K)

1

)
αp(p;K)x(K)

2(
α(p;K)x(K)

2

)2

+
L(np(p;K)α(p;K) + n(p;K)αp(p;K))x(K)

2(
n(p;K)α(p;K)x(K)

2

)2

=
α(p;K)− αp(p;K)p

α2(p;K)x(K)
2

+
L(np(p;K)α(p;K) + n(p;K)αp(p;K))

n2(p;K)α2(p;K)x(K)
2

yields the first order condition:

α(p;K)− αp(p;K)p

α2(p;K)x(K)
2

+
L(np(p;K)α(p;K) + n(p;K)αp(p;K))

n2(p;K)α2(p;K)x(K)
2

= 0.

Reducing, we obtain the following optimality criterion:

1− αp(p;K)

α(p;K)
p+

L

n(p;K)

(
np(p;K)

n(p;K)
+
αp(p;K)

α(p;K)

)
= 0.

In Case (ii), it no longer makes sense to minimise ruin probability since it is
constantly one. Instead, we suggest to choose the control to maximise the expected
time to ruin, E[τ ], and thereby extend the expected lifetime of the company as much
as possible. This is a non-standard objective function. Since the controlled reserve is
a Brownian motion with drift, we are able to obtain a very simple result.

Theorem B.8. When µ(p̃;K) ≤ 0, then p̃ will optimise the expected time to ruin.
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Proof. As said, when µ(p̃;K) ≤ 0, then (2.1) is a Brownian motion with negative
drift. This also has the representation:

xt = r0 + µ(p;K)t+ σ(p;K)Wt.

Consider the stopping time τ = inf{t ≥ 0 : xt ≤ 0}. Since (xt)t≥0 is a continuous
process, it must be that xτ = 0. Furthermore, {xt − µ(p;K)t} is a martingale with
mean r0. This implies:

E[xτ − µ(p;K)τ ] = −µ(p;K)E[τ ] = r0

Hence, E[τ ] = −r0/µ(p;K). Therefore, the expected time to ruin is maximised when
the drift is maximised. Due to the assumption of a unique p̃, such that the first order
condition (2.11) is satisfied, then this must be the optimal choice.

In Examples B.10 and B.11 the optimal premium is calculated explicitly for the
portfolio characteristics in Sections B.3.1.1 and B.3.2.1, respectively.

B.5 Examples and illustrations
Example B.9. Assume that the claim sizes are log-normally distributed, that is Zi ∼
logN (µ`, σ

2
` ). This distribution has tail function F (x) = 1 − Φ ((log(x)− µ`)/σ`),

where Φ denotes the standard normal distribution function. The k’th moment is
given by E[Zk

i ] = exp(kµ` + k2σ2
`/2). We seek to find a closed form solution to the

premium Pvar(K). The challenge obviously is x(K)
1 and x(K)

2 . Altering these yields:

x(K)
1 = E[(Zi −K)1{Zi≤K}] = E[(Zi −K) | Zi ≥ K]F (K)

= (E[Zi | Zi ≥ K]−K)F (K),
(2.12)

and:

x(K)
2 = E[((Zi −K)1{Zi≥K})

2] = E[(Zi −K)21{Zi≤K}]

= E[(Z2
i +K2 − 2ZiK)1{Zi≥K}]

= K2F (K) + E[Z2
i | Zi ≥ K]F (K)− 2KE[Zi | Zi ≥ K]F (K).

(2.13)

In Benckert and Jung (1974), it is shown that the k’th moment of the truncated
random variable is:

E[Zk
i | Zi ≥ K] = E[Zk

i ]
Φ
(µ`+kσ2

`−log(K)

σ`

)
F (K)

.

From this, it follows that in the log-normal case, (2.12) can be written as:

x(K)
1 = z1Φ

(
µ` + σ2

` − log(K)

σ`

)
−KF (K),
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Figure 2.1: The premium (2.14) as function of K for different values of customer charac-
teristics. The interest rate is chosen to be 2%, and the estimates µ̂` = 1.6 and σ̂` = 1.99
are used.

and (2.13) as:

x(K)
2 = K2F (K) + z2Φ

(
µ` + 2σ2

` − log(K)

σ`

)
− 2K z1Φ

(
µ` + σ2

` − log(K)

σ`

)
.

Hence, when the claims are log-normally distributed, the maximal premium that a
customer with characteristics (α, β) is willing to pay for an insurance contract as a
function of the deductible is:

Pvar(K) = αKF (K)

(
Kβr

2
− 1

)
+ α z1Φ

(
µ` + σ2

` − log(K)

σ`

)
(1− βrK)

+
βrα z2

2
Φ

(
µ` + 2σ2

` − log(K)

σ`

)
.

(2.14)

While this is not a straightforward expression, it is computationally easy to evaluate.
Some combined data on claims in fire insurance reported 1958–1969 by Swedish fire
insurance companies are studied in Benckert and Jung (1974), where the estimates
µ̂` = 1.6 and σ̂` = 1.99 are obtained. These estimates are used in the following.
In Figure 2.1, the premium function (2.14) for different combinations of character-
istics is illustrated. The function appears to be very sensitive towards changes in
characteristics and most so for small deductibles. Notice the considerable change
from the combination (α, β) = (1/10, 2) to (α, β) = (1/2, 3) where the premium gets
approximately 7.4-times larger.
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Example B.10. An insurance company wants to supply fire insurance. It is entering
a market where the customers have unknown, possibly different claim frequencies
and constant risk aversions, namely β. The claim frequencies are once again assumed
to be independent and identically exponentially distributed with parameter b. The
portfolio can thus be characterised as in Section B.3.1.1.

First, the insurer needs to see which region of the premium is profitable to even
supply insurance. The criteria p− α(p,K)x(K)

1 > 0 translates into:

p >
2

βrb

x(K)
1

2

x(K)
2

+
x(K)

1

b
. (2.15)

For a given deductible K, the considered price must exceed this threshold. Otherwise,
the insurance company should choose not to supply insurance.

Next, evaluating the drift is of interest. Knowing the portfolio characteristics, it
can be written explicitly as:

µ(p;K) = N exp

(
−b 2p

2x(K)
1 + βrx(K)

2

)(
p− 2px(K)

1

2x(K)
1 + βrx(K)

2

+
x(K)

1

b

)
− L.

Solving the first order criteria (2.11) yields the solution:

p̃(K) =
(2x(K)

1 + βrx(K)
2 )2

2βbrx(K)
2

=
2

βrb

x(K)
1

2

x(K)
2

+
βrx(K)

2

2b
+

2x(K)
1

b
.

Notice that p̃ obviously satisfies being in the region of (2.15). We now seek to find
the conditions under which the drift will be positive. Solving for µ(p̃;K) > 0 yields:

L

N
<
βrx(K)

2

2b
exp

(
−2x(K)

1 + βrx(K)
2

βrx(K)
2

)
.

Assuming that this inequality holds, then one must use Theorem B.7 to find the
optimal price. The optimality criterion in reduced form is:

N

L

2x(K)
1 + βrx(K)

2

2b
= exp

(
2bp

2x(K)
1 + βrx(K)

2

)
2bp

2x(K)
1 + βrx(K)

2

.

This yields the following optimal premium as a function of the deductible,

p∗(K) =
2x(K)

1 + βrx(K)
2

2b
W

(
N

L

2x(K)
1 + βrx(K)

2

2b

)
.

using the Lambert W function. The Lambert W function is defined as the (multival-
ued) inverse of the function w 7→ exp(w)w. For more details, see Corless et al. (1996).
In the case µ(p̃;K) ≤ 0, it follows from Theorem B.8 that p̃(K) is the optimal choice.
Note that due to the Lambert W function increasing for positive values, then p∗

will be preferred to p̃ if p∗(K) ≥ p̃(K). Therefore, for a given deductible, K, it is
preferable for the insurance firm to simply choose the maximum of p∗(K) and p̃(K).
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Figure 2.2: A mesh of the drift µ(p;K) for deductibles and premiums in the range [0, 5000]

Assume that the insurance company evaluates that the market consists of N =
10 000 house owners considering buying insurance and that it calculated the liability
costs to be L = 5000. It also assesses that b = 3 and β = 3. Assume furthermore
that the company has some information about the distribution of the claims, and
based on this, it believes that the claims are log-normally distributed according to
the estimates in Benckert and Jung (1974). It also knows how to reasonably choose
a deductible K to serve the purpose described in the introduction. The interest rate
applied is 2%.

In Figure 2.2, a mesh of the drift is presented. The preliminary analysis of the
drift in Section B.4 is very well illustrated in this. The concavity in the premium is
obvious. For all of the considered deductibles in the range [0, 5000], the drift will be
positive in p̃(K).

Next, a contour of the ratio µ/σ2 is illustrated in Figure 2.3. The concavity in
the premium also appears very clearly here. The ratio is at its highest within the
region of approximately K ∈ [0, 220], followed by the regions K ∈ (220, 590] and
then K ∈ (590, 1070].

In Figure 2.4, the premiums p̃(K) and p∗(K) as functions of the deductible are
plotted.

Notice that the model does not take the cost of processing an increasing number
of claims into consideration. The company therefore evaluates that a deductible of
K = 1000 is suitable. This yields the following values:

p̃(1000) = 474.2, p∗(1000) = 2458.1,

Since p∗(1000) > p̃(1000), then p∗ is the optimal premium.
The optimal premium max{p∗(1000), p̃(1000)} will of course depend on the

parameters chosen, namely the market size N , the liability rate L, the risk aversion
β and the exponential parameter b. An illustration of how sensitive the optimal
premium are towards changes in these parameters is viewed in Figure 2.5. Figure 2.5a
shows a mesh of the optimal premium where N and L take values in a grid of
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Figure 2.3: A contour of the relation µ(p;K)/σ(p;K)2 for deductibles in the range
[0, 2000] and premiums in [1210, 4750].
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Figure 2.4: The premiums p∗(K) and p̃(K) as functions of the deductible K.

[500, 20 500]. Here, we can see that the premium is most sensitive towards changes in
these parameters for small values. A low liability rate L will yield a high premium. The
insurance company does not need many customers when they have small liabilities
payments; hence, they can afford to choose a high premium. On the contrary, when
N is small, then we see that the premium tends to be low. In Figure 2.5b, a similar
mesh of the optimal premium is shown for values of β and b in a grid of [0.5, 6.5]. It
is observed that when b gets too high or β too low, then the optimal premium will
tend towards p̃(1000). Conversely, when b takes on low values and β gets high, the
optimal premium increases considerably. The values N = 10 000, L = 5000 β = 3
and b = 3 are chosen such that any of the extremes mentioned above are avoided.

Example B.11. Assume now that the insurance company believes that the claim
frequency is constant in the portfolio, but does not possess any information about
the customer’s risk aversion. The risk aversion is therefore modelled by a random
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Figure 2.5: Mesh of the optimal premium max{p∗(1000), p̃(1000)} for different values of
the parameters. If a parameter does not vary, then it has the same value as in previous
graphs. (a) Mesh of the optimal premium for L,N ∈ [500, 20 500]; (b) mesh of the optimal
premium for β, b ∈ [0.5, 6.5].

variable, which is assumed to have an exponential distribution with parameter q.
Portfolio characteristics are then as in Section B.3.2.1. The existence criteria of the
insurance company will be p− αx(K)

1 > 0, i.e., the premium must simply be larger
than the net premium. First, we seek to find the solution of (2.11), namely:

p̃(K) =
rx(K)

2 α

2q
+ αx(K)

1 .

Next is to find the region for which the drift evaluated in p̃ is positive:

L

N
<
rx(K)

2 α

2q
exp(−1).

In this region:

p∗(K) =
rx(K)

2 α

2q
log

(
N

L

rx(K)
2 α

2q

)
+ αx(K)

1

is optimal. Otherwise, p̃ is optimal. Again, due to the logarithm being an increas-
ing function, one can simply state that the insurance company should choose the
maximum of p̃ and p∗.

Appendix

B.I Calculations of the present value in Section B.2
The present value of not insuring can be split into three terms:

VNI = E
[∫ ∞

0

exp(−dt)dwt
]

= E
[∫ ∞

0

exp(−dt)rwtdt−
∫ ∞

0

exp(−dt)dAαt
]

= E
[∫ ∞

0

exp(−(d− r)t)r
(
w0 −

Nα
t∑

i=1

exp(−rTi)Zi
)

dt−
∫ ∞

0

exp(−dt)dAαt
]

≡ K1 −K2 −K3.
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The three terms are defined and assessed below. The first is easily evaluated as:

K1 = E
[∫ ∞

0

exp(−(d− r)t)rw0dt
]

=
rw0

d− r
.

The second and third term require a bit more effort. Using Campbell–Mecke’s formula
yields:

K2 = E
[∫ ∞

0

r exp(−(d− r)t)
( Nα

t∑
i=1

exp(−rTi)Zi
)

dt
]

=

∫ ∞
0

r exp(−(d− r)t)E
[( Nα

t∑
i=1

exp(−rTi)Zi
)]

dt

= z1αr

∫ ∞
0

exp(−(d− r)t)
(∫ t

0

exp(−rs)ds
)

dt

= z1α

∫ ∞
0

exp(−(d− r)t)(1− exp(−rt))dt

=
z1α

d− r
− z1α

d
,

K3 = E
[∫ ∞

0

exp(−dt)dAαt
]

= E
[ ∞∑
i=1

exp(−dTi)Zi
]

= z1α

∫ ∞
0

exp(−ds)ds =
z1α

d
.

Therefore, to conclude, the present value of not insuring will be:

VNI =
rw0

d− r
− z1α

d− r
.

B.II Calculations of the variance in Section B.2

The total law of variance states that:

Var[S(K)] = Var
[
E[S(K) | F ]

]
+ E

[
Var[S(K) | F ]

]
(B1)

where the filtration, F , is the sigma algebra generated by the Ti’s. Consider the first
term of the variance in (B1). The conditional expectation is easily calculated as:

E[S(K) | F ] = E
[
r

∞∑
i=1

exp(−rTi)X (K)

i

∣∣∣ F] = rx(K)
1

∞∑
i=1

exp(−rTi).
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The square of a sum is used for finding the variance of this expression:

Var
[
rx(K)

1

∞∑
i=1

exp(−rTi)
]

= r2x(K)
1

2
(
E
[( ∞∑

i=1

exp(−rTi)
)2]
− E

[ ∞∑
i=1

exp(−rTi)
]2
)

= r2x(K)
1

2
(
E
[ ∞∑
i=1

exp(−r2Ti) +
∞∑

i,j=1 : i 6=j

exp(−rTi) exp(−rTj)
]
−
(α
r

)2)
= r2x(K)

1

2
(
α

2r
+
(α
r

)2

−
(α
r

)2
)

=
rx(K)

1

2
α

2
.

The square of a sum is also used for finding the conditional variance in the second
term of (B1),

Var[S(K) | F ]

= r2

(
E
[( ∞∑

i=1

exp(−rTi)X (K)

i

)2 ∣∣∣ F]− E
[ ∞∑
i=1

exp(−rTi)X (K)

i

∣∣∣ F]2
)

= r2E
[ ∞∑
i=1

exp(−r2Ti) (X (K)

i )2

+
∞∑

i,j=1 : i 6=j

exp(−rTi) exp(−rTj)X (K)

i X (K)

j

∣∣∣∣ F]

− r2x(K)
1

2
( ∞∑
i=1

exp(−r2Ti)−
∞∑

i,j=1 : i 6=j

exp(−rTi) exp(−rTj)
)

= r2(x(K)
2 − x(K)

1

2
)
∞∑
i=1

exp(−r2Ti).

Taking the expectation yields:

E
[
Var[S(K) | F ]

]
= E

[
r2(x(K)

2 − x(K)
1

2
)
∞∑
i=1

exp(−r2Ti)
]

=
r(x(K)

2 − x(K)
1

2
)α

2
.

Concluding, the variance in (B1) will be Var[S(K)] = (rx(K)
2 α)/2.

B.III Illustration of the complexity of the exponential
premium in Section B.2

To illustrate the complexity of Pexp(K), consider the simple case where K = 0 and
the claim size distribution F is degenerate in one, i.e., Zi = 1 almost surely. Let:

f(t) = E
[
exp
(
βr

∞∑
i=1

exp(−rTi)1{Ti≤t}
)]
.

64



Paper B

During a short time interval dt, the function f(t) might get an additional term to
the sum (corresponding to a new claim) with probability αdt or f(t) will remain
unchanged with probability 1− αdt, i.e.,

f(t+ dt) = f(t)(1− αdt) + f(t) exp(β exp(−rt))αdt.

Letting dt tend to zero, an ordinary differential equation appears,

f ′(t) = αf(t)(exp(β exp(−rt))− 1).

This can also be expressed as:

log(f(t)) = α

∫ t

0

(exp(β exp(−rs))− 1)ds

= αr

∫ −β exp(−rt)

−β

1

u
exp(−u)du− αt

= αr
(∫ ∞
−β

1

u
exp(−u)du−

∫ ∞
−β exp(−rt)

1

u
exp(−u)du

)
− αt

= αr(Ei(β exp(−rt))− Ei(β))− αt,

where Ei(.) denotes the exponential integral

Ei(x) = −
∫ ∞
−x

1

u
exp(−u)du for x > 0.

The exponential integral is known not to have a closed form solution. Therefore, even
for the simple case of a claim size distribution, an analytic solution to the premium
cannot be obtained.
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Chapter 3

Equilibrium premium strategies for
push-pull competition

The following papers, Paper C and Paper D, extends the work of Paper B to a setting,
where two suppliers of insurance are competing on the same market. If we extend
the analysis in the most straightforward and simplest manner, where the insurance
companies offer products of same quality and no market frictions are present, then
the customer’s problem becomes trivial. A potential customer will obviously choose to
insure at the company offering the lowest premium. Metaphorically we can consider
an individual in demand for an apple. In front of the individual are two similar apples,
one cheap and one expensive. The individual will, of course, choose to buy the cheap
apple. Same goes for insurance. Therefore, we consider two different directions in
the respective papers of the present chapter.

Market frictions are factors that influence the decision-making process. For
potential customers examples are; i) search and switching costs preventing customers
from making optimal decisions, ii) different accessibility to information (and/or
different abilities to process it), iii) personal preferences. In Paper C we consider a
competitive insurance environment, where the two suppliers offer the same product,
but customers are influenced by market frictions. The quality of an insurance product
is measured by the deductible structure and level, as it is the amount of coverage the
customer receives. So if two insurance companies offer insurance products of same
quality, it means that they include the same deductibles. In Paper D we leave the
set-up of market frictions, and instead consider the case of product differentiation,
where the two insurance companies both offer a fixed amount deductible, but at
different levels. Hence, one of the companies offers a product with a lower deductible,
and therefore of better quality, than the other.

The first formal introduction to oligopoly models of strategic interactions be-
tween competing companies was by Cournot (1838), where the companies simulta-
neously/independently choose their outputs in order to maximise their respective
profits. The product price is then set by a neutral auctioneer in order to ensure
market clearance. The first to review this work was Bertrand (1883) who contended
that it is more realistic to let the competing companies choose their product price
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rather than the produced quantity. Since then Cournot competition has come to
represent the overall class of quantity competition and Bertrand competition the
class of price competition. The role of commitment in a competitive environment was
suggested by von Stackelberg (1934), originally intended as an extension of Cournot
(1838) with quantity strategies. In a Stackelberg-type competition there is a leader
and a (or several) follower(s). The leading company chooses its strategy first. The
following company observes the leader’s choice and then plays second. This is the
type of competition considered in Paper D, however in a price competition setting,
and Paper C deals with Bertrand-type competition.

In order to find the best strategies of the competing insurance companies, we turn
to game theory. Game theory puts the strategic interactions between decision-makers
into mathematical models. In Section 3.1.1 we go through the basic terminology in
game theory. Along with the ground-breaking work on utility theory, von Neumann
and Morgenstern (1947) also contributed with pioneering work initiating modern
game theory, in particular, in two-person non-cooperative zero-sum games. Work
on n-person non-zero-sum games was also presented in this book, however in a
cooperative setting, as it was not straightforward how to define an equilibrium when
extending to n > 2 players. This was followed up by Nash (1951), who established
what we today know as the Nash equilibrium intended for non-cooperative, non-zero-
sum games with a finite number of players. This type of equilibrium is considered in
both Paper C and Paper D. Another equilibrium type considered in Paper D is the
Stackelberg equilibrium, obviously relating to the sequential Stackelberg game. Both
equilibrium types, Nash and Stackelberg, are defined in Section 3.1.2. For references
applying game theory to insurance, we refer to the thorough literature reviews in
the papers of the present chapter.

If we add the ingredients competition and game theory to the stochastic control
setting in Section 2.1.5, then we end at the stochastic differential game briefly con-
sidered in Section 3.1.3. Here we restrict our focus to the case where the insurance
companies reserves are modelled by controlled diffusion processes. In general, stochas-
tic differential games has been studied in a number of different settings using various
tools. For a treatment of this extremely advanced topic, we refer to Ramachandran
and Tsokos (2012).

That some of the researchers contributing within the early stages of stochastic
differential games have afterwards proceeded to applying this tool for modelling
insurance competition is a clear sign of how relevant stochastic differential games
are in actuarial science. Examples are; Bensoussan and Friedman (1977) followed
later by the contribution Bensoussan et al. (2014) where insurance companies
find their optimal investment-reinsurance strategies in a non-zero-sum stochastic
differential game influenced by Markov-modulation, and Elliott (1977), Elliott and
Davis (1981) followed by Elliott and Siu (2011a,b) where optimal investment problems
are formulated as zero-sum stochastic differential games between the insurer and the
market in diverse settings. Among other references dealing with stochastic differential
games in insurance are Zeng (2010), Taksar and Zeng (2011), Jin et al. (2013) and
Chen et al. (2018) (some of them are also referred to in the papers). All references
mentioned here that consider stochastic differential games in insurance do so in order
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to find optimal reinsurance and/or investment strategies. When it comes to premium
competition a more common approach is to consider a small individual insurer vs
the market as in Taylor (1986). This work has lead to several extensions, where some
are listed in the literature review of Paper C and Paper D. In present papers, we
propose a stochastic differential game, where the reserves of two insurance companies
are controlled diffusions with dynamics governed by the single customer premiums.
The insurance companies then choose their premium strategies in order to optimise
(the company with the largest amount of capital maximises and the one with the
smallest amount minimises) the probability of the difference in reserve hitting an
upper barrier rather than a lower, where we once again benefit from the availability
of exit times for diffusion processes.

3.1 Preliminaries

3.1.1 Terminology of game theory

Consider a game in which two players are participating. Each player’s preferences
are captured by an objective function. However, the object function does not only
depend on the decision of the player itself, but also on the strategy of the other.

If the players are able to enter a cooperative environment where binding decisions
are done in conjunction, it is called as a cooperative game. However, we will exclusively
consider non-cooperative games, where no such agreements are possible. A non-
cooperative game is said to be zero-sum if one player’s gain is exactly balanced out
with another player’s loss. Hence, available resources remain constant. Conversely, in
a non-zero-sum game the aggregate gains and losses can be different from zero.

If the strategies of the players completely determine the outcome, the game is
said to be deterministic. If, on the contrary, a random variable is influencing at least
one of the object functions, the game is called stochastic. The game has complete
information, if the players, their objective functions, and any underlying probability
distribution are common information. If not so, the game is said to have incomplete
information.

In a static game, the players only have access to these a priori information and
move simultaneously. In a dynamic game, the players move sequentially or repeatedly,
where some players are granted access to information about the previous decisions of
others. A dynamic game is said to be a differential game if it plays out in continuous
time, where a differential equation describing the state trajectory of the game is
controlled over time by the decision processes of the players. This type of game is
closely related to the theory of stochastic control.

3.1.2 Equilibrium types

Let xi ∈ Mi be the decision variable of player i, where Mi is the set of possible
actions. LetM =M1 ×M2 ignoring that there might the coupled constraints on
the decision variables.
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Presume for the moment and without loss of generality that the objective functions
of all players are value functions, which they seek to maximise. The value functions
are denoted by V (x1,x2)

i for i = 1, 2. In case a player is a minimiser with a loss function
Li as the objective, it can transformed by Vi = −Li into a maximisation problem. A
Nash equilibrium is then defined as follows.

Definition 3.1 (Nash equilibrium). (x∗1, x
∗
2) ∈M is a Nash equilibrium if it satisfies

V
(x∗1,x

∗
2)

1 ≥ V
(x1,x∗2)

1 for all x1 ∈M1

and
V

(x∗1,x
∗
2)

2 ≥ V
(x∗1,x2)

2 for all x2 ∈M2.

Hence, when at a Nash equilibrium neither of the players has the incentive to
deviate.

If V = V1 = −V2 the game is of zero-sum type, where the same objective is
maximised by Player 1 and minimised by Player 2. A Nash equilibrium (x∗1, x

∗
2) can

then be defined equivalently as the saddle point

V (x1,x∗2) ≤ V (x∗1,x
∗
2) ≤ V (x∗1,x2) for all (x1, x2) ∈M. (3.1)

This is the type of game and equilibrium considered in Paper C. Note that the
sequence of which the players make their decisions is subordinate, since in this type
of equilibrium we have

V (x∗1,x
∗
2) = max

x1∈M1

min
x2∈M2

V (x1,x2) = min
x2∈M2

max
x1∈M1

V (x1,x2).

However, in a Stackelberg equilibrium the sequence of the game is indeed relevant.
Consider a sequential game where a leader makes the initial play. The follower observes
the decision of the leader and then reacts. We define a Stackelberg-equilibrium
in a zero-sum game where Player 2 is the (minimising) leader and Player 1 the
(maximising) follower as:

Definition 3.2 (Stackelberg equilibrium). (x∗1, x
∗
2) ∈M is a Stackelberg equilibrium

if
V (d(x∗2),x∗2) ≤ V (d(x2),x2) for all x2 ∈M2

where
d(x2) = {ς ∈M1 : V (ς,x2) ≥ V (x1,x2) for all x1 ∈M1}.

It is solved by backward induction, where the follower finds the optimal response
as a function of leader’s decision. The leader insert this information about the
response function into the value function and solves for the optimal opening play. In
Stackelberg equilibrium, the value function is

V (x∗1,x
∗
2) = max

x1∈M1

min
x2∈M2

V (x1,x2)

However, unlike the Nash equilibrium, the maximum and minimum in a Stackel-
berg equilibrium can not be interchanged. In Paper D a sequential zero-sum game
is considered in which we examine the existence of a Stackelberg (and a Nash)
equilibrium.
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3.1.3 A stochastic differential game
We now intend to extend the formulation of Section 2.1.5 to involve two insurance
companies. Insurance Company i has to decide upon a strategy ui = (ui,t)t≥0 taking
values in some admissible set Ui ⊆ R. The reserve is then assumed to be governed
by the strategies (u1, u2) as follows

dR(u1,u2)

i,t = µi(R
(u1,u2)

1,t , R(u1,u2)

2,t , u1,t, u2,t)dt

+ σi(R
(u1,u2)

1,t , R(u1,u2)

2,t , u1,t, u2,t)dWi,t

with R(u1,u2)

i,0 = ri,0 for i, and (W1,t)t≥0 and (W2,t)t≥0 are independent Wiener processes.
We here generalise the objective function of Section 2.1.5 by

V (u1,u2)(t, r1, r2) = E
[ ∫ τ

t

e−ζ(s−t)v(R(u1,u2)

1,s , R(u1,u2)

2,s , u1,s, u2,s)ds

+ e−ζ(τ−t)K(τ, R(u1,u2)

1,τ , R(u1,u2)

2,τ )
∣∣∣R(u1,u2)

1,t = r1, R
(u1,u2)

2,t = r2, t < τ
]
,

(3.2)

where v : R × R × U1 × U2 → R, K : R × R → R, τ is an exit time, and ζ > 0 a
discounting parameter. In a zero-sum setting as considered in the previous section,
Player 1 chooses its strategy u1 in order to maximise V (u1,u2) and Player 2 chooses
its strategy u2 to minimise it.

This is the type of competition studied in the papers of the present chapter,
where the control at an insurance company’s disposal is the single customer premium.
The exit time is defined as τ = τ(δ) = inf{t > 0 : R(u1,u2)

1,t − R(u1,u2)

2,t /∈ [`d, `u] | δ =
R1,0 − R2,0 > 0}, where the upper and lower value of the interval involved must
satisfy that δ ∈ [`d, `u]. Insurance Company 1 (the larger one based on initial
capital) then chooses it’s policy premium to maximise the probability that the
reserve difference hits the upper barrier before it hits the lower. Insurance Company 1
wants to push its competitor even further away. Conversely, Insurance Company 2
(the smaller one) chooses it’s policy premium to minimise the same probability,
i.e. it wants pull closer to Insurance Company 1. The value function is then (3.2)
with v(R(u1,u2)

1,s , R(u1,u2)

2,s , u1,s, u2,s) = 0 for all inputs, ζ = 0, and K(τ, R1,τ , R2,τ ) =
1{R1,τ−R2,τ=`u}.
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abstract. Two insurance companies I1, I2 with reserves R1,t, R21, t compete for
customers, such that in a suitable stochastic differential game the smaller company
I2 with R2,0 < R1,0 aims at minimising R1,t − R2,t by using the premium p2 as
control and the larger I1 at maximising by using p1. The dependence of reserves
on premia is derived by modelling the customer’s problem explicitly, accounting for
market frictions V , reflecting differences in cost of search and switching, information
acquisition and processing, or preferences. Assuming V to be random across customers,
the optimal simultaneous choice p∗1, p∗2 of premiums is derived and shown to provide a
Nash equilibrium for beta distributed V . The analysis is based on the diffusion
approximation to a standard Cramér-Lundberg risk process extended to allow
investment in a risk-free asset.
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C.1 Introduction

The appropriate choice of premium has received massive attention in insurance,
from both academics and practitioners. The main approach in the literature is to
base the premium on the expected loss, with an added loading calculated from
distributional properties of the risk (the expected value principle, variance principle,
utility premium, etc.). An alternative to these premium principles is presented
in Asmussen et al. (2013) and Thøgersen (2016), where the individual customer’s
problem of deciding whether or not to insure at the premium offered is modelled
explicitly, allowing a derivation of portfolio size as a function of the premium. The
premium is in turn chosen optimally by the insurance company, balancing revenue
per customer against portfolio size in order to minimise ruin probability. In the
present paper, we extend this premium principle to a situation where insurance
companies compete against each other, using premiums as controls.

An early reference on the choice of premium in response to market behavior is
Taylor (1986), who observed that individual operators in the Australian insurance
market followed the market as the average premium increased and declined. The
individual insurer’s optimal policy was modelled by adopting a demand function
specification (price elasticity) for volume as a function of own premium and market
premium and assuming that the market does not react to the policy of the individual
insurer. Several extensions have been developed under these basic assumptions. Taylor
(1987) considers marginal expense rates. Emms and Haberman (2005) generalise the
deterministic discrete-time analysis of Taylor to a stochastic continuous-time model.
More recent contributions include Pantelous and Passalidou (2013, 2015, 2017), us-
ing stochastic demand functions in discrete time, and Emms (2007) and Emms et al.
(2007), adopting stochastic processes for the market average premium and demand
conditions in continuous time.

Market reaction to the individual insurer’s premium is considered by Emms
(2011). More generally, the possibility that the other insurers in the market in fact do
react to the policy of the individual insurer, and that the individual insurer takes this
into account, leads to game theoretic considerations. Rothschild and Stiglitz (1976)
are among the first to apply game theory to the insurance market. They consider a
market with two types of customers, low-risk and high-risk. Customers know their
own risk, but this information is not available to the insurance companies, and
high-risk customers impose an externality on low-risk customers: The latter group is
worse off, and the former no better off, than without the existence of the other group.
If an equilibrium exists, it is separating, and contracts specify both deductibles and
premiums, with low-risk customers willing to accept higher deductibles in exchange
for lower premiums. Thus, there is product differentiation.

A number of papers in the more recent literature have applied non-cooperative
game theory to non-life insurance markets. Premium controls correspond to Bertrand
games, e.g., the one-period games in Polborn (1998) and Dutang et al. (2013) and
the insolvency risk model in Rees et al. (1999), in contrast to volume controls as in
Cournot games, see, e.g., Powers et al. (1998). Emms (2012) and Boonen et al. (2018)
consider differential games in premium controls, based on Taylor (1986) and Taylor
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(1987) type demand functions of own and market average premium. Boonen et al.
(2018) in addition present a continuous-time extension of a one-period aggregate
game of Wu and Pantelous (2017), involving a price elasticity of demand or market
power parameter, and the individual insurer’s payoff depending on own premium and
an aggregate of market premia. The models are deterministic and open-loop Nash
equilibria are determined, as opposed to closed-loop or feedback Nash equilibria with
policies depending on the current state.

Apart from optimal premium policies, game theory has been used for other
purposes in insurance. Borch (1962, 1974), Bühlmann (1980, 1984) and Lemaire
(1984, 1991) considered cooperative games of risk transfer between insurer and
reinsurer. Chen and Shen (2018) study a Stackelberg stochastic differential game
between insurer and reinsurer. Reinsurance strategies have further been considered in
zero sum stochastic differential games between insurance companies by Zeng (2010),
Taksar and Zeng (2011), and Jin et al. (2013), and the analysis has been extended to
non-zero sum games and additional investment controls by Bensoussan et al. (2014),
nonlinear risk processes by Meng et al. (2015), ambiguity-aversion by Pun and Wong
(2016), and insurance companies with different levels of trust in information by
Yan et al. (2017). Finally, besides insurance and reinsurance companies, investment
games have been considered, e.g., between portfolio investors by Browne (2000) and
Espinosa and Touzi (2015), between money managers by Basak and Makarov (2014),
and between defined contribution pension funds by Guan and Liang (2016).

In the present paper, we extend the approach of Asmussen et al. (2013) and
Thøgersen (2016) (analyzing the optimal premium of a single company) to a compet-
itive environment. The product in question is a stop-loss non-life insurance contract.
We explicitly consider the customer’s problem and the resulting stochastic differ-
ential game between insurance companies in premium strategies (see Taksar and
Zeng (2011) for a thorough theoretical treatment of stochastic differential games
in insurance). We focus on the case of two insurance companies I1 and I2 offering
identical contracts but different premiums pi, i = 1, 2. In this situation without
product differentiation, it might be expected that all customers would simply insure
at the company offering the lowest premium. However, market frictions may imply
that when choosing which insurance company to contact, customers face different
costs of search and switching, transportation, or information acquisition, or they
simply exhibit differences in preferences. The contribution of this paper is to suggest
a model for such market friction and analyse its impact on the decisions of customers
as well as companies. This provides an alternative to the approach in the literature
on dynamic games in premium controls of assuming a demand structure directly,
without reference to the customer’s problem or market frictions.

We assume that there is a financial market consisting of a single risk-free asset
with dynamics dBt = rBt dt, where r is the risk-free interest rate. All excess wealth
of customers and reserve of insurers is invested in this asset. There are N customers
in the insurance market. We assume that all customers must insure at either I1 or I2

and focus the analysis on the choice between the two companies.
The characteristics of an individual customer are unknown to the insurance

companies, but their probability distribution known. Based on this distribution, the
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companies can determine the expected portfolio sizes ni(p1, p2) as functions of the
premiums offered. The gross premium rate of Ii is then ci(p1, p2) = ni(p1, p2)pi, and
the aggregate claim frequency is λi(p1, p2) = ni(p1, p2)α where α is the rate at which
a single customer generates claims.

Let ri,0 be the initial reserve of company i. For given premiums (p1, p2), the
reserve of Ii is governed by the dynamics

dRi,t = (µi(p1, p2) + rRi,t) dt+ σi(p1, p2) dWi,t, (3.1)

where (W1,t)t≥0 and (W2,t)t≥0 are independent Wiener processes, and

µi(p1, p2) = ci(p1, p2)− λi(p1, p2)EX = ni(p1, p2)
(
pi − αx1

)
,

σ2
i (p1, p2) = λi(p1, p2)EX2 = ni(p1, p2)αx2 .

Here x1 = EX, x2 = EX2, with the random variable X representing claim sizes,
assumed to be independent and identically distributed. Thus, (3.1) can be considered
as a diffusion approximation to the Cramér-Lundberg process extended to the case
where the insurance companies have access to investment in a risk-free asset. Such
diffusion approximations have been used widely, based on the arguments of Iglehart
(1969); see, e.g., Schmidli (2008) and references there.

The aim is to derive value functions for the insurance companies, and determine
Nash equilibria in the sense of game theory, that is, considering a Bertrand game
with both players simultaneously choosing their premiums and looking for a strategy
from which no one would wish to depart. We consider here what we call push-pull
competition. We assume that the largest company in terms of initial capital selects
its premium to try to push the small company away, while the small company tries
to pull closer to the large company.

While we here concentrate on identical contracts, we consider in a companion pa-
per (Asmussen et al. (2019)) product differentiation defined via different deductibles.
The object of study is a Stackelberg game with one company being the leader and
the other the follower, and we look for the corresponding Stackelberg equilibrium.

The structure of the paper is as follows. In Section C.2 we analyse possible criteria
for the customer to choose one company over the other. We proceed to consequences
for portfolio sizes in Section C.3. In Section C.4, we use these to find the strategies of
I1 and I2, and we characterise the corresponding equilibrium. The explicit solution
is presented in Section C.5 under what appears to be the most natural parametric
assumption on our market friction model, and some numerical examples are given.
Section C.6 concludes.

C.2 Customer’s problem
Customers may face market frictions when deciding which insurance to buy. It
takes time and effort to search for the best company, or to switch companies, which
creates sluggishness in the market. Further, customers might have different access
to information, and/or different abilities to process it. Search frictions have been
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studied in economics by Diamond (1982), Mortensen (1982), Mortensen and Pissarides
(1994), and others. Brown and Goolsbee (2002) studied the effect of internet search
on life insurance premiums in US data. Information frictions have been modelled as
differences in the cost of obtaining information, e.g., by Salop and Stiglitz (1977).

We adopt a simple device that can be used to capture various types of market
frictions or differences in preferences. Following Hotelling (1929), the market is
represented by an interval [0, 1] (we normalise it to unit length), with the insurance
companies located at the end points; I1 at 0 and I2 at 1. This can be interpreted as a
street on which the insurance companies are stores. A given customer is then placed
at v ∈ [0, 1] along this “street” and must pay marginal cost c per unit distance to be
transported to either of the companies in order to buy insurance. As the customer
has distance a1 = v to I1, she must pay c · a1 to buy insurance there. Similarly, the
distance to I2 is a2 = 1− v, and the customer must pay c · a2 to buy insurance there.
This is considered as a one-time cost of frictions, to be paid immediately. It may
reflect search and switching costs, costs of information acquisition and processing, or
simply different preferences for the two companies and their products. Thus, c is a
measure of the degree of market frictions. Specifically, if the costs capture preferences,
they can be interpreted in terms of the disutility from buying insurance at a less
preferred supplier. This frictional insurance market is illustrated in Figure 1.

I1 I2
v

a1 a2

Figure 3.1: A frictional insurance market.

The customer has access to the risk-free asset paying interest at rate r. This is
the customer’s only source of income, and she invests all her wealth in this. The
customer is exposed to a risk modelled as a compound Poisson process

∑Nα
t

n=1Xn,
where (Nα

t )t≥0 is a Poisson process with claim frequency α, and (Xn)n∈N are the
claim sizes, assumed to be i.i.d. and independent of (Nα

t )t≥0. The customer will then
reduce risk by buying insurance. Her calculations are assumed to be using a time
horizon T ≤ ∞ (possibly stochastic, see further Remark C.1 below) and a discount
rate d; here one has either d = r or d may be subjective, in which case the traditional
transversality assumption in economics is d > r, cf. Gordon (1959), accommodating
the case T =∞ by allowing present value calculations based on flows while ignoring
terminal value at infinity.

We will now present two slightly different approaches which both lead to the
customer preferring Ii over Ij if

pi − pj < ρc(aj − ai) (3.2)

for some constant ρ depending on d and the distribution of T . For β > 0, write

ϑ(β) = E
∫ T

0

e−βt dt =
1

β
(1− Ee−βT ) ,
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and let ϑ(0) = ET. The first and simplest approach is to calculate the discounted
expenses up to T by insuring at company i, resp. j. These are

cai + E
∫ T

0

e−dtpi dt = cai + ϑ(d)pi , resp. caj + ϑ(d)pj .

Company Ii will be preferred if the difference is negative, which gives (3.2) with
ρ = 1/ϑ(d).

The second approach is close to Asmussen et al. (2013) and Thøgersen (2016)
and assumes d > r if T =∞. Let wi,t be the wealth of the customer at time t when
insuring at company i and w0 = wi,0− her initial wealth. The dynamics are

dwi,t = (rwi,t − pi) dt, wi,0 = w0 − cai .

The solution of this ODE is

wi,t = ert(w0 − cai − pi/r) + pi/r , giving dwi,t = rert(w0 − cai − pi/r) .

The expected total discounted incremental wealth is therefore

−cai + E
∫ T

0

exp(−dt)dwi,t = −cai +
[
r(w0 − cai)− pi

]
ϑ(d− r) .

If the customer’s criterion is to choose the company with the larger value of this
quantity, we therefore again arrive at (3.2), this time with ρ = r + 1/ϑ(d− r).

In summary (recalling that a1 = v and a2 = 1− v), the customer will choose I1

over I2 if
p1 − p2 < ρc(1− 2v) , (3.3)

and conversely, I2 over I1 if

p2 − p1 < ρc(2v − 1) . (3.4)

The customer is indifferent if equality holds, but this case becomes unimportant in
the following since v is taken to be random with a typically continuous distribution.

Remark C.1. The time horizon T could be the time the customer expects to need
insurance, or the time in which she expects the companies to keep premiums relatively
constant. She could also just take T =∞, in which case ρ reduces to d, the discount
rate, in both cases.

We next use relations (3.3) and (3.4) to evaluate the portfolio sizes of the
respective companies.

C.3 Portfolio sizes
The location (friction or preference) parameters v of the customers will be considered
as random to the firm and denoted by V , assumed to have a continuous distribution.
The case (3.3) then corresponds to the event

Ω =
{
p1 − p2 < ρc(1− 2V )

}
(3.5)

78



Paper C

and (3.4) to the complementary event Ωc. Letting

v0 =
1

2

(
1− p1 − p2

ρc

)
, (3.6)

we have Ω = {V < v0} and so the expected portfolio sizes are

n1(p1, p2) = NP(Ω) = NP(V < v0) ,

n2(p1, p2) = NP(Ωc) = N
(
1− P(V < v0)

)
.

(3.7)

There are two different ways to think ofN , the number of customers needing insurance.
Either N is fixed and the customers make their choice of company from the start
t = 0. Or, maybe more naturally, N = N(t) fluctuates randomly. The natural model
is then to assume that customers arrive according to a Poisson process, that they
need insurance over a period of random length L, that the Ls of different customers
are i.i.d., and that the process N(t) is stationary. Such a process is often called a
coverage process and coincides with the stationary process of number of customers in
the GI/G/∞ queue. With T in Section C.2 being the remaining time the customer
needs insurance, T then decreases linearly with time, and so the individual customer
will dynamically redo her calculations with the current T (and premiums). However,
in a large portfolio the T will simply have the equilibrium distribution of L, i.e., one
should take T to have density P(L > t)/EL.

Remark C.2. The large-portfolio dynamics of a coverage process follows from work
of Whitt (1982) and Glynn (1982), giving that N(t) is approximately a certain
stationary Gaussian process with characteristics depending on the distribution of
T ; only the case of T being exponential is simpler, and then N(t) is approximately
Ornstein-Uhlenbeck. Fortunately, the dynamics of N(t) will be unimportant since
we will see that N = N(t) can just be treated as constant in our game theoretic
problem.

Remark C.3. A Bayesian view of letting the customer characteristics (here the
frictions V ) fluctuate randomly among customers is quite common in insurance
modelling. A main example is credibility theory (Bühlmann and Gisler (2006)),
another modelling of arrivals of claims as a mixed Poisson process (Grandell (1997)).

Since the market frictions V take values in [0, 1], the obvious parametric choice
is a beta distribution, and we treat that case in more detail in Section C.5.

C.4 The strategies of the insurance companies

We now consider the optimization problems of the insurance companies. Inspired
by Taksar and Zeng (2011), we analyze the competition among companies using a
stochastic differential game.
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A control π = (π1, π2) is a set
(
π1(t), π2(t)

)
of premium strategies where π1(t),

π2(t) denote the premiums set by the companies at time t and are subject to the
restrictions

π1(t) ≥ p1, π2(t) ≥ p2 (3.8)

where p1, p2 ≥ −∞. If say p1 = −∞, this would mean that I1 could potentially pay
customers money to have them insured, in the hope that this loss of customers for I2

would cause an even bigger deficit for that company. This may seem quite unnatural
from a practical point of view, but is on the other hand in line with the set-up of
control theory and game theory which is one-eyed by assuming that the decision
makers have only one objective in mind. Think for example of dividend optimization,
where the optimal strategy in basic examples leads to ruin with probability one, cf.
Schmidli (2008). Similar remarks apply to the requirements p1 = αx1, p2 = αx1

of premiums not going below the net premium and p1 = 0, p2 = 0 of non-negative
premiums. Some illustration of these issues is given below in Remark C.12.

Following Taksar and Zeng (2011), we will only consider Markovian (also called
feedback) strategies π, meaning that π1(t), π2(t) only depend on the current value δ
of the difference ∆π(t) = Rπ

1,t − Rπ
2,t between the corresponding controlled reserve

processes Rπ
1 , R

π
2 . That is, we can write π1(t) = pπ1 (∆π(t)), π2(t) = pπ2 (∆π(t)) for

suitable functions pπ1 , pπ2 . Since the (uncontrolled) reserves have the dynamics of
(3.1), this makes ∆π(t) a diffusion process,

d∆π(t) = µπ(∆π(t)) dt+ σπ(∆π(t)) dW (t) , (3.9)

where

µπ(δ) = µ1

(
pπ1 (δ), pπ2 (δ)

)
− µ2

(
pπ1 (δ), pπ2 (δ)

)
+ rδ ,

σπ(δ)2 = σ1

(
pπ1 (δ), pπ2 (δ)

)2
+ σ2

(
pπ1 (δ), pπ2 (δ)

)2
,

and W = (W1 −W2)/
√

2 is again a Wiener process. Without loss of generality, we
take ∆(0) = ∆π(0) = r1,0 − r2,0 > 0, i.e., I1 is the large company and I2 the small.
The large company seeks to maximise the reserve difference (to push the competitor
further away), while the small company seeks to minimise the same (to pull closer to
the competitor), each taking the current reserve difference as the state variable. The
optimality criterion is to consider a fixed interval [`d, `u] with `d < ∆(0) < `u and let

τ(π) = inf
{
t > 0 : ∆π(t) 6∈ [`d, `u]

}
,

V π(δ) = Pπ
(
∆π(τ(π)) = `u

∣∣∆(0) = δ
)
.

Then the large company I1 chooses π1 in order to maximise the probability V π(∆(0))
to exit at the upper boundary, and the small I2 chooses π2 to minimise V π(∆(0)), or
equivalently to maximise the probability 1− V π(∆(0)) to exit at the lower boundary.

Remark C.4. The feedback assumption implies that this is equivalent to maximising
(minimising) V π(δ) for all `d < δ < `u. The choice of the interval (`d, `u) may appear
arbitrary, but we will see later that once we have found a Nash equilibrium for a
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given choice, it will also be Nash equilibrium for any larger interval. This is due to
specific features of the problem we consider and certainly not a general principle,
but it strongly supports that our optimality criterion is more universal than it looks
at a first sight.

Remark C.5. Our formulation of the control problem is basically the same as in
Taksar and Zeng (2011) (TZ), although they consider reinsurance strategies whereas
we study premium controls and model the customer’s problem and market frictions,
but it should be remarked that as in TZ, issues associated with ruin are suppressed.
An alternative taking ruin into account is to let the control depend on the reserve
levels R1, R2 rather than just ∆ = R1 − R2. If τ1, τ2 are the ruin times of the two
companies and as before τ is the exit time of the reserve difference from [`d, `u], we
can then split up into four different outcomes of the game,

F1 : ∆(τ) = `u, τ < τ1 ∧ τ2, F2 : ∆(τ) = `d, τ < τ1 ∧ τ2,

F3 : τ1 < τ ∧ τ2, F4 : τ2 < τ ∧ τ1.

Company I1 would then go for maximising P(F1∪F4) and I2 for maximising P(F2∪F3).
The motivation for ignoring ruin (as TZ and we do) could among other possibilities

either be that r1,0, r2,0 are so large and `u − `d so small that the probabilities of F3

and F4 can be ignored, or that investors would reinvest in the case of ruin.

A Nash equilibrium is defined as a strategy pair (π∗1, π
∗
2) satisfying

V (π∗1 ,π
∗
2) ≥ V (π1,π∗2) for all π1 and V (π∗1 ,π

∗
2) ≤ V (π∗1 ,π2) for all π2, (3.10)

i.e., neither firm has an incentive to deviate from its strategy unilaterally. An
equivalent formulation is that π∗1 = π̂1(π∗2) where π̂1(π2) is the optimal choice for I1

in a single-company problem, treating π2 as fixed, and that similarly π∗2 = π̂2(π∗1) in
obvious notation.

We now give some discussion that will allow replacing optimization problems
in the space of functions p1, p2 by the more elementary problems of pointwise
maximization/minimization of the real-valued ratio

κπ(δ) =
µπ(δ)

σπ(δ)2
(3.11)

between the drift and variance of the reserve difference process in (3.9).

Lemma C.6. Let µ(x), σ2(x) be bounded and measurable functions on an interval
(`d, `u) such that inf`d<x<`u σ

2(x) > 0 and let X,W be defined on a suitable probability
space such that W is a standard Brownian motion and

X(t) = δ +

∫ t

0

µ
(
X(s)

)
ds+

∫ t

0

σ
(
X(s)

)
dW (s) , (3.12)

for some δ ∈ (`d, `u). Define further κ(x) = µ(x)/σ2(x),

s(y) = exp
{
−2

∫ y

`d

κ(z) dz
}
, S(δ) =

∫ δ

`d

s(y) dy ,
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and τ = inf
{
t : X(t) 6∈ (`d, `u)

}
. Then:

(i) P
(
X(τ) = `u

)
= S(δ)/S(`u) .

(ii) For a given function κ on [`d, `u] and a given δ ∈ [`d, `u], let ϕ(κ) denote the
r.h.s. in (i). Then κ0 ≤ κ1 implies ϕ(κ0) ≤ ϕ(κ1).

Proof. We initially remark that the conditions on µ(x), σ2(x) ensure the existence of
X as a weak solution. (i) This is a standard general formula for diffusions, typically
stated under smoothness conditions ensuring the applicability of Itô’s formula. For the
present version, note first that the absolute continuity and boundedness of

∫ y
`d
κ(z) dz

ensure that s(y) is of bounded variation, hence of the form s1(y) − s2(y) for non-
decreasing functions s1(y), s2(y) of bounded variation. Letting Si(δ) =

∫ δ
`d
si(y) dy,

Si is then convex (Problem 6.20 p. 213 in Karatzas and Shreve (1998)) and we may
apply the Itô-Tanaka formula (Karatzas and Shreve (1998) Section 5.5.B or Rogers
and Williams (2000) Section IV.45 ) to each Si separately to conclude that

S
(
X(t)

)
= S(δ) +

∫ t

0

s
(
X(v)

)
σ
(
X(v)

)
dW (v)

is a local martingale. The boundedness properties of s(x), σ2(x) ensure that we
indeed have a proper martingale, and so by optional stopping

S(δ) = ES
(
X(τ)

)
= S(`u)P

(
X(τ) = `u

)
+ S(`d)

(
1− P

(
X(τ) = `u

))
.

For (ii), define

ξ = κ1 − κ0 , κt = κ0 + tξ = (1− t)κ0 + tκ1 , g(t) = ϕ(κt) .

Then

g′(t) = lim
h↓0

ϕ(κt+h)− ϕ(κt)

h
= lim

h↓0

ϕ(κt + hξ)− ϕ(κt)

h
= ϕξ(κt) ,

ϕ(κ1)− ϕ(κ0) = g(1)− g(0) =

∫ 1

0

g′(t) dt =

∫ 1

0

ϕξ(κt) dt ,

where ϕξ denotes the directional derivative. Thus (ii) will follow if we can show
ϕξ(κt) ≥ 0 for all t. Define for a fixed t

H(x) = exp
{
−2

∫ x

`d

κt(y) dy
}
, K(x) =

∫ x

`d

ξ(y) dy ,

A(δ) =

∫ δ

`d

H(x) dx , B(δ) =

∫ δ

`d

H(x)K(x) dx .
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Then g(t) = ϕ(κt) = A(δ)/A(`u) and

ϕ(κt + hξ) =

∫ δ

`d

exp
{
−2

∫ x

`d

κt(y) dy − 2h

∫ x

`d

ξ(y) dy
}

dx∫ `u

`d

exp
{
−2

∫ x

`d

κt(y) dy − 2h

∫ x

`d

ξ(y) dy
}

dx

≈

∫ δ

`d

H(x)
(
1− 2hK(x)

)
dx∫ `u

`d

H(x)
(
1− 2hK(x)

)
dx

=
A(δ)− 2hB(δ)

A(`u)− 2hB(`u)

= ϕ(κt)
1− 2hB(δ)/A(δ)

1− 2hB(`u)/A(`u)

≈ ϕ(κt)
(
1− 2hB(δ)/A(δ)

)(
1 + 2hB(`u)/A(`u)

)
which gives ϕξ(κt) = 2ϕ(κt)

[
C(`u)−C(δ)

]
where C(δ) = B(δ)/A(δ). Thus it suffices

for ϕξ(κt) ≥ 0 that C is non-decreasing, which follows since H ≥ 0 implies

C ′(δ) =
A(δ)B′(δ)− A′(δ)B(δ)

A(δ)2
=
H(δ)

[
A(δ)K(δ)−B(δ)

]
A(δ)2

≥ 0,

where we used that ξ ≥ 0 and δ ≥ x entails

K(δ) ≥ K(x),

A(δ)K(δ) =

∫ δ

`d

H(x)K(δ) dx ≥
∫ δ

`d

H(x)K(x) dx = B(δ) .

Remark C.7. Results of similar type are in Hipp and Taksar (2010) and Taksar
and Zeng (2011), but the present version noted in Pestien and Sudderth (1985)
(PS) avoids the Hamilton-Jacobi-Bellman equation and certain related smoothness
and verification issues. Note that PS use a generalization of Itô’s formula given as
Theorem 2.10.1 in Krylov (1980) rather than the by now more standard Itô-Tanaka
theory we use. Our proof of (ii) is also different. The paper PS seems to have gone
relatively unnoticed in the non-life stochastic control literature, but it has recently
been exploited in Bäuerle and Bayraktar (2014) for related purposes.

With a slight abuse of notation, define

κ(p1, p2; δ) =
µ1(p1, p2)− µ2(p1, p2) + rδ

σ2
1(p1, p2) + σ2

2(p1, p2)
, p1, p2 ≥ 0, `d ≤ δ ≤ `u . (3.13)

To ease notation here and in the following subsections, we use the notation

κ′i(p1, p2; δ) =
∂

∂pi
κ(p1, p2; δ) , κ′′ij(p1, p2; δ) =

∂2

∂pi∂pj
κ(p1, p2; δ) ,
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for partial derivatives, where the number of primes indicates the number of times the
function is differentiated, and the subscript specifies with respect to which variable.1

Corollary C.8. The optimal strategy π̂1(π2) =
(
p̂1(δ|π2)

)
`d≤δ≤`u

for I1 at fixed pre-
mium strategy π2 =

(
p2(δ)

)
`d≤δ≤`u

for I2 is given by p̂1(δ|π2) =argmaxp1κ(p1, p2(δ); δ).
The first and second order conditions are that p1 = p̂1(δ|π2) satisfies

0 = κ′1(p1, p2; δ) , resp. 0 > κ′′11(p1, p2; δ) (3.14)

for each δ ∈ (`d, `u) where p2 = p2(δ). Similarly, the first and second order conditions
for p̂2(δ|π1) are that p2 = p̂2(δ|π1) satisfies

0 = κ′2(p1, p2; δ) , resp. 0 < κ′′22(p1, p2; δ), where p1 = p1(δ). (3.15)

Proof. The argmax expression is obvious from (ii) in Lemma C.6 and Remark C.4.
Determining this argmax then means pointwise maximization, and (3.14)–(3.15) are
just the standard calculus characterization of this.

Combining (3.1) and (3.7), the drift and variance of the reserve process of I1 can
be written as

µ1(p1, p2) = NP(V < v0)(p1 − αx1),

σ1(p1, p2)2 = NP(V < v0)αx2,
(3.16)

and for I2,
µ2(p1, p2) = N

(
1− P(V < v0)

)
(p2 − αx1),

σ1(p1, p2)2 = N
(
1− P(V < v0)

)
αx2,

(3.17)

where v0 is given by (3.6). Note in particular that

σπ(δ)2 = σ1(p1, p2)2 + σ2(p1, p2)2 = Nαx2

is independent of premiums, and hence so is the rδ/σπ(δ)2 term in (3.11). Also,
the N in the remaining term (µ1 − µ2)/σπ2 cancels, thereby justifying Remark C.2.
Altogether, combining with Lemma C.6 (ii), we see that the optimization problem

κ(p∗1, p
∗
2; δ) = sup

p1

κ(p1, p
∗
2; δ) = inf

p2

κ(p∗1, p2; δ) (3.18)

for a Nash equilibrium takes the form

ν(p∗1, p
∗
2) = sup

p1

ν(p1, p
∗
2) = inf

p2

ν(p∗1, p2) (3.19)

for the present model, where ν(p1, p2) = µ1(p1, p2)− µ2(p1, p2). This makes optimal
premiums time-invariant, not dependent on the running reserve difference. If one
of the insurance companies chooses to increase its premium (while the competitor
keeps its premium constant), it will inevitably lower its portfolio size (and increase
the competitor’s). Hence, the total effect on ν is non-trivial. Involving Corollary C.8
gives:

1The standard notation avoids the primes and considers the subscript as sufficient, but we want
to emphasise the differentiation here in order to avoid confusion with other notation in the paper,
e.g., µ1(p1, p2) and µ2(p1, p2).
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Proposition C.9. The strategy (p∗1, p
∗
2) in (3.19) with premiums not dependent on

the running reserve difference is a Nash equilibrium provided it satisfies (3.8) together
with the first order conditions

0 = ν ′1(p∗1, p
∗
2) = ν ′2(p∗1, p

∗
2) (3.20)

and the second order conditions

0 > ν ′′11(p∗1, p
∗
2), 0 < ν ′′22(p∗1, p

∗
2). (3.21)

Proof. Condition (3.18) follows from the definition (3.10) of Nash equilibrium and
Lemma C.6. With the denominator of (3.13) not depending on premiums, (3.18)
reduces to (3.19). Treating p∗2 as given, I1 chooses p1 to satisfy the first and second
order conditions for a maximum, respectively given by

0 = ν ′1(p1, p
∗
2), 0 > ν ′′11(p1, p

∗
2),

and simultaneously, treating p∗1 as given, I2 finds p∗2 as the solution to

0 = ν ′2(p∗1, p2), 0 < ν ′′22(p∗1, p2).

Solving the first order conditions yields (3.20). In order for these to be an actual
Nash equilibrium, the combined second order conditions yield (3.21).

Hence, solving for a Nash equilibrium reduces to finding a saddle point of the
function ν(p1, p2), with a relative maximum along the first axis and a relative
minimum along the second. This is in line with the results of Taksar and Zeng (2011).
Specifically, as we consider two-player, zero-sum games, such that the opponents
have directly conflicting interests, any Nash equilibrium is a saddle point.

Existence of Nash equilibrium is not guaranteed. The famous existence proof by
Nash (1951) for n-player games was specific to the case where each player has a finite
number of available actions and possibly chooses a mixed (randomised) strategy over
these. For two-player, zero-sum games (as in our case), the corresponding result is
the general existence of a saddle point in mixed strategies, which follows from the
min-max theorem in matrix theory by von Neumann (1928). In contrast, we consider
a non-compact continuum of possible actions (premiums) for each company, and seek
pure (non-randomised) strategy equilibria in a stochastic differential game setting.

Remark C.10. The fact that p∗1, p∗2 do not depend on `d, `u substantiates the earlier
made claim that the choice of these quantities plays essentially no role at all. Further,
the lack of dependence on δ shows that in Nash equilibrium, premiums are frozen,
implying that the customer has no incentive to change strategy (switch insurer) as
time evolves.
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C.5 The beta case

We now consider the main case V ∼ beta(a, b), with c.d.f. P(V < v) = B(v; a, b) ·
B(a, b)−1 for v ∈ (0, 1), where

B(v; a, b) =

∫ v

0

ta−1(1− t)b−1 dt, B(a, b) = B(1; a, b)

denote the incomplete, resp. the complete Beta function. Further, P(V < v) = 1 for
v > 1 and P(V < v) = 0 for v < 0. Examples of beta distributed market frictions
(locations) are illustrated in Figure 3.2 for different values of the parameters a and b.
A customer located in [0, 0.5) incurs a lower cost if insuring at I1 than at I2, or has
a natural preference for the former, while a customer located in (0.5, 1] prefers or
minimises cost at I2. Unless the distribution is symmetric around 0.5, the point of
indifference/equal cost, one of the companies has an advantage in terms of customer
locations/preferences. For example, from Figure 3.2, if a = 8 and b = 2, then a large
share of customers are located near I2, i.e., I2 has an advantage over I1, and vice
versa for the case a = 3 and b = 6. If a = 1 and b = 1 then customers are uniformly
distributed between the two insurance companies.

0 0.5 1

a=1, b=1

a=8, b=2

a=3, b=6

Figure 3.2: Examples of beta market friction densities.

The portfolio sizes (3.7) are now

n1(p1, p2) = N
B(v0; a, b)

B(a, b)
and n2(p1, p2) = N

(
1− B(v0; a, b)

B(a, b)

)
(3.22)

if v0 ∈ (0, 1) or, equivalently, if p1 − p2 ∈ (−ρc, ρc). If p1 − p2 ≥ ρc then the
premium charged by I1 is too high to attract any customers, i.e., n1(p1, p2) = 0
and n2(p1, p2) = N . Conversely, if p1 − p2 ≤ −ρc, then I1 gets the entire market,
n1(p1, p2) = N and n2(p1, p2) = 0.
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Theorem C.11. Let V ∼ beta(a, b) and let mβ be the median of beta(a, b). Then a
Nash equilibrium exists at

p∗1 = αx1 +
ρc

2

(
B(a, b)

ma−1
β (1−mβ)b−1

+ 1− 2mβ

)
,

p∗2 = αx1 +
ρc

2

(
B(a, b)

ma−1
β (1−mβ)b−1

− 1 + 2mβ

)
,

provided that p∗1, p∗2 are in the feasible region (3.8) and that

− 4 ≤
(
a− 1

mβ

− b− 1

1−mβ

)
B(a, b)

ma−1
β (1−mβ)b−1

≤ 4 . (3.23)

In equilibrium, n1(p∗1, p
∗
2) = n2(p∗1, p

∗
2) = N/2.

Remark C.12. The verification of conditions (3.8), (3.23) meets the difficulty that
there is no explicit analytic expression for the median mβ in terms of a, b (it can be
calculated numerically, or for a, b > 1 approximated as mβ ≈ (a− 1/3)/(a+ b− 2/3),
cf. Kerman (2011)). Aspects of the conditions are illustrated in Figure 3.3 with mβ

calculated via Matlab’s median routine. The range is 0 ≤ a, b ≤ 5 and the conclusion
is basically that the conditions are only violated for highly skewed V , that is, if
either a or b is close to 0.

(a) (b)

Figure 3.3: (a) Region (3.23) in green. (b) Regions related to (3.8).

In more detail, (3.23) comes out from the proof as the second order condition
for a saddlepoint at p∗1, p∗2. The region where it holds (fails) is the green (red) region
in (a). The picture for condition (3.8) with p1 = p2 = 0 (positive premiums) is
somewhat more diverse since it involves not just a, b but also αx1. More precisely,
(3.8) will hold for all values of αx1 provided

B(a, b)

ma−1
β (1−mβ)b−1

≥ |1− 2mβ|. (3.24)
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This is the green region in (b). Otherwise, (3.8) will fail for sufficiently small values
of η = αx1/(ρc/2). However, such values appear to be somewhat unrealistic. As
examples, we took ρ = 3%, η = 2 or η = 1/2. Then for η = 2, the critical value of
the cost c is αx1/ρ, the expected discounted value of all premiums ever to be paid,
and it was found numerically that (3.8) holds everywhere in the considered region
1 ≤ a, b ≤ 5. For η = 1/2, (3.8) continues to hold in the blue region in (b), even if
(3.24) fails there, and is only violated in the red region. Alternatively, if condition
(3.8) is tightened to p1 = p1 = αx1 (premiums never below net level), then this is
equivalent to (3.24), i.e., the green region in (b).

Proof. According to Proposition C.9, it suffices to consider the difference in drifts,
which using (3.22), (3.16) and (3.17) can be written explicitly as

ν(p1, p2) = N
B(v0; a, b)

B(a, b)
(p1 − αx1)−N

(
1− B(v0; a, b)

B(a, b)

)
(p2 − αx1).

The first order conditions are

ν ′1(p1, p2) = N
B(v0; a, b)

B(a, b)
− N

2ρc

va−1
0 (1− v0)b−1

B(a, b)
(p1 + p2 − 2αx1) = 0,

ν ′2(p1, p2) =
N

2ρc

va−1
0 (1− v0)b−1

B(a, b)
(p1 + p2 − 2αx1)−N

(
1− B(v0; a, b)

B(a, b)

)
= 0.

Combination of these two conditions shows that v0 must satisfy

B(v0; a, b)

B(a, b)
= 1− B(v0; a, b)

B(a, b)
,

so v0 must be the median. Setting (3.6) equal to mβ, it follows that p1 = p2 +
ρc(1− 2mβ). Together with the first order conditions, we get the claimed form of
p∗1, p

∗
2. The second order partial derivative test in Appendix C.I verifies that we have

a Nash equilibrium under the stated parameter restrictions.

Remark C.13. If a = b then mβ = 1/2 due to symmetry and premiums coincide,
p∗1 = p∗2. If further a = b = 1, then the beta distribution reduces to the uniform, and
equilibrium premiums are p∗1 = p∗2 = αx1 + ρc/2.

Remark C.14. Without market frictions, c = 0, or if ρ = 0, premiums are actuarially
fair, p∗i = αx1. The higher the cost of frictions or ρ, the greater the departure from
actuarially fair premiums.

C.5.1 Numerical example

We present a numerical illustration based on the example with a = 8, b = 2, where
I2 has a market advantage. In this case, median market frictions are mβ = 0.82.
Note that for these parameter values, condition (3.23) is satisfied. Say that gross
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claim sizes Z∗ are exponentially distributed with parameter θ but that the contract
involves a deductible K. Then

x1 = E[(Z∗ −K)+]

= P(Z∗ ≥ K)E[Z∗ −K | Z∗ ≥ K]

=
1

θ
e−θK ,

x2 = E[(Z∗ −K)21{Z∗≥K}]

= E[Z∗21{Z∗≥K}] +K2E[1{Z∗≥K}]− 2KE[Z∗1{Z∗≥K}]

=
2

θ2
e−θK .

Let the market consist of N = 10 000 customers with average claim frequency α = 0.5
and marginal cost of frictions c = 100, set ρ = 5%, and assume a claim distribution
parameter θ = 0.01 (mean claim size 100). Let further K = 20, corresponding to 20%
of average claim size. This yields x1 = 81.87 and x2 = 16 375. For these values of
the parameters, the drift-variance ratio to be optimised, κ(p1, p2; δ) from (3.13), is
illustrated in Figure 3.4 as a function of premiums, p1 and p2, for δ = 15. It appears
that a saddle point could be present in the graph. The contour diagram in Figure 3.5
zooms in on the middle portion of the mesh in Figure 3.4, and the saddle point
becomes readily apparent.

Figure 3.4: Graph of κ(p1, p2; δ).

Optimal premiums are calculated using Theorem C.11 as

p∗1 = 40.11 and p∗2 = 43.31.

Since I2 has the market advantage, it can charge a higher premium. To see the Nash
equilibrium property in Figures 3.4 and 5, note that given p1 = 40.11, I2 minimises
(moves to cooler colors in the figure) by moving to p2 = 43.31, and given p2 = 43.31,
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39 40 41 42 43 44 45 46 47

p
2

37

38

39

40

41

42

43

44

p
1

Figure 3.5: Contour diagram of κ(p1, p2; δ).

0 0.5 1

 insures at I
1

 insures at I
2

Figure 3.6: Distribution of customers in equilibrium.

I1 maximises (moves to warmer colors) by moving to p1 = 40.11. From Theorem C.11
it furthermore follows that in equilibrium n1(p

∗
1, p
∗
2) = n2(p

∗
1, p
∗
2) = 5000. The

distribution of customers across insurance companies in equilibrium is shown in
Figure 3.6, where the separation point from (3.6) is v0 = mβ = 0.82.

C.6 Conclusion

We have considered a non-life insurance market in which two insurance companies
compete for customers by choice of premium strategies. We model the customer’s
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problem explicitly, paying special attention to market frictions, reflecting differences
in cost of search and switching, transportation, information acquisition and processing,
or preferences. Each company chooses its strategy to balance revenue per customer
against portfolio size, taking into account the strategy of the other company. The
reserves of the companies are modelled via the diffusion approximation to a standard
Cramer-Lundberg risk process, extended to allow investment in a risk-free asset.
The analysis is carried out in continuous time using stochastic differential game
techniques. A Nash equilibrium is established for beta distributed market frictions
(or customer preferences). A companion paper (Asmussen et al., 2019) of a somewhat
different flavour discusses product differentiation via deductibles and Stackelberg
games. Future research could consider three or more companies competing for market
shares, account explicitly for the risk of ruin, or for the possibility that some potential
customers choose not to insure.

Appendix

C.I Second order derivative test in Theorem C.11
Let x = v0 from (3.6) and

f(p1, p2) =
N

2ρc

xa−1(1− x)b−1

B(a, b)
(p1 + p2 − 2αx1).

Recalling that ν(p1, p2) = µ1(p1, p2)− µ2(p1, p2), the first order conditions of Theo-
rem C.11 can then be abbreviated as

ν ′1(p1, p2) = N
B(x; a, b)

B(a, b)
− f(p1, p2) = 0,

ν ′2(p1, p2) = f(p1, p2)−N
(

1− B(x; a, b)

B(a, b)

)
= 0.

The second order derivatives are

ν ′′11(p1, p2) = − N

2ρc

xa−1(1− x)b−1

B(a, b)
− f ′1(p1, p2) ,

ν ′′22(p1, p2) = f ′2(p1, p2) +
N

2ρc

xa−1(1− x)b−1

B(a, b)
.

By symmetry we have the relation

f ′1(p1, p2) + f ′2(p1, p2) =
N

ρc

xa−1(1− x)b−1

B(a, b)
,

so that

ν ′′22(p1, p2) =
3N

2ρc

xa−1(1− x)b−1

B(a, b)
− f ′1(p1, p2).
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Thus, by the second order conditions from Proposition C.9,

ν ′′11(p1, p2) < 0, ν ′′22(p1, p2) > 0,

we must have

− N

2ρc

xa−1(1− x)b−1

B(a, b)
< f ′1(p1, p2) <

3N

2ρc

xa−1(1− x)b−1

B(a, b)
.

Since

f ′1(p1, p2) =
N

2ρc

xa−1(1− x)b−1

B(a, b)

·
(

1− 1

2ρc

(
a− 1

x
− b− 1

1− x

)
(p1 + p2 − 2αx1)

)
,

the inequalities reduce to

−2 ≤ − 1

2ρc

(
a− 1

x
− b− 1

1− x

)
(p1 + p2 − 2αx1) ≤ 2.

Evaluated at the optimum, we finally get the parameter restrictions (3.23).
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Stackelberg equilibrium premium
strategies for push-pull competition in

a non-life insurance market with
product differentiation

søren asmussen, bent jesper christensen
and julie thøgersen

abstract. Two insurance companies I1, I2 with reserves R1,t, R2,t compete for
customers, such that in a suitable differential game the smaller company I2 with
R2,0 < R1,0 aims at minimising R1,t −R2,t by using the premium p2 as control and
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D.1 Introduction

Insurance premiums are typically calculated based on the expected loss, with an
added loading depending on distributional properties of the risk (the expected value
principle, variance principle, utility premium, etc.). An alternative to these static
premium principles is to consider the premium as a dynamic control variable of the
insurance company, as suggested in Asmussen et al. (2013) and Thøgersen (2016).
In this approach, the individual customer’s problem of deciding whether or not
to insure at any given premium offered is modelled explicitly, and the premium is
chosen optimally by the insurance company, balancing the resulting portfolio size
against revenue per customer in order to minimise ruin probability. The analysis is
based on the diffusion approximation to a standard Cramér-Lundberg risk process,
extended to allow investment in a risk-free asset. In Asmussen et al. (2018), this
idea is extended to a situation where insurance companies compete against each
other, and Nash equilibria in premium controls of the resulting stochastic differential
game are determined under suitable conditions. However, in some cases, no Nash
equilibrium exists.

In the present paper, we present a parallel to this analysis dealing with product
differentiation, with insurance companies offering different deductibles, and account-
ing for the possibility of Stackelberg equilibria. Two insurance companies compete
against each other such that one company is the leader, choosing its premium first,
and the other company is the follower, choosing its premium in response to the
leader’s. The setting is slightly modified relative to that in Asmussen et al. (2018),
in that we do not consider search and switching costs when modelling the customer’s
choice between insurance products. Our main contributions are, first, to establish
the existence of Stackelberg equilibrium under suitable conditions on this strategic
game between insurance companies, and to identify the restrictions under which this
reduces to the special case of Nash equilibrium. To our best knowledge, this adds at
least the following new features to the literature on game theory in insurance: an
example of Stackelberg equilibrium in premium controls; a finding of dependence
of optimal premiums on reserves; and an occurrence of the phenomenon of adverse
selection in a stochastic differential game between insurance companies, i.e., a lower
premium charged increases portfolio size but leaves the average customer riskier to
the company.

In the literature following Taylor (1986), the individual insurance company is
frequently modelled as setting its premium in response to the aggregate insurance
market, without explicitly considering the analogous behavior of the other companies
constituting this market and the resulting strategic interactions. Examples include
Taylor (1987) on marginal expense rates, Emms and Haberman (2005) generalising
the deterministic discrete-time analysis of Taylor to a stochastic continuous-time
model, Pantelous and Passalidou (2013, 2015) using stochastic demand functions
in discrete time, and Emms (2007) and Emms et al. (2007), adopting stochastic
processes for the market average premium and demand conditions in continuous time.
Pantelous and Passalidou (2017) recently found the optimal premium to depend on
the company’s reserve in a competitive environment in the sense of this literature,
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but, again, this is not explicitly a game-theoretic equilibrium in the sense of Nash or
Stackelberg, which is where we obtain dependence on reserves.

Game-theoretic aspects arise if the other insurers in the market in fact do react
to the policy of the individual insurer, with the latter explicitly taking this into
account in setting its policy. Market reaction to the individual insurer’s premium
is considered by Emms (2011). Explicit games between insurance companies have
been studied using non-cooperative game theory, where Cournot games involve
volume controls, see, e.g., Powers et al. (1998), whereas premium controls correspond
to Bertrand games, e.g., the one-period games in Polborn (1998) and Dutang et
al. (2013), who note that one aspect missing in their analysis is adverse selection
among policyholders – our analysis includes this. Emms (2012) and Boonen et al.
(2018) do consider continuous-time differential games in premium controls, but again
based on Taylor (1986) type demand functions of own and market average premium.
Boonen et al. (2018) in addition present a continuous-time extension of a one-period
aggregate game of Wu and Pantelous (2017), involving a price elasticity of demand
or market power parameter, and the individual insurer’s payoff depending on own
premium and an aggregate of market premiums. The models are deterministic and
open-loop Nash equilibria are determined. In contrast, rather than assuming demand
functions, we model the customer’s choice of where to insure directly and find closed-
loop or feedback Nash and Stackelberg equilibria in the resulting continuous-time
strategic stochastic differential game between insurance companies. The roles of
product differentiation via deductibles, adverse selection, and separating equilibrium
in our solution are reminiscent of Rothschild and Stiglitz (1976), one of the first
applications of game theory to competition in insurance premiums.

Besides competition in premiums, game theory has found several other applica-
tions in insurance, starting with Borch (1962) on risk transfer. Zeng (2010), Taksar
and Zeng (2011), and Jin et al. (2013) consider Nash equilibria of stochastic differ-
ential games between insurance companies in reinsurance strategies. The analysis
has been extended to non-zero sum games and additional investment controls by
Bensoussan et al. (2014), nonlinear risk processes by Meng et al. (2015), ambiguity-
aversion by Pun and Wong (2016), and insurance companies with different levels of
trust in information by Yan et al. (2017). Stackelberg-type equilibria of stochastic
differential games have been studied in Lin et al. (2012), where an insurance com-
pany selects an investment strategy while the market (or nature) selects a worst-case
probability scenario, and in Chen and Shen (2018), where the game is between
insurer and reinsurer, but not as here in a game between insurance companies.
For some more remote references, see Asmussen et al. (2018). Stackelberg games
were introduced by von Stackelberg (1934), and the theory of stochastic differential
Stackelberg games is considered by Yong (2002), Bensoussan et al. (2015), and Shi
et al. (2016).

Premium competition between insurance companies is likely to arise because the
premium charged may affect both portfolio size and revenue per customer. Without
market frictions or product differentiation, it might be expected that all customers
would simply insure at the company offering the lowest premium. However, this
may not be the case in the presence of market frictions. Thus, when choosing which
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insurance company to contact, customers may face different costs of search and
switching, transportation, or information acquisition, or they may simply exhibit
differences in preferences. Search frictions have been studied in economics by Diamond
(1982), Mortensen (1982), Mortensen and Pissarides (1994), and others. Brown and
Goolsbee (2002) studied the effect of internet search on life insurance premiums
in US data. Information frictions have been modelled as differences in the cost of
obtaining information, e.g., by Salop and Stiglitz (1977). In Asmussen et al. (2018)
we study premium competition between insurance companies in the presence of
market frictions. In the present paper, we consider instead product differentiation,
and for simplicity abstract from market frictions. With the leading example of car
insurance in mind, product differentiation may come in several forms. Here, we
focus on different deductibles. Other possibilities would be bonus-malus systems,
see Denuit et al. (2007), or proportional compensation in deductibles, similar to
reinsurance arrangements, see Albrecher et al. (2017).

We consider the case of two insurance companies, referred to as I1 and I2. We
allow for product differentiation by letting Ii offer an insurance contract with fixed
deductible Ki for a premium pi, i = 1, 2. The deductible measures the quality of
the insurance product, so the company offering the lower deductible will be able to
charge a higher premium.

We assume that there is a financial market consisting of a single risk-free asset
with dynamics dBt = rBt dt, where r is the risk-free interest rate. All excess wealth
of customers and reserve of insurers is invested in this asset. There are N customers
in the insurance market. We assume that all customers must insure at either I1 or I2

and focus the analysis on the choice between the two companies. This involves several
characteristics of both customer and insurance product. We pay special attention to
product differentiation and customer risk.

The characteristics of an individual customer are unknown to the insurance
companies, but their probability distribution known. Based on this distribution, the
companies can determine the expected portfolio sizes ni(p1, p2) and average claim
frequencies αi(p1, p2) in their portfolios as functions of the premiums offered. The
gross premium rate of Ii is then ci(p1, p2) = ni(p1, p2)pi, and the aggregate claim
frequency is λi(p1, p2) = ni(p1, p2)αi(p1, p2).

Let ri,0 be the initial reserve of company i. For given premiums (p1, p2), the
reserve of Ii is governed by the dynamics

dRi,t = (µi(p1, p2) + rRi,t) dt+ σi(p1, p2) dWi,t, (3.1)

where (W1,t)t≥0 and (W2,t)t≥0 are independent Wiener processes, and

µi(p1, p2) = ci(p1, p2)− λi(p1, p2)E[(Z −Ki)
+]

= ni(p1, p2)
(
pi − αi(p1, p2)E[(Z −Ki)

+]
)
,

σ2
i (p1, p2) = λi(p1, p2)E[(Z − Zi)+2

]

= ni(p1, p2)αi(p1, p2)E[(Z −Ki)
+2

] .

The random variable Z represents claim sizes, assumed to be independent and
identically distributed. Thus, (3.1) can be considered as a diffusion approximation to
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the Cramér-Lundberg process extended to the case where the insurance companies
have access to investment in a risk-free asset. Such diffusion approximations have
been used widely, based on the arguments of Iglehart (1969).

The aim is to derive value functions for the insurance companies, and determine
game-theoretic equilibria. We consider here what we call push-pull competition.
We assume that the largest company in terms of initial capital, I1, selects its
premium to try to push the small company away, while the small company tries
to pull closer to the large company. For K1 > K2 and I2 the leader choosing
its premium first, we derive conditions for a Stackelberg equilibrium. The stronger
feature of a Nash equilibrium may also occur, and we give conditions for that, but our
numerical examples indicate that Stackelberg is the more typical case. Subsequently,
for completeness, we briefly sketch the solution in the opposite case, K1 < K2. The
claim frequencies of individual customers are considered random to the insurance
company, and we obtain explicit solutions for equilibrium premiums in the case of
gamma-distributed claim frequencies.

The structure of the paper is as follows. In Section D.2 we analyze the customer’s
problem. We proceed to portfolio characteristics in Section D.3. In Section D.4, we
use the portfolio characteristics to find the strategies of I1 and I2. In Section D.5,
we obtain explicit solutions in the case of gamma-distributed claim frequencies, and
provide numerical examples. Section D.6 concludes. Some calculations and proofs
are deferred to Appendix D.I.

D.2 Customer’s problem
The customer has access to the risk-free asset paying interest at rate r. This is
the customer’s only source of income, and she invests all her wealth in this. The
customer is exposed to a risk (Aαt )t≥0, modelled as a compound Poisson process
Aαt =

∑Nα
t

n=1 Zn, where (Nα
t )t≥0 is a Poisson process with claim frequency α, and

(Zn)n∈N are the claim sizes, assumed to be independent of (Nα
t )t≥0. The customer

will then reduce this risk by buying insurance. If the customer insures at Ii, then she
will continuously pay the premium pi, and in return have the claim sizes reduced to
at most Ki. The wealth of the customer (wi,t)t≥0 when insuring at company i thus
has dynamics

dwi,t = (rwi,t − pi) dt− dAαi,t, wi,0 = w0,

where (Aαi,t)t≥0 is the compound Poisson process Aαi,t =
∑Nα

t
n=1 min{Zn, Ki}, and w0

the customer’s initial wealth.
We here use similar evaluation criteria and subsequent arguments as in Thøgersen

(2016), which we refer to for a more exhaustive treatment. The first step is to realise
that the expected present discounted wealth when insuring at Ii can be evaluated as

Vi = E
[∫ ∞

0

exp(−dt) dwi,t

]
=
rw0 − pi
d− r

− α

d− r
E[min{Zn, Ki}],

where d > r is a subjective discount rate. If the customer were risk-neutral, she
would simply choose the insurance company generating maximum expected present
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discounted wealth. Thus, she would prefer Ii over Ij if

pi − pj < −α
(
E[min{Zn, Ki}]− E[min{Zn, Kj}]

)
. (3.2)

However, an existence criterion for the insurance industry is that customers are risk
averse, and this requires modification of (3.2). If Ki 6= Kj , the customer will be facing
an excess claim size risk when insuring at the company with the higher deductible.
Let this additional (or reduced) risk be denoted zei,j = E[min{Zn, Ki}−min{Zn, Kj}]
when insuring at Ii rather than Ij . Please note that zei,j corresponds to the last factor
in (3.2), and is positive if Ki > Kj, and vice versa. Let β denote the risk aversion
of the customer. By standard arguments of insurance, due to the risk aversion, the
customer will be willing to pay a fee to avoid the additional risk. We will take this
into account by introducing a personal safety loading ω(β) that the customer is
willing to pay to avoid the excess risk present when K1 6= K2. This is incorporated
in (3.2) by multiplying the excess risk by (1 + ω(β)). The more risk averse the
customer, the higher the safety loading, i.e., ω is non-negative and increasing in β,
with ω(0) = 0. Thus, including risk aversion, the customer will prefer I1 over I2 if

p1 − p2 < −(1 + ω(β))αze1,2 , (3.3)

and conversely, I2 over I1 if

p2 − p1 < +(1 + ω(β))αze1,2 . (3.4)

In the next section, we use these relations to evaluate the portfolio sizes and average
claim frequencies of the respective companies. We remark, however, at this place
that in Asmussen et al. (2018) we have presented an in part more sophisticated
approach to the customer’s problem involving a finite decision horizon with varying
interpretations, but for the sake of simplicity, we have not pursued this aspect here.

D.3 Portfolio characteristics
The claim frequencies α of the customers will be considered as random to the firm
and denoted by A for a given customer. The case (3.3) then corresponds to the event

Ω =
{
p1 − p2 < −(1 + ω(β))Aze1,2

}
(3.5)

and (3.4) to the complementary event Ωc.
For I1 the expected portfolio size n1(p1, p2) and the average claim frequency

α1(p1, p2) take the form

n1(p1, p2) = NP(Ω), α1(p1, p2) = E[A | Ω],

where N is the market size. Vice versa for I2, where

n2(p1, p2) = NP(Ωc), α2(p1, p2) = E[A | Ωc].
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Letting
y =

p2 − p1

(1 + ω(β))ze1,2
, (3.6)

the probability of (3.5) can for ze1,2 > 0 (corresponding to K1 > K2) be evaluated as

P(Ω) = P(A < y),

so, the portfolio sizes are

n1(p1, p2) = NP(A < y), n2(p1, p2) = N(1− P(A < y)). (3.7)

The average claim frequency for I1 is the conditional expected value of the random
claim frequency A given that the customer insures at I1, i.e.,

α1(p1, p2) = E[A | A < y], (3.8)

and likewise, for I2,
α2(p1, p2) = E[A | A ≥ y], (3.9)

if y > 0. Otherwise, α1(p1, p2) = 0 and α2(p1, p2) = E[A] if y < 0. The criterion y > 0
for obtaining information from the customers’ choices stems from the assumption
ze1,2 > 0, which indicates that I2 offers a better product than I1, and therefore the
premium p1 should not exceed p2. Otherwise, every customer would obviously choose
to insure at I2.

In case ze1,2 < 0, which means that I1 offers a better insurance product, i.e., a
lower deductible, K1 < K2, then by symmetry

n1(p1, p2) = NP(A ≥ y), α1(p1, p2) = E[A | A ≥ y],

n2(p1, p2) = NP(A < y), α2(p1, p2) = E[A | A < y],

if y > 0. Otherwise, if y < 0, then I1 would offer a lower premium for a better
product, and would hence win the entire market of customers.

D.4 The strategies of the insurance companies
We now consider the optimization problems of the insurance companies. A control
π = (π1, π2) is a set

(
π1(t), π2(t)

)
of premium strategies where π1(t), π2(t) denote the

premiums set by the companies at time t. As in much of stochastic control theory,
we will only consider Markovian (also called feedback) strategies π, meaning that
π1(t), π2(t) only depend on the current value δ of the difference ∆π(t) = Rπ

1 (t)−Rπ
2 (t)

between the corresponding controlled reserve processes Rπ
1 , R

π
2 . That is, we can

write π1(t) = pπ1 (∆π(t)), π2(t) = pπ2 (∆π(t)) for suitable functions pπ1 , pπ2 . Since the
(uncontrolled) reserves have the dynamics (3.1), this makes ∆π(t) a diffusion process,

d∆π(t) = µπ(∆π(t)) dt+ σπ(∆π(t)) dW (t) , (3.10)
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where

µπ(δ) = µ1

(
pπ1 (δ), pπ2 (δ)

)
− µ2

(
pπ1 (δ), pπ2 (δ)

)
+ rδ ,

σπ(δ)2 = σ1

(
pπ1 (δ), pπ2 (δ)

)2
+ σ2

(
pπ1 (δ), pπ2 (δ)

)2
,

and W = (W1 −W2)/
√

2 is again a Wiener process. Without loss of generality, we
take ∆(0) = ∆π(0) = r1,0 − r2,0 > 0, i.e., I1 is the large company and I2 the small.
The large company seeks to maximize the reserve difference (to push the competitor
further away), while the small company seeks to minimise the same (to pull closer to
the competitor), each taking the current reserve difference as the state variable. The
optimality criterion is to consider a fixed interval [`d, `u] with `d < ∆(0) < `u and let

τ(π) = inf
{
t > 0 : ∆π(t) 6∈ [`d, `u]

}
, V π(δ) = Pπ

(
∆π(τ(π)) = `u

∣∣∆(0) = δ
)
.

Then the large company I1 chooses π1 to maximise the probability Vπ(∆(0)) to
exit at the upper boundary, and the small I2 chooses π2 to minimise V π(∆(0)), or
equivalently to maximise the probability 1−Vπ(∆(0)) to exit at the lower boundary.

Remark D.1. The feedback assumption implies that this is equivalent to maximising
(minimising) V π(δ) for all `d < δ < `u.

Given that deductibles are different, one of the firms offers a product of higher
quality (lower deductible) than the other. Therefore, the sequence of the game
matters, and so a Stackelberg game is considered, where the companies compete
sequentially. The sequence of the game is that at any time t

(1) The insurance company with the better product (i.e., lower deductible) is the
leader and thus plays first.

(2) The insurance company with the lower quality product is the follower, and
plays second, instantly after observing the leader’s choice.

If I2 (the smallest firm) is the leader and I1 the follower (i.e., K1 > K2), then a
Stackelberg equilibrium is defined as a strategy pair (π∗1, π

∗
2) satisfying

π∗1 = π̂1(π∗2) and V (π∗1 ,π
∗
2) ≤ V (π̂1(π2),π2) for all π2, (3.11)

where π̂1(π2) = arg supπ1
V (π1,π2). This case, K1 > K2, is relevant when the company

offering the lower deductible is not able to attract sufficiently many high-risk cus-
tomers (who need this extra protection) to become the largest company. We briefly
discuss the opposite case below, in Remark D.12.

The Stackelberg equilibrium concept involves backward induction. First, the
optimal response of the follower is determined as a reaction function. Next, the
leader inserts the reaction function of the follower into its optimization problem, and
solves for the best first move. As the game evolves in continuous time, the reserve
difference changes. At each instant, each firm reconsiders its strategy, taking the
running reserve difference as the state variable, and taking into account the future
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strategies of both companies, as long as the reserve difference remains in [`d, `u].
The criteria for a Stackelberg equilibrium are less strict than the ones for the more
common Nash equilibrium, defined as a strategy pair (π∗1, π

∗
2) satisfying

V (π∗1 ,π
∗
2) ≥ V (π1,π∗2) for all π1 and V (π∗1 ,π

∗
2) ≤ V (π∗1 ,π2) for all π2, (3.12)

i.e., neither firm has an incentive to deviate from its strategy unilaterally. We
later specify the specific (second order) criteria for our solution for both types of
equilibrium.

We next quote from Asmussen et al. (2018) some results that will allow replacing
optimization problems in the space of functions p1, p2 by the more elementary problem
of pointwise maximization/minimization of the real-valued ratio

κπ(δ) =
µπ(δ)

σπ(δ)2
(3.13)

between the drift and variance of the reserve difference process in (3.10).

Lemma D.2. Let µ(x), σ2(x) be bounded and measurable functions on an interval
(`d, `u) such that inf`d<x<`u σ

2(x) > 0 and let X,W be defined on a suitable probability
space such that W is a standard Brownian motion and

X(t) = δ +

∫ t

0

µ
(
X(s)

)
ds+

∫ t

0

σ
(
X(s)

)
dW (s) (3.14)

for some δ ∈ (`d, `u). Define further κ(x) = µ(x)/σ2(x),

s(y) = exp
{
−2

∫ y

`d

κ(z) dz
}
, S(δ) =

∫ δ

`d

s(y) dy

and τ = inf
{
t : X(t) 6∈ (`d, `u)

}
. Then:

(i) P
(
X(τ) = `u

)
= S(δ)/S(`u) .

(ii) For a given function κ on [`d, `u] and a given δ ∈ [`d, `u], let ϕ(κ) denote the
r.h.s. in (i). Then κ0 ≤ κ1 implies ϕ(κ0) ≤ ϕ(κ1).

By slight abuse of notation, define

κ(p1, p2; δ) =
µ1(p1, p2)− µ2(p1, p2) + rδ

σ2
1(p1, p2) + σ2

2(p1, p2)
, p1, p2 ≥ 0, `d ≤ δ ≤ `u . (3.15)

To ease notation here and in the following subsections, we use the notation

κ′i(p1, p2; δ) =
∂

∂pi
κ(p1, p2; δ) , κ′′ij(p1, p2; δ) =

∂2

∂pi∂pj
κ(p1, p2; δ) ,

for partial derivatives, where the number of primes indicates the number of times the
function is differentiated, and the subscript specifies with respect to which variable.1

1The standard notation avoids the primes and considers the subscript as sufficient, but we want
to emphasise the differentiation here in order to avoid confusion with other notation in the paper,
e.g., µ1(p1, p2) and µ2(p1, p2).
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Now consider the resulting drift and variance of the reserves in (3.1), focusing on
the case K1 > K2. Writing x1,i = E[(Z −Ki)

+] and x2,i = E[(Z −Ki)
21{Z≥Ki}], it

follows from (3.1) and Section D.3 that the drift and variance for the reserve of I1

can be written as

µ1(p1, p2) = NP(A < y)
(
p1 − E[A | A < y]x1,1

)
,

σ2
1(p1, p2) = NP(A < y)E[A | A < y]x2,1,

and for I2,

µ2(p1, p2) = NP(A ≥ y)
(
p2 − E[A | A ≥ y]x1,2

)
,

σ2
2(p1, p2) = NP(A ≥ y)E[A | A ≥ y]x2,2,

with y given by (3.6). These expressions show that the denominator σ2
1(p1, p2) +

σ2
2(p1, p2) in (3.15) depends on the controls p1, p2 because so does y and K1 6=
K2 implies x2,1 6= x2,2 (if K1 = K2 = K then σ2

1(p1, p2) + σ2
2(p1, p2) reduces to

NE[A]E[(Z−K)+]). Therefore, we need to optimise over the entire κ function (3.15)
and not just the difference in drifts ν as in Asmussen et al. (2018).

From (3.6), by lowering the premium p1, I1 (with a high deductible in their
product) can increase y and thereby portfolio size n1(p1, p2), for given p2, but at
the expense of simultaneously increasing average claim rate α1(p1, p2), leaving the
combined effect on the drift µ1(p1, p2) in (3.1) of sign that may go either way
in general. Thus, there is a tradeoff, reflecting the adverse selection problem, cf.
Rothschild and Stiglitz (1976), i.e., lowering the premium brings more but riskier
customers. In contrast, by lowering its premium p2 for given p1, I2 (offering the lower
deductible) can lower y and thereby simultaneously increase portfolio size n2(p1, p2)
and reduce average claim rate α2(p1, p2), but the combined effect on the drift of the
reserve difference in (3.10) is nevertheless of ambiguous sign, and further modelling
indeed required.

By (i) of Lemma D.2, V π(δ) takes the form S(δ)/S(`u), and combination of (ii)
of the lemma and Remark D.1 allows characterising a Stackelberg equilibrium with
I2 as the leader and I1 the follower. It shows that the optimization problem is local:
We can just consider maximization or minimization of κ(·, ·; δ) separately at each δ.
This yields Proposition D.3 below, in which we find the explicit (local) conditions
for a Stackelberg equilibrium in (3.11) in terms of the function κ(·, ·; δ) from (3.15).
For a solution to exist, the maximising company should be facing a (locally, at least)
concave problem structure, and the minimising company a convex one. Existence
cannot be guaranteed in general, but needs to be verified when considering a specific
distribution of A, and hence a specific κ(·, ·; δ). For the standard assumption of a
gamma-distributed heterogeneity, we see in Section D.5 that an equilibrium does in
fact exist and is unique. Although multiple solutions do not occur in this example,
they cannot be excluded in general, so that the equilibrium may not be unique.
The approach with backward induction should be the same, though giving a set of
solutions. As multiple equilibria do not arise in the gamma case, we do not discuss
them in more depth, except noting that uniqueness is guaranteed if the (local)
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concavity and convexity properties exploited in the following proposition extend
globally.

For a fixed δ, write d(p2) = p̂1(δ|π2) for the optimal premium for I1 given I2

follows a strategy with premium p2 at level δ.

Proposition D.3. In a Stackelberg equilibrium (π∗1, π
∗
2), the optimal set p∗1 = p∗1(δ),

p∗2 = p∗2(δ) of premiums at level δ is a solution to

p∗1 = d(p∗2), p∗2 = arg min
p2

κ(d(p2), p2; δ), where d(p2) = arg sup
p1

κ(p1, p2; δ).

(3.16)
The first order conditions for (p∗1, p

∗
2) are

0 = κ′1(p∗1, p
∗
2; δ) = κ′2(p∗1, p

∗
2; δ) , (3.17)

and the second order conditions are

0 > κ′′11(p∗1, p
∗
2; δ) , (3.18)

0 > det
(
H(p∗1, p

∗
2; δ)

)
, (3.19)

where H(p1, p2; δ) =
(
κ′′ij(p1, p2; δ)

)
i,j=1,2

is the Hessian of κ(·, ·; δ).

Proof. Condition (3.16) follows from the definition of Stackelberg equilibrium, see
(3.11), and the local character of the problem discussed above. Choosing the best p1

given p2 means that I1 takes p1 as d(p2), so d(p2) satisfies

0 = κ′1(d(p2), p2; δ), (3.20)
0 > κ′′11(d(p2), p2; δ). (3.21)

The problem I2 is facing is then to minimise κ(d(p2), p2; δ) so p∗2 is the zero of
the function

g(p2) = κ′1(d(p2), p2; δ)d′(p2) + κ′2(d(p2), p2; δ).

At a Stackelberg equilibrium we have p∗1 = d(p∗2). We therefore get

0 = κ′1(p∗1, p
∗
2; δ)d′(p∗2) + κ′2(p∗1, p

∗
2; δ), (3.22)

and the second order condition g′(p∗2) > 0 means

0 <
[
κ′′11(p∗1, p

∗
2; δ)d′(p∗2) + κ′′12(p∗1, p

∗
2; δ)

]
d′(p∗2)

+ κ′1(p∗1, p
∗
2; δ)d′′(p∗2) + κ′′21(p∗1, p

∗
2; δ)d′(p∗2) + κ′′22(p∗1, p

∗
2; δ).

(3.23)

Now (3.20) implies that the first term in (3.22) vanishes, and using (3.20) again,
we arrive at (3.17). Furthermore, differentiating (3.20) gives

0 = κ′′11(d(p2), p2; δ)d′(p2) + κ′′12(d(p2), p2; δ), (3.24)

107



Paper D

and thus [ · ]d′(p∗2) in (3.23) vanishes. So does the second term, by (3.20), and hence
(3.23) reduces to

0 < κ′′21(p∗1, p
∗
2; δ)d′(p∗2) + κ′′22(p∗1, p

∗
2; δ)

= −κ′′21(p∗1, p
∗
2; δ)

κ′′12(p∗1, p
∗
2; δ)

κ′′11(p∗1, p
∗
2; δ)

+ κ′′22(p∗1, p
∗
2; δ) =

det
(
H(p∗1, p

∗
2; δ)

)
κ′′11(p∗1, p

∗
2; δ)

,

where the first equality follows from (3.24). Combination with (3.21) produces
(3.19).

Corollary D.4. If, in addition to (3.18), the premiums in (3.16) satisfy

0 < κ′′22(p∗1, p
∗
2 ; δ), (3.25)

then (p∗1, p
∗
2) furthermore meets the conditions of a Nash equilibrium.

Proof. Follows from Asmussen et al. (2018).

It is clear from Proposition D.3 and Corollary D.4 that the Stackelberg equilibrium
concept is more general than Nash equilibrium. In particular, by (3.18) and (3.25),
the diagonal entries of the relevant Hessian are of opposite sign in Nash equilibrium,
so (3.19) is automatic. Furthermore, since (3.18) and (3.19) are the general conditions
for a (local) saddlepoint of κ(p1, p2; δ), any saddlepoint of this function gives rise
to a (local) Stackelberg equilibrium. Geometrically, such a saddlepoint need not be
parallel to the axes corresponding to the controls (premiums). In case the cross-partial
κ′′12(p∗1, p

∗
2; δ) = 0 (equivalently, the policy of I1 does not depend on that of I2 at the

optimum), then the saddlepoint is parallel to the axes and, indeed, gives rise to a
(local) Nash equilibrium. Again, the conditions are only necessary, whereas sufficient
conditions would involve global concavity/convexity.

Heuristically, because the premium controls of the companies are equally powerful
and act in opposite directions, they should split customers evenly. This is formalised
in the next proposition.

Proposition D.5. In Stackelberg equilibrium, I1 and I2 share the market equally,
i.e., n1(p∗1, p

∗
2) = n2(p∗1, p

∗
2) = N/2.

Proof. Suppressing δ for notational convenience, let κn(p1, p2) and κd(p1, p2) de-
note the numerator and denominator, respectively, of κ(p1, p2 ; δ) in (3.15). Simple
calculations show that the partial derivatives satisfy the relations

κ′n,2(p1, p2) = −κ′n,1(p1, p2) +N(P(A < y)− P(A ≥ y)) ,

κ′d,2(p1, p2) = −κ′d,1 ,
(3.26)

with y from (3.6). Following Proposition D.3, we find the first order condition for I1,

κ′1(p1, p2; δ) =
1

κd(p1, p2)
κ′n,1(p1, p2)− κn(p1, p2)

κd(p1, p2)2
κ′d,1(p1, p2) = 0,
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which can be reduced to

κ′n,1(p1, p2)− κn(p1, p2)

κd(p1, p2)
κ′d,1(p1, p2) = 0. (3.27)

From this equation, the optimal response function d(p2) is deduced. Similarly,
the first order condition for I2 can be reduced to

κ′n,2(d(p2), p2)− κn(d(p2), p2)

κd(d(p2), p2)
κ′d,2(d(p2), p2) = 0.

Using the relation (3.26) between the partial derivatives yields

−κ′n,1(d(p2), p2) +N(P(A < y)− P(A ≥ y)) +
κn(d(p2), p2)

κd(d(p2), p2)
κ′d,1(d(p2), p2) = 0,

which in combination with (3.27) yields P(A < y) = P(A ≥ y). Hence, in Stackelberg
equilibrium y should be the median of A, and from (3.7), n1(p∗1, p

∗
2) = n2(p∗1, p

∗
2) =

N/2.

D.5 Gamma-distributed claim frequencies
For modelling purposes, we assume that the claim frequencies are distributed accord-
ing to A ∼ gamma(a, b), with c.d.f. P(A < y) = γ(b, y/a)/Γ(b) where

Γ(b) =

∫ ∞
0

tb−1 exp(−t) dt ,

γ(b, z) =

∫ z

0

tb−1 exp(−t) dt, Γ(b, z) = Γ(b)− γ(b, z)

are the Gamma function, and the lower resp. upper incomplete Gamma function.
The gamma distribution is standard for modelling unobserved heterogeneity in a
Poissonian setting (in insurance, a classical case is credibility theory, see Bühlmann
and Gisler (2006); in general Bayesian modelling, the gamma has the role of a
conjugate prior greatly facilitating calculations, see Robert (2007)). However, the
outline calculations can easily be paralleled for other distributions, though the
amount of analytic details may be considerable.

The portfolio characteristics (3.7)–(3.9) can then be written explicitly as

n1(p1, p2) = N
γ (b, y/a)

Γ(b)
, α1(p1, p2) =

aγ (b+ 1, y/a)

γ(b, y/a)
,

n2(p1, p2) = N
Γ(b, y/a)

Γ(b)
, α2(p1, p2) =

aΓ (b+ 1, y/a)

Γ(b, y/a)
,

(3.28)

if ze1,2 > 0 and y > 0 which, as explained in Section D.3, is equivalent to K1 > K2

and p1 < p2.
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Theorem D.6. Assume K1 > K2 that A ∼ gamma(a, b), and let mΓ denote the
median of gamma(a, b). Then a Stackelberg equilibrium exists at

p∗1 = d(p∗2) = a
(p∗2
a
− (1 + ω(β))ze1,2

mΓ

a

)
,

p∗2 =
a

2

(mΓ

a

)(1

2
emΓ/a

(mΓ

a

)−b
Γ(b)(1 + ω(β))ze1,2

+ (1 + ω(β))ze1,2 + (x1,1 + x1,2)− κ̃(x2,2 − x2,1)
) (3.29)

where
κ̃ = κ(p∗1, p

∗
2; δ)

=
1

1
2
bΓ(b)(x2,1 + x2,2) + e−mΓ/a(mΓ/a)b(x2,2 − x2,1)

·
(

e−mΓ/a(mΓ/a)b(x1,1 + x1,2) + rδΓ(b)/(Na)

+
1

2
Γ(b)(b(x1,2 − x1,1)− (mΓ/a)(1 + ω(β))ze1,2)

)
,

(3.30)

provided
p∗1 ≥ 0, p∗2 ≥ 0, (3.31)

and
D(a, b,K1, K2, r, δ, ω(β)) < 0 (3.32)

with

D(a, b,K1, K2, r, δ, ω(β)) = κ(p∗1, p
∗
2; δ)(x2,2 − x2,1)− 2(1 + ω(β))ze1,2

− (x1,1 + x1,2)− 1
2
emΓ/a(mΓ/a)−bΓ(b)(1 + ω(β))ze1,2(mΓ/a− b+ 1).

(3.33)

Remark D.7. As we discussed in Asmussen et al. (2018), there are arguments that
motivate to remove condition (3.31) of non-negative premiums or to tighten it to
premiums never below net levels αi(p1, p2)x1,i. However, since αi(p1, p2) now depends
on y from (3.6) and hence on premiums unlike in the Nash equilibrium occurring
there, this route leads to an implicit condition and is not pursued further here. See;
however, the discussion following (3.36) below.

Proof. Using the portfolio characteristics (3.28) and the notation from the proof of
Proposition D.5, we can write the numerator of the criterion to be optimised (3.15)
as

κn(p1, p2) = µ1(p1, p2)− µ2(p1, p2) + rδ

= N
γ (b, y/a) p1 − aγ (b+ 1, y/a) x1,1 − Γ (b, y/a) p2 + aΓ (b+ 1, y/a) x1,2

Γ(b)
+ rδ

= N
γ(b, y/a)

Γ(b)
(p1 − ab x1,1)−N Γ(b, y/a)

Γ(b)
(p2 − ab x1,2)

+N
a(y/a)be−y/a

Γ(b)
(x1,1 + x1,2) + rδ ,
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using the relations γ(b+ 1, z) = bγ(b, z)− zbe−z and Γ(b+ 1, z) = bΓ(b, z) + zbe−z.
Similarly, for the denominator,

κd(p1, p2) = σ2
1(p1, p2) + σ2

2(p1, p2)

=
N

Γ(b)

(
aγ (b+ 1, y/a) x2,1 + aΓ (b+ 1, y/a) x2,2

)
=

N

Γ(b)

(
abγ(b, y/a)x2,1 + abΓ(b, y/a)x2,2

+ a(y/a)be−y/a(x2,2 − x2,1)
)
.

The derivatives of the incomplete Gamma functions are

∂γ (b, z)

∂z
= zb−1e−z = −∂Γ (b, z)

∂z
,

and by the definition (3.6) of y, we have ∂y
∂p2

= − ∂y
∂p1

= 1/((1 + ω(β))ze1,2). Hence, κn
and κd have partial derivatives

κ′n,1(p1, p2) =
N

Γ(b)

(
γ (b, y/a) +

x1,1 + x1,2

(1 + ω(β))ze1,2
e−y/a (y/a)b

− p1 + p2

a(1 + ω(β))ze1,2
(y/a)b−1 e−y/a

)
,

κ′n,2(p1, p2) =
N

Γ(b)

(
− Γ (b, y/a)− x1,1 + x1,2

(1 + ω(β))ze1,2
e−y/a (y/a)b

+
p1 + p2

a(1 + ω(β))ze1,2
(y/a)b−1 e−y/a

)
=

N

Γ(b)
(γ (b, y/a)− Γ (b, y/a))− κ′n,1(p1, p2),

κ′d,1(p1, p2) =
N

Γ(b)

(
x2,2 − x2,1

(1 + ω(β))ze1,2
e−y/a (y/a)b

)
,

κ′d,2(p1, p2) = − N

Γ(b)

(
x2,2 − x2,1

(1 + ω(β))ze1,2
e−y/a (y/a)b

)
= −κ′d,1(p1, p2) ,

confirming (3.26) in this case. By Proposition D.5, y must be the median of the
gamma distribution, namely, the value mΓ that solves

γ(b,mΓ/a)/Γ(b) = Γ(b,mΓ/a)/Γ(b) = 1/2.

From the definition (3.6) of y it then follows that p∗2 is chosen to satisfy

mΓ =
p∗2 − d(p∗2)

(1 + ω(β))ze1,2
.

Thus, when evaluated at p∗2, the optimal response by I1 is

d(p∗2) = p∗2 − (1 + ω(β))ze1,2mΓ.
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We may now evaluate the expressions

κ(d(p∗2), p∗2; δ) =
1

1
2
bΓ(b)(x2,1 + x2,2) + e−mΓ/a(mΓ/a)b(x2,2 − x2,1)

·
(

e−mΓ/a(mΓ/a)b(x1,1 + x1,2) + rδΓ(b)/(Na)

+ 1
2
Γ(b)

(
b(x1,2 − x1,1)− (mΓ/a)(1 + ω(β))ze1,2

))
= κ̃,

κ′n,1(d(p∗2), p∗2) =
N

Γ(b)

( −2p∗2
a(1 + ω(β))ze1,2

(mΓ/a)b−1e−mΓ/a + 1
2
Γ(b)

+
x1,1 + x1,2

(1 + ω(β))ze1,2
e−mΓ/a(mΓ/a)b + (mΓ/a)be−mΓ/a

)
,

κ′d,1(d(p∗2), p∗2) =
N

Γ(b)

( x2,2 − x2,1

(1 + ω(β))ze1,2
e−mΓ/a(mΓ/a)b

)
.

Substitute these into (3.27) and solve for p∗2 to

p∗2 =
a

2

(mΓ

a

)(
1
2
emΓ/a

(mΓ

a

)−b
Γ(b)(1 + ω(β))ze1,2

+ (1 + ω(β))ze1,2 + (x1,1 + x1,2)− κ̃(x2,2 − x2,1)
)
.

The second order conditions, (3.18) and (3.19), are verified in Appendix D.I such
that the first order conditions yield the types of optima desired.

We have without loss of generality assumed that y ≥ 0, i.e., by (3.6), I2 charges
the highest premium. This is reasonable because it offers the best product (K1 > K2).
Indeed, there cannot be an equilibrium in the region y < 0, since here, the criterion
to be optimised would be κ(p1, p2; δ) = (rδ − N(p2 − αx1,2))/(Nαx2,2), which is
decreasing in p2. Since I2 seeks to minimise, it would increase p2 until again y > 0.

Corollary D.8. If, in addition to (3.32), the premiums in (3.29) satisfy

D(a, b,K1, K2, r, δ, ω(β)) > −4(1 + ω(β))ze1,2 (3.34)

then (p∗1, p
∗
2) furthermore meets the conditions of a Nash equilibrium.

Proof. Follows from Corollary D.4 and calculations in the Appendix.

Remark D.9. The median is not analytically available, but can be solved for
numerically. Banneheka and Ekanayake (2009) argue that the median for b ≥ 1 can
be approximated as mΓ ≈ ab(3b − 0.8)/(3b + 0.2). Further to this, note that by
scaling properties of the gamma distribution, mΓ/a is the median of a gamma(1, b)
distribution. Evidently, equilibrium premiums scale in proportion to a.

Remark D.10. If b = 1, the gamma distribution reduces to the exponential with
parameter 1/a and median me = a log(2). In this case, the expressions for equilibrium
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premiums simplify to

p∗1 = d(p∗2) = a(p∗2/a− (1 + ω(β))ze1,2me/a),

p∗2 =
a

2

(me

a

)(
(me/a)−1(1 + ω(β))ze1,2 + (1 + ω(β))ze1,2

+ (x1,1 + x1,2)− κ̃(x2,2 − x2,1)
) .

where

κ̃ =
(me/a)(x1,1 + x1,2) + 2rδ/(aN) + x1,2 − x1,1 − (me/a)(1 + ω(β))ze1,2

x2,1 + x2,2 + (me/a)(x2,2 − x2,1)
.

Remark D.11. Without product differentiation, K1 = K2, premiums coincide,
p∗1 = p∗2. With product differentiation, the difference between equilibrium premiums
is increasing in excess risk ze1,2 and safety loading ω(β).

Remark D.12. In case K1 < K2, i.e., the large firm I1 offers the highest-quality
insurance product (lowest deductible), then for a gamma-distributed claim frequency,
the criterion to be optimised is by symmetry instead

κ(p1, p2; δ) =
1

aΓ (b+ 1, y/a) x2,1 + aγ (b+ 1, y/a) x1,2

·
(

Γ (b, y/a) p1 − aΓ (b+ 1, y/a) x1,1 + rδΓ(b)/N

− γ (b, y/a) p2 + aγ (b+ 1, y/a) x1,2

)
.

.

In this case, I1 will be the leader of the Stackelberg game, and I2 the follower. Recall
here that because K1 < K2 we have ze1,2 < 0. The same approach as in the proof of
Theorem D.6 then yields the equilibrium

p∗2 = d(p∗1) = a(p∗1/a+ (1 + ω(β))ze1,2(mΓ/a)),

p∗1 =
a

2

(mΓ

a

)(
− 1

2
emΓ/a(mΓ/a)−bΓ(b)(1 + ω(β))ze1,2

− (1 + ω(β))ze1,2 + (x1,1 + x1,2)− κ̃(x2,2 − x2,1)
)

where

κ̃ =
1

1
2
bΓ(b)(x2,1 + x2,2)− e−mΓ/a(mΓ/a)b(x2,2 − x2,1)

·
(
−e−mΓ/a(mΓ/a)b(x1,1 + x1,2) + rδΓ(b)/(aN)

+ 1
2
Γ(b)

(
b(x1,2 − x1,1)− (mΓ/a)(1 + ω(β))ze1,2

))
.

We have again that ni(p∗1, p∗2) = N/2, i = 1, 2 (this follows as in the proof of
Proposition D.5 and as in that case does not depend on the assumption of gamma-
distributed heterogeneity). The case K1 < K2 is relevant if the company offering
best protection (lowest deductible) and therefore charging highest premiums is able
to more than cover the extra cost associated with the high-risk customers willing to
pay such higher premiums, and thus become the largest company.
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a=0.70, b=7

Figure 3.1: The gamma distribution of the claim frequencies for different a and b.

Returning to Theorem D.6 and the discussion of how the Stackelberg equilibrium
evolves over time, note that due to interest rates, the strategy of the leader (here,
I2, with strategy p∗2) changes in an affine fashion with δ. Although δ indicates the
difference in initial reserves, the companies may reoptimise at any point in time. The
game is repeated every instant, and each new equilibrium in the feedback version
of the game takes the same form, with premiums set as in Theorem D.6, and δ
the running difference in reserves. As functions of δ, the Stackelberg equilibrium
premiums, p∗2 = p∗2(δ) and p∗1 = p∗1(δ), remain time-invariant. In game-theoretic terms,
the equilibrium is time-consistent. Furthermore, the portfolio characteristics actually
remain constant through time. The reason is that the difference between premiums,
p∗2 − p∗1 = (1 + ω(β))ze1,2mΓ, clearly is constant over time, not dependent on the
reserve difference δ, and by Section D.3, portfolio sizes and average claim frequencies
for the companies only depend on the difference in premiums.

D.5.1 Numerical illustration

We have aimed for examples with parameters that are somehow realistic in car
insurance, taking the time unit as a year and the monetary unit as one e. For
gamma-distributed unobserved heterogeneity there are some studies (see Bichsel
(1964)) with b very close to 1, so for the sake of illustration, we take b = 1. Furthermore,
an average claim frequency of order 0.05–0.10 is common in Western countries, so
we took a = 0.1. A gamma(0.1,1)-distribution has median mΓ ≈ 0.0693. Examples
of gamma-distributed claim frequencies across customers are illustrated in Figure 3.1
for different values of the parameters a and b. The combinations of parameters are
chosen to maintain an average claim frequency of 0.1. Assuming for simplicity that
the claim sizes are exponentially distributed with parameter θ, then we additionally
have that

x1,i =
1

θ
e−θKi , x2,i =

2

θ2
e−θKi ,

for i = 1, 2, together with excess risk

ze1,2 = E[min{Z,K1} −min{Z,K2}] =
1

θ
(e−θK2 − e−θK1).
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Aiming for an average claim size of 5000 e, we choose θ = 1/5000. We consider
a deductible for I1 of 15% of the average claim size, that is K1 = 750. Similarly for
I2 with 10% of the claim size giving K2 = 500. Note in particularly that K1 > K2.
For these parameter values, we get

x1,1 = 4303.54, x2,1 = 43 035 398.82,

x1,2 = 4524.19, x2,2 = 45 241 870.90, ze1,2 = 220.65.

Assume further that there are N = 1 000 000 customers with identical personal safety
loadings of ω(β) = 0.4 and that the risk-free interest rate is r = 3%. To get an
indicator of the level of the reserves, we find a starting point, R, based on a 95%
Value at Risk (VaR) principle. As N is rather large, the distribution of the sum∑N/2

i=1 (Zi − 5000) can be approximated by the normal distribution N(0, (N/2)/θ2).
Solving for the R that satisfies

P
( N/2∑

i=1

(Zi − 5000) > R

)
= 0.05,

using the inverse of the N(0, (N/2)/θ2) cdf, yields R = 5 815 435.77. Next, I1 is
assumed to have a reserve somewhat more than R, and I2 somewhat less. More
specifically, we let

r1,0 = (1 + γ)R and r2,0 = (1− γ)R, (3.35)

which leads to an initial reserve difference of δ = 2γR. Choosing e.g., γ = 0.2 we
get a difference of δ = 2 326 174.31. Since the analytic results do not depend on the
bounds on the reserve, `u and `d, their particular values do not matter, and we just
need that the interval [`d, `u] contains the chosen δ. Given this value, the graph of the
criterion to be optimised, κ(p1, p2; δ), appears in Figure 3.2, and the corresponding
contour diagram in Figure 3.3.

Recall that we here consider the case where I2 offers the better product (K1 > K2)
and chooses its premium p2 first. Given this, I1 maximises by seeking toward the
ridge that appears diagonally when choosing p1. The market leader, I2, takes this
response function of I1 into account, and minimises κ(p1, p2; δ) along the ridge, by
choice of p2. The optimum provides the Stackelberg equilibrium, at the saddle point.
However, in this case the saddle is located diagonally, not parallel to the axes, and
there is no Nash equilibrium. In particular, given p1, I2 would benefit from increasing
p2, moving away from the ridge (toward cooler colors in the figures). While this
precludes Nash equilibrium, the analysis demonstrates that it is possible to obtain
an equilibrium in finite premiums by having I2 commit to some p2 at the given δ,
then letting I1 respond, i.e., a Stackelberg equilibrium. This is also verified by the
value

D(a, b,K1, K2, r, δ, ω(β)) = −9603.91,

which tells us that condition (3.32) is satisfied, whereas (3.34) is not, as −4(1 +
ω(β)ze1,2 = −1235.62, i.e., greater than D(·) in this case.
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Figure 3.2: Graph of κ(p1, p2; δ).
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Figure 3.3: Contour diagram of κ(p1, p2; δ).
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From Theorem D.6, we compute the Stackelberg equilibrium premiums

p∗1 = 305.5 and p∗2 = 326.0 (3.36)

at the current reserve difference δ = 2 326 174.31. These are to be compared with
the net premiums

α1(p∗1, p
∗
2)x1,1 = 0.0307 · 4303.54 = 132.1,

α2(p∗1, p
∗
2)x1,2 = 0.1693 · 4524.19 = 766.0,

so that pursuing solely the competition aspects would lead to a likely loss for I2 at
the current reserve difference. This is not necessarily a paradox since the perspective
of control and game theory is to focus solely on a one-eyed goal. Larger δ means I2 is
lagging more behind the large firm I1, and this gives I2 greater incentive to compete
for customers by lowering its premium, with I1 responding by letting premiums
move in lockstep. Thus, in equilibrium, I2 always receives a higher premium than
I1, reflecting the higher quality product (lower deductible). This type of product is
attractive to “bad” customers, that is, customers with high claim frequency, as seen
in Figure 3.4. These customers are expected to experience more losses than “good”
customers, and are therefore willing to pay extra for better coverage, yielding a
separating equilibrium, with customers’ choices revealing their type, as in Rothschild
and Stiglitz (1976). Still, I2 may remain the smallest company, due to the higher
risk of its customers.

In Figures 3.5 and 3.6, exhibiting aspects of D, we take a closer graphical
look at the second order criteria. Starting with Figure 3.5, we plot D as a func-
tion of δ. All other parameters remain the same as above. Values for δ for which
D < −4(1 + ω(β)ze1,2 are plotted in green to indicate that the equilibrium is of Stack-
elberg type. Values that yield −4(1 + ω(β)ze1,2 < D < 0, and hence equilibrium of
Nash-type, are plotted in blue. Finally, the values plotted with red give D > 0, which
tells us that there is no equilibrium. Here we see that D is indeed a linearly increasing
function of δ, as it should be according to (3.30) and (3.33). Hence, for small δ-values
we get a Stackelberg equilibrium (green). For a small spectrum in the middle we get
a Nash equilibrium (blue), and, finally, for large values of δ there is no equilibrium.
The same color codes are used in Figure 3.6, which shows the color plateaus of
D, and not the actual values, as depending on the deductibles, K1 and K2. As we
restrict the analysis to the case where K1 > K2, it is only the lower triangular part
that is illustrated. For simultaneously large values (above 5 × 104) of K1 and K2,
there appears an area (red) where there is no equilibrium. However, 5× 104 is ten
times the average claim size of 5000 and obviously an unrealistically large value of
the deductibles. For K1 and K2 being close, i.e., along the diagonal, there is then an
equilibrium of Stackelberg type (green area) for smaller values. Moving away from
the diagonal, the equilibrium type will change from Stackelberg to Nash (blue area).
However, in the most realistic region of deductibles K1, K2 being below the mean
claim size 5000 = 0.5× 104 it is always Stackelberg.
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Figure 3.4: Distribution of customers in equilibrium, where customers with claim fre-
quencies in the green (blue) area insure at I1 (I2).
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Figure 3.5: D as a function of δ. Green indicates Stackelberg equilibrium, blue indicates
Nash equilibrium, and red indicates neither.
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Figure 3.6: D as a function of K1 and K2 for K1 > K2. Green indicates Stackelberg
equilibrium, blue indicates Nash equilibrium, and red indicates neither.

D.6 Conclusions

We have considered a non-life insurance market in which two insurance companies
compete for customers by choice of premium strategies. Each company chooses its
strategy to balance revenue against portfolio size, taking into account the strategy of
the other company. We pay special attention to product differentiation and customer
risk, while abstracting for simplicity from market frictions. For product differentiation,
we focus on different deductibles, noting that alternatives would include bonus-malus
systems, and proportional compensation in deductibles. The analysis is carried out
in continuous time using stochastic differential game techniques. Adverse selection
implies that a change in premium alters the risk composition of the portfolio. With
claim arrival rates following a gamma distribution across customers, Stackelberg
equilibrium premiums are derived. Conditions under which a Nash equilibrium exists
are also established, but our numerical examples indicate that Stackelberg is the
more typical case. Equilibrium premiums depend in an affine fashion on the running
difference between the reserves of the companies, each modelled using the diffusion
approximation to a standard Cramér-Lundberg risk process, extended to allow
investment in a risk-free asset. Numerical illustrations of both types of equilibrium
are provided.

Overall, the managerial implications are that insurance companies should consider
the premium as an active means to control portfolio size and revenue per customer
in competition with other companies, as opposed to merely pooling individual risks
and setting the premium based on conventional principles. Future research could
consider three or more companies competing for market shares, to account explicitly
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for the risk of ruin or the possibility that some potential customers choose not to
insure, or to pursue the more sophisticated ideas of Asmussen et al. (2018) on the
customer’s problem.

Appendix

D.I Second Order Derivative Tests for Theorem D.6
Since we only need to consider a fixed δ, we write for notational convenience κ(p1, p2)
instead of κ(p1, p2; δ). Please note that the first order conditions, in the present case
(3.17), can be written as

κ′i(p1, p2) =
1

κd(p1, p2)

(
κ′n,i(p1, p2)− κ(p1, p2; δ)κ′d,i(p1, p2)

)
= 0 for i = 1, 2,

and consider the second order partial derivatives

κ′′ii(p1, p2) =
1

κd(p1, p2)

(
κ′′n,ii(p1, p2)− κ(p1, p2; δ)κ′′d,ii(p1, p2)

− 1

κd(p1, p2)
κ′d,i(p1, p2)

(
κ′n,i(p1, p2)− κ(p1, p2; δ)κ′d,i(p1, p2)

) )
− 1

κd(p1, p2)2
κ′d,i(p1, p2)

(
κ′n,i(p1, p2)− κ(p1, p2; δ)κ′d,i(p1, p2)

)
,

κ′′ij(p1, p2) =
1

κd(p1, p2)

(
κ′′n,ij(p1, p2)− κ(p1, p2; δ)κ′′d,ij(p1, p2)

− 1

κd(p1, p2)
κ′d,i(p1, p2)

(
κ′n,j(p1, p2)− κ(p1, p2; δ)κ′d,j(p1, p2)

) )
− 1

κd(p1, p2)2
κ′d,j(p1, p2)

(
κ′n,i(p1, p2)− κ(p1, p2; δ)κ′d,i(p1, p2)

)
.

In optimum the critical point (p∗1, p
∗
2) must satisfy the first order condition (3.27),

which reduces the second order partial derivatives to

κ′′ii(p
∗
1, p
∗
2) =

1

κd(p∗1, p
∗
2)

(
κ′′n,ii(p

∗
1, p
∗
2)− κ̃κ′′d,ii(p∗1, p∗2)

)
,

κ′′ij(p
∗
1, p
∗
2) =

1

κd(p∗1, p
∗
2)

(
κ′′n,ij(p

∗
1, p
∗
2)− κ̃κ′′d,ij(p∗1, p∗2)

)
.

From the links between the first order derivatives in the proof of Theorem D.6,

κ′′22(p∗1, p
∗
2) =

1

κd(p∗1, p
∗
2)

(
κ′′n,22(p∗1, p

∗
2)− κ̃κ′′d,22(p∗1, p

∗
2)
)

(3.37)

=
1

κd(p∗1, p
∗
2)

(
κ′′n,11(p∗1, p

∗
2)− 2f ′1(p∗1, p

∗
2)− κ̃κ′′d,11(p∗1, p

∗
2)
)
, (3.38)

κ′′12(p∗1, p
∗
2) =

1

κd(p∗1, p
∗
2)

(
κ′′n,12(p∗1, p

∗
2)− κ̃κ′′d,12(p∗1, p

∗
2)
)

(3.39)

=
1

κd(p∗1, p
∗
2)

(
− κ′′n,11(p∗1, p

∗
2) + f ′1(p∗1, p

∗
2) + κ̃κ′′d,11(p∗1, p

∗
2)
)
, (3.40)
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where f(p1, p2) = γ (b, y/a) − Γ (b, y/a). The second order derivative test on the
Hessian in (3.19),

κ′′11(p∗1, p
∗
2)κ′′22(p∗1, p

∗
2)− κ′′12(p∗1, p

∗
2)2 = − 1

κd(p∗1, p
∗
2)2
f ′1(p∗1, p

∗
2)2 < 0,

then confirms a saddle point, provided we can show the condition (3.18). For this,
we need to be more specific and find the actual second order derivatives and evaluate
them in equilibrium. Differentiating κ′n,1(p1, p2) and κ′d,1(p1, p2) with respect to p1

yields

κ′′n,11(p1, p2) =
x1,1 + x1,2

a
(
(1 + ω(β))ze1,2

)2 e−y/a(y/a)b−1(y/a− b)

− 2

a(1 + ω(β))ze1,2
e−y/a(y/a)b−1

− p1 + p2

(a(1 + ω(β))ze1,2)2
e−y/a(y/a)b−2(y/a− b+ 1),

κ′′d,11(p1, p2) =
x2,2 − x2,1

a((1 + ω(β))ze1,2)2
e−y/a(y/a)b−1(y/a− b).

Evaluating at the equilibrium premiums,

κ′′n,11(p∗1, p
∗
2) =

x1,1 + x1,2

a((1 + ω(β))ze1,2)2
e−mΓ/a(mΓ/a)b−1(mΓ/a− b)

− 2

a(1 + ω(β))ze1,2
e−mΓ/a(mΓ/a)b−1

−
2p∗2 − (1 + ω(β))ze1,2mΓ

(a(1 + ω(β))ze1,2)2
e−mΓ/a(mΓ/a)b−2(mΓ/a− b+ 1),

κ′′d,11(p1, p2) =
x2,2 − x2,1

a((1 + ω(β))ze1,2)2
e−mΓ/a(mΓ/a)b−1(mΓ/a− b).

Multiplying by the positive constant κd(p∗1, p∗2)a((1 + ω(β))ze1,2)
2 exp(mΓ

a
)/(mΓ

a
)b−1,

the criterion can be written in reduced form explicitly as

−2(1 + ω(β))ze1,2 − (2p∗2/a− (1 + ω(β))ze1,2mΓ/a) (mΓ/a)−1 (mΓ/a− b+ 1)

+ (x1,1 + x1,2)(mΓ/a− b)− κ̃(x2,2 − x2,1)(mΓ/a− b) < 0.

Inserting the optimal premium,

p∗2 = a
2

(
1
2
emΓ/a(mΓ/a)1−bΓ(b)(1 + ω(β))ze1,2 + (1 + ω(β))ze1,2(mΓ/a)

+(mΓ/a)(x1,1 + x1,2)− (mΓ/a)κ̃(x2,2 − x2,1)
)
,

we can reduce the condition to

κ̃(x2,2 − x2,1)− (x1,1 + x1,2)

− 2(1 + ω(β))ze1,2 − 1
2
emΓ/a(mΓ/a)−bΓ(b)(1 + ω(β))ze1,2(mΓ/a− b+ 1) < 0,
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which is the same as (3.32).
The condition (3.25) for a Nash equilibrium can also be found more explicitly by

using the link in (3.38) between the second order derivatives. The condition can be
rewritten as

1

κd(p∗1, p
∗
2)

(
κ′′n,11(p∗1, p

∗
2)− 2f ′1(p∗1, p

∗
2)− κ̃κ′′d,11(p∗1, p

∗
2)
)
> 0,

which, using the same approach as above, can be written as

2
a((1 + ω(β))ze1,2)2

(mΓ/a)b−1 exp(−mΓ/a)
f ′1(p∗1, p

∗
2)

< κ̃(x2,2 − x2,1)− 2(1 + ω(β))ze1,2

− 1
2
emΓ/a(mΓ/a)−bΓ(b)(1 + ω(β))ze1,2(mΓ/a− b+ 1)− (x1,1 + x1,2),

where

a((1 + ω(β))ze1,2)2

(mΓ/a)b−1 exp(−mΓ/a)
f ′1(p∗1, p

∗
2)

= −2
a((1 + ω(β))ze1,2)2

(mΓ/a)b−1 exp(−mΓ/a)

(mΓ/a)b−1 exp(−mΓ/a)

a(1 + ω(β)ze1,2

= −2(1 + ω(β))ze1,2,

which combined yields (3.34).
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Chapter 4

Personal non-life insurance decisions

Within theory of demand for insurance, a popular result by Arrow (1963) (reprinted
in Arrow (1971)) states that if the premium is chosen by the expected premium
principle, a fixed amount deductible structure is optimal for an individual seeking
to optimise expected utility. This conclusion was afterwards supported by different
studies, e.g. Gollier and Schlesinger (1996) and Karni (1992), in which the authors
show that the optimality of the fixed amount deductible is robust to more general
decision models than the expected utility model. However, pricing by the expected
premium principle is not as questioned.

As we saw in the introduction of Chapter 2, a lot of effort have been invested into
developing more advanced pricing mechanisms. Much less effort seems to have been
invested into the product structure for individuals. The fixed amount deductible is
still the dominating product structure in non-life insurance both in the literature as
well as in practice. In Paper E, we see how this mismatch between the development
of premium methods and deductible structures affects the individual in terms of
welfare loss.

In the preceding papers, we have seen a way to model the customer’s problem.
Paper E takes a different approach by introducting consumption. In Section 4.1.1
we explain the difference and how it affects the analysis. Both consumption and
amount of insurance are then controls at the individual’s disposal. Among studies also
dealing with consumption-insurance optimisation problems are Somerville (2004),
Briys (1986) and Moffet (1977).

In Paper E, we use a martingale approach to premium calculation motivated by
Delbaen and Haezendonck (1989). The inspiration stems from financial pricing where
the absence of arbitrage leads to the existence of a risk neutral pricing measure.
Section 4.1.2 goes through the justifying arguments for applying such a measure for
insurance pricing. For a thorough comparison between classical actuarial pricing and
financial pricing, see Embrechts (2000), and for more insight into the financial terms
and mathematical details of arbitrage, completeness, change of measure, ect., we
refer to Björk (2009). In Paper E, we mention how this way of pricing relates to
some of the standard premium principle mentioned in Section 2.1.2.
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4.1 Preliminaries

4.1.1 The individual’s wealth and objective function

In the three previous papers, as a part of the analysis, the so-called customer’s
problem is considered by evaluating the present value E[

∫∞
0

exp(−dt)dwt], where
(wt)t≥0 is the wealth process only affected by the insurance decision and d is a
subjective discount rate. In the present paper we consider an individual who, in
addition, consumes. The individual then seeks to find the optimal consumption-
insurance strategies by evaluating the expected discounted utility of consumption in
(4.4).

As previously, the individual’s loss process is assumed to be a compound Poisson
process, which (unlike for the insurance company) cannot be argued to be approxi-
mated by a diffusion process as losses are few and large relative to the level of wealth
and thereby creating significant fluctuations. Hence, the wealth process takes the
form of 4.2. Compared to the formulation of the stochastic control problem in Section
2.1.5, this difference in dynamics eliminates the diffusion term of the infinitesimal
operator and adds a term related to the jumps of the compound Poisson process, as
we see in (4.3). This of course reflects upon the HJB-equation (4.5).

4.1.2 Pricing by change of measure

Let (At)t∈[0,T ] be a compound Poisson process with parameters (λ, F ) as in Definition
1.5. It constitutes a risk in terms of a total claim amount up to a terminal time
T > 0. Furthermore, let (Ft)t≥0 be the filtration generated by (At)t∈[0,T ].

Assume that the insurance company (or in this chapter: the individual) at any time
t ∈ [0, T ] can sell the remaining risk for a predictable premium pt. The underlying
price process (Yt)t∈[0,T ], representing the company’s liabilities, then consists of two
parts, i) the claims At up to time t, and ii) the premium pt for the remaining risk of
AT − At, i.e.

Yt = At + pt.

The possibility of buying and selling a risk instantly assumes a liquid market,
which should rule out arbitrage. If arbitrage opportunities exists, then it is possible
to create a portfolio that profits from mispricing without taking on any risk. In line
with financial theory, on an arbitrage-free market there exists a risk-neutral pricing
measure Q such that the underlying price process (Yt)t∈[0,T ] is a martingale under Q.

The attention is restricted to premiums on the form

pt = p(T − t),

where p is a premium density. In this case it can be shown that the compound
Poisson structure of (At)t∈[0,T ] is maintained under Q, but with altered characteristics
(λQ, FQ). A feasible premium density is then

pQ = EQ[A1] = EQ[N1]EQ[X1] > E[N1]E[X1],
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which splits the effect of the measure change into a claim frequency part and a
claim size distribution part of the underlying compound Poisson process. The idea
is, in general, that by changing the measure, more weight is given to less favourable
outcomes.

Delbaen and Haezendonck (1989) links a risk-neutral pricing measure Q(β) to
(something we here call) a non-decreasing pricing measure function β : R+ → R by
the Radon-Nikodym derivative (4.14). Then for three different choice of the pricing
measure function, we compare two cases: one where the individual is restricted to a
fixed amount deductible structure and one where the individual freely can choose
the deductible structure. The comparison is based on the welfare of the individual.
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Paper E

Personal Non-Life Insurance Decisions
and the Welfare Loss from Flat

Deductibles
mogens steffensen and julie thøgersen

abstract. We view the retail non-life insurance decision from the perspective of
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E.1 Introduction

The standard marketed retail insurance contract has a fixed amount deductible
where the deductible is independent of the size of the loss. This simple product
structure is sufficient but only for the simple pricing mechanism where the loading
to the expectation is a plain factor to the expectation, also called the expectation
principle. Both theoretically and practically other pricing principles are more relevant
but the main focus has still been on the fixed deductible. We study how this
mismatch of development between pricing and product design affects individuals in
the insurance market. We therefore formulate and solve the personal consumption-
insurance problem with respect to a non-life risk modelled by a compound Poisson
process with the objective to maximise utility of consumption. Two types of insurance
products are considered: one with an optimal flexible, claim-dependent deductible
and one with an optimal constant fixed amount deductible (the standard product).
These are compared by measuring the welfare loss of an individual, which we define
as the monetary compensation the individual requires in addition to the standard
product in order to be indifferent between that and the optimal flexible product. For
the expected value premium principle, henceforth referred to as the linear pricing
principle due to its linear relation to the expected value of the risk, the constant
deductible is known to be optimal and there is no welfare loss from being offered a
standard constant deductible contract. For a certain formalization of the variance
pricing principle, we find a log-power deductible to be optimal, and for a certain
formalization of the Esscher pricing principle, we find a linear deductible to be
optimal. In both of these cases a welfare loss arises if the individual is offered a
standard constant deductible contract.

Stochastic control theory has been applied intensively to decision problems in
insurance over the last decades. In life and pension insurance the applications are in
two separate directions: The Asset-Liability Management decisions of a pension fund
and an individual’s financial consumption-investment-insurance decisions. In some
formulations the two directions have much in common. In non-life insurance, most
applications are to the decision making of the insurance company. Here the focus
has been on the decisions concerning reinsurance, investments, premium collection,
and dividends paid to the owners. A standard objective is the expected accumulated
present value of future dividend payouts until ruin. There has been less focus on the
non-life insurance decisions made by the individual over her life-cycle in the sense
of personal financial consumption-investment-insurance decisions with respect to
non-life risks. Our study is a contribution in the latter direction. To formulate an
individual’s non-life risk decision, we need to think carefully about how the wealth
process is influenced by non-life risk, what can be controlled and how, and what is the
objective function. In the next three paragraphs we address these three ingredients
of the control problem one by one in order to make our standing point clear.

The compound Poisson process is well-established as a benchmark for modelling
a portfolio of non-life risks. This is also called a collective risk model. We choose the
same model for an individual’s non-life risks. This is consistent in the sense that if an
individual risk process follows a compound Poisson process, then an aggregation of
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those in a portfolio is also a compound Poisson process. If further the individual risk
processes are homogeneous across individuals, then the collective follows a compound
Poisson process with the same claim amount distribution but with a claim intensity
corresponding to the individual claim intensity times the number of individuals.

The individual can typically control the non-life risk by the choice of a deductible
in her insurance contract only. In practice, most often she can choose among different
levels of a constant deductible. Choosing a deductible in an individual’s risk process
then corresponds to choosing the deductible in an Excess-of-Loss reinsurance program
for an insurance company with a collective risk process. However, in the reinsurance
program the insurance company may have other decisions to make, e.g. concerning
the proportion covered if only proportional reinsurance is bought on top of the
deductible. Typically, an individual does not have such a decision to make. We solve
different problems regarding this (lack of) flexibility in the insurance products offered
to individuals. Both problems where a constant deductible is chosen (the realistic
case) and problems where the deductible is a general function of the loss are solved.
Thereby we are able to quantify the welfare loss that arises from giving the individual
the choice of a constant deductible only. It is a classical result in non-life insurance
that the Excess-of-Loss insurance contract is optimal, so therefore at first glance,
there should be no welfare loss. But this classical result is only obtained for linear
pricing rules. If pricing is non-linear, then the result does not hold anymore and
there is, indeed, a welfare loss to detect. We solve the problem for various pricing
rules, including non-linear pricing rules.

The objective function in personal financial decision making is often taken to
be aggregate utility of consumption financed by wealth, capital gains, and perhaps
labor income. This is in contrast to the classical dividend optimization problem
for a non-life company where dividends are not bent by a concave utility function
before aggregation. On the other hand, dividends run out upon ruin of the insurance
company, which in itself forms an indirect aversion towards risk. There exist works
where dividends are measured by their utility, but the mainline research counts
in dividends linearly in the objective. Apart from the appearance in the objective
function with or without a utility function, the consumption of the individual
influences individual wealth in the same way as dividends influence the insurance
company’s risk process. We solve optimal insurance coverage for a general deductible
in both cases of exponential and power utility. However, we are able to characterise the
solution to the case where the deductible has to be constant in the case of exponential
utility only. Therefore, our focus is on this case and the explicit quantification of the
welfare loss arising from suboptimal insurance contracts (constant deductible) under
non-linear pricing is carried out for exponential utility only. In this type of problem
it is possible for the individual to change strategy more often than the time horizon
of the objective. It is therefore natural to consider it as a dynamic optimisation
problem due to the long-term objective combined with the short-term decisions.
This is in contrast to problems where the time horizons for the objective and the
decisions are aligned, in which case a one-period (long or short) model suffices. Only
with dynamic optimization, future optionality and impact on objectives are correctly
counted in and the dependence of state processes time and wealth are revealed. In
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the versions we consider, time and/or wealth dependence disappear from the optimal
controls, but it is important to note that this independence is an endogenous feature
of the solution and not exogenously assumed. Generalizations to other cases with
dependence should naturally also be based on a dynamic perspective.

The literature on ruin probability minimization and linear dividend optimization
until ruin via optimal reinsurance and investment is exhausting. We choose to
mention only Schmidli (2002) as well as Schmidli (2008) for an overview. Instead
we concentrate here on the somewhat smaller amount of literature where dividends
are measured by their utility because the mathematical issues there are more closely
related to ours. Hubalek and Schachermayer (2004) considered the problem of
optimising power utility of dividend payments until ruin where the risk process is
modelled by a Brownian motion with drift. Their insurance risk process itself is not
influenced by the control as it is the case if one optimises over reinsurance decisions.
Grandits et al. (2007) also considered the Brownian risk process but optimised over
exponential utility of dividends. However, instead of taking exponential utility of
dividend rates they measure exponential utility of aggregate dividends until ruin.
Thonhauser and Albrecher (2011) considered the problem of optimising dividend
payouts measured by power utility but with transaction costs related to payouts.
Their insurance risk process is not influenced by the control. Common for all these
problems is that the dividend payout scheme is the only decision process.

It has been argued that the dividend decision process of the insurance company
should not be optimised with respect to a utility function as there is not one distinct
individual whose utility function can appropriately represent the corporate decision
process, see e.g. the survey paper Avanzi et al. (2016). Only from an individual’s
point of view, the optimization of utility of consumption financed by a wealth process
influenced by non-life risk, partly mitigated by the purchase of insurance contracts,
appears to be natural. And as such, it could also form the basis for designing insurance
contracts. Namely, the optimal insurance contract is the one where adjustments
according to characteristics of the individuals (age, wealth, ect.) is an integrated part
of the product design, and must be a service provided by the insurance company
according to some agreement between the company and the policy holders, in order
to make the decision process as simple as possible for them. The worth of considering
these issues are quantified by the welfare loss from offering standardised contracts
instead of optimal ones. These are the ideas pursued in this paper.

The result that the fixed deductible contract is optimal for linear pricing is found
in e.g. Arrow (1971). A series of papers work within this setup of linear pricing.
Cummins and Mahul (2004) and Zhou et al. (2010), for example, implement an upper
limitation on the insurance coverage of the fixed deductible contract. Golubin (2016)
considers instead joint decisions to be made by both the insurance company and the
individual. Aase (2017) considers a different approach by arguing how the presence of
costs in insurance impacts the design of (Pareto) optimal insurance contracts. This
is a certain form of non-linear pricing that also creates a demand for more general
deductible structures.

Finally we relate our work to other works where the individual seeks to maximise
utility of consumption or wealth from investment and/or non-life insurance decisions.

132



Paper E

Yang and Zhang (2005) consider the investment problems in a jump-diffusion model
for insurance risk but they control neither consumption nor insurance risk. Moore
and Young (2006) study optimal consumption, investment, and insurance under a
diffusive financial market and compound Poisson modelled insurance risk. Compared
to that, Perera (2010) generalises both the financial market and the insurance risk
model to a general Lévy framework whereas Zou and Cadenillas (2014) generalise to
regime shifts in both market and insurance coefficients. Zhang and Siu (2009) control
investment and insurance under model uncertainty. Other publications in the area
typically generalise the financial market in which an investment decision is made
or the preferences of the individual. All the references of this paragraph work with
more general financial markets than we do, since we simply earn capital gains from
deterministic interest and have no investment decision to make. However, for all the
references of this paragraph where insurance is controlled, the pricing mechanism of
the insurance market is linear. This makes it optimal, as is shown and used in the
references, to buy an insurance product with, in general, a wealth dependent but
more importantly in this relation a loss size independent deductible.

The investment decision in financial markets combined with linear insurance
pricing in the references mentioned in the prior paragraph marks a clear difference
compared to the scope of our work. We concentrate fully on the insurance market,
look for the optimal insurance position under non-linear pricing, and quantify the
financial sacrifice of being offered a flat deductible only. One may argue that since
the non-flat deductible is not offered in the retail market, the approach taken by the
references is “correct” and our approach is “useless”. However, both conclusions are
false. It is appealing to think that since retail marketed contracts have flat deductibles,
the pricing rule in this market is linear and all other decisions on consumption and
investment should be made on that basis. This thinking is based on a blind belief in
the market’s ability to develop optimal products. If, conversely, the market currently
contains suboptimal products only, a couple of important questions arise. Based
on the true pricing rules, whatever they are, what is then the optimal insurance
decision and how are the consumption and investment decisions altered, respectively,
compared to the case of linear pricing? Can the optimal insurance decision inspire
to product development with a generalised deductible that actually does represent
the market’s development of optimal products? And what is the value created to
the individuals following from such development of optimal products? These are the
type of questions we address in this exposition. So, the motivation is not to repair
the decisions made by individuals but rather to repair the market she faces, or at
least to start a discussion about whether and why there is something to repair.

In order to start out with explicit and tractable calculations in this direction of
study we do make simplifying assumptions on financial markets and preferences as
well as we skip considering the investment decision as an integrated problem. This,
however, does not harm the principal discussion we start, the qualitative results
that we obtain, or the illustrative power of our quantitative results. Whether our
analysis suffers more or less from our simplifying assumptions about financial markets
and preferences than the analysis in the references above suffer from simplifying
assumptions about linear insurance pricing is unknown. But we conjecture that
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realistic modelling and controlling of financial risk is of second order importance
compared to realistic insurance pricing when studying optimal control of insurance
risk and optimal design of insurance contracts.

Among the more restrictive assumptions we make, we highlight already here a
few. We deal with a marginal problem and not an equilibrium problem. This means
that the insurance company does not change the pricing rule (of course, it changes
the price itself) depending on decision made by the individual. The alternative,
namely to construct a game, would be much more difficult. Further, we consider
specific pricing rules. The rules we consider are, however, well-known and generally
accepted for their relevance. In the numerical section, the coefficients within the
pricing rules are chosen to be realistic, but are not calibrated to any data or price
observation, though. Finally, we take the calculations all the way to the end for the
case of exponentially distributed losses. This is clearly very restrictive, but this is just
to reach fully explicit results in this particular case. We exploit these results in our
numerical examples. The assumptions limit our quantitative conclusions to the cases
considered. However, they do not limit the outreach of the qualitative discussion
about sub-optimality of (realistic) flat deductibles under (realistic) non-linear pricing
which is the very motivation for this exposition.

The outline of the paper is as follows. Section 2 explains how insurance affects
the individual and her wealth. Section 3 creates a general view of the optimization
problem of the individual. Section 4 introduces in details the mechanics of pricing
by changing measure. Section 5 contains the explicit expressions needed to find the
welfare loss for the two insurance products in consideration, namely the one with a
fully flexible coverage and the one with a fixed amount deductible. Section 6 makes
a numerical comparison by illustrating the welfare loss.

E.2 Claims process and insurance contracts

We consider an individual endowed with the initial wealth w. The individual consumes
at rate (ct)t≥0 and all excess wealth is invested into a risk-free asset with interest
rate r. The individual is exposed to a risk that can be modelled by a compound
Poisson process (At)t≥0 with parameters (λ, F ), i.e.

At =
Nt∑
i=1

Zi,

where (Nt)t≥0 is a Poisson process with parameter λ counting the number of losses
until time t and the Zi’s represent the (positive) loss sizes assumed to be i.i.d. and
independent of (Nt)t≥0 with distribution F on (0,∞). Note that we speak of losses
rather than claims as the analysis is performed on an individual level. The losses Zi
are actually the expenses of the individual connected with ‘insurable but not yet
insured’ event number i. Thus, it has not become a claim from a policy holder upon
an insurance company yet. Before purchasing insurance the wealth of the individual,
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denoted by (wt)t≥0, develops in accordance with

dwt = (rwt − ct) dt− dAt.

This wealth process of the individual is modelled similarly to a classical surplus
process in risk theory with deterministic capital gains and absolutely continuous
dividend payments in terms of consumption. It is conventional to think of this as the
surplus process for a portfolio of insurances within an insurance company. Here we
interpret the process as the wealth process of an individual with event risk modelled
by the compound Poisson process.

The individual can reduce and manage the risk of (At)t≥0 by purchasing insurance.
An insurance product is described by a non-decreasing function gv : R+ → R+

parameterised by a control v. The function gv is applied to individual losses in the
sense that for a claim of size z, gv (z) is the deductible that the individual pays
herself. Thus, when choosing the insurance contract gv, the expense of the individual
is reduced to min{z, gv(z)} in relation to a loss z. When the loss z > gv(z), the loss is
reported to the insurance company and the excess z − gv(z) is claimed and covered.

A standard insurance contract has a fixed amount deductible characterised by
g being constant, i.e. gK(z) = K, where K ∈ R+ is the deductible level that also
parameterises the insurance decision. The individual who we then speak of as a
policyholder, reports a claim if the occurred loss z exceeds the fixed amount deductible
K. So the policyholder covers the loss min{z,K} by herself, and the rest of the loss,
namely (z −K)+, is covered by the insurance company. Our idea is to leave such a
restricted class of strategies. The reader may think of a deductible which is more
generally dependent on z and, possibly, t and wt, such that a variable amount is
covered by the insured depending on the size of the claim and, possibly, the time
(age) and wealth of the policy holder.

Insurance is used by the policyholder as a tool to reduce her risk exposure (At)t≥0

by reducing the size of the losses. Followed by the above-mentioned arguments,
when employing insurance characterised by gv, the policy holder’s reduced risk can
be represented by the compound Poisson process (Cv,t)t≥0 with jump rate λ and
claim sizes (min{Zi, gv(Zi)})i=1,2,..., i.e. Cv,t =

∑Nt
i=1 min{Zi, gv(Zi)}. The compound

Poisson process (Av,t)t≥0 with Av,t = At−Cv,t =
∑Nt

i=1(Zi− gv(Zi))+ then represents
the risk transferred to the insurance company for which the policy holder must pay
a premium.

Throughout we adopt the idea of evaluating the premium of an insurance contract
by a change of measure. Pricing by a change of measure is mostly considered to be
a financial notion (also known as risk neutral pricing). Embrechts (2000) provides
a treatment of the link between financial pricing and actuarial pricing. We restrict
the focus to the equivalent measures Q such that the accumulated claim process
(Av,t)t≥0 remains a compound Poisson process under Q, but where the characteristics
are altered to (λQ, FQ). We present here how the accumulated premium until time t
then can be reduced to a premium density,

EQ[Av,1] = EQ
[ N1∑
i=1

(Zi − gv(Zi))+
]

= λQ EQ [(Z − gv(Z))+
]
, (4.1)
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where Z is an independent copy of Z1, Z2, . . .. Since this change of measure is a rather
technical concept, we devote Section E.4 to elaborate on the needed ingredients. For
now, what is important for us is that we can decompose the measure transformation
into its jump part, changing the intensity from λ to λQ, and claim size part, changing
the distribution of Z from F to FQ, due to the compound Poisson properties being
maintained under Q. The individual therefore must pay a premium rate continuously
that depends on the compound Poisson characteristics (λQ, FQ) under Q, if she wants
to buy insurance. In the view of actuarial pricing, this approach is quite general and
contains, as special examples, certain versions of the expectation premium principle,
a variance premium principle, and an Esscher premium principle, as will be seen in
Section E.4.

Purchasing insurance then has the following effect on the dynamics of the indi-
vidual’s wealth process

dwt = (rwt − ct) dt− d
(
EQ[Av,t]

)
− dCv,t

=
(
rwt − ct − λQEQ [(Z − gv(Z))+

])
dt− dCv,t.

(4.2)

With these dynamics, the infinitesimal operator of a function f(w) is

Af =
(
rw − ct − λQEQ [(Z − gv(Z))+

]) ∂f
∂w

(w)

+ λE[f(w −min{Z, gv(Z)})− f(w)].
(4.3)

E.3 Optimization problem of the individual
At time t the individual chooses the consumption rate and the insurance strategy in
terms of gv in order to optimise her expected discounted utility of consumption,

V (t, w) = sup
c,v

Et,w
[∫ ∞

t

exp
(
−ρ(s− t)

)
u(cs)ds

]
,

where Et,w denotes conditional expectation given that wt = w. The utility function
u measures utility from the consumption rate c and ρ is a subjective utility discount
factor. We do not impose any control constraints on consumption. A natural (and
common) restriction would be c ≥ 0, but as we prioritise finding a tractable solution,
we choose to look past this. The insurance control v, on the other hand, must satisfy
that the deductible strategy gv is non-decreasing and non-negative (as it was defined).
We only put a lower limit on the deductible strategy as we avoid any issues with
upper limitations by using truncation and minimum in the dynamics of the wealth
(4.2). Hence, if a deductible strategy exceeds the actual loss, then this automatically
corresponds to having no insurance.

Due to the time-homogeneity of all ingredients of the state process, i.e. the
coefficients of (wt)t≥0, and the objective, i.e. (ρ, u), the value function is a function
of wealth only and we can write

V (w) = sup
c,v

Ew
[∫ ∞

0

exp(−ρt)u(ct)dt

]
. (4.4)

136



Paper E

The rate ρ is here called the utility discount rate. A different interpretation is the
mortality rate of an individual optimising her utility of consumption until death.
Then, if an expectation is taken both with respect to time of death and insurance
risk, the expectation with respect to time of death gives a survival probability
until time t of exp(−ρt) and expectation with respect to both risks then leads
to (4.4). It is of course a non-realistic restriction, in that interpretation, to work
with an age-independent mortality rate. However, for now we work out the details
for the time-homogeneous case and it is beyond the scope of this presentation to
handle the time-inhomogeneous case. The Hamilton-Jacobi-Bellman (HJB) equation
characterising the value function is given by

sup
c,v
{AV + u(c)} = ρV (w).

Using the infinitesimal operator in (4.3) the HJB equation can be written more
explicitly as

sup
c,v

{
−ρV (w) + (rw − c− λQEQ[(Z − gv(Z))+])Vw(w)

+ λE[V (w −min{gv(Z), Z})− V (w)] + u(c)
}

= 0,

(4.5)

where Vw(w) = ∂V
∂w

(w).
For the special case of an exponential utility function, we can immediately learn

something about the structure of V . Since this case plays a crucial role in our
considerations we present at this point these principal observations.

Proposition E.1. Assume that the utility function is of the form

u(c) =
−1

a
exp(−ac). (4.6)

for a > 0. Then, for a sufficiently regular function gv(z) (in both z and the parameter
v), the value function (4.4) can be written by

V (w) =
−1

α
exp(−raw). (4.7)

The optimal consumption c∗ is affine in wealth

c∗ = rw − 1

a
log
(ra
α

)
, (4.8)

and the optimal insurance control v∗ solves

λ
∂

∂v

(
E[exp(ra ·min{Z, gv(Z)})]

)
= raλQ

∂

∂v

(
EQ[(Z − gv(Z))+]

)
, (4.9)

and is thus independent of wealth. The parameter α of the value function is determined
by the relation

α = ra exp
(1

r

(
ρ− λ

(
E[exp(ra ·min{Z, gv∗(Z)})]− 1

))
− aλQEQ[(Z − gv∗(Z))+]

)
.

(4.10)
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Proof. Consider the first order conditions of (4.5) with respect to consumption

−Vw(w) + exp(−ac) = 0,

and with respect to deductible

− ∂

∂v

(
λQEQ[(Z − gv(Z))+]

)
Vw(w) + λE[V (w −min{Z, gv(Z)})]

)
= 0.

Note that in the case where the parameter v is multidimensional, the derivative
would be replaced by the gradient, which would yield the same number of first order
conditions as dimensions of v.

Conjecture that the solution to the HJB equation is of type V (w) = −1
α

exp(−raw).
The first order condition with respect to the consumption is then

−ra
α

exp(−ra · w) + exp(−ac) = 0.

Reducing this leads to the optimal consumption

c∗ = rw − 1

a
log
(ra
α

)
,

Correspondingly for the first order condition with regards to the insurance control,

−λQ ∂

∂v

(
EQ[(Z − gv(Z))+]

)ra
α

exp(−ra · w)

+
λ

α

∂

∂v

(
E[exp(−ra · (w −min{Z, gv(Z)}))]

)
= 0

(4.11)

and the optimal deductible strategy, v∗, must therefore be a solution to

λ
∂

∂v

(
E[exp(ra ·min{Z, gv(Z)})]

)
= raλQ

∂

∂v

(
EQ[(Z − gv(Z))+]

)
.

Although not solved explicitly, it is clear that the first order condition for the
deductible strategy does not depend on wealth. Regularity of gv(z) is assumed in
the proposition to ensure existence and uniqueness of (4.9). Exact sufficient and
necessary conditions are not studied here.

When substituting these optimal values back into the HJB equation (4.5), the
supremum will be obtained and we can solve for (4.10), verifying that the initial
guess for the structure of the value function was correct, since α does not depend on
wealth.

From (4.8) we learn that the individual stops consuming, c∗ → 0, when the
wealth approaches some lower level, w → log(ra/α)/ra. Only the insurable losses will
therefore cause the wealth to decrease below this level yielding negative consumption.
In relation to this, it is natural to point out that the wealth is allowed to become
negative also, but the controlled wealth grows (on average) linearly in time since the
optimal insurance control is independent of wealth and the optimal consumption
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is linear in wealth with a factor equal to the risk free interest rate. Hence, over-
accumulation of wealth or long-term bankruptcy is not an issue here. It can not
be verified in general that the insurance control chosen by (4.9) satisfies that gv∗ is
non-decreasing and non-negative, so this must be taken into consideration for the
specific structures of gv and pricing measures Q.

We are going to compare the performance of the optimal decisions (c∗, v∗) with
alternative decisions, in particular with suboptimal choices of v. For this purpose we
characterise the solution to the problem (4.4) where supremum is taken over c only,
i.e.

V (w) = sup
c

Ew
[∫ ∞

0

exp(−ρt)u(ct)dt

]
, (4.12)

such that the value function is characterised by the HJB equation

sup
c
{AV + u(c)} = ρV (w).

Going through the relevant steps in the proof of Proposition E.1, one can immediately
see that the structure of the solution in the exponential utility case is preserved.
The value function has again the structure (4.7) with a different α determined by
(4.10) with v∗ replaced by a given suboptimal deductible. It should be mentioned
that any disentanglement of the optimization over c and v is of course true only if
the deductible does not depend on wealth. Dependence on wealth, in case of other
utility functions, introduces interdependence between consumption and insurance
decisions.

We can now compare a suboptimal insurance decision with the optimal one
by comparing the two value functions arising from optimising over (c, v) and from
optimising over c for a given suboptimal v, respectively. Let us denote by V (1) the
value function arising from optimising over (c, v) giving rise to the coefficient α1 and
denote by V (2) the value function arising from optimising over c for a given v giving
rise to the coefficient α2. It is clear that V (1) ≥ V (2) and α1 ≥ α2, since the optimal
insurance decision beats the suboptimal one. In order to compare, it is standard to
transform the difference into monetary units by calculating the so-called certainty
equivalent of the loss of utility from implementing the suboptimal insurance decision.
This is the solution L to the utility indifference equality

V (1) (w − L) = V (2) (w) .

The idea of utility indifference is a generally accepted way to measure sub-optimality.
One may first think of calculating V (1)(w)− V (2)(w) as a measure of sub-optimality.
However, the nominal value of the value function does not have a meaning on its
own and therefore this difference contains no other information than which one
is preferred to the other due to its sign. But how should one then measure e.g.
significance of the difference? This is exactly what the utility indifference equality
does since when the difference between the value functions is 0, then this nominal
value has a clear economic interpretation of the indifference. Thus, the equality
translates the difference between value functions, which is non-informative, into an
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informative quantity in monetary units. It answers the question, what is the loss in
monetary units from having access to only a suboptimal control compared to being
offered the optimal control?

It is immediately seen that for the exponential utility function, the solution is

L =
1

ra
log

(
α1

α2

)
. (4.13)

We are ultimately interested in determining this L for different suboptimal choices
of v, for different pricing measures Q, and for different distributions of Z in order to
get a general view on the loss of not having access to the optimal insurance contract.

E.4 Pricing by change of measure
As briefly explained in connection to (4.1), we want to price insurance by a change of
measure. In a risk averse setting, the change of measure has the advantage that one
can give more weight to bad outcomes and hence assign a higher price to larger risks.
A simple example on how this affects the individual’s attitude towards insurance
coverage is presented in Appendix E.I.

Let the physical measure be denoted as P. Recall that under this measure the
characteristics of the compound Poisson risk process (At)t≥0 can be summarised by
(λ, F ). Let β : R+ → R be a Borel measurable mapping, henceforth referred to as the
pricing measure function, satisfying E[exp(β(Z))] <∞. Delbaen and Haezendonck
(1989) define the Radon-Nikodym derivative

Mβ
t = exp

( Nt∑
i=1

β(Zi)− λtE[exp(β(Z))− 1]
)
. (4.14)

Let (Ft)t≥0 denote the filtration generated by the compound Poisson process (At)t≥0.
Delbaen and Haezendonck (1989) argues that the measure Q(β) defined by Mβ

t =
E[ dQ(β)/dP | Ft] satisfies that

• Q(β) and P are progressively equivalent, i.e. have the same null sets.

• (At)t≥0 is a Q(β)-compound Poisson process with characteristics (λQ(β), FQ(β))
given by

λQ(β) = λE[exp(β(Z))], FQ(β)(dz) =
exp(β(z))

E[exp(β(Z))]
F (dz). (4.15)

So E[exp(β(Z))] can be considered as a penalty for claim frequency risk and
exp(β(z))/E[exp(β(Z))] as a penalty for claim size risk.

A premium rate of the risk (At)t≥0 can then be defined as

EQ(β)[A1] = EQ(β)
[ N1∑
i=1

Zi

]
= λE[exp(β(Z))Z], (4.16)
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where we take the expected value under the pricing measure Q(β) which maintains
the compound Poisson structure, but changes the claim frequency and claim size
distribution (cf. the second property above).

In Delbaen and Haezendonck (1989) it is argued how certain choices of β(·)
correspond to certain well-known premium principles. Three choices of the pricing
measure function are considered. We recapitulate briefly the findings here.

(1) Constant: β(z) = δ. The premium rate (4.16) then reduces to

EQ(β) [A1] = λ exp(δ)E[Z].

Only claim frequency risk is penalised, whereas claim size risk is not priced.
Since the pricing measure function is constant, the price is linear in the
expectation under P, and we are in the case of the expected value premium
principle. This corresponds to the case exemplified also at the end of Section E.I
with

λQ = λ exp(δ).

(2) Log-linear: β(z) = log(θz+δ). If δ = 1−θE[Z] > 0 implicating E[exp(β(Z))] =
1, then it appears from (4.16) that

EQ(β) [A1] = λ(E[Z] + θV[Z]).

This is the reversed situation compared to (1), since here the claim frequency
risk is not priced whereas claim size risk is priced using the variance premium
principle. If δ = 1, the premium principle corresponds to the variance principle
used on the total claim amount since

EQ(β) [At] = λtE[(θZ2 + Z)] = E [At] + θV[At].

(3) Linear: β(z) = θz + δ. If δ = − log(E[exp(θZ)]) it once again implicates that
E[exp(β(Z))] = 1. From (4.16) it follows that

EQ(β)[A1] = λ
E[Z exp(θZ)]

E[exp(θZ)]
.

As in (2) claim frequency risk has no penalty, and the claim sizes are priced
according to the Esscher premium principle.

In Delbaen and Haezendonck (1989), the variable Zi is the claim on the insurance
company from insurance event number i. Recall that here, Zi is the true loss whereas
only a part of this is claimed on the insurance company. The individual does not
necessarily buy insurance protection for the entire underlying risk (At)t≥0. Instead,
insurance splits the losses, and thus the risk, in two parts, one covered by the policy
holder (Cv,t)t≥0 and one by the insurance company (Av,t)t≥0, when the insurance
product is characterised by gv. If the same approach as in Delbaen and Haezendonck
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(1989) was directly followed, then the premium of the partial risk (Av,t)t≥0 would
have to be altered as follows,

EQ(βv)[Av,1] = EQ(βv)
[ N1∑
i=1

(Zi − gv(Zi))+
]

= λE[exp(βv(Z))(Z − gv(Z))+],

where βv(z) = β((z − gv(z))+). Note that the insurance control v then appears as an
endogenous part of the pricing measure function. This considerably complicates the
first order condition (4.9) for the insurance control in the policy holder’s optimization
problem. The result would be a kind of equilibrium insurance strategy. We wish to
work within a marginal approach where we separate the pricing measure function
from the control problem by making it independent of the insurance control v. We
use the change of measure defined by (4.14) applied to the full claim to price the
partial risk covered by the insurance company. The following proposition verifies
that this is still a meaningful change of measure.

Proposition E.2. Let compound Poisson characteristics of (Av,t)t≥0 be summarised
by (λ, Fv). Under Q(β) the process (Av,t)t≥0 is still a compound Poisson process, but
with altered characteristics (λQ(β), F

Q(β)
v ) where

λQ(β) = λE[exp(β(Z))], FQ(β)
v (dz) =

exp(β(z))

E[exp(β(Z))]
Fv(dz). (4.17)

The premium rate is

EQ(β) [Av,1] = λE[exp(β(Z))(Z − gv(Z))+]. (4.18)

The proof appears in Appendxxxxix E.II. The intuition is that even though
claim sizes have been transformed by hv, it is the change of characteristics of the
underlying risk (At)t≥0 that is determined by Q(β). The same choices (1)-(3) of β are
considered in the following sections, but with different restrictions on the parameters.
In general, we are interested in parameters δ and θ such that β is non-decreasing
and positive, hence we consider the pricing measure functions

(1) β1(z) = δ1, where δ1 ∈ R+.

(2) β2(z) = log(θ2z + δ2), where (θ2, δ2) ∈ R+ × [1,∞).

(3) β3(z) = θ3z + δ3, where (θ3, δ3) ∈ R+ × R+.

Further restrictions on the parameter values might be imposed in subsequent
analysis when necessary. Note that the link from (4.16) to various premium principles
does not hold for (4.18) though, since the change of measure no longer relates to the
claim size but the entire loss.
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E.5 Insurance products
The results in Appendix E.I show that a constant deductible is not optimal in the
case of non-linear pricing, i.e. pricing where λQi /λi is not constant in i. This means
that there is a welfare loss connected with having access to only constant deductibles
in the market. The welfare loss depends, of course, on the extent and shape of the
non-linearity. In section E.4 we have introduced a family of non-linear pricing rules,
and we are now going to measure the welfare loss produced by these pricing rules. The
welfare loss is measured by comparing the optimal insurance design corresponding
to its full flexibility in the structure of the deductible, with the suboptimal constant
deductible insurance contract corresponding to no flexibility in the structure of the
deductible. To compare these, we use the loss (4.13), which also can be written as

L =
1

ra

(
aλ(E[exp(β(Z))(Z − g(2)

v (Z))+]− E[exp(β(Z))(Z − g(1)

v (Z))+])

+
λ

r
(E[exp(ramin{Z, g(2)

v (Z)})]− E[exp(ramin{Z, g(1)

v (Z)})])
)
.

Hence for two insurance products (full and no flexibility) and for each pricing measure
function β(·) we need to calculate the terms

p(i)

β = E[exp(β(Z))(Z − g(i)

v (Z))+]

= P(Z > g(i)

v (Z))E[exp(β(Z))(Z − g(i)

v (Z)) | Z > g(i)

v (Z)],

q(i)

β = E[exp(ramin{Z, g(i)

v (Z)})]
= P(Z ≤ g(i)

v (Z))E[exp(raZ) | Z ≤ g(i)

v (Z)]

+ P(Z > g(i)

v (Z))E[exp(rag(i)

v (Z)) | Z > g(i)

v (Z)].

(4.19)

for i = 1, 2. Recall that i = 1 corresponds to the completely flexible insurance product,
where the deductible strategy is unparameterised, i.e. g(1)

v (z) = g(z), and i = 2
corresponds to the fixed amount deductible insurance product, hence g(2)

v (z) = K.
The aim of this section is not to obtain a closed form expression of welfare loss L,

but to find the ingredients (4.19) for the different β-functions of interest. The welfare
loss is then illustrated by an numerical example in the next section. The relations
in (4.19) depend indeed on the distribution of the claim sizes. In order to obtain
tractable expressions, we assume that the claim sizes are exponentially distributed
with parameter η, i.e. F (z) = 1− exp(−ηz). Only the results will be stated here, for
calculations of this section see appendix.

E.5.1 Completely flexible

Assume that the individual can choose a deductible strategy freely as a function of
the loss. She is then facing the problem of solving

sup
c,g(·)
{−ρV (w) + (rw − c− λE[exp(β(Z))(Z − g(Z))+])Vw(w)

+ λ(E[V (w −min{Z, g(Z)})]− V (w)) + u(c)} = 0.
(4.20)
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The first order condition with respect to g(·) is

λE[exp(β(Z))1Z≥g(Z)]Vw(w) = λE[Vw(w − g(Z))1Z≥g(Z)].

Recall that the value function has the form V (w) = exp(−raw)/α for an appropriate
α, hence the optimal unrestricted insurance strategy, g∗(·), must satisfy

E[exp(β(Z))1Z≥g(Z)] = E[exp(ra · g(Z))1Z≥g(Z)].

These moments are matched when g∗(z) = β(z)/(ra). We consider the three choices
of the pricing measure function β introduced in the end of Section 5. The index of β
is reflected in the index of the optimal insurance strategy g∗. Remember that g is
unparameterised in this section, so subscripts of the optimal strategy g∗ refer to the
pricing measure function and not the parameterization of g.

(1) For a constant pricing measure function β1(z) = δ1, the optimal insurance
strategy for the individual is the fixed amount deductible, g∗1(z) = δ1/(ra).
This was anticipated due to the preliminary analysis of Section E.I. Let A1 =
{Z < δ1/(ra)}. The two insurance dependent terms (4.19) of L can then be
written as

p(2)

β1
= E[exp(ra ·min{Z, g∗1(Z)})] = E[exp(ra ·min{Z, δ1/(ra)})]
= P(A1)E[exp(raZ) | A1] + P(Ac1) exp(δ1),

q(2)

β1
= E[exp(β1(Z))(Z − g∗1(Z))+] = E[exp(δ1)(Z − δ1/(ra))+]

= P(Ac1) exp(δ1)E[Z − δ1/(ra) | Ac1].

Assuming that Z is exponentially distributed with parameter η, then we can
write these more explicitly as

p(2)

β1
=

ra

ra− η
exp

((ra− η
ra

)
δ1

)
− η

ra− η
,

q(2)

β1
=

1

η
exp

((ra− η
ra

)
δ1

)
.

(2) If the pricing measure function is log-linear, β2(z) = log(θ2z + δ2), then
the optimal insurance strategy is a logarithmic-power deductible, g∗2(z) =
log(θ2z + δ2)/(ra). Let A2 = {Z < log(θ2Z + δ2)/(ra)}. The terms (4.19) are
then defined by

p(2)

β2
= E[exp(ra ·min{Z, g∗2(Z)})]
= E[exp(ra ·min{Z, log(θ2Z + δ2)/(ra)})]
= P(A2)E[exp(raZ) | A2] + P(Ac2)E[exp(θZ + δ2) | Ac2],

q(2)

β2
= E[exp(β2(Z))(Z − g∗2(Z))+]

= E[(θ2Z + δ2)(Z − log(θ2Z + δ2)/(ra))+]

= P(A2)E[(θ2Z + δ2)(Z − log(θ2Z + δ2)/(ra)) | Ac2].
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The challenge here is to evaluate the event A2. Calculations in Appendix E.IV
show that

A2 = {Z < Q} where Q = − 1

ra
W−1

(
−ra
θ2

exp

(
−δ2

ra

θ2

))
− δ2

θ2

.

using the lower branch W−1 of the Lambert W function defined as the inverse
of the function w 7→ w exp(w).
For an exponential distribution of the claim sizes, we then have

P (A2) = P (Z < Q) = 1− exp (−ηQ) ,

which yields

p(2)

β2
=

η

ra− η
(exp((ra− η)Q)− 1) +

(
θ2Q+ δ2 +

θ2

η

)
exp(−ηQ),

q(2)

β2
= exp(−ηQ)

(
θ2Q

2 +

(
δ2 + 2

θ2

η

)
Q− 1

η
(θ2 − δ2) + 2

θ2

η2

− 1

ra

θ2

η
exp

(
η

θ2

(θ2Q+ δ2)

)
E1

(
η

θ2

(θ2Q+ δ2)

)
− 1

ra

(
θ2Q+ δ2 +

θ2

η

)
log(θ2Q+ δ2)

)
,

where E1 denotes the exponential integral E1(x) =
∫∞
x

exp(−t)/t dt.

(3) Employing a linear pricing measure function β3(z) = θ3z+ δ3, then the individ-
ual optimally chooses a proportional insurance strategy g∗3(z) = (θ3z+ δ3)/(ra).
Letting A3 = {Z < (θ3Z + δ3)/(ra)} = {Z < δ3/(ra− θ3)}, then we have

p(2)

β3
= E[exp(ra ·min{Z, g∗3(Z)})]
= E[exp(ra ·min{Z, (θZ + δ)/(ra)})]
= P(A3)E[exp(raZ) | A3] + P(Ac3)E[exp(θ3Z + δ3) | Ac3],

q(2)

β3
= E[exp(β3(Z))(Z − g∗3(Z))+]

= E[exp(θ3Z + δ3)(Z − (θ3Z + δ3)/(ra))+]

= P(Ac3)E[exp(θ3Z + δ3)(Z − (θ3Z + δ3)/(ra)) | Ac3].

For an exponential distribution we can calculate these explicitly as

p(2)

β3
=

(
1− exp

(
−(η − ra)

δ3

ra− θ3

))(
η

η − ra

)
+

η

η − θ3

exp

(
−(η − ra)

δ3

ra− θ3

)
,

q(2)

β3
= exp

(
−(η − ra)

δ3

ra− θ3

)
(ra− θ3)η

ra(η − θ3)2
,

where it is assumed that θ3 < η to ensure finite (left-truncated) exponential
moments, and θ3 < ra in order for Ac3 not to be a null set.
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E.5.2 One level fixed amount deductible
Consider the fixed amount deductible where gK(z) = K is constant. The HJB
equation is then

sup
c,K
{−ρV (w) + (rw − c− λE[exp(β(Z))(Z −K)+])Vw(w)

+ λ(E[V (w −min{Z,K})]− V (w)) + u(c)} = 0.

The first order condition for the fixed amount deductible level follows from using
Leibniz integral rule on (4.9) yielding

E[exp(β(Z))1{Z≥K}] = exp(raK)E[1{Z≥K}].

Once again, we take a closer look at the three choices of the pricing measure
function. Note that since it is the same insurance product in question, the second
characterizations in (4.19), namely

q(1)

β = E[exp(ramin{Z,K})]
= P(Z ≤ K)E[exp(raZ) | Z ≤ K] + P(Z > K) exp(raK),

is the same function of the fixed deductible in every case of the pricing measure
function. For an exponential distribution it can be calculated as in case (1) for the
flexible insurance product,

q(1)

β =
ra

ra− η
exp((ra− η)K)− η

ra− η
.

So the focus in the following is on characterising

p(1)

β = E[exp(β(Z))(Z −K)+]

= P(Z > K)E[exp(β(Z))(Z −K) | Z > K].
(4.21)

(1) For β1(z) = δ1, the optimal deductible is obviously K∗1 = δ1/(ra). Notice that
this is the same structure as (1) in previous subsection, so p(1)

β1
= p(2)

β and
q(1)
β = q(2)

β thus follow.

(2) Let β2(z) = log(θ2z + δ2). The optimal fixed deductible, K∗2 , must then satisfy

E[(θ2Z + δ2)1{Z≥K2}] = exp(raK2)E[1{Z≥K2}].

For the exponential distribution, we can write this criteria more explicitly as

θ2

(
K2 +

1

η

)
+ δ2 = exp(raK2),

which can be solved using the Lambert W function,

K∗2 =
−1

ra
W−1

(
−ra
θ2

exp

(
−ra

(
δ2

θ2

+
1

η

)))
− 1

η
− δ2

θ2

.
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Here we use that −ra exp(−ra(δ2/θ2 +1/η))/θ2 ∈ [− exp(−1), 0) according sim-
ilar arguments as in Appendix E.IV. (4.21) can for an exponential distribution
be calculated as

p(1)

β2
= E[exp(β2(Z))(Z −K∗2)+] = E[(θ2Z + δ2)(Z −K∗2)+]

=

(
θ2K

∗
2 + δ2

η
+

2θ2

η2

)
exp(−ηK∗2).

(3) Let β3(z) = θ3z + δ3. Then the optimal fixed amount deductible level, K∗3 ,
satisfies

E[exp(θ3Z + δ3)1{Z≥K3}] = exp(raK3)E[1{Z≥K3}].

For exponential loss distribution, the optimal deductible can be solved explicitly
as

K∗3 =
1

ra− θ3

(
log

(
η

η − θ3

)
+ δ3

)
,

which exists and is positive for ra > θ3 and η > θ3. Furthermore, (4.21) can
be expressed as

p(1)

β3
= E[exp(β3(Z))(Z −K∗3)+] = E[exp(θ3Z + δ3)(Z −K∗3)+]

=
η

(η − θ3)2
exp(δ3) exp(−(η − θ3)K∗3).

E.6 Numerical illustration
The results of the previous section are now collected and the analysis concluded by
a numerical illustration. To do so values of the parameters must be chosen. We here
consider an individual with a utility parameter a = 15, subjective discount factor
ρ = 10%, a claim frequency λ = 0.01, and losses are assumed to be exponentially
distributed with parameter η = 0.1. The net premium for full insurance of the
non-life risk of this individual is thus ξ = λ/η = 0.1. Suppose also that the risk-free
interest rate is r = 5%.

E.6.1 The impact of the pricing measure function
We start off by visualising the impact of the pricing measure function. Firstly, we
plot the loss density under the pricing measure determined by (4.17), and secondly,
we illustrate the optimal insurance strategy of the individual. Let f denote the
density of the exponential distribution with parameter η, and fQ the density under
the pricing measure Q.

When the insurance company sets its premium according to a constant pricing
measure function, β1(z) = δ1, it does not charge for claim size risk, and therefore the
density of the claims remains unchanged, i.e. f(z) = fQ(z). The a priori density and
the pricing density is presented in Figure 4.1a. Instead, the claim frequency used for
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pricing increases to λQ = λ exp(δ1). For δ1 = 3.75 the optimal fixed deductible level
is then K = 5, which is 50% of the average loss of 1/η = 10. Note that for a constant
pricing measure function, a fixed amount deductible is optimal for the individual,
and the welfare loss in (4.13) is therefore zero. The optimal deductible strategy is
depicted in Figure 4.1b.
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Figure 4.1: For a constant pricing measure function

For a log-linear pricing measure function, β2(z) = log(θ2z + δ2), similar plots
are displayed in Figure 4.2a and 4.2b. The pricing parameters are calibrated to
satisfy that the individual would optimally choose a fixed amount deductible
level of K∗2 = 5 if restricted to do so. Choosing δ2 = 2.5, then this calibra-
tion leads to θ2 = 2.6681. The loss density under the pricing measure, namely
fQ(z) = η exp(−ηz)(θ2z + δ2)/(θ2/η + δ2), has quite a different nature than the a
priori exponential distribution, though still staying within the exponential family
of distributions. We refer to Figure 4.2a. Recall from (4.17) that claim frequency
risk is penalised by λQ = λ(θ2/η + δ2). In Figure 4.2b the optimal flexible deductible
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Figure 4.2: For a log-linear pricing measure function
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strategy, namely g∗2(z) = log(θ2z + δ2)/(ra), as a function of the loss is illustrated.
The optimal fixed amount deductible level for these pricing parameters also appears
in the graph. We observe that the flexible insurance product yields a deductible level
below the standard product for small claim sizes, whereas it slowly grows above
for larger claim sizes. In this specific case, the welfare loss of the individuals being
restricted to the standard product with a fixed amount deductible rather than the
flexible product is L = 1.2116, when the pricing measure function is log-linear. As
mentioned previously, for this individual the net premium for full insurance is ξ = 0.1,
so relative to this, the welfare loss is L/ξ = 12.116.

Corresponding plots for a linear pricing measure function, β3(z) = θ3z + δ3, can
be seen in Figure 4.3a and 4.3b. Again, the parameters θ3 = 0.25 and δ3 = 1.2472 are
chosen to such that the optimal fixed deductible level is K∗3 = 5. The density under
the pricing measure is still exponential, fQ(z) = (θ3 − η) exp(−(η − θ3)z), but tilted
to have a heavier tail, this is apparent in Figure 4.3a. Claim frequency is penalised
by λQ = λη exp(δ3)/(η − θ3).
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Figure 4.3: For a linear pricing measure function

In Figure 4.3b the optimal design of the deductible, g∗3(z) = (θ3z + δ3)/(ra), is
illustrated if the individual could choose freely. Compared to being limited to a fixed
amount deductible strategy, the individual would optimally choose a linearly growing
strategy, which exceeds K∗3 at the point (raK∗3 − δ3)/θ3 (not visible on the graph).
The individual’s welfare loss of being restricted to the simple product rather than the
flexible, when the pricing measure function is linear, is L = 16.6683 for this choice
of parameters. Relative to the cost of full insurance, the loss is then L/ξ = 166.683
times larger.

E.6.2 The welfare loss

The welfare loss is obviously dependent on the values of the parameters. To illustrate
the sensitivity towards changes in the values of these parameters as clear as possible,
graphs of the relative loss L/ξ are displayed in Figure 4.4 for a log-linear pricing
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measure function, and in Figure 4.5 for a linear pricing measure function. Each figure
has four subfigures where one of the parameters vary, while the remaining are kept
fixed. Figure 4.4a and 4.5a show the relative loss as a function of θ, 4.4b and 4.5b
as a function of δ, 4.4c and 4.5c as a function of the absolute risk aversion a and,
finally, 4.4d and 4.5d as a function of the loss parameter η. In the latter, we remark
that also the net premium for full insurance varies in η. Note that the optimal fixed
deductible changes as well, when varying these parameters.

For the log-linear pricing measure function, β2(z) = log(θ2z+δ2), we observe that
the relative loss increases when θ2 increases, see Figure 4.4a. This makes good sense
intuitively since ∂g∗2(z)/∂z = 1/(ra(z + δ2/θ2)), hence a larger value of θ2 yields a
steeper slope of the optimal flexible deductible strategy, which then will deviate more
from the fixed amount deductible strategy. Notice that δ2 has an inverse impact on
∂g∗2(z)/∂z, and we can therefore conclude the converse for δ2. The parameter δ2 also
controls the intersection with the vertical axis and by raising it, a larger part of the
function g∗2(z) with a steep slope will be above the identity line. Hence, as it appears
in Figure 4.4b, the relative loss decreases in δ2. Next, recall that a is the parameter
of the exponential utility, and is thus a measure of the absolute risk aversion. An
individual with risk neutral preferences (a close to zero) would not pay for insurance
as she does not care about the risk. So for this type of individual it does not matter
which product is supplied as long as ‘no insurance’ is a possibility. On the other
hand, an individual with a very high degree of risk aversion (a large) would prefer
to insure fully, and once again, the product structure becomes subordinate as long
as a ‘full insurance’ (i.e. a zero deductible) can be chosen. Hence, the difference in
product design is the most important for individuals with non-extreme preference,
as it appears from the non-monotonicity of Figure 4.4c. At last, in Figure 4.4d
the relative welfare loss is decreasing in the loss parameter η as expected. When η
increases the tail of the loss distribution gets lighter, and claims will on average get
smaller. Hence, the difference between the optimal flexible deductible strategy and
the fixed amount deductible for large claim sizes affects the welfare loss less.

The arguments for the case with a linear pricing measure function, β3(z) = θ3z+δ3,
are similar. Since ∂g∗3(z)/∂z = θ3/(ra), the parameter θ3 controls the slope of the
optimal flexible deductible strategy. A higher value of θ3 yields a higher slope, so
the distance to the fixed deductible will then be larger and the welfare loss bigger,
the graph in Figure 4.5a is therefore increasing. If δ3 increases then the flexible
deductible strategy will exceed the fixed deductible for lower values of the losses, and
the individual is therefore forced to buy more insurance for large values of the claim if
being restricted to a fixed deductible, leading to a larger welfare loss, which explains
the decreasing shape of Figure 4.5b. For the risk aversion coefficient, the effect from
being able to choose a slope on the coverage function dominates. If the individual
is tending towards risk neutrality (a small), then the product design allows her to
choose a high slope giving her a smaller (if not zero) insurance coverage. In contrast,
for the risk averse individual (a large) that seeks a high insurance coverage, the best
she can obtain in terms of slope is the fixed amount deductible (that is, zero slope),
in which case the difference between the flexible product and the product with a fixed
amount deductible diminishes, which explains the monotonicity in Figure 4.5c. The
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Figure 4.4: Loss function for β2
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Figure 4.5: Loss function for β3
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sensitivity to the loss parameter η is similar to the second case of pricing measure
function, except that here the deviation from the flexible deductible structure to the
fixed amount deductible is larger for big losses, which means that the relative loss is
more sensitive towards the heaviness of the loss, as we see in Figure 4.5d.

E.7 A digression on power utility
So far we have concentrated almost exclusively on the exponential utility function.
Under exponential preferences of the policyholder we could calculate explicitly both
the optimal flexible deductible and the best deductible within the suboptimal class
of constant deductibles. We benefited from explicit solutions, even to the suboptimal
insurance position, along with the wealth-independent insurance decisions in order
to obtain an explicit and wealth independent quantification of the welfare loss from
being offered a suboptimal product design.

In this section we briefly touch upon the case of power utility. Power utility is a
more standard formalization of individual preferences within the area of personal
financial decision making. However, in order to find a solution to the optimization
problem (4.20), it is necessary to assume that a deductible can exceed the loss, which
corresponds to removing the truncation and minimum in (4.20). If the deductible
exceeds the loss, it is interpreted as if the individual is actually betting against
having a loss of that size. So if the individual finds insurance to be too expensive,
then the she will not only choose not to insure, but will actually try to turn it to her
advantage that the pricing is too high.

Unfortunately, we therefore do not find explicit solutions to the problem of
choosing a fixed deductible, since this standard contract involves the truncation
and the minimum. This prevents explicit quantification of the welfare loss from
suboptimal contracts in spite of the fact that we can actually find an optimal flexible
contract. Although we cannot present the best choice among the standard marketed
contract, we choose here to present briefly the optimal flexible one. This serves at
the same time as yet another illustration of the HJB machinery exploited in the
previous sections as well as a motivating starting point for further studies in the
direction.

The result (4.1) is developed under wealth-homogeneous assumptions on the
insurance control as the compound Poisson structure is essential and it is therefore
necessary to have i.i.d claim sizes (Zi − gv(Zi))i∈N. This works successfully for the
exponential utility due to its desirable analytical properties. For a power-utility,
the optimal deductible strategy depends on wealth which prevents a compound
Poisson structure, but we deliberately use the result of (4.1), conditional on the
pre-claim wealth, without further notice. This should be taken as a premium principle
(where the jump intensity and the claim size risk are punished separately) rather
than a legitimate measure change. The premium at time t is then a function of the
time t wealth. Another approach would be to discretise the claim sizes, introduce a
pricing rate for every level of the claim sizes, and let the individual choose a distinct
deductible for each of these levels. The issue with the measure change is then avoided
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and similar results are produced, but we will not comment further on this.

Proposition E.3. Assume that the utility function is of the form

u(c) =
1

1− γ
c1−γ. (4.22)

for γ > 0, γ 6= 1. Then the value function (4.4) can be written by

V (w) = α(w − κ)1−γ. (4.23)

The optimal consumption c∗ is affine in wealth

c∗ (w) = (α(1− γ))−1/γ(w − κ), (4.24)

and the optimal insurance control is given by

g∗(w, z) =
(
1− exp(β(z))−1/γ

)
(w − κ).

The parameters α and κ of the value function are determined by

α =
1

(1− γ)γ−γ

(
ρ− r(1− γ)− λE

[
1− exp(β(Z))−1/γ

]
(1− γ)

− λ
(
E
[
exp(β(Z))(γ−1)/γ

]
− 1
))−γ

,

κ =
λ

r
E[exp(β(Z))Z].

Proof. We use the same approach as seen previously. We make the conjecture that
the value function is of the type V (w) = α(w− κ)1−γ . First order conditions leads to
the optimal choices c∗ and g∗(z), and if we insert these back into the HJB equation
and solve, we obtain α and κ.

Note that unlike the exponential utility case this insurance control depends on
wealth. When the initial wealth approaches the present value of the cost of the
claims, i.e. when w → κ, the individual stops consuming, c∗(w) → 0, and insures
fully, g∗(w, z)→ 0 for any fixed z. The reason why it is so important to protect the
value of full coverage is that an individual with power preference must avoid negative
consumption and wealth almost surely.

Although we cannot quantify the welfare loss from a suboptimal coverage, we
know that there is one, and the result of Proposition E.3 represents an idea for
product development in the non-life business. The optimal deductible is affine in the
wealth. For w � κ, the optimal deductible is essentially linear in wealth. This could
be incorporated in the insurance product or, at least, in product advice given to
policy holders.

The proportionality of g∗ in w, namely 1− exp(β(z))−1/γ , has a simple structure
which can also be the starting point for further product development. For the linear
pricing principle, this is a constant. We note that for the linear pricing rule the
optimal deductible is not a constant but a constant fraction of wealth (minus the
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typically relative small value of full coverage). For our variance principle the fraction
becomes a linear-power function of the loss and for our Esscher principle the fraction
becomes an exponential-power function. These are quite simple structures that can
easily be incorporated in indemnity tables.

The limiting cases for the risk aversion are obvious. As γ →∞, g∗ → 0 for all
claims and all sizes of wealth. If the individual is extremely risk averse, she avoids
risk at any price and demands full protection. As γ → 0, g → w − κ for all claim
sizes. If the individual is not really risk averse, she can keep the risk at any price but
only up to the point where a claim threatens her wealth in order to avoid, above all,
negative wealth and consumption.

Appendix

E.I The impact of pricing on the individual’s decision

In this section we solve the optimization of the policy holder for a particularly simple
pricing rule. It serves as a motivating example for the more abstract calculations
in Section E.4. We are going to show very clearly and explicitly with this example
that for a specific pricing rule, the size of the claim is indeed, in general, relevant for
calculating the optimal deductible. It is natural to speak of the pricing rule studied
in this section as being based on a change of measure which is piecewise constant
in the size of the loss. Then the optimal deductible indeed also becomes piecewise
constant in general.

Let 0 = `1 < `2 < . . . < `n−1 < `n =∞ be given, such that [`1, `2), . . . , [`n−1, `n)
is a finite partition of R+. When a loss of size z occurs, it falls into one of the
regions [`i, `i+1) for i = 1, . . . , n−1. Assume that the individual can choose a distinct
deductible for each region, i.e. a deductible Ki when z takes value in [`i, `i+1). In
this case the insurance product is characterised by

g(K1,...,Kn)(z) =
n−1∑
i=1

Ki1{z∈[`i,`i+1)}.

The theory of space-decomposition allows us to split, correspondingly, the compound
Poisson process (At)t≥0 describing the losses of the individual (without insurance)
into n compound Poisson processes with jump rate λi = λP(Z ∈ [`i, `i+1)) and
jump sizes in [`i, `i+1) for i = 1, . . . , n− 1, respectively. Assume that the insurance
company prices each of these risks individually with pricing rates λQ1 , . . . , λQn , where
typically λQi+1/λi+1 > λQi /λi (large claims constitute larger risks and should be
charged accordingly). We can now solve the optimization problem of the policyholder
for a given partition of the pricing rule.

Proposition E.4. Assume that the insurance company applies a piecewise con-
stant pricing rule as described above. Then the value function is of type V (w) =
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− exp(−raw)/α and the optimal controls are

c∗ = rw − 1

a
log
(ra
α

)
and K∗i =

1

ra
log

(
λQi
λi

)
for i = 1, . . . , n.

Proof. The HJB equation is in this case

sup
{
− ρV (w) +

(
rw − c−

n−1∑
i=1

λQi E[(Z −Ki)
+ | Z ∈ [`i, `i+1)]

)
Vw(w)

+
n−1∑
i=1

λiE[V (w −min{Z,Ki})− V (w) | Z ∈ [`i, `i+1)] + u(c)
}

= 0.

Since the nature of the problem is similar to the previous section, we again guess
that the value function is of type V (w) = − exp(−raw)/α. The first order condition
with respect to consumption then leads to the same structure as seen before,

c∗ = rw − 1

a
log
(ra
α

)
,

The Leibniz integral rule is used to find the first order condition with respect to the
i’th deductible level,

λQi E[1{Zi>K | Zi∈[`i,`i+1)}]− λiE[1{Zi>K | Zi∈[`i,`i+1)}] exp(raKi) = 0.

Rearranging and isolating yields

K∗i =
1

ra
log

(
λQi
λi

)
for i = 1, . . . , n. (4.25)

Inserting the optimal controls in the HJB we obtain the supremum, and we can then
solve for

α =
1

ra
exp

{
1

r

(
ρ−

n∑
i=1

λi
(
E[exp(ramin{Z,K∗i }) | Z ∈ [`i, `i+1)]− 1

))
− a

n∑
i=1

λQi E[(Z −K∗i )+ | Z ∈ [`i, `i+1)]− 1

}
.

Proposition E.4 shows in a simple way how the price of the insurance coverage
affects the optimal extent of coverage. The more expensive the insurance is, measured
by the pricing ratio λQi /λi, the larger a deductible is optimal for the individual. For
the exponential utility case the part is as simple as the logarithm of the pricing ratio
times a constant which contains the level of risk aversion.

A special case arises if there is only one ‘piece’ and piecewise constant really means
constant. This corresponds to the expected value pricing principle since the value
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of a contract is proportional to its expectation with a constant of proportionality
equal to λQ/λ. As previously argued, if the pricing is based on the expected value
premium principle, then a fixed amount deductible is optimal. Proposition E.4 repeats
this result for the special case of exponential utility and determines the constant
deductible level to be

K∗ =
1

ra
log

(
λQ

λ

)
.

The n piecewise constant deductible case is a special case of the measure transforma-
tion with pricing measure function

β(z) =
n∑
i=1

δi1z∈[`i,`i+1) where δi = log

(
λQi
λi

)
for all i.

E.II Proof of Proposition E.2

Proof. To abbreviate the notation, let fβ(t) = exp(−λtE[exp(β(Z))−1]) and hv(z) =
(z − gv(z))+. Now simply consider the characteristic function

EQ(β)
[
exp
(

i s ·
Nt∑
i=1

hv(Zi)
)]

= E
[
exp
( Nt∑
i=1

β(Zi)− λtE[exp(β(Z))− 1]
)

exp
(

i s ·
Nt∑
i=1

h(Zi)
)]

= fβ(t)E
[ Nt∏
i=1

exp(β(Zi)) exp(i s · hv(Zi))
E[exp(β(Z))]

E[exp(β(Z))]
]

= fβ(t) E
[
E
[ Nt∏
i=1

exp(β(Zi)) exp(i s · hv(Zi))
E[exp(β(Z))]

E[exp(β(Z))]
∣∣∣Nt

]]
= fβ(t) E

[
E[exp(β(Z))]NtE

[exp(β(Z)) exp(i s · hv(Z))

E[exp(β(Z))]

]Nt]
= fβ(t) exp

(
λt
(
E[exp(β(Z))]E

[ exp(β(Z))

E[exp(β(Z))]
exp(i s · hv(Zi))

]
− 1
))

= exp
(
λtE[exp(β(Z))]

(
E
[ exp(β(Z))

E[exp(β(Z))]
exp(i s · hv(Zi))

]
− 1
))
.

This is the characteristic function of a compound Poisson process with characteristics
(4.17). From this, the expected value (4.18) follows directly.
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E.III Calculations for β1(z) = δ1

E[exp(ra ·min{Z, δ1/(ra)})]
= P(A1)E[exp(raZ) | A1] + P(Ac1)E[exp(δ1) | Ac1]

= E[exp(raZ)1{Z<δ1/(ra)}] + E[exp(δ1)1{Z≥δ1/(ra)}]

=

∫ δ1/(ra)

0

η exp((ra− η)z)dz + exp

(
ra− η
ra

δ1

)
=

ra

ra− η
exp

(
ra− η
ra

δ1

)
− η

ra− η
.

E[exp(β(Z))(Z − g(Z))+] = P(Ac1) exp(δ1)E[(Z − δ1/(ra)) | Ac1]

= E[exp(δ1) (Z − δ1/(ra))1{Z≥δ1/(ra)}]

= exp(δ1)

∫ ∞
δ/(ra)

η exp(−ηz)(z − δ1/(ra))dz

=
1

η
exp

(
ra− η
ra

δ1

)
.

E.IV Calculations for β2(z) = log(θ2z + δ2)

Let Z̃ = θ2Z + δ2 and Ẑ = −raZ̃/θ2. The event A2 = {Z < log(θ2Z + δ2)/(ra)} can
then be rewritten as

A2 = {Z < log(θ2Z + δ2)/(ra)} = {exp(raZ) < θ2Z + δ2}
= {exp(raZ̃/θ2) exp(−δ2ra/θ2) < Z̃}
= {Ẑ exp(Ẑ) < −ra exp(−δ2ra/θ2)/θ2}
= {Ẑ >W−1(−ra exp(−δ2ra/θ2)/θ2)},

where we use that −ra exp(−δ2ra/θ2)/θ2 ∈ [− exp(−1), 0), which is necessary in
order for W−1 to be defined. The upper boundary is trivial, whereas the lower is a
bit less so. First, we recognise that −x exp(−δ2x) > −x exp(−x) for any values of
x and δ2 ≥ 1. Next, we see that −x exp(−x) obtains its minimum for x = 1, hence
−x exp(−x) > − exp(−1).

Translated back to Z using substitution, we can now conclude that

A2 = {Z < Q} where Q = − 1

ra
W−1

(
−ra
θ2

exp

(
−δ2

ra

θ2

))
− δ2

θ2

.
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We therefore get

E[exp(ra ·min{Z, log(θ2Z + δ2)/(ra)})]
= P(A2)E[exp(raZ) | A2] + P(Ac2)E[θ2Z + δ2 | Ac2]

=

∫
A2

η exp((ra− η)z)dz +

∫
Ac2

η(θ2z + δ2) exp(−ηz)dz

=

∫ Q

0

η exp((ra− η)z)dz +

∫ ∞
Q

η(θ2z + δ2) exp(−ηz)dz

=
η

ra− η
(exp((ra− η)Q)− 1) +

(
θ2Q+ δ2 +

θ2

η

)
exp(−ηQ).

E[(θZ + δ2)(Z − log(θ2Z + δ2)/(ra))+]

= P(Ac2)E[(θ2Z + δ2)(Z − log(θ2Z + δ2)/(ra)) | Ac2]

=

∫
Ac2

η(θ2z + δ2)(z − log(θ2z + δ2)/(ra)) exp(−ηz)dz

=

∫ ∞
Q

η(θ2z + δ2)(z − log(θ2z + δ2)/(ra)) exp(−ηz)dz

= exp(−ηQ)

(
θ2Q

2 +

(
δ2 + 2

θ2

η

)
Q− 1

η

(
θ2

ra
− δ2

)
+ 2

θ2

η2

− 1

ra

θ2

η
exp

(
η

θ2

(θ2Q+ δ2)

)
E1

(
η

θ2

(θ2Q+ δ2)

)
− 1

ra

(
θ2Q+ δ2 +

θ2

η

)
log(θ2Q+ δ2)

)
.

E.V Calculations for β3(z) = θ3z + δ3

E[exp(ra ·min{Z, (θ3Z + δ3)/(ra)})]

=

∫
A3

η exp(raz) exp(−ηz)dz +

∫
Ac3

η exp(θ3z + δ3) exp(−ηz)dz

=

∫ δ3/(ra−θ3)

0

η exp(raz) exp(−ηz)dz +

∫ ∞
δ3/(ra−θ3)

η exp(θ3z + δ3) exp(−ηz)dz

=
η

η − ra

(
1− exp

(
−(η − ra)

δ3

ra− θ3

))
+

η

η − θ3

exp

(
−(η − ra)

δ3

ra− θ3

)
.

E[exp(θ3Z + δ3)(Z − (θ3Z + δ3)/(ra))+]

=

∫
Ac3

exp(θ3z + δ3)(z − (θ3z + δ3)/(ra))dz

=

∫ ∞
δ3/(ra−θ3)

exp(θ3z + δ3)(z − (θ3z + δ3)/(ra))dz

= exp

(
−(η − ra)

δ3

ra− θ3

)
(ra− θ3)η

ra(η − θ3)2
.
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