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Abstract

In this paper, we propose a doubly stochastic spatial point process model
with both aggregation and repulsion. This model combines the ideas behind
Strauss processes and log Gaussian Cox processes. The likelihood of this model
is not expressible in closed form, but it is easy to simulate under the model.
We therefore explain how to use approximate Bayesian computation (ABC)
for statistical inference both for this specific model but also for spatial point
process models in general. We suggest a method for model validation and
comparison based on posterior predictions and global envelopes. We illustrate
the ABC procedure and model comparison approach using both simulated
point patterns and a real data example.
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1 Introduction

Spatial point patterns are usually divided into three cases: regularity/repulsiveness,
complete spatial randomness, and aggregation/clustering. There is a wide selection
of point process models suitable for these situations, see e.g. the overview in La-
vancier & Møller (2016, Section 1) and the references therein. However, some point
patterns show repulsiveness between the points at small scale and aggregation at a
larger scale, see Lavancier & Møller (2016) for a detailed discussion. In this regard,
Lavancier & Møller (2016) suggested a model for this situation obtained by a de-
pendent thinning of a repulsive point process. It is also possible to construct certain
Gibbs point processes with this behaviour, see e.g. Goldstein et al. (2015).

1



1.1 The log Gaussian Cox Strauss process

In this paper, we present a model for regularity at small scale and aggregation at
larger scale which is a combination of a pairwise interaction point process and a log
Gaussian Cox process. It is constructed by the following two steps.

First, we consider a pairwise interaction point process defined as follows. Let
X be a spatial point process viewed as a finite random subset of a given bounded
region W ⊂ R2 (we think of W as an observation window). Then X is a pairwise
interaction point process if X follows a density (with respect to the unit rate Poisson
process on W ) of the form

f(x | ψ, ϕ) =
1

Cψ,ϕ

n∏

i=1

ψ(xi)
∏

i<j

ϕ(‖xi − xj‖) (1.1)

for all point patterns x = {x1, . . . , xn} ⊂ W with 0 ≤ n < ∞ (if n = 0 then
x = ∅ is the empty point pattern), where the notation means the following: ψ :
W → [0,∞) is a so-called first order interaction function; ϕ : [0,∞) → [0,∞) is a
so-called second order interaction function; ‖ · ‖ denotes usual Euclidean distance;
and Cψ,ϕ = 1/f(∅ | ψ, ϕ) is the normalising constant which is required to be positive
and finite. Usually, ϕ(·) ≤ 1, in which case the density is well defined and results in
a model for repulsion between the points. The first order interaction function may
be used to model systematic aggregation of points.

Second, we consider a doubly stochastic construction, by replacing ψ with a
random function Ψ in order to introduce random aggregation to the model. This is
an extension of a Cox process (the case ϕ = 1, cf. Cox, 1955), and such a model was
considered in Berthelsen & Møller (2008) when Ψ is the stochastic intensity function
of a shot noise Cox process. Instead, we use the random intensity function of a log
Gaussian Cox process (LGCP, see Møller et al., 1998), which is a popular model for
random aggregation. Specifically, we let

Ψ(u) = exp(Z(u)), u ∈ W, (1.2)

where Z := {Z(u)}u∈W is a Gaussian random field (GRF) with constant mean µ ∈ R
and exponential covariance function

c(u, v) = σ2 exp (−‖u− v‖/s) , u, v ∈ W.

Here, σ2 ≥ 0 is the variance and s > 0 is a scale parameter. For σ2 > 0, the
flexible stochastic process Ψ(u) may account for aggregation caused by unobserved
covariates. Note that Ψ(u) = exp(µ) if σ2 = 0.

For the second order interaction function in (1.1), Berthelsen & Møller (2008)
used a piecewise linear function, whereas we will use the much simpler second order
interaction function of a Strauss process (Strauss, 1975; Kelly & Ripley, 1976). This
gives us a density for X (with respect to the unit rate Poisson process) of the form

f(x | θ) = E

[
1

Cθ(Z)

n∏

i=1

exp(Z(xi))
∏

i<j

γ1[‖xi−xj‖≤R]

]
, (1.3)
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where θ = (µ, σ2, s, γ, R) is the parameter vector. Here, the expectation is with
respect to the GRF; Cθ(Z) is the normalising constant obtained by conditioning
on Z; 1[·] denotes the indicator function; and we use the convention 00 = 1. The
parameter R > 0 is called the interaction radius and the parameter γ ∈ [0, 1]
controls the repulsion between points. This model for X will be referred to as an
LGCP-Strauss process.

The model includes some well-known special cases:

(a) Conditioned on Z, X is an inhomogeneous Strauss process.

(b) If σ2 = 0, X is a usual Strauss process. If in addition γ = 0, X is a hard core
Gibbs process with hard core parameter R; or if in addition γ = 1, X is a
homogeneous Poisson process on W with intensity exp(µ).

(c) If γ = 1, X is an LGCP.

The following coupling result becomes useful when interpreting the meaning of
γ and when we later discuss simulation of the LGCP-Strauss process. To stress the
dependence of γ, we write X = Xγ. Then, using a dependent thinning technique
(Kendall & Møller, 2000) it follows that there exists a coupling of the LGCP-Strauss
processes Xγ for all γ ∈ [0, 1] such that Xγ ⊆ Xγ′ whenever 0 ≤ γ < γ′ ≤ 1. In
particular, the special case of the LGCP X1 (item (c) above) dominates any of the
LGCP-Strauss processes Xγ. The intensity of X1 is exp(µ + σ2/2) (Møller et al.,
1998), so exp(µ + σ2/2)|W | provides an upper bound on the expected number of
points in Xγ. Here, |W | denotes the area of W .

Note that if we do not have any of the above special cases (a)–(c), both the inten-
sity and other moment characteristics of X, the density (1.3), and the Papangelou
conditional intensity (see e.g. Møller & Waagepetersen, 2004) are not expressible in
closed form. Therefore, in general, usual approaches for estimation based on like-
lihood, pseudo-likelihood, composite likelihood, and minimum contrasts (see the
review in Møller & Waagepetersen, 2017) are not feasible for the LGCP-Strauss
process. This makes statistical inference challenging.

1.2 Objectives and outline

In this paper, we show how to use approximate Bayesian computation (ABC) to
make statistical inference for spatial point process models in general and provide
further details for the LGCP-Strauss process. In brief, ABC is a flexible method for
approximate inference in a Bayesian framework, which does not require the likelihood
to be expressible in closed form. Instead, it is based on the ability to make simulations
under the assumed model, which are then compared to the observed data by using
summary statistics.

In previous work on ABC in the setting of spatial point process models, Shirota &
Gelfand (2017) explained how ABC can be used for Strauss process models and de-
terminantal point process models. For the Strauss process model they estimated the
interaction radius using maximum profile pseudo likelihood and then kept the inter-
action radius fixed at this estimate during the ABC procedure. Further, Soubeyrand
et al. (2013) presented an ABC method using functional summary statistics such as
the pair correlation function, which they exemplified for a Thomas process model
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and a marked point process model. Finally, Stoica et al. (2017) presented an ABC
method applicable to spatial point process models with a continuously differentiable
likelihood function.

In contrast to Shirota & Gelfand (2017), the method we use for statistical infer-
ence is based entirely on ABC, and unlike Shirota & Gelfand (2017) and Soubeyrand
et al. (2013) we do not fix any of the unknown parameters during the ABC pro-
cedure. Furthermore, we provide a detailed discussion of the choice of summary
statistics for ABC when making statistical inference for the LGCP-Strauss process.
This discussion is equally relevant if using ABC in connection with other point pro-
cess models which are special cases of the LGCP-Strauss process such as the LGCP
or Strauss process. We also suggest a method for model validation and comparison
based on posterior predictions and global envelopes. We use this in a simulation
study to assess the quality of ABC results for LGCP-Strauss processes and to inves-
tigate whether realisations of the LGCP-Strauss process can be distinguished from
LGCPs and Strauss processes.

The remainder of this paper is organized as follows. In Section 2, our chosen
method for ABC model fitting is specified. Section 3 presents simulated examples
of LGCP-Strauss processes with corresponding ABC analyses. Section 4 contains a
real data example using a point pattern of oak trees which suffer from frost shake.
Section 5 concludes with a brief summary and paths for future work.

The open source software R (R Core Team, 2019) is used for all statistical com-
putations. Most plots are created with the R-package ggplot2 (Wickham, 2016) and
some of the functionalities of the R-package spatstat (Baddeley et al., 2015) are
used to handle spatial point patterns.

2 ABC for spatial point process models

2.1 The general case

Consider a spatial point process X defined on a bounded region W ⊂ R2 and which
follows a parametric model with parameter vector θ. Assume a realisation xobs of
X is observed. Our chosen procedure for ABC is specified in Algorithm 1 below.
It is inspired by Shirota & Gelfand (2017) and is based on the semi-automatic
approach by Fearnhead & Prangle (2012). Shirota & Gelfand (2017) used a Markov
chain Monte Carlo method for the ABC sampling whereas we choose ABC rejection
sampling, because of its simplicity and ability to be run in parallel.

In Algorithm 1, n(x) is the number of points in a point pattern x, and in the
first and last for loop we demand that n(x) > m for each simulated x. This is
not strictly necessary for ABC, but it is a way to insure that summary statistics
are not calculated for point patterns with very few points. Most summary statistics
for spatial point patterns can only be calculated or considered reliable if there is a
reasonable number of points in the point pattern. In the examples of Sections 3 and
4, m = 10 was found to be sufficient.

In the second for loop of Algorithm 1, the linear models approximating the
posterior means E[θi | x], i = 1, . . . , p, are fitted in a two-step procedure, which
is a special case of a relaxed Lasso (Meinshausen, 2007): First, a model is fitted
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Algorithm 1: Procedure for ABC
Input : Data xobs, a prior distribution π(θ) for θ = (θ1, . . . , θp), a

procedure for simulating from the likelihood π(x | θ), a summary
statistic T (x) = (T1(x), . . . , Td(x)), positive integers kpilot and
kABC, and a non-negative integer m.

Output: A sample θABC,1, . . . , θABC,kABC from the ABC approximate
posterior distribution.

Calculate Tobs = T (xobs).
Pilot run:
For i = 1, . . . , kpilot

repeat
sample θpilot,i ∼ π(θ) and xpilot,i ∼ π(x | θpilot,i)

until n(xpilot,i) > m.

For j = 1, . . . , p

based on the sample
{(
θpilot,i,xpilot,i

)}kpilot
i=1

, fit a linear model for the
posterior mean

E[θj | x] ≈ θj(x) := αj + βj
T

(T (x)− Tobs)

where x is a realisation of X, αj ∈ R, and βj = (βj1, . . . , β
j
d) ∈ Rd. Let

θ̂j(x) be the estimate of θj(x) when αj and βj are replaced by the
estimates α̂j and β̂j.

Define the distance measure

χ(x,xobs) =

p∑

j=1

(
θ̂j(x)− θ̂j(xobs)

)2

v̂ar(θ̂j)
=

p∑

j=1

(
θ̂j(x)− α̂j

)2

v̂ar(θ̂j)

where v̂ar(θ̂j) is the empirical variance of {θ̂j(xpilot,i)}kpiloti=1 . Choose ε as the
empirical 1% percentile of {χ(xpilot,i,xobs)}kpiloti=1 .

ABC rejection sampling:

For i = 1, . . . , kABC

repeat
repeat

sample θABC,i ∼ π(θ) and xABC,i ∼ π(x | θABC,i)
until n(xABC,i) > m.

until χ(xABC,i, xobs) < ε
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with Lasso regression, where the penalty term is chosen based on a cross-validation
argument using the ‘one-standard-error rule’ (see e.g. Hastie et al., 2015, Chapter 2).
Let β̂i,Lassoj , j = 1, . . . , d, be the resulting estimate of βij and set T i,Lasso(x) = {Tj(x) |
β̂i,Lassoj 6= 0, j = 1, . . . , d}. Second, the summary statistics in T i,Lasso are used as
predictors in a linear model fitted with ordinary least squares, which results in the
final model for approximating E[θi | x].

2.2 The special case of LGCP-Strauss process models

Consider again an LGCP-Strauss process X on the observation window W with
density (1.3), which depends on the unknown parameter vector θ = (µ, σ2, s, γ, R).
One requirement for ABC is the ability to simulate data under this model for a
given θ. We do this in two steps: First, a realisation z of Z is simulated (see e.g.
Schlather (1999)). In R, this can be done with the function RFsimulate from the
R-package RandomFields (Schlather et al., 2015, 2019). Second, a realisation of X
given Z = z is simulated using an MCMC algorithm, namely a birth-death Metropo-
lis-Hastings algorithm (Geyer & Møller, 1994, specifically, a birth is proposed with
probability 1/2 and otherwise a death is proposed; for a birth proposal, the new
point is generated from a density proportional to exp (z); and for a death proposal,
the point to die is selected uniformly from the current point pattern).

Another requirement for ABC is the selection of appropriate summary statis-
tics Tj, j = 1, . . . , d for Algorithm 1. Since the parameter µ especially affects the
number of points in a point pattern generated by an LGCP-Strauss process, we in-
clude the number of observed points as a summary statistic. Further, the L-function
L(r) =

√
K(r)/π, where r > 0 denotes inter-point distance and K is Ripley’s K-

function (Ripley, 1976, 1977), summarises many important aspects of the second
order moment properties of X. Since L(r) = r for a Poisson process, one usually
considers T (r) := L(r) − r. If L(r) < r (L(r) > r), this indicates that X is regu-
lar/repulsive (aggregated/clustered) at inter-point distances r. A simulation study
suggested that for realisations of an LGCP-Strauss process, the empirical estimate
of L(r) − r often has a global minimum when r is close to the interaction radius
R, at least when there is strong to moderate repulsion in the model. In this regard,
the bottom row of Figure 1 shows some empirical L-functions associated with re-
alisations of LGCP-Strauss processes. We therefore also include summary statistics
related to the L function (see (b)–(c) below).

Furthermore, the parameters σ2 and s of the LGCP-Strauss process affect the
clustering in the process. To supply some summary statistics describing this, assume
for ease of exposition that W is a square with side length h. Then we split W into
q2 squares Wi,j of side length h/q, i, j = 1, . . . , q, and let n(Wi,j) be the number
of points falling in Wi,j. We choose summary statistics which describe how n(Wi,j)
varies (see (d) below) and which are calculated for a user-specified finite range of
q-values.

Specifically, for a point pattern x (either xobs or one of the simulated point
patterns in Algorithm 1), we chose the following summary statistics.

(a) log(n(x)).
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(b) max(L̂(r) − r), min(L̂(r) − r), and arg min(L̂(r) − r), where L̂ is a non-
parametric estimate of the L-function evaluated over a user-specified finite
range of r-values.

(c) L̂(r)− r evaluated at m equally spaced values of r between 0 and 0.2h.

(d) maxi,j=1,...,q({n(Wi,j)/n(x)}), mini,j=1,...,q({n(Wi,j)/n(x)}), and
log(v̂ar({n(Wi,j)/n(x)}qi,j=1)), where again v̂ar means empirical variance.

We have chosen these specific forms of the summary statistics based on some nu-
merical experiments. In the examples of Sections 3 and 4, m = 40 and q = 2, . . . , 5.
This means that the vector of summary statistics T has dimension equal to 56.

3 Simulated examples

3.1 Simulated data and prior specification

The top panels of Figure 1 show examples of simulated realisations of the LGCP-
Strauss processes on the unit square for three different values of γ; the remaining
parameters are specified in the caption. The bottom panels of Figure 1 show the cor-
responding estimated L-functions using Ripley’s isotropic edge correction (Ripley,
1977). As expected, the point patterns exhibit both regularity and aggregation, with
an increasing degree of regularity at small to moderate distances as γ decreases, but
a similar degree of aggregation at large distances.

  γ = 0   γ = 0.3   γ = 0.6

0.00 0.10 0.20−
0.
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0.
01

0.
01
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03
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01

0.
03
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01

0.
01
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03

Figure 1: Top panels: simulated LGCP-Strauss processes on the unit square, where the
parameters are µ = 5, σ2 = 2, R = 0.03, s = 0.3, and γ is as specified at the top of each
column. Bottom panels: corresponding empirical L-function minus the identity (solid line)
and the theoretical L-function for a Poisson process minus the identity (dashed line).

The ABC procedure in Algorithm 1 requires specification of (proper) prior distri-
butions for the parameters in order to draw prior samples of the parameters. These
samples are then used to simulate LGCP-Strauss processes with the given param-
eters. The more points a simulated point pattern has, the more computationally
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expensive the simulation procedure will be (see below). Therefore, we choose the
prior distributions in such a way that these simulated point patterns will not yield
unreasonably many points compared to the number of points in our observed point
patterns. Specifically, when considering the prior distributions of µ and σ2, recall
that exp(µ+ σ2/2) is an upper bound on the expected number of points in the unit
square. So, for the examples in this section, independent uniform prior distributions
are chosen for µ on the interval (3, 6), σ2 on (0, 4), s on (0.01, 0.5), γ on (0, 1), and
R on (0, 0.05).

In order to use the MCMC algorithm when a realisation z = {z(u)}u∈W of the
GRF is given (see Section 2.2), it is necessary to choose a burn-in which can be
used for all simulations in the ABC procedure. In order to choose this burn-in, we
considered 30 samples of the parameters drawn from the prior distributions; used the
MCMC algorithm for all these samples; and considered trace plots of the number
of points and R-close pairs. Figure 7 shows these plots for three different prior
samples for illustration. It seems that the higher the number of points, the slower the
convergence. The burn-in should be high enough for the MCMC algorithm to have
converged given any prior sample, but increasing the burn-in will also increase the
computation time. Considering all 30 examples, 20 000 appears to be an appropriate
overall burn-in. We furthermore choose to initiate the MCMC algorithm at the
empty point pattern or at a realisation of an inhomogeneous Poisson process on
W with intensity function exp(z(u)) (these initial states are extreme because of
the coupling result mentioned in Section 1.1). The simulations in the top panels of
Figure 1 and all following simulations are iteration 20 001 of the MCMC algorithm
initiated at the empty point pattern.

3.2 Posterior results

We used Algorithm 1 on the three point patterns in Figure 1 with kpilot = 10 000 and
kABC = 1000, (the same choice as in Shirota & Gelfand, 2017). Figure 2 shows kernel
density estimates of the resulting (approximate) marginal posterior distributions of
the parameters, using a Gaussian kernel and a bandwidth chosen with the method
by Sheather & Jones (1991). From Figure 2 we see the following. In all cases, the
posterior mean and median are close and in most cases they agree with the true
parameter value. As the true value of γ increases, the posterior distribution of µ
becomes more and more left skew. The approximate posterior distributions for σ2

and s look rather similar to their prior uniform distributions. When the true value
of γ is 0, the posterior distribution of γ is very concentrated near 0, but it becomes
more and more symmetric around the true value of γ as this increases. The spread
of the posterior distribution of R seems to increase as the true value of γ increases.
Overall, the ABC procedure seems to be most successful for estimating γ and R.
Note that when fitting a Strauss process to a point pattern, Shirota & Gelfand
(2017) first estimated R by maximum pseudo-likelihood and then used this value of
R in their ABC procedure; in contrast we found no need to fix R when fitting an
LGCP-Strauss process with our ABC procedure.

In geostatistics, it is known that the scale and variance parameters of an expo-
nential covariance function for a GRF are unidentifiable (see e.g. Zhang, 2004). This
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Figure 2: Estimated marginal ABC posterior densities for the parameters of the LGCP-
Strauss model used for the point patterns in Figure 1. Each row represents a parameter
(stated at the corner of each plot), and each column represents one of the three point
patterns, as indicated by the true value of γ. The area between the 2.5% and 97.5%
percentiles is shaded. The dashed, dotted, and solid lines indicate the median, mean, and
true value, respectively.

might explain why the ABC procedure is not so successful when it comes to identi-
fying these parameters. Therefore, we made the same analysis as in Figure 2 when
s = 0.3 is given. However, the posterior marginal distributions of the remaining
parameters (not shown) looked very similar to those in Figure 2.

We now investigate how the ABC procedure for fitting an LGCP-Strauss process
works when the data is generated from some of the special cases of this process. For
this purpose, we simulated a realisation of an LGCP with parameters µ = 5, σ2 = 2,
and s = 0.3, and a realisation of a Strauss process with parameters µ = 5, γ = 0.3,
and R = 0.03. Notice that when simulating under an LGCP, there is no need to
employ the MCMC algorithm described at the beginning of Section 2.2. We used
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the faster method implemented in the function rLGCP from the package spatstat
(Baddeley et al., 2015). We used the same ABC procedure as above for fitting an
LGCP-Strauss process to these point patterns and the posterior results can be seen
in Figure 3. For the point pattern generated from an LGCP, the true value of µ
seems to be identified well when fitting the LGCP-Strauss process. The posterior
marginal distribution of γ is rather concentrated near 1, and a plot of the posterior
samples of γ and R (not shown) shows that very small values of γ appear together
with very small values of R. This indicates that the fitted LGCP-Strauss process is
close to the special case of an LGCP, which is the true model. Again, it seems to be
difficult to identify σ2 and s.

For the point pattern generated from a Strauss process, the marginal posterior
distribution for σ2 is very concentrated near zero, which is the true value. The true
value of γ seems to be well identified whereas the median and mean of the marginal
posterior distributions of µ and R are somewhat higher than the true values. It
appears that for this example, the ABC procedure is not as successful for R as it
was for the point patterns in Figure 1. For the Strauss process, s should be irrelevant,
and a plot of the posterior samples of s and σ2 (not shown) shows that s is irrelevant
for small values of σ2.

3.3 Model checking and comparison

We are interested in whether the point patterns in Figure 1 can be distinguished
from realisations of an LGCP and a Strauss process, so for comparison we also fitted
an LGCP and a Strauss process to each point pattern, using the ABC procedure in
Algorithm 1. We used the same summary statistics as for the LGCP-Strauss process
and the same prior distributions on the relevant parameters (that is, the parameters
µ, σ2, and s when fitting the LGCP, and the parameters µ, γ, and R when fitting
the Strauss process). Again, when simulating under an LGCP, we used the faster
method implemented in spatstat.

For model checking and comparison we suggest to make global envelope tests
based on posterior predictions as follows. For each ABC realisation of θ, a reali-
sation x of the process in question given θ is simulated. For each x, a functional
summary statistic is estimated. These empirical curves are then used to construct
global envelopes and corresponding tests based on extreme rank lengths (Myllymäki
et al., 2017; Mrkvička et al., 2018, note that we only used 1000 simulations instead
of the recommended 2499, because the ABC procedure is rather time consuming).
The R-package GET (Myllymäki et al., 2017) was used for this purpose.

In order to compare the fitted LGCP-Strauss, LGCP, and Strauss process models,
we used 95% global envelopes based on posterior predictions and the empirical L- and
J-function, with J(r) = (1−G(r))/(1−F (r)) where F is the empty space function
and G is the nearest-neighbour distribution function (see van Lieshout & Baddeley,
1996). We also tried to use the F - and G-functions for model validation but these
functional summary statistics were unable to distinguish between the models.

Figure 4 shows 95% combined global envelopes for the L- and J-function, mean-
ing that, under the LGCP-Strauss process, the probability that both empirical curves
are within their respective envelopes is approximately 95%. To combine the envelopes
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Figure 3: The first six panels show a realisation of an LGCP on the unit square and the
estimated marginal ABC posterior distributions for the parameters of the LGCP-Strauss
process. The last six panels show a realisation of a Strauss process on the unit square
and the estimated marginal ABC posterior distributions for the parameters of the LGCP-
Strauss process. For the density plots, the parameters are stated at the top corner; the area
between the 2.5% and 97.5% percentiles is shaded; the dashed and dotted lines indicate the
median and mean, respectively and the solid line indicate the true value, when relevant.

we have used the two-step combining procedure described in Myllymäki & Mrkvička
(2019). Note that the J-function can only be estimated reliably for all simulations
in the interval (0, 0.6), whereas the L-function can be estimated reliably on a larger
interval.

In all cases, the p-values of the global envelope tests are highest in the situation of
the LGCP-Strauss process, which may indicate that they provide the best fit to data.
The LGCP is rejected in the cases where γ = 0 and γ = 0.3 because the empirical
J-functions in these cases are above the 95% global envelopes at small inter-point
distances. This indicates that the point patterns are more regular at small inter-
point distances than what would be expected under the fitted LGCPs. For the case
γ = 0.6 (the case with weakest inhibition), the LGCP cannot be rejected. Notice that
the p-values of these tests are increasing as γ increases which is in agreement with
the fact that the LGCP-Strauss process approaches the special case of an LGCP.

The Strauss process model is rejected in all three cases because the empirical
L-function clearly shows that the point patterns are more clustered at moderate to
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large inter-point distances than what can be modelled with a Strauss process. In the
case γ = 0.3, the empirical J-function also shows this, but for the remaining two
cases the J-function is contained completely within the envelopes.

Overall, it appears that the J-function is best at criticizing the LGCP and the
L-function is best at criticizing the Strauss process. The later may have something
to do with the fact that the J-function can only be estimated on a relatively small
interval. So, it is less likely to capture the aggregation, which happens on a larger
scale, than the L-function which can be estimated on a bigger interval. When we
use the L-function for model validation we keep in mind that it was also used in the
ABC procedure which might lead us to conclude that the model fits better to data
than it actually does.
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Figure 4: Combined global envelopes based on the empirical J- and L-function for LGCP-
Strauss, LGCP, and Strauss processes fitted with ABC to the three point patterns in
Figure 1. The choice of the fitted model is stated to the left of each row and each column
represents a different point pattern, as indicated by the true value of γ. The solid curves
are the empirical summary statistics for the observed point patterns and the dotted curves
are the means obtained from 1000 posterior predictions. Each shaded area indicates a 95%
global envelope based on the extreme rank length. At the top of each plot, the p-value of
the corresponding global envelope test is stated.

In order to investigate how this model validation and comparison works when the
LGCP-Strauss process is overfitting, we also fitted an LGCP to the first point pattern
in Figure 3 and a Strauss process model to the second point pattern in Figure 3 and
compare them to the fitted LGCP-Strauss process models (the global envelopes
are not shown). For the realisation of an LGCP, the p-values of the 95% combined
global envelope test for the fitted LGCP-Strauss and LGCP were 0.933 and 0.766,
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respectively. Since the data is generated from an LGCP, both models should fit the
data equally well, so the higher p-value for the LGCP-Strauss process is probably a
result of the fact that it is overfitting. For the realisation of a Strauss process model,
the p-values of the 95% combined global envelope test for the fitted LGCP-Strauss
and Strauss process were 0.376 and 0.829, respectively. In this example, the p-values
do not reveal the fact that the LGCP-Strauss process is overfitting.

4 Data example

The first panel in Figure 5 shows the locations of 256 oak trees which suffer from
frost shake (frost shake refers to cracks in the trunk of the tree) in a 125 m× 188 m
rectangular region of Allogny in France. This data set is part of the Allogony data set
from the R-package ads (Pélissier & Goreaud, 2015). The data set of the oaks was
analysed in Lavancier & Møller (2016) using a parametric point process model with
regularity on the small scale and aggregation on the large scale. The LGCP-Strauss
model should also be able to model this behaviour.

●●●●● ●●● ●●●●
●●● ● ●● ● ●● ● ● ●● ●● ●● ● ●●● ●●●

●●
●

● ● ●● ●● ● ● ●●
● ●● ● ●● ●● ●●● ● ● ●

● ●● ● ●● ●●● ● ● ●●●
● ●● ●●● ●● ● ● ●● ●●

● ● ●●● ●● ●●● ● ●● ●●● ● ● ●● ●●●
●●

● ●● ●● ● ● ●
● ●●

● ●●● ●● ● ●● ● ●
●● ●●●●● ●

● ● ●● ●●● ●
● ● ●● ●

● ●● ● ●●● ●● ●●●
● ● ●● ●●● ●●● ● ●●● ●

●● ●●● ●●●●● ●
●●

●● ●● ●● ● ●● ●●● ● ●●● ●
●● ●● ●●● ●●● ●● ●●● ●●● ●● ●●● ●● ● ●● ●

●● ●●● ● ●● ●●● µ

0.0

0.2

0.4

0.6

−7 −6 −5 −4 −3

σ2

0.0

0.2

0.4

0 1 2 3 4

s

0.00

0.01

0.02

0.03

0 20 40 60

γ

0

1

2

3

0.00 0.25 0.50 0.75 1.00

R

0.0

0.1

0.2

0.3

0.4

0 2 4 6

Figure 5: The first panel shows the frost shake oak point pattern dataset where the
observation window is a 125m× 188m rectangle. The other panels show the estimated
marginal ABC posterior distributions for the five parameters, with each parameter stated
at the top corner of each panel. The area between the 2.5% and 97.5% percentiles is shaded.
The dashed and dotted lines indicate the median and mean, respectively.

We used Algorithm 1 on this oak data set. Here, independent uniform prior
distributions are chosen for µ on the interval (−7,−3), σ2 on (0, 4), s on (1.25, 62.5),
γ on (0, 1), and R on (0, 6.25). Notice that the observation window for the oak data
is much larger than the ones in Section 3.1, and the prior distributions are chosen to
take this into account. Furthermore, when calculating the summary statistics for the
ABC procedure, Wi,j, i, j = 1, . . . , q, are now rectangular sets of the same size (see
Section 2.2). Trace plots as those in Figure 7 (supplied in an appendix) suggested
that 20 000 iterations of the MCMC algorithm is a sufficient burn-in for this example.
Again, a pilot sample of 10 000 simulations was used and the resulting ABC posterior
sample consists of 1000 draws from the approximate posterior distribution.
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The marginal posterior distributions, which are estimated from the ABC sample,
can be seen in Figure 5. They are all clearly different from their uniform priors. The
posterior distributions of µ and R look approximately normal, whilst the posterior
distributions of σ2, s, and γ are right skew. Note that the posterior distribution of
γ indicates strong repulsion between the points. The posterior distribution of σ2,
particularly its heavy tail, suggests some aggregation among the splited oaks.

The first plot in Figure 6 shows 95% combined global envelopes for the fitted
LGCP-Strauss process as described in Section 3. The overall behaviour of the ob-
served point pattern seems to be captured well by the LGCP-Strauss process, and
the p-value is very high. For comparison, the remaining plots in Figure 6 show the
corresponding 95% envelopes for a fitted LGCP, a fitted Strauss process model, and
the model fitted in Lavancier & Møller (2016), respectively. The LGCP and Strauss
process models are fitted with the ABC procedure in Algorithm 1, and the envelopes
are based on posterior predictions. The model in Lavancier & Møller (2016) was not
fitted in a Bayesian setup, so simulations under this model are not posterior pre-
dictions. For simulating this model, we used the technique suggested in Lavancier
& Møller (2016). The combined global envelopes indicate that the LGCP model
provides a poor fit to data. The tests conclude that both the Strauss process model
and the model fitted in Lavancier & Møller (2016) fit well. However, the p-values
are lower than the corresponding p-value for the LGCP-Strauss process, indicating
that the later may provide a better fit.
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Figure 6: Combined global envelopes based on the empirical J- and L-function for differ-
ent fitted models (as indicated at the top of each plot). The solid curves correspond to the
splited oak point pattern and the dotted curves are the means obtained from 1000 simula-
tions (posterior predictions for the models fitted with ABC). The shaded area indicate a
95% global envelope based on the extreme rank length. At the top of each plot, the p-value
of the corresponding global envelope test is stated.
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5 Summary and future work

We have proposed a novel spatial point process model which enables capturing of
regularity through pairwise interactions and aggregation through a Gaussian pro-
cess realization. This doubly stochastic spatial point process generalizes both the
customary log Gaussian Cox process and the customary Gibbs process. Because the
likelihood is intractable for this model we have developed model fitting through an
ABC method. We have provided both simulation investigation and a real data ap-
plication in order to reveal the behaviour of process realizations and also our ability
to fit the model and do full inference for given point pattern realizations.

Future work can consider marked point patterns or so-called multi-type versions
of our model (see e.g. Møller & Waagepetersen, 2004). Such multi-type modelling
may allow attraction or inhibition within types but also introduce attraction or
inhibition between types. A different direction would consider space-time versions.
That is, a realization of the process is seen as a spatial point pattern by integrating
over a window of time.
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A Trace plots for accessing the burn-in for the
simulation algorithm

Figure 7 shows trace plots of the number of points and R-close pairs for the MCMC
algorithm when simulating an LGCP-Strauss process for different draws of the pa-
rameter vector θ from it’s prior distribution which is described in Section 3. For each
prior sample of θ, a realisation z of the GRF was simulated, and the MCMC algo-
rithm was used to simulate the LGCP-Strauss process given Z = z. This analysis
was used to choose an appropriate burn-in in Section 3.

17



0

200

400

600

0 10000 20000 30000
0

20

40

60

0 10000 20000 30000
0

300

600

900

1200

0 10000 20000 30000

0

1000

2000

3000

4000

0 10000 20000 30000
0

10

20

0 10000 20000 30000
0

100

200

300

400

0 10000 20000 30000

Figure 7: Trace plots of the number of points (top) and R-close pairs (bottom) for 30 000
iterations of the MCMC algorithm for simulating an LGCP-Strauss process on the unit
square with parameter vector θ drawn from the prior distribution. Each column of images
represent a different sample of θ and a corresponding realization z = {z(u)}u∈W of the
GRF Z. For each column, the MCMC algorithm was initiated at the empty point pattern
(black line) or a realisation of an inhomogeneous Poisson process with intensity function
exp (z(u)) (grey line).
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