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Preface

This thesis is the product of my studies over the last three years. It consists of this Preface
including a summary, a survey paper, and seven research papers on different topics. Each paper
is self-contained and appears as a chapter in the thesis (i.e. a chapter is equivalent to a paper).
This means that the chapters can be read separately, even though there is some overlap between
them. The chapters are as follows:

Chapter 1. A Survey of Optimal Stopping Problems for Time-Homogeneous Diffusions;
Chapter 2. Computing the expectation of the Azéma-Yor stopping time. Co-author: G. Peskir.
Ann. Inst. H. Poincare Probab. Statist. Vol. 34, No. 2, 1998, (265-276);

Chapter 3. Best bounds in Doob’s maximal inequality for Bessel processes. Research Report
No. 373, 1997, Dept. Theoret. Statist. Aarhus, (10 pp). To appear in J. Multivariate
Anal.;

Chapter 4. Solving non-linear optimal stopping problems by the method of time-change. Co-
author: G. Peskir. Research Report No. 390, 1997, Dept. Theoret. Statist. Aarhus,
(24 pp). To appear in Stochastic Anal. Appl.;

Chapter 5. Discounted optimal stopping problems for the maximum process. Research Report
No. 387, 1997, Dept. Theoret. Statist. Aarhus, (12 pp). (Submitted);

Chapter 6. Azéma-Yor solution to embedding in non-singular diffusion. Research Report No.
406, 1999, Dept. Theoret. Statist. Aarhus, (14 pp). (Submitted);

Chapter 7. The minimum maximum of a continuous martingale with given initial and final
laws. Co-author: D. G. Hobson;

Chapter 8. Optimal prediction of the ultimate maximum of Brownian motion.

Chapter 1 surveys the existing literature of optimal stopping problems, summarizes the
essential facts in this field and presents some examples and applications. Another intention
with this chapter is to motivate my work (Chapter 2-8) and relate it to the existing literature.
Thus Chapter 1 can be viewed as an introduction (written as an article) to the thesis. The
chapters 2-8 contain results I have obtained during my PhD-programme. The main part of
the thesis is related to optimal stopping problems and applications (Chapter 2, 3, 4, 5 and
8). Another major part is related to Skorokhod embedding problems (Chapter 6 and 7). It
should be noted that there is a certain interplay between these two parts as both focus upon
the maximum process of a one-dimensional diffusion and stopping times associated.

Summary

Below is a short summary of the content of each chapter. It may be noted that the summary
of each paper almost coincides with the abstract of the paper.

1. A Survey of Optimal Stopping Problems for Time-Homogeneous Diffusions.

The first part of this paper summarizes the essential facts on general optimal stopping theory
for time-homogeneous diffusion processes in R" . The results displayed are stated in a little
greater generality, but in such a way that they are neither too restrictive nor too complicated.
The second part presents equations for the value function and the optimal stopping boundary
as a free-boundary (Stefan) problem and further presents the principle of smooth fit. This part



is illustrated by examples where the focus is on optimal stopping problems for the maximum
process associated with a one-dimensional diffusion.

2. Computing the expectation of the Azéma-Yor stopping times.

Given the maximum process (S;) = (maxo<,<;X,) associated with a diffusion ((X3),P;) ,
and a continuous function g satisfying g¢(s) < s, we show how to compute the expectation of
the Azéma-Yor stopping time 7, =inf{¢ >0 : X; < ¢(S;) } as a function of z . The method
of proof is based upon verifying that the expectation solves a differential equation with two
boundary conditions. The third “missing” condition is formulated in the form of a minimality
principle which states that the expectation is the minimal solution to this system. It enables
us to express this solution in a closed form. The minimality principle is the main novelty in
this approach. The result is applied in the case the diffusion is a Bessel process and g is a
linear function.

3. Best bounds in Doob’s maximal inequality for Bessel processes.

The main result of this paper is a sharp maximal inequality of Doob’s type for Bessel processes
of dimension « > 0 . The proof is based upon solving an optimal stopping problem by
applying the principle of smooth fit and the maximality principle. The constants obtained in
the inequality are the best possible. Equality in the inequality is attained in the limit through
the explicitly displayed optimal stopping times of the stopping problem.

4. Solving non-linear optimal stopping problems by the method of time-change.
Some non-linear optimal stopping problems can be solved explicitly by using a common method
which is based on time-change. The basic idea is to transform the initial (difficult) problem
into a new (easier) problem. The method is described and its use illustrated by considering
several examples dealing with Brownian motion. In each of these examples explicit formulas
are derived for the value functions and the optimal stopping times are displayed. The main
emphasis of the paper is on the method of proof and its unifying scope.

5. Discounted optimal stopping problems for the maximum process.

The maximality principle is shown to be valid in some examples of discounted optimal stopping
problems for the maximum process. In each of these examples we derive explicit formulas for
the value function and display the optimal stopping time. Especially, in the framework of Black-
Scholes model we calculate the fair price of two Lookback options with infinite horizon. The
main aim of the paper is to show that in each example under consideration the optimal stopping
boundary satisfies the maximality principle and that the value function can be determined
explicitly.

6. The Azéma-Yor solution to embedding in non-singular diffusions.

Let (Xi)i>0 be a non-singular diffusion on R vanishing at zero which is not necessarily
recurrent. Let v be a probability measure on R having strictly positive density. Necessary
and sufficient conditions are established for v such that there exists a stopping time 7, of
(X;) solving the Skorokhod embedding problem, i.e. X, haslaw v . Furthermore an explicit
construction of 7, is carried out. The construction is a complement to the Azéma-Yor solution
of the recurrent case. In addition, 7, is characterized uniquely to be the pointwise smallest
possible embedding that stochastically maximizes the maximum process of (X;) up to the
time of stopping or stochastically minimizes the minimum process of (X;) up to the time of
stopping, depending on the sign of the mean value of v .

vi



7. The minimum maximum of a continuous martingale with given initial and
terminal laws.

Let (M;) be a continuous martingale with initial law My ~ po and terminal law M; ~ 4
and let S = supy<;<; M; . In this paper we prove that there exists a greatest lower bound
with respect to stochastic ordering of probability measures, on the law of S . We give an
explicit construction of this bound. Furthermore a martingale is constructed which attains
this minimum by solving a Skorokhod embedding problem. The result is applied to the robust
hedging of a forward start digital option.

8. Optimal prediction of the ultimate maximum of Brownian motion.
Let (By)i>0 be a standard Brownian motion vanishing at zero. For fixed p,e > 0 consider
for T'> 0 the two optimal stopping problems

V(T = inf E(maxo<i<r B, — B;)” and W(T) = sup P(maxo<i<r B; — B, < ¢)
where the infimum and supremum respectively are taken over all stopping times 7 for (B;)
satisfying 7 < T . In the first problem an explicit formula is derived for the value functions
and the optimal stopping strategy is displayed. In the latter problem we conjecture a theorem
and reduce its proof to verifying that a value function is not differentiable over a line. The
method of proof is based upon representing the conditional expectation of the gain process
G(max<,<r B, — By) given Fy, =(,o,0({B-|0 <r <s}) asafunction of (maxo<,<; B, —
By) .
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A Survey of Optimal Stopping Problems
for Time-Homogenuous Diffusions

JESPER LUND PEDERSEN
University of Aarhus

The first part of this paper summarizes the essential facts on general optimal stopping theory
for time-homogeneous diffusion processes in R™ . The results displayed are stated in a little
greater generality, but in such a way that they are neither too restrictive nor too complicated.
The second part presents equations for the value function and the optimal stopping boundary
as a free-boundary (Stefan) problem and further presents the principle of smooth fit. This part
is illustrated by examples where the focus is on optimal stopping problems for the maximum
process associated with a one-dimensional diffusion.

1. Introduction

The purpose of this paper is to review some methodologies used in optimal stopping problems for
diffusion processes in R™ . The first aim is to give a quick review of the general optimal stopping
theory by introducing the fundamental concepts of excessive and superharmonic functions. The
second aim is to introduce the common technique to transform the optimal stopping into a free-
boundary (Stefan) problem such that explicit or numerical computations of the value function
and the optimal stopping boundary are possible in specific problems.

Problems of optimal stopping have a long history in probability theory and have been
widely studied by many authors. The results on optimal stopping were first developed in the
discrete case. The first formulations of optimal stopping problems for discrete time stochastic
processes were in connection with sequential analysis in mathematical statistics where the
number of observations is not fixed in advance (i.e. a random number), but is terminated by
the behaviour of the observed data. The results can be found in Wald [30]. Snell [27] obtained
the first general results of optimal stopping theory for stochastic processes in discrete time. For
a survey of optimal stopping for Markov sequences see Shiryaev [26] and the references therein.
For optimal stopping problems for continuous time Markov processes the first general results
were obtained by Dynkin [4] using the fundamental concepts of excessive and superharmonic
functions. There is an abundance of work in general optimal stopping theory using these
concepts, but one of the standard and master reference is the monograph of Shiryaev [26] where
the definite results of general optimal stopping theory are stated and it also contains an extensive
list of references to this topic. (Another thorough exposition is founded in El Karoui [5]). This
method gives results on the existence and uniqueness of an optimal stopping time under very
general conditions of the gain function and the Markov process. Generally, for solving a specific
problem the method is very difficult to apply. In concrete problem with smooth gain function
and continuous Markov process it is a common technique to formulate the optimal stopping

1991 Mathematics Subject Classification. Primary 60G40, 60J60. Secondary 60J65.
Key words and phrases. Optimal stopping, diffusion, Brownian motion, superharmonic (excessive) func-
tions, free-boundary (Stefan) problem, the principle of smooth fit, maximum process, the maximality principle.



2 Chapter 1

problem as a free-boundary problem for the value function and the optimal stopping boundary
along with the non-trivial boundary condition the principle of smooth fit (also called smooth
pasting ([26]) or high contact principle ([31]) ). The principle of smooth fit says that the first
derivatives of the value function and the gain function agree at the optimal stopping boundary
(the boundary of the domain of continued observation). The principle was first applied by
Mikhalevich [14] (under leadership of Kolmogorov) for concrete problems in sequential analysis
and later independently by Chernoff [1] and Lindley [12]. McKean [13] applied the principle
to the American option problem. Other important papers in this respect are Grigelionis and
Shiryaev [10] and van Moerbeke [29]. For a complete account of the subject and an extensive
bibliography see Shiryaev [26]. Peskir and Shiryaev [21] introduced the principle of continuous
fit solving sequential testing problems for Poisson processes (processes with jumps).

The background for solving concrete optimal stopping problems is the following. Before and
in the seventies the investigated concrete optimal stopping problems were for one-dimensional
diffusions where the gain process contained two terms: a function of the time and the process,
and a path-dependent integral of the process (see, among others, Taylor [28], Shepp [22] and
Davis [2]). In the nineties the maximum process (path-dependent functional) associated with
a one-dimensional diffusion was studied in optimal stopping. Jacka [11] treated the case of
reflected Brownian motion and later Dubins, Shepp and Shiryaev [3] treated the case of Bessel
processes. In both papers the motivation was to obtain sharp maximal inequalities and the
problem was solved by guessing the nature of the optimal stopping boundary. Graversen and
Peskir [7] formulated the maximality principle for the optimal stopping boundary in the context
of geometric Brownian motion. Peskir [20] showed that the maximality principle is equivalent
to the superharmonic characterization of the value function from the general optimal stopping
theory and led to the solution of the problem for a general diffusion ([20] also contains many
references to this subject). Recently Graversen, Peskir and Shiryaev [9] formulated and solved
an optimal stopping stopping problem where the gain process was not adapted to the filtration.

Optimal stopping problems appear in many connections. The problems have a wide range
of applications from theoretical to applied problems. The following applications illustrate that
point.

Mathematical statistics. The Bayesian approach to sequential analysis of problems on test-
ing two statistical hypotheses can be solved by reducing the initial problems to optimal stopping
problems. Testing two hypotheses about the mean value of a Wiener process with drift was
solved by Mikhalevich [14] and Shiryaev [25]. Peskir and Shiryaev [21] solved the problem of
testing two hypotheses about the intensity of a Poisson process. Other problems in this direc-
tion is the quickest detection problem (disruption problem). The problem to detect (alarm)
when there is a change in the mean value of a Brownian motion with drift with a minimal error
(false alarm) was investigated in Shiryaev [24]. Again an thorough exposition of the subject
can be found in Shiryaev [26].

Sharp inequalities. Optimal stopping problems are a natural tool to derive sharp versions
of known inequalities, as well as to deduce new sharp inequalities. By this method Davis [2]
derived sharp inequalities for a reflected Brownian motion. Jacka [11] and Dubins, Shepp and
Shiryaev [3] derived sharp maximal inequalities for a reflected Brownian motion and for Bessel
processes respectively. In the same direction see Graversen and Peskir [6] and [8] (Doob’s in-
equality for Brownian motion and Hardy-Littlewood inequality, respectively) and Pedersen [16]
(Doob’s inequality for Bessel processes).
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Mathematical finance. The valuation of American options is based on solving optimal stop-
ping problems and is prominent in the modern optimal stopping theory. The most famous result
in this direction is of McKean [13] solving the standard American option in the Black-Scholes
model. This example can further be interpreted when it is the right time to sell the stocks see
(Oksendal [31]. In Shepp and Shiryaev [23] the valuation of the Russian option is computed in
the Black-Scholes model. The payoff of the option is the maximum value of the asset between
the purchase time and exercise time. The literature devoted to pricing American options is
extensive and we refer to the survey of Myneni [15] and the references therein for an account
of the subject.

Optimal prediction. The development of optimal prediction of an anticipate functional of
a continuous time process was recently initiated in Graversen, Peskir and Shiryaev [9]. The
general optimal stopping theory can not be applied in this case since the gain process is not
adapted to the filtration due to the anticipate variable. The problem under consideration in [9]
is to stop a Brownian motion as close as possible to its ultimate maximum. The closeness is
measured by a mean-square distance. The problem can be viewed as an optimal decision that
should be based on a prediction of the future behaviour of the observable motion. For example
a trader predicting the maximum value of an asset in a given period. The argument is also
carried over to other applied problems where such a prediction plays a role.

The remainder of this paper is structured as follows. In the next section the formulation of
the optimal stopping problem under consideration is done in mathematical terms. The concepts
of excessive and superharmonic functions are introduced in Section 3. Then a review of some
results on the above concepts is made. In Section 4 the main theorem on optimal stopping of
diffusion processes is stated. In Section 5 the optimal stopping problem is transformed into a
free-boundary problem. Further the principle of smooth fit is introduced. The paper finishes
with three examples in Section 6 where the focus is on optimal stopping problems for the
maximum process associated with a diffusion.

2. Formulation of the problem

Let (X¢)i>0 be a time-homogeneous diffusion process with state space R" associated with
the infinitesimal generator

1) L =3 @) 2+ 1 S (00t (@)
) x= — Hil® 8xz 70 )i\ 8xz 833j

for z € R* where p:R* - R* and o : R* — R*™ are continuous and further oo’ is
non-negative definite. See QPksendal [31] for conditions on wu(-) and o(-) that ensure existence
and uniqueness of the diffusion process. Let (Z;) be a diffusion process depending on both
time and space (and hence is not time-homogeneous diffusion) given by (Z;) = (¢, X;) which
under P, starts at z = (t,z) . Thus (Z;) is a diffusion process in R; x R™ associated with
the infinitesimal generator

(2.2) Ly = 9 +L

. z= 5 T Llx
for z=(t,z) e Ry xR".
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The optimal stopping problem to be studied in later sections is of the following kind. Let
G: R, xR* - R be a gain function specified later. Consider the optimal stopping problem
for the diffusion (Z;) with the value function given by

(2.3) Vi(z) = sup E, (G(2,))

where the supremum is taken over all stopping times 7 for (Z;) . G(Z,) is set to be —oc
at the points w € Q where 7(w) = oo . There is two problems to be solved in connection
with the problem (2.3). The first problem is to compute the value function V, and the second
problem is to find an optimal stopping time 7, , i.e. a stopping time for (Z;) such that
Vi(z) = E,(G(Z,,)) . Note that optimal stopping times may not exist or may not be unique.

3. Excessive and superharmonic functions

In this section we introduce the two fundamental concepts of excessive and superharmonic
functions which we shall see in the next section are the basic concepts for a characterization of
the value function in (2.3). The facts presented here and a complete account (including proofs)
of this subject consult Shiryaev [26].

In the main theorem in the next section we need to assume that the gain function belongs
to the following class of functions. Let £(Z) be the class consisting of all lower semicontinuous
functions H : R, x R® — (—o0,00] satisfying either of the following two conditions

(3.1) E.(sup,so H(Z;)) < o0
for all z = (¢,x) . Note that if the function H is bounded from below then condition (3.2) is

trivial fulfilled. The following two families of functions are crucial in the sequel presentation of
the general optimal stopping theory.

Definition 3.1. (Excessive functions). A function H € L£(Z) is called excessive for (Z;)
if

E.(H(Z,) < H(2)
forall s >0 andall z=(t,z) .

Definition 3.2. (Superharmonic functions). A function H € L£(Z) is called superhar-
monic for (7;) if

E.(H(Z;)) < H(2)
for all stopping times 7 for (Z;) and all z = (¢,z) .

For basic and useful properties of excessive and superharmonic functions we refer to [26] and
[31]. From the two definitions it is clear that a superharmonic function is excessive. Moreover
in some cases the converse also holds which is not obvious. The result is stated in the next
proposition.

Proposition 3.3. Let H € L(Z) satisfy condition (3.2). Then H is excessive for (Z;) if
and only if H is superharmonic for (Z;) .

The definitions just introduced above play a definite role in describing the structure of the
value function in (2.3). The following definition is important in this direction.
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Definition 3.4. (The least superharmonic (excessive) majorant). Let G € L(Z) be
finite, i.e. G < oo . A superharmonic (excessive) function H is called a superharmonic
(excessive) majorant of G if H > G . A function G s called the least superharmonic
(excessive) majorant of G if

(i) G is a superharmonic (excessive) majorant of G and
(ii) if H is an arbitrary superharmonic (excessive) majorant of G then G < H .

Before we finish this section we give a general iterative procedure for constructing the least
superharmonic majorant under the condition (3.2).

Proposition 3.5. Let G € L(Z) satisfy condition (3.2) and G < oo . Define the operator
Q,G(2) = G(2) V E,(G(Z-4))
and set
Gjin(2) = (QFG)(2)
where QF 1is the n’te power of the operator (); . Then the function

G(z) = lim lim G;.(2)

j—o0n—00

15 the least superharmonic majorant of G .

There is a simple iterative procedure for the construction of G when the Markov process
and the gain function are “nice”. It is the following corollary of Proposition 3.5.

Corollary 3.6. Let (Z;) be a Feller process and let G € L(Z) be continuous and bounded
from below. Set
Gj(z) =supE,(G;_1(Z;))

>0
for 7>1 and Go=G . Then R
G(2) = lim G;(2)

j—oo
1S the least superharmonic majorant of G .

Remark 3.7. Proposition 3.5 and Corollary 3.6 are both valid under condition (3.2) and in this
case excessive and superharmonic functions are the same according to Proposition 3.3. When
condition (3.2) is violated the least excessive majorant may differ from the least superharmonic
majorant. Then the least excessive majorant is smaller than the least superharmonic majorant
since there is more excessive functions than superharmonic functions. The construction of the
least superharmonic majorant follows a similar pattern but is generally more complicated (see

[26]).
Remark 3.8. The iterative procedures to construct the least superharmonic majorant are dif-

ficult to apply in concrete problems. This makes it necessary to search for explicit or numerical
computations of the least superharmonic majorant.

4. Characterization of the value function

In this section we present the main theorem of general optimal stopping theory of diffusion
processes. The result gives existence and uniqueness of an optimal stopping time in problem
(2.3). The result could have been stated in a more general setting, but is stated with a minimum
of technical assumptions. For instance, the theorem also holds for a larger class of Markov
process such as Lévy processes. For details of this and the main theorem consult Shiryaev [26].
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Theorem 4.1. Consider the optimal stopping problem (2.3) where the gain function G is
lower semicontinuous and satisfies either (3.1) or (3.2). Then we have.

(I). The value function V. is the least superharmonic magjorant of the gain function G
with respect to the process (Zi)i>o , i-e.

Vi(2) = G(2)

forall z=(t,z) .
(IT). Define the domain of continued observation

(4.1) C={z|G(z) <Vi(2) }
and let 7, be the first exit time of (Z;) from C given by
(4.2) o=inf{t>0: 2, ¢ C}.

If 1. <00 P,-a.s. forall z , then 7. is an optimal stopping time for the problem (2.3), at
least when G is continuous and satisfies both (3.1) and (3.2).

(ITII). If there exists an optimal stopping time o in problem (2.3), then 7. <o P,-a.s.
for all z and 7. is also an optimal stopping time for problem (2.3).

Remark 4.2. Part (II) of the theorem gives the existence of an optimal stopping time. The
conditions could have been stated a little greater generality, and again we refer to [26] for more
details.

Part (III) of the theorem says that if there exists an optimal stopping time o then 7, is
also an optimal stopping time and is the smallest among all optimal stopping times for problem
(2.3). This extremal property of the optimal stopping time 7, characterizes it uniquely.

Remark 4.3. Sometimes it is convenient to consider “approximate” optimal stopping times.
An example is given in the setting of Theorem 4.1(II), if the stopping time 7, (4.2) does not
satisfies 7, < oo P,-a.s. Then we have the following approximate stopping times. For ¢ > 0
let C.={z2|G(z) <Vi(z)—e} . Let 7. be the first exit time of (Z;) from C. given by
T.=inf{t>0: Z; ¢ C.} . Then 7. < oo P,-as. and 7. are approximate optimal in the
following sense

lim B, (G(Z,.)) = Vi(2)

el0
for all z = (t,z) . Further we have that 7. t 7, as €] 0.

At first glans it seems that the initial setting of the optimal stopping problem (2.3) and
Theorem 4.1 only cover the cases where the gain process is a function of time and the state of
the process (X;) . But the next two examples illustrate that problem (4.1) also cover some
cases where the gain process contains path-dependent functional of (X;) where it is a matter
of defining (Z;) properly.

For simplicity, let n = 1 in the examples below and moreover assume that (X;) solves
the stochastic differential equation

dXt = /J,(Xt) dt + O'(Xt) dBt

where (B;) is a standard Brownian motion.
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Example 4.4. (Optimal stopping problems involving an integral).
Let FF: Ry xR =+ R and c: R — R, be continuous functions. Consider the optimal
stopping problem

(4.3) W.(t.2) = sup B, (F(t LX) - /0 " (X du) .

The integral term might be interpreted as an accumulated cost. This problem can be reformu-
lated to fit in the setting of problem (2.3) and Theorem 4.1 by the following simple observations.

Set A; = f(f ¢(X,)du and define the process (Z;) by Z; = (t, X, Ay) - Thus (Z;) isa
diffusion process in R?® associated with the infinitesimal generator

0 0
LZ = a‘l‘Lx—C(.’L’)%

for z = (t,x,a) . Define the gain function G(z) = F(t,z) —a and consider the new optimal
stopping problem
Vi(2) = sup E(G(Z)) -

The new problem fits into the setting of Theorem 4.1 and it is clear that W, (z) = V.(0,x,0) .
Note that the gain function G is linear in a .

Another method is by It6 formula to reduce the new problem (4.3) to the setting of the initial
problem (2.3). Assume that we have a smooth function z + D(z) satisfying LxD(z) = ¢(z).
Then It6 formula applied to D(X;) gives

D(X,) = D(z) + /Ot LxD(X,)du + M,

where M,; = fot D'(X,)o(X,)dB, is a continuous local martingale. By optional sampling we
have that E,(M,) =0 (by localization and some uniform integrability conditions) and hence

E,(D(X,)) = D(z) + Ew(/o c(Xy) du) .

Therefore the problem reduces to solving the initial problem (2.3) where the gain function is
given by G(t,z) = F(t,xz) — D(z) .

Example 4.5. (Optimal stopping problems involving the maximum process).

Peskir [20] made the following observation. Let (S;) be the maximum process associated with
(X;) given by S; = maxo<,<; X, . Then (Z;) = (X;,S;) is a two-dimensional process with
state space { (z,s) € R? |2 < s} (see Figure 1). It can be verified that (Z,) is a continuous
Markov process associated with the infinitesimal generator

Lz=Lx for x<s
9 _
ds
with Lx in (2.2). Hence the optimal stopping problem
Vi(z,s) =sup E, 4 (G(XT, ST))

0 for x =35

for x < s fits in the setting of Theorem 4.1.
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A maxo<r<t Br

> B,

Figure 1. A computer simulation of a path of the two-dimensional process
(Bi(w), max g<r<¢ Br(w)) where (B;) is a Brownian motion.

5. The free-boundary problem and the principle of smooth fit

For solving a specific optimal stopping problem the superharmonic characterization is not easy
to apply. So to carry out explicit computations of the value function we need to use another
methodology. In this section we consider the optimal stopping problem as a free-boundary (Ste-
fan) problem. This is also important for computations of the value function from a numerical
point of view.

First we need to introduce the notation of characteristic generator (see [31]) which is an
extension of the infinitesimal generator. Let (Z;) be the diffusion process given in Section 2.
For any open set U C R, x R we associate the first exit time from U of (Z;) given by

w=inf{t>0: 2, ¢U}.

Definition 5.1. (Characteristic generator). The characteristic generator Az of (Z;) is
defined by

Azf(z) = lim E, (f (5(2) f(2)

where the limit is to be understood in the following sense. The open sets U; decrease to the
point z ie. Ujy CU; and Nj»U; ={z} . If E,(7y) =00 for all open sets U 3 z , we set
Azf(z) =0 . Let D(Az) be the family of Borel functions f for which the limit exists.

Remark 5.2. As already mentioned above the characteristic generator is an extension of the
infinitesimal generator in the following sense.

D(Lz) CD(Az) and Lzf = Azf
for f e D(Lg) .

Assume in the sequel that the value function V, in (2.3) is finite, i.e. Vi(z) < oo . Let
C={z€ R xR"|Vi(z) > G(z)} be the domain of continued observation (see Theorem 4.1).
Then the following result gives equations for the value function in the domain of continued
observation (see [26]).
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Theorem 5.3. Let the gain function G be continuous and satisfy both conditions (3.1) and
(3.2). Then the value function V.(z) for z € C belongs to the domain D(Az) of the
characteristic generator and solves the equation

(5.1) AzV.(2) =0
for z€eC .

Remark 5.4. Since the gain function G is continuous and the value function V, is lower
semicontinuous, the domain of continued observation C' is an open setin Ry xR" . If 7¢ < o0
P,-a.s. then we have from Theorem 4.1 that

(5.2) Vi(2) =E,(G(Z:,))

From general Markov process theory we have that the function in (5.2) solves the equation
(5.1) and Theorem 5.3 follows directly. In other words, we are led to formulate equation (5.1).

By Remark 5.2, if the value function is C? in the domain of continued observation, the
characteristic generator can be replaced by the infinitesimal generator. This has the advantage
that the infinitesimal generator is explicitly given.

Equation (5.1) is referred to as a free-boundary problem. The domain of continued obser-
vation C' is not known a priori but must be found along with the unknown value function V,
. In general, a free-boundary problem has many solutions and we need to add additional condi-
tions (e.g. the principle of smooth fit) which the value function V, satisfies. These additional
conditions are not always enough to determine V, . In such a case we either guess or find more
sophisticated conditions (e.g. the maximality principle, see Example 6.1 in the next section).

The famous principle of smooth fit is one of the most used non-trivial boundary condition
in optimal stopping. The principle is so useful that it is frequently applied in the literature
(see, among others, McKean [13], Jacka [11] and Dubins, Shepp and Shiryaev [3]).

The principle of smooth fit. If the gain function G is smooth then a non-trivial boundary
condition for the free-boundary problem might be the following

8‘/;2) —8—G2 and 8V;Z —an
ot z2€0C N ot z€0C 8:1:1 2€90C N 8:1:1 z€0C

for i=1,... ,n.

A result in Shiryaev [26] gives that the principle of smooth fit holds under fairly general
assumptions. The principle of smooth fit is a very fine condition in the sense that the value
function often is precisely C' at the boundary of the domain of continued observation. This is
exactly what happens in the problems in the next section.

The above results can be used to formulate the following method for solving a particular
stopping problem.

A recipe to solve optimal stopping problems.

Step 1. First one tries to guess the nature of the optimal stopping boundary. Then by ad hoc
arguments one formulates a free-boundary problem with the infinitesimal generator
and some boundary conditions. The boundary conditions could be the trivial ones (e.g.
the value function is continuous, odd/even, normal reflection condition etc.) and the
non-trivial ones such as the principle of smooth fit and the maximality principle.

Step 2. One solves the formulated free-boundary system and maximizes over the family of
solutions if there is no unique solution.
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Step 3. Finally one verifies that the guessed candidates for the value function and the optimal
stopping time indeed are correct (e.g. using It6 formula).

The methodology has been used in, among others, Dubins, Shepp and Shiryaev [3], Graversen
and Peskir [7], Pedersen [16] and Shepp and Shiryaev [23].

It is generally difficult to find the appropriate solution of the (partial) differential equation

Therefore it is of most interest to formulate the free-boundary problem such that the dimension
is as small as possible. The examples below give some cases where the dimension can be reduced.
For simplicity let n = 1 and moreover assume that (X;) solves the stochastic differential
equation

dXt = M(Xt) dt + O'(Xt) dBt

where (B;) is a standard Brownian motion.

Example 5.5. (Integral problem and discounted problem). In the cases of linear or
multiplicative functionals we have from general Markov process theory that the free-boundary
problem is of dimension one.

1. Let F:R— R and c:R — R; be continuous functions and let the gain function be
given by G(z,a) = F(z) — a which is linear in a (see Example 4.4). Let (Z;) = (Xy, Ay)
where A; = fot ¢(X,) du and consider the optimal stopping problem

Vila) = sup E, (F(x,) - /0 " (X du) .

At first glans it seems to be a two-dimensional problem, but from Markov process theory we
have that the free-boundary problem can formulated as

LxV.(z) = —c(x)

for x in the domain of continued observation which is also clear from the last part of Exam-
ple 4.4. This is a one-dimensional problem.

2. Given the gain function G(t,z) = e F(z) where X > 0 is a constant. Let (Z;) =
(t,X;) and consider the “two-dimensional” optimal stopping problem

Vi(z) = sgp E, (e’” F(XT)) )

The free-boundary problem can in this case be formulated as

LxVi.(z) = AVi(x)
for x in the domain of continued observation. Again this is a one-dimensional problem.
Example 5.6. (Deterministic time-change method). This example uses a deterministic

time-change to reduce the problem. The method is described in Pedersen and Peskir [19].
Consider the optimal stopping problem

Va(t, ) = sup Eq (alt +7) X,)

where « is a smooth non-linear function. Thus the value function V., should solve the
following partial differential equation

oV,
ot

(t,z) + LxVi(t,z) =0
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for (t,z) in the domain of continued observation.

The time-change method is to transform the original problem into a new optimal stopping
problem such that the new value function solves an ordinary differential equation. The problem
is to find a deterministic time-change ¢+ o, satisfying the following two conditions.

(i) t + oy is continuous and strictly increasing
(ii) there exists a one-dimensional time-homogeneous diffusion (Y;) with infinitesimal gen-
erator Ly such that a(o;) X,, = e MY, for some A€ R.

The condition (i) ensures that 7 is a stopping time for (Y;) if and only if o, is a stopping time
for (X;) . Substituting (ii) in the problem we obtain the new (time-changed) value function

W.(y) = sup E, (e_ATYT) .

As we saw in Example 5.5 the new problem might solve the ordinary differential equation
Ly Wi (y) = AW.(y)

in the domain of continued observation. Given the diffusion (X;) the crucial point is to find
the process (Y;) and the time-change o; fulfilling the two conditions above. By It6 calculus
it can be shown that the time-change given by

1nf T>O‘/ du>t

where p(-) is such that the two terms

o/ (t) 1 2 2 1
( o) y—l—a(t)u(%))m and «(t)’o (ﬁ)m
do not depend on ¢t , will fulfill the above two conditions. This clearly imposes the following
conditions on « to make the method applicable

M(%) =v(t)G1(y) and 02($) = a(t G2( )

where 7(t) , G1(y) and Gs(y) are functions required to exist. For more information and
remaining details of this method see [19] (see also [9]).

6. Examples and applications

In this section we solve some problems by applying the recipe established in the previous section.
The focus will be on optimal stopping problems for the maximum process associated with a
one-dimensional diffusion.

Let n = 1. Assume that (X;) is a non-singular diffusion with state space R , i
x + o(z) > 0 and moreover that there exists a standard Brownian motion (B;) such that
(X:) solves the stochastic differential equation

Let S; = (maxo<,<;X,) Vs denote the maximum process associated with (X;) that starts
at s >z under P, ;. The scale function and speed measure of (X;) are given by

S(z) = /0 " exp (- 2 /0 ' 02((T)) dr) du and m(dz) = md@«
for zeR.

The first example is also important from the general optimal stopping theory point of view.
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Example 6.1. (The maximality principle). The maximality principle introduced in this
example was proved by Peskir [20]. Let z — ¢(x) > 0 be a continuous (cost) function.
Consider the optimal stopping problem with the value function

(6.1) Vi(z,s) =sup E, (ST - /OT c(Xy) du)

T

where the supremum is taken over all stopping times 7 for (X;) satisfying

(6.2) E$( /0 " (X du) <

forall x <s.

1. The process (X;,S;) with state space {(z,s) € R|z < s} changes only in the second
coordinate when it hits the diagonal z = s in R? (see Figure 1). It can be shown that
it is not optimal to stop on the diagonal. Due to the positive cost function ¢(-) we might
believe that the optimal stopping boundary should be a function staying below the diagonal,
i.e. s+ g.(s) < s. Thus the stopping time 7, =inf{¢ >0 : X; < g.(S;) } should be optimal
or the domain of continued observation should be C = {(z,s) € R?|g.(s) <z < s} . To
compute the value function and the optimal stopping boundary it is natural to formulate the
following free-boundary problem

(6.3) LxV(z,s) = c(z) for g(s)<z<s with s fixed
(6.4) aa—v(x, s) =0  (normal reflection)
S T=5—
(6.5) V(z,s) e s (instantaneous stopping)
z=g(s)+
(6.6) %(x, |, =0 (smooth fi).

Note that (6.3) and (6.4) follow from Example 4.5 and Example 5.5. The condition (6.5) is
clear and since the setting is smooth we also believe that the smooth fit condition (6.6) holds.
(The theorem below shows that the guessed system indeed is correct).

2. Define the function

T

(6.7) Vilass) =5+ [ (S(a) ~ S(w)elu) m(d)

9(s)
for g(s) <z <s andset Vj(z,s) =s for z < g(s). Let the C*'-function s+ g(s) solve
the first order non-linear differential equation

2 1
(6.8) J(s) = —2 (9(s)S"(g(s))

2¢(g(s)) (S(s) — S(g(s)))
For a solution s — g(s) < s of equation (6.8) the corresponding function V,(z,s) in (6.7)
solves the system in the region g(s) <z <s .

The problem now is to choose the right optimal stopping boundary s+ g(s) < s . To do
so we need a new principle, and it will be the maximality principle. The main observations in
[20] were the following.

(i) g — Vg(z,s) is increasing.
ii) The function (a,z,s) — V,(x,s) —a is superharmonic for the Markov process (Z;) =
! t
(Ay, Xy, Sy) (for stopping times 7 satisfying (6.2)), where A, = [ ¢(X,)du+a .
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By the superharmonic characterization of the value function in Theorem 4.1 and the above
two observations we are led to formulate the following principle for determining the optimal
stopping boundary.

The maximality principle. The optimal stopping boundary s — g.(s) for the problem
(6.1) is the maximal solution of the differential equation (6.8) which stays strictly below the
diagonal in R? (and is just called the maximal solution in the sequel).

3. It was proved in [20] that this principle is equivalent to the superharmonic characteriza-
tion of the value function. The result is formulated in the next theorem and is motivated by
Theorem 4.1.

Theorem 6.2. Consider the optimal stopping problem (6.1). Then we have.
(I). Let s+ g.(s) denote the mazimal solution of (6.8) which stays below the diagonal in
R?. Then the value function is given by

T

Viws) =4 /g*(s) (S(2) = S(u))e(w) m(du) for g.(s) <z <s
° for < g.(s).

(IT). The stopping time 7. = inf{t >0 : X; < ¢.(S:) } is optimal whenever it satisfies
condition (6.2).

(IIX). If there exists an optimal stopping time o in (6.1) satisfying (6.2), then 7, < o
P, s-a.s. for all (x,s) , and 7. is also an optimal stopping time.

(IV). If there is no mazimal solution of (6.8) which stays strictly below the diagonal in R?,
then Vi(z,s) =oc for all (z,s) , and there is no optimal stopping time.

For more information and details see [20]. A similar method was used in Pedersen and
Peskir [18] to compute the expectation of Azéma-Yor stopping times.

The theorem extends to diffusions with other state spaces in R . In particular non-negative
diffusion version of the theorem is of interest to derive sharp maximal inequalities which will
be applied in the next example.

Peskir [20] conjectured that the maximality principle does holds for the discounted version of
problem (6.11). In Shepp and Shiryaev [23] and Pedersen [17] the principle is showed to hold in
specific cases. A technical difficult problem in verifying the conjecture is that the corresponding
free-boundary problem may have no simple solution and hence defines the (optimal) boundary
function implicitly.

Example 6.3. (Doob’s inequality for Brownian motion). This example is an application

of Example 6.2 and the inequality below was derived by Graversen and Peskir [6]. Consider
1

the optimal stopping problem (6.1) with u(z) = sp(p — 1) 2172 o%(x) = p?x* %P and

c(r) = cx®2/? for ¥ >0 where p>1 and ¢ > 0 are constants. Then (X;) may be
realized as X; = |B; + z|? . Then the value function is

Vi(w,s) = 5 = 21 0:(8) P2+ T0u(s) + iy @

where s+ g.(s) < s is the maximal solution of the differential equation

py(s)'/?

g’(s) = 26(31/11 — g(s)l/l’) .
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The maximal solution can be found to be g.(s) = as where 0 < o <1 is the greater root
of the equation

(6.9) a—a' VP 4+ p/(2¢) =0 .
One can show that the equation (6.9) admits two roots if and only if ¢ > pP*t1/(2(p — 1)P71).
The stopping times 7.(c) = inf{t >0 : X; < aS;} satisfy E,.(7.(c)??) < oo if and only

if ¢ > pP*t/(2(p — 1)»7') . Then by an extended version of Theorem 6.2 for non-negative
diffusions and an observation in Example 5.5 we have by the definition of the value function

for ¢ > pPt/(2(p—1)P"') that

E(maXOStST | B + xlp) < p(pc—l) E(lBT + x|p) + Vi(z,x) — p(;vc—l) xP

for all stopping times 7 for (B;) satisfying E(7?/%) < oo . Letting ¢ | p**'/(2(p — 1)*71) ,
we get Doob’s inequality.
Theorem 6.4. Let (B;) be a standard Brownian motion started at = under P, for © >0,

let p> 1 be given and fived, and let T be any stopping time for (B;) such that E,(t7/?) < cc.
Then the following inequality is sharp

p
(6.10) E(max <<, |B; 4 z|P) < (ﬁ) E(|B; + ") — g

The constants (p/(p —1))? and p/(p— 1) are the best possible and the equality in (6.10) is
attained through the stopping times 7, =inf{t >0 : X; < aS;} for ¢l p’*/(2(p—1)P1)
where 0 < o <1 is the greater root of equation (6.9).

For details see [6]. The results are extended to Bessel processes in Dubins, Shepp and
Shiryaev [3] and Pedersen [16].

Example 6.5. (Optimal prediction of the ultimate maximum of Brownian motion).
This problem was formulated and solved by Graversen, Peskir and Shiryaev [9]. In this example
we shall predict the ultimate maximum of Brownian motion by a mean-square distance in an
optimal way. Let M be the family of all stopping times 7 for (B;) satisfying 7 <1 and
let Sy = maxo<,<¢ B, . Consider the optimal stopping problem with value function

: 2
(6.11) V, = Tlen/\fAE(Sl - B,)".

This problem does not fall under the general optimal stopping theory since the gain process is
not adapted to the natural filtration of (B;) . The idea is to transform problem (6.11) into an
equivalent problem that can be solved by the method introduced in the previous section.

To follow the above plan we will need the function

@(l‘) = / \/LQ_W e—u2/2 du

for x € R. Since S is square integrable then by Ito-Clark representation theorem formula
we have that

1
51:E51+/ H,dB,
0

where (H;) is a unique adapted process satisfying E( fol H? du) < oo . Further it is known

that s B
H=2(1-¢ 2 2 )
=2(1-2(7=))
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If (M,;) denotes the square integrable martingale M, = fg H,dB, , we have by martingale
theory that E(S; — E(f, (1—2H,)du)+1 forall 7€ M . Hence problem (6.11) can

be represented as
T (S,—B
V.= inf E ——|du)+1
reM </0 c(w—l—u) “)

where c¢(z) = 4®(z) — 3 . By Lévy’s theorem and general optimal stopping theory, we have
that problem (6.11) is equivalent to

_ "o 1Bl
K_rlen/\fAE</0 c(m du) +1.

The form of the gain function indicates that the deterministic time-change method introduced
in Example 5.6 can be applied successfully. Let o, = 1 — e # be the time-change and let
(Z)t>0 be the time-changed process given by Z, = B,,/+/1 — o0, . It can be shown by Ito
formula that (Z;) is the strong solution of the stochastic differential equation

dZ, = Z,dt + V2 dp,

where (3;);>0 is a Brownian motion. Hence (Z;) is a diffusion with the infinitesimal generator

for z € R . Substituting the time-change we get

V*:h;fE</OJ -2 (| Z, |)du)

Hence the initial problem (6.11) reduces to solving

w(e) = ot B[ ez

where the infimum is taken over all stopping times o for (Z;) and V, = W,(0) . This is a
problem that we can solve with the method from Section 5.

We might believe that the domain of continued observation is a symmetric interval around
zero, i.e. C = {z € R|z € (—2.,2)} and the value function is an even C'-function or
equivalent W;(0) = 0 . Therefore we are led to formulate the following free-boundary system

(Lz —2)W(z) = —c(|2]) for —z. <2<z

W(xz,) =0 (instantaneous stopping)
W' (£z,) =0 (smooth fit)
wW'(0)=0.

The system has a unique solution given by
(6.12) W (z) = ®(z.) (14 2°) —29'(2) + (1 — 2°) ®(2) — 3/2

for z € [0,2.] where z, is the unique solution of the equation (6.13). By It6 formula it can
be proved that W(z) in (6.12) is the value function and o, =inf{¢ >0 : |By| > /1 -t} is
an optimal stopping time. Transforming the value function and the optimal strategy back to
the initial problem (6.11) we have the following result (for more details see [9]).
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Theorem 6.6. Consider the optimal stopping problem (6.11). Then the value V, is given by

V, =2®(z,)—1=0.73...

where z, = 1.12... 1is the unique root of the equation
(6.13) 40 (z,) — 22,9 (2,) —3=0.
The following stopping time is optimal 7, =inf{t >0 :S;, —B; > z./1 -t} .
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Computing the Expectation of the
Azéma-Yor Stopping Times

J. L. PEDERSEN and G. PESKIR

Given the maximum process (S;) = (maxo<r<;X,) associated with a diffusion ((Xy),P,),
and a continuous function g satisfying g¢(s) < s , we show how to compute the expectation
of the Azéma-Yor stopping time

T =inf {t >0 : X; < g(S¢) }

as a function of z . The method of proof is based upon verifying that the expectation solves a
differential equation with two boundary conditions. The third ‘missing’ condition is formulated
in the form of a minimality principle which states that the expectation is the minimal non-
negative solution to this system. It enables us to express this solution in a closed form. The
result is applied in the case when (X;) is a Bessel process and ¢ is a linear function.

1. Formulation of the problem

Let ((X:),P,) be a non-negative canonical diffusion with the infinitesimal operator on (0, c0)
given by
0? 0
Lx = i0%(z) =— + p(z) =—
x = 10%(a) oy + u(x) o
where 0% and p are continuous functions on (0,00) and o? is furthermore strictly positive
(see [6]). Assume there exists a standard Wiener process (B;) such that for every z > 0

(11) dXt = ,U,(Xt) dt + O'(Xt) dBt s XO =X Pm—a.s.

The main purpose of this paper is to compute the expectation of the Azéma-Yor stopping time
(see [1]). More precisely, for any continuous function g on [0,00) satisfying 0 < g(s) < s
for s> 0, the Azéma-Yor stopping time is defined as follows

T, =inf{t >0 : X; < g(S)}
where (S;) is the maximum process associated with (X;)
(12) St = (maxogrgt Xr) Vs

started at s > 0 . The main aim of this paper is to present a method for computing the
function

2

m(x,s) = Eg (1)
for 0 < x < s . Here the expectation is taken with respect to the probability measure
P, := P, under which the process (X;) starts at = and the process (S;) starts at s.
The motivation to compute the expectation of such stopping times comes from some optimal
stopping problems (see [2], [4], [3] and [7]). In these problems it is of interest to know the
expected waiting time for the optimal stopping strategy which is of the form 7, for some g .

1991 Mathematics Subject Classification. Primary 60G60, 60J60. Secondary 60G44, 60J25.
Key words and phrases. Diffusion, the Azéma-Yor stopping time, the minimality principle, scale function,
infinitesimal operator, the exit time, normal reflection, It6-Tanaka’s formula, Wiener process, Bessel process.
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In view of this application we have assumed that the diffusion (X;) and the function s+~ g(s)
are non-negative, but it will be clear from our considerations below that the results obtained
are generally valid.

The method of proof relies upon showing that the expectation of the stopping time solves a
differential equation with two boundary conditions. The third ‘missing’ condition is formulated
in the form of a minimality principle which states that the expectation is the minimal non-
negative solution to this system (see Figure 1 below). It enables us to pick up the expectation
among all possible candidates in a unique way. The minimality principle is the main novelty
in this approach (compare with [2], [4] and [3]).

In Section 2 the minimality principle is formulated, and in Section 3 the existence and
uniqueness of the minimal solution is proved. The main theorem is proved in Section 4, and in
Section 5 an application of the theorem is given

2. The minimality principle

In the first part of this section we shall observe that the function z — m(z,s) solves a
differential equation with two boundary conditions. In the remaining part of the section we
will present the minimality principle as the ‘missing’ condition, which will enable us to select
the expectation of the stopping time in a unique way.

In the sequel we need the following definitions and results. The scale function is for = > 0
given by

S@) = [ o) du
where

oa) = exp (=2 [ uu) o) du).
We define as usual the first exit time from an interval by
Tap =inf {t >0 : X; & (a,b) }
for 0 <a < b, and the following formulas for 0 < a <z < b are well-known

S(b) — S(x)
S(b) = S(a)

L ["5() - S(x) S(u) - S(a) b 5(x) - S(a) S(b) — S(w)
22)  Biu)=2 [ S5()—5(a) o?(w)é() “+2AAﬂw—sw>a%waw du

Let g be a continuous function satisfying 0 < g(s) < s for s> 0 such that m(z,s) =
E, ;(7,) is finite for all 0 < 2 < s . We will now state the first result. Whenever s > 0 is
given and fixed, the function z — m(z,s) solves the differential equation

(2.1)  Pu(X,,=a)=1-P,(X,

a,b

=b) =

(2.3) Lxm(z,s) = -1 for g(s)<z<s
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with the following two boundary conditions

(2.4) m(z, s) e 0 (instantaneous stopping)
r=g(s)+
0
(2.5) a—m(x, s) =0 (normal reflection) .
S T=5—

A first step in the direction of verifying that (z,s) — m(z,s) satisfies the system above is
contained in the following result.

Lemma 2.1. The function s+ m(s,s):= M(s) is C' and satisfies the equation

e L [ S-S
(2:6) M) = 55— 5606) (M” 2/9@ (@) p(u) d)'

Proof. The proof is essentially contained in Lemma 1 and Lemma 2 in [4]. Alternatively, to
obtain a better feeling why (2.6) holds, as well to derive it in another way, one could use (2.7)
below with (2.1)+(2.2) above to verify that (0m/dz)(s—, s) equals the right-hand side in (2.6),
thus showing that (2.5) is equivalent to (2.6), and then follow the second part of the proof of
Theorem 4.1 below. 0

Let g(s) <z <s be given and fixed. It is immediately seen that
Tg = Ty(s),s + Tg © GTQ(S),S l{XTg(s),SZS} P, -a.s.
and by applying strong Markov property we get
(2.7) m(z, s) = Ey(1y(s),s) + m(s, 8) Pu(Xr = 5) -

From (2.1) and (2.2) we see that G(z) = P,(X; ,,, = 5) and H(z) = E;(7y(s),s) solve
the following well-known systems respectively

LxG(z) =0 for g(s)<z<s

(28) Gla(s) = 1- G(s) = 0

LxH(z)=—-1 for g(s)<z<s

29 H(g(s)) = () =0
Consequently, by (2.6)-(2.9) we easily verify that = — m(xz,s) solves the system (2.3)-(2.5).

Note since 7, may be viewed as the exit time by diffusion (X;,S;) from an open set,
the equation (2.3) is well-known and the condition (2.4) is evident. The condition (2.5) is less
evident but is known to be satisfied in a similar context (see [6] p. 118-119).

Unfortunately (z,s) — m(z,s) is not uniquely determined by (2.3) and the two boundary
conditions (2.4) and (2.5). Thus we need another condition to determine (z,s) — m(z,s)
uniquely. We formulate the third ‘missing’ condition in the form of a minimality principle (see
Figure 1 below): the expectation m(z,s) is the minimal non-negative solution to the system
(2.3)-(2.5).
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3. Existence and uniqueness of the minimal solution

Since m(z,s) =0 for 0 < z < g(s) we only need to consider m on g(s) <z < s.
Throughout we shall consider the system

Lxm(z,s)=—1 for g¢(s) <z <s

=0
(3.1) LR N
om
E(J?,S) e = 0 .

Motivated by the minimality principle, in this section we shall prove the existence (and
uniqueness) of a minimal non-negative solution to (3.1). Let us introduce the following notation:

(3.2) M={m:Dw R|me C>(D°)NC(D), m solves (3.1) and m > 0}

where D = {(z,s)|g(s) <z <s,s>0} and D° is the interior of D . The function m
belongs to C*'(D°) if =+ m(z,s) is C? and s+ m(z,s) is C' on D°.

The main result of this section may be now formulated as follows. If M is non empty
then it contains a minimal element, i.e.

m, =inf{m|me M} eM

where the infimum is taken pointwise. Combined with the results in Section 2 this will be
deduced in the proof of Theorem 4.1 below by using It6 calculus. The proof we present here is
based upon the uniqueness theorem for the first and second-order differential equations.

For this note that the uniqueness theorem implies that if m; and my belong to M then
either my > my or m; <my on D°. Let (z9,50) € D be given and let {m,},>1 be a
sequence of functions from M such that my,(zo,s0) 4 m.(xg, So) . Due to the remark just
mentioned, the sequence {my},>1 is decreasing, and therefore the limit exists everywhere, i.e.

M (z,5) | m(, 5)
for all (x,s) € D . If we can show that
(3.3) m e M

then using the uniqueness theorem it follows that m =m, .

In order to prove (3.3) we first show that z — m(z,s) solves the differential equation
in (3.1). By the instantaneous stopping condition, and the uniqueness theorem, m, can be
written as

My (2, 5) = E(74(5),5) + An(s) Po(X

Tg(s),s
where s+ A,(s) is a C'-function. Since {mn}n>1 is a decreasing sequence of functions, the
sequence {Ay},>1 is also decreasing, and therefore it converges pointwise to a function A ,
i.e.

= s)

An(s) L A(s)
for n — oo . Hence z — m(z,s) solves the differential equation in (3.1).
Obviously z +— m(x,s) satisfies the first boundary condition (instantaneous stopping)

m(z,s) =0
z=g(s)+

since each = +— m,(x,s) satisfies this condition.
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Finally, to verify the second boundary condition (normal reflection), note that straight-
forward computations based on the normal reflection condition and (2.1)+(2.2) show that
s+ Ap(s) solves the following differential equation

Py — 9(s) g2 [ SW=566),,
(3.4) An(s) = S(s) — S(g(s)) (A"( ) 2/9(3) o?(u)p(u) ‘ )

or equivalently

_ [ s w2 SO=S6W) N,
An(s) = An(s0) _/So S(u) — S(g(u)) (A"( ) 2/g<u) o) ) ’

Applying the monotone convergence theorem, we find that s — A(s) also solves the differential
equation (3.4), and we can conclude that m € M .

4. The expectation of the Azéma-Yor stopping times
The main result of the paper is contained in the following theorem.

Theorem 4.1. Let ((Xy),P;) be the non-negative diffusion defined in (1.1) and let (S;) be
the mazimum process associated with (X;) in (1.2). Let g be a continuous function on [0, 00)
satisfying 0 < g(s) < s for s >0 and let us define the stopping time

T, =inf{t>0: X; <g(S)}.
If M from (3.2) is non-empty, then E,(7,) is finite and is given by

_ mu(z,s) for g(s) <z <s
Ew,s(Tg) - {0 fm" O<z < g(S)

where (z,s) — my(z,s) is the minimal element in M . The converse is also true, and we
have the following explicit formula and a criterion for verifying that M is non-empty

_, S(6)-56) 7 Sw-S) , ,S@-See) [ [S6)-5w,
Beal70) = 2 5 5 g (s)) /g@ @) O ”S@)—S(g(s)){/w 2 (w(u)

v/ Oos<u> f(gggw)) (élftg;gg ))‘") e (‘/ s<r>f(£ig<r»dr) d“}

for g(s) <z <s with Ey4(ry) =0 for 0 <z < g(s), which is valid in the usual sense (if
the right-hand side in (4.1) is finite, then so is the left-hand side, and vice versa)

(4.1)

Proof. For (zg,s0) € D given and fixed, consider the set
G={(z,s)]|g9(s) <x<s+1}
Choose bounded open sets G; C Gy C ... such that

(xo,80) € G1  and U G,=0G.

n=1
Define the exit time of the two-dimensional diffusion (X, S;) from G, by
Op = 1Ilf{t >0 : (Xt,St) ¢ Gn}

Note that Eg s, (0n) <00 and o0, 17, Py a5 as n— 00 .
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Let m be any function in M . Note that m € C*' and (S;) is of bounded variation

so that It6 formula can be applied (see Remark 1 in [5] p. 139). In this way we get P, ,-a.s.
tAon 6m
m(Xt/\O'n’ St/\an) = m($0, 80) + oz (Xu7 S ) ( )dBU
0
tAo tAo
n n 8
+/ Lxm(Xa, Sy) du +/ T (X4, Sy) dS,, -
0 0 0s
Due to the normal reflection condition the last integral is identically zero. Since the set of
those u > 0 for which X, = S, is of Lebesgue measure zero, and Lxm(z,s) = —1 for

g(s) <z < s, we can conclude that P, -a.s.

/ Lxm(Xy, Sy) du = —oy, .
0

Let {7%}r>1 be alocalization for the local martingale

t/\anam
X,, B, .
| sy ax) d

Then by Fatou’s lemma and the optional sampling theorem we get
Ewo,so (m(Xan7 San) S h]?_l)logf Ezo,so (m(Xan/\Tk7 San/\Tk))

O'n/\Tk am

= m(zo, So) + liggglemo,SO (/0 5 — (X, Su)o(Xy) dBy — (0n A Tk))

S m(IL'(), 80) - Ewo,so(an) :

Thus we have the inequality E, ,(0,) < m(zg,s0) for all n > 1, and by monotone
convergence it follows Eg 5, (7,) < m(zg,s) . From this we see that E, ,(7,) is finite. By
the results in Section 2 we know that the function (z,s) — E, ((7,) satisfies the system (3.1),
and since m is arbitrary, hence we obtain

Ewo,so (Tg) = M (x()’ 80) :

This completes the first part of the proof.
To derive (4.1) note that (2.6) is a first-order linear differential equation whose general
solution is easily found to be
< ’ ¢(u)

CexD(/ S s)< @) d“)‘QeXp S(w) — 5(g(w) d“)'
S(r) — S(g(u u r
/ {s<u>—s<g<u)></g<u> ((r)%r)qb((gr() : d’“) e"p(‘f 50) f(S)<g<r>> dr)}d“

=Cow (/ | S(u> f(s)wm)) d“) o {Sw) f(Z*)(g(u» (/<> s<722;;<5§u)> dr) |

exp< | 5525 dr)}du

whenever the last 1ntegral is ﬁnlte. Letting s — oo we find that C' =0 corresponds to the
minimal non-negative solution. Combing this with (2.7) and (2.1)+(2.2), we obtain the explicit
formula (4.1). The proof of the theorem is complete. O

S
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5. An example

Let ((X:),P,) denote the Bessel process of dimension « , where for simplicity we assume
that a > 1 but « # 2. (The other cases of a could be treated similarly). Thus (X;) is a
non-negative diffusion with the infinitesimal operator on (0, 00) given by

o190 aal0
X7 2952 " 2 4o
(For more information about Bessel processes see [5].) Let g be a linear function given by
g(s)As
where 0 < A <1. Denote the stopping time 7, by
(51) T/\:inf{t>03Xt§)\St}

It is our aim in this section to present a closed formula for the expectation of the stopping time
T -
More precisely, denote the function

mx(z, s) = Eg (7))

for 0 < x <s. Then our main task is to compute explicitly the function m, . Instead of using
(4.1) directly, we shall rather make use of the minimality principle within the system (3.1).
According to Theorem 4.1 we shall consider the system

(5.2) Lxmy(z,s) = =1 for As<z<s
(5.3) max(z, s) =0
T=As+

(5.4) %(m, | =0.

Let As <z <s be given and fixed. The general solution to (5.2) is given by
(5.5) ma(z, s) = A(s) + B(s) 2~ — L 2
where s+ A(s) and s— B(s) are unknown functions. By (5.3) and (5.4) we find
(5.6) A(s) = 25— CN*s % and B(s) = (% — %) s*+C S84

whenever (2/a)'/(®=2) < )\ <1, where

A=(2-a) 22

a1

and C' is an unknown constant.

In order to determine the constant C we shall use the minimality principle. It is easily
verified that the minimal non-negative solution corresponds to C = 0 . Thus by (5.5) and
(5.6) with C'=0 we have the following candidate for E, (7)) :

m)\(.T,S) = _émQ + (% - ai\ji;ig) (S/x)axQ + a)\a/\—a272 32

when As < x < s . Hence by applying Theorem 4.1 we obtain the following result. Observe
that this example is also studied in [2] and [4].
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Proposition 5.1. Let ((X;),P,) be a Bessel process of dimension o started at x > 0 under
P, , where a>1 but a# 2. Then for the stopping time 7\ defined in (5.1) we have

— Ll (A2 222 ) (s/z)a? + =22 if (2/a)/C ) <A< 1
o «a al 2

T aaa—2-2

E; =
, (72) {OO if 0<\< (2/a)1/(2—a) )

(Note that E,4(13) =0 for 0 <z < As .)

m,\(s, S) A

]

Figure 1. A computer drawing of the solution of the differential equation (2.6) in the case
when a=4 and A =4/5. The bold line is the minimal non-negative solution (which never
hits zero). By the minimality principle proved above, this solution equals m(s, s) = E; s(7x)
forall s>0.
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Best Bounds in Doob’s Maximal Inequality
for Bessel Processes

JESPER LUND PEDERSEN
University of Aarhus

Let ((Z;),P.) be a Bessel process of dimension o« >0 started at z under P, for z2>0.
Then the following maximal inequality is shown to be satisfied

Ez<maX0§t§T Zf) < (p_(;%a) -(22) - 1)—(5%(1)21)

for all stopping times 7 for (Z;) with E,(77/2) < 0o, and all p > (2—a)V0 . The constants
(p/(p— (2 — )P~ and p/(p— (2 —a)) are the best possible. The equality is attained
in the limit through the stopping times

Tap = inf{t >0: Zf <A maxOSTSth}
when ¢ tends to the best constant (p/(p — (2 — @)))”?~®) from above, and X is the
greater root of the equation \'~(2=2)/P _ X\ = (2 —a)/(cp— ¢(2 — a)) . Moreover we show that
E.( Q/z) < oo ifand only if A > ((1— (2 —a)/q) V0)?/?>~®) | The proof of the inequality is

Txp
based upon solving the optimal stopping problem

Vi(z) = supE, (maxogtsf Z¥r - ¢ Zf)

)p/(Q*a)

by applying the principle of smooth fit and the maximality principle. In addition, the ex-
act formula for the expected waiting time of the optimal strategy is derived by applying the
minimality principle. The main emphasis of the paper is on the explicit expressions obtained.

1. Introduction

The main aim of this paper is to present a sharp maximal inequality of Doob’s type for Bessel
process of dimension « > 0 which may start at any non-negative point.

More precisely, let ((Y;),P.) be the square of a Bessel process of dimension « > 0 which
starts at 22 > 0 under P, . Thus for every z > 0, (Y;) is the only non-negative (strong)
solution to the stochastic differential equation

(1.1) dY, = adt +2+/|Y;| dB; P,-as.

where (B;) is a standard Brownian motion. (For more information about (the square of)
Bessel processes see [9] and [3].) The process (Y;) is a submartingale. The infinitesimal
operator of (Y;) on (0,00) is given by

(1.2) Ly=a—+2y—

1991 Mathematics Subject Classification. Primary 60G40, 60E15. Secondary 60G44, 60J60.

Key words and phrases. Bessel process, Doob’s maximal inequality, optimal stopping, the principle of
smooth fit, the maximality principle, free-boundary problem, It6-Tanaka formula, Burkholder-Davis-Gundy
inequality, the minimality principle.
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while the boundary point 0 1is an instantaneous reflecting boundary if 0 < o < 2, and
an entrance boundary if « > 2 . The square of a Bessel process of dimension a =n € N
may be realized as the square of radial part of a n-dimensional Brownian motion (BIE")) =
(B},...,B),ie. Y, =) (BF)? where (B}),...,(B!) are mutually independent Brownian
motions. The non-negative process (Z;) = (v/Y;) is called a Bessel process of dimension
a > 0. It starts at z under P, . The process (Z;) is a submartingale if o > 1, and not a
semimartingale if 0 <a < 1.

Due to Dubins, Shepp and Shiryaev [3] the following maximal inequality for Bessel process
of dimension « > 0 is known to be valid

(1.3) Eo(maxo<i<; Z;) < v(a) v/Eo(7)

for all stopping times 7 for (Z;) , and the constant () is shown to be behave like /o
for large o, i.e.

(1.4) y(@)/v/a -1 for a—oco.

In the paper of Graversen and Peskir [5] one finds results on the rate of convergence in (1.4),
after a reformulation of the problem in (1.3) to a more adequate form

E, ( maxo<¢<r Zf) < F(a)2 Eo(7)

for all stopping times 7 for (Z;) .

Motivated by these results the main aim of this paper is to find explicitly the best constants
in Doob’s maximal inequality for Bessel process which may start at any given point z . The
main result is the following inequality which could be thought of as Doob’s maximal inequality
for Bessel processes (see Remark 2.2 below)

E,(2?) — —2—2°

p—(2—a)

p/(2-a)
(1.5) Ez(maxogtgr Zf) < (m)

for all stopping times 7 for (Z;) satisfying E,(77/?) < 0o, and all p > (2—a) V0 . Moreover
the constants (p/(p—(2—«)))?’®~® and p/(p—(2—a)) are the best possible. The inequality
(1.5) is obtained as a consequence of the following inequality

(1.6) E. (maxocicr 2F) < ¢E,(22) + (1+ 252005 — o \1Caln) o

which is valid for all stopping times 7 for (Z;) with E,(77/?) < oo whenever ¢ >
(p/(p—(2— a)))p/(%a) and where \ is the greater root of the equation

)\1—(2—04)/17 — A= (2 — O{)/(Cp _ 0(2 _ a)) ‘
The equality in (1.6) is attained when ¢ > (p/(p —(2- a)))p/@_”‘) at the stopping time
Tap = inf{t >0: 2P <A max og<,<r Zf} .

Moreover we show that E, (Tgf) < oo ifand only if A > ((1-(2—-a)/q)V 0)p/(2_a) . In
addition, an explicit formula for the expectation of 7,, is derived. Note that the inequality
(1.5) is already known in the case a =1 (see [8]) where (Z;) may be realized as a reflected
Brownian motion.

The method of proof relies upon the principle of smooth fit (see [3] and [4]) and the max-
imality principle (see [6]). The main emphasis in this paper is on the explicit expressions
obtained.



DOOB’S MAXIMAL INEQUALITY FOR BESSEL PROCESSES 31

2. The inequality

The main result of the paper is contained in the following theorem.

Theorem 2.1. Let ((Z;),P,) be a Bessel process of dimension « > 0 started at z under
P, for z> 0. Then the following inequality is satisfied

E,(Z°) — 22

p—(2—a)

p/(2—a)
1) E. (maxoce: 27) < (5=t
for all stopping times T for (Z,) with E,(t?/?) < 0o , and all p > (2—0a)V 0. The
constants (p/(p— (2 — a)))p/@_a) and p/(p— (2 —«)) are the best possible. The equality in
(2.1) is attained through the stopping times of the form

Tap = inf{t >0 : Z7 < X maxo<,<t Zf}

when ¢ tends to the best constant (p/(p— (2 — oz)))p/@_a) from above, and X is the greater
root in the equation

M@ _ A= (2-0a)/(cp—c(2-a)) .

Moreover for given q > 0 we have E, (Tg,/;) < o0 if and only if A > ((1—(2—04)/q)V0)p/(2_a).
In the case o =2 the inequality (2.1) is considered to be of the form

E,(maxo<i<, Z7) < eB,(ZF) — 2°
obtained from (2.1) by passing to the limit as o — 2 .

Proof. Let a > 0 be given, and for simplicity assume that « 7# 2 . (The case « =2 could
be treated similarly.) Given 0 < x < s, consider the following optimal stopping problem

(2.2) Vi(z,s) = supE, (S, — ¢ X,)

where the supremum is taken over all stopping times 7 for (Z;) satisfying E, ,(77/?) < oo,
and the process (X;) and the maximum process (S;) are respectively given by

Xy = Zf
St = (maXOSTSt Xr) Vs

with p> (2—a)V0 and ¢ > (p/(p— (2 - oz)))p/@_a) given and fixed. The expectation
in (2.2) is taken with respect to the probability measure P, :=P,, under which the process
(X;) starts at z := 2P and the process (S;) starts at s.

By It6 formula it is easily verified that the infinitesimal operator of (X;) on (0,00) is
given by

(2 0 > 0?

(2:3) Ly = te=geo g2 Oy gt amaip
while the boundary point 0 is an instantaneous reflecting boundary if 0 < o < 2, and an
entrance boundary if o > 2.

If the supremum in (2.2) is attained we know from the general theory of optimal stopping
that the following exit time of the Markov process (X, S;) may be optimal

7, =inf {t >0 : X; < g.(S)) }
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where s +— g,(s) < s is the optimal stopping boundary to be found. Thus to compute the
value function V, for g.(s) <z < s and to determine the optimal stopping boundary g, it
is natural to formulate the following system (see [3])

(2.4) LxV(xz,s) =0 for g.(s)<z<s
(2.5) V(z,s) o= s —cg«(s) (instantaneous stopping)
T=g+(s)+
ov
2.6 S — th fit
(2.6) 9 (z,s) or(o)s c (smoo )
oV :
(2.7) g(x, s)| =0 (normal reflection)

with Lx in (2.3). The system (2.4)-(2.7) forms a free-boundary problem. The condition (2.6)
is imposed since we expect that the principle of smooth fit should hold.
The general solution to (2.4) is given by
(2.8) Vi(z,s) = A(s) z®~9/? + B(s)
where s+ A(s) and s — B(s) are unknown functions. By (2.5) and (2.6) we find

(29) A(S) — _lg*(s)lf@fa)/P and B(S) = s+ cp—;(ia)g*(s) .

2—a -

Inserting (2.9) into (2.8) we obtain
cp—c(2—a c 1-(2—a
(2.10) V(z,s) =s+ %i)g*(s) _ ﬁ (g*(s)/x) ( )/Px

for g.(s) <z <s. Finally, by the last boundary condition (2.7) we find that s+ g.(s) is to
satisfy the differential equation

70) = 52/ ((5/9) " —1)

for s > 0. This differential equation admits a linear solution g,(s) = As for s > 0 where
the given 0 < A <1 is to satisfy the equation

(2.11) ANEP A= (2-a)/(cp—c(2-a)) .

By elementary analysis of (2.11) one shows that the conditions ¢ > (p/(p — (2 — «)))” /(2=e)

and p > (2 —a) V0 ensure that there are exactly two roots. Motivated by the maximality
principle (see [6]) we shall choose the greater A satisfying (2.11). Inserting this into (2.10),
our candidate for the value function V. defined in (2.2) is therefore given by

w=c(2=a) \, _ cp 1-(2—a)/p . <
Viz,s) = {$+ o As— 57q (As/2) z if ds<z<s

(2.12) ,
s—cx if 0<x<As

where 0 < A <1 is the greater root in (2.11). The corresponding candidate for the optimal
stopping time 7, is then to be

(2.13) T =inf{t>0: X; <AS;}

In the next step we will show that the candidates for the value function given by (2.12) and
the optimal stopping time given by (2.13) are indeed correct.

First, we verify that the stopping time 7, fulfills the integrability condition E, ,(77/?) < oo.
Denote the stopping time 7, given by

(214) T)\’p:inf{t>0 : th)\St}
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where 0 < A < 1. Let ¢ >0 be given, then E,(r{?) is finite if and only if A >
(1-(2-w)/q) VO)p/(2_a) Indeed by Burkholder-Davis-Gundy inequality for Bessel processes

(see [2]) we see that E, (Tg/;) < oo if and only if E, (S%/I;) < 0o . By a result in [1] we

have
Pu(sn, ) =ow (- [ o gy a)

for 7 > s, where S(x) =p(z?=%/? —1)/(2—a) is the scale function for (X;). From this it is
easily seen that Ex,s(ngi) < oo ifand only if A> ((1-(2—a)/q)V 0)p/(2_a) . Furthermore
in the case ¢=p when A > ((1-(2—-a)/p)V 0)p/(2_a)

_ 1 (2—a)A2=a)/p
Ew,s (S'r/\,;u) - (1_)\(2—04)/? (1 - (2_a)_z(1_)\(2—a)/p))

. . x (2—a)/p
+17/\(2*04)/P ((2705) —p(1-X (2 a)/p) 1) (g) S

Next, we verify that that the formula (2.12) is correct. The function V' in (2.12) depends
on z through y = 2?” and therefore we define the function U such that U(y,s) = V(z,s),
— 72/
y=az? | ie.

cp—c(2—a))\ A (2-a)/p yl-a/2 if s < p/2 <
{1 I e

we have that

(2.15)

s — cyP/? if 0<yP/?<)s.

The square of a Bessel process (Y;) = (Xf /» ) is a semimartingale for all « , thus applying
It6-Tanaka formula (two-dimensionally) to U(Y;, S;) we get P, c-a.s.

tou
V(Xt:St) :U(Ytast) :U(yp/2a3)+ By (YuaS)
0
tou LU
Y, Y, Y
+Oa(u:S)dS+2082(u’S)d[ ]U

where Ly is given in (1.2), and (02U/0y?)()s, s) is defined to be zero. Since the increment
dS, equals zero outside the diagonal y?/> =s and U satisfies the normal reflection condition

ou

%(ya 8) /25 =0

we have that
tou
Yo, dsS, =0.

s - (Yu, Su)

Moreover by (1.1) and (1.2) we have
¢
(2.16) V(X0 S) = V(z,s) + / LyU(Yy, Su) du + M,
0

where (M;) is a continuous local martingale given by

M, = 8U (Yy, Su) VY dBy
0 33/
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Since the set of those u > 0 for which Y,”? = S, is of Lebesgue measure zero, and
LyU(y,s) <0 for 0 <y?? < s, we get fg LyU(Y,,S,)du < 0. Hence we have the following
inequality

(2.17) V(X.,S)) < V(z,s)+ M,

Let 7 be any stopping time for (Z;) satisfying Em,s(’i’p/ ?) < oo and let {7 }x>1 be
a localization sequence of bounded stopping times for (M;) . By Doob’s optional sampling
theorem and the inequality (2.17) we get Eg (V (Xrar,, Srar,)) < V(z, s) and letting k& — oo
and using Fatou’s lemma we have that

E,,(V(X:,S;) <V(z,s).
Since V(z,s) > s—cx forall 0 <z <s we get
Eus(Sy — ¢ X;) < Eu(V(Xr, S7)) < V(2,5)
and taking supremum over all stopping times 7 for (Z;) satisfying E, ,(77/2) < oo we obtain
(2.18) Vi(z,s) <V(z,s) .

Finally, to prove that the equality in (2.18) is attained, and that the stopping time (2.13) is
optimal, it is enough to verify that

(2.19) V(z,s) =E;;s(S. —cX.) .

We have by the definition of the stopping time 7, that X, = AS, in law and since A is a
root in the equation (2.11) we have by (2.15) that

EI,S(ST* — cXT*) = (1 —c)) EI,S(ST*) =V(z,s).

In particular, since V =V, we have from (2.12) that

V(z,z) = (1+ 2522 ) — 2 \1--alr) 5

2—a 2—a
o o) : o e
for ¢> (p/(p — (2 — @))) . Letting ¢ | (p/(p— (2 — ))) and thereby A |
(1-(2- a)/p)p/(%a) we get by the definition of the value function (2.2) that
p
E.(S,) < (785

for all stopping times 7 for (Z;,) with E,(7?/?) < oo . The sharpness of the inequality follows
from the definition of the value function (2.2). The proof is complete. O

)p/(Z—a)

Remark 2.2. Note that from the above remarks about the Bessel process (Z;) it follows that
(Z7) is a submartingale whenever 7 > 2 for o > 0,aswellas 7> 1 for o > 1. In the
case « > 2 It6 formula can be applied to (Ytr/ ) = (Zr) since the boundary point 0 is
an entrance boundary, and one easily verifies that (Z]) is a submartingale for ~ > 0. In
the case 0 < a < 2 the inequality (2.1) indicates that (Z;) might be a submartingale if
r > 2 — a because it satisfies Doob’s maximal inequality for non-negative submartingales. In
particular, note if 7 = 2 — a then the first constant in (2.1) is equal to the best constant in
Doob’s maximal inequality in the following sense

—« T p T
EO(maXOStsT(ZZ")p) < (% Eo((27)7) = (,%) Eo((Z7)")

where p > 1. This is already known in the case o =1 (see [8]).

) (2—a)p/(2—a)
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3. The expected waiting time

In this section we compute the expectation of the optimal stopping time 7, constructed in the
proof of Theorem 2.1 . Let 7,, be the stopping time defined in (2.14) for 0 < A < 1. Then
our task is to derive a closed formula for the function

Map(T, ) = Egs(Tap)
for 0 <z < s. If the minimal non-negative solution to the system

(3.1) Lxmyp(z,s) =—1 for As<z<s
(3.2) my (2, s)

=0 (instantaneous stopping)
T=As+

am,\m

(3.3) -

()

=0 (normal reflection)

r=8—

exists then by the minimality principle m,, equals this solution (see [7]), where Lx is given
in (2.3). Assume again that o« # 2. (The case a =2 could be treated similarly.) The general
solution to (3.1) is given by

myp (T, 8) = A(s) + B(s) z27)/p — L g2/p

a

where s+ A(s) and s — B(s) are unknown functions. By (3.2) and (3.3) we find

Als) = gy 77 = CAC s 0 8 and B(s) = ety 7 4 Cs

whenever (a/2)P/C=® < X\ <1, where

_ (2—a) A@=)/p
A= p(A2=a)/p_1)

and C is an unknown constant. It is now easily verified that the minimal non-negative solution
corresponds to C = 0 . Hence we have the following result.

Proposition 3.1. Let ((Z;),P,) be a Bessel process of dimension o > 0 started at z > 0
under P, . Let p>0 be given. Then for the stopping time T, defined in (2.14) we have

2l (g pyalngle N La2lp if (a/2)P/-0) < A < 1
Ew,s(T/\,p) =

a (2A2-2)/P—q) 22(2—a)/p_q a
if0< < (/2

for As <z <s, where x:=2P . (Note that E;4(1\,) =0 for 0 <z <\s.)
In the case o= 2 , the formula is considered to be of the form

_ \2/p 2/p A2/p 2/p _ 1 .2/p
E;s(Tap) = plog(Z\2/P)1p log (S/w) S T Slgmy2 8 T 2%

if e P2 < X< 1 obtained by passing to the limit as o — 2 .
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Solving Non-Linear Optimal Stopping Problems
by the Method of Time-change

J. L. PEDERSEN and G. PESKIR

Some non-linear optimal stopping problems can be solved explicitly by using a common method
which is based on time-change. We describe this method and illustrate its use by considering
several examples dealing with Brownian motion. In each of these examples we derive explicit
formulas for the value function and display the optimal stopping time. The main emphasis of
the paper is on the method of proof and its unifying scope.

1. Introduction

The main goal of this paper is to present a deterministic time-change method which enables one
to solve some non-linear optimal stopping problems explicitly. The basic idea is to transform
the original (difficult) problem into a new (easier) problem. The method is illustrated through
several examples with applications in the next section.
1. To explain the ideas in more detail, let ((X;),P;) be a one-dimensional time-homogeneous
diffusion associated with the infinitesimal generator
0 5, 1 0?
Lx = ulz) oz +o7(s) 2 0z?
where z — o(z) >0 and z — p(zr) are continuous. Assume moreover that there exists a
standard Brownian motion (B;) such that (X;) solves the stochastic differential equation

with Xy = x under P, . The typical optimal stopping problem which appears under
consideration below has the value function given by

Vi(t,z) = sgp E, (a(t + 7') XT)

where the supremum is taken over a class of stopping times 7 for (X;) and « is a smooth but
non-linear function. This forces us to take (¢, X;) as the underlying diffusion in the problem,
and thus by general optimal stopping theory we know that the value function V, should solve
the following partial differential equation

)%
E(t’ z)+LxV(t,z) =0

in the domain of continued observation (see [7]). However, it is generally difficult to find the
appropriate solution of the partial differential equation, and the basic idea of the time-change
method is to transform the original problem into a new optimal stopping problem such that
the new value function solves an ordinary differential equation.

1991 Mathematics Subject Classification. Primary 60G40, 60J60. Secondary 60J25, 60E15.

Key words and phrases. Non-linear optimal stopping problem, diffusion, time-change, (reflected) Brown-
ian motion, Ornstein-Uhlenbeck process, Bessel process, Brownian scaling, free-boundary problem (Stephan
problem with moving boundary), the principle of smooth fit, Kummer’s function, Whittaker’s equation.
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2. To do so one is naturally led to find a deterministic time-change ¢ — o; satisfying the
following two conditions:
(i) t — o, is continuous and strictly increasing
(ii) there exists a one-dimensional time-homogeneous diffusion (Z;) with infinitesimal gen-
erator Lz such that «(oy) X,, = e Z; for some r € R.

From general optimal stopping theory we know that the new (time-changed) value function
W.(z) =sup E, (e_”ZT)

where the supremum is taken over a class of stopping times 7 for (Z;) , should solve the
ordinary differential equation
LzW.(2) = r W.(z)

in the domain of continued observation. Note that under condition (i) there is a one-to-one
correspondence between the original problem and the new problem, i.e. if 7 is a stopping time
for (Z;) then o, is a stopping time for (X;) and vice versa.

3. Given the diffusion (X;) the crucial point is to find the process (Z;) and the time-change
o, fulfilling conditions (i) and (ii) above. Ité formula offers an answer to these questions.

Setting (Y;) = (B8(t)X;) where [ # 0 is a smooth function, by It6 formula we get

fe=tor /o (g((z)) Yt ) M(ﬂ%&))) e /otﬂ(“) "(ﬂﬁ)) B

and hence (Y;) has the infinitesimal generator

(L) by = (5 80u(5) ) 2 + 07 ( 1) 3 -

p(t) p(t) p(t)
The time-changed process (Z;) = (Y,,) has the infinitesimal generator (see [4] p.175)
1
1.2 Lz=—L
12 O

where o; is the time-change given by

at:inf{r>0 :/ p(u)du>t}
0

for some wu+ p(u) >0 (to be found) such that o, — 00 as t — oo .

The process (Z;) and the time-change o; will be fulfilling conditions (i) and (ii) above if
the infinitesimal generator Lz does not depend on t . In view of (1.1) this clearly imposes
conditions on  (and « above) which make the method applicable:

(13 u(%) — (1) Gr(y)

t)
14 () =G
9 5®) = s @V
where v =7(t) , G1 = G1(y) and Gy = Ga(y) are functions required to exist.

4. In our examples below the diffusion (X;) is given as Brownian motion (B;+z) started
at = under P, , and thus its infinitesimal generator is given by

1 02

Ly = - > .
X7 9 922
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By the foregoing observations we shall find a time-change o; and a process (Z;) satisfying
conditions (i) and (ii) above. With the notation introduced above we see from (1.1) that the
infinitesimal generator of (Y;) in this case is given by

g'(t) o 5, 1 07
= — )= — .

ORI D3 a7
Observe that conditions (1.3) and (1.4) are easily realized with y(¢)=/4(t) , G1=0 and G,=1.
Thus if 3 solves the differential equation 3'(t)/3(t) = —5%(t)/2 , and we set p = 3%/2 , then

from (1.2) we see that Lz does not depend on ¢ . Noting that [(t) = 1/4/1+t solves this
equation, and putting p(¢t) =1/2(1+1t) , we find that

(1.5) ot:inf{r>0:/p(u)du>t}:e%—1.
0

Thus the time-changed process (Z;) has the infinitesimal generator given by

0 0?
b2= 5. "o
and hence (Z;) is an Ornstein-Uhlenbeck process. While this fact is well-known, the technique
described may be applied in a similar context involving other diffusions (Example 2.15).

5. We believe that the time-change arguments described above are well-known to the
specialists in the field, although we could not find it in the literature on optimal stopping. In
the next section we shall apply this method and present solutions to several optimal stopping
problems some of which were already treated earlier and solved by means of other techniques.
Apart from the time-change arguments just described, the method of proof makes also use of
Brownian scaling and the principle of smooth fit in a free-boundary problem. Once the guess
is performed, Ito calculus is used as a verification tool. The main emphasis of the paper is on
the method of proof and its unifying scope.

Ly

2. Examples and applications

In this section we explicitly solve some non-linear optimal stopping problems by applying
the time-change method described in the first section.

Throughout (B;) denotes a standard Brownian motion started at zero under P , and the
diffusion (X;) is given as the Brownian motion B;+ z started at = under P, .

Given the time-change o; = €? — 1 from (1.5), we know that the time-changed process

(2.1) Zy = Xo, [V1+ 0y

is an Ornstein-Uhlenbeck process satisfying

(2.2) dZ, = —Z,dt + V2 dB,
0 0?

With this notation we may now enter into the first example.

Example 2.1. Consider the optimal stopping problem with the value function

(2.4) Va(t, ) = sup Ew(IXTI - c\/t+—r)
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where the supremum is taken over all stopping times 7 for (X;) satisfying E,(1/7) < oc
and ¢ > 0 is given and fixed. We shall solve this problem in three steps.

1. In the first step we shall apply Brownian scaling and note that 7 = 7/t is a stopping
time for the Brownian motion s~ ¢t~'/2B,, . If we now rewrite (2.4) as

Vi(t, x) :supE(|BT+:v| —C\/t+7’) =\/t_supE(|t /BtT/t)+$/\/_| —C\/l—i—T/t)

T/t

we clearly see that
(2.5) Vi(t,z) = Vi Vi(1,2/Vt)

and therefore we only need to look at V,(1,z) in the sequel. By using (2.5) we can also make
the following observation on the optimal stopping boundary for the problem (2.4).

Remark 2.2. In the problem (2.4) the gain function equals g¢(t,z) = |z| — ¢v/t and the
diffusion is identified with (t—l—r, X ) If a point (%o, z¢) belongs to the boundary of the domain
of continued observation, i.e. (fy,Zo) is an instantaneously stopping point (7 = 0 is an optimal
stopping time), then we get from (2.5) that V.(ty, 7o) = |zo| — cvto = Vo Va(l, 0/ /to) -
Hence V. (1,z0/v/t0) = |7o|/+/to —c and therefore the point (1, z¢/+/%) is also instantaneously
stopping. Set now 7, = |7o|/+v/To and note that if (¢,x) is any point satisfying |z|/vt = 70 ,
then this point is also instantaneously stopping. This offers a heuristic argument that the
optimal stopping boundary should be |z| =yt for some v, > 0 to be found.

2. In the second step we shall apply the time-change ¢ — o; from (1.5) to the problem
Vi(1,z) and transform it into a new problem. From (2.1) we get

(2.6) | Xo, | —cV1t+o, =vV1+0, (|Z|—¢c)=¢(Z] —¢)
and the problem to determine V,(1,z) therefore reduces to compute
(2.7) Vi(1,2) = Wi(x)

where W, is the value function of the new (time-changed) optimal stopping problem
(2.8) W,(z) =sup E, (eT(|ZT| - c))

the supremum being taken over all stopping times 7 for (Z;) for which E,(e™) < oc . Observe
that this problem is one-dimensional.

3. In the third step we shall show how to solve the problem (2.8). From general optimal
stopping theory we know that the following stopping time should be optimal

(2.9) mo=inf {t>0: |7 >z}

where 2z, > 0 is the optimal stopping point to be found. Observe that this guess agrees
with Remark 2.2. Note that the domain of continued observation C = (—z,,z.) is assumed
symmetric around zero since the Ornstein-Uhlenbeck process is symmetric, i.e. the process
(—Z;) is also an Ornstein-Uhlenbeck process started at —z . By using the same argument we
may also argue that the value function W, should be even.
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To compute the value function W, for z € (—z,, z,) and to determine the optimal stopping
point 2z, , in view of (2.8)4(2.9) it is natural to formulate the following system

(2.10) LzW(z)=-W(z) for z € (=2, 2s)
(2.11) W(%z,) = 2. —c  (instantaneous stopping)
(2.12) W'(£z,) = 1 (smooth fit)

with Lz in (2.3). The system (2.10)-(2.12) forms a free-boundary problem. The condition
(2.12) is imposed since we expect that the principle of smooth fit should hold.

It is known (see Section 3 below) that the equation (2.10) admits the even solution (3.3) and
the odd solution (3.4) as two linearly independent solutions. Since the value function should
be even, we can forget the odd solution and from (3.3) we see that

2

W(z)=—-AM(-5,3,%)

for some A > 0 to be found.

A
S AMEL 33
z|z|-c
\ -27 -2 Zx 2] /
1 ‘ > 2

Figure 1. A computer drawing of the solution of the free-boundary problem (2.10)-(2.12).
The solution equals z — —A M(—1/2,1/2,2%/2) for |z| < z. and 2z~ |z| —c for |z| > z, .
The constant A is chosen (and 2z, is obtained) such that the smooth fit holds at +z, (the
first derivative of the solution is continuous at =+z, ).

From Figure 1 we clearly see that only for ¢ > 2{ the two boundary conditions (2.11)+(2.12)
can be fulfilled, where 2; is the unique positive root of M(—1/2,1/2,2%2) = 0. Thus by
(2.11)+(2.12) and (3.5) when ¢ > 2f we find that A = 27'/M(1/2,3/2,22/2) and that
z« < 27 1is the unique positive root of the equation

2 2

(2'13) Z_IM(_%’%’%):(C_Z)M(%’%’%)'

Note that for ¢ < z} the equation (2.13) have no solution.
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In this way we have obtained the following candidate for the value function W, in the
problem (2.8) when ¢ > 2}

(2.14) W) = {—z;lM(—% A 2)MG,3.2) i o] <z

and the following candidate for the optimal stopping time 7, when ¢ > 2}
(2.15) T, =inf {t >0 : |Z] > 2. }.

In the proof below we shall see that E,(e™) < oo when ¢ > z{ (and thus z, < z{ ). For
¢ =2z} (and thus z, = z{) the stopping time 7, fails to satisfy E,(e™*) < oo, but clearly
T,, are approximately optimal if we let ¢ | 27 (and hence z, 1 27) . For ¢ < 2z} we have
W(z) = oo and it is never optimal to stop.

4. To verify that these formulas are correct (with ¢ > 27 given and fixed) we shall apply
It6 formula to the process (e! W(Z,;)) . For this note that z — W(z) is C? everywhere but
at +z, . However, since Lebesgue measure of those u for which Z, = *+z, is zero, the values
W"(+z,) matter little in the sequel whatever set to be. In this way by (2.2) we obtain

W (Z)) = W(z) + /0 (LW (Z0) + W(Z) du+ M,
where (M;) is a continuous local martingale given by
M, = \/2_/t e“W'(Z,)dB, .
Using that LzW(z) + W(z) <0 for z # :I(:)z* , hence we get

(2.16) e W(Z) < W(z) + M,

for all ¢t. Let 7 be any stopping time for (Z;) satisfying E,(e”) < oo . Choose a localization
sequence (o,) of bounded stopping times for (M;) . Clearly W (z) > |z| — ¢ for all z , and
hence from (2.16) we find

E, (emfn (1Zsn0n| — c)) <E, (em"“ W(Zm,n)) <W(2) +E, (Mrpo,) = W(2)

for all n > 1. Letting n — oo and using Fatou’s lemma, and then taking supremum over all
stopping times 7 satisfying E,(e”) < oo , we obtain

(2.17) W.(2) < W(2) .

Finally, to prove that equality in (2.17) is attained, and that the stopping time (2.15) is
optimal, it is enough to verify that

(2.18) W(z) = E, (e% (

Zy,.

— c)) = (24— ) Ez(e”*) }

However, from general Markov process theory we know that w(z) = E,(e™) solves (2.10),
and clearly it satisfies w(£z,) = 1. Thus (2.18) follows immediately from (2.14) and definition
of z, (see also Remark 2.7 below).

5. In this way we have established that the formulas (2.14) and (2.15) are correct. Recalling
by (2.5) and (2.7) that

Vi(t,x) = vVt Wi(z/ V1)

we have therefore proved the following result.
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Theorem 2.3. Let 2} denote the unique positive root of M(—1/2,1/2,2%/2) = 0. The value
function of the optimal stopping problem (2.4) for ¢ > z{ is given by

2

Vi) = L VEE M55, 5)/M 5.5 5) i [al/VE <z
o el i 1al/VE > =
where z, is the unique positive root of the equation

TIM(=L, 1 2 = (c—2) M(L,3,2)

21272 9
satisfying z. < 2§ . The optimal stopping time in (2.4) for ¢ > 2z is given by (see Figure 2)
(2.19) re=inf {r>0:|X;|>zVi+r}.

For c =z} the stopping times T, are approzimately optimal of we let c | 2] . For c < zj
we have V,(t,x) = oo and it is never optimal to stop.

P 2\/T

T -z /T

Figure 2. A computer simulation of the optimal stopping time 7, in the problem (2.4) for
¢ > 2z} as defined in (2.19). The process above is a standard Brownian motion which at time
t starts at x . The optimal time 7, is obtained by stopping the process as soon as it hits the
area above or below the parabolic boundary r — £z./T .

Using /t+7 </t ++/7 in (2.4) it is easily verified that V,(t,0) — V,(0,0) as ¢ /0.
Hence we see that V,(0,0) =0 with 7, =0 . Note also that V,(0,z) = |z| with 7. =0.

6. Let 7 be any stopping time for (B;) satisfying E(y/7) < co. Then from Theorem 2.3
we see that E(|X;|) < cE(v/t+ 1)+ Vi(t,0) for all ¢ > 27 . Letting first ¢ | 0, and then
c | z} , we obtain the following sharp inequality which was first derived by Davis [2].

Corollary 2.4. Let (B;) be a standard Brownian motion started at 0 , and let T be any
stopping time for (B;) . Then the following inequality is satisfied

E(|B[) <21 B(V7)
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with 2z} being the unique positive root of M(—1/2,1/2,2%/2) =0 . The constant z; 1is best
possible. The equality is attained through the stopping times

m=inf {r>0:|B:|>zVi+r}
when t 10 and cl 2z} , where z. 1is the unique positive root of the equation
Z—lM(_l 1 z2) — (C—Z) M(l 3 zz)

27272 2°2372
satisfying z. < zf . (Numerical calculations show that zf = 1.30693...)

7. The optimal stopping problem (2.4) can naturally be extended from the power 1 to all
other p > 0. For this consider the optimal stopping problem with the value function

(2.20) Vi(t,z) = supE, (IXTIP —c(t+ T)p/2>

where the supremum is taken over all stopping times 7 for (X;) satisfying E,(7?/?) < oo
and ¢ > 0 is given and fixed.
Note that the case p = 2 is easily solved directly, since we have

Vi(t,z) = SUp ((1—0) E(1) +2° - ct)

due to E|B;|? = E(1) whenever E(7) < oo . Hence we see that V,(¢,z) = +oo if ¢ <1
(and it is never optimal to stop), and V,(t,z) = 22 —ct if ¢> 1 (and it is optimal to stop
instantly). Thus below we concentrate most to the cases when p # 2 (although the results
formally extend to the case p =2 by passing to the limit).

The following extension of Theorem 2.3 and Corollary 2.4 is valid. (Note that in the second
part of the results we make use of parabolic cylinder functions z — D,(z) which are introduced
in Section 3 below.)

Theorem 2.5. (I): For 0 < p < 2 given and fized, let z, denote the unique positive root
of M(—p/2,1/2,2%/2) = 0 . The value function of the optimal stopping problem (2.20) for

c> (z;)P is given by
- 2 i
Vi(t,z) = —tP2 2 M (=B, L 2/ M(1-2,3. %) if |z|/VE <2
’ |z|P — ctP/? if 12l/VE > 2
where z, 1is the unique positive root of the equation

— 2
PEM(-E,1.5) = (- ) M1-3,3,5)

satisfying z, < z* . The optimal stopping time in (2.20) for ¢ > (2*)? is given by
p p
T, = inf {r >0 : | X, >zVt+r } )

For ¢ = (z3)P the stopping times T. are approvimately optimal if we let c | (z;)P . For
c < (z,)P we have V,(t,z) = o0 and it is never optimal to stop.

(II): For 2 < p < oo given and fized, let z, denote the largest positive root of Dy(z) =0 .
The value function of the optimal stopping problem (2.20) for ¢ > (z,)? is given by

ity = {7 O Dy (| V) Dys ()i Nl /VE >
U el el if |z|/Vt < 2
where z, 1is the unique root of the equation
27 Dy(2) = (2 = ©) Dys(2)

2
*

2
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satisfying z. > zp . The optimal stopping time in (2.20) for ¢ > (z,)? is given by

T*:inf{r>0 : |X,|§z*\/t+r}.

For ¢ = (%,)? the stopping times 7. are approzimately optimal if we let ¢ | (2,)? . For
¢ < (2,)? we have V,(t,z) =00 and it is never optimal to stop.

Proof. The proof is an easy extension of the proof of Theorem 2.3, and we only present a few
steps with differences for convenience.
By Brownian scaling we have

V.(t,z) = sup E$(|BT +zlP —c(t+ T)p/Z)
= /2 sup Ez(|t*1/2Bt(T/t) +az/Vit[ —c(1+ T/t)”/Q)

and hence we see that
(2.21) Vi(t,z) = "2V, (1,2/V/t) .
By the time-change ¢+ oy from (1.5) we find

[ X [P —c(1+ UT)p/2 =(1+ JT)p/2 (|Z7'|p - C) = epT(|ZT|p - C)
and the problem to determine V,(1,z) therefore reduces to compute
(2.22) Vi(1,2) = Wi(x)
where W, is the value function of the new (time-changed) optimal stopping problem

(2.23) W.(z) = sup E, (e’” (1Z.|P - c))

the supremum being taken over all stopping times 7 for (Z;) for which E,(ef") < oo .
To compute W, we are naturally led to formulate the following free-boundary problem

(2.24) LyW(z) = —pW(z) for z€eC
(2.25) W(z)=|2|P —¢ for z € 0C (instantaneous stopping)
(2.26) W'(z) = sign(z)p|z|P* for z € dC (smooth fit)

where C' is the domain of continued observation. Observe again that W, should be even.
In the case 0 <p <2 we have C = (—2z,,2,) and the stopping time

T*:lnf{t>0 : |Zt|ZZ*}

is optimal. The proof in this case can be carried out along exactly the same lines as above
when p = 1. However, in the case 2 <p < oo we have C = (—o0, —2z,) U (24,00) and thus
the following stopping time

T*:inf{t>0 : |Zt|§z*}

is optimal. The proof in this case requires a small modification of the previous argument. The
main difference is that the solution of (2.24) used above does not have the power of smooth fit
(2.25)+(2.26) any longer. It turns out, however, that the solution z + e*7%D,(z) has this
power (see Figure 3 and Figure 4), and once this being understood, the proof is again easily
completed along the same lines as above (see also Remark 2.7 below). O
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zz|P- ¢

\
Y

7 \ P

2 Bye” /' Dy(2)

Figure 3. A computer drawing of the solution of the free-boundary problem (2.24)-(2.26) for
positive 2z when p = 2.5. The solution equals z — B, exp(z?/4) D,(z) for z > z, and
z+ 2P—¢ for 0 < z < 2z, . The solution extends to negative z by mirroring to an even
function. The constant B, is chosen (and z, is obtained) such that the smooth fit holds at
z« (the first derivative of the solution is continuous at z. ). A similar picture holds for all
other p > 2 which are not even integers.

Corollary 2.6. Let (B;) be a standard Brownian motion started at zero, and let T be any
stopping time for (By) .
(I): For 0 < p <2 the following inequality is satisfied

E(|B.") < () B(r"?)

with 2 being the unique positive root of M(—p/2,1/2,2%/2) =0 . The constant (z})P is
best possible. The equality is attained through the stopping times

me=inf {r>0:|B|>zVi+r}

when t10 and cl (z;j)p , where z, 1s the unique positive root of the equation

_ 2 2
2P 2M(_§:%a%):(C_ZP)M(l_ZQ_)a%a%)

satisfying 2z« < z, .
(IT): For 2 < p < oo the following inequality is satisfied

E(|B- ") < (2,)" E(17/?)
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A
zZ— B, 1 Dy(2)
2z 2|~ ¢
E _Zp Zp :
! el BN ' >
- 24 %

Figure 4. A computer drawing of the solution of the free-boundary problem (2.24)-(2.26) when
p = 4 . The solution equals z — B, exp(2?/4) D,(z) for |z| > 2. and z — |2|P—c for
|2] < 2z« . The constant B, is chosen (and 2z, is obtained) such that the smooth fit holds at
+z, (the first derivative of the solution is continuous at =%z, ). A similar picture holds for all
other p > 2 which are even integers.

with z, being the largest positive root of Dy(z) = 0 . The constant (z,)? is best possible.
The equality is attained through the stopping times

o, =inf{r>0: |B,+z| < 2.7}
when 10 and cl ()P, where z. is the unique root of the equation
#71D,(2) = (# = ¢) Dy 1(2)
satisfying z. > zp .

Remark 2.7. The argument used above to verify (2.18) extends to the general setting of
Theorem 2.5 and leads to the following explicit formulas for 0 < p < oo . (Note that these
formulas are also valid for —oo < p <0 upon setting 2z, = +o0 and 2, = —00 )

1. For a > 0 define the following stopping times

To=inf {r>0:1Z|>a}
Yo=1inf {r>0:|X,| >avti+r}.

By Brownian scaling and the time-change (1.5) it is easily verified that

(2.27) Ew(("}/a + t)p/2) = P/2 Ex/\ft (ePTa) )
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The argument quoted above for |z| < a then gives

B () = {

Thus by (2.27) for |z| < ay/t we obtain

2

2 .
M(-%.3.5)/M(-%.3.%) if0<a<z
00 if a> 2z .

E ( +t)p/2 = tp/2M(_g’%’§_t)/M(_ga%a%) if O<CL<Z§
z\ Ve ~ o
— *p -

This formula is also derived in [5].
2. For a > 0 define the following stopping times

?azinf{r>0:ZT§a}
%:inf{r>0:Xr§a\/t+r}.

By precisely the same arguments for z > a we get

22/4)— (a2 .
B, (%) = {e‘ D=1 D, () /Dyla) if a> 2,

00 if a <z,
and for = > av/t we thus obtain
B, (7 +1)"") = /2@ 0= D (3/3/E) [ Dyla) if 0>z
AL 00 if a <z, .
This formula is also derived in [3].

Example 2.8. Consider the optimal stopping problem with the value function
(2.28) Vi(t,z) =supE, (XT/(t + 7'))

where the supremum is taken over all stopping times 7 for (X;) . This problem was first

solved by Shepp [6] and Taylor [8], and it was later extended by Walker [10] and Van Moerbeke

[9]. To compute (2.28) we shall use the same arguments as in the proof of Theorem 2.3 above.
1. In the first step we rewrite (2.28) as

Va(t, ) = sup E((B, +2)/(t+7)) = & Sup E((t72 By + 2/VE) /(14 7/1))

and note by Brownian scaling that
(2.29) Vi(t,z) = 22 Va(L,2/V)

so that we only need to look at V,(1,z) in the sequel. In exactly the same way as in Remark 2.2
above, from (2.29) we can heuristically conclude that the optimal stopping boundary should be
=/t forsome 5 >0 to be found.

2. In the second step we apply the time-change ¢ — o, from (1.5) to the problem V,(1,z)
and transform it into a new problem. From (2.1) we get

X, /(l+o0)=2Z/]V1+o0,=e"Z;

and the problem to determine V,(1,z) therefore reduces to compute
(2.30) Vi(l,z) = Wi(z)
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where W, is the value function of the new (time-changed) optimal stopping problem
(2.31) W.(z) =supE, (e’TZT)

the supremum being taken over all stopping times 7 for (Z;) .
3. In the third step we solve the problem (2.31). From general optimal stopping theory we
know that the following stopping time should be optimal

(2.32) e=inf {t>0: Z; > 2, }

where z, is the optimal stopping point to be found.
To compute the value function W, for z < z, and to determine the optimal stopping
point z, , it is natural to formulate the following free-boundary problem

(2.33) LzW(z) = W(z) forz < z,
(2.34) W (zi) = 24 (instantaneous stopping)
(2.35) W'(z) =1 (smooth fit)

with Lz in (2.3).
The equation (2.33) is of the same type as the equation from Example 2.1. Since the present
problem is not symmetrical, we choose its general solution in accordance with (3.6)+(3.7)

W(z) = Ae*/*D_1(z) + Be**D_,(—2)

where A and B are unknown constants.

To determine A and B the following observation is crucial. Letting z — —oc above, we
see by (3.9) that e*/*D_(z) = oo and e*7*D_;(—z) — 0. Hence we find that A >0 would
contradict the clear fact that z — W,(z) isincreasing, while A < 0 would contradict the fact
that W,(z) > z (by observing that e*74D_,(z) converges to oo faster than a polynomial).
Therefore we must have A =0 . Moreover, from (3.9) we easily find that

D ((—2) = ezz/z/ e du

and hence W'(z) = 2zW(z) + B . The boundary condition (2.35) implies that 1 = W'(z,) =
2 W(z,) + B =22 + B, and hence we obtain B =1 — 22 (see Figure 5). Setting this into
(2.34), we find that z, is the root of the equation

z
z=(1-2%) 622/2/ e du,
—00
In this way we have obtained the following candidate for the value function W,

(1—22) eZZ/Z/ e Pdu if z< 2

o0

(2.36) W(z) =
z if z> 2,

and the following candidate for the optimal stopping time
(2.37) T.=inf {t>0: 2, >2}.

4. To verify that these formulas are correct, we can apply It6 formula to (e”* W (Z,)) , and
in exactly the same way as in the proof of Theorem 2.3 above we can conclude

W.(z) < W(z) .

*
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2= Be " D_y(-2)

\ /
N

Zx

Figure 5. A computer drawing of the solution of the free-boundary problem (2.33)-(2.35).
The solution equals 2z +— B exp(z?/4)D_i(—2) for 2z < z, and z+~ z for z > z, . The
constant B is chosen (and z, is obtained) such that the smooth fit holds at +z, (the first
derivative of the solution is continuous at =z ).

To prove that equality is attained at 7,, from (2.37), it is enough to show that
(2.38) W(z) = E, (e—@* Z%z*) = 2, B, (7).

However, from general Markov process theory we know that w(z) = E,(e ") solves (2.33),
and clearly it satisfies w(z,) =1 and w(—oco0) =0 . Thus (2.38) follows from (2.36).

5. In this way we have established that formulas (2.36) and (2.37) are correct. Recalling by
(2.29) and (2.30) that

Vit ) = % W, (a/VE)
we have therefore proved the following result.

Theorem 2.9. The value function of the optimal stopping problem (2.28) is given by

2 x/‘\/{ 2
Vit z) = %(1—23)635/%/00 eV du if z/VE < z
z/t if z/Vt > 2.

where z, 1is the unique root of the equation

(2.39) z=(1-27 622/2/ e v du .
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The optimal stopping time in (2.28) is given by (see Figure 6)

(2.40) m=inf {r>0: X, >z Vi+r}.
(Numerical calculations show that z, = 0.83992...)

t T

Figure 6. A computer simulation of the optimal stopping time 7, in the problem (2.28) as
defined in (2.40). The process above is a standard Brownian motion which at time ¢ starts at
z . The optimal time 7, is obtained by stopping this process as soon as it hits the area below
the parabolic boundary r — z,\/T .

6. Since the state space of (X;) is R the most natural way to extend the problem (2.28) is
to take (X;) to the power of an odd integer (such that the state space again is R ). Consider
the optimal stopping problem with the value function

(2.41) Vilt, ) = sup By (X2 (1 + 7))

where the supremum is taken over all stopping times 7 for (X;),and n>1 and ¢ >0 are
given and fixed. This problem was solved by Walker [10] in the case n =1 and ¢ > 1/2. We
may now further extend Theorem 2.9 as follows.

Theorem 2.10. Let n > 1 and q > 0 be taken to satisfy q > n — % . Then the value
function of the optimal stopping problem (2.41) is given by

Vit o) = {Zzni {n—a-1/2 o(z?/4t)—(22/4) Dotn—g)-1(=2/Vt)/Dan—g)—1(—2) z:f z/Vt < z,
[ if /vt >z
where z, 1is the unique root of the equation
(2n—1) Dogn—g)—1(—2) = 2 (2(g—n) + 1) Dan—g-1(—2) .
The optimal stopping time in (2.41) is given by
'r*:inf{T>O : XTZz*\/t—i-—r}.
(Note that in the case ¢ <n—1/2 we have V,(t,z) = oo and it is never optimal to stop.)
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Proof. The proof will only be sketched, since the arguments are the same as for the proof of
Theorem 2.9. By Brownian scaling and the time-change we find

(2.42) Vi(t,z) =" V2 W, (2/ V1)
where W, is the value function of the new (time-changed) optimal stopping problem

the supremum being taken over all stopping times 7 for (Z) .
Again the optimal stopping time should be of the form

(2.44) Te=inf {t>0: 2, >z}

and therefore the value function W, and the optimal stopping point 2z, should solve the
following free-boundary problem

(2.45) LzW(z) = (1-2(n—q)) W(2) forz < z,
(2.46) W(z,) = 22" ! (instantaneous stopping)
(2.47) W'(z,) = (2n—1) 220~V (smooth fit).

Arguing like in the proof of Theorem 2.9 we find that the following solution of (2.45) should
be taken into consideration
W(Z) = A¢* /4 Dg(n_q)_l(—Z)
where A is an unknown constant. The two boundary conditions (2.46)+(2.47) with (3.8)
imply that A = z2"~'e=*/*/Dyg,_p_1(—2.) where z, is the root of the equation
(2’/7, — 1) Dg(n_q)_l(—Z) =z (2((] — n) + ].) D2(n—q—1)(_z) .

Thus the candidate guessed for W, is

W(z) = 22 eI Doy gy 1(=2) [ Doy 1(—2) i 2 < 2

2t if z> 2z,

and the optimal stopping time is given by (2.44). By applying It6 formula like in the proof of
Theorem 2.9 one can verify that these formulas are correct. Finally, inserting this back into
(2.42) one obtains the result. O

Remark 2.11. By exactly the same arguments as in Remark 2.7 above, we can extend the
verification of (2.38) to the general setting of Theorem 2.10, and this leads to the following
explicit formulas for 0 <p < o0 .

For a > 0 define the following stopping times

?a:inf{r>0 : Z,Za}
%zinf{r>0 : XTZa\/lf—F—T}.
Then for z < a we get
E,(e7) = e(Z714)—(a?/4) D_y(—2)/D_p(—a)
and for z < av/t we thus obtain
E, ((% +t) 7 2) = P& D (—x/V/E)/D_y(—a) .
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Example 2.12. Consider the optimal stopping problem with the value function
(2.48) V.(t,z) = sup Ew(|XT| J(t+ T))

where the supremum is taken over all stopping times 7 for (X;) . This problem is a natural
extension of the problem (2.28) and can be solved likewise.
By Brownian scaling and the time-change we find

(2.49) Vi(t, o) = 22 We(a/Vt)
where W, is the value function of the new (time-changed) optimal stopping problem

(2.50) W.(2) = sup . (77 |,)

the supremum being taken over all stopping times for (Z;) .
The problem (2.50) is symmetrical (recall the discussion about (2.9) above), and therefore
the following stopping time should be optimal

(2.51) T*Zinf{t>0 : |Zt|Zz*}.

Thus it is natural to formulate the following free-boundary problem
(2.52) LzW(z) = W(z) for z € (=2, 2)

(2.53) W(tz.) = |2 (instantaneous stopping)
(2.54) W'(+xz,) = 1 (smooth fit).

From the proof of Theorem 2.3 we know that the equation (2.52) admits an even and an
odd solution which are linearly independent. Since the value function should be even, we can
forget the odd solution, and therefore we must have

W) = AM(G,L, %)

27272
for some A > 0 to be found. Note from Section 3 below that M (1/2,1/2,2%2) = exp(2?%/2) .

The two boundary conditions (2.53) and (2.54) imply that A =1/y/e and 2z, =1, and in
this way we obtain the following candidate for the value function

W(z) = e2-(1/2)
for z € (—1,1) , and the following candidate for the optimal stopping time
r=inf {¢t>0:|Z|>1}.

By applying It6 formula (as in Example 2.8) one can prove that these formulas are correct.
Inserting this back into (2.49) we obtain the following result.

Theorem 2.13. The value function of the optimal stopping problem (2.48) is given by
%e(wz/%)—(lﬂ) if |z] <Vt

||/t if 2| >Vt .

The optimal stopping time in (2.48) is given by

ne=inf {r>0:|X,|>Vi+r}.

Vi(t,z) = {
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As in Example 2.8 above, we can further extend (2.48) by considering the optimal stopping
problem with the value function

(2.55) Vi (ta) = sup B (X, /(¢ + 7))

where the supremum is taken over all finite stopping times 7 for (X;), and p, ¢ > 0 are
given and fixed. The arguments used to solve the problem (2.48) can be repeated, and in this
way we obtain the following result.

Theorem 2.14. Let p, q¢ > 0 be taken to satisfy q > p/2 . Then the value function of the
optimal stopping problem (2.55) is given by

thp/Q_qM(q_gaéa%)/M(q_gaéaé) Zf |$|/\/E<Z*

|z|P /t1 if |z|/VE > 2, .

where z, 1is the unique root of the equation

Vi(t,z) = {

2

22 z
pM(q—%,5,%5)=2"(2¢—p) M(q+1-2,3 ., %)
The optimal stopping time in (2.55) is given by
T, = inf {r>0 X, >z Vt+r }
(Note that in the case q < p/2 we have V,(t,x) =00 and it is never optimal to stop.)

Example 2.15. In this example we indicate how the problem and the results in Example 2.1
and Example 2.12 above can be extended from reflected Brownian motion to Bessel processes
of arbitrary dimension « > 0. The avoid the computational complexity which arises, we shall
only indicate the essential steps towards solution.

1. The case «>1 . The Bessel process of dimension «>1 is a unique (non-negative)
strong solution of the stochastic differential equation

a—1

2X,

satisfying Xy, = x for some z > 0. The boundary point 0 is instantaneously reflecting if
a < 2, and is an entrance boundary point if « > 2. (When « € N the process (X;) may
be realized as the radial part of the a-dimensional Brownian motion.)

In the notation of Section 1 consider the process (Y;) = (8(¢)X;) and note that u(z) =
(a—1)/2z and o(xz) =1 . Thus conditions (1.3) and (1.4) may be realized with ~(t) = g(t) ,

G1(y) = (a—1)/2y and Go(y) = 1. Noting that 3(t) = 1/4/1+t solves ['(t)/8(t) = —3(t)/2
and setting p = (3%/2 , we see from (1.2) that

Z- z 0z 022
where (Z;) = (Y,,) with o, =e*—1. Thus (Z;) solves the equation:

~1
47, = (—Zt+&Z )dt+ﬁdBt.

t

(2.56) dX, = dt + dB;

Observe that the diffusion (Z;) may be seen as the Fuclidean velocity of the a-dimensional
Brownian motion whenever o € N, and thus may be interpreted as the Euclidean velocity of
the Bessel process (X;) of any dimension a > 1.
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The Bessel process (X;) of any dimension « > 0 satisfies the Brownian scaling property
Law((c ' X2) | Pyye) = Law((Xy) |P;) forall ¢ >0 and all z . Thus the initial arguments
used in Example 2.1 and Example 2.12 can be repeated, and the crucial point in the formulation
of the corresponding free-boundary problem is the analogue of the equations (2.10) and (2.52)

LW (z) = pW(2)

where p € R. In comparison with the equation (3.1) this reads as follows

(2.57) (@)~ (2= 221) /(&) — pyle) = 0

where p € R . By substituting y(z) = 2= (@ /2 exp(2%/4) u(z) the equation (2.57) reduces to
the following equation

(2.59) u'(z) = (5 + (0= %) + 22 (55 — 1)) u@) = 0.

The unpleasant term in this equation is 1/2? , and the general solution is not immediately found
in the list of special functions in [1]. Motivated by our considerations below when 0 < a <1,
we may substitute 7(z?) = y(z) and observe that the equation (2.57) is equivalent to:

(2.59) 425" (2) + 2(a—2)§'(2) — py(2) =0

where z = x? . This equation now can be reduced to the Whittaker’s equation (see [1]) as
described in (2.60) and (2.61) below. The general solution of the Whittaker’s equation is given
by Whittaker’s functions which are expressed in terms of Kummer’s functions. This establishes
a basic fact about the extension of the free-boundary problem from the reflected Brownian
motion to the Bessel process of the dimension « > 1 . The problem then can be solved in
exactly the same manner as before. It is interesting to observe that if the dimension « of
the Bessel process (X;) equals 3, then the equation (2.58) is of the form (3.2), and thus
the optimal stopping problem is solved immediately by using the corresponding closed form
solution given in Example 2.1 and Example 2.12 above.

2. The case 0 < a < 1. The Bessel process of dimension 0 < a < 1 does not solve
a stochastic differential equation in the sense of (2.56), and therefore it is convenient to look
at the squared Bessel process (X;) which is a unique (non-negative) strong solution of the
stochastic differential equation

dX; = adt + 2V X, dB;

satisfying Xo =z for some Z > 0. (This is true for all a > 0.) The Bessel process (X;) is
then defined as the square root of (X;) . Thus

Xt:ﬁ-

The boundary point 0 is instantaneously reflecting if 0 < o <1, and is a trap if a =0 .
(The Bessel process (X;) may be realized as a reflected Brownian motion when a =1 .)

In the notation of Section 1 consider the process (Y;) = (3(t)X;) and note that u(z) =«
and o(z) = 24/z . Thus conditions (1.3) and (1.4) may be realized with ~v(¢) =1, G1(y) = «
and Go(y) = 4y . Noting that £(t) = 1/(1+t) solves f'(t)/B(t) = —p(t) and setting
p= /2, we see from (1.2) that
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where (Z;) = (Y,,) with o, =e?—1. Thus (Z;) solves the equation:
It is interesting to observe that

¢ X, \

Zt = Yat ki = < gt )

- 1+O't \/1+O't

and thus the process (\/Z) may be seen as the Fuclidean wvelocity of the a-dimensional
Brownian motion for « € [0,1] .

This enables us to reformulate the initial problem about (X;) in terms of (X;) and then
after Brownian scaling and time-change ¢+ o; in terms of the diffusion (Z;) . The pleasant
fact is hidden in the formulation of the corresponding free-boundary problem for (Z;) :

L2W = pW
which in comparison with the equation (3.1) reads as follows
(2.60) dzy"(x) + 2(a—z) y'(z) — py(z) = 0.

Observe that this equation is of the same type as the equation (2.59). By substituting y(z) =
r~**exp(z/4) u(z) the equation (2.60) reduces to
" 1 1 o1 « ay 1

(2.61) “(x)J“(‘E+Z<p+§)5+1(1_2)?)“(”’)_0

which may be recognized as a Whittaker’s equation (see [1]). The general solution of the Whit-
taker’s equation is given by Whittaker’s functions which are expressed in terms of Kummer’s
functions. This again establishes a basic fact about the extension of the free-boundary problem
from the reflected Brownian motion to the Bessel process of the dimension 0 < a < 1. The
problem then can be solved in exactly the same manner as before. Note also that the arguments
about the passage to the squared Bessel process just presented are valid for all o > 0. When
«a > 1 it is a matter of taste which way to choose.

Example 2.16. In this example we show how to solve some path-dependent optimal stopping
problems (i.e. problems with the gain function depending on the entire path of the underlying
process up to the time of observation).

Given an Ornstein-Uhlenbeck process (Z;) satisfying (2.2), started at z under P, |
consider the optimal stopping problem with the value function

(2.62) W,(z) = sup E, (/ e " Zy, du)
T 0

where the supremum is taken over all stopping time 7 for (Z;) . This problem is motivated by
the fact that the integral appearing above may be viewed as a measure of the accumulated gain
(up to the time of observation) which is assumed proportional to the velocity of the Brownian
particle being discounted. We will first verify by It6 formula that this problem is in fact
equivalent to the one-dimensional problem (2.31). Then by using the time-change o; we shall
show that these problems are also equivalent to yet another path-dependent optimal stopping
problem which is given in (2.64) below.
1. Applying It6 formula to the process (e 'Z;) , we find by using (2.2) that

t
etZ, =2+ M, — 2/ e "Z, du
0
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where (M;) is a continuous local martingale given by
t
M, = \/2_/ e " dB, .
0

If 7 is a bounded stopping time for (Z;) , then by the optional sampling theorem we get

E(/O e 7, du) - %(z—i— E, (eT(—ZT))) .

Taking supremum over all bounded stopping times 7 for (Z;) , and using that (—Z;) is an
Ornstein-Uhlenbeck process starting from —z under P, , we obtain

(2.63) W.(z) = %(z + W*(—z))

where W, is the value function from (2.31). The explicit expression for W, is given in (2.36),
and inserting it in (2.63), we immediately obtain the following result.

Corollary 2.17. The value function of the optimal stopping problem (2.62) is given by

() = %(z—l—(l—zf) 622/2/,2 e du) if 2> —2z.

0 if 2 <—z,
where z, > 0 is the unique root of (2.39). The optimal stopping time in (2.62) is given by
T*:inf{t>0 : Ztg—z*}.

2. Given the Brownian motion X; = B;+x started at = under P, , consider the optimal
stopping problem with the value function

(2.64) V.(t,z) = sup B, ( /OT (tfizy du)

where the supremum is taken over all stopping times 7 for (X;) . It is easily verified by
Brownian scaling that we have

(2.65) Vi(t,z) = = V.(1,2/V%) .

t

Moreover, by time-change (1.5) we get
/ Xo/(14u)? du = / X, /(1+0,)* do
0 0
= 2/ e (1+0,)7%%7, du = 2/ e "Z, du
0 0

and the problem to determine ‘7*(1, z) therefore reduces to compute

(2.66) Vi(1,2) = W,(x)

where W, is given by (2.62). From (2.65) and (2.66) we thus obtain the following result as an
immediate consequence of Corollary 2.17.
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Corollary 2.18. The value function of the optimal stopping problem (2.64) is given by

5 £ (1o 52) et / e Pdu if 1/VE >~z
Vit,z)=4 1t V¢ /v
0 if 2/Vt < —2z,

where z, > 0 is the unique root of (2.39). The optimal stopping time in (2.64) is given by
T, = inf {r>0 X, < —zVt4+T } .

3. The optimal stopping problem (2.62) can be naturally extended by considering the
optimal stopping problem with the value function

(2.67) W.(z) = sup E, (e_pTHen(Zu) du)

where the supremum is taken over all stopping times 7 for (Z;) and z +— He,(x) is the
Hermite polynomial given by (3.10), with p > 0 given and fixed. The crucial fact is that
x + He,(z) solves the differential equation (3.1), and by It6 formula and (2.2) this implies

¢ " He,(Z) = Hen(2) + M, + /0 Cem (LZ (He,)(Z,) — pHen(Zu)) du

t
= He,(z) + M; — (n+p)/ e P"He,(Z,) du
0
where (M;) is a continuous local martingale given by

t
M, =V2 / e"P%(He,)' (Zy) du .
0
Again as above we find that
W.(z) = ﬁ (He,(2) + W.(z))
with W, being the value function of the optimal stopping problem

W.(z) = sup E. (e_pT(—Hen(Zu)))

where the supremum is taken over all stopping times 7 for (Z;) . This problem is one-
dimensional and can be solved by the method used in Example 2.1.

4. Observe that the problem (2.67) with the arguments just presented can be extended
from the Hermite polynomial to any solution of the differential equation (3.1).

3. Appendix: Auxiliary results

In the examples above we need the general solution of the second-order differential equation

(3.1) y'(z) —zy'(z) — py(z) =0
where p € R . By substituting y(z) = exp(z?/4) u(x) the equation (3.1) reduces to
(3.2) u(z) — (ﬂ—z + (p— %)) u(z) =0.

The general solution of (3.2) is well-known, and in the text above we make use of the following
two pairs of linearly independent solutions (see [1]).
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1. The Kummer confluent hypergeometric function is defined by

2
M(a,bz)=1+%z+ 500 5+ ..

Two linearly independent solutions of (3.2) can be expressed as

ui(e) = e M5, 5,%) and up(2) =ze MG +5,5, %)

and therefore two linearly independent solutions of (3.1) are given by
2

(3.3) yi(z)=M(%,5, %)

(3-4) wl@)=aM(G+35,3.%).
Observe that 3, is even and vy is odd. Note also that

(3.5) M'(a,b,z) = ¢ M(a+1,b+1,2) .

2. The parabolic cylinder function is defined by
Du(m) = Al 67$2/4 M(—% y % 5 %2) + Ag $€7w2/4 M(—%—i— 1 3 Iz)

21272
where A, = 2Y/277Y2cos(vn/2) T((14v)/2) and Ay, = 2041/2 1712 gin(vr/2) T(1+v/2) .
Two linearly independent solutions of (3.2) can be expressed as

() = D_,(xz) and us(z) = D_,(—x)
and therefore two linearly independent solutions of (3.1) are given by
(3.6) 7i(z) = e/ D_,(x)

(3.7) To(z) = 7" D, (—2)

whenever —p ¢ NU {0} . Note that ¥, and ¥y, are not symmetric around zero unless
—p € NU {0} . Note also that

d 2 2
(3.8) %(ex "D,(z)) =ve**D,_i(z) .
Moreover, the following integral representation is valid
D 6_$2/4 * —v—1 —mu—u2/2d
(3.9) y(x) = == /0 u e u

whenever v <0 .
3. To identify zero points of the solutions above, it is useful to note that

2

M(-n,1,%Z) = Hes,(x)/Hez,(0)
¢*/*D,(z) = He,(z)

where 1z +— He,(x) is the Hermite polynomial

2 dn 2
— (_1\n,x/2 —z?/2
(3.10) He,(z) = (—1)"e o (e )

for n > 0. For more information on the facts presented in this section we refer to [1].
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Discounted Optimal Stopping Problems
for the Maximum Process

JESPER LUND PEDERSEN
University of Aarhus

The maximality principle [6] is shown to be valid in some examples of discounted optimal
stopping problems for the maximum process. In each of these examples we derive explicit
formulas for the value function and display the optimal stopping time. Especially, in the
framework of Black-Scholes model we calculate the fair price of two Lookback options with
infinite horizon. The main aim of the paper is to show that in each example under consideration
the optimal stopping boundary satisfies the maximality principle and that the value function
can be determined explicitly.

1. Introduction

The main purpose of the paper is to illustrate by examples that the maximality principle
[6] remains valid for discounted optimal stopping problems involving the maximum process
associated with a one-dimensional time-homogeneous diffusion. This is done by solving some
problems explicitly (see Remark 2.3 and 2.9 below). The main interest for such a class of
optimal stopping problems comes from option pricing theory in Mathematical Finance, and
an example below is related to that. The motivation of this problem was the conjecture by
Peskir [6], that the maximality principle holds in discounted optimal stopping problems for
the maximum process (see also the paper of Graversen and Peskir [4]). For completeness the
method and the ideas are recalled here.

Let ((X:),P;) denote a non-negative diffusion associated with the infinitesimal generator
on (0,00) given by

82

dz?

where = — p(x) and z +— o(z) > 0 are assumed to be continuous for = > 0 . Denote by
(S¢) the maximum process associated with (X;) given by

(1) Ly = 4(2) = + 10°(z)

Sy = (maxogrgt Xr) V s

started at s > = under P, :=P, . Let the discounting rate = — A(z) > 0 be a continuous
function, and define the functional

t
0

1991 Mathematics Subject Classification. Primary 60G40, 60H30. Secondary 60G44, 90A09.

Key words and phrases. Optimal stopping, discounting, value function, maximum process, diffusion, the
maximality principle, free-boundary problem, the principle of smooth fit, infinitesimal operator, (reflected)
Brownian motion, Bessel process, Black-Scholes model, geometric Brownian motion, Lookback option.
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The optimal stopping problems which appear in the next section have the value function
given by

(1.2) Vi(z,s) = sgp E; s (e‘AT (ST — D(XT))+)

where the supremum is taken over all finite stopping times 7 for (X;), and the cost function
z + D(z) is a non-negative C'-function. An example (the Russian option) of problem (1.2)
was solved in the framework of option pricing theory by Shepp and Shiryaev [9] and [10], when
the diffusion (X;) is a geometric Brownian motion, A(z) is a positive constant and D(z) =0
(see also [1] and [3]).

Let (X,) be the killed diffusion at rate A(-) of (X;) (see [8]). If a new point A is
adjoined to the state space I = [0,00) , and we set In = [0,00) U{A} , the (homogeneous)
transition function of the process (X,) is given by

ﬁt(:v, A) =E, (eiA(t)lA(Xt))

and the probability that (X,) started at = gets killed at time ¢ is Py(z, {A}) = 1-E, (e=A).
The killed process ()?t) corresponds to the killing of the paths of (X;) at the rate A, and
at the time of killing, the process (X;) takes the value A and stays in A . The infinitesimal
operator of (X;) is given by

2

0 0
Lg = u(z) 52 +350°(@) 55 = A@) = Lx = A(@) -

Note that in the special case of constant killing rate A(xz) = A > 0, the killing time is a random
variable 7' independent of (X;) and has the exponential distribution of parameter \ .
By the foregoing, it follows that the problem (1.2) reduces to the problem

(1.3) Va(z,5) = sup Ew,s((s\’r - D()A(r)f)

and since t/l\le point A cannot affect the value of X; and due to the specific form of S; , we
may take S;=S; . From the reduced problem (1.3) we are led to think that the value function
V. solves the equation (see [6])
LgV(z,s) =0 for g.(s)<z<s
where s+ g.(s) < s is the optimal stopping boundary and that the stopping time
Tg. = 1nf{t >0: X, < g*(St)}

is optimal, i.e. Vi(z,s) = E; (exp (= A, ) (S, — D(XTg*))+) . For this reason it is natural
to think that the value function V, and the optimal stopping boundary g. solve the following
System

(1.4) LxV(z,s) = Mz)V (z, s) for g(s)<z<s
(1.5) V(z,s) o s — D(g(s)) (instantaneous stopping)
z=g(s)+
(1.6) WV s ~ _D'(g(s)) (smooth fit)
’ ox "’ z=g(s)+ N g
ov :
(1.7) E(x, s)| =0 (normal reflection)

with Lx in (1.1) and where (1.5) and (1.6) are only to be understood when g(s) >0 .
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The system (1.4)-(1.7) is a free-boundary problem, and has not a unique solution. But
the maximality principle enables us to pick up the optimal stopping boundary g, among all
possible ones in a unique way, i.e. the optimal stopping boundary s+ g.(s) is the maximal
solution which stays below and never hits the diagonal in R? (see Figure 1 and 2 below). This
solution will be called the maximal solution in the sequel. Note that in general this system may
have no simple solution. Thus, the system defines the boundary function s~ g(s) implicitly
and this is the main technical difficulty to verify the maximality principle for the problem (1.2)
in full generality.

Example 2.1 is a simple example with past-depending discounting where the diffusion is a
reflected Brownian motion. In Example 2.4 the diffusion is the square of the Bessel process
and the optimal stopping problem is of the same type as Example 2.1. The main emphasis in
these examples is on the explicit expressions obtained. The fair price of the perpetual Lookback
option with fixed /floating strike is calculated in Example 2.7 in the framework of Black-Scholes
model. The optimal stopping boundary for the perpetual Lookback option with fixed strike is
rather nontrivial, thus showing the full power of the maximality principle.

2. Examples

In this section we explicitly solve some discounted optimal stopping problems for the maximum
process by applying the technique described in the first section.
Throughout (B;) denotes a standard Brownian motion started at zero under P .

Example 2.1. Reflected Brownian motion

The main emphasis of this example (and the next example) is on the closed formulas ob-
tained for the value function and the optimal stopping time.

Let the diffusion (X;) be a reflected Brownian motion, i.e. (X;) = (|B; + z|) started at
z >0 under P, . The infinitesimal operator of (X;) on (0,00) is given by

1 08
2 92
In the setting of section 1 with discounting rate A(z) = 272 and cost function D(z) =0 the

optimal stopping problem (1.2) is given by
(2.2) Vi(z,s) =supE, (e " S,)

(2.1) Lx =

for 0 < x <s where the functional A; is given by

t
At:/ |Xu|72du
0

We shall now solve the problem (2.2).

The first step is to solve the system (1.4)-(1.7) with Lx in (2.1). The particular choice of
the discounting rate A(-) makes the equation (1.4) of a Cauchy-type, and the general solution
is

V(z,s)=A(s)z? + B(s)z™' for g(s)<z<s
where s — A(s) and s+ B(s) are unknown functions. The instantaneous stopping condition
(1.5) and the smooth fit condition (1.6) imply that

A(s)=1g(s)™s and B(s)=2g(s)s
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so that V(z,s) = 3 g(s) 2sa?+ 2g(s)sa~" for g(s) <z < s . Finally, the normal reflection

condition (1.7) implies that s +— g(s) satisfies the differential equation

& o= [3Gia) < Gia) VIGia) -]

Instead of a long analysis of the first-order nonlinear differential equation (2.3), we observe
that ¢(s) = Bs with 3 = (1/4)'/3 is a solution. g will be our candidate for the optimal
stopping boundary, i.e. g should be the maximal solution (see figure 1 below). Thus, the
guessed candidate for the value function V, in (2.2) is

V(z,s)=3ps"" 2>+ 285z
for s < x < s and the candidate for the optimal stopping time 7, is

r=inf{t>0: X; <3S }.
Formulating the guessed formulas in the following proposition, the last step is to apply Ito
formula to prove the correctness of the proposition.

s A

> g(s)

Figure 1. A computer drawing of solutions of the differential equation (2.3). The bold line is
the maximal solution which stays below and never hits the diagonal in R? . By the maximality
principle, this solution equals g, .

Theorem 2.2. Consider the optimal stopping problem (2.2). Then the value function V, is
given by

2.4) Vil,s) = { 7 et <o <o
and the optimal stopping time T, is given by

(2.5) T =inf{t>0: X; < B35S}

where 3= (1/4)'/3 .
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Proof. The following computations are under P, . Denote the function on the right-hand
sidein (2.4) by V(z,s) and put g(s) = Bs. Applying [t6 formula to the process e ¢V (X, S;)
we obtain

t t
e MV (X, 8) = V(x,s) — / MXy)e ™ V(X,,S,) du + / e e —%Z(XU,SU)dBu
0 0
AoV 1t 0V
A a Xu u u o —hu a o Xu U .
-I—/Oe L (X 5 d +2/Oe e (Xa,5.) du

The integral with respect to dS, is identically zero, since the increment AS, is zero outside
the diagonal in R? , while at the diagonal V satisfies the normal reflection condition (1.7).
Thus we have

t
MY (X S) =V (w,5) + M+ [ e (L (Xoy 1) = XV (X, 50))
0

where (M;) is a continuous local martingale given by

0x

Using that LxV(z,s) — A(z)V(z,s) <0 for 0 <z <g(s) and LxV(z,s) — A(z)V(z,s) =0
for g(s) < z < s, and the fact that the set of all u > 0 for which X, is either ¢(S,) or S,
is of Lebesgue measure zero, we have the equality

(2.6) e MMV (X ne, Sene) = V(w, s) + My a

t
M, = / e A a—V(Xu,Su) dB, .
0

and the inequality
(2.7) e ™MV (X, Sy) < V(x,s)+ M, .

Let 7 be any stopping time for (X;) . Choose a localization {o}}x>1 for (M;) of bounded
stopping times. Clearly V(z,s) > s forall 0 <z < s and from (2.7) we get

E; (efATM’“ ST/\G'k) <E;;s (efATM’“V(Xr/\ok, STAJk))
<V(z,s) +Egz; (MTAUk) =V(z,s)
for all £ > 1. Letting k — oo , it is immediately seen by Fatou’s lemma that
E; (e_ATST) <V(z,s).
Taking supremum over all stopping times 7 for (X;) we obtain
(2.8) Vi(z,s) < V(x,s) .

Finally, to prove equality in (2.8) and that the value function V, and the optimal stopping
time 7, are given by (2.4) and (2.5) respectively, it is enough to prove

(2.9) V(z,s) =Egzg (e_AT* S..) -
By (2.6) and the definition of the stopping time 7, we have

e tS, =e MV (X, S) = V(z,s) + M,
so the proof will be completed, if we show that

(2.10) E,,(M.)=0.
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By Doob’s optional sampling theorem and Burkholder-Davis-Gundy’s inequality for contin-
uous local martingales, in order to prove (2.10) it is enough to show that

an ([ (e ) o ) = <o

For this we compute

for s < x < s . Inserting this into (2.11) we get

J = E(\// us ))2du>

_5(5_ _ﬂ) w,s(ﬁ) <00

provided that E,(y/7x) < oo which is known to be true (see [5]). The proof is completed. [J

Remark 2.3. In the proof up to (2.8) we did not make any use of the specific form of the
optimal stopping boundary s — g.(s) and the corresponding value function V, . Let g solve
the equation (2.3) and stay below the diagonal in R? . Let V, be the corresponding function
which solve the system (1.4)-(1.7). With exactly the same arguments as in the proof (2.8) it
follows that V. <V, . We also have that g+ V, is (strictly) decreasing. Therefore s — g.(s)
is the maximal solution, and thus this example illustrate the validity of the maximality principle.

Example 2.4. Bessel process

This example is of the same type as Example 2.1. Thus the results in this example will only
be postulated since the computations and proofs are almost the same as in Example 2.1.

Let (X;) be the square of a Bessel process of dimension « > 0 (see [7]) satisfying the
stochastic differential equation

dXt =adt+ 2\/ Xt dBt .

The infinitesimal operator of (X;) on (0,00) is given by
0

(2.12) Lx =a— +27— .
T

With discounting rate A(z) = rz~! where r > 0 is a constant and cost function D(z) = 0,
the optimal stopping problem (1.2) is given by
(2.13) Vi(z,s) =supE, 5 (e S,)

T

for 0 < x < s, where the functional A, is given by

t
At:’f'/ Xu_ldu
0

Again by the choice of the discounting rate A(-) the equation (1.4) with Lx in (2.12) is of
Cauchy-type, and it is possible to find the solution to the system (1.4)-(1.7) which satisfies the
maximality principle. It turns out that the optimal stopping boundary s — g.(s) is a linear
function (see Remark 2.6 below). The result is stated in the following theorem.
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Theorem 2.5. Consider the optimal stopping problem (2.13). Let 1 < 7o be the two roots
of the quadratic equation

27— (2—-a)y—r=0

1.e.

71,2:(2—04):|:\/i2—oz)2—|-87' .

If r>a, then v <0 and v, >1 and the value function V, is given by

71 Y2
Y2 T N z .
— ] s- — | s if fBs<x<s
Vi(,s) =< 72— N (ﬂs) Y2 =M (53)
S if 0<x<fs

and the optimal stopping time 7, 1s given by
Tx =1nf{t> 0: Xt SﬂSt}

where [ s a constant given by

= (L)
1=1/m '

For r <a we have V,(z,s) = o0 and it is never optimal to stop.

Remark 2.6. The boundary function s+ g(s) in the system (1.4)-(1.7) satisfies the differ-
ential equation

o2 G VG G

and the optimal stopping boundary g¢.(s) = (s is the maximal solution. This shows the
validity of the maximality principle in this example.

Example 2.7. Perpetual Lookback options

In the framework of the standard Black-Scholes model under the equivalent martingale
measure we shall consider two examples of pricing an American option with infinite horizon.
Thus, the diffusion (X;) is a geometric Brownian motion satisfying the stochastic differential
equation

(214) dXt = ’f’Xt dt+UXt dBt

where r > 0 and o > 0 are two given constants. The infinitesimal operator of (X;) on
(0,00) is given by
0 1.2.2 0”
Let us consider the following two Lookback options.
1. The payment function of the Lookback option with fized strike (called ‘option on extrema’
in [2]) is given by

ft = E_At(St — K)+
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where A >0 and K >0 are two constants. For K =0 it is the Russian option [9]. Under
these assumptions the fair price of the perpetual Lookback option with fixed strike is according
to the general option pricing theory the value of the optimal stopping problem

(2.16) Vi(z,s) = supEg s (e f7)

for 0 <z <s. With the notation of section 1 with discounting rate A(z) =7+ X\ and cost
function D(z) = K , we can rewrite (2.16) as follows

(2.17) Vi(z,s) = Slip E, (e_AT (S, — K)+) .

for 0 <z <s where the functional A; is given by
At = ('I" —+ )\) t.

The first step in solving problem (2.17) is to find all solutions to the system (1.4)-(1.7) with
Lx in (2.15), and straightforward computations give that the solutions are

= e

for g(s) <z <s where s g(s) satisfies the differential equation

om o= (1)) VR (G G

and 73 <0 and v, > 1 are the two roots of the quadratic equation
0P+ (r—30)y—(r+X) =0

1.e.

1 r 1 r\> 2x
2.2 Y S -
(2.20) V1,2 (2 02) :F\/(2+02) +02

If K =0 we see from Proposition 2.10 below (with x = 0) that g¢.(s) = Bs is the maximal
solution to the equation (2.19) which stays below and never hits the diagonal in R? | where (

is given by
1 — 1/,}/2 1/(v2—m)
o (1 -1/ ’Yl) -

If K > 0 by Picard’s method of successive approximations we can establish the existence of
the solution g. to the equation (2.19) such that g.(s) <s and |g.(s) —fs| = 0 for s — co.
The proof of this statement is technical and will be omitted (see [4] for a similar proof). The
maximal solution should be g, (see Figure 2 below). Thus, the guessed candidate for the
optimal stopping time 7, is

7, =inf {t >0 : X; < g.(S)) }

and the candidate for the value function V, is given in (2.18) for K < z < s . If the process
starts at 0 < x < s < K, and 7, = 7x + 7, 0 0,, 1is optimal, we have by strong Markov
property that
V;(.T, 8) = Ez(exp(_ATK)) V;(Ka K)
where
Tk =inf{t>0: X, =K}.
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It is well-known (see [7]) that

E,(exp(—Ar)) = (z/K)” .
The guessed formulas are formulated in the following theorem.

s A ,

> g(s)

Figure 2. A computer drawing of solutions of the differential equation (2.19). The bold line is
the maximal solution which stays below and never hits the diagonal in R? . By the maximality
principle, this solution equals g, . The stipple line is the function s +— s .
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Theorem 2.8. The fair price of the perpetual Lookback option with fized strike defined by (2.17)

18 given by
S—K T 7 ( T )’72) .
— — if s>K and g.(s)<z<s
Y2— M (72<9*(8)) o 9+(5) R
Vilz,s) = (z/K)" V.(K, K) if 0<z<s<K
s— K if s>K and 0<z < g.(s)

where V.(K,K) = lim, x V.(K,s) . The optimal stopping time is given by
T =inf{t >0 : X; < g.(S) }
where s — g.(s) 1is the solution of the differential equation
. 1 s 2 1 s 7 s — K s 72 s 7
o6 = | () L) () - (G
72\ 9(s) 71\ 9(s) g9(s) \\yg(s) 9(s)
such that g.(s) <s forall s>0 and
lg«(s) — Bs| = 0 for s— oo

P (1 _ 1/72) 1/(va—m)
1=1/m

where [ s a constant given by

and v1 and 7 are defined in (2.20).
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Proof. For K = 0 it follows directly from Proposition 2.10 below (with x = 0 ). Assume
that K > 0 and that the following computations are under P, ;. Denote the function on the
right-hand side in the theorem by V(x,s) . Applying It6 formula to the process e MV (X;, Sy),
by the same arguments as in the proof of Theorem 2.2, we obtain

t
MY (X 8) = Vi) 4 Mt [ e (L (X, 5) = AV (Yo 50)) du
0

by means of (2.14), where the process (M;) is the continuous local martingale given by

t oV
M, =0 / e~ M ——(X,,S,) X, dB, .
0

ox
Similarly as in the proof of Theorem 2.2 we have the equality
(2.21) e MMV (X aty Srnt) = V (2, 8) + Mo pt

and the inequality

(2.22) Vi(z,s) < V(z,s) .
It is enough to show by (2.21) that
(2.23) E, (M, ) =0

to prove equality in (2.22). It is easily seen by (2.21) that (M, ;) is bounded from below by
—V(z,s) . Let €>0 be given and hence there exists s’ such that 7, <7y +7'060,, where

7' is a stopping time given by

! =inf{t>0: X, <(8S;—¢€)}.
The upper bound for (M, ) is then
M e < e~ Arent V(Xn/\t, Sr*/\t) < e~ Arane V(ST*/\t7 Sn/\t) < sup e V(St7 St)

*
t<Tx

< sup e ™MV(S,S) < { max e V (S, St)} Y, { sup e MV(S, St)}

t<7g 4700, t<Ty Tyt <t<7'0b-,

<k V su e Ap b T — —
=" { T gtgfl;')oefs, Yo — M1 i (g*(St) n 9+(St)

!

S,
<k V { sup e Mt ¢ (72 _ %( 5 )72) } < ki + ko iul()){e_At Si}
>

!
Ty <t<rlob, Yo — M Bs' — e

where k; and ko, are two constants. The variable sup,.,e "t S, is integrable (see [9]) and
therefore is (M, ;) uniformly integrable and hence we can conclude that E, (MT) =0.
The proof is complete. [

Remark 2.9. By the same arguments as in Remark 2.3 we see that s+ g¢.(s) is the maximal
solution. Moreover we do not see how the problem could be solved without the maximality
principle.

2. The payment function of the Lookback option with floating strike (called ¢ partial Look-
back’ in [2]) is given by
ht = G_At (St — KXt)+
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where A > 0 and x > 0 are constants. For x = 0 it is the Russian option [9]. The fair
price of the perpetual Lookback option with floating strike is the value of the optimal stopping
problem

Vi(z,s) =supE, (e_”h,T) )

for 0 < x < s. The only change from the Lookback option with fixed strike is the cost function
D(z) = kx and we have the optimal stopping problem

(2.24) Vi(z,s) =supE, (e‘AT (S — /{XT)JF)
The problem (2.24) was solved in [10] in the special case k=0 (see also [9] and [3]) and
in the general case the following proposition was proved in [1].

Proposition 2.10. The fair price of the perpetual Lookback option with floating strike defined
by (2.24) is given by

©/8 [( kB —1))(1)“—( kB —1))(1)%1] if Bs<w<s
Vi, s)=4 va—m L\2 2T V) B LAV B
s — KX if 0<x<fBs

and the optimal stopping time 7, is given by
Tx :1nf{t> 0: Xt SﬁSt}
where (3 s the unique solution to the equation

g m = 1- 1/72 1 - K’ﬁ(l - 1/71)
1=1/m 1=£kB(1—1/7)
and v1 and 7, are defined in (2.20).

Remark 2.11. It is easily checked that the value function V, and the optimal stopping
boundary s +— g,(s) solve the system (1.4)-(1.7) with Lx in (2.15) which satisfies the
maximality principle. However, in this case it is not the most natural method to solve the
problem (2.24). Instead by Girsanov’s change of measure the 2-dimensional problem can be
reduced to a 1-dimensional problem. The 1-dimensional problem can be solved by different
methods, but in any of the methods it is crucial that the process (S;/X;) is a new diffusion
which is a special property of the geometric Brownian motion (see [10], [3] and [1]).
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The Azéma-Yor Solution to Embedding
in Non-Singular Diffusions

JESPER LUND PEDERSEN
University of Aarhus

Let (X¢)¢>0 be anon-singular diffusion on R vanishing at zero and is not necessarily recurrent.
Let v be a probability measure on R having strictly positive density. Necessary and sufficient
conditions on v are given such that there exists a stopping time 7. of (X;) solving the
Skorokhod embedding problem, i.e. X, hasthelaw v . Furthermore an explicit construction
of 7. 1is carried out which is an extension of the Azéma-Yor solution when the process is a
recurrent diffusion. In addition, 7, is characterized uniquely to be the pointwise smallest
possible embedding that stochastically maximizes the maximum process of (X;) up to the
time of stopping or stochastically minimizes the minimum process of (X;) up to the time of

stopping.

1. Introduction

Consider a probability measure v on R and a non-singular time-homogeneous diffusion
(X¢)i>0 vanishing at zero. In this paper we consider the problem of embedding the given law
v in the process (X;) by construction of a stopping time 7, of (X;) , i.e. by finding a
stopping time 7, of (X;) satisfying X, ~ v and determining conditions on v which make
this possible. The problem is known as Skorokhod embedding problem.

The proof (see below) leads naturally to explicit construction of an extremal embedding of
v in the following sense. The embedding is an extension of the Azéma-Yor construction [1]
that is pointwise the smallest possible embedding that stochastically maximizes maxg<;<,, X;
or stochastically minimizes ming<;<, X; over all embeddings 7, .

The Skorokhod embedding problem has been investigated by many authors and was initiated
in Skorokhod [16] when (X;) is Brownian motion. In this case Azéma and Yor [1] (see
Rogers [13] for an excursion argument) and Perkins [9] yield two different explicit extremal
solutions of the Skorokhod embedding problem in the natural filtration. An extension of the
Azéma-Yor embedding when the Brownian motion has an initial law was given in Hobson [6].
The existence of an embedding in a general Markov process was characterized by Rost [15], but
no explicit construction of the stopping time was given. Bertoin and Le Jan [3] constructed
a new class of embeddings when the process (X;) is a Hunt process starting at a regular
recurrent point. Furthermore Azéma and Yor [1] give an explicit solution when the process
(X;) is a recurrent diffusion. The case where the process (X;) is Brownian motion with drift
(non-recurrent diffusion) was studied in Grandits [5] and Peskir [10] and in the latter paper a
necessary and sufficient condition on v is given such that an explicit embedding (an extension
of the Azéma-Yor embedding) is possible. More general embedding problems for martingales
are considered in Rogers [14] and Brown, Hobson and Rogers [4].

1991 Mathematics Subject Classification. Primary 60G40, 60J60. Secondary 60J65, 60G44.
Key words and phrases. The Skorokhod embedding problem, non-singular diffusion, non-recurrent, time-
change, Azéma-Yor embedding, barycentre function, maximum /minimum process, Perkins embedding.
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Applications of Skorokhod embedding problems have gained some interest to option pricing
theory. How to design an option given the law of the risk is studied in [11], and bounds on the
prices of Lookback options obtained by robust hedging are studied in [7].

This paper was motivated by the works of Grandits [5] and Peskir [10] where they show that
an extension of the Azéma-Yor construction is an embedding for the non-recurrent diffusion:
Brownian motion with drift. In this paper we extend this solution to general non-recurrent
non-singular diffusions. The approach of finding a solution to the Skorokhod problem is the
following. First, the initial problem is transformed by composing (X;) with its scale function
into an analogous embedding problem for a continuous local martingale. Secondly, by the
time-change given in the construction of the Dambis, Dubins-Schwarz Brownian motion (see
[12]) the martingale embedding is shown to be equivalent to embedding in Brownian motion.
When (X;) is Brownian motion we have the embedding given in [1]. This method is well-
known (see [1]) and we believe that the results of this paper are known to the specialists in the
field, although we could not find it in the literature on Skorokhod embedding problems. The
embedding problem for a continuous local martingale has some novelty since the martingale is
convergent when the initial diffusion is non-recurrent. Also some properties of the constructed
embedding mentioned above are given so to characterize the embedding uniquely. The main
emphasis of the paper is on the explicit construction of the embeddings and simplicity of proofs.

2. Formulation of the problem

Let =+ pu(r) and =~ o(z) >0 be two Borel functions such that 1/02(-) and |u(-)|/o?(-)
are locally integrable at every point in R . Let (X;);>¢ defined on (2, F,P) be the unique
weak solution up to an explosion time e of the one-dimensional time-homogeneous stochastic
differential equation

(2.1) dX, = p(X,)dt +o(X,)dB, , Xo=0

where (B;) is a standard Brownian motion and e =inf{¢ >0 : X; ¢ R} . In Section 5 the
definition, existence and uniqueness of solutions to the stochastic differential equation (2.1) are
recalled together with some basic facts on the solutions. For simplicity, the state space of (X;)
is taken to be I = R, but it will be clear that the considerations are generally valid for any
state space which is an interval I = (I,7) (see also Section 5).

The scale function of (X;) is given by

S(z) = /Ozexp (—2/()” :Z(é)) dr) du

for © € R . The scale function S(-) has a strictly positive continuous derivative and the
second derivative exists almost everywhere. Thus S(-) is strictly increasing with S(0) =0 .
Define the open interval J = (S(—o0),S(c0)) . If J =R then (X;) is recurrent and if J
is bounded from below or above then (X;) is non-recurrent (see Proposition 5.3).

Let v be in the class of probability measure on R satisfying

/R|S(u)| v(du) < oo

and having a strictly positive density F’ where F' is the distribution function associated with
v . The assumption that v has a strictly positive density is made for simplicity. The main
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problem under consideration in this paper is the following. Given the probability measure v
find a stopping time 7, of (X;) satisfying

(2.2) X, ~v

and determine necessary and sufficient conditions on » which make such a construction
possible.

1. The first step is to introduce the continuous local martingale (M;);>o which shall be
used in transforming the original problem into an analogous Skorokhod problem. Let (M) be
the continuous local martingale given by composing (X;) with the scale function S(:) , i.e.

(2.3) My = S(Xy) .

Since z — S(z) is strictly increasing then Proposition 5.3 ensures that S(—o0) < M; < S(00)
for t <e andif J is bounded from below or above M; converges to the boundary of J for
t—e and My =M, on {e < oo} for t>e . By Ito-Tanaka formula it follows that (M)
is a solution to the stochastic differential equation

dM, = 5(M,) dB,
where
)88 H2) o (ST ) for e J
o(z) = 0 else .

The quadratic variation process is therefore given by

(M, M), = /0 t52(Mu) du = /0 " (S’(Xu) o(Xu))Zdu

and it is immediately seen that t — (M, M), is strictly increasing for ¢ < e . If J is bounded
from below or above then (M, M), < oo, If J =R the local martingale (M;) is recurrent,
or equivalent (M, M), = co and e = oo . The process (M;) does not explode, but the
explosion time e for (X;) can be expressed as e=inf{t>0: M; ¢ J} .

Let G be the distribution function given by

(2.4 Glz) = F(57(@))

for z € J with G(S(—o0)) =0 and G(S(00)) = 1. Then z — G(z) is continuous,
differentiable and strictly increasing on J . For a stopping time 7, of (X;) it is not difficult
to see that X, ~ F if and only if M,, ~ G . Therefore the initial problem (2.2) is analogous
to the problem of finding a stopping time 7, of (M;) satisfying

(2.5) M, ~G .

Moreover if 7, is an embedding for (M;) then by the above observations it follows that
S(—o0) < M, < S(o0) and hence 7, <e.

2. The second step is to apply time-change and verify that the embedding problem of the
continuous local martingale (2.5) is equivalent to an embedding problem of Brownian motion.
Let (7;) be the time-change given by

(2.6) Ty, =inf{s>0: (M, M), >t} = (M, M);'
for ¢t < (M, M), . Define the process (W;);>0 by

W, {MTt if t< (M, M),

2.7
(2.7) M, if t> (M, M), .
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Since t ~— T} is strictly increasing for ¢ < (M, M), we have that (F}) = (F) . This
implies that, if 7 < (M, M), is a stopping time for (W;) then T, is a stopping time for
(M) , and vice versa if 7 < e is a stopping time for (M;) then (M,M), is a stopping
time for (W;) . The process (W;) is a Brownian motion stopped at (M, M), according
to Dambis, Dubins-Schwarz theorem (see [12]). By the definition of (W;) it is clear that
(M, M), =inf{t >0 : Wy ¢ J} and hence the two processes (W;);>o and (B
have the same law where 7Tg(_oo),5(00) =inf{t>0: B, ¢ J} .

From the above observation we deduce that the embedding problem for the continuous local
martingale is equivalent to embedding in the stopped Brownian motion, i.e the martingale case
(2.5) is equivalent to find a stopping time 7, of (W;) satisfying W, ~ G .

The method just described will be applied below in Section 4 to find a solution to the initial
problem (2.2).

TS(co),S(oo)/\t)tZO

3. Skorokhod embedding in Brownian motion

The above observations show that a construction of an embedding in the initial problem (2.2)
can be obtained from an embedding in Brownian motion. Therefore an outline of the Azéma-
Yor [1] construction of embedding in Brownian motion will be recalled in this section together
with some facts of the embedding. These results and facts will be applied in the next section
where the construction of the embedding in the initial problem will be carried out.

Let G be the distribution function given in (2.4) i.e. z — G(z) is continuous, differentiable
and strictly increasing on the open interval J = (o, 3) with G(a) =0 and G(8) =1 where
a = S(—o0) and = S(oc0) . Furthermore G has finite mean and denote it by

(3.1) m = / wdG(u

Thus we want to find a stopping time 7, of (B;) satisfying
(3.2) B, ~G.

Define the two functions

(3.3) c(z) = /R (u— :v)+ dG(u) and p(z)= /R (z — u)+ dG(u)

for zeR.

It is now possible to present the construction of the Azéma-Yor embedding which is a
solution to problem (3.2). If m > 0, define the increasing function s — b, (s) as follows. For
m<s<pf set by(s) asthevalue z < s which minimizes

c(2)

s—z
and set by(s) = —oo for s <m and b,(s) =s for s > [ (see [4] that by (-) is well-defined).
Note that limg, by(s) = . The left inverse of b, (:) is given by

(3.4) b\ () = 1_1% / " wdG(u)

for x <@ and b;'(z) =z for x > 3. The function z + b;'(z) is the barycentre function
of G . Define the stopping time 7,, by (see Figure 1)

(3.5) o, =inf {¢ >0 : B, < b;(maxo<, <t By) } -
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Observe that the stopping time 7,, can be described by 7, = 7, + 7, 0 0,, where
Tm = inf{t >0 : B, = m} since b.(-) for s < m is defined to be —oo . Similarly,
if m <0, define the increasing function s+ b_(s) as follows. For a < s<m set b _(s) as
the value of 2z > s which minimizes

p(2)

z—s
and set b_(s) =00 for s >m and b_(s) =s for s < a. Note that limg, b_(s) =3 . The
left inverse of b_(-) is given by

(3.6) b= () = % / " wdG()

—00

for x> a and b~'(x) =2 for z < a . Define the stopping time 7, by
(3.7) 7. =inf {¢>0: B, > b_(ming<,<; B;) } .

The stopping time 7,_ can be described by 7,_ =7, +7_o06, .

5 A

s> by (s)

(BT* , max Bt)

0<t<Ta

.
X

Figure 1. A computer drawing of the map s — b, (s) where the inverse is given in (3.4) when
G is the distribution function of a N(1,1)-variable. The above process is (Bt, max o<r<t BT).
The process can increase in the second component only after hitting the diagonal z = s .
The stopping time 7, given in (3.5) is obtained by stopping the process as soon it hits the
boundary s~ by(s) .

One more observation is needed before stating the result. If 7, is an embedding of the
centered distribution function z +— G(m + z) then strong Markov property ensures that the
stopping time 7, + 7. 06, is an embedding of G where 7, =inf{t >0 : B, =m}. The
proposition below follows from [1], the above observation and the fact that (—B;) is Brownian
motion.

Proposition 3.1. Let the distribution function G be given as above. For m > 0 set 7, = 7,
given in (3.5) and for m <0 set 7. =7,_ given in (3.7). Then B, ~ G .

The embedding given in Proposition 3.1 has some extremal properties given in the proposi-
tion below. Loosely speaking, the proposition says that for m > 0 the embedding 7, is point-
wise the smallest embedding that stochastically maximizes the maximum process maxo<s<r, B;.
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These properties were observed in [11] for m =0 and in [10] (with drift tending to zero) for
non-centered distribution functions. This characterizes 7, uniquely (called the minimax prop-
erty in [11] and [10]). For m < 0 a vice versa result holds for the embedding.

Proposition 3.2. Under the assumptions of Proposition 3.1, let T be any stopping time of
(B;) satisfying By ~ G . Then we have.
(D). If m>0 and E(maxogtgr Bt) < oo then the following inequality holds

(38) P(maxOStST Bt Z 8) S P(maXOStST* Bt Z 8)
for all s >0 . If furthermore G satisfies
(3.9) / ulog(u) dG(u) < oo

0

and the stopping time T satisfies maxo<i<, By ~ maxo<i<, By (i.e. there is equality in (3.8)
for all s>0) then
T=1, P-a.s.

(ID). If m<0 and E(minoStST Bt) > —oo then the following inequality holds

(310) P(minOStST Bt S S) S P(minostgn Bt S S)
for all s <0 . If furthermore G satisfies

0
(3.11) / wlog(—u) dG(u) > —oo

and the stopping time T satisfies ming<;<, By ~ ming<i<,, By (i.e. there is equality in (3.10)
for all s<0) then
T=1, P-a.s.

Remark 3.3. The conditions (3.9) and (3.11) are respectively equivalent to
E(maxogtgﬂ Bt) < oo and E(minoStSn Bt) > —00 .

Remark 3.4. For m > 0 we have that

P(maXo<t<n B, > s) = inf c(2) = exp <_ / L)
S 2<8 § — 2 OT_b+(T)

for s >0 and for m <0 we have that

0
P(min o<t<r, Bt < s) = inf p(2) =exp| — L
== 2>s 7 — 8 s b_(r)—r

for s<0.
Remark 3.5. For m = 0, Perkins [9] construction of an embedding o, is another extremal
embedding which stochastically minimizes max<;<,, B; over all embeddings. The construc-

tion of the embedding is the following. Define the decreasing function s — a,(s) as follows.
For 0 <s< 3 set a,(s) asthe value z < s which maximizes

c(s) —p(2)

S§—Z



THE AZEMA-YOR SOLUTION TO EMBEDDING IN DIFFUSIONS 79

and set a,(s) = —s for s> 3. Still for 0 < s < 3 the function a,(s) is the unique root
to the equation
C(S) —p(z) — G(Z)
s—2z
satisfying a,(s) < s . Define the decreasing function s +— a_(s) as follows. For a < s <0
set a_(s) as the value of z > s which maximizes

p(s) — c(2)
zZ—5
and set a_(s) =—s for s <a.For aa<s <0 thefunction a_(s) is the unique root to the
equation

p(S) — C(Z) —1— G(Z)
z—5
satisfying a_(s) > s . Define the two stopping times
0,4, = inf {t >0: B, < a+(maX0§T§tBr) }
0, = inf {t >0: B> a_(minogrst BT) } .

For the stopping time o, for (B:;) given by o, =0,, Ao,_ we have that B, ~ G .
The embedding o, can be characterized uniquely in the following way. Let 7 be given as
in Proposition 3.2 then

(312) P(maXOStST Bt Z S) Z P(maxoggm Bt Z S)
for s> 0. If there is equality in (3.12) for all s >0 then 7 =0, . Finally we have that

P(maXOStSU* B > 3) =1-G(s)+sup w
z<$8 -

ool [ ) oo )

for s > 0. Thus for any embedding 7 given in Proposition 3.2 there is a lower and upper
bound of the distribution function of the maximum process maxo<;<, By and the bounds can
be attained. There are similar results for the minimum process.

4. Skorokhod embedding in non-singular diffusions

In this section we shall translate the results of the two previous sections into the case of a
non-singular diffusion. The main result of this paper is contained in the theorem below.

Let v be the probability measure on R with strictly positive density function F’ where
F' is the distribution function associated with » introduced in Section 2. We shall use the
same notation as in Section 2 and 3. Let G be the distribution function given in (2.4). Then

m in (3.1) can be rewritten as
m = / S(u) dF (u)
R
(3-3)

and the two functions ¢(-) and p(-) in

c(z) = /R (S(u) — :v)+ dF(u) and p(z)= / (z — S(u))Jr dF (u)

R

can be rewritten as
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for zeR.

The construction of an embedding which is a solution to the initial problem (2.2) is the
following. If m > 0, define the increasing function s+ h,(s) as follows. For s > S~!(m)
set hi(s) as the value of z < s which minimizes

c(5(2))
S(s) —S(z)

and set hy(s) = —oo for s < S'(m) . Note that lim, g-1()h4(s) = —oo . The left inverse

of hy(-) is given by )
ho () =s—1(1_1W / S(u) dF(u))

for all = € R . It is not difficult to see the following connection between h.'(-) and b1 '(-)
from (3.4) is valid

(4.1) B = (5 e b 0 9)().

Define the stopping time 7, by

(4.2) Thy =1inf {t >0 : X; < hy(maxo<, <t X;) } -
Thus by (4.1) and the definition of (M;) (see (2.3)) it is clear that
(4.3) Thy =inf {¢ >0 : M, < b, (maxe<c, <t M,) } .

If m <0, define the increasing function s+ h_(s) as follows. For s < S~!(m) set h_(s)
as the Value of z > s which minimizes
p(5(2))

S(z) = S(s)
and set h_(s) = oo for s> S7'(m) . Note that limgg-1(,) h—(s) = oo . The left inverse of

h () is given by m
h=l(z) = S~ (ﬁ / S dF(u))

for all = € R . Note that the connection between h~'(-) and b~'(:) from (3.6) is the same
as in (4.1). Define the stopping time 7,_ by

(4.4) Tho =inf {t >0 : X; > h_(ming<,<; X;) } -
Again it is clear that
Th_ = inf {t >0 : Mt Z b,(minogst M’r) } .

The following theorem is an extension of Proposition 3.1 and states that the above stopping
times are solutions to the Skorokhod embedding problem (2.2).

Theorem 4.1. Let (X;) be a non-singular diffusion vanishing at zero. Let v be a probability
measure on R having a strictly positive density F' such that

/|S v(du) < oo and set m = /S v(du) .

Then there exists a stopping time T, for (X;) such that X, ~ v if and only if one of the
following four cases holds

(i) S(—o0) = =00 and S(o0) =00
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(ii) S(—o0) = —00, S(0) < oo and m >0
(iii) S(—o00) > —00 , S(00) =00 and m <0
(iv) S(—o0) > —00, S(o0) <00 and m=10 .
Moreover, if m >0 then 7, is given by (4.2), and if m <0 then 7. is given by (4.4).

Proof. First to verify that the conditions in cases (i)-(iv) are sufficient, let G be the distri-
bution function given in (2.4). Assume that m > 0 and let the inverse of s+ b, (s) be given
as in (3.4). Let (W;) be the process given in (2.7) and define the stopping time 7, for (W)
by

(45) 7:* = inf {t >0: Wt S b—}-(maXOSTSt Wr) } .

As observed in Section 2 that (M, M), = inf{t > 0 : W; ¢ (S(—00),S(c0))} and by the
definition of b, (-) we see that 7, < (M, M), if either S(—o0) = —o0 , or m = 0 with
S(—o0) > —oc and S(o0) < oo . Therefore in the cases (i), (ii) and (iv) we have that
7o < (M, M), . Note that 7, < (M, M), fails in the other cases. The process (W;) is a
Brownian motion stopped at (M, M), and hence from Proposition 3.1 we have that W; ~ G.
Again by an observation in Section 2 the stopping time 7, for (M;) given by

Tx :Ti‘* = inf {t >0: M, < b+(maX05r§tMr) }

satisfies M, =W; ~ G where (T3) is the time change given in (2.6). From (4.3) we see that
T, is given in (4.2) and it clearly fulfills X, ~ F' . The same arguments hold for m <0 .
The conditions in the cases (i)-(iv) are necessary as well. Indeed, case (i) is trivial because
there is no restriction on the class of probability measures we are considering. In case (ii) let
T, be a stopping time for (X;) satisfying X, ~ F or equivalently M, ~ G . Then the
process (M, n¢) is a continuous local martingale which is bounded from above by S(00) < 0o

. Let {vn}n>1 be a localization for the local martingale. Applying Fatou’s lemma and the
optional sampling theorem we have that

=E(M, ) > liminfE(M. =0.

m = B(M,) > lminf B(M, 1,,) = 0

The cases (iii) and (iv) are proved in exactly in the same way. Note that (M) is a bounded

martingale in case (iv). O
Next we explore the properties stated in Proposition 3.2 in the context of a diffusion.

Proposition 4.2. Under the assumptions of Theorem 4.1, let T be any stopping time of (X;)
satisfying X, ~ v . Then we have that.
(D). If m>0 and E(maxogtg S(Xt)) < 0o then the following inequality holds

(46) P(maXOStST Xt Z S) S P(maxoStSn Xt Z S)
for all s> 0. If furthermore v satisfies
(4.7) / S(u)log(S(u)) v(du) < oo

0

and the stopping time T satisfies maxo<i<r Xy ~ maxo<i<r, Xy (i-e. there is equality in (4.6)
for all s >0 ) then we have

T=1, P-a.s.
(D). If m<0 and E(minogtg S(Xt)) > —o0 then the following inequality holds
(48) P(minOStST Xt S 8) S P(mil’lOStS“ Xt S 8)
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for all s <0 . If furthermore v satisfies

(4.9) /_ S(u)log(—S(u)) v(du) > —o0

and the stopping time T satisfies ming<<, Xy ~ ming<i<,, Xy (i.e. there is equality in (4.8)
for all s <0 ) then we have
T=1, P-a.s.

Proof. The two cases (I) and (II) are proved with precisely the same arguments. Therefore
we will concentrate on case (I). Let 7 be the stopping time given in the proposition. Then we
have that M, ~ G and E(maxo<<, M;) < oo . Since 7 and 7. are two embeddings we
have from Section 2 that the two stopping times 7 and 7, for (WW;) given by

7=(M,M), and 7,=(M,M),,
satisfy
Wi~Ws ~G .
Note that 7, is given in (4.5) and that
E(maXOStS; Wt) = E(maxoStST Mt) < 00 .
Then Proposition 3.2 gives that
P(maxo<<z Wy > 5) < P(maxo<z, Wy > s)

for s > 0 and going back we obtain (4.6). The second part is verified with the same arguments.
O

Remark 4.3. For m > 0 we have that

_p 8@ _ T___ds()
P(maxoci<r, Xy > s) = inf S(s)—S(z) oxp (_/0 S(u) — S(h+(u)))

for s > 0 and the condition (4.7) is trivial when S(-) is bounded from above. For m < 0
we have that

. _ .. p(S() T dSW)
P(mlnogtgr* X; < 3) = gg m = &Xp (_ /s S(h_(u)) — S(U))

for s <0 and the condition (4.9) is trivial when S(-) is bounded from below.

Remark 4.4. If m = 0 we have another extremal embedding o, of Perkins [9] which
stochastically minimizes maxo<;<;, X; . The construction of the embedding is the following.
Define the decreasing function s — g, (s) as follows. For s > 0 set g¢.(s) as the value of
z < s which maximizes

c(S(s)) — p(S(2))

S(s) = 5(2)
For s> 0 the function g¢;(s) is the unique root to the equation
c(S(s)) —p(5(2)) _ F(2)
S(s) = 5(2)
satisfying ¢, (s) < s . Define the decreasing function s — ¢g_(s) as follows. For s < 0 set
s+ g_(s) as the value of z > s which maximizes

p(5(s)) = c(5(2))
S(z) — S(s)
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For s <0 the function g_(s) is the unique root to the equation
HSE) = elSE) | _
S(z) — S(s)
satisfying ¢_(s) > s . Define the two stopping times
04, = inf {t >0:X; < a+(max0§T§tXT) }
04 = inf {t >0: X; > a,(minOSTStX,) } .

For the stopping time o, for (X;) given by o, =0, Ao, we have that X, ~ F .
The embedding o, can be characterized uniquely in the following way. If 7 is given as in
Proposition 4.2 then

(410) P(maXOStST Xt Z S) Z P(maXOStSG* Xt Z 8)
for s> 0. If there is equality in (4.10) for all s >0 then 7 =0, . Finally we have that

P(maxogico. Xp 2 5) =1 - G(s) +sup C(Ss(‘?s; :];((i;z»

-0 (- [ serzseom) ~ o (- [ serssemoy) @

for s> 0. There is similar results for the minimum process.

5. Appendix: Stochastic differential equation

This Section presents well-known results on existence and uniqueness and various aspects of
solutions of the one-dimensional time-homogeneous stochastic differential equation (2.1). For
a survey and proofs of these results see Karatzas and Shreve [8].

Let I = (l,r) with —oo <[ < r < oo . Consider the non-singular stochastic differential
equation

where p: 1 — R and o:1 — (0,00) are Borel functions.

Definition 5.1. A weak solution in the interval I up to an explosion time e of the one-
dimensional time-homogeneous stochastic differential equation (5.1) is a triple ((X:), (Bt))i>o,
(Q,F,P) and (F;) satisfying the following three conditions.
(i) (2, F,P) is a probability space and (F;) is a filtration of sub-o-algebras of F satisfying
the usual conditions.
(ii) (Xi)e>o is a continuous (F;)-adapted, [[,r]-valued process with X, € [[,r] P-a.s. and
(Bt)i>o is a standard (F;)-Brownian motion.
(iii) For all n >1 we have

/Oen/\t (|M(Xu)‘ + UQ(XU)) du < oo P-as.

forall 0 <t < oo and
t t
(Xen/\t)t>0 = (X() + / /J'(X’u)l{ugen} du + / O-(Xu)]-{ugen} dBu) >0 P-a.s.
= 0 0 >

where e, =inf{t >0 : X; & (l,,7n)} and [ <, <r, <r with [, {1 and r, 17
for n — .
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The explosion time e for the process (X;) is defined as
e=inf{t>0:X; ¢ (l,r)} = lim, 0 €, .

Since o(+) is strictly positive (non-singular) we have the following sharp sufficient conditions
for existence and uniqueness of solutions of (5.1).

Theorem 5.2. If for all © € I there exists € >0 such that

(5.2) / i+€ %@()“)' du < 0o

then for every initial distribution of Xy , the stochastic equation (5.1) has a weak solution in
I up to an explosion time e , and this solution is unique in the sense of probability law.

Assume that pu(-) and o(-) satisfy the condition (5.2) and let P, denote the probability
measure when X, =z . The scale function of (X;) is given by

S(z) = /wexp(—Q/u ;(é)) dr) du

Zo Zo

for x € I and some xz3 € I . The next proposition states necessary and sufficient condition
for the process (X;) to be recurrent.

Proposition 5.3. Let (X;) be a weak solution in the interval I of the stochastic differential
equation (5.1). We distinguish four cases.

(i) If S(l+)=—o0 and S(r—)= o0, then
Pm(e = oo) = Px(limsuptToo X, = r) = ch(liminfﬁOO X = l) =1

for all x € I . In particular, the process (X;) is recurrent, i.e. Py(1, < 00) =1 for
all z,y €I where 7,=inf{t>0: X, =y} .
(i) If S(l+) > —oco and S(r—) = o0, then limy, X; exists Py-a.s. and

Py (limye X; = 1) = Py(supgepe. Xp <7) =1

forall zel.
(iii) If S(I+)= —o0 and S(r—) < oo, then limy X; exists P,-a.s. and

ng(limtTe Xt = T') = ng(infost@ Xt > l) =1

forall zel.
(iv) If S(l+) > —oc0 and S(r—) < oo, then limyu, X, ezxists Py-a.s. and
- : S(r=) = S(x)
P,(l e Xt =1)=1-Py(1 e Xt =T) =
(limye Xy = 1) (limye X =7) S(r0) = 5014

forall zel.
The process (X:) is non-recurrent in cases (ii), (iii) and (iv)

For completeness, to give necessary and sufficient conditions for non-explosion we need to
introduce the following function
*S(x) —S(u
/i(x):2/ S(z) = S(u) ()du
Zo

S'(u)o?(u)
for x€1.
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Proposition 5.4. (Feller’s Test for Explosions.) Let (X;) be a weak solution in the interval
I of the stochastic differential equation (5.1). We distinguish three cases.

(i
ut

) If k(l+)=k(r—) =00 then Pyle=00)=1 forall z€1.
) If K(l4+) < oo or k(r—)<oo then Py(e=o00) <1 forall z€1.

(iii) We have P, (e < o0) =1 if and only if one of the following conditions holds.

[6]
[7]
[8]
[9]
[10]
[11]

[12]
[13]

[14]

[15]
[16]

(a) k(r—) < oo and k(l+) < oo (in this case Eg(e) < oo ).
(b) k(r—) <oo and S(l+)=—oc .
(c) k(l+) < o0 and S(r—)=o0 .
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The Minimum Maximum of a Continuous Martingale
with Given Initial and Terminal Laws

D. G. HOBSON and J. L. PEDERSEN

Let (M;) be a continuous martingale with initial law My ~ o and terminal law M; ~ g
and let S = supg<;<y M . In this paper we prove that there exists a greatest lower bound
with respect to stochastic ordering of probability measures, on the law of S . We give an
explicit construction of this bound. Furthermore a martingale is constructed which attains
this minimum by solving a Skorokhod embedding problem. The result is applied to the robust
hedging of a forward start digital option.

1. Introduction

Let po and p; be probability measures on R , let M = M(ug, 1) be the space of all
martingales (M;)o<i<1 with initial law o and terminal law g and let Mo = Me(po, pi1)
be the subspace of M consisting of the continuous martingales. For a martingale (M;) € M
let S = supg<;<; M; and denote the law of S by vy . In this article we are interested in
the sets P = P(/,Lo,,ul) = {Z/M | (Mt) € M} and PC = Pc(uo,,ul) = {I/M | (Mt) € MC} of
possible laws v . In particular we find a greatest lower bound for Py . Here comparisons of
measures are made in the sense of stochastic domination. The fact that (M;) is a martingale
with no jumps imposes quite restrictive conditions on the law of the maximum v .

Clearly M is empty unless the random variables corresponding to the laws u; have the
same finite mean, and henceforth we will assume without loss of generality that this mean
is zero. Moreover a simple application of Jensen’s inequality shows that a further necessary
condition for the space to be non-empty is that

(1) et < [ )
for all x € R . This condition is also sufficient, see for example Strassen [17, Theorem 2] or
Meyer [10, Chapter XI]. It follows from the construction in Chacon and Walsh [4] that this is
also a necessary and sufficient condition for M to be non-empty. Henceforth we assume that
(1.1) holds.

Consider first the problem of determining bounds on P(dy, 1) where dq is the unit mass
at 0. This problem is a special case of a problem first considered in Blackwell and Dubins [2]
and Dubins and Gilat [6]. Let < denote stochastic ordering on probability measures, (so that
p < if and only if p((—o00,x)) > m((—00,x)) for all x € R), and let p* denote the Hardy
transform of a probability measure p . Then it follows from [2], [6] and Azéma and Yor [1]
that

1991 Mathematics Subject Classification. Primary 60G44, 60E15. Secondary 60G445, 60J65.
Key words and phrases. Continuous martingale, maximum process, stochastic domination, greatest lower
bound, Brownian motion, Skorokhod embedding, excursion, digital option, robust hedging.
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Kertz and Roésler [9] have shown that the converse to (1.2) also holds: for any probability
measure p satisfying &g V p1 < p =< uf , there is a martingale with terminal distribution
i1 whose maximum has law p . (See also Rogers [15] for a proof of these results based on
excursion theory which will motivate many of our arguments). Thus

Pbo, ) ={v|doV i Sv=pui}.

Note that the lower bound is attained by a martingale which consists of a single jump at time
1 where the jump is chosen to have law p; .

Now consider Pg(do, 1) - Then the least upper bound is unchanged since there is a
continuous martingale whose maximum has law pj , as can be seen from the example in
Rogers [15]. Moreover Perkins [11] gives an expression for the greatest lower bound, which to
be consistent with future notation we shall label v# (8o, 1) . This lower bound will arise as a
special case of the construction we give below for general initial conditions. See the remarks in
Example 2.2. In particular Po(dg, 1) C {v|v# (8o, 1) < v < pt } and both v#(8y, 1;) and
ui are elements of Pg .

We are interested in the problem with a general initial condition. As Kertz and Résler |9,
Remark 3.3] observe,

Po(po, 1) € Plpo, ) S{vpo Vi v 2 pi}.

Further Hobson [7] derives a least upper bound 5, for both of the sets Pc(puo, 1) and
P(uo, pp1) . Since there is a continuous martingale with the correct marginal distributions
whose maximum has law v, , the least upper bound is attained in each case.

The main result of this article is that there is a greatest lower bound v# = v# (g, 1;)
for Pc, and that this bound is attained, i.e. there exists v# € P such that v# < v
for all v € Po. The measure v# is difficult to characterize but we give a simple pictorial
representation in Figure 1 and 2 below. It turns out that it is simple to show that v# is a
lower bound, but surprisingly difficult to show that it is attained.

If the continuity restriction is dropped then it is easy to define a lower bound vy for
P(po, 11) mon-constructively via

vg((—o00,z]) = sup (vu(—o0,z]) .
MeM
However there is a simple example in Hobson [7] to show that for general initial measures this
lower bound for P is not attained. Again any minimal element of P corresponds to a
martingale with a single jump at time 1. These two factors explain why it is more interesting
to restrict attention to continuous martingales, a restriction that we now make.

The problem of characterising the greatest lower bound for the maximum of a martingale
constrained to have given initial and terminal laws has an application to the pricing of derivative
securities in mathematical finance. The derivatives in question are forward start barrier options
and lookbacks. This idea has been explored in Hobson [8] and Brown, Hobson and Rogers [3].

The remainder of this paper is constructed as follows. In the next section we give the con-
struction of the measure v (ug, ;1) and state the main theorem of the paper. The construction
is illustrated by three examples. In Section 3 we show that v# is stochastically dominated
by every measure in P (uo, pt1) - Further we briefly outline the connection between this result
and a problem in the robust hedging of financial derivatives. Some preliminary lemmas are
stated in Section 4. Finally in section 5 we show that v# is an element of P> and hence that
it is a greatest lower bound. In the Appendix there is proofs of some lemmas from Section 4.
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2. The main result

The main result is contained in the next theorem. Let o and p; be two centered probability
measures on R satisfying the inequality (1.1) (i.e. Mc¢g(uo, 1) is then non-empty). For
1=0,1 we set

(2.1) ci(z) =E(M;, —z)t = /( )(u — ) pi(du)

for z € R and from (1.1) it follows that c¢;(z) > ¢o(z) . Hence the function
(2.2) c(z) = c1(x) — co(x)

is non-negative. Define

c(z) —c(y
(2.3 () = ((~00,2)) — sup A=W
y<z r—Y
Theorem 2.1. I' is a left continuous distribution function. Further for any continuous mar-
tingale (My)o<i<i € Mc(po, 1) we have that P(S < z) > I'(x) for = € R . Moreover

there exists a continuous martingale (M) € Mc(uo, 1)  with mazimum S#  for which
P(S#* <xz)=T(z) for z€eR.

Let v# be the associated measure of T i.e
(2.4) v#((00,2)) = [(z)

forall z€R.

Before we prove the theorem in later sections we will first describe the construction of (M;")
and look at some examples to make the construction clearer. For this we need some notation.
Let F; be the distribution function associated with pu; . For £ € R we define

(2.5) v(z) = sup

The two functions ¢;(z) are convex and hence the left-hand derivate of ¢(x) exists and is given
by ¢ (z) = Fi(x—) — Fo(x—) . If the supremum in (2.5) is not attained then ~(z) =c (z) .
We define the function x — g(z) as follows. For z € R, let g(z) <z be the maximal value
where the supremum in (2.5) is attained and if the supremum is not attained g¢(z) =z . Note
that in the cases ~y(z) = ¢_(z) then g(z) =z . In orther terms (see Figure 1), g(z) is the
point where the supporting (generalize) tangent to ¢(-) which hits ¢(x) and v(z) is the slope
of the tangent.

With the above notation we can describe the martingale (Mt# ) . On some suitable sample
space define the three elements

e A random variable B, with law gy .
e A random variable G with law

P(G > s|By=r)=-exp (— /(m) Fo(ﬁ)(d_mp(u)) H (1 B Fo(zf—l?(—u;(uﬂ

u€lr,s)

for s > r, where FY is the non-atomic part of F; .
e A Brownian motion (W};);>o independent of B, and G .
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Figure 1. The construction of ~y(z) involves finding a tangent to ¢(-) which crosses ¢(-) at
x . y(z) is the slope of the tangent and g(z) is the point supporting the tangent.

Then B, = B, + W, is a Brownian motion with initial law po . Let S; = maxo<,<; B, and
define the stopping times

TG:inf{t>0 : StZG}
T, =inf{t >0: B, <g(S)}

T=TgNTg .

In later sections we will prove that B, has law pu; and S, haslaw T . See Figure 2 for a
picture of the stopping times. Then Mt# is a time change of B;,, and is given by

for t <1 . We first give some examples of this construction.

\j
8

(Bo, So)

Figure 2. Describing stopping times in (B, S;) plane. Excursions down from the maximum.
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Example 2.2. Let ug =y and gy is the uniform distribution on [—1,1] . Then we compute
that

clz) = (3(1 —2)> + 2) L_10(2) + 1(1 — 2) 19y (2)
and g(z) =2 —2y/x for 0 <z <1 and g(x) = z elsewhere (see Figure 3). Further we
compute that I'(z) = /& 19,1)(z) 4+ 1j1,00)(x) (see Figure 4).

This example is also studied in Perkins [11] and illustrated the difference between the two
constructions. In Perkins construction the stopping time 7 is replaced by a stopping time of
the form 7, =inf{t >0 : B, > h(ming<y<; B,) } where h is a positive decreasing function.
Perkins construction only need an extra random variable in the case that u; has an atom at
0 (i.e. 09 and p; have a simultaneous atom). The construction in this paper the stopping
time 7 is not adapted to the natural filtration of the Brownian motion. The extra random
variable G is used to stop the process (B, S;) at the diagonal by 7 . This construction
works in all cases, also when pg and p; have simultaneous atoms. Although we believe that
Perkins construction can be extended to the cases when py and p; have no simultaneous
atoms and hence have a stopping time adapted to the natural filtration.

c(x) A z A

-1 g(z) 1 1 9(x)

Figure 3. To the left a drawing of ¢(z) in Example 2.2 and the slop of the tangent is ~(z).
To the right a drawing of g(z) in Example 2.2.

z — Fi(z)

= [ (7)

\/
8

—1 1

Figure 4. A drawing of T'(z) and Fj(z—) in Example 2.2.
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Example 2.3. Let o be the uniform measure on {—1,1} andlet p; have atoms at —2,0,2
with probability p,1 — 2p,p respectively, where % <p< % . Then we compute that

c(z) =p(2+ ) Loy (2) + (2p = 5 = (3 = P)2) 110 (2)
+ (2p— L2+ (3 —p)z) Ly () + p(2 — 2) 11 9)(2) -
If % <p< % then g(z) =-2 if —1<2<2 and g(z) =z elsewhere. If % <p< % then
-2 if —1<z<0 and 81)2—_1<3:§2
glzy=<¢0 if 1<x§8p%1
r  elsewhere .

The cases are illustrated in Figure 5 and 6 and see Figure 7 for a pictorial representation of the
distribution functions I' , Fy and F} .

c(z) A c(x) A

> > T
g(x2) g(x1),9(x2) Ty 2
Figure 5. Two drawings of ¢ for different parameter values in Example 2.3. The left picture
is for p=1/3 and the right picture represents p =4/10 .
T A T A
| ********************** P T H 2
L 1
= »
l 9(x) g(x)
,,,,, | L

Figure 6. Two drawings of g for different parameter values in Example 2.3. The left picture
is for p=1/3 and the right picture represents p =4/10 .
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A A
z — Fy(x) ! x — Fy(x) : ‘
‘ z — Fi(z) ‘
z— Fi(z) | , }
| | z e T (x) | z [ (z)
‘ : > T : . >
—9 -1 1 2 —2 —1 1 2

Figure 7. Two drawings of I'(z) and F;(z—) (i = 0,1 ) for different parameter values in
Example 2.3. The left picture is for p =1/3 and the right picture represents p =4/10 .

Example 2.4. This is an example to show that the function g can get complicated with even

simple expressions for o and p; . Let ug be the uniform measure on [—2,—1] U [1,2]
and p; be the uniform measure on [—3,—2]U[—1,2]U[2,3] . The functions ¢ and g are
illustrated in Figure 8. Note that for z values in the range of [§,1] we have that g(z) =z .

See Figure 9 for a pictorial representation of the distribution functions I', Fy and F7 .

Figure 8. To the left a drawing of ¢(z) in and to the right a drawing of g(z) in Example 2.4.

3. The lower bound

The first step in the proof of Theorem 2.1 is to verify that I' is indeed a lower bound.
Lemma 3.1. For any (M;) € Mc(uo, 1) we have that P(S > z) >1—-T(x) for z € R,
where T is given in (2.3).

Proof. Let = be fixed. Suppose that y < z then we have the inequality
M —2)t  (My—2)" M-y  (Mo—y)*

is>o) 2 im0y +

T —y T —y T —y T —y
3.1
( ) M1 - M() r — M1
+ 1{y<M0<£U} T —y + 1{52m}1{y<M0<m} T —y
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z = [ ()

Figure 9. A drawing of I'(z) and F;(z—) (i =0,1) in Example 2.4 .

which can be verified on a case by case basis. Since (M;) is a continuous martingale we have
equality in Doob’s submartingale inequality and hence

- M
E(aC 1;52$,y<M0<x)=0.
r—=1y

By taking expectation in (3.1) and using martingale property we have that

P(S > 1) ZP(MIZQ;)_,_M
r—y
for any y < x and the result follows. O

Remark 3.2. The above proof has a financial interpretation in the pricing of a forward start
digital option (see [8] and [3] for greater details). Let (Af;) denotes the price process of an
asset and suppose for simplicity that there are zero-interest rates and no transaction costs.
From the general theory of mathematical finance it follows that the fair price of an European
call option with strike z and maturity 7 is E((Mr — z)") , where the expectation is taken
with respect to the martingale measure. Thus for pricing purpose we may assume that M is
a martingale. Suppose we know the call prices at times one and two for this asset. Then we
can derive the laws p; and puo of M; and M, respectively, under the pricing measure.

Consider the digital option on sale at 0 which pays one unit if the value of the asset is
above the barrier x at any time in the period [1,2], i.e. the payoff is given by

l{maxlgtgz Mi>z} -

If we assume that the price process is continuous then from the above lemma we have that

P(maxi<j<o My > x) > P(Msy > x) + sup le2(2) — @) = lely) — a)
- y<z r—Yy
where ¢;(z) = E((M; — z)") is the price of a call option with strike z and maturity 7 .
The inequality (3.1) can be used to motivate a hedging strategy. Initially we fix any y < x
and buy a digital option with payoff 1{y;>q) , buy 1/(z —y) maturity 2 calls with strike z,
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sell 1/(z —y) maturity 1 calls with strike z , sell 1/(z —y) maturity 2 calls with strike
y , and buy 1/(x —y) maturity 1 calls with strike y . This is the static part of the hedge
and costs s ([z,00)) + ([e2(z) — c1(x)] = [e2(y) — ¢1(y)])/(z — y) . For the dynamic part of
the hedge we proceed as follows. If the underlying at time 1 is lower or equal y or greater or
equal z we do nothing. If the underlying at time 1 is between y and z we buy 1/(z —y)
units of the underlying and if the underlying reaches the level x we sell 1/(z —y) units of
the underlying.

From the inequality (3.1) we have that for each y this is a sub-replicative strategy. The
cost of the strategy is po([z,00)) + ([c2(z) — e1(2)] — [e2(y) — 1 (y)]) /(x — y) which is a lower
bound on the price of a digital option. Since y < z is arbitrary the greatest lower bound on
the price of a digital option is

1]z, 00)) + 225 [c2(z) — &1 (xl] : ?[ch(y) — c1(y)] |

If the digital option is offered for sale below this price, then arbitrage profits can be made. If
the ask price is above this bound then it is not possible to create riskless profits unless the
dynamics of the price process are known (for instance, the price process is geometric Brownian
motion).

4. Some preliminary lemmas

In this section we state some technical results which will be required in the sequel. Some of the
proofs are relegated to an appendix, although we try to explain intuitively why they must be
true.

Recall the definitions of I', v and g¢:

['(z) = p((=o00,2)) — v(x)

(4.1) (@) = sup 22 =W

y<x r—Yy
and g(x) is the value of y where the supremum in (4.1) is attained. If the supremum is not
attained then we set g(z) =z , it follows that ~y(z) > ¢ (z) where ¢ is the left derivative
of ¢ . If the supremum is attained at more than one value of y then we choose the largest (or
more precisely the supremum) of the candidate values.

Lemma 4.1. The function x v v(x) is positive, left-continuous and has no downward jumps.

Proof. This is a standard piece of analysis given the fact that the left derivative of ¢ exists,
is bounded, and indeed equals Fj(z—) — Fy(z—) . O

Now we prove one of the statements in Theorem 2.1, namely that the candidate law I' is
indeed (a left-continuous version of) a distribution function.

Proposition 4.2. z — I'(z) is a left-continuous distribution function, i.e. T' is increasing,
left-continuous satisfying T'(—o0) =1—T'(400) =0 .

Proof. From Lemma 4.1 it follows that T' is left-continuous. It is clear that ~(+£oc) =0 so
we only need to verify that T' is increasing. Note that ~(z) > 0V (Fi(z—) — Fo(z—)) and
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hence T'(z) < Fo(x—) A Fi(z—) . Further by (2.1) and (2.2) we have the following expression
for T,

(4.2 @) = Roe) —sup [ 5 (o) — o).

Fix y > x . With the above observations we have the following:
Case 1: y(y) =c (y) . Then I'(y) = Fy(y—) > Fo(z—) > ['(x) .

Case 2: v(y) > ¢ (y) and g¢(y) <z . Then from (4.2) we have that

rG) = Foly-) - [ 31@%mm+[ u=9W) | (du)

Wy Y — 9(y)
> Bl [ S ) ) = [ o

[z,y)

Case 3: y(y) > c_(y) and z < g(y) . From the first line in the previous case

mwzmwa—l}nggﬁgmww

> o) - [ )
(9(¥),y)

= Fig(y)) > Fo(a—) > T(a).

Hence I' is increasing. m

The conclusion is that v# given in (2.4) is a probability measure which, by Lemma 3.1 is
a lower bound for Pr . We summarise this in a proposition.

Proposition 4.3. Let (M;) be a continuous martingale with initial law py and terminal law
w1 . Let v be the law of the mazimum process S . Then v# < v, i.e. for all v € Pc(po, 1)
we have that v#* < v .

It remains to show that v# € Pc(ug, p1) - This is the subject of the next section. For the
remainder of this section we state further lemmas, beginning with one on the properties of ¢ .

Lemma 4.4. The function x v+ g(x) has the following properties.
(i) If z> x , then either g(z) < g(z) or g(z) > x .

(i) If g(z) <z, then ¢ (g(z)) <v(z) < (g9(2)) -
(iii) If g(x) =x then Fy(z—)=T(x) .

Proof. These statements are best understood using a picture; recall Figure 1. (ii) follows from
interpretation of « as the gradient of the tangent to ¢ at g¢(z) , and (iii) is true by 'Hopital’s
rule. 0

It follows from the lemma that the typical behaviour of ¢ is that either g¢(z) = x , or
g(x) <z and g is decreasing. In fact if g increases then it must increase to the diagonal.
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Lemma 4.5.
(i) If z,lz, with g(z,) >z then T'(z+)= Fy(x) .
(i) If g(z) <z over an interval (y,z) , and if g(z—) =limy, g(u) , then g(z) = g(z—) .

Proof. (i): By Lemma 4.4(ii) we have . (2,) < 7(zn) < SuPyefzq, €4 (y) V c_(2,) and so
Y(zn) = o (x) = Fi(z) — Fy(x) .
(ii): g is decreasing over the interval (y,z) and so g(z—) exists. Further, either ¢(z) = z
or g(z) < g(z—) , and
. c(x) —clg(z)) _ c(z) —clg(2-))
z) =v(z—) = lim = .
1) = (=) = tim =28 e

Thus g¢(z—) attains the supremum in (4.1) and by maximality g¢(z) = g(z—) . O

We set AT = {z € R|T'(z+) = Fo(z)} and A = {z € R|['(z) = Fo(z—)} and let
A=ATUA™ . A will play a special role in the next section where we show that for the optimal
martingale, if My < x € A then necessarily S < z also.

Lemma 4.6. If © ¢ A" then v is continuous and decreasing at z . Hence Al'(z) = AF;(z).
More generally, AT'(x) < AF;(z) .

Proof. The proof is only sketched and some technical details are omitted. If = ¢ AT then
by the previous lemma for all y in some interval (z,z + J) we have ¢(y) < z <y . By
Lemma 4.4(i), g is non-increasing on this interval. Let g(z+) = limy, g(y) < g(z).

Further, since = ¢ A% , we must have ¢ (z) < y(z) , and for y in some new smaller
interval (z,z +¢') we have c(y) < c¢(z) + (y — z)y(x) . Then

c(z) + (y — ) y(z) — clg(y))
y—gly
c(x ) cgy) z—gly)  y-=
o) v v 9 @)
z— ( ) y—a o
< =W (x)+y_g(y)7(x)—’y( ) -
Thus + is decreasing to the right of x and to prove that it is decreasing from the left of =z«

can be done in the same manner.
Suppose first that ¢g(z+) < x . Then

_ ) —clgly) |, cl@) —clgl@+)
)= y—gy) = z-gat) <)

c(y) — clg(x))
y) 2 —————~— = ).
() o) (z)
Thus v is right continuous and hence continuous at =z .

Now suppose g(z+) =z , so that g(x) =2z and ~y(z) =c (z) . Then ¢ (9(y)) < v(y) <
c (9(y)) ,and so y(y) = c_(z) , and again 7 is continuous at z .

The final statements about AI'(z) follow from the representation I'(z) = Fi(z—) —

v(z). O

Y(y) <

\g

But also
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Lemma 4.7.

. . : L du dry(u)
1) If I 1is an open interval disjoint from A then / _— == / .
W g fomt | ru=g() )i Fo(u=) = T(u)

Fo(u—)—T
(ii) Further = satisfies v(x) :/ o(u—) (u)
fuse,gwy<g@)} U~ 9(u)

du .

Intuition. v is decreasing, and so dy exists. If F; and Fy are continuous random
variables, so that c¢ is differentiable everywhere, and if ¢ is differentiable on I then ~ is
also differentiable and the result follows by differentiation of y(v) = (c(v) —c(g(v))/(v —g(v)).

If we consider the differential version of the first expression, and multiply both sides by
Fy(y—) —T'(y) then the second expression will follow if we integrate over suitable intervals.
For full proofs see the appendix.

We close this section with a couple of lemmas concerning distribution functions, the proofs
of which are in the appendix. We denote by Am(u) the atom of 7 at wu, and by #¢ the
continuous part of the distribution.

Lemma 4.8. Let m,p be two measures on R satisfying p < m . Let J(z) = m((c0,x)) —
p((0o,z)) . If @ and p have no simultaneous jumps on the interval [y,z) , then

e (-] ) I 050 -

u€ly,z)

see ([T (I (+5)

vE[y,x)

Lemma 4.9. Let 7w, p be as above. Then, for all y € R,

/(—oo,y) Fw(u—z(iul)%(u—) o (_ /uy #%) 11 (1 * Fw(v—A)W—(q;)?p(v—))_l =

velu,y)

5. The minimum maximum is attained

In this section we construct a martingale (M) which is an element of M¢(pg, 1) and has
the property that it’s maximum S has the law v# . Thus, not only is v# a lower bound for
Po(po, 1) but also v# € Pe(ug, 1) -

The key idea in the construction of (Mt# ) is to exhibit the martingale as the solution of
a Skorokhod embedding problem (see [7] and [15]). Let (By):;>o be a Brownian motion with
initial law g . The problem is to find a stopping time 7 satisfying B, has the law p; and
SUp g<;<, By has the law v# . Then we can define (M;?) as a time change of (B;) by
(5.1) Mf=B_.,

T/

(Mt# ) is a true martingale and not just a local martingale provided that (B, )i is uniform
integrable. To display the stopping time the function ¢ will be important for us.

If F is a distribution function, we denote by AF the jumps of F , and by F° the
continuous part of F'. Recall that in Section 3 we defined a Brownian motion B with initial
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law o and a random variable G which depended on B only through the initial value By :

(52) P(GZS'BF”:GXP(‘/@,s) o) 1 (- mes ora)

u€lr,s)

Let S; = maxo<s<; B, and define the stopping times
T¢g=inf{t>0: S5 >G} and 7,=inf{t>0: B, <g(S)}.

Set T=Tag AT, .

We have to prove two identities in law, namely that B, ~ u; and S, ~ v# . We consider
the second identity first, but we begin with a useful lemma. Recall the definitions of the sets
At A~ and A before Lemma 4.6.

Lemma 5.1.
(i) Suppose © € A~ . If By <z then S, <z .
(ii) Suppose z € A* . If By <z then S, <z . Further P(S;>x,By<z)=0.

Proof. We shall omit some technical details in the proof. Suppose =z € A, By =r < x and
let H, be the first hitting time by B of level z > r i.e.

H,=inf{t>0: B,=z2}.

If there exists z € (r,xz) with g(z) =2z then 7<7,<H, and S, <z<z.

Otherwise g¢(z) < z on the interval (r,z) . Hence ¢ is decreasing on this interval, and
by Lemma 4.5 ¢(z) < x .

(i): If x € A~ we show

Fe(du) ~
(5:3) /<> Folu—) — F(w)

sothat P(G>xz|By=7r)=0 and 7¢ < H, .
By considering

z (" dFy(u) ‘ dl'(u)
~oo= [ dinFw) - 1) = [ e / )T

we deduce that this final integral must be infinite. Also

. ~(du)
/ u—g(u) / Fy(u—) —T'(u)
is finite so that

/m dF(u) B /‘” dl'(u) N /z v(du) e
Fo(u—) = T'(u) Fo(u—) = T'(u) Fo(u—) = T'(u) '

(i1): Finally suppose = € AT . If AFi(z) > 0 then Fy(z—) —I['(z) < Fy(z) — T'(z+) +
Al'(z) < AFi(z) sothat P(G>z|By=7r)=0 and S, <z . Otherwise F; is continuous

at = and then AI'(z) = 0 so that Fy(z—) > I'(z) = ['(z+) = Fy(x) . In particular

Lemma 5.2. Suppose the open interval (u,y) is disjoint from A . Then

dv
P(S, >y|By=u :exp(—/ )
( [ Bo=u) (wy) ¥~ 9(v)
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Proof. For a Brownian motion the rate of excursions below the maximum (at s ) which get
down to g(s) is given by (s—g(s)) ' . See Rogers [14] or Revuz and Yor [12]. O

Proposition 5.3. We have that S, ~ v# .

Proof. For y € A we have P(S, <y)=P(By<y),or P(S; <y)=P(By<y).
Otherwise, consider y ¢ A and define z# = 2#(y) =sup,_,{z € A} . If z# =y then by
left continuity P (S, < y) = P(By < y) . So suppose z*(y) <y . Then

P(S, > y) = /RP(ST > y| By = u) uo(du)

=P(Bo2y)+ [ P(S, > y]Bo=u)P(G 2 y] By = u) po(d)

[2%,y)
=P(Bo>y) + /[ b Ho(du) exp (_ /(u,y) v —dZ(v)>
X exp (— /( v B (Ulif)(d_v)r(v)) 11 <1 B FO(UA—};I(—U )F(v))

vE([u,y)

=P(By >y) + /[z v po(du) exp (_ /(u,y) Fo(vr—cgdf)F(v))
< ]I (1 - FO(UA—g(f)P(v))

where in the last equality we have used Lemma 4.7(i), I'® = Ff — ¢ and AF, = Al .
If we now apply Lemma 4.8 with F,(z) = ([(z4) — Fo(2#=)) 14 50)(x) and Fr(z) =
(Fo(z) — Fo(2#—)) 1,# o) () then this becomes

P(S: >y) =P(By > y) + (Fo(y—) — I'(y))

* Jrw Fo(uf‘;(f“r)(u_) o (‘ /() p(ﬁ:)( d—v)r(v))

Finally, applying Lemma 4.9, now with 7 = o and p=1 we get that
P(S; 2y) =P(Bo 2 y) + (Fo(y—) - T'(y)) =1 -T(y)
and the result follows. m

Proposition 5.4. For the above construction we have that B, ~ i .

Proof. From the construction we have that if B, < S; , then B, = ¢(S;) < S, . This
happens if the Brownian motion has an excursion down below the maximum (at s ) which
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reaches ¢(s). Results from excursion theory give that this happens at rate (s—g(s))~!. Then

P(B, <y)=P(S; <y)+P(S; >y, B: <y)

du

:F(y)+/ P(By <u,S; >u) ——

fuzy, g(u)<y) u—g(u)

Fu—)-T

)+ [ olu=) =T 4,

w2y, o)<y U= 9(1)
=T(y) =) = FAy-)

this last line following from Lemma 4.7(ii). O

For (M;) from (2.6) we have as a corollary of the above proposition the main result of
the paper.

Theorem 5.5. (M )o<i<1 € Mc(pio, 1) and for any v € Pe(po, 1) stochastically domi-
nates v¥ .

Proof. From Lemma 2.4 in [15] it follows that (B 1—t)ar)i>0 is uniform integrable. Hence
(M) is a martingale. O

6. Appendix: Proofs of some lemmas from Section 4

Proof. (Lemma 4.1). Since limy . c(y) = 0 we have that v is positive so we begin
by showing that =z +— ~(x) is left continuous. Let =z, 1 x , then we wish to verify that
limsup, ., 7(7,) < v(z) <liminfy 4, v(z,) -

Consider first the second inequality. If v(z) = Fi(x—)— Fy(z—) then, since more generally
v(y) > _(y) = Fi(y—) — Fo(y—) , we have that

V(@n) 2 Fi(en—) — Fo(zn—) = Fi(z—) — Fo(z—) -
Conversely if v(z) > Fi(z—) — Fy(z—) then g(z) <z and for z, > g(x) we have that

(2a) — clg(@)) . clz) — clg(x))
Tu—gl®) | z-g(a)

Hence the inequality liminf, +,y(2,) > v(z) is proved.

Consider now the first inequality, let 0 < e < 1 be given. Choose 0 < § < 1 such that
Fi(z—) — Fi(x —6) < e and Fy(z—) — Fo(x — ) < € . By the identity ¢ (y) — ¢ (z) =
(Fo(z—) — Fo(y—)) — (Fi(z—) — Fi(y—)) we see that |c_(y) — c_(z)| <e for y € (x —6,x).
Note that |¢_(z)| <1, and hence 0 < y(z)—c_(z) <2. Choose o <¢ed/5 and fix y > z—a.
If g(y) >z — 39 then

v(y) < sup i (z) < Fi(y) — Fo(z —9)
z€(x—08,y)

< (Fi(z—) = Fo(z—)) + (Fo(z—) — Fo(z — 0)) < y(z) + €.

Y(@n) > °

=(z) -

Conversely if g(y) <z — 0 then, since

o(z) = cly) + / CC () dr > ely) + / (¢ (@) — £) dz = () + (z — ) (¢ () &)
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we have that

") = y—9(y) = y—9(y)
< 1@)(@ —g(y) — (& —y)c () + (= —y)e
- y—9(y)
() (g v(z) — () +¢
=7(z) + (z —y) o)

since 4a/(d —0/5) < 5a/d . Hence in both cases we have the inequality limsup, ;,v(7,) <
v(z) , and + is left continuous.

It remains to show that v has no downward jumps. Recall that v is left-continuous, so
we are interested in. If g(z) <z and ¢ >0 then

7(33 * 8) = f/glz) C(xx_:—gi : ;(y) Z C(xx—:-gg : ;((Z‘()x)) '

Letting ¢ ] 0, we obtain ~y(z+) > v(z) .
If g(x) =z and fix § >0 then

c(z+¢e)—c(z—9)
e+0 '

V(@ +e) >

Letting € | 0, we see that
c(x) — c(z — 90)
)

for all ¢ . Hence by taking supremum over & we have that
c(z)—clx—0
v(z+) > sup (&) ~ ez - 9) =7(z) .

5>0 0
The proof is complete. [

v(z+) >

Proof. (Lemma 4.7). (i): On I we must have v < g(v) and T'(v) < Fy(v—) . Further v is
decreasing so that v(dv) must exist. We prove that Lebesgue almost surely, v is differentiable
on [ with derivative
Y(dv) _ Fo(v—) —T'(v)
dvv —  v—gv)

Suppose wv is such that Fjy, F,I' and the decreasing function ¢ are all continuous at v .
Then, for v <y el

() > W) —elgv))  c(v) — c(g(v))
Y(y) —v(v) > — o) oy
5 (v) = clg(v) + (y = v)(Fi(y) = Fo(y)) {1 Y- } _c(v) —c(g(v))
- v — g(v) y—g(v) v—g(v)
and so
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We can obtain the reverse inequality by considering

c(y) —clgly)) c(v) —clg(y)
1) =) <= o) v—g(y)

and the left derivative follows by similar arguments.

(ii): Some technical details are omitted. Fix x . Then there exist monotonic functions
p = ps(u), ¢ = ¢s(u) such that p(u) < g(z) <z <q(u), pu) = g(g(v)) and ~y(g(u)) =u .
Then

Fy(u—) —T
{u>z, gw)<g(@)) U= 9(u) {u>z, g(u)<g(z)}

y(z)
— d u)) = du = v(z) .
/{W(U)Zw} +(a(w)) / ()

U
Proof. Lemma 4.8. Denote J°(z) = Fy(z) — Fy(z) . Then we have that
dJ(x) J(z+)
| = 1
dlog ()] = “5) +10g T
dJ¢(x) Ar(x) p(z)
= 1 1 | 1-—
oy +oe (4 ) s (1= 5
If we integrate over the set [y,z) we obtain that
SELC Y G Ry
A (u) Ap(z)
| 1 1 1-—
« 3 (150 ) ¢ 2 (12 5
u€ly,z) U€E[Y,T)
and the result follows easily. O

Proof. (Lemma 4.9). Define the function

B (Y Fe(dv) AF;(v)
K(z) = Ky(z) = —/w Fol) — Fy(0) > log (1 TR0 -F (v—))

p

Then we have K(y) =0 and

K(z) = — / " d(log F.(dv)

so that K(—oc0) = —oc . Then we have

F¢(du) -

d[eK(u)] — eK(u) b + eK(u) (eK(u+) K(u) 1)
Fr(u—) — Fy(u—)
) F7(du) 4 K@) AF;(u) .
Flum) — Fpus) T Fu(um) — Fy(u—)
Integrate over the set (—oo,y) we get that
| = KO _ pK(-s0) _ / m(du) K@)
(—o0) Fr(u=) = Fp(u—)
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Optimal Prediction of the Ultimate Maximum
of Brownian Motion

JESPER LUND PEDERSEN
University of Aarhus

Let (B¢)¢>0 be a standard Brownian motion vanishing at zero. For fixed p,e > 0 consider
for T >0 the two optimal stopping problems

V*(p)(T) = inf E(maxogth B; — BT)p and W*(E) (T) = sup P(maxogth B, — B, < E)

where the infimum and supremum respectively are taken over all stopping times 7 for (By)
satisfying 7 < T . In the first problem an explicit formula is derived for the value functions
and the optimal stopping strategy is displayed. In the latter problem we conjecture a theorem
and reduce its proof to verifying that a value function is not differentiable over a line. The
method of proof is based upon representing the conditional expectation of the gain process
G(maxo<r<7 Br—By) given Fyp =(\,5, 0({Br |0 <7 < s}) asafunction of (maxo<,<¢ Br—
By) .

1. Introduction

In a time interval based only on the information of the past and present of a Brownian motion,
the problem of stopping the Brownian motion as close to its unknown ultimate maximum in
p-mean and probability distance is solved in this paper. The ultimate maximum is a variable
depending of the entire path of the motion over the time interval and its value is first known
at the terminal time. Thus the problem is to find a stopping time such that the distance
between the stopped Brownian motion and the ultimate maximum is as close as possible. The
interpretation of the problems is that the unknown ultimate maximum of the observable motion
is predict in an optimal way.

In mathematical terms the problems are formulate the following way. Let (B;);>o be a
Brownian motion vanishing at zero defined on a probability space (Q,F,P) and (F);>o is
the natural filtration generated by (B;) . Let (S;) given by

(].1) St = maxogrg BT

denote the maximum process associated with (B;) . The stopping times for (B;) are referred
to (F,)-stopping times. For 7> 0, let M7 be the family of all stopping times 7 for (B;)
satisfying 7 < T P-a.s. For fixed p >0 and ¢ > 0 the problems are to compute the two
value functions given by

(p) — _ p
(1.2) VPN(T) Té% E(Sr — B;)

1991 Mathematics Subject Classification. Primary 60G40, 60J65. Secondary 60J60.
Key words and phrases. Brownian motion, ultimate maximum, optimal stopping, diffusion, free-boundary
(Stefan) problem, (strong) Markov property.
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and

(1.3) WE(T) = sup P(Sr— B, <e¢)

TEMT

and to find an optimal stopping time in each of the problems, i.e. a stopping time for which
the optimum is attained. The general optimal stopping theory (see [6]) can not be applied to
solve the two optimal stopping problems since both gain processes (G(ST — Bt))0 <jep are not
adapted to the filtration (F¢)o<i<r - o

This paper was motivated by the work of Graversen, Peskir and Shiryaev [2] where the
optimal stopping problem (1.2) is solved in the case the closeness is measured in square-mean
distance (p = 2). The idea in [2] is the following. The ultimate maximum is represented
as a stochastic integral by Ito-Clark representation theorem and the initial problem is then
transformed into a new equivalent path-dependent integral optimal stopping problem which can
be solved by known methods. The main idea and novelty of this paper is that the conditional
expectation of the gain process G (St — B;) given F;, isrepresented as a function of (S;— By)
and the initial problem is then transformed into an equivalent one-dimensional optimal stopping
problem.

As indicated above to solve the problems (1.2) and (1.3) the following result is useful.
Denote the density and distribution function of a standard normal variable by

(1.49) o) = e ad o) = [ o) du

for y € R. Let (W) be a (G;)-Brownian motion (see [3]) where (Gi)i>o is a filtration.

Proposition 1.1. Let G : Ry — Ry be a strictly increasing continuous function. Then for
0 <t<T the conditional expectation E(G( maxo<,<1 W, —Wt) ‘ gt) s given by the following
formula

E(G(maXogrgT W, — Wt) ‘ gt)

= G(maxo<r<t W, — Wy) + /00 (1 — FT_t(G_l(u))) du

G(max o<r<¢ Wr—Wry)

where Fr_; s the distribution function for maxo<,<r—: W, given by

(1.5) Fr_i(y) = 2@(\/7%) —1

for y>0.

Proof. Let ¢t <T be given. The stationary independent increments of (W;) give that

E(G(maXOS,«ST Wr - Wt) ‘ gt)
= E(G({ maxo<r<t Wr} V {maXtSrST(Wr - Wt) + Wt} - Wt) ‘ gt)

$:Bt

= E(G({s} V {maxoggT—t W, +z} — x))

§=MaAXo<r <t W,
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The above expectation is for = < s given by

E(G({s} V{maxoc,<r_¢ W, + 2} — 1)) = /OOOP (G({s} V {maxo<c,<r_t W, + 2} — z) > u) du

=G(s— ac)-i—/ P(maXogrngt W, > G’l(u)) du

G(s—x)
and thus
E(G( maXo<r<T WT — Wt) ‘ gt)
= G(maXos,«St WT - Wt) + / P(maXOSTST,t Wr > Gil(U)) du .
G(maxo<r<t Wr—Wy)

Since maxg<,<7—t Wy ~ |Wr_y| , the distribution function of maxo<,<r— W, is Fr_, given
in (1.5), and the proof is complete. O

Remark 1.2. It is only the property of stationary independent increments of (W;) that is
used to prove Proposition 1.1. Thus the result extend to processes (X;) with stationary
independent increments vanishing at zero and the natural filtration (F*) with Fr 4(y) =

P(maxo<,<7 ¢ Xr <) -
Remark 1.3. Note that (B;) is a (F;,)-Brownian motion (see [3]).

2. Prediction in p-mean distance

The first main result of this paper is contained in the next theorem and is the solution of
the optimal stopping problem (1.2). The problem is explicitly solved by applying the idea
introduced in the first section.

For p =1 the problem (1.2) is trivial since for any stopping time 7 € My the optional
sampling theorem implies that E(Sr — B,) = E(Sr) . Hence any stopping time 7 € My is
optimal and the case p =1 therefore is excluded from the theorem.

For a,b € R let

M(a,b,x) =1+%x+%abgill)) %4 -

denote the Kummer confluent hypergeometric function (see [1]). Note that M'(a,b,z) =
SM(@+1,b+1,z) .

Theorem 2.1. Consider the optimal stopping problem (1.2) where (By)>o s a standard
Brownian motion vanishing at zero. For p >0 ,p # 1 and T > 0 the value function
V(T is given by

2/92
V*(p) (T) = ezr;/l Hl.(zf) TP/2
M(BF . 5.5%)
where z, s the unique strictly positive root of the equation
H'(Z) (p+3 ’ 3 ’ 1 ZQ)
(2.1) ——=+z=(p+1)z £ 272
H(z) M(P5,5,52%)

and zw H(z) 1is given by

(2.2) H(z)=2"+2p /00 ! (1 - @(u)) du
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for z >0 . The optimal stopping time is given by (see Figure 1 and 2)

(2.3) T.=inf {0<t<T: 8, -B >zVTI—t}

where (S;) is given by (1.1).

Proof. The proof falls in five steps where the problem is reduced to an equivalent problem
that can be solved by known methods from optimal stopping theory.

1. The first step is by applying Brownian scaling and 7/7 is a stopping time for the
Brownian motion t + T 2By, we get

Télj/f(T E( maxo<¢<T Bt — BT)p = Tp/2 7—/’11‘25/[1 E(maXOSt/T51 Tﬁl/QBT(t/T) - T71/2BT(7—/T))p

and it is clear that

(2.4) 17452 (T) = TP/2 V*(p)(l) )

*

In the sequel it is enough to look at V;(p)(l) .
2. By Proposition 1.1 we have that

E((S. - B)? | Fy) =G(t, S, — By)

where

~ 0o 1/p 1)
G(t, z :zp+2/ <1—c1>( a ))du:zp+2p 1—tp/2/ uP (1 — ®(u)) du .
(t,2) ; = -y | T (1= ow)

With this representation we obtain

VO = inf B(B(S - BY | 7)) = inf B(G(rS. - B)).

As a consequence of Lévy’s theorem (see [5]) that (S; — By)i>0 ~ (|Bi])i>0 we have

®) (1) = j el
Vo) = inf BG(r,|B.)
(2.5) o
— inf B(|B, +2(1 - T)p/Q/
reMy B |7
3. The form of the gain function G indicates that the method of deterministic time-change
(see [4]) can be applied successfully. Let o; =1 —e 2 be the time-change and let (Z;);>¢ be

the time-changed process given by

Zy= By, VI —0y =€ Bi_p2 .

By It6 formula we see that (Z;) is the strong solution of the stochastic differential equation
(2.6) dZ; = Z;dt + V2 dB,

where (83;)i>0 is the Brownian motion given by

w7 (1 — D(u)) du) :

1 [ 1 I |
=— | ———_dB, = —/ 4B, .
4 \/5/0 Vi—u V2 Jo V1=
For greater details see [2]. Hence (Z;) is a diffusion with the infinitesimal generator
0 0?
(2.7) Lz=2z—+ -
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for z € R . Observe that (Z;) is a non-recurrent diffusion i.e. |Z;] - oo P-as. for
t — oo. Since the time-change t + o, is strictly increasing the stopping time 7 for (Z;)
(i.e. a (F/)-stopping time where (F{) is the natural filter generated by (Z;)) if and only if
o, € M. Hence by the foregoing we obtain that

é(an |Bs,|) = |Bo, [P+ 2p (1 — JT)”/Q/ (1 — ®(u)) du
|Bo |/ T=0r
=e 7 <|ZT|p + Qp/ u?~ (1 — @(u)) du) =e ""H(|Z,|)
1,

where H(:) is defined in (2.2). The problem (2.5) reduces to compute

(2.8) V®(1) = inf E(e’p"H(|Za|))

where the infimum is taken over all stopping times o for (Z;) . This is a one-dimensional

problem that can be solved by well known method from the general theory of optimal stopping.
4. To compute (2.8) is quit straightforward (see e.g. [4]) but for completeness the details

are presented here. Therefore we introduce the problem

(2.9) V() = inf B. (e H(|Z,))

for z € R, where Zy =2z under P, and the infimum is taken as in (2.8). From the general
theory of optimal stopping, the stopping time

(2.10) o.=inf{t >0 :|Z] > 2}

should be optimal where z, > 0 is the optimal stopping point to be found. By the stochas-
tic differential equation (2.6) and the domain of continuous observation (—z,,z2,) the value
function V, should be even. ~

To compute the value function z + V,(z) and to determine z, in view of (2.9) and (2.10)
it is natural to formulate the following system

(2.11) LzV(z) =pV(2) for z € (=2, 2p)
(2.12) V(zxz,) = H(zp) (instantaneous stopping)
(2.13) V'(£z,) = £H'(z,) (smooth fit)

with Lz in (2.7). The system (2.11)-(2.13) forms a free-boundary (Stefan) problem.
The general solution to (2.11) is given by

V()= Cre P M L 32 + Coze M (B2 3,

2 ZQ)

where (7 and (5 are unknown constants. Since the value function should be even, we can
forget the odd solution. Set C; =0 and we have that

1
2

(2.14) V(z)=Ch e_zz/QM(’%1 , % , % 22)

for some C; to be found. The two conditions (2.12) and (2.13) determine z, and C; uniquely.
Taking log on both sides of (2.14) and use the conditions (2.12) and (2.13) it is easily verified

that z, is the strictly positive root to equation (2.1) and Cy = e®/2H(z,)/M (2, 1,1 22) .



110 Chapter 8

Thus we have the following candidate for the value function

M(EEL L L2
H(z,) el =22 2 2 if |z] <z,
(2.15) V() = M(%,5,5%)
H(|2]) if |z[ > %
and the candidate for the optimal stopping time
(2.16) o, =inf{t>0:[Z]>2}.

Note that o, < co P-a.s.since |Z;| — oo P-a.s. for ¢t — oo .

5. To verify that these candidates indeed are correct, note that z — V(z) is C? everywhere
but at +z, itis C'. Extend V" at £z, to any value and note that Lebesgue measure of
those ¢ >0 for which Z; = +z, is zero, we obtain by It6-Tanaka formula and (2.6) that

t
(2.17) eV (Z) = V(z) + M, + / e (LZV(ZU) . pV(Zu)) du
0
where (M;) is a continuous local martingale given by
t
M, =2 / e PV'(Z,) dp, .
0

Hence by (2.17) and LzV(z2) —pV(z2) > 0 for |z| >z, we get
e P'V(Z) >V (z) + M,

forall t>0. Let o be any stopping time for (Z;) and choose a localization sequence {v,}
of bounded stopping times for (Af;) . Further more V(z) < H(|z|) for all z hence we find
that

E, (e ") H(Z,0y,)) 2 Eo (e PV (Zo0,)) 2V (2) + B, (Mons,) = V(2)

for all n > 1. Letting n — oo and using Fatou’s lemma, and then taking infimum over all
stopping times we have that

(2.18) Vi(z) > V(z2) .

Finally, to prove equality in (2.18) and that the stopping time in (2.16) is optimal it is enough
to verify that

(2.19) V(z) =B, (e H(Z,.,)) -
Again from (2.17) we have that
e PP H(z,) = e PV (Z

Ozp

)=V(z) + M,

Ozp

and taking expectation we see that
V(z) = H(z) B, (e ")
because E, (MU ) = (0 . Indeed by Burkholder-Davis-Gundy inequality and that

EZ\// v (eWV’(Zu))2 du < CE,(e ") < 0
0

it follows that E,(M,, ) =0 where C is a constant (see also Remark 2.2 below).
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Putting all these computation together we have from (2.4), (2.8) and (2.9) that

22/2
Vo) = 1 0) = - )
M%7 5.7/2)

Transforming o, from (2.16) back to the original problem we get that 7. from (2.3) is
optimal. n

Remark 2.2. The argument to verify (2.19) extends to a more general setting and leads to
the following explicit formulas for the Laplace transform of the stopping time o, = inf{¢ >
0 :|Z| > 2,} from (2.16). For A > 0 define the function Iy(z) = E(e™*%) . From
general Markov process theory gives that z — [y(z) solves (2.11) (with p = \) and satisfies
Ix(£z,) =1 . The argument quoted above gives

(22—22)/2
B (V=)= M(ZH

1 if |z > 2,

for A > 0. Since (|By|)i>0 ~ (S; — Bi)i>o the stopping time 7, from (2.3) is identically
distributed as the stopping time 7 = inf{0 <t < 7T : |By > 2,1 —t} . Together with
this observation and by Brownian scaling and the time-change it follows that E(T — 7'*)'\/ 2=
TY?Eq(e ) . Thus we immediately get that
22/2
E(T_T*))\/Q _ €P/ T)\/2 '

ME 11

For the special cases A =2 and A =4 the formula reads as

T 2 T?
E(T—T*) = 1+Z§ and E(T—T*) —W
and it is easy to calculate
2 2 4
E(T*) - T and Var (7'*) = “p T? .

1 +22 (1+22)2(3+622+2)

The expectation and variance of 7, is also calculated in [2] by a different method.

Example 2.3. It is of some interest to compute the value function in specific cases. Let
p=1/2 and T =1. Then z, =0.966... is the unique positive root of the equation (2.1)
and the value function has the value

2 H
VP (1) = inf Ey/S - B, = 61# —0.744..

- reM M(%.5:3%)
The optimal strategy is illustrated in Figure 1 and 2 and we further more have that

E(r.) =0.48... and Var(r,)=0.05...
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- 1

Figure 1. The left drawing is a computer simulation of a Brownian path B;(w) for t € [0,1].
The right drawing is the maximum process S;(w) associated with the Brownian path. The
maximum is attained at 6 = 0.46 and 7. is the optimal stopping strategy (2.3) (see Figure 2).

Figure 2. A drawing of the optimal stopping strategy (2.3) for the Brownian path from
Figure 1 when p=1/2 and T =1 with 2, =0.966... In this case 7, = 0.58

3. Prediction in probability distance

The second main “result” of this paper is a conjecture stated as a theorem below and its proof is
reduced to verifying that a value function is not differentiable over a line (see the proof below).

Theorem 3.1. Consider the optimal stopping problem (1.3) where (B;)i>0 s a standard

Brownian motion vanishing at zero. For T >0 and ¢ > 0 the value function W (T) is
given by

WE(T) =1 — 2/5@(%) fy) dy



OPTIMAL PREDICTION OF THE ULTIMATE MAXIMUM 113

where
> 2k + 1)8 - 2
_ _1)k ( o ((2k+1)e)? /2y
f) k;oo( ) NGTIRE
for y > 0. The optimal stopping time is given by (see Figure 1 and 3)
(3.1) T =inf{0<t<T:S5 —-B =¢} (inf@ =T)

where (S;) is given by (1.1).

Proof. The theorem will be proved up to a conjecture. The main idea is to apply Proposi-
tion 1.1 as in the proof Theorem 2.1.
1. By applying Brownian scaling as in the proof of Theorem 2.1 we get

W) = WD ()

and therefore it is enough to look at W{?(1) .
2. By Proposition 1.1 we have for 0 <¢ <1 that

Fio) = pa(Si — By) (2<I> ( \/fi_t) - 1)

where we have used that P(Sl,t < 5) =20 (5/\/1 — t) — 1. Thus we have that

(3:2) B(10.(5: - By)

W) = sup B(E(1oq(S: - B,) | 7

)
TEM1

= sup (10 (5 - 8 (20( =) -1))

Then Lévy’s theorem implies as in the proof of Theorem 2.1 that

€
(3.3) we(1) = sup E(1[O,E](|BT|) (2(1)(@) — 1)) :
3. Let the process (X;) defined by
X;=B;+«x
starts at x under P, . Denote the stopping time
(3.4) T.=inf{t>0: |Xy|=¢}

for € > 0. Define the optimal stopping problem

Wit = s B (10060 (20 (== -1))

for 0 <t<1 and > 0. Let 7 € M;_; be an arbitrary stopping time and define the
stopping time

T=(T4+100,)N(1—1)
where 7. is the stopping time from (3.4). It is easily seen that

e s o ) 1)) <500 (o) )

and the conclusion is that it is only optimal to stop if |X,;| = ¢ on theset {r <1 —1t}.
Therefore the optimal stopping is on the form:

r=inf{0<s<1—t:|Xs|=cbp(t+s)}
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where D (the domain of stopping) is an open subset of the interval [0,1] and b(s) =1 if
s € D and b(s) = oo elsewhere. Then from Markov process theory it follows that the function
(t,x) — W,(t,z) is continuous. Furthermore for z < e we have that

B (a0 (o Grmr=erimy) 1)

:Ew<2<I>( £ )—1,T5<1—t)+P$(T521—t)
Vi-t—1A(1-1)

- Ez(PO(|X1_t_5| <o)l <1- t) YE(1, . >1—1)

> ol < 6) = 1) (20( ) - 1)

and the inequality is trivial for 2 > & . These observations indicate that 7. A (1 —¢) is an
optimal stopping time, i.e. D =10,1] .

4. If for fixed t the function x — W,(t,z) is not differentiable at x =& then D =[0,1],
orelse W,(t,-) is differentiable where there is a “hole” in D . We conjecture that x — W.,(t, )
is not differentiable at ¢ .

5. Note that f(-) is the density of 7. under P, . Thus we have that

W (0,0) :E(2<D<\/%) 17 < 1) .

Transforming this back to the initial problem we obtain the result. O

1

Example 3.2. An example of Theorem 3.1 when 7'=1 and ¢ = ;. The optimal strategy

is illustrated in Figure 1 and 3 and numerical computation gives that

WA (1) = sup P(S; — B, < %) =0.756. ..
TEM,

For comparison note that from (3.2) and Lévy’s theorem that

WE(T) = sup P(ST—Btgs):P(St—Bt55)<2<I>( 2 )-1)

0<t<T

= (o) 1) (=) )

With T and e given as above we have that W()(l/2)(1) =0.386... with the supremum being
attained at ¢ = 0.027...
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0 T 1

Figure 3. A drawing of the optimal stopping strategy (3.1) for the Brownian path from
Figure 1 when £¢=1/2 and T =1 . In this case 7, =0.55
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