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1 Introduction.

The title of this thesis, “Seiberg-Witten-Floer Homology”, should be read as “a
Floer-type homology for the Seiberg-Witten equations”. In this introduction I will
try to give a brief description of the two components: The Seiberg-Witten equations
and Floer homology.

The Seiberg-Witten equations on a four-manifold are a pair of partial differen-
tial equations for a unitary connection on a line bundle and a section in a two-
dimensional vector bundle. The geometric setting of the equations is that of a
spin®-structure on the manifold - something which always exists ([15,4.1(v)], where
it is attributed to Whitney). The equations are equivariant with respect to the
action of gauge transformations of the spin®-structure and one studies the moduli
space of solutions to obtain invariants of four-manifolds. These invariants are very
strong. Since Seiberg and Witten wrote down there equations in 1994 [33], there
has been a huge research activity among both mathematicians and physicists study-
ing the Seiberg-Witten equations. This has resulted in many new theorems and in
easier proofs of known results. So much has been achieved that I won’t try to give
a list. But let me mention that the advantage of the Seiberg-Witten gauge theory
compared to e.g. the older Yang-Mills theory is that the moduli space of solutions
turns out to be compact.

In classical Morse theory for a compact manifold M one associates to a given
Morse function f a chain complex. One ends up computing the singular homology
of the manifold, but this is by no means obvious at first sight: The generators of
the j’th chain group is the critical points of f of index 7. The boundary operator is
obtained as follows: First one proves that the set of flow curves v connecting critical
points p and ¢ in the sense that

Jim A(f) =p,  lim y(t) =g,

is a smooth oriented manifold of dimension equal to the difference in index between
p and ¢ for a generic metric. There is a natural action of R on the set of flow curves
given by translation of the parametrisation. The quotient by the action is a manifold
of dimension one less than the above. Thus if p has index j and ¢ has index j — 1,
one can count, with sign, the finitely many unparametrised flow curves between p
and ¢. This integer is the coefficient of ¢ in the image of the boundary operator on
p. It is possible to formulate this Morse homology as an axiomatic homology theory
and using only relative terms in the sense that the only part of the flow of V f used
is the above manifolds of flow curves connecting critical points [29].

It is also possible to define a chain complex for a Morse one-form, that is: A one-
form, which in a neighbourhood of a zero looks like the derivate of a Morse function
near a critical point. This is done in [27] and gives a complex with coefficients in
a so-called Novikov ring, similar to the ring of Laurent series, which computes the
homology of a covering of the manifold tensor the Novikov ring.

Floer used the relative approach to define a Morse homology in an infinite dimen-
sional setting in symplectic topology [16,6.5]. Given a symplectic manifold (M, w)



and a one-periodic smooth function H : M x R — R, the generators of Floer’s
complex are the one-periodic solutions of the differential equation

They are the critical points of an action functional on the set of smooth, contractible
loopsin M. It is possible to assign an index to these loops - defined modulo an integer
- and this index gives the grading of the chain complex. Given generators z and
y whose index differ by one, the (z,y)-matrix element of the boundary operator is
defined as follows: Count, with sign, the finitely many solutions of a “flow equation”,
defined for maps v : R x S — M, which converge with respect to the first variable
to z and y at each end of the axis, respectively. Of course, this is a very vague
formulation and the technical details of this theory are very difficult. Again, the
homology is the singular homology of M (shifted by the dimension), what Floer
proves by showing that for special choices of H, one gets the above classical Morse
homology. This new viewpoint allowed Floer to prove a special case of the Arnold
conjecture.

Floer used the same approach to define a homology theory for the Yang-Mills
equations [11]. His starting observation is that if the four-manifold is ¥ x R, the
Yang-Mills equations can be written as a “gradient flow” equation for the Chern-
Simons functional on Y. Critical points of this functional, which correspond to flat
connections on a principal SUs-bundle over Y| thus plays the role of generators of the
chain complex, whereas solutions to the Yang-Mills equations on Y X R converging
as the real variable goes to oo to flat connections gives the “connecting orbits”
used in the definition of the boundary operator.

The purpose of this thesis is to define a similar homology theory for the Seiberg-
Witten equations, but I attemp to use not only the zero-dimensional set of flow
curves between critical points of relative index 1, as it is done in the examples
above and for the Seiberg-Witten equations in [21], but also the higher dimensional
manifolds of flow curves. This has been considered in [7], but the approach here
is somewhat different. As would be expected, the resulting chain complex is quite
complicated.

As in Floer’s approach to Yang-Mills theory the Seiberg-Witten equations on
Y xR will be rewritten so as to appear as the gradient flow equation of a functional,
which will here be denoted the Seiberg-Witten functional. The critical points of
this functional corresponds to the solutions of the Seiberg-Witten equations on a
three-manifold. This first appeared in [18]. To obtain information in shape of num-
bers from the higher dimensional manifolds of flow curves, we integrate powers of
a canonical characteristic class stemming from the pointwise evaluation homomor-
phism from the gauge group to S* over the even dimensional manifolds.

The approach in this thesis is also inspired by [27] as we will mostly work on a
Z-covering of the moduli space where the Seiberg-Witten functional is well defined.
We will though work in terms of, not one-forms, but vector fields.

Here is an outline of the thesis. In section 2 there is a brief account of the results
needed from spin®-geometry. In section 3 the Seiberg-Witten equations on a four-



manifold are introduced. The particular case of Y x R for Y a three-manifold leads
to the definition of the Seiberg-Witten functional and the Seiberg-Witten equations
on a three-manifold.

Basic properties of the moduli space are given in section 4 and here we also prove
compactness results for the moduli space of solutions. In section 5 it is proved that
the latter is (generically) a finite set of oriented points, and in section 6 we define
an index of the critical points of the Seiberg-Witten functional using spectral flows
of Fredholm operators.

The next sections, 7 to 11, analyses the solutions of the Seiberg-Witten equa-
tions on Y X R that converges to critical points of the Seiberg-Witten functional as
t — do00. Section 7 contains a technical setup, whereas it is proved section 8 that
(generically) the set of the above solutions is a manifold and simple properties of
these manifolds are given. Section 9 justifies the analytical setup used in section 8
and in section 10 we prove a theorem on the (lack of) compactness of the manifolds
of flow curves. Section 11 deals with a gluing theorem for the solutions on ¥ x R.

Finally, in section 12 we enjoy the fruits of the hard analysis, defining the coeffi-
cients of the boundary operator d and showing what turns out to be the condition
for 0 0 0 to be zero. In section 13 the Seiberg-Witten-Floer complex is then defined
and we prove that it has a truncation property, thus presenting it as an inverse limit.

There is also three appendices in section 14 to 16: One on Sobolev spaces and
differential operators , one on the Dirac operator and one on temporal gauge.

This ph.d.-thesis is the outcome of my work during the last four years, where
I have been a ph.d.-student at the Department of Mathematical Sciences at the
University of Aarhus. It has been four hard, but also rewarding years. As my time
as a student at the University of Aarhus is now coming to an end, there is some
people I want to thank: My advisor, Jgrgen Tornehave, from whom I have learnt so
much. FFB for good company and those cold Ceres Top. And finally, JAI, Handball,
where I have always had more than I have given.



2  Spin® Geometry.

The definition and the basic properties of the Seiberg-Witten equations are closely
related to the geometry of spin®-structures on the manifold. Therefore we will start
out by giving the results on this subject needed later on. The first subsection 2.1 is
purely algebraic and deals with Clifford algebras, spin groups and representations.
After the algebra is digested the geometrical constructions in subsection 2.2 follow
very easily.

2.1 Clifford Algebras and Spin Groups.

Let V' be a vector space of dimension n over R with an inner product <, > giving a
norm denoted by || -||. The Clifford algebra of the pair (V, || -||) is defined as follows:
Consider the tensor algebra

J
V)= QV
320
and let I be the ideal generated by the elements of the algebra of the form

v@ v+ [vf"1.

Define CI(V,|| - ||) := T(V)/I. This is an associative reel algebra with a unit, which
furthermore contains V' as a subspace as the natural map turns out to be injective
[8,I1I]. It also has a universal property:

Proposition 2.1 (LM I1.1.1). Let ¢ : V — A be a linear map into an associative
algebra over R with unit 1, such that for all v eV :

¢(v) - p(v) = —[v]|* - 1.
Then ¢ extends uniquely to a homomorphism of R-algebras
¢: CUV, [ -]]) = A.

This property characterizes CU(V,||-||) among associative algebras over R with a unit
and containing V as a subspace.

In terms of an orthonormal basis (e, ...,e,) for V, CI(V,|| - ||) is the algebra
generated by {ej,eq,...,e,} and 1 satisfying the relations:
€i€j = —e;e;, e? =—1.
CIl(V,|| - ||) is spanned as a vectorspace by the linearly independent elements

€i1€iy -+ - €3yl <1y < ... < 1,,0<r<n,



so that it’s linear dimension is 2". The explicit basis also shows that CI(V,|| - ||) is
naturally linearly isomorphic to A*V - the exterior algebra of V' - through the map
f:ClUV, || - |I) = A*V given by:

1
f(vlvz...vk) = E Z V(1) A\ Ug(2) N\ oo N\ Ug(k)-

aeEk

This map is though not a homomorphism of algebras. Actually, considering the
multiplication in C{(V/ ||-]|) - Clifford multiplication - as an alternative multiplication
on A*V, it is given by the expression:

v-e=vAc—uvlc,
where v € V,c € A*V and v/ : A*V — A*~'V is given by:

V(v ANy Ao A w;) = Z (1) <w,v;, > v AL A AL A
1<j<r

where "~ denotes deletion.

Given another vector space V' with inner product <, >’ and a linear isomorphism
from V' to V' preserving the inner product, 2.1 gives that there is an isomorphism of
algebras CI(V, || - ||) = CI(V', || - ||')- This allows us to drop the explicit reference to
the norm || - || in the notation. Notice that this argument also shows that the group
O(V) acts on CI(V) in a way that extends the usual action on V.

CI(V) carries a natural Zs-graduation defined as follows: Let « be the endomor-
phism of Cl(V') extending the linear map «a(v) = -v from V to CIl(V) (Proposition
1.1), and let Cly(V') and Cl; (V) be the plus- and minus-eigenspaces of this idempo-
tent homomorphism. Then

and the two subspaces are denoted the even and odd part of CI(V). As Cli(V) -
Cli(V) = Cliy;(V) (i+j mod 2), Cly(V) is a subalgebra.

Lemma 2.2 (LM. I 3.7). There is an isomorphism of algebras:
CI(R™) ~ Cly(R™).

Proof: The map f : R* — Cly(R*™!) given by f(e;) = eieny1,7 = 1...n fits into
the scheme of proposition 1.1. For the corresponding homomorphism of algebras,
also denoted f, a summation of signs gives

er, if | 1| is even

€rén+ti, if | I | is odd.

If follows that f is an isomorphism. O



Definition 2.3. The spin group Spin(V') is the subgroup of the invertible elements
of CI(V') generated by the unit vectors of V, intersected with Cly(V).

Spin(V') acts on CI(V') by conjugation:
Ad,(c) =vev™ v € Spin(V),c € CI(V).

This (twisted) adjoint representation of Spin(V) preserves V. C CI(V), as is seen
from the following calculation:

Ady(w) = vuv™" = vw(—v) = v(vw+2 < v,w >) = —w+2 < v,w > v,
where v,w € V, ||v|]| = 1. Ad, is also orthogonal:
|Ad, (w)|* = —Ady(w)? = —Ad, (w?) = Ady (|Jw]]*) = [Jw]]*.

This means that Ad restricts to an orthogonal representation of Spin(V') on V, that
is: there is a homomorphism of Spin(V') to O(V'), whose image is actually in SO(V)
as Spin(V) C Cly(V).

Proposition 2.4 (LM. I 2.10). There is a short ezact sequence:
0 — Zo — Spin(V) 2% SO(V) —s 0.

This proposition implies that Spin(V') is a double-covering of SO(V) and for
n > 2, it is nontrivial. For n>3, 71 (SO(V)) = Z, and by general theory of covering
spaces, Spin(V') is then the universal covering of SO(V'), which in particular means
that it is simply connected. Furthermore Spin(V) can be given the structure of
a compact Lie group, so that Ad is a local diffeomorphism. The dimension of
Spin(V) then equals the dimension of SO(V), which is in(n-1), and the Lie algebra
of Spin(V) is isomorphic to s0(V) through the differential of the homomorphism.

Definition 2.5. The complex spin group Spin®(V') is the subgroup of the invertible
elements of Cl(V) ®g C generated by Spin(V) and S*.

Some facts about Spin®(V): First of all there is an isomorphism
Spin(V) ~ Spin(V) x41 S*.

It follows that Spin°(V) is a compact Lie group of dimension in(n-1) + 1 with a

Lie algebra isomorphic to so(V') @ iR. There are homomorphisms
Ad : Spin°(V) — SO(V) and sq: Spin°(V) — S!
given by:

Ad([g, X]) = Ad(g), sq([g, N]) = N2



These combine to give a double-covering Ad x sq from Spin¢(V) to SO(V) x S?
which is non-trivial on each factor:

0 = Zy — Spin°(V) "B SO(V) x S* — 0.

The Clifford algebras considered here are completely classified and turn out to
be direct sums of matrix algebras over R, C and H. The first few of them are:

CI(R) =C, CI(R> ) =H, CI(R)=HoH, CI(R") = H[2],
with corresponding complexified versions:

CIR) g C=CaC, CI(R*) ®g C = C[2),
CI(R®) ®g C = C[2] & C[2], CI(R*) ®g C = C[4].

It holds in general that Cl(V) ®g C is a matrix algebra for n even and a sum of two
equal matrix algebras for n odd. This is due to the above facts and the isomorphism

CI(R"?) @g C =~ (CI(R") ®& C) ®¢ (CI(R?) ®g C) [19,1.4.3].
Explicitly the low dimensional Spin and Spin® groups are:

Spin(1) ~ {£1}, Spin(2) ~ S, Spin(3) ~ SUs, Spin(4) ~ SU, x SU,

and
Spin‘(1) ~ S*, Spin©(2) = S* x4, S, Spin‘(3) ~ Us,
Spin©(4) = {(g, h) € Uy x Us|det(g) = det(h)}.
Assume now that the vector space V is oriented and let e, eo,..., e, be a posi-

tively oriented orthonormal basis for V. Then the complex volume element is

w ':i[nTH]ee e
C: 1€2...€p,

where [t] denotes the integer part of t. Because of the demand of positive orientation,
this is independent of the choice of basis. wc is central in C1(V)®gC if n is odd, and
if n is even wc commutes with elements of Cly(V) and anticommutes with elements
of Cl;(V'). Because of the frontfactor, w2 = 1 in all dimensions [19,1.§5].
Considering the idempotent action of wc on Cl(V) ®g C by left-multiplication,
one obtains a splitting of C1(V) ® C in +1-eigenspaces, denoted (Cl(V) ®g C)*
Now for the important results on representations of Cl(V) ®g C (as an algebra!):

Proposition 2.6 (LM. I 5.9 + 5.10). Let p : Cl(V) g C — Homc(W, W) be
any irreducible, complex representation. If n is odd then either

plwe) =1Id or plwe)=—Id.

Both possibilities can occur and the corresponding representations are inequivalent.
They are ezxactly the irreducible representations of Cl(V) ®g C and are denoted +



and - ,respectively. Their dimension s 2"
If n s even, there is a splitting
W=Wtew",
where W* = (14 p(wc))(W). Each of the subspaces W and W™ is invariant under
the even subalgebra Cly(V) ®r C and under the isomorphism from 2.2:
Clo(V") @ C~ Cl(V" ) @r C

they correspond to the two inequivalent irreducible complex representations of
Cl(V""Y®@r C. The odd subspace Cly(V') switches the factors of W and the dimen-
siton of the representation is 2".

Addition to proposition: For n odd: Cly(V) ®g C ~ End(W#) and for n even:
Cl(V) @ C ~ End(W). Actually, in the latter case one has the following isomor-
phisms:

(Cly(V)®r O)f = End(W), (Cly(V) @ C)~ ~ End(W™),
(CL(V)®r C)t & Hom(W*, W), (Cly(V) @& C)~ ~ Hom(W—,WT).
Definition 2.7. The complex spin representation of Spin®(V') is the homomorphism
A, Spinf(V) — Glc(W)
given by restricting an irreducible representation of Cl(V) ®g C to Spin®(V) C

Cly(V)®@r CC Cl(V) ®r C.

Notice that an irreducible representation of Cly(V)®gC restricts to an irreducible
representation of Spin®(V), because Cly(V) Qg C is the linear span of Spin®(V).
Using this it is not difficult to see:

Proposition 2.8 (LM. I 5.15). When n is odd, the definition of A, is independent
of which irreducible representation of Cl(V) ®r C is used. Furthermore, A, is an
wrreducible representation.

When n is even, there is a decomposition

Ap=Ar® A,
into a direct sum of two inequivalent irreducible complez representations of Spin®(V').

Remark: The above representations of Spin®(V') are not induced by complex
representations of SO(V) as —1 acts as -Id on W because A, is the restriction of a
representation of an algebra.

Lemma 2.9 (LM I 5.16). Let p : Cl(V) Qg C — Endc(W',W') be a complex
representation of Cl(V) ®g C. There ezists an hermitian inner product on W', such
that the action - Clifford multiplication - of unit vectors in 'V s unitary, that is:

<e-w,e-w >=<ww >,

forw,w' e W' eeV,|e| =1. Additionally, Clifford multiplication by any element
of V' is a skew hermitian linear transformation of W'.



Note that if n is even and W = WT @ W~ is the irreducible representation,
<,> may be chosen so that W™ L W~ . Also under the isomorphism of the
representation spaces in proposition 1.7, <,> can be reused in dimension n-1 as
< ejep VU, €y - W >=<V,W >.

The Grassmann inner product on A*V gives an inner product on CI(V) via the
linear isomorphism stated above. Alternatively, in the case where n is even, the map
to End(WW) is injective and we can pull back the inner product on End(W) given
by < A,B > =tr(AB*). As

(€i16i2 e eip)* = (—eip) P (—€i2)(—6i1)

1
Lop+1
(—1) 2p(P )€i1ei2 )

one gets:

tr(€i €y ---€i,(€i €y ... €,)") =tr(ei e, ...e,(—1)e, ... epe;)
= tr(Id) = dim(W).

So the normalized trace inner product < A, B >'= ——-—tr(AB*) equals the Grass-

dim(W)
mann inner product.
On A"V there is the Hodge operator x : A*V — A*"V defined by:

< kW, T >vol =wAT,
where vol = ejey .. .e,. By [19,11(5.35)]

#6 = (~1) 206 we
in terms of Clifford multiplication.

We have now stated the algebraic results needed. The next subjects are spin®
and Clifford bundles, connections and the Dirac operator.

2.2 Smn® and Clifford Bundles.

From this subsection on the real and finite dimensional vector space V' equiped with
an inner product <,> and a choice of orientation will be the standard case of R"
with the usual inner product and orientation. Also it is implicit that everything is
smooth (maps, bundles, manifolds etc.), unless stated otherwise.

Let M be a n-dimensional manifold. Given a SO(n)-bundle Pso(,) over M, there
is an associated bundle of Clifford-algebras

Cl(Pso(n)) = PSO(n) XSO(n) Cl(Rn)

The Clifford-bundle contains as a subbundle the metric vector bundle over M cor-
responding to Pso(), § = Psom) Xsom) K", and is linearly isometric to the exterior
algebra of &, A\*().

10



There is a decomposition of bundles of algebras:
Cl(Psom)) = Clo(Psom)) ® Cli(Pso))-

As the element we € CI(R") ®g C is invariant under the above action of SO(n),
there is a section in Cl(Pso(n)) ®r C, also denoted wc, that in every fiber equals the
algebraic wc. This implies that w2 = 1 (1 of course also defines a section) and so
the splitting in £-subspaces survives the bundle construction:

Cl(Psom)) ®r C = (Cl(Psom)) ®r C)F & (Cl(Psom)) ®r C)~.
Again, if n is odd the two subbundles are subbundles of algebras.

Definition 2.10. A spin®(n)-structure for Psom) 1s a reduction of Psom) to a
Spin®(n)-bundle. Precisely, it is a Spin®(n)-bundle Pspineny and a map

¢ : P,S'pinc(n) - PSO(n)

commuting with the projections to M and fullfilling

d(p-g) = é(p) - Ad(g)

for p € Pspineny and g € Spin‘(n).

Assume that a spin®(n)-structure for Psom) exists. This additional structure
produces more associated bundles: Define a complex line bundle - the determinant
line bundle - by

L= PSpinC(n) X Spinc(n) C,

where Spin‘(n) acts on C through the homomorphism sq: [g, A] - v = M. As the
action is unitary, the standard hermitian metric on C induces an hermitian metric
on L. Let Pg1 denote the S! bundle of unitary linear frames of £. As

Pg1 ~ Psz'nC(n) X Spinc(n) Sl:

Pspine(n) is a double-covering of the bundle Pso,) + Psi. This covering is non-
trivial on each fiber where it is represented by the covering-homomorphism following
definition 2.5.

The spin® representations give rise to complex vector bundles - the spin®-bundles
- over M:

S(C(P.S'pinc(n)) = PSpinC(n) XA, S(C(Rn)
Again algebra is useful: If n is even, Sc(Pspine(n)) splits into two subbundles:

Sc(Pspine(n)) = SE (Pspine(n)) @ S¢ (Pspine(n))-

11



As the above representations of the spin® groups were restrictions of representations
of CI(R"™), there is an action of the Clifford bundle on Sc(Pspine(n)) :

¢ (CU(Psom)) ®r C) ® Sc(Pspine(n)) — Sc(Pspine(n))

that is the original Clifford multiplication in each fiber. The hermitian inner product
from lemma 2.9 gives an hermitian inner product on S¢(Pspinc(n)), because the spin®
group acts isometrically. Also any unit vector in Cl(Pso(,)) acts as an isometry.

Connections on Pso(n) and Pg1 with connection one-forms w and A, respectively,
give a connection on Psom) + Pst1. This connection lifts to a connection w on the
double-covering Pgpine(ny With connection one-form (Ad, + sq.)™" o 7*(w + A).

All the associated bundles get induced connections: There is a connection V
on Cl(Pso(n) induced from w on Pspr). V is a metric connection, as SO(n) acts
orthogonally on CI(R"). Also, we have a connection ¥V on Sc(Pspine(n)), which is
unitary because Spin‘(n) acts by unitary transformations on S¢(R").

v fits together with the algebra structure of Cl(Pso(n)), as it acts as a derivation
on sections:

V(AA2) = V(A1) A2 + MV (A2),
for A1, A2 € QU(CU(Pso(m))). Similarly, V and V are compatible with the action of
Cl(Pso(n)) on S@(nginc(n)):
V(A-5)=V(A) s+ A-V(s),
for )\ € QO(CZ(PSO(R))) and s € QO(Sc(Pspmc(n))).
As regards the splitting Cl(Psom)) = Clo(Psom)) ® Cli(Psom)), it is invariant
under V. As the section w¢ is parallel, that is V¢(we) = 0, this is also the case for

(Cl(Psomy) ®C)*. Finally, in the case where n is even, Sc(Pspine(n)) = S¢ (Pspine(n))
® S¢ (Pspine(n)) also has this property, now with respect to v.

Definition 2.11. Two Spin®(n)-structures PSIpinC(’n) and nginc(n) are equivalent, if
there is an equivariant map @ : P;'pin”(n) — PSQpinC(n) commuting with the projections
to PSO(n)'
©
P,;pinc(n) P,S%pmc(n)
Psom)
M

In particular, ¢ will be an isomorphism of S!-bundles over Pso(n)- So defining
L := Pspine(n) Xs1 C, a complex line bundle over Pso(, with the property that
L? = 7*(L), the equivalence of Pslpinc(n) and ngmv(n) implies that L; a8 Lo, so that
L, ® L; is trivial.

12



Lemma 2.12. There is a free and transitive action of H*(M,Z) on the equivalence
classes of Spin®(n)-structures of Psom).

The action is defined as follows: Given o € H*(M,Z), let A, denote the corres-
ponding complex line bundle over M. Then

PSpinC(n) o= PSpinC(n) Xm PS1 ()\a);

where the last expression is to be understood as the Spin®(n)-bundle obtained by
multiplying the transition maps of Pspine(n)y and Pgi(A,) stemming from a covering
of M by neighbourhoods over which both bundles are trivial. The lemma is proved
by noting that L; ® L5 is always the pullback of a complex line bundle L5 over M

and L1, is easily seen to satisfy Pépinc(n) Ly = nginc(n)' Thus Pslpmc(n) is equivalent
juongpmc(n) iff L5 is trivial. If ngmc(n) = nginc(n) -Aa, L1a = A\, and thus the action
is free.

Here is how the action of H2(M, Z) affects the bundles associated to a Spin‘(n)-
structure: For o € H2(M,Z),

L(PSpinC(n) . a/) = L(PSpmc(n)) (29 W*()\a),
whereas
»C(P.Spinc(n) : a) = ‘C(PSpinC(n)) ® )‘z
Also the representation bundle is transformed in this way:

SC(PSpinC(n) . a) = SC(PSpinc(n)) ® )\i,

where Clifford multiplication takes place in the first factor.
Given connections A, on Pgi(A,) and @ on Psyipe, the bundle map

m: PSpinc(n) + Psl ()\a) — PSpinC(n) e

induces a unique connection on Pgpine(n) - o denoted w - . Similarly, there is an
induced connection on Pgi (L(Pspine(n)) @ A2) denoted by A ® A2 and these two
connections correspond under the construction of connections on Spin®(n)-bundles
described above. The induced connection on SC(Pspmc(n) - @) is the tensor product
connection V ® A,.

The notion of a Spin®(n)-structure will only be used in the speciel case where
Pso(n) is the orthogonal frame bundle of a n-dimensional oriented Riemannian mani-
fold M without boundary and the connection on Pso(y) is the Levi-Cevita connec-
tion. The connections on Pgpyine(n) are called the spin connections in this case. As
noted in the beginning of this subsection TM — Cl(Pso(,)) and thus, identifying
TM and T*M by means of the Riemannian metric, there is an action of differential
forms on the spin® bundles Sc(Pspinen)). Explicitly:

w-s(z) = Z w(e;)e; - s(x),

1<i<n
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where w € QYTM),s € Q°Sc(Pspine(n))) and (e;)i=1.n, is an orthonormal basis
of T, M. Also notice that one may recover the Levi-Cevita connection from V on
Cl(Pso)) by restricting v to T'M.

In the above context, the connection A on Ps: induces a differential operator on
Sc(Pspine(n)), the Dirac operator:

Definition 2.13. The Dirac operator
04 : QO(S(C(PSpmc(n))) — QO(S@(Pspmc(n)))

is defined as 04 = co V. In local terms it is given by:

dals)(z) = ) e Ve (s)(),

1<i<n
where s € Q°(Sc(Pspine(n))) and (€;)i=1.n is an orthonormal basis of Ty M.
The Dirac operator has the following properties:

Proposition 2.14. The Dirac operator is selfadjoint and elliptic [19, 1.85]. Further-
more, it has the unique continuation property from open subsets [5].

Lemma 2.15 (Mor. II 3.2). Given a connection A' = A+ «a, a € Q' (M,iR), the
Dirac operators satisfy:

1
6,4/(8) = 5,4(8) + Ea . S.
Under the action of H?(M, Z) the Dirac operator behaves as follows:

Oaga, =04 @14 c(1® vi).
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3 The Seiberg-Witten Equations.

The main object of this thesis is the Seiberg-Witten equations on a three-manifold.
However, as is well known, this type of equations were first considered on four-
manifolds, and the three-dimensional case and the idea of defining a Floer type
homology theory in the latter situation originated from properties of the equations
in dimension four. So, for motivation and notation, this is where we will start.

Let M be an orientable and Riemannian four-dimensional manifold with a spin®-
structure Pgp;ne. To define the Seiberg-Witten equations we construct a map

A section 9 of the spinor bundle S¢(Pspine) gives, using the hermitian inner product
of the bundle, a section ¢* of the dual S¢(Pspine)*.

" @Y € Q°(Sc(Pspin) ® Sc(Pspine)*) & Q°(End(Sc(Pspinc)))
and ¢(v) is defined as:

1
a(w) = v @ v — SJuPT.

If ¢ € Q°(SE (Pspinc)) then clearly ¢(¢) is an endomorphism of the plus-spinor bun-
dle. Clifford multiplication identifies these endomorphisms with (Cly(Pso)) ®rC)*
(prop. 2.6f). Using the formula in the previous section connecting the Hodge oper-
ator and Clifford multiplication by the complex volume form, it is easy to see that
under the isomorphism Cl(Pso@) ®r C) = A*(M,C), (Clo(Pso)) ®r C)* goes to
A% (M,C) & C(5(1 + wc)). As g() is trace free it is in the first factor. Finally, as
q(1) is also selfadjoint, ig(1)) is pointwise in H C C[2] that corresponds to the real
Clifford algebra. So, ¢(%) is purely imaginary.

Definition 3.1. For a unitary connection A on Ly and v € Q°(S¢ (Pspine)) the
perturbated Seiberg- Witten equations are:
1

FXZE (¥) +h,

614(1[}) = 05
where h € Q3 (M) is the perturbation.

Let A(Ly) denote the affine space of unitary connections on Ly;. The Seiberg-
Witten equations can be collected in a single map, the Seiberg-Witten map:

F : C(Pspine) := A(Lar) x Q°(SE(Pspine)) — iQ%(M) & Q°(S¢ (Pspine))

F(A, ) = (Ff = 2a() ~ b, 34(8))

There is a symmetry of the Seiberg-Witten equations connected with the action
of gauge transformations of Pgpipe on C(Pspine):
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Definition 3.2. A gauge transformation on a principal G-bundle @) is an equivariant
map ¢ : QQ — Q, that satisfies:

¢(g) = q-9(q),
where ¥ : QQ — G.
Q\ (’O/Q
M

Equivariance of ¢ is equivalent to 1) satisfying:

Hag-9)=97"-9q) g

and so a gauge transformation could also be defined as a section of the bundle of
groups @ Xq G.

In this context one restricts the set of gauge transformations of the given Spin®-
bundle Pgpine — M. ¢ is demanded to commute with the map ¢ to the SO(4) frame
bundle of M, Psou): ¢ o ¢ = ¢. Such gaugetransformations ¢ correspond exactly
to the maps 9 with values in the center S* of Spin¢(4), which because of the above
property are maps from M to S'. They can also be defined as gauge transformations
of the Psi-bundle associated to the Spin®-structure, lifted to Pgpine. The set of these
special gauge transformations will be denoted Gy;.

P Spin¢ P, Spinc

A
wl

M

There is a right action of Gy on the variables of the Seiberg-Witten map F', using
the following two maps, where o € Gy:

det(o) : Ly — L,
det(o)([p, v]) == [o(p), v] = [p, o (7 (p))?v].

SE(0) : SE(Pspine) — S% (Pspine),
5%(0)([p, w]) := [o(p),v] = [p, o(T(p))w].

The action C(Pspine) X Gpr — C(Pspine) is given by:

(4,9) - 0 := (det(0) 4, S(0 1) (¥)).
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Lemma 3.3 (Mor.III 3.1). The Seiberg- Witten map F is equivariant under the
right action of G:

F((A,9)-0) = F(A,¢) -0,

where on the right hand side o acts by the trivial action on iQ2 (M) and by S~ (o™ 1)
on Sg (Pspine). In particular, the set of solutions of the Seiberg- Witten equations is
preserved by the action.

To get three-dimensional manifolds into play, we consider a special case of the
above: Let Y be an oriented, Riemannian and closed three-manifold. For later
convenience Y will also be assumed to be connected. Let M =Y x R. M has the
product metric and orientation, and a spin®-structure Pgp;,c on Y pulls back via the
projection pr : M — Y to a spin®-structure pr*(Pspine) on M. Identifying Y and
Y x {0}, and using the injective map of principal bundles Pso3y — Psoa) given by:

d
[61, €2, eg]p — [61, €2, €3, %](M)’

where (eq, e2, e3) is a positively oriented orthonormal basis of T,Y" and [...] denotes
“frame”, this fits into a commutative diagram:

PSpinC — pr* (Psz'nC)
Pso(g) — PSO(4)

Here it is used that because of lemma 2.2, there is a natural inclusion of Spin(3)
into Spin(4), and therefore of Spin®(3) into Spint(4), commuting with Ad (SO(3)
C SO(4) are the matrices keeping the fourth coordinate fixed. In fact, Spin(3) C
Spin(4) are exactly the elements of Spin(4) commuting with e; = 4).

Because of proposition 2.6 the associated bundles satisfy

St (01" (Pspins)) = pr*(Sg (Pspins)), L & pr(Ly).

Furthermore, there is a map:

.4
Cl(Pso)) —= Cl(Pso(a))

given by multiplication by % from the right on the odd part in each fiber and it is
thus the isomorphism of lemma, 2.2 lifted to the bundle situation. This means that
the action of Cl(Pso(s)) on Sc(Pspine) satisfies:

- g)=pr (@) (@), veTy

Gauge transformations of the Spin®(3)-bundle Ps,;,c are considered under the
same restriction as above and are thus identified with maps from Y to S'. We denote
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them Gy. Under pullback by pr, Gy acts on pr*(Pspi,e) and they are exactly the
gauge transformations of pr*(Pspine) that do not depend on the real variable. Gy
acts exactly as above on C(Pspinc) := A(Ly) X Q°(Sc(Pspinc)) making the following
diagram commute:

C(PSpinC) X gY C(PSpinc)

pr*l lm*

C(pr*(Pspinc)) X G — C(pr*(Pspine))

Finally, let us define g : Q°(S™(Pspinc)) — iQ*(Y) by the same formula as in the
four-dimensional situation, but now using the isomorphisms

End(S(Pspine)) ~ (CU(Y) @& C)F ~ Q(Y, C),

using the projection on the 4 - part of the Clifford bundle. The relation between
the two ¢’s is: ¢(pr*(v)) = pr*(q(v))) ™.

We will now derive an expression for the Seiberg-Witten equations on Y x R in
the special case where the connection A € A(pr*Ly) is in temporal gauge, that is,
the ;-component of A is trivial. First we look at the curvature equation: From the
formula

_04; 0A
- Oz Oz

(FA) [AZ:A ]

and the assumption that A4 = 0, we get Fy = Fa, — % A dt. Using that
s (pr*(w)) = pr*(xsyw) Adt for any w € Q*(Y,C)

this gives that:

0A
F, — —
( Ay o N dt)
1 0A 0A
§(FAt+*YFAtAdt_EAdt 8t)
0A
( —*y - ot )

As q(v); = q(¢) ", the curvature equation is:

0A

ot *y ( q(Y) — Fa, +2hy)
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The Dirac operator behaves as follows:

d d - d o

=L Vg

L d o~ - o

—%'(;ei-vei(lﬁt)‘f‘a)
d 0

= @)+ 50

So, the second of the equations is equivalent to

= B

We see that the Seiberg-Witten equations in temporal gauge on the four-manifold
M =Y x R are equivalent to a flow equation in A and ¢ if one interprets these
data on M as a curve of similar data on Y. Of course, in the above expressions the
notation A; and v, means restriction to the copy of Y at Y x {t}. . Any connection
can be gauge transformed into a connection in temporal gauge. The proof of this is
given in appendix 16.

The flow equations arise naturally in connection with the following functional
defined on C(Pgpine):

Definition 3.4. Define the Seiberg-Witten funtional C,, : C(Pspine) — R by:

Cuan) = [

Y

:/Y(%(FAO+FA)+M)/\a+%/Y(5A(¢)a¢),

(Fao + -+ o) Aot 5 [ (800).9)

where Ay is a base connection, a = A— Ay, u € iQ*(Y) and (,) denotes the real part
of the hermitian inner product on Sc(Pspine)-

Two remarks on this functional: If one chooses another base connection Aj the
functional is changed by a constant. More precisely, if A = Ay + « one has:

C'(A, ) = Cul(A, ) — / (Fag+ = 2do) A

Y
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Secondly, under the action of o € Gy, C, behaves as follows:

Cul(4,0)-0) = CulA,) = [ (Fay+ i+ G+ 20 Aat 227)

—/(FA0 +pu+ %da)/\a

45 [ (Bane (079),070) = (8a0), )
_ / (Fay + 1) A 2%" (using [23, I11.3.2))

— 872 < e1(Ly) Ue(o), [V] > +2/ A %".

Here ¢ : Gy — H'(Y,Z) is given by pulling back the volume form of S*:

1d0

c(o) = o*(volg1) = 5

Let us now find the gradient of C),:
1 1
Cu(A+0,9) - Cu(AY) = /(FAO +up+ §db)/\b+§/(da/\b+db/\a)
Y v
1
+3 [ (@ann=80w).0)
Y

= /Y(FA0+u+%db)/\b+/Yda/\b+4/<b b, )

= G400 = [baEnsn+ [ondasy [ 6v0)
= <b,_*Y(FA+:u’)+%*YQ(w)>,

using [24,6.9] and lemma 2.15, and as F4 and p are purely imaginary.

Culdoth+1) = Cu(A,0) = 5 [ (@ato) ) + ©a(0)1) + 5 [ @ato)n
= dC,(A, 0 = [ (84(6)) = (1.3,

using that the Dirac operator is selfadjoint (Prop. 2.14).
All in all this gives that:

VOUAE) = (= v (Fat 1)+ 5wy 0(6),54(4))
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Hence we see that the four-dimensional Seiberg-Witten equations are the downward
gradient flow for the functional C, if one interprets the data (4,79) on Y x R as a
curve of data (A,); on Y. The perturbation h and yu are related by: h = —pr*(u)*
and p = —2h,.

Define a map o : Q°(SZ (Pspine)) X QU(S¢ (Pspine)) — iQH(Y) by:

(a,0(¥,0)) = (a9, ¢)

o is related to ¢ by: (¢, ) =2 %y q(¢) [24,6.9].
This leads to the following definition:

Definition 3.5. For a unitary connection A on Ly and ¢ € Q°(S (Pspinc)) the
perturbated 3-dimensional Seiberg- Witten equations are:

ky Iy = %0(1/1, V) — *yp

where p € 1Q*(Y) is the perturbation.

It is immediate from the definition that the solutions of the three-dimensional
Seiberg-Witten equations are the static solutions of the four-dimensional Seiberg-
Witten equations stemming from Y, or equivalently, they are the critical points of
the Seiberg-Witten functional C),.

Comparing with finite dimensional Morse theory, we have now defined the Morse
function which we will study, namely the Seiberg-Witten functional on Y. The Morse
flow is connected with the Seiberg-Witten equations on Y X R and the critical points
of the Morse function are exactly the solutions of the Seiberg-Witten equations on
Y. Of course, we still have to verify that C, has properties that justifies the label
“Morse function”.
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4 Properties of the moduli space.

4.1 Basics on the full moduli space.

So far all statements have been made in terms of smooth objects. However, the
further analysis of the Seiberg-Witten equations naturally leads to the use of diffe-
rential geometry in an infinite dimensional Banach setting as the varibles are sections
of vector bundles. This cannot take place in the smooth category as the set of C'™
sections of a vector bundle is not a Banach manifold in a natural way and therefore
Sobolev spaces are introduced in this section, where the properties of the quotient
of C(Pspinc) by the action of the gauge group Gy will be investigated.

In the following the notation “L?” for the Sobolev spaces and the elementary
properties of these will be used freely. Also, a basic acquaintance with the bounded
maps between these spaces induced by (elliptic) differential operators is assumed.
The definitions and results used are shortly summarized in Appendix 14. The basic
setup will use only p = 2,k > 1, but other spaces will come up along the way.

The space of variables, C(Pspinc)r2, is the direct sum of QO(S¢ (Pspine)) 2 and
A(E)Li = Ay —l—in(Y)Li, where Ay is a smooth, unitary base connection on £ = Ly-.
The gauge group, Gy, is a subset of Q°(Y, C). This space of maps will be completed
in the L7, -norm. By the Sobolev embedding theorem the completion injects into
C°(Y, C) and thus the closed subset of maps with values in S*, G 20 is well defined.
QL%+1 is the completed version of the gauge group and is a Hilbert group. The

component, group of G;» is H'(Y,Z), the correspondence being given by:
k+1
m0(Grz,,) 3 lo] = (o) = o™ (vols1) € HY(Y,Z).

We define a closed subgroup of G 2., by
Gy, = {0 €0n | <alf)Uco),[Y]>=0}.

Notice that H := G2

G;» is isomorphic to either 0 or Z depending on whether
k+1 Lk+1

¢1(L) is zero or not.

Assumption: We will assume that ¢, (L) # 0.

The multiplication theorems for Sobolev spaces imply that the action of G 2, On
C(Pspine) L2 defined by the same expression as in the previous section is well defined

and smooth. Also, choosing p € iQ'(Y)2 , where m > k, the definition of C,, is
extended to a smooth funcional on C(Pspine) L and thus the gradient :

VCy: C(Pspine)rz — Q' (V)2 @ Q°(SE (Popine))r2_,
is smooth.

Definition 4.1. The moduli space of variables, BL% (BLi)’ s the orbit space of

C(PSpinC)L% under the action of the gauge group QL%H(QLQ

k+1)'
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BL% is a Z-covering of BL% .

Lemma 4.2 (Mor. III 4.1). The stabilizer G ) in Gr2,, of an element (A, 0) €
C(Pspine) L2 i trivial unless v = 0 in which case the stabilizer consists of the constant
maps from'Y to S, a group naturally identified with S*.

As a standard notation, elements of C(Pspinc) L2 with trivial stabilizer are denoted
irreducible. All other elements are reducible. Lemma 4.2 gives that the subset of
irreducible elements, C*(Pspinc) L2 is open and thus so is the corresponding subset of

By (BL%), 2%( Nz%) The next lemma states that the action of Gz2 —on C(Pspine) 2
is a proper group action.

Lemma 4.3 (Basic convergence result, Mor. IIT 4.3).
Suppose that (Ap)52, and (Bp)pZ, are sequences in A(L) .2 converging to A and B,

n=1 n=1
respectively. Suppose also that for each n we have o, € ngH with:

A, -0, = B,.

Then there is a subsequence of (0,)$%, that converges to an element
o e QL%H. Furthermore, we have

A-0=B.
Next item is the obligatory slicing result:

Proposition 4.4 (Mor. III 4.5-4.7). For every point (A, ) € C(PSpinC)Li: there
is an open neighbourhood of (A,v) and a smoothly imbedded Hilbert submanifold S
of the neighbourhood - the slice - which is invariant under the action of the stabilizer

G of (A, ) such that:
®: 5 Xgy, Grz2,, = C(Pspine)r2
given by
O([s,0]) =s-0

is a diffeomorphism onto an open neighbourhood of the orbit of (A, ) in C(PSpinC)LZ-
This slicing of the space of parameters implies that B}, has the structure of a

Hilbert manifold. The tangent space at [A, )] is identified with
in (Y)L% @ QO(S(_E (PSPZ'TLC))L% /Im/\q/) ~ Ke'f’)\;z,
where
Ap QY )2 = 19 (Y) 2 © Q°(SE (Pspine)) 12

is given by Ay = (2d,— - ).
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If [A, 9] is reducible (so ¥ = 0) a neighbourhood of [A, ] in BL% is homeomor-
phic to the quotient of

01 (Y) 12 ® (S (Pspine)) 2/ Tmo = Ker);
by the action of Gay) =S

The tangent space of C7, at (A, 1) is iQ'(Y) g2 ® Q°(SE (Popine))p2- As ¥ # 0,
Ay is injective and thus Aj is surjective. This implies that KerA® defines a vector
bundle over C},. Now Ay., = Ay - 0 and combined with the slice theorem this gives
k
that

TBZ% = (Ker,\?‘)/gL%H

Using A to define the L2-Sobolev norm on the spinor part of K er\, over [A, ],
we get a LZ-metric on TBZ%. This is turn gives a Riemannian Li-metric on Bzi’

which is thus a metric space. Furthermore, as sz is separable, because all the
Sobolev spaces considered here are separable, 57, is separable. This implies that
k
B; ., is Lindelof and (thus) also paracompact [17,5.35],[9, 5.1, cor.2].
k

As g~L§+1 is closed in QL%H and contains S, 4.2 and the basic convergence result
4.3 holds for this group also. Thus as the Lie algebras of QL%H and g~L2+1 agree (and

equal i1Q°(Y) Li+1)’ the slice theorem is also true for g~L2+1 and BL%' Notice that the
group of deck transformation of the Z-covering, which is identified with H, acts by
isometries on BL% .

Turning to the results of the previous section notice that as
Apla,n) = 2d"a+ilm < ¢, n >,

where (a, 1) € iQ'(Y) 2 @ Q°(S¢ (Pspinc))12 and <, > denotes the hermitian inner
product on Sc(Pspinc), we have

N (VOU(A, ) = 20 (— e (Fa+ ) + 306, 6)) +ilm < 9, 840 >

= %d*a(w,w) +iIm < 1,040 > =0

by a local computation, if p is closed. Thus under this assumption, which will be
made from now on, though C), is not well defined on BL%’ VC, does give a vectorfield
on BZ% - and Bzi (Strictly speaking, VC,, is a section of TBL%_I).

Unfortunately, the “Morse function” C' is not defined on Bzi' That is why the
12>
see the calculation after 3.4 - is resolved here. The perturbation of C, C}, is not well
defined on either space, but it does give a vector field on these infinite dimensional
manifolds as shown above. So we are really perturbing VC' into a vector field, VC,,,
which is locally a gradient vector field.

This is parallel to [27], where the given Morse one-form on a manifold M is lifted
to a Z-covering of M, where it is the derivative of a function.

Z-covering, is introduced because the ambiguity of C' under the action of Gy -
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4.2 Compactness results.

A strength of the Seiberg-Witten equations is the compactness result described in
this section. To prove them one has to be able to bootstrap the equations, what
requires some sort of elliptic property. A priori this is not fullfilled, but by working
in a particularly nice gauge, equations are obtained that can be bootstrapped. This
is the background for the next lemma:

Lemma 4.5 (Gauge fixing lemma). Given a connection A € A(L) 2 there ezists
a gauge transformation o € gL%H with the property that the gauge transformed
connection equals A - 0 = Ay + «, where:

d'a=0 and |H(a)||z: < K

Here H denotes the L?-projection onto the harmonic one-forms H* of Y. The con-
stant C only depends on the Riemannian structure of Y.

Proof: To make « a coboundary we first gauge transform A by o7 = exp(if), where
€Ny, R)Liﬂ' The exp is well defined as Q°(Y, C) is a Banach algebra.

L%+1
—94 9 d0'1 .
A-0y—A=o0;%do; =2— = 2idf.
01

This implies that:
d*Oél = d*(A 01 — A()) = d*(A - Ao) +2i A (f),
so that a is a coboundary if A(f) = £d*(A — Ao) € Q°(Y,R)z_ . A solution of this

2
equation exists by (Sobolev completed) Hodge theory.

To obtain the estimate of the harmonic part of a, we need to perform a second
gauge transformation: Choose a cohomology class w € 4rH'(Y,Z) and define
oy = exp(3 [, w), where H'(Y,Z) C H'(Y,R) ~ H' and [ denotes the path
integral from g, to y. This is well defined by choice of w and gives a smooth gauge
transformation. We get:

A'Ul'UQ—A0:a1+7:w.

Denote a7 + iw by a. « is a coboundary as w is harmonic and if w is chosen
appropriately « lies in the fundamental domain of the lattice 4w H' (Y, Z) C H'. As
this domain is a compact torus we get bounds on the norm of H(«) in any norm on
the finite dimensional vector space H'. O

In the gauge of the above lemma the Seiberg-Witten equations look as follows:
1
040() = —50- ¥,

dor= § oy o, ) — F(Ag) +
d'a =0,
H(a) < K.
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Here A = Ay + o and lemma 2.15 has been used for rewriting the Dirac operator.
This will be referred to as the gauge fixed Seiberg-Witten equations.

Theorem 4.6 (Regularity theorem).
Assume that the set up of the above equations is of L2 connections and spinor fields,
Li+1 gauge transformations and a Lfn perturbation (m > k > 1). Then any solution
(cr, 1) to these equations satisfies

a e Q\(Y, iR)L?nH and P € Q°(SE (Pspinc)) 12

m—+2 '

Proof: 1t is used that the following smooth differential operators are elliptic:

(d,d): Q1Y) = Q(V) @ (V)
040 : Q°(SE (Pspine)) = Q°(S¢ (Pspine))

As L? C L, Hoélder’s inequality gives 04,(¢) € L3. By L3-regularity of d4,, % is
then L3, so in particular L'?2. Using Holder again gives 04,(¢) € L* so that by
regularity 1 is L1

If m = 1 da is now L? as there is a continous Sobolev multiplication L} x L] —
L{. L2-regularity of the operator (d,d*) gives « € L3 C Lj. Using the quoted
multiplication and the first equation again gives 04,(¢)) € LT = ¢ € L; C L%. By
the first equation 04,(¢) is then L3, and finally ¢ is L2 by L?-regularity of 34,-

If m > 2 one may proceed from here, shifting between the equations as above. [

An imidiate corollary is that if the perturbation is smooth, any solution is gauge
equivalent to a smooth solution.

The proof of the compactness property begins with obtaining a bound on the
fiberwise norm of the spinor part of a solution. This bound will depend only on the
Riemannian manifold Y and the pertubation u. The effective tool to work with in
a situation like this is a Weizenbock formula:

Proposition 4.7 (Mor. IV 1.5). Let X be a Riemannian manifold and let P — X
be a Spin¢ structure for X. Let A be a C' connection on L and let 84 be the Dirac
operator on Sc(P) determined by the Levi-Cevita connection on the orthogonal frame
bundle and A on the determinant line bundle. Then for any C? section ¢ of SC(]B)
we have

3400a() = VAVAW) + 0+ SFa- ¥,

where V 4 s the induced connection on SC(IB) , K 18 the scalar curvature and - denotes
Clifford multiplication.

If m > 2 the above requirements for differentiability of the connection and the
spinor are satisfied by a solution to the gauge fixed equations by the regularity
theorem, 4.6. As the fiberwise norm of a section in S¢(Pgpine) is invariant under
gauge transformations, this is sufficient for the result below. The proof of this result
is completely parallel to the proof in [23,1V2.2].
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Corollary 4.8. Fuvery solution (A,v) of the Seiberg- Witten equations satisfies:

[ < ky + 2o
Here ky = mazy (maz (0, —k)).
The next convergence result contains the core of the compactness result:

Theorem 4.9. Letm >k >1,m > 2.

1. Assume given a set of perturbations B C iQ*(Y)r2 that is bounded in the L2 -
norm. Then the set of solutions of the gauge fized Seiberg- Witten equations perturbed
by w, 1 € B, is bounded in the L2, x L2, ,-norm on C(Pgpine).

2. Assume given a sequence of L2 connections and spinors (Ap,v,) solving the
gauge fized Seiberg-Witten equations perturbed by p,, where u, is L2, for all n. If
the sequence (uy,)2, converges to p in the L2, -topology, a subsequence of (An, ¥n)%%
converges with respect to the Lfnﬂ—norm to a pair (A, ) that is a gauge fized solution
of the Seiberg-Witten equations perturbed by .

Proof: 1. By the regularity theorem the set of solutions consists in fact of L2, ,
connections and L2, 4o sections. Furthermore, by the above corollary and the as-
sumed boundedness of B, we have a uniform bound on the C°norm of the spinors
(From now on “a bound” will mean a uniform bound on the sets in question).

This immidiately gives a C%-bound on (d, d*)(c), thus in particular a L?-bound.
By appendix 14 this implies that o — H(«) is L2-bounded. Using the uniform bound
on the harmonic part of «, we get a L?-bound on «.

As there is a bounded inclusion L? C L%, 94(¢)) is L*-bounded. By the fun-
damental elliptic estimate for the Dirac operator, this implies a L}-bound on the
spinors, resulting in a Lj-bound on (d, d*)(a). Again using the fundamental elliptic
estimate, there is a L3-bound on «, that is, a L3-bound. Applying the first equation
again and repeating the argument gives a L2-bound on the spinors also.

Depending on m, one may now continue in this fashion, obtaining the desired
bounds. The extra bound on 9 results from putting the L2, 4+1-bound back into the
first equation in the end.

2. The convergent sequence of perturbations is in particular bounded. By 1.
this gives bounds on the sequence (ay,v,)52, as stated above. Using the theorem
of Rellich and extracting a subsequence we may assume that ¢, —, ¥ in the L2 -
norm. This means that (d,d*)(«)%, converges in L2, to (xyo (), %) — Fa, + i,0).
Also, by the boundedness of the harmonic part of the sequence ()2, in the finite
dimensional vector space H', we may assume that H (o) is convergent. As

lom — amllzz,,, < [[H(om) — H(owm)| 12, + K[(d, d")(an — om)|| 2,
a,), is a Cauchy sequence in the L2  ,-norm and so convergent towards, say,
n=1 m—+1

a. Finally 04,(¢) = —%a -1 by continuity of the Clifford multiplication in these
norms. 0
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Define HSp := {[A, 4] € Br2[04(¢) = 0} and consider the map

Fy: HSpp — QYY)

k—1

given by: Fi([4,9]) = — xy Fa+ 10(¢,v). Fi is well defined and continous.
Also consider the set

HSp = {(A,¢) € Cp[8a() = 0,d"() = 0, | H(a)[|» < C}

and the analogous map F,. The quotient map from HS 2 to HS I3 is continous and
surjective by the gauge fixing lemma, 4.5.

Corollary 4.10. F; is proper.

Proof: “Proper” means closed with compact fibers. It is enough to show that F}
has these properties. They both follow from the second part of theorem 4.9. O

Corollary 4.11. Given a perturbation u € L2, m > 2, the set of solutions of the
Seiberg- Witten equations perturbed by p defined in L2 -variables (m > k) is a compact
subset of BL%'

What if p is smooth? By the regularity theorem, we know that all critical points
are then smooth, up to gauge equivalence. Considering the parallel set up with the
C*-topology on the spaces HSs and HS., the Sobolev imbedding theorem and
an argument using diagonal sequences gives that the second part of theorem 4.9 is
still true (The C*°-topology is precisely the inverse limit of the topologies defined
on the set of smooth sections by the LZ-norms) and thus also corollaries 4.10 and
4.11 hold.

We state yet another compactness result on the Seiberg-Witten equations for-
mulated in terms of the functional C),. Let M, denote the fiber under F; of *ypu:

M, = Ffl(*Yﬂ) = (ch)il(o)a

and Mu the preimage of this in BL%. Assume that M, C B},, as is almost always
k
the case (5.2). We then have:

Proposition 4.12 (Palais-Smale Condition, MSzT. 6.10). The functional C,

satisfies the Palais-Smale condition, that is: For every € > 0, there exists A(e) > 0,

such that if [A, ] € By, has Li distance from M, at least €, then [[VCy|l2 > A
2 _

As C, is not well defined on B}, the situation is of course not quite the one

k
considered by Palais-Smale. But the formulation of the property is the same as in
the classical case. B
H acts by isometries on B}, preserving the vector field VC, and we may thus
k

state a completely analog proposition for the situation on [5'22 oM -
k
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Lemma 4.13. For every € > 0 there exists 0 > 0 :
o= Tllz < 0= dpz(My, M;) <e

Proof: The proof will again be by contradiction: Assume given a sequence (fin)nen
with || — ftn||r2 —» 0 and such that for each n € N there exists (A,, ¥,) € M,
with dpz2((An, ¥n), M) > € for some fixed given €; > 0.

Using the Palais-Smale property of C,, we have that

IVCu(An; )2 = A,

for some A > 0. But this contradicts that VC,,, (A4,,¢,) = 0 and
”H_Mn”Lz —n 0. 0

Lemma 4.14. For all p € iQ*(Y)z2 and for all € > 0, there exists 6 > 0 and
A > 0:

| =7l <6 =
dp2([A, 9], M) > € = |[VC(A,9)|l2 > Ay

Proof: Notice that
IVC-(A, ) = VOL(A, )2 = [l = 7|12

Given € > 0, there exists according to 4.12, A, > 0 such that

Az (A, 0], M) 2 5 = VG (A, )2 2 X,

Choose d > 0 belonging to § as specified in the above lemma 4.13 and with the

.. N
restiction ¢ < 3. We now have:

Ay ([A, 0], My) > € = dip (A, 0] M) > 5

= [VC. (A, W) 2 X,
)\I

= VO A, 6l > N, — 5> 22

O

This was the final result on compactness of the set of solutions of the Seiberg-
Witten equations.
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5 (eneric properties of the moduli space of solu-
tions.

The linearization at a point (A4,1) € C(Pspinc)r2 of the Seiberg-Witten equations
and the action of the gauge group give a short sequence of maps denoted (A, ):

. Ay .
0 —iQ°(Y)z | =0 (Y) 1 @ Q°(SE (Popine)) 12

H
(i;“’) 9% (Y)Li_l @ QO(SE:L (PSme))L%_l,

where Ay (f) = (2df, —fv) and H4,, is given by the matrix

— Xy d %U(wa )
51 04 '
This follows from 2.15 and because that as o is a symmetric, bilinear map it’s dif-

ferential is Doy 4) (1) = 20(¢,n). This sequence is a complex over (the submanifold
(23, 1115.1))

,HSL% = {(Aa,l/}) € C(PSme)LﬂaA(w) = 0}

As gauge equivalent pairs in C(Pspine) 2 give isomorphic sequences, it makes sence
to talk of the sequence of maps associated to a point in BL%. The complex over
HS 2 is actually elliptic as is most easily seen by deforming it using the following
homotopy where we get rid of the zero order terms: The complex &(A, ) is for
0 <t <1 given by the maps:

— 1 .
wilh) = @ =tf0), Huwa= (050 F700) )

Eo(A, 1) is a direct sum of two elliptic complexes.
The adjoint of Ay, is

Apilaym) =2da+itIm <1, m >,
where (a, ) € iQ' (V)12 © Q°(Sg (Pspine))r2 and <, > denotes the pointwise hermi-
tian inner product on S¢(Pspine). Using this adjoint we can form a single selfadjoint

elliptic differential operator for arbitrary (A,1) € C(Pspinc), containing the infor-
mation of the complex &;(A, 1) in case (A,9)) € HS2: Define

Frz = 1°(Y) 2 @i (Y) 1z ® Q°(SE (Pspine)) 12
and let

Liagye  Frz = Frz_,
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be given by the matrix ( 0 At
Apt Heap)r
operator and a twist of the deRham-complex using the Hodge star operator:

). For ¢ = 0 this is a direct sum of the Dirac

(2 *Cfd) HQ(Y) @01 (Y) O

As we are working on an odd dimensional manifold the index of L(4y)0 is zero
[26, V.prop.8], implying that the index of L4y is zero. As Hay); is self-adjoint
it is not difficult to see that the kernel of L) is the zero’th and first cohomology
groups of the above elliptic complex:

K@T’(L(A’,/,)) = HO D Hl
= Ker(\y) ® Ker(Heay)/Im(Ay).

Notice that for ¢ # 0, Ay is injective.

Considering L4 ) as a continous family of Fredholm operators on the trivial
Hilbert bundle .7-'L% over C(Pspinc) X I, we can form the determinant line bundle
det(L) of the family. At a point (A,1,t) € C(Pspine) X I the fiber of det(L) is
AP (Ker(Liay):)) ® A*P(Coker(Liay),)*)- Though the dimension of the kernel
and cokernel need not be constant over C(Pspinc) X I, there is a way to glue together
the above vector spaces to a vector bundle [10, App.].

The family of operators L behaves nicely with respect to gauge transformations:
If we define the action of gLiH on }—Li by

(fyam) -0 =(f,a, S0 ")n),
we have
Liawyoi((fy,m) - 0) = Liag)o(f,,m) - 0.

This means that Gr2  acts on the (co-)kernel of L and therefore on det(L). Because
of the slice theorem for the action of gL%H on C*(Pspinc), det(L) descents to a line
bundle over B}, x I (also denoted det(L)) by forming the quotient of the action.

k

Lemma 5.1. det(L) is a trivial line bundle over B}, and is naturally oriented.
k

Proof: By [23,V.6.1] and section 4 it suffices to prove that the restriction of det(L)
to C;, x {0} is trivial and is naturally oriented. The proof of this is completely

k
parallel to [23,V.6.2] except for the orientation data. The difference here is in the
trivial operator over C*(Pspinc) X {0} which is now

_ 0 d* L 0 . 1
D_<d *Yd).m V) @i (Y) O
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We have that D = D* and D is elliptic and thus

Det(D) = AP Ker(D) ® (A*"Coker(D))*
= A"PKer(D) ® (A*"Ker(D))*
=R

Finally notice that the action of gLi+1 on det(L) is orientation preserving because it
acts as the identity on the trivial part and by multiplication by a complex number
on the complex part. O

The main object of this section is to prove that for a generic perturbation the set
of gauge equivalence classes of solutions to the perturbed Seiberg-Witten equations
is a manifold. This is the object of the next theorem. To make life easier, we would
though like to avoid dealing with reducible solutions. The lemma below is concerned
with the question of what conditions to put on Y and the perturbation to make sure
that we will only obtain irreducible solutions.

Lemma 5.2. Assume that b'(Y) > 1. For any given metric and Spin®-structure on
Y there is an open dense subset of Kerdrz: C iQ*(Y)r2 such that the Seiberg- Witten
equations perturbed by a two-form from this subset has no reducible solutions.

Proof: A reducible solution to the SW),-equations corresponds to a connection A
on L with Fy = u. In particular, this implies that

1
- omi

c1(£) H(p),

where H denotes the L2-projection onto the space of harmonic two-forms. By the as-
sumption b'(Y) > 1, the condition that H(u) # 2mic; (L) is an open dense condition
on the set of two-forms. O

Notice that as ¢;(£) was assumed non-zero in section 4, we are already working
in the situation where b'(Y) > 1.

Theorem 5.3 (Mar. 3.8, Fr. prop.3). For an open and dense set of perturbations
in i (Y) 2 , the moduli space

My = {14,4] € Bz =y Fa = 10(9,9) =+, 84(9) = 0}

1s a zero-dimensional and compact manifold which contains no reducible solutions
and is naturally oriented.

Proof: Pull TBj,

k—1

dense subset of 5.2. V(. defines a section in this bundle as noticed in section 4.
We now want to prove that V. is transversal to the zero-section of the pullback of
TB, .

I2_

k—1

back to the product B}, x Oz , where ©r: denotes the open
k m m
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Setting Vy, 12 := K er(Ay,), the fiberwise derivative of VC. at a zero is given by:

D)y VC. : V12 x Kerdrz — V2,

D)y VC.(a,n,v) = Hiay)(a,n) + (+y2,0).

This map is surjective at a zero ((A, ), p) iff the following perturbed version of the
operator L is surjective:

fLA,d, : fL% X Kerdp: — fL%_l,
i(A,l//) (f’ Q, 1, V) = LAﬂ/J(fa Q, 77) + (07 *yl, 0)'
This follows from the decomposition
QI(Y)Lz X QO(SE(Pspmc))L% = 7‘[1 X Im)\q/, X ImH(A,w),
where ker\j, = H' x ImHsy). This implies that

ImiAﬂp = Im)\¢ D (Im()\:;, H(Aﬂp)) =+ *yKe’l‘dLgn)
= Im/\q/, D Im)\*wum)% D (ImH(A7¢)|KeT)\2 + *YKerLgn)
= kafl

<~
Ker\), = ImH(Aﬂ/,NKe,«,\; +xyKerdp; .

Here it is used that as 1) # 0, Ay is injective and thus Ay 1s surjective. We choose

to work with the operator L.

As the statement that i( A,yp) 1s surjective is independent of the gauge equivalence
class of (A, 1) (what was implicit in the above), we may by 4.6 assume that A is a
L2 ., connection and that 1 is a L2, section. The image of L) is closed of finite

codimension and therefore so is the image of L4 ). Assume that (g,3,¢) € Fp2 "

is L?-orthogonal to the image of f/(A,w)- We have to show that (g, 5,&) is zero. Let
(f,a,m) € fL%. Now in particular 8 is L2-orthogonal to every *yu € xy Kerdp: .
Thus f is in the image of d. As A}, is surjective even when restricted to Iy, g = 0.
Set =0, f=0,7=0. Then
1 1
0=<—#*yda,f>+< §a-¢,§>= <a,§0(7,b,§) >
= o(,§) = 0.
Set £ =0,f =0,a=0. Then
1 1
< 50(1/]777)7ﬁ >+ < 6147775 > =< Eﬁlp'i_a/lgan >=0

:%ﬁ-szraAg:o.
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Finally, as (0, 8,€) is L*-orthogonal to the image of Ay, it is contained in the
kernel of A}, and thus:

20" B +ilm < 3, & >= 0.

The above equations imply by a bootstrapping argument similar to the one
preformed in 4.6 that 3 is a L2, 5 one-form and that & is a section of class L2, ,. In
particular they are both C2.

The condition o(&,1) = 0 implies that if (e, e, e3) is an orthonormal basis of
T,Y, where 9(z) # 0, then (ie; -¢,£) = 0,7 =1,2,3. As

(ej -V, ep-1) =(ej-v,9) =0

for j # k,7 = 1,2, 3, this implies that £ is a purely imaginary multiple of ¢ at z.
Globalizing we find that there is h € iQ°(Y) so that £ = hy everywhere on the open
set Y — 171(0). This set is dense and connected as 04 has the unique continuation
property (2.14 and appendix 15). Now

04 = Dahap = dh -6 =~ -9

on Y —471(0), so that By _y-1(0) = —2dh. As Y —971(0) is connected and £ is in
the image of d, this means that A may be extended to all of Y where it is of Sobolev
class L2, ,. We now get for h:

1 i i 1
— —__d*3 = _ =_7 —- __ 2.
Ah Qdﬂ 4Im<w,§> 1 m <, h) > 4h\1b|
This implies that:
ldh||3: =< Ah,h >72 <0

and thus dh = 0= h € iR. Then as [, |h|*|¢|> = 0 and ¢ # 0, h = 0. This implies
that # =0 and £ = 0.
As the section VC. is transversal to the zero section

M :=VC(0)

is a submanifold of BZ% X Oz . Consider the projection mapping

T:M—=Op.
This is a smooth map and it is furthermore Fredholm:
Ker(Dra)w) = Tiiaww)M N TiayBrs
= KerDa)w)VC. OTA¢]3L2
= Ker(Hjay) N Ker(\y)

= Ker(Hiay))/Im(Ay) = Ker(Liay)-
CO/CBT(DW([A¢ ) Va, L2 /]m( ) = COkeT(L[Aﬂﬁ])a
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under the mapping [w] — [+w] and as )} is surjective.

The Sard-Smale theorem for Fredholm mappings between Lindelof manifolds
[1,16.2] thus implies that there is a Baire second category set of perturbations that
are regular values for the projection mapping. If u is such a regular value 7 *(u) =
M,, is a manifold of dimension the index of 7 = index of L which is 0 as noticed
earlier. We still have to prove that the set of regular values is actually open and
that M, is compact. This follows from the fact that = is proper. This is again a
consequence of 4.10 and the commutative diagram below where the upper horizontal

map sends [A, ¢] to ([A, Y], xy F1([A, ¥]))
HSL% — M

o]
QN Y) | +—— Oz

For a regular value p,
TiapMyu = Ker(Dmay) = Ker(Liay) = det(L) ).
By 5.1 this implies that M, is naturally oriented. O

Proposition 5.4. For p € Q! (Y) 2, M, is up to diffeomorphism independent of
kkm>k>1,m> 2.

Proof: Tf m > 12>k > 1 there is an obvious inclusion M, 2 € M, L2 This map is
surjective by 4.6 and as for [A, 9] € M,, the index of the elliptic operator L4 does
not depend on the choice of Sobolev norms, the differential of the inclusion map is
a linear isomorphism. The inverse function theorem thus gives that the inclusion
map is a local diffeomorphism. Finally, the inclusion is injective by the following
argument: If (A, ), (B, ¢) € M,.r2,0 € G2 and (A,9) -0 = (B, $), then %" is L7.
Thus do = 0% is L} and this means that o itself is L?,,. Continuing in this way
we get that o is in fact L7, ;. O

In the language of Morse theory the main result of this section is that for a
generic perturbation of C there is only finitely many critical points and they each
come with a sign. It will be needed in later sections that

C(O!) 7& C(ﬂ)v avﬂ € MN'

It seems very plausible to the author that this is an open, dense condition on the
set of perturbations and we will assume that it is satisfied.
The inverse image of M, M,,, in BL% is a Z-covering of M,,.
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6 Relative indices of critical points.

For a given pair of critical points of C,, o and 3, we shall define a relative index
i(c, #) which will eventually give the grading of the chain complex that is the goal of
this thesis. This index can be described in several equivalent ways involving indices
of Fredholm operators and the notion of spectral flow.

For convenience we introduce a slightly different version of the operator L from
section 5:

1"

. 0 X
b = <%A¢ HQ(AZ)) ML
It follows from the decompostion of F2 in the proof of 5.3 that L) has the same
image and spectrum as L4,4). We will return to this at the end of the section.
Given two points (A;_, ¢ ) and (As,, ¢, ) in C*(Pspinc) 2 and a curve (A, )
connecting them, consider the spectral flow of the continous curve of operators
L) + Frz — Frz - This is the numbers of eigenvalues of L4, ,) changing
sign as ¢ varies form t_ to t,, counted with sign [4,7]. The spectral flow will be
denoted sf(Lia, ) = 5f(Lia,w)) € Z. The spectral flow is independent of the
curve (Ay, 1) up to homotopy. Also, if (0;):_<i<¢, is a continous curve in gLiH’ we
have

Sf(L(At,wt)'Gt) = Sf(L(Atﬂﬁt)) (*)

as we may first homotop the curve of gauge transformations to the constant curve
0o and then use the invariance of the operator L under the action of G 2, noted in
section 5.

Consider an element (A, ) of CZgH(Y X [t—,ty]) with r (A,9) = (A, e,),

where 7, denotes the restriction map to the copy of Y at ¢. The curve (r,(A,1)):_ <<t
is continous and we thus have a spectral flow sf(L,,(4,4)). By [4, 7] this is the index
of the operator

0 - X *
ot + Lyyay) : T fLiH — T fL%

with the boundary conditions described in [3, 3.10]:

) . 9
S (Lriawy_cic,) = Ml (50 + Lriaw)-

But as the following calculation shows the operator % + E,t( Aw) is (almost) the
operator obtained from the 4-dimensional Seiberg-Witten equations by twisting the
elliptic complex:

2+L
7 (GAY(Y) @ ihL (V) @ SF (Pspine) /' — 2 (iA(Y) @ iAL(Y) @ SZ (Pspine))

- |

L
iN (Y X R) & S& (Pspine) ——2 > iA%(Y x R) @ iA2 (Y x R) & Sg (Pspine)
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Here L(ay) := A} ® D(ay)F with (o, n) = 2d*a +iIm <, > and

dt =ip q
Dy F = 27vE.
(Asp) <%w o4 >

The downward isomorphisms are:
T (A(Y) @ A'(Y)) = A'(Y x R),
(f,7) = =7 (f)dt + 7*(7),
m(AN(Y)) & AL(Y X R),
Ty — (1 (k7)) = —%(w*(T) Adt+ 7 (xy7)),

of

)\’Tﬁ(_fdt + T, ¢) = —2d* (fdt) + )\*wt (Tt, ¢t) == 2& + )\*wt (Tt7 ¢t)

A (= fdt +7) — S Dyald) = (~dy [ Adt+dt A O+ dyr)* — g, )

:(—dyf/\dt—%/\dt—i—**dyT—%*o(¢t,¢t))+.
1 1d d 0
S fdt 7)o Ba(d) = 1 % (bbb + o (484, (0)

If we assume that (A,v) € C;, (Y x [t_,14]) is constant near ¢. we may extend it
k+1
trivially to (4,7) € C;, (Y x R) and consider the operator
k+1,loc

Lk * T
L(Aﬂ/)) i fL%+1,§ — T FLi,J.

(The weighted Sobolev spaces L? k.o are described in app. 14). We choose ¢ so small
that the operators La,, y,,) have no eigenvalues in [—6,0]. These operators are
self-adjoint and elliptic and thus have an L2-complete orthonormal basis consisting
of eigenvectors [26, XI,th.14]. Because (A, 1)) was chosen as above, we can expand
an element of 7*F 12, near t: using this basis and it is then a matter of bookkeeping
to show that

indy..(= + Lryay)) = inds(Liay)-

ot
The index of L4 is independent of § with the restriction above [20, 7.1].

We may now attempt to define a relative index for points [A_,1_] and [A4, 1]
in B;, as follows: Choose a continous curve [A;,1);] between the given points and
k

lift this curve to a continous curve (A, 1) in C;,. Then set
k

i([A -] [Av Yu]) = s (Laswn)-
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Of course, we must consider to what extend this is well defined. That is: Is this
independent of the chosen curve and lift hereof? As homotopic curves lift to ho-
motopic curves once an initial lift is chosen and the spectral flow only depends on
the curve up to homotopy, and as there is not an effect of choosing another initial
lift because of (x), this amounts to checking the possible values of the spectral flow
along a closed curve in B7,. A closed curve will lift to a curve in C7, for which there
exists a 0 € Grz2  with (At W) -0 = (A, ¥y, ). The following lemma considers
this situation:

Lemma 6.1. For a curve (A, ¢y) € Cz% with (A, Yr,) = (A, ) - o for a
o€ QL%H, there is the following formula for the spectral flow of Lia,y,) :

sF(Leawn) =< er(£) U (), [Y] >

Proof: Assume that [t_,t.] = [0, 27], that the curve is constant near the boundary
of the interval and set

¢:Y x[0,27] =V x S5 é(y, ) = (y, exp(it)).

¢ gives a diffeomorphism Y x [0,27]/((y,0) ~ (y,27)) ~ Y x S*. The pullback
bundle p*L over Y x [0, 27] gives a line bundle £ over Y x S! by gluing the ends of
the interval using ¢ and o so that

(P"L)y0) D v~ 0 v € (P°L)(y,2m)-

As Ay = Ag + 292 = (5%)*(Ap), we get a connection A on L. The first Chern class
of L is calculated using a somewhat special connection

t , 2do
oo (—),

2 o

A =7 (A) +

where A is a unitary connection on L£. Arguing as above this expression gives a
connection on L.

t 2do 0,t ,2do

Fa=m"(dy(A+ =) + 5. (57" =)
=7"Fy — iﬂ' 2d_0 A dt.
2 o
So:
1 2do

a(L) =pie(L) + [—p — A volgi]
=pa(l) + 2c( ) o[5',

as ¢*(volg:1) = o=dt. H'(Y x S',Z) has no torsion, so £ corresponds uniquely to a

spinf-structure, Pspmc on Y x S! with determinant line bundle £ by 2.12. Y x St
has the standard metric and as this is trivial in the S'-factor we get

Pso(4)(YXS) PSO XS
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The line bundle over Pso(Y x S ') corresponding to Pspmc is L, where

c1(L) = p*ei(L) + m*c(o) @ [S']*.

Here L is the line bundle over Psos) (Y) corresponding to Pspipe. L can also be
described as the line bundle obtained from 7*(L) by gluing the fibers over the ends
of the interval:

(" L)) D v ~ 0~ v € (7*L) (g 2m)-

The spinor bundle S@(f’gpmc) = 7*(Sc(Pspine))™ is obtained by gluing the fibers over
the ends of the interval in the same way as for L. We see that 1) gives a section of

S(C(PSpinC)a 127
The differential at (A, 1) of the Seiberg-Witten equations on Y x I corresponds

(
to the differential at (A, 1)) of the Seiberg-Witten equations on Y x S' and so using
[4,7] again:

sf(Liaryy)) = md.e.(Liay))
= ’indyxsl (L(A,qﬁ))'

By [23,II1.5] the latter index is given by:
, 1 5
’lndyxsl (L(A,'zﬁ)) = 1(01(5)2 — 2X(Y X Sl) - 30'(Y X Sl))
1 -
= ZCI(E)2
=< p*ei(L) Uc(o) @[S, [Y x S >
=<p ' (L)Uc(o),[Y]>.

The above lemma allows us to make the following definition:

Definition 6.2. Given points o and (3 in Bz%( ~z%) define the relative index i, ) €
Z /N (Pspine)Z (Z) as the spectral flow of the operators

Ly, t- St <ty

where (Ay, ¥r)i_<i<t, 5 a continous curve in sz with [Ay_, | = o and [Ay b, | =
B. Here N(Pspinc) is given by:

Im(< ci(L)U-[Y] > HY(Y,Z) = Z) = N(Pspine)Z.

Remember that 71(B5,) = H'(Y,Z). N(Pspinc)Z is an even, non-zero number as
k
c1(L) is a non-zero even cohomology class. This follows from the fact that Y is
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parallizable so that there is a spin®-stucture on Y with trivial determinant line
bundle and by the formula from section 2

1(£(Papine - @) = c1(L(Papinc)) + 20,

which again is a consequence of the way H?(Y,Z) acts on the equivalence classes of
spinf-structures on Y.

If we choose a base point ¢y, we can define an absolute index as i(«) = i(a, ayp).
We then have:

i(a, B) = i(a) —i(B).

Of course, if we choose another base point the index may shift.
For (A, 1) non-degenerate

Aag) = ApAy + H(QA’W LI (YY) x Q°(SE (Pspine)) O

is an elliptic, self-adjoint differential operator with KerA = 0, so that it gives an
isomorphism on the Sobolev completed spaces. Using the decomposition

QY2 ® Q°(SE(Pspine)) 1z = ImAy x ImHa,y)

we get that Hiay) : Vi — Vi and ApAj, : ImAy — I'mAy are isomorphisms and thus
that L4,y splits in two isomorphisms:

0 A
Lay) = (A . 0”’) @ Hay).

In particular, sp(Ha,y)) € sp(Law)). sp(Leaw)) = sp(Leaw)), by [26,X1,th.14],
[28,4.5.13]. Let (4, denote the numerically smallest eigenvalue of L(4,). We see
in particular, that ||H(j41’¢)|| < 5(_,41,11;)' Finally, for p in the generic set of 5.3, set

Op = Min(ap)em, d(ap)-

The considerations at the end of appendix 14 show that L4 4 is a Fredholm operator
on the L s-completed spaces for || < d,, if the end values (A, 1, ) are in M,
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7 Analysis of flow curves.

This section is the most technical part of this thesis. In subsection 7.1 there is a setup
for analysing the Seiberg-Witten equations on Y x R using exponentially weighted
Sobolev spaces and the construction of a perturbation to the four-dimensional equa-
tions that will be used in the next section to obtain manifolds of solutions on Y x R.
Furthermore, in subsection 7.2 there is results on the behaviour of the perturbed
solutions considering them as gradient flow lines for the Seiberg-Witten functional
approaching critical points at infinity.

7.1 Analytical setup.
Definition 7.1. Define the gauge group Gr= by

1+1,6

={o0 € Q°(Y xR,C) >

141,10

0056 —1€ QY xRC)pz | (my)}

93 Im(o) € 8!, 30100 € Gr2

2 :
141,58 141

and the space of variables CL?& by
Crz, = ALz, © QO(PT*S&L(Psz’nC))LIZ,(;,

where
ALIQJ = {A S A6 + ’LQI(Y X R)leloc |3A:|:oo S ALIQ A — A:I:oo S ’LQI(Y X R)L%J(Ri)}J
Q%(pr*S¢ (Pspins)) 12, = {¥ € Q°(pr*SE (Pspin<))r2,, |Hroo € Q°(SE (Pspine)) 12 :
% — Yoo € O (pr*S¢ (Pspine)) 12 () }-

We make here the somewhat unconventional choice: R_ = (—oc;1] and Ry =
[—1;00). Aj denotes the pullback to pr*Ly of Ag. The definition and elementary
properties of the le’ s-Spaces are given in appendix 14. We assume [ > 3. The above
sets will be given a structure of Hilbert manifold. Details are given for G [

For 7 € ng?+1 . Vi € O(T1o0) and € > 0 set

o100 € Vi, [|005 0 — TTias |22 (Ry) < €}

1+1,5

U(r,Vi,€) :={o € G2

14+1,6
The set of all such U form a basis for a topology on G L2y Furthermore, there is a

bijection:

U(Ta V:I:ae) ~ A(‘/— X V—l— X BG(TT:olo) X BC(TTogl))a

-1 -1
0 (0—o0y o0y 0050, 005 ),

where A(...) is the inverse image of the diagonal under the map

Vo x Vi x B(r17L) x B(r7y!) = Q%Y x [-1;1],0)%,

1+1
(k,0,m,v) — (K, v9).
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This inverse image is a manifold, and as the intersection of two sets of U-type is
mapped onto an open subset of A(...) and as the transition maps turn out to be
trivial, the above bijections give a manifold structure on ngz+1 ;- 1t is easy to verify

that ng2+1 ] is a Hilbert group with Lie algebra
={f€iQ°(Y x R) 2

141,10

a5 Bl €Q°(Y)p2  : f = froo €iQ°(Y X Rz, ,=e)}

2
141,58 1+1

and that ng2+1 , acts smoothly on Cleé by the usual expression:

ng

b >< b
1+1,6 CLIZ,J - CL12,5 ?

(0, (4 0)) = (A,8) -0 = (A+ 27 7).

Here it is used that there is bounded multiplication maps

2 2 2
L5 % Lis— Lis,
2 2 2
Ll—l—l X Ll,5 — Ll,ﬁ'

It should be clear from the construction that there are smooth and equivariant
endpoint maps i : gL?+15 — ngz+1 and likewise for Cleé. Clearly, these are
submersive so that e.g.

g~L12+1,5 = (7?700 X Troo)il(gNL?ﬂ X g~L12+1)

is a smooth Hilbert subgroup of ngQ+1 5

There is also smooth and equivariant restriction maps r, for t € R.

Definition 7.2. The moduli space of variables, Bleé([;’leé), is the orbit space ofCL;E
(g~L2 )

1+1,6
The above maps, 71, and r;,t € R, induce smooth maps on the moduli spaces.
We denote elements of C 1z, With 1 # 0 irreducible. All other elements are reducible.

The subset of irreducible’elements, C;, , is open in CLIQJ- The corresponding open
1,6 s

under the action of the gauge group G

1+1,6

subset of BL% is denoted B, . The stabilizers under the action is as in section 4
5 1,6

and 4.2 can be restated verbatim in this new situation.

Lemma 7.3 (Basic convergence result). Suppose that (A,)nen and (Bp)nen are
sequences in ‘AL?(; converging to A and B, respectively. Suppose also that for all n,
there exists oy, éngerl ] such that:

A, -0, = B,.

Then there is a subsequence of (0, )nen, which converges to an element o € QLI2+15
with 7

A-o0c=B.
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Proof: As
An,:l:oo *On,do0 = Bn,:l:oo
and
Aptoo —n Atoo, Bntoo —+n Bioo,

we may by the basic convergence result, 4.3, extract a subsequence of (o,)nen such
that 0, 1+ converges in ngzH t0, say, 0414. Furthermore, as

2d(0n0 Loo)

—1
Unan,ioo

An - An,:l:oo + = Bn - Bn,:l:ooa

we see that 2d(0,07, Loo) (0n07, Loo) ~* CONVerges to, say, wx in QY X R) L2 my)-
Now define for t > —1:

auht>=<nm@oexp<§j/<u+a».

Ty

Here v, denotes a curve in Y =Y x {t} from y, to y, where y, is a fixed base point
in Y. This is independent of the choice of curve in Y as convergence in Ll2,5 implies
uniform convergence over compact subsets (I > 3) and thus

2d(anag,lj:oo) 2d(an077,1|:oo)

exp(/ wy) = exp(/ lim ———=>) = limexp(/ )
Ty w " OnOntoo n v OnOn too

We now want to prove that oo ! —1 € Lj. First we have:
1
[ =1 [ w6 enar
Ty 0

S/O llw ()llo'()lds < diam(Y)[|lw (8)]]1;-

Thus
o 1
o t=lewt [ w1
1
Sl wl
Ty
1
< 5dmm(Y)||uJ+(t)||L,2
and so
12— 112, < Ldiam(v)? [ @, )Padt < oo
OO0 L% -2 0 i LlZ .
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As 0 ldo = o }doy + %w+ on Y x R, a bootstrapping argument gives that o €
QO xRy, C)pz  with ool —1€ QY xR, C)pz . We are thus done if we
can prove the above definition of ¢ on the positive halfax1s and the similar one on
the negative halfaxis have the same restiction to Y x [—1;1]. This is so as they are
both the limit of o, on this subset as is seen from the following estimation:

lo = onllrz, vxp17) < llo— UffﬁioaooHLl?H(Yx[ 1;1))

-1

+llonon s — 005 2, oot loncollzz,

41

(Y)-
0

The slice theorem, 4.4, can also be generalised to the present situation if LZ-Sobolev
spaces are replaced with their L%,J counterparts everywhere.
For p in the generic set of two-forms from 5.3 define

Bpz (1) := (T_o X Too) ™ (M)

1,6

and

Crz, (1) := 77" (Brz, (w)).

1,6

These are submanifolds of 5’225 and C 12, respectively. The same holds for C(a, ) L,
I, > s

and B(a, ﬁ)le6 fora, € ./\;t”, defined in the analogous way. Also define the Seiberg-
Witten map:

Fy:Cpp, — Q% (Y x R)Lz, X Q% (pr*S¢ (Pspine)) 12,
1
Fu(4,9) = ((Fa+pr'p)™ = Sa(¥), 849)

Below we will constuct a perturbation of the Seiberg-Witten map F,. This
perturbation is technically difficult to work with but it has some very nice properties,
which will be described along the way. And most importantly, it allows me to give
a precise analytical description of the moduli spaces of solutions considered in the
next section. The construction is inspired by [13, 2].

C(M,) is a discrete subset of R as M, is a Z-covering of a finite set and C is
changed by a fixed number under the action of the group of deck transformations
H, namely

872 < c1(L)Uc(o),[Y] > =8n%k(c)N € 8r*Z foro € H.

Choose disjoint open intervals of length ¢ centered around each element of C'(M,,)
for some small € > 0. Denote the complement of this set in R by =.
For [A,v] € Bp:, let the C* function hpsy) : R — R be given by:

hiag)(t) = [pn(s — t)C (A, s)ds
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where 17 : R — R, is a smooth map with support in [—1;1] and [, n(t)dt = 1.
hiay) is smooth as we can differentiate under the integral and this is possible as
t — C(As 1) is a bounded map for any [A, ] € B"LIZ,J. Furthermore, all hi4 4 are
bounded in all CP-norms on R and the map

[;’le’é =] [A, 1/)] — h[A,zp] eC?

is C'® for all p. The derivative is:

D[A,¢]h(a: C) = / 77(8 - t) < VC(A37¢3)7 (Cks, Cs) >r2 ds.

R

hiay is equivariant under translations:
hiaw), (t) = hiay(t +7),
where [A, 1], denotes the translation by 7 € R of [A,v]. It also fullfills
h[Aﬂp].g(T) = h[A,w](T) + 871'2/-’&(0)N for o€ H.

For the space of perturbations we use a construction of Floer in [12,lemma 5.1].
Let

iC(J'A%(Y x R)¥)

denote the space of purely imaginary sections of the [-jet bundle of 2-forms over
Y x R for which the sum

o0

ce = elwler

r=0

lw]

is finite. This is a Banach space consisting entirely of smooth sections and for an
appropriate choice of the sequence € = (€,)%°, it is dense in iQ(J'A%(Y x R)*)pe.
Define a closed subspace €, of iC¢(J'A2(Y x R)*) by the condition

Wy xze = 0.

Q, is dense in i Q(J'A%(Y x 2))*) L.
Now define

Q : Ble,é (1) x Q — iQ°(J'A%(Y x R))zz,
Q([Aa w]a w) = h’E(A,w](w)'

Here A7, ,;(w) denotes the somewhat unusual pullback:

hia ) (@) (4, 1) = w(y, hia(t)-
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Notice that as
hiag(t) = C([A,9¥]eo0) € Z¢,  for t — oo,

Q([A, ¥],w)(y,t) = 0 for |t| big, or more precisely for t € h[_Al’w](E ). This gives that
QA ¥, w) € i (J'A*(Y x R))z. Note that actually Q([4,],w) is smooth and
in iQ0(J'A2(Y x R)) 2, for all p.

The image of Qpay) is dense in 1Q°(J'A%(Y x C(A,v¥)"*(E)))z2. This follows
from the above property of €2, [2,3.35] and lemma 7.4 where we will prove that

hiay < 0for C(A,7) € E.

() is a smooth map whose differential is given by:

dw

D([A,w],w)Q = th,w](E)D[A,w]h-

D@4, is a compact map as it can be factored e.g. in the following way:
141 compact 1 )
Q- CY+><[—T;T] = Cyyirm = Licys

for some large T depending on [A,9]. @ is translation equivariant:

Q([A’ ¢]r, w) (y7 t) = w(ya h[A,'d)]r (t))
= w(y, h/[A,'z[)](t + T)): Q([Aa ¢]a Cc)),r(y, t)

and ) behaves as follows under the action of H:

QA Y] - 0,w)(y, 1) = w(y, hiaw)(t))
w(y, hiay(t) + 87%k(o)N)
w(y, h[Aﬂ/J] (t))87r2k(a)N = Q([Aa w]’ w87r2k(a)N)(ya t)

iQ°(J'A*(Y x R)),2 contains as a closed subspace iQ*(Y x R)p . Let

P (J'AYY x R))pz — i (Y x R)pz.
denote the orthogonal projection. The image of PQ)[,y is dense in

02V X C(4, ) (E))ns,
The perturbed version of F), is:

FH : CL%,& (/1,) X Ql — ZQi(Y X R)L?‘é X QO(pT*S(E(PSpinc))le!&,

Fu(A,6,0) = ((Fa+ pr' o+ PQUA,1,0))" = Sa(),59).

Notice that Fu is g~L2+1,5 equivariant.
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7.2 The decrease of functionals along flow lines.
From section 3 we have that if (4,1) is in temporal gauge, F),,(A,) = 0 is equiv-

alent to the perturbed gradient flow equation

%(A’ 1/;) = —VCN(Ata wt) + PQ([A: w]aw):ﬁ

Lemma 7.4 (Fr. lemma 4). For any (A,¢) € Cleloc in temporal gauge and w €

with F, (A, ) = 0, we have:
1) For ||w||ce sufficiently small, either

d

%(Cu(AtJ/Jt) — Cu(Ao, 1)) <0

or [Ay, Y] = a € M, for all t.
2) For ||wl|ce and ||p||r2, sufficiently small, there is a constant A > 0, so that

d
d_tC(At’wt) <=-A<0
and
d
—h
7 Maw) <0

fort € C(A,¥)71(Z).

Proof: Ad 1): We first compute

(0 (Atbe) = Cu(Aos o)) = < VO, (Ar, hr), —VCo(Ary ) + PQUA, 6,0} > 1

dt
= = IVCL(A ¥0)lIz2+ < VCu(At, 900), PQUA, ¥, w); >12 -

Assume now that the statement above is wrong. Then there exists a sequence of
perturbations (wn)~neN converging to zero and a corresponding sequence of varibles
(A™, ") pen with F), ,, (A", ¢") = 0 such that for all n € N, there is a ¢, € R with

d

2 (Cul A7 up) = CulA43,43)) > 0.

and there exists t € R : [A},¢}] ¢ M,,. This implies that

IVOL(AL, Yi )2 < 1A an gy (wa)y, |2 < vol(Y)[|wallo
< Uol(Y)e(71||wn|

ce — 0,n — oo.

By [18,lemma 4] and the analogue of 4.9 we may assume that

A" "]y, —n [A,] € By (Y x [<151]),

47



as PQ([A", Y™, wn)y x(tn—1;t.+1] is bounded in Q*(Y x [t, — 1;¢, + 1])le+1. By the
above estimate VC,,((A, 1)) = 0 and by L?-convergence

d
%(A’ 1/}) = _VCM(Aa 1/1)

Thus (A4, ¥) = (Ao, ¥g) for t € [—1;1]. This implies
hpanyn)(tn) = C([Ao, tho]) € E,n — o0,
which again gives that Q([A™, ¥"],wn):, = 0, for n big. Now
VC(A7, 1) = 0

for n big and as M, is discrete, we can assume that [A} ¢} | = [A, 9] € M,,. This
will hold on the maximal open interval around ¢, on which Q([A",¢"],w); = 0. But
this must be all of R.

Ad 2): We begin with a simple lemma:

Lemma 7.5. Let K be a compact subset of a metric space X and f : X — R a
continous function on X. Then for any € > 0, there exists 6 > 0, such that

d(z,K) <d=|f(z) = f(y)] <e¢
where y, denotes a point in K with d(x,y,) = d(z, K).

Proof: Assume by contradiction that there is an €y > 0 and a sequence (z,,)nen With
d(z,, K) = 0,n — 0o, whereas |f(z,) — f(yz,)| > € for all n € N. By compactness
of K we may assume that y,, — vy € K,n — oco. But then also z,, = y,n — 0o and
the assumed estimate above now contradicts the continuity of f. O

Let =(u, €) denote set constructed in subsection 7.1. We now claim that:

Ve>036>0,k>0: [|ullre <k Adp2([A, 9], M) <6 = C([4,9]) € E(u, ).

Let € > 0 be given. Notice that MoNC~"([0; 1672 N]) is compact as M is compact
and the bound on C' implies that each point in M has a finite number of preimages
in My N C~1([0;1672N]). Choose § > 0 as described in the above lemma with
K = MynC([0;1672N]) and f = C and “e = &”. By uniform continuity of C on
Mo, which follows form the compactness of a “finite” part of the covering and the
transitive action of H, we may also assume that:

€
dr2(y1,92) <6 = [C(y1) — Cly2)| < %

for y1, ys € My. By 4.13 there exists x > 0 such that

>

lellze < & = dp2 (M, M) <
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Now assume that ||u||z2 < k and that z € [;’L% has dp2(z, M,) < 10. Choose
x € Mu with d2(z,2) < ié. By assumption on p we get: dp2(z,ys) < ié, and thus
dr2(2,y.) < 30. This again means that we can estimate:
de (yza yz) < de (ym: .’E) + dL% (SC, Z) + dL% (Z: yz) <.
By choice of § we get:
€
C(z) = Cl@)] < [C(2) = Clya)| + 1C(y2) = Clya)| +1C(ys) — Cl2)] < 5
and this proves the claim.
Remember 4.14 which in particular gives that:
V6 > 03k' > 0,\ > 0: For all g with ||p||zz < &' :
dpz([A,9), M) > 6 = [VOL(A, 9)]l12 > Ao
Choosing ||u||zz < min(k, '), we have:
C(A,¥) € E(p, €)° = IVOu(A, ¥) |22 = Ao
We now calculate for (4,¢) € C2 ~ with (A7) =0:

O Arbe) =< VO(Ar, ), ~V Co(Ar, i) + PQUA, 9], 0)) > 12

dt
= —|IVC(A, ¥o)ll72+ < VC(Ar, 1), — *v p+ PQ([A, ¢],w); > 12
< —[IVC(Ai, 9o)llz2 + IVC(Ar, ¥o)ll = (lull ez + 1Q[A, ¢, w)ellL2)-
Thus if we restrict [|p|z2, v0l(Y)ey ' ||w|lce < $Ao, We get that £C(Ay, 1) < —3A3.
If C(Ar,r) € = there must be asmallest ty € [T—1,T+1] such that C (A, ¢y) €
E for t > ty, as the derivative is negative for C(A;, ;) € Z. We think here of
C(Ay, 1) as leaving =¢. A similar argument applies when C(Ay, 1) is entering =°.

By the above result and as 7 is increasing on the negative axis and as t, < 7T, we
have:

d
HaT) = [ ) 5O ir. beir)ds
d d
-/ 0(5) GO s + [ 99) GO, busr)ds
—1<s<to—T dt to—T'<s<1 dt
< 0.

Remarks:
1) If (A,4) € C(u)gz, the above result implies that C(A, 1) can never exceed

C(A_w,% o) + 5 and also that when C(Ay, 1)) has left the e-interval centered on

C(A_, %), it can never return. Corresponding statements hold at the other end.
2) It [A, 9] € B2 (n) the expression Cp (A, ¥r) — Cu(Ao, o) is independent of the

lift of [4, ] to Cpz (1)-
3) Any L%’J connection can be gauge transformed into temporal gauge. This is proved
in appendix 16.
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8 Manifolds of flow curves.

We will now write the equation F), ,(A, ) = 0 in a way suitable for bootstrapping.
Given (A4,9) € CL%(,u), TioolA, 1] € M, and if we assume that p € iQ*(Y)2 ,m >
[, by 4.6 there exists gauge transformations o4, € ngz+1 such that 71 (A4, %) - 0100

consists of a L?,, -connection and a L, ,-spinor. Notice furthermore that o4 by
the proof of the gauge fixing lemma, 4.5, can be assumed to lie in the connected
component of the identity - the condition on the norm of the harmonic part of the
one-forms is not used in the proof of 4.6. Thus there exists a gauge transformation
o € é%u transforming (A, ) into a solution of the perturbed equations with

T+o0(A, 1) as differentiable as stated above.
Choose a base curve (Ao, %) € L2 1. X L2, 5, which is asymptotically con-
stant and has Tt (Ag, o) = T (A4, 1) and write

A=Ap+as and ¢ =1+ s,
where a5 € iQ' (Y x R)p2 - and 45 € Q°(pr*S¢ (Pspine)) 12 - The equations for these

new variables are:

@05 = 5a(s) + o, ¥a) + PQUA UL W) = (Fag + 1) = Sat),
0¥ = —1(15 (tho + 15) — Datho-

Note that the last term in each equation has compact support by assumption on
(Ao, 1o). 04, is an elliptic operator. As far as d* goes the operator (d*, d") is elliptic.
Thus if we can assume that d*as = 0, F, ,(A, 1) = 0 is transformed into an elliptic
set of equations. Gauge transformation of the form

o=-exp(if) for feiQ’(Y xR).

1+1,6

changes a; into a§ = a; + 2idf. Thus
d'ay =0 Af = %d*aé.
It is possible to solve this equation by Hodge theory for the Li(s—spaces. As

HI(Y x R) =0, [14,th.3.1], we need not gauge fix any further as in 4.5.

Lemma 8.1. If p is L2, m > 3, a solution (A, ) to the above gauge fized equations
consists of a L7, 5-connection and a L2, ,, s-spinor.

Proof: As Ll 5,0 > 3 is already an algebra, this is an easy argument following the
lines of 4.6. O

A point (A4,9) € Cp2  gives rice to a short sequence of maps by linearizing the
four-dimensional Selberg—Wltten equations keeping the points at infinity fixed:

DF,
0= iQO(Y X R)L?H,& _¢> in (Y X R)Ll?,s D QO(pT*Sg(PSme))L?a ﬁ;"”

ZQ?’_(Y X R)le—m D QO(pT*S(E(Pspmc))L%_M — 0.
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_1
Here Ay (f) = (2df, — f1) and DF\4 is given by the matrix (Pl+12i %qu) As
2 A

in the 3-dimensional case this is a complex whenever 041 = 0 and gauge equivalent
pairs of variables give isomorphic sequences. Thus it makes sense to talk of the
sequence associated to a point [A,¢] € B L2, Again, we may homotop the sequence
defining

_t
Aot (f) = (2df, —tf1), DF 4 4(cr, n) = (?5 %13%)

for 0 <t < 1. The symbol sequence of the short sequence is exact and defining
Tz, = QY X R) 2, & Q°(prSE (Popine)) 12,
and
Kz, =iQ(Y x R)z, @ QL (Y x R) 2, @ Q°(pr*Sg (Pspine) )12,
we thus obtain an elliptic differential operator

L(A,/, jLz — K2 L3, 4
given by L4y = ()\fp,t, DFay):). For t =0, this is a direct sum of two elliptic
operators - the Dirac operator d4 and the deRham-operator (d*, P, d).

The above operator L4,y)s: is Fredholm if we restrict (A,¢) to Crz (1) and
18] < d,. This follows from [20,6.1] and 6. Furthermore, the index of this operator
is given by the spectral flow between [A, 1]  and [A, Y]

ind(Liagyar) = i(1A, 0] o) — i([4, ¥c).

Because, as we saw in the section on relative indices, if we change (A,1)) using a
smooth partition function into (A, )" which is asymptotically constant, the new
operator L4y s Will be Fredholm for the specified values of § and have an index
given by the spectral flow above. But this is independent of where (A4,1) is cut
off and as (A, ;) converges exponentially to (A, ¥)+, if we cut off for sufficiently
large values of ¢, the operators will be so close in operator norm, that they have the
same index.

Considering Lay)s: as a continous family of Fredholm operators between the
trivial Hilbert bundles 7, 12, and ICL2 ., over C 12, X I, we can form the determinant

line bundle det(Ls) of the famlly As in the 3- d1mens1onal case L(ay)s,¢ commutes
with the action of ngQ+1 ,onJre and Kp2

L(Aﬂﬁ)-a((fa a,n)-o)= L(A,w)(f, a,m)-o

and g~Ll2+1 , thus acts on det(L;). Because of the slice theorem det(Ls) descends to a
line bundle - again denoted det(Ls) - over BL?& x I by taking the quotient.
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Lemma 8.2. det(Ls) is a trivial line bundle over BL?& x I and it is canonically
oriented. ,

Proof: The proof of triviality is exactly as in 5.1. As for the orientation the trivial
line bundle over Bpz X {0} is now a direct sum of the continously varying Dirac
operators and the deRham-operator above. The factors of the determinant line
bundle determined by the Dirac operators has a complex structure and is thus
naturally oriented. The deRham-factor looks as follows

APHG(Y x R) @ A" H(Y x R)* @ A“PH? (Y x R)*

But the involved spaces are all zero because of the demand of exponential conver-
gence to zero along the R-axis. We have already seen this for the harmonic functions
[14,th.3.1]. As for the one-forms, writing w = a + S A dt, dw = 0,d*w = 0 implies

the equation:
0 [ « o
o (ﬁ) - (ﬂ) ’

where
—ixd dx
b= ( dx 0) '
D* = —D and thus ||w||z2 is constant if w is harmonic. For the self-dual two-forms
my reference is [7, prop.2.16]. O

Theorem 8.3. For a generic set of perturbations w € {; and for all o, 8 € ./\;lu

M(er, 8) = {(A, ) € Crp, (W P A, ) = 0}/Grz € Brz ()

i+1,6 —

is a smooth and oriented manifold of dimension i(c, 3) = i(a) — i(5).

Proof: As Fu is éLiH , €quivariant, by the slice theorem it is enough to show that

}3; L(0) is a smooth manifold for a generic perturbation. The key step is to show that

F71(0) is a smooth submanifold of Cry, (1) x €. So assume that (A, 9, w) € FM_I(O).

We claim that the differential of F, u at (4,9, w) is surjective from the “slice”:
D(A,w,W)FM QY x ]R)Ll{(s & QO(im'*'s’[C'—(PSzomc))Ll?,(5 ®
— Q2 (Y x R).z ,, @ Q°(pr* Sz (Pspine) ) 12

1—1,5’

. 1 1
DA wyFu(a, ¢, 8) = (dFa+ hiy 41 (k)" + PD(14,4),0)Q(a; ¢)* — 2 Dva(9),049 + Sa-4).
Surjectivity of the differential of Fu will follow from surjectivity of

Liaw) = Ny @ Do) F Tz, & — Kz

i—1,6°
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As E( Ap) commutes with the action of the gauge group QNleH,é, we can assume that
(A, ) is in temporal gauge and is as regular as described in 8.1.

La,y) is Fredholm and so has a closed image of finite codimension. This is thus
also true for INJ(AW). Consider now a triple (g,7,7) € ICL2_1+1,_5 L?-orthogonal to this
image.

g is in particular orthogonal to the image of

ApAo(f) = 4A(f) + flvl.

This is a selfadjoint Fredholm operator and by the maximum principle it has no
kernel. This means that it is an isomorphism and thus ¢ = 0. As the image of
PQa,y is dense in Q*(Y x C(A4, w)_l(E))le, varying k alone we get that 7 must be
zero on Y x C(A,¢)71(Z).

Setting a = 0, k = 0 and assuming supp(¢) C Y x C(A,¢)~1(E), we get:

<040, >=<¢,040>=0= 0alyxciay) 1z = 0.

By assumption on the regularity of A, this means that 7 is L2, 420c ON Y X h[_Al’ 4 (Z)
and 7 is thus in particular continous. We now argue as in [23,V.2.1]: As ¢ # 0,
04% = 0 and 04 has the unique continuation property by appendix 15, ¥ does not
vanish on an open set. The same is true for 7y xc(a,4)-1(=) - if 7 is not identically zero
here. Assuming that this is not the case, there is a point (yo,ty) € Y x C(A, )™ (Z)
where ¥ (yo,t0), (Y0, t0) # 0. If C(A,¥)"HZE) D (t_;t;), we assume that ¢, €
(t_+1;t,—1). The projection R*@rC — (Cl; (R*)®gC)* and Clifford multiplication
induce an isomorphism

R' ®r C~ (CL(R") ® C)" ~ Hom(Sg (R"), Sz (R*)).
As iR = Sz (R*),v — v - w,w # 0, is surjective because

(ei-w,ej-w)=0,1# j,

there exists a purely imaginary one-form a supported in a small neighbourhood of
(yo, to) with

(a-v,n) #0.

This contradicts the assumption that (g9,7,m) is L%-orthogonal to the image of
Diagw) Fy, and thus myxo(ap)-1z) = 0.

By the assumption that A is in temporal gauge and the calculations in section
6, we see that (7,7n) corresponds to an element in the kernel of

d d

(% + Lyyaw)" = a7t Lr,(am)-

But by [5] and arguments similar to those in appendix 15, this operator has the
unique continuation property and so (7,7) is zero as it vanishes on an open set.
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So we see that F .. '(0) is a smooth submanifold of Cleé(u) and using the slice

theorem so is it’s reduction moduli the gauge group, [}7“!; 1(0)]-
Consider the projection

T [Fu_l(O)] — .

7 is Fredholm: 5

KerDaywym = KerDaywF N KerAy N T(A,w)CL%,(; (1) = KerL’(A’w),
Coker D p )T ~ CokerL'(A’w), )
using the map [k] — [A[, ,(k)*] and where L{, , := L(A,¢)7,, . Thus by the

) ) 1,5
Sard-Smale theorem for Lindel6f Banach manifolds, [1, 16.2], there is a generic set of
perturbations in €, that are regular values of 7. The inverse image of such a regular
value is exactly [, 5¢ 1, M(c, ) and the dimension of M(«, ) is the index of 7 at
[A, ] € M(a, 3), which by the above equals ind(L’(Ayw)). As L,(A,1p) equals L4, up
to a compact perturbation, ind(Ly, ,y) = ind(L(y)) and the remarks preceeding
the theorem gives the result on dimensions.
As regards the orientation of M(«, ), we have

TiayM(a, B) = K@TL,(A,w) = Det(L" )]

Homotoping the compact perturbation away, gives that Det(L') = Det(L), where
the isomorphism is well defined up to multiplication by a positive function [23, V.6.1].
By 8.2 the determinant line bundles are oriented and we get an orientation of

M(a, B). O

Notice that the arguments of the proof of lemma 7.4 gives that the “lazy curves”
constantly equal to a critical point is in fact a solution of the perturbed gradient
flow of VC,,. From lemma 7.4 we see that actually for a = f:

Mo, ) = {a}.

Under the action of 0 € H, the perturbation () transformed by a translation on

Q([A’ ¢] 0, w) = Q([A’ w]a w87r2k(0')N)'
We see that [F, }(0)] C B(a, ﬁ)le,(s is mapped to [F,} (0] C Bla-0,8-0),

2
HsWer2k ()N 1,6

by the action of o. Also,
LI(Aﬂ/))-U = L(Aﬂ/))-a + (PD[A,w]-aQ, 0)

= (Id,0) o Lay) o (Id, o)+ (PDyay),0)
= (Id, O') O LI(A#,) &) (-lda 0-_1)

from what we get that L’( A)o is surjective iff L’( A) is. Or in other words, w is a
regular value of

7 [F,(0)] € Bla, B)z, =

i
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iff wgr2p(o)n is a regular value of
m:[F,(0)] C Bla-o,- U)Li& — Q.

In section 11 it will be convienient that the same perturbation is used for all mani-
folds of flow curves. As there is no reason why w should be 872 N-periodic, fulfilling
this demand means that there is no imidiate diffeomorphism

M(a’ ﬂ) ~ M(a : O-aﬂ : 0)7

as would seem natural as the unperturbed Seiberg-Witten equations are gauge equi-
variant. I claim though that the manifolds M(«, §) and M(«-o, 3-0) corresponding
to the same w are even diffeotopic. To prove this one could consider the variation of
w t0 Wsx2k(s)ny and prove that there is a i(c) — #(3) + 1-dimensional manifold with
boundary M(a, B) [[M(a 0,8 -0). T won’t try to prove this, but simply assume
the above claim.

We will now examine the structure of ]_[wﬁe A, M(a, B) with respect to the

action of H on BL?,&' First notice that by 6.1
i(f-0)=1i(B-0,8) +i(B,a) =i(B)— < (L) Uclo),[Y]>.
This means that
i(a, B-0) =i(a) —i(B)+ < c1(L)Uc(o),[Y] > .

Thus the manifolds of flow curves can be organised in families: If we choose a lift of
M, to M, and let ¢- denote action by a generator oy of H with

< Cl(ﬁ) U C(O'()), [Y] > = N(P.S'pinc)-

and also mod out the diagonal action of H, we get

[ Mts= ] M@n).

,BEM ke a,BEM,

As the equations are translation invariant, there is an R-action on M(a, 3) for
all o, 8 € M, defined by

ves:=7s s(t) =v(t+s),t€R
for v € M(a, 3) and s € R. As the translation map
(1,8) — Ts
on CL%,& x R is continous, [2, p.32], and as

L
g0 = s
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this action is [ times differentiable. For o # [, it is also free, as we know that C is

strictly decreasing along part of the curve by lemma 7.4.
Define a map ¢ : M(«, ) — R by

¢ is well defined and smooth and
Dyg(r) =< VC(7(0)),w(0) >z .
Choose a regular value € for ¢ in the interval =ZN|C(8); C(a)[. Then

M(a, B)o == ¢~ (e)

is a smooth submanifold of M(«, 8) of dimension i(«) — i(8) — 1. We claim that
the map

00 M(av, B)o x R = M(a, B),
U0y, 5) =7,

is a C'-diffecomorphism. By the above it is | times differentiable and it is also
equivariant with respect to the R-action:

\IIO(’}/’S—{_t) =7 (S+t) = (78) b= \1!0(778) -t
U0 is injective: Assume that v-s =1+"-s'. The map
t = C(y(1))

has derivative strictly negative for C'(y(t)) € Z by lemma 7.4 and thus we see that
it attains the value e precisely once. But v and «' are in M(«, 3)p and so s = ¢,
implying that v = ~'.

U0 is surjective: For every v € M(a, 3), there exists a unique ¢ € R with C(y(¢)) =
€ by the above. Translate by —t to get an element of M(«, )0,y - (—t). Now
V(- (—1),1) = 7.

The differential of W0 is injective: As W? is equivariant it is enough to show this at
s = 0. Here we have:

D(%O)\I’O (w,t) = t¥ + w.

Assume that (w,t) is in the kernel of this map. As w € T,M(a, )y we have
< VC(v(0)),w(0) >= 0 and

%C(V(t))tzo =< VC(v(0)),%(0) >12 <0,

implies that ¢ = 0 and thus that w = 0.
The inverse function theorem now gives the conclusion.
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Define
M(a, B) := M(a, B)/R.

This quotient is homeomorphic to M («, 3)¢ and as the diffeomorphism class of this
manifold is independent of the choice of regular value and time of evaluation - by
the above diffeomorphism - M(a, B) gets a well defined structure of differentiable
manifold such that the above homeomorphism is a diffeomorphism.

As translations act orientation preserving on M(q, ), we see that M(a, B3) has
a natural orientation.

The tangentspace of M(a, 3)o at 7 is

Ker(< VC(7(0)),-(0) > ).
As < VC7v(0),4%(0) >12 < 0 by choice of € we thus get

0

TM(a, B) = TM(@, o & R ().
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9 Properties of the functional C.

The previous section used the Ll2’ 5 Sobolev spaces as a model for the manifolds of flow
curves. A natural question is whether this is reasonable. Do all flow curves converge
exponentially towards critical points - and if so by what rate? This section will
be concerned with answering these questions. Also, we state a regularity theorem
analogous to 5.4.

The first lemma analyses the local behavour of C), near a non-degenerate critical
point, that is: A critical point where the Hessian H from section 5 is an isomorphism.

Lemma 9.1. Assume that o € B}, is a non-degenerate critical point of C,. Then
1
there exists a neighbourhood U of o and a constant D, > 1 such that if u € U :

|Cu() = Cu(@)| < Dady IV (Cu) ()|,

where when evaluating C,, we work in a particular slice so that the difference above
s well defined.

Proof: Let U’ be a neighbourhood of « so small that it is contained in a slice and so
that it can be identified with an open, convex neighbourhood of zero in Ker\;, where
« corresponds to zero. The L*-tangent vector bundle, TBj., is trivial over U’ and
VC, is a section in this bundle. By assumption VC),(«) =0 and H, : Va2 = Var2
is an isomorphism. Working in this local picture the inverse function theorem implies
that there is a neighbourhood of zero, U, such that the map

VCN:U%VQVO{’[Q

is an diffeorphism with inverse ¥ : V' — U. We may assume that ||H,| < K for
u € U and ||D,¥|| < 26, for v € V by the remark at the end of section 6. We then
have for u € U:

Cult) = Cule)] = | | 50+ tla =)t

1
= \/ <VCu(u+t(a—u)), —u > dit|
0

= | / < VG, (u+ H(¥(0) — W(TCy(w),
W(0) = U(VC,y(u)) > 12 df|
< [ IV G+ 10) ~ UTC )

¥ (0) = W(VC,(u))l|z2
< (IVCu ()2 + K[[¥(0) = ¥(VCyu(w))ll3)

[[(0) = U(VCu(w))llL2
=2(1+2K35,1)5, VO, ()2

As the inequality is independent of the chosen slice, we are done. O
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Let u : [ty; 00) — Bzi be a flow curve of the vector field —VC,, so that:
i(t) = —VC,(u(d)).

Assume furthermore, that u(t) — a,t — oo in the LZ-topology. This implies that
for ¢ > ty:

Culu(®) = Cule) == [ ZCuuls)ds
__ /t°° < VC,(u(s)),ils) >p2 ds
— [ IvCuu(s)Iads.

Using 9.1 (for ¢ > ¢y, say) we thus see that

Co(u(t)) — Cu(0) < Dad [V C,(u(®)) 25
-1 d
= ~ D57 S (Culu(®) - Cule).
Thus
@ 10g(Cu(u(t)) — Cula)) < ~D5'5,
= Cu(ut)) — Cu(a) < K exp(~ D 6a(t — 1)),

so that C),(u(t)) converges exponentially towards it’s limiting value. This has further
implications:

L (Cuult) ~ Cule)) =~ (Culu(®) ~ Cu(0)) ™+ 5 (Cp(ult)) — Co(e0)
= 3 (Cu(u(®)) ~ Cu(@)) H VG (ult)) 12 it .
> 2 il
2D¢2
= (1) 12 < ~2D3373 5 (Cu(u(t)) ~ Cu(@))’.

We can now estimate the L?-distance from u(t) to «:

dp (u(t), ) < / ()| 2 ds
t
< [ -2Dist L (Cululo) - Cula s
t
=2D3da” (Cu(u(t)) — Cu(a))?
< 2Di6T K exp(—%D;15a(t o).
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So the L?-distance decreaces exponentially. The proofs of the above inequalities
are taken from [30,2&3], where a more general situation is considered. Of course,

there is a completely analogous result if u is defined on an interval infinite to the
left.

Lemma 9.2. Given an element (A,¢) of Cp2 (Y x R) with F,(A, %) = 0 we have:
1) If (A, %) has a finite variation of C and ”“”L?n and ||w|
(A, %) has a finite variation of C,.

2) If (A, ) has a finite variation of C and of C,,, [A, 4] approaches critical points
of Cy in B in the L?-topology for t — +oo.

ce are sufficiently small,

Proof: Ad 1): By appendix 16 we may assume that (A, ) is in temporal gauge.
Using lemma 7.4 and the assumption on p and w, for ¢t sufficiently big, say ¢t > T,
C(At, 1/175) € =Z¢ and thus

%(At; ) = =V Ou(Ar, ¥y).
As
/T h %C(At,wt)dt - /T VO Ay ), V(A i) 12 dt
is finite, the integrand cannot be bounded away from zero. Thus there exists a
sequence (t,)2, in R with ¢, —, oo and

n=1

< VC(At'rH wtn)7 _VC[L(Atn7,¢Jtn) >L2 = _||VCH(Atn7 wtn)”%zz
— < (VOu(At,, i, )1, ¥t > 12— 0.

Now

IVCu(As,, )22 = — (= IV Cu( Ay, )22 — < (VO (Ay, s, ))1, *pt >12)
- < (VCM(Atnawtn))l,*M >r2

< —(~IIVCu(Ap, V)72 = < (VOU(Abs, Ye )1, *pt >12)
+ [[(VCL (A, ¥, )1l 2] ]| 22

implies that ||VC,(A:,, ¥t )| 2 is bounded. Arguing as in the proof of 4.12 gives a
bound on [[Ay, ||z and |4, [|L2. As

Cu(Ag, ) = C(Ag, ) + /Y BN ag,

this gives that C,(Ay,, ¥, ) is bounded. By lemma 7.4 C,,( Ay, ¢1) is strictly decrea-
sing or constant and is thus bounded for ¢ — oco. A similar argument applies at the
other end.

Ad 2): By lemma 7.4 we may assume that

i(C’/L(14757 d)t) - CM(A07’¢JO)) = _”vclL(Ata 1/)?5)“%2

dt
+< VCM(At,ibt),PQ([A,Qﬁ],w) >r2 < 0.
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This is by assumption integrable over R. By lemma 7.4, the derivative of C(Ay, 1)
is negative and bounded away from zero, if C(A;, ;) € Z. Thus there must ex-
ist Ty such that C(A;, ;) € E° for [t| > Ty. By construction this implies that
Q([A, ¥],w); = 0 for |t| > To.

For || big we thus have

d

%(Cu(Atawt) - CM(AO’ 1/’0)) = _”VCM(At’¢t)||%2

and as this was integrable, we can find a sequence (S )nen, Sp —n 00 With
IVCu(As,,, ¥s, )2 =0 0.

By the Palais-Smale property and the finite variation of C, [A;,, %s, | can be assumed
to converge to an element o' of M. As C,(Ay, ;) —Cu(Ao, 1) has a limiting value,
we get by [25,812, prop.2] that [A, 1] converges in Bz towards B for t — oo.
Similarly, we find that (A, 1) approaches a critical point o' of C), for t = —oo. O

Let (A4,9) € Crz, (Y X R) with F,,(4,¢) = 0 and C(A4,7) bounded. Then

by the above lemma [A,1);] converges to elements of ./\;lu, a and 3, for t — +o0,
respectively. By the first part of this section it follows that [A, ¢] € Bra2(u) N Bz .

A bootstrapping argument will give that [A, ] € Bles(,u).

We see that all gradient flow curves of C), with a finite variation of C' converges
exponentially towards critical points of C, under suitable conditions on the Sobolev-
norms used. Also, the rate of convergence depends on the critical points through
the constant

1
61 = _Da6a7
)
Define

6(p)' == mingem, g-

This is smaller than 6(u) defined at the end of section 6 but of the same order.
All statements of the previous sections should be reformulated in terms of this new
constant, though probably it is possible to do somewhat better, that is, get a bigger
rate of decay than in the above argument.

Lemma 9.3. If u is L2,,m > 3, M(«, 3) is up to diffeomorphism independent of
l,m>12>3 and 6,0 <0 <4,

Proof: The proof follows that of 5.4. The obvious inclusion map
M(aa ﬂ)Lz,é — M(O!, /6)L2

1,8

for p > [ and § > ¢’ is surjective by 8.1 and the results of this section, and by an
argument similar to the one in 5.4 it is injective. As the index of the Fredholm
operators involved does not depend on the Sobolev-index [ and the decay rate ¢ by
[20, 7.1], the differential of the inclusion map is a linear isomorphism. The inverse
function theorem now gives the inclusion. O
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10 Compactness properties of the moduli space
of flow curves.

The statement of the theorem in this section is that although M(a, B) is not compact
in general, a sequence of points in this space does have a subsequence with at least
some local convergence properties.

Theorem 10.1. /\;t(oz,,@) has the following compactness property: A sequence
([An, ¥n])nen in M(c, B) either has a subsequence converging to an element of
M(a, B) or there exists

o= 0, 0,0, ..., 0y 1,0y = 3
elements in Mu with
i(a) >i(ar) >i(ag) > ... > i(am_1) > ()

and [A7, 7] € M(ay_1, ), together with a sequence of real numbers (t))nen, j =

1,...,m, such that after passing to a subsequence
[Ana wn] —)LIQ,loc ([AJ: Tﬁ]]);n:p n — o0.
Here convergence in L, means that

[An: wn]thX] —n [Aj: wj]\YxI

in BLIQ (Y xI) for all finite intervals I and all j, where [A, ], denotes the translation
of [A, 9] by t € R.

Proof: Choose a lift M(a, 8) &~ M(a, 8)5, where x € ZN[C(6); C(«)]. Also choose
representatives in C7, for @ and 8, which will also be denoted o and (3, and given a
1

sequence ([Ay, ¥n])nen in M(a, ) choose corresponding lifts in Cz% (1), (An, Yn)nens
with ’

7Tfoo(Ana wn) = q, 7T00(Ana 7pn) = f.

By assumption we have:

(Fay + 1+ P(An, ], ) = S0, ) =0,
z_5Anwn = 0.

Let T > 1. As (P([An, ¥n],w) |y x[-T;1))nen is bounded in Lf-norm, we can assume
by extracting a subsequence that

P([An, n], @) =0 w € QY x [-T; TN,

-1
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By the analogue of 4.9 in the 4-dimensional case [18,lemma 4|, there exists a se-
quence of gauge transformations (o,)nen in ngzﬂ(Y X [=T;T]) and an element
(A7, ¢r) € Cp2(Y x [=T;T]) such that

(Ana wn)\YX[—T;T] *Op —n (ATa wT)

This in particular means that

C((An(0), ¥n(0)) - 04 (0)) = C(An(0), ¥(0)) + 87°k(0m) N

is convergent. As C(A,(0),1,(0)) is constant, we see that (k(o,))nen is an even-
tually stable sequence in Z. In other words, the equivalence classes of the gauge
transformations in H, [0,], can be assumed stable. Choose a gauge transformation
o€ ng2+1(Y x [=T;T]) with [¢] = lim,[o,]. Then after passing to a subsequence:

[Ana wnhYx[—T;T} = [(An: wn) : O-no-ithx[—T;T]-

(Am ¢n) : 0-710-71 —n (ATawT) : 0-71 € CL? (Y X [_Ta T])
This implies that

P([A”, wn]aw)le[—T-H;T—l] —n P([(AT: 7vbT) : 071]7(‘))

in i Q2 (Y x [-T+1;T— 1])2“?_1, as hja, g, converges uniformly to A4, yp).c-1] OD
this interval. This gives that w equals P([(Ar,%r) -0 ',w)on Y X [-T +1;T —1]
and thus the limit [(Ar,v7) - 0 1] is a solution to the perturbed Seiberg-Witten
equations on Y x [-T + 1;T —1].

The gauge transformations 0,0 ! can be extended to gauge transformations on
Y xR in ng . Starting out with the representatives (A, )|y x[—27,21] - 000" OD
Y x [-2T, 2T] and repeting the above procedure gives a solution to the perturbed
Seiberg-Witten equations on Y x [—2T + 1,2T — 1], (Asr, ¥or), and a sequence of
gauge transformations (p,)peny 0n Y X [—2T, 2T representing the identity in H such
that:

( n:wn)ﬂ’x[ 2T2T] * On0  * Pp —7n (A2T777b2T)

in Cr2(Y x [-2T7; 2T).

By the fundamental convergence result on the four-manifold Y x [-T;7T], we
may assume that pny x—1y11 —=n p € Gr2, | (Y x [=T;T]) representing the identity in
H and thus

(Ao, Yor) sy - P+ = (A, ¥r) - 0!

The new solution can thus be assumed to agree with the previous one on
Y x [-T;T].
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Continuing in this way and arguing by diagonal sequences we get an element
(A,9) of Crz, (Y xR) which is a solution of the perturbed Seiberg-Witten equations
on Y x R such that for all finite intervals I we have

[Ana 77bn]\Y><I —n [A, w]|Y><I

in B’le(Y x I). Notice that this local convergence implies that C([Ay, %o]) = &, and
that (A, ) has a finite variation of C.

By lemma 9.2 and the remarks following it there exists o/, 3’ € M, such that
[A, 9] € M(/, ). o # B by 4.9 as C([Ao, 1)) ¢ C(M,). So actually [4,)] €
Mo, 3. As this manifold has dimension i(a/) — i(8') — 1, i(a') > i(5).

By the local convergence C(«a) > C(c') and C(8) < C(ﬁ’). If, say, a # o, we
must have C(a) —C(c/) > 0. In that case choose another lift of M (e, 8), M(a, B)§,
where k' € 2N [C(a'); C()]. By this different choice of lift the original sequence
will be changed by translation by a sequence (t,)nen by the end of section 8. Repeat
the above procedure. This gives a new flow curve travelling between critical points
o" and 3". Possibly, now o = " and o/ = ". If not, we must repeat the above
once more - but as there is only finitely many critical point with values of C' between
C(«) and C(f), this is a finite process.

Finally consider the case where in the first step « = o' and ' = 3. We must
show that ([An,1n])nen converges to [A, 1] in M(a, 3). It is enough to show that
the exponential convergence of (A, ¢, 1, ) towards o and 3 is uniform in n, that is:

VG>0§|T0>02|75|ZTO$
d d* ,
() = )l | DI (A ns) = B2 < K expl(=8, (1 — 7))

for all n € N, j + k <. Because then, by our choice of §, we get for T" > Tj:

ID;

o1 4 s s
/T D] 2 (Ans, Un,s) = B)I[Z2ds < K/T EIATER
< K'exp(2(6 — 5L)T)

and similarly on the negative end for all n € N. We can also assume that the same
estimates hold for (4,1) with the same Tj. Then given € > 0, choose T' > T so big
that

1
Z / 2(SSHD (An,s; Un,s) — (A57"/18))||%2d5 < 56

J+E<l

for all n € N and likewise on the interval (—oo; —T']. On the finite interval [T, T
the local convergence gives that there exists N € N such that

1
Z / 26t||Dydtk n,tawn,t) - (At;wt))”%zdt < ge

jHk<I
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for n > N, and these three estimates imply the convergence in M(a, B).
We still have to prove the uniform convergence of the sequence towards the
limiting critical points: There exists a 7" > 0, such that

—a €\e

t Z T = C[Ata¢t] € :(ﬂ, 5)
and there exists a neighbourhood U of [Ar, ¥r] such that z € U = C(z) € Z(8, ¢)“.
Now for n sufficiently big, by the local convergence [A,r,%¥,r] € U and thus
C([An1,¥nr]) € Z(5,€)°. But this means that C([A,r, ¥n1]) € 2(B,€)¢ for t > T
by 7.4. Thus we can find 7" so that

t>T' = C([Ant, ¥ny]) € E(B,€)°

for alln € N.

Choose a neighbourhood V' of  such that 9.1 works with U = V. For ¢t > T the
perturbation is zero and we are dealing with a pure gradient flow. By [25,§12, prop.2]
we may choose V! C V such that a flow curve starting in V' will never leave V. There
exists 7" > T' such that (Apv,1r+) € V' and by the local convergence for n big
enough [A, 77, ¢, ] € V'. Thus there exists a S > T" with the property that for all
n € N and for ¢t > S we have [A,;,9;n] € V. By the results of the previous section
this means that we have the uniform exponential decay demanded above. O

A m-tuple ([A7, 7 ])7£, as in the theorem above will be called a broken trajectory
of order m between « and f.
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11 Gluing broken trajectories.

The results of this section will give a more detailed information on the ends of
M(a, B) and a sort of converse to the result on divergence towards broken trajec-
tories. Given a broken trajectory and a gluing parameter it will be shown that one
can glue together the components of the broken trajectory to an actual flow curve in
M(a, B). The gluing constructed will be a smooth embedding over compact sets of
broken trajectories. This detailed understanding of the moduli space of flow curves
is important for the definition of the boundary operator in the forthcoming sections.
The strategy of the proofs in this section owes a lot (if not all) to [29, sec.2.5].

To keep the exposition (relatively) simple, we will only consider the case where
the order of the broken trajectory is two. So given critical points «, 3 and v with

C(y) €]C(B); C(a)[ and given elements
(A", 9'] € M(a,7), [A%,4°] € M(v, B),

the goal is to produce a flow curve [Al, y!]#[A?, ¥?] in M(a, B) by gluing the two
given curves in a neighbourhood of 7. .
_ First we define a pre-gluing map #° on a given compact subset K of M(a,v) x

M(, B):
#°: K x [pg, 00) — B(a, ﬁ)Lia'

This map is easy to define and will give an approximate solution to the flow equation.
The rest of the argument deals with the proof that there exists a correction to the
pre-gluing map on the given compact set K, giving actual solutions.

Choose once and for all a chart on a neigbourhood U of ~

v:U—=YV,

where V' C V) ;2 is a convex neigbourhood of zero, ¥(y) = 0, and choose lifts

M(a, ) = M(a, )5, M(7,8) = M(7,3)5?. By compactness of K there exists
po(K) such that for (uy,us) € K, ui(p—1),us(—p+ 1) € U for p > py. Now define

#': K — Bla, B)1z,,

(u1), fort < —1
#° (ur, ug, p) := S U (B U ((u),) + BE((ug) ,)) for -1 <t <1
(u2)—p for t > 1.

Here u, denotes translation with p and g+ : R — [0; 1] is a smooth bump function

with
0 fort<0
+t — —
gr®) {1 fort > 1.
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We set 37 (t) = g (—t). ) i

Define vector bundles over B(c, )z, as the quotient of the action of Gz, , on
QY X R)L'f& ® Qo(pr*sg(Psz’nC))Lgé and Q% (Y x R)Ll{; ® QO(177“*5%(Pspz'nC))Ll?5
given by

(aa 77) ‘0= (a’ 0_177)

for o € iQ'(Y x R)pz /iQ% (Y x R) 2 and n € Q°(pr*S¢ (Pspine))pz,- Denote these
bundles by P£26 and P
L

72, respectively. Then define the Seiberg-Witten bundle map
1,6
by

F:TB(a, 7)1z, C Pilz,(s —=Ph

1-1,6

F[Aﬂﬁ](a, n) = Fu,w(A +a, +1n).

This is well defined by the equivariance properties of F,W stated in section 7 and
clearly smooth. The idea is now to pull back the above bundles and F' to K x [pg; 00)
and find a smooth section

¢ : K X [po; 00) = TB(a, 7)le,6
that satisfies Fluo(u, u,,0) (@ (1, U2, p)) = 0. Then the gluing map will be
# K x [p0; 00) = M(ex, §),
#(Ul,um p) = [#° (w1, us, p) + b (us, ug, p)].

The existence of such a section will follow from the existence of a section ¢ of
(#0)*’Pi25 with (A%, F) o ¢ = 0 as the condition A7, ,;(cv, ) = 0 exactly ensures that
1, )

(a,n) € TiayB(a,7)r2,. Thus we will work in the picture below:

(#0)*,P[1,12,6 (A*,F) (#O)WPZ—?_L&
K % [po; 00)

We will prove the existence of the desired section by applying the following analytical
lemma in each fiber of the bundles over K X [pg; 00):

Lemma 11.1 (FM,prop. 24). Assume that f is a smooth map
f:E—=F
between Banach spaces (E, || - ||g) and (F,|| - ||r) with a Taylor expansion

f(&) = £(0) + Df(0)§ + N(£)
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where the kernel of D f(0) splits and D f(0) has a right inverse G satisfying

IGN (&) = GN (e < Cn (€l + IS 2)lIE = Clle

for some constant Cy. If

IGf(0)]|lz < (8Cn)

then the zero-set of f in Be = {¢ € E|[|||r < e} with € = 5 15 a smooth submani-
fold of dimension equal to the dimension of Ker(D f(0)). In fact, if

Ke={¢ € Ker(Df(0))|ll¢]lz < €}

and

={€ € GF|¢lle <€}

then there exists a smooth function 0 : K. — KX so that f(& + 0(€)) = 0, and all
zeroes of f in B are of the form & 4+ 0(€). Moreover, we have the estimates

10()le < 21Gf(0)]|e,
IDO(E)I| < 8CNIG f(0)]|5-

Let us identify what goes into the lemma above: Given [A, ] € Bleé

Diag)(A, F) = Liag) @ (0, PDpayQ) =: Lia .

As for N we have:

* * 1
()‘[A,r(p]a F)(a,n) = ()\[A,qp} (2, 1), (Fata + 1+ PQUataptmw) " — §Q(I/f +n),
Oata(¥ +1))

1 1
= (07 F(A> w)) + LI[A,zp](aa 7’) + (0’ NQa[AﬂN(a’ 77) -

Eq(n), 5% ),

where

Noaw (o, n) = PQataypinw) — PQUAww) — PD(ay)w@(c,n).

This gives that

11
Niag)(esn) = (Noa(a.n) = 5a(n), 5o -n).

The operator L[ ») 18 Fredholm (section 8) and thus L[ 4,y) has a finite dimensional
kernel and a rlght inverse, G'[4,y]-

There is the following estimate of N4 4:

-1, —

Nt (em) = Niagi (e, n)licz_, , < Clllesnllzz, + Ml n'lle2 Dl =o' = n)llrs -
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For the part of N not depending on P this follows from the following general
estimations for a bounded, bilinear map B : E X E — F' between Banach spaces F
and F'

B(.T,y) _B(xlayl) = B(x_xlay)+B(xlay_yl) =
1B(z,y) = B,y )| < Cllz = 2"[lllyll + 2"y — »/'lI)
<Ozl + 1", ) DIz — ',y = ).

For the bilinear part of N the constant C' thus does not depend on [A,1]. For
Ng,a,y) an estimation using Taylors formula, the translational invariance of h. and
the compactness of K gives that in the L?-norm there is an estimate of as required
in lemma 11.1 over K X [pg;00). The proof uses that the L?-norm is translation in-
variant. Translations are still continous for § > 0, but their norms are not uniformly
bounded because of the exponential factor and this is a property that will also be
needed below - most importantly in the proof of lemma 11.2.
By translational invariance of the Seiberg-Witten map F, uw We get for

u, € M(a,v) and ugy € M(v, B):

1 Fg0 (1,00 O 22, = 1 F e (#° (wr, w2, p)) 2,
= ||Fu,w(#0(ulaUZ,P))||L,2_1’5(Y><[71,1}) < Ci e
by the exponential convergence of u; and us towards ~.
If G is uniformly bounded over K X [p;00) for p sufficiently large, we have the
estimations needed in the analytical lemma. To prove that this is in fact the case
we construct a suitable complement to the kernel of L’[ A and show that LE A] is

surjective if the gluing parameter p is sufficiently large.
We first define a linear model for the gluing map:

#: TM(avf)/) X TM(’Ya ﬂ) X [:00700) - (#0)*7)[1’12,6’
#E7m,p) = #,(6,7) = EH#pm = By & + BTy

Remember, that Tj4yM(a, v) = Ker(Li, 4)-

Lemma 11.2 (Sch. 2.50). Let P be the orthogonal L*-projection to Ker(L') in
(#°)*P}. . For any compact set K C M(a,7) x M(v, ), there exists a p' > po
1,6

such that for p > p'
Po#,: TM(a,v) x TM(y, B) — Ker(Lysq... )
is an 1somorphism and Lyo(.. ) 18 surjective for every point in K.
Before the proof this lemma, let us note a few consequences: In particular, for
p > pl, #, is injective and so Im(#,) is a finite dimensional subbundle of (#0)*73&,)5.

We can then define the L2-orthogonal complement of Im(#,):

(Piz)x = {v € (") Ppz x| < v, &fpT >12= 0,¥¢ € Ty M(0,), 7 € Ty M(7, 8)}
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for x = #%(u1, us, p), p > p'. This is a vector bundle over K X [¢', c0) that satisfies
Im(#) ® Ppa, = #°) Ppa .

We will prove the lemma in the case § = 0, but by [20, 7.1] the kernels of LE Ay Te
the same for § in the allowed interval, so that the lemma is true for § > 0 also.

Proof: Note that by additivity of the index it is enough to show that P o # is
surjective, because then:
dim(Ker(L))) < dim(Ker(Ly,)) + dim(Ker(L,,))
= ind(L,, ) + ind(L,,)
= (i(a) — (7)) + (i(v) — u(B))
—i(0) — i(8) = ind(L})
< dim(Ker(L))

Remember that for u; € M(a,v), L, is surjective, and likewise for uy € M(v, 3).
Furthermore, it is enough to show that the following inequality holds for p bigger
than some p':

Je(K) > 0V(ur,up) € K = |LElp2 > clléllz for €€ (PLL?)X'

-1 —
Because, if P o #, is not surjective, there is a non-zero vector in Ker(L}) N (Pp2)y-
1
But by the above inequality any such vector is zero.
The proof of the inequality will be by contradiction. So assume given a sequence

of gluing parameters (p,)neny With p, —, 00, a sequence of flow curves from K,
(tn, Vn)nen and vectors (&,)nen, &n € (Pi2)y, which satisfies:
1

||L;<n£n||Ll2_

We will reach a contradiction in 3 steps:
1) & —, 0in Liloc.

Choose a smooth bump function v : R — [0, 1] with

1 forlt| <2
'U(t):{ OI'||_2

0 for |t| > 1.

=0, leallz = 1

and set vz (t) = U(p%t). The operator
Ly« (4Pl — ()P,

corresponding to the constant flow curve 7 is an isomorphism [20, p.419 — 420]. As
Pn —n 00, it will thus be enough to show that Ly(vépngn) —, 0. We estimate:
d

1 1 1
1Ly (02 En)llez , = [l (V2P )En + 02" Lodallrp |

2.
< p—||U||oo + K(U)||L’Y§n||L12_1(Y><[f%pn;%pn])

IN

%Pn?%ﬂn])’

2.
p—nllvlloo + K ()11, &nllez, + 1Ly = L, lly s
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where K (v) depends on the | — 1 first derivatives of v. As K is compact we may
assume that (un,vn) —n (u,v) € K. The map (A,¢) — L, is continous and
the norms are translational invariant, so that in the limit we may replace x,, with
#(u, v, pp). On the negative halfaxis we see that:

_1
Iy — upn”le(Yx[f%pn;O]) =l - u”L?(YX[%pn;pn]) <llv- u”Lié(YxRJr)e 20n0,

This and the similar estimate on the positive halfaxis implies that ||L,(v2#&,)| L2,
converges to zero, as n goes to infinity.

2) &, converges to zero on both ends of ¥ x R.

We first prove: [|L, (81, &n,~p.)llzz, —n 0. This follows from the following esti-
mates:

1L, (B pn o)z, = 1By, pn + B Loz
<NBréallzz , + 167 Lus,, nllzz
< K(ﬁ)||€n||L}’_1(Y><[—2;—1]) + ||ﬂfon§n||Ll2_1
< K(B)énllz (vrxi—zi—1py + K'(B) || Ly &nll 2 -

As the sequence (3, &n,—p, )nen is bounded in L? | and u, —, u, the claim above
follows. L; is a Fredholm operator and thus has a right inverse on the complement
of Ker(L,). We see that the component of 3", &, _,, in this complement converges
to zero.

We now claim that the projection of 8;_, &, —,, to Ker(L;) also converges to
zero: Let 7 € Ker(L!). Asu, —, u and as the kernels of L form a finite dimensional
vector bundle over K x [pg; 00), there exists a sequence (7"),en With 7" € Ker(L;, )

such that 7" —, 7 in L. As &, € (Pr2)y, we get:
i

< Bién, By 7y, >12=0.
Thus as (8, &€n)nen is bounded sequence:
< B pp&n—pns T >12 =< B &n,y Tp, >12
= lim < f7&, 7, >
n—oo
= lim < B; &, By 1), >12=0,
n—oo
as &, —,, 0 in L?>-norm over Y x [—3; —1] by 1). We now have:

185 €allzz = 18—, pallzz =0 0.

A similar argument gives [|3;&|12 — 0.
3) The contradiction:

1€llz2 < 1€l 222 + 187 &allzz + 11821 &nllzz —n 0.
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We now return to the assumptions in the analytical lemma. From the inequality
in the proof of the above lemma, we see that for § = 0 and p > p' we have a
uniform bound on the norm of the right inverse Gy, of the surjective linear map L :
IGyll < e .

Thus for § = 0 we get for (u,v,p) € K X [p',00), using the notation of lemma
11.1, a map

0 : K(u,v,p),e — Im(GX) = (,P[J,_IZ)X

with (A}, F)(C+0(C)) = 0,( € Ky, In particular, we can define the correction
term to the pregluing map by:

¢: K x[p,00) —>’PLL12,
¢(u7v7 ,0) = e(um,p)(o)-

This section ¢ is smooth: This will follow from the implicit function theorem if we
can show that the fiber derivative of (\*, F') at ¢(u, v, p) is an isomorphism. At the
zero points of the fibers this is the case - notice that ¢ is a section of the bundle of
orthogonal complements, ’PLLIQ. We also know that the norm of the inverse here is
bounded - this is the bound on the norm of G' obtained above - and by the analytical
lemma we have

6w, v, p)lloz < 201G (AT, F)(0)llz < 2¢7HI(AT, F)(0)| .z,

which we have seen converges uniformly to zero over K for p — co. Thus by choosing
p' sufficiently big we get that the norm distance between the fiber derivative of (\*, F)
at zero and at @(u,v,p) is less than ¢~!, and we can thus conclude that the fiber
derivative of (A*, F') at ¢(u, v, p) is an isomorphism.

We still have to consider the case § > 0: As we saw in section 9, for ¢ in the
allowed interval the diffeomorphism type of the manifold of flow curves does not
depend on the choice of §. Thus we get a gluing map also in this case and we can
state the following theorem:

Theorem 11.3 (Gluing theorem. Sch.ch.2,th.2, CW.th.2.20).
Let o, 8,7 € M, with C(a) > C(y) > C(B) be given. Then for any compact set
K C M(a, ) x M(,B), there ezists a p' > 0 and a smooth map:

#: K x [¢f,00) = M(a, B),
#(u, v, p) = [#°(u, v, p) + 6(u, v, p)),
where [|¢(u, v, p)|| 2 < Cke % and ||Dé(u,v, p)|| < Che .

Notice that the map constructed actually factors though M(«, 5). We will use
the notation # for this lift of #.

As claimed already at the beginning of this section, the above result can be
made a lot stronger. Not only is it possible to glue together broken trajectories, the
above gluing map is, if we choose the gluing parameter sufficiently big, actually an
embedding:
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Theorem 11.4 (Embedding theorem. Sch.ch.2,th.2, CW.th.2.20).

Let o, 8,7 € M, with C(a) > C(y) > C(B) be given. Then for any compact set
K C M(a,’y) X /\;l(% B), there exists a p" > p such that the gluing map from the
gluing theorem 11.3 is an orientation preserving embedding:

#: K x [p",00) = M(a, §).

Proof: We prove the theorem in three steps:

1): 3p" > p': p> p" = the differential of # is injective (and thus is an isomorphism
by counting dimensions).

2): 3p" > pl:p>p' = # is injective.

3): # is orientation preserving.

Ad 1): Choose lifts M(a, ) = M(a, ) and M(v, 8) = M(y, B)§ for for some
k €]C(7);C(a)[NE, k" €]C(B);C(v)[NE. We work as before in the L?-topology.
Write

D# = [D#° + D¢).
The differential of the pre-gluing map is:

D#(()u,v,p) (6’ T, t) = D#g(ua U)(f: 7—) + tD#?u,v) (,0) (ua —U)
=B+ 08—, +t(B7u, — B_,)
= #0(E + tu, T — 10).

The proof is by contradiction, so assume given a sequence of gluing parameters p,
converging to +o0o, a sequence of points in K, (u,, vy )nen, and for each n € N vectors
(6n> s tn) € T(un,vn)(M(a”Y)g x M(v,B)5 ) x R with

D#(Umvmpn) (gn, Tn, tn) = 0.

The identification of the normal bundle of M(«,)§ at the end of section 8 implies
that there is a sequence of real numbers (s,),en such that:

0
(D#O + D¢)(un,vmpn) (g’na Tn, tn) = Sna(u’R#ann)'

We may assume that ||§||%l2 + ||T||ilz + |[t,]> = 1 and by compactness of K that
(Un, V) —n (u,v) € K.
The derivate with respect to time of the glued flow curves is:

0 ... 0
E(u#pv) = D#g(u, U) + E(ﬁ(u; v, p)
0
= #5 (1, 0) + 5 6(u, v, p)

As ||D#((’u,v,_)||, ||¢|| and ||D¢|| are all bounded independently of p and %(un#pnvn)
is bounded away from zero by the assumption of convergence of (un,vy), (Sn)nen is
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a bounded sequence. Now remember that both [[¢||.2 and [[D¢|| converge uniformly
to zero over K when p — oo by 11.3. This implies that

Thus in particular both

| (6n + (2tn — Sn)an)pn”L?(Yx(foo;fl]) = € + (2tn — Sn)’an“L?(YX(foo;pn*l])

and

”(Tn - (Qtn + Sn)vn)—anLlZ(Yx[l;oo)) = ||7'n - (2tn + Sn)?)n”L?(YX[—Pn-Fl;oo))

converge to zero. As the manifolds are finite dimensional, as we have convergence
of the base points and as p, —, co, this gives

é-n + (Qtn - Sn)un _)n 0,
Tn — (2tn + 8p) 0 =4 0.
Because T My N Ra_at = {0}, this implies that
&n =0 0, T =4 0,

(2t,, — $p)Un —n 0,  (2t, + $,)0p —4 0.

But as u, —, u,v, —, v, where the limits are both non-zero, we must have
2t, = s, —n, 0 and thus finally %,,s, —, 0. This contradicts the normalization
assumed above.

Ad 2): The proof will again be by contradiction: Assume given sequences of glu-
ing parameters p;, —, 00,7 = 1,2 and corresponding sequences of points in K,
(ul,n: Ul,n)nENa (u2,na U2,n)n€N such that

ul,n#pl,n Vin = Uf?,n#m,n V2,n-

Choose a lift of M(c, 8), M(c, 8)5". The matching lifts of the glued sequences are
(i p; Vin)7in»1 = 1,2 for some real sequences (7;,)nen. Again using that the
correction section ¢ converges uniformly to zero over K gives that

(s, v1n)rin = (Wt Van)rnllzz —n 0.

By the compactness of K we can assume that (4, vi,) —n (4i,v;),4 = 1,2. Then
by definition of the pre-gluing map:

||ui,n#2i’nvi,n — U’Z#(p)z,nv't“lz? —, 0,1=1,2.
With a sloppy notation this implies that for n big:

u(t) = ul#21,n01 (t—pn) = U1,n#21’nU1,n(t — Pin)

= u2,n#22,nv2,n(t - pl,n + T2 — 7_l,n)
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We now argue that 7o, — 71, — p1,, —n —00: Remember that the lifts were chosen
so that C(u;(0)) = k > C(7) + 3¢ and C(v;(0)) = &' < C(7) — €. Thus if there is
a subsequence with 7, — 715, — pin, > —C — 1, we get

. 1

what contradicts the above for ¢ = ¢. Thus we get:

ur(t) = up(t + P2 — Prn + Tom — Tim)

As C(u2(t)) assumes the value k precisely once, this implies

p2,n - pl,n + 7-2,n - Tl,n —n 0.

Thus: u; = us.

Similarly, we get v; = v,. But the differential of the gluing map is by 1) an

isomorphism at (u,v) = (u1,v1) = (ug, v2) and p sufficiently big, and by the inverse
function theorem this implies in particular that # is locally injective. This contra-
diction ends the proof of 2).
Ad 3): We sketch the proof: The idea of the proof is contained in [29, 3.1] and the
key observation here is a gluing theorem analogous to lemma 11.2. Remember from
8 that M(a, ) got an orientation from the orientation of a determinant line bundle
det(L.), which was again oriented by homotoping the Fredholm operator L. to a
single, trivial operator whose determinant line bundle was canonically oriented.

Using a gluing map for Fredholm operators in spirit similar to #° and the linear
model for the gluing map, #, it is possible to obtain a result parallel to [29, prop.3.6]
with a proof analogous to 11.2 that states that for sufficiently large gluing parame-
ters, there is a linear isomorphism:

Det(L(A,’wl)) & Det(L(A’w)) i) D€t(L(A’,1/;')#L(A,w))
~ Det(Liaryp)pam),

where the last isomorphism is due to a homotopi of the operators involved. The proof
extends to give an isomorphism over the homotopy to the trivial operators above,
thus giving that the gluing of determinant line bundles is orientation preserving.
Analogous to [29, 3.13] we should then prove that D#, induces the same orientation
as the gluing of the determinant line bundles and thus is orientation preserving. [J

Given a and 3 in M, there is only finitely many v € M, with C(a) > C(y) >
C(f) and thus there is also only finitely many gluing maps with image in M (o, ).
A natural question is now: What is the complement of the images of all possible
gluing maps? The next lemma will help answer these questions.

Lemma 11.5. Let (u,v) € M(a,7y) x M(v,3) and assume that the gluing map
#(u,v) 18 deﬁned folr P Z p'- We then have:

u#,v — (u,v), p — 0.
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Proof:  Choose lifts as in the proof of the theorem above, but this time choose
k" = k. Then for p > 1, the lifts of u#,v is (u#,v)_,. Obviously, this will converge
against u in L7, as (u#,v)_,(t) = u(t), for t < p—1. On the other hand the

translation of the lift by 2p, (u#,v), equals v for t < —p + 1.
]

I claim that the converse is also true: If (z,)nen is a sequence in M(a, 3) that
diverges to (u,v) € M(a,7) X M(~,3), then z, will eventually be in the image of
some gluing map defined on K x [py; 00) € M(a,7) X M(v, 8) xR, (u,v) € K°.

After having proved the gluing and embedding theorems in the case of broken
flow curves with two components, we now state the general result:

Theorem 11.6 (General gluing theorem). Given
Q= 0, A1y .y U1, Oy, = 3
elements of ./\;lu with
t(a) > i(ar) > ... > am1) > (B),
and a compact subset
K C M(a, 1) X M(ou, o) X ... x M(am-1, ),
there exists a p' > 0 such that there is a gluing map
#: K x [p/;00)™ " = M(a, §).

For p' sufficiently big # 15 an embedding and furthermore:

1) ur#p uoHtpy - - - Fpp 1 Um—1 —> (U1, U, - .., Upm—1) for min;(p;) — oo.

2) If a sequence of flow curves from M(a,ﬂ) diverges to (u1,Ug, ..., Uy_1), it will
eventually be contained in the image of the gluing map #(ul,uz,___,um_l).

Notice, that although this is not indicated in the notation above, there is no
reason why the gluing of broken flow curves should be associative.

We now again specialize to the case of broken flow curves with two components.
We want to define the gluing map on a subset of M(a,~) x M(7,8) x R which
projects onto M = M(a, ) x M(7, 3). This will be done by a partition of unity-
like argument: Choose a ascending sequence of compacts subsets of M, (K, )nen,
with (7, Kn = Mand K,, C K. Also, choose smooth functions ¥, : M — [0; 1]
with Uy, _, =0, Upge_ =1 (K_; = Ko = @). Finally choose p, > p,_1 according
to the embedding theorem such that the gluing map is defined on K, X [pp; 00).
Set U' =\/>° | ¥, (p, +1). ¥'is continous and we can find a smooth approximation
¥ to V' with ¥ > p, on K,,. Then the gluing map is defined on

D(a, 7, B, #,¥) := {(u, v, p) € M x R|t > ¥(u,v)}.
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I claim that if the values of U are sufficiently big, # embeds D into M(w, 5). M
is embedded in D(«, v, B, #, U) by vy (ur,us) = (u1,us2, ¥(ug, uz)). Of course, iy is
not only an embedding, it is also a homotopy equivalence.

By the compactness result of section 10 and the above general version of the
gluing & embedding theorem, we see that the complement of the images of the
finitely many gluing maps into M(oz, B) is a compact set.
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12 Coefficients of the boundary operator.

We are now almost ready for the definition of the Seiberg-Witten-Floer chain com-
plex. Most of this section will deal with the definition of the coefficients of the
boundary operator. We start out with a simple lemma which is an extension and a
detailed proof of [23, I11.4.8]:

Lemma 12.1. The & gauge groups (SI)Y,gLiH,k > 1, and ng2+16,l > 2, are all
homotopic to ,

St x HY\(Y,Z)

The homotopy is induced by the maps:
o~ (a(yo), [0" (vols1)])
and
a = (0(%, o), [07 (vols1)]),
respectively.
Proof: A theorem of Hopf [6,V.11.6 + 11.9] states that
m((SHY) =¥, 81 = H'(Y, Z),

the isomorphism being given by pullback:

[¢] = ¢"(vols1).

We thus have to prove that the connected component of the identity, (S*)Y, is
homotopic to S'. Choose a point in Y, 1, and let

evy, : (S1)Y — S*

denote the evaluation at yy. This group homomorphism gives an exact sequence of
continous maps:

1= (S, 1)) 5 (sHY = §' 1,
which again gives the group homeomorphism
(SYHY ~ St x (S, 1)(()Y,yo)‘
(S, 1)§"% is contractible: This is a consequence of (S, 1){"***) being homeomorphic

to (R, O)éy’y") , which definitely is contractible as R is. The homeomorphism is defined
as follows: Given a map f € (S%,1){""), we map it into the lift of f, f:

(R, 0)

/ lexp(i-)

(Y7 yO) —f> (Sla 1)
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Continuity of f — f: Convergence in (R, 0)( Y'%0) with the compact-open topol-

ogy is equivalent to uniform convergence over compact sets [6, VII.2.13]. Thus the
following estimate where K C Y is compact and contractible suffices:

17 = Gllxoo = [1108(f) —10g(9) | .00 = [1108(f/9) 5,00
<|f/9 = koo = lf = 9llx,00,

for || f — gllkeo < 1. As f = exp(if) the continuity of the inverse map follows from
[6, VIL.2.8].

For the other two gauge groups first note that they have the same group of
connected components as (S')Y = (S')Y*R, Because any element of (S')Y is homo-
topic to a smooth map and a homotopy between two smooth maps can be choosen
smooth - in the case of G 120 furthermore choose the maps to be constant in the
R-direction. Thus, arguing aé above we again have to prove that the map sending
f to it’s realvalued lift f and the inverse mapping f — exp(if) are continous in
the respective topologies. The latter is easy; in both cases use the series expansion
of the exponential map. This is the exponential map from the Lie algebras of the
groups.

gLiH If (fu)nen converges to f in the L2 41-topology, we in particular have uniform

convergence. By the result above this implies uniform convergence of ( fn)neN to-
wards f and thus also L?-convergence. We have df = fdf L2, which is obviously
continous in f.

gL;+1 ,- Estimating as above we get

1f = fooll L2y < I/ foo = Ulz(zy < 00,

where of course fso = (fx)™. By the above argument f — (fs)™ is continous and
[ = f — foo € L% is continous by the estimate:

I(f = foo) = (@ = Goolluzaaey = N(F/9)™ = (Foo/9o0)~Ili20ac) < 1F/ foo = 9/ 9ooll2010)-

Furthermore,

df —dfoo = [7Hdf =[5 dfoo = (FFSD A 1) € Lis,

an expression which is again continous in f. O

ng
1+1,6 1+1
are homotopy equivalences by the proof of the above lemma. The theorem also
holds for the one-sided gauge groups G 12,05 (Re)" This means that also the restriction

mappings

Notice that in particular the maps ¢ : gLiH — (SHY and 7 : G»

ngz+1 5 ngz+1,5 (R)
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are homotopy equivalences. The homotopy inverse of r. is in the case of (S!)Y R+
the crude extension map, e.g.

( ) 0y, onY x R_
ui(o) =
i o, onY xR;.

By the homotopy equivalences above similar maps, which we will also denote u,
are induced on the Sobolev completed spaces.

Similar statements hold for the gauge groups G L2, and G 7 that are homotopic
to S' x Ker(< c;(L)U -, [Y] >— Z).

CZ% is the product of an affine space and an infinite dimensional Banach space
minus a point. It is thus a CW-complex and thus contractible by [6,X1.10.11]. By
the slice theorem and [31,19.4], BZ?H , is a classifying space for G 12,5 and likewise
for the other Sobolev completed gauge groups and moduli spaces. This means that
the above restriction and extension mappings induce mappings Br., Bi, Br, that are
all homotopy equivalences. We claim that these mappings are the natural restriction
and extension mappings between the various moduli spaces, and we delete the “B”
hereafter.

By lemma 12.1 the classifying spaces are homotopic to

CP> x K(H'(Y,Z),1),

where K(H'(Y,Z),1) is an Eilenberg-McLane space of type (H'(Y,Z),1). As
K(H'(Y,Z),1) is connected this implies that H*(B*,Q) contains a copy of

H*(CP%,Q) ~ Qz], deg(z) = 2,

and of H*(K(H'(Y,Z),1),Q). As m(K(H'(Y,Z),1)) = H'(Y,Z) is abelian, we
have H,(K(H(Y,Z),1),Z) = H'(Y,Z). This implies that

HY(K(H'(Y,Z),1),Q) ~ (Hi(K(H'(Y,Z),1),Q)* = (H'(Y,Q)" =~ H(Y,Q).
So there is a map:
H*(CP*,Q) ® A"H (Y,Q) — H*(B*,Q).

Likewise B* is homotopy equivalent to a product of CP*> with an Eilenberg-MacLane
space K(Ker(< ¢;(£L)U -, [Y] >— Z),1), such that we get a map

H*(CP*,Q) ® A*Ker(< ¢ (L) U -, [Y] >= Z)* — H*(B",Q).

The maps between the gauge groups commute with the evaluation at a point and
thus they preserve the polynomial algebra in cohomology. The same is true for the
exterior algebra that came from the group of components. Thus the image of the
above map is preserved by the pullbacks of the maps r4, u4,r and .

The next proposition is important for the definition of the coefficients of the
boundary map. Let B = B(S*)Y.
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Proposition 12.2. Given a,f and v in M, with C(a) > C(y) > C(B), and a
gluing map defined on D(«, 7y, B, #) as constructed section 11, the following diagram
commutes up to homotopy:

Ma,7) x M(7, B) “—D(e, 7, B, #) —= M(a, )

L1><L2l lL

> ~ U—-T -, ULT
2125 % BZQ ( T )

*
2
Ll,6

Proof: We first choose lifts of the R-quotients M of the manifolds of flow curves as
done several times in the previous section, so that they are submanifolds of M and
B*. We again work in the L?-topology. Then the gluing map # can be written as

#(u,ug, p) = (ul#Puz)t(ul,uQ,p)-
We first homotop the translational correction parameter away:
F(uy,ug, s) = (ul#\l’(ul,u2)u2)5-t(u1,uz,‘I’(ul,W))'

We then restrict to e.g. the negative half axis, which is here R. = (—o0; —1]. We
then have

r_F(u1,uz,0) = (U1)w(usug) + P(1, U, ¥ (U1, u2)) v xi_-

The correction section ¢ is homotoped away, together with the translation by the
gluing parameter:

H(Ub Ug, 8) = (ul)s-\ll(ul,u2) +s- ¢(U1, Ug, ‘I’(Ul,ua))\YxR,-
We end up with the restriction of u; to Y X R_. We use here the following expanded
diagram, where all the maps in the lower rectangel are homotopy equivalences:

M(a, ) x M(y,B) —= "

L1 XL

X B~* e, [;’*
Lis L

N

%
2
Lis

L

(-1 uqry)

BxB=—— B
U

Let z be an element of the image of the above map to the cohomology of B*. We
then have:
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This gives using 12.1 and the map ¢y:
1
L (2) = L*\I,#*L*d*(u,r,,qum)*i(l Xz+2zx1)
1
= (l,1 X LQ)*§(1 X zZ+2z X 1)
1 * *
= §(L1,Z x 141 x52).

In the definition of the boundary map of the Seiberg-Witten-Floer complex we
will use the above property in the case of z = x, the generator of the polynomial
algebra inside the cohomology of the moduli spaces. First we give two consequences
of the formula:

Let M(a, 8) be of dimension i(a) — i(3) = 2n. We want to integrate the co-
homology class ™ over this manifold. At the face of it this is not possible, since
as seen in section 10, M(a, () is not compact in general. But as shown in section
10, the ends of this manifold are exactly the images of the gluing maps arising from
intermidiate critical points. The restriction of = to the image of, say,

# : D(a,7, B) = M(a, ),

can be found by further pullback with the homotopy equivalence ty. Using the
formula above we get:

1
Ly (2") = 2—n(a; x14+1xx)"

1 — . .
= — (n) ! x "
AL j

Jj=1
=0,

where we have used that z is of even degree and that the dimension of both M(a, v)
and M(vy, B) is strictly less than %n This implies that ™ has compact support on

M(a, B): z™ € H2 (M(e, 8),Z) and the integral

comp
Ea,p i= / ) z"
M(a,B)
is thus well defined.

Now assume that the dimension of M(c, 8) is odd and write it as 2n + 1. As
seen in the previous section the set

K = M(a, )/ | Im#,
Y

where v runs through the intermidiate critical points between « and 3 for which a
gluing map can be defined as described in section 11, is compact. Furthermore, it
can be arranged that K is a smooth manifold with boundary 0K =[], Im(#,tg).
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Write the dimension of M(a,~) as 2k, and the dimension of M(v, B) as 2(n — k).
We then get:

Oz/d(ac”):/ x"zZ/ "
K oK 5 M(am)xM(v,6)
52 (0) L™ ™™
2 " k., M(ayy) M(7,8)

1 n
= 2_n k’y 80‘17671/3 °

Y

We will prove the above two relations for the integers €45, @, 3 € M u in another,
more geometric way. This is the approach of [7] and the arguments will be more
sketchy. The evaluation of gauge transformations at a fixed base point (yo, %) gives
an exact sequence of groups:

50 5 1
1— QL?H’& — gL?+1,a — S5 =1,
where o(yo,t0) = 1 for o € ng E This again gives a S!'-bundle
141,

0 ._ ~0
BL12,5 - CL?’E/ng

I+1,6

over BZQE. The corresponding complex line bundle is denoted
i,
L= B(l]’l2,6 X g1 C.

We see from 12.1 that the first Chern class of L equals z: ¢;(L) = z. It also holds
that

# (L ® L)~ 7i(L) ®my(L),

as we are really just moving around the same line bundle. The formula derived
above may be reformulated as

25 # (cr (L)) = e (L) x 1+ 1 x ¢i(L).

Given M (e, 8) of dimension 2n we now want to define sections of L®" with a
finite set of zeroes. Had M(a, () been compact, this would be automatically satisfied
for a transversal section with a zero set which is a zero-dimensional submanifold of
M(oz, B). This does not hold in general but by defining “allowed” sections over the
moduli spaces of flow curves by induction after the dimension of the manifold, we
can secure that there is no zeroes over the ends of the moduli space. This requires
that we also choose sections in L®" over M(a, ) of odd dimension 2n + 1, where
the zero set of a transversal section is 1-dimensional.
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dimM (a, §) = 0: We set L?° = C, the trivial line bundle. As M(a, () is in fact
compact - there is no room for any gluing - we define the (only) allowed section to
be simply the zero section.

dimM (o, ) = 1: Here we again have L®® = C and we again choose the zero
section as the only allowed section over these moduli space.

Now for the inductive step: In the even dimensional case, working over an end
where broken trajectories passing through the intermediate critical point v are glued
in, we can without loss of generality assume the dimension of M(a, ) to be even,
say 2k, and the dimension of ./\;l(’y, B) to be odd, say 2m + 1, where n = k +m + 1.
Choose n allowable sections of L over each of the two components, where “allowable”
includes that all intersecions of zero sets of these sections should be submanifolds of
the respective base manifold. Denote these sections s1,s9,...,$, and t1,1o,...,,,
respectively. Then

vi= GB?ZISj ® t]’

is a section of (L ® L)®" over the end Im#.,. We have:

n
ﬂ 5;®t5)
p

1

S,

:ﬂ 0) x M(v, ) x RND(a,~, B)
j=1
U M(a, ) X t; 10) x RN D(e, v, B)
=0

by counting dimensions. Thus v has no zeroes over [ m#T Define v similarly over
the other ends of M(a, #) and then extend it to a section over the whole manifold
transversal to the zero section of (L ® L)®™. This section has a zero dimensional
zero set consisting of finitely many points by compactness of the complement of the
gluing-images. Thus we can define

dxﬁ := #v~1(0),

the oriented sum of the points in ¥~*(0). This number is independent of the choices
made: Had we choosen another gluing map, other sections of L over the ends and
another extension to the rest of M(a, ), we would have a section of (L ® L)®"
over the boundary of M(a, 8) x [0;1]. This section could be extended to a section
transversal to the zero section of (L ® L)®" on all of M(a, 8) x [0;1], and the 1-
dimensional zero set of this section would give an oriented cobordism between the
two zero sets over the boundary. The existence of such a cobordism implies that the
oriented sum of the zero sets at each boundary component is the same.

If the dimension of M(q, 3) is odd, say 2n -+ 1, we use the same procedure: The
dimensions of M(a, 7) and M(fy, () are now even, say 2k and 2[, respectively, where
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k + 1 = n. As above choose n allowable sections of L over each of these manifolds
and combine them to a section v of (L ® L)®" defined as above. We get:

o= U ﬂs x [)#5.(0) x R) N D(a, 7, B),

j1<j2<---<]m 1=1

where jj runs through the indices not contained in the list (ji, jo,- .., jm). By the
induction assumption each of

m l
ﬂ S;I(O) and ﬂ tj_kl (0)
j=1 k=1

are finite, oriented sets. Thus the zero set of v is half lines over finitely many points:

v™H0) = U ﬂ s; n x {half lines}.

j1<j2<...<jm 1=1

We do a similar construction over the other ends of M(a, () and extend the resulting
section to a section v defined on all of M(a, §) that is transversal to the zero
section of (L ® L)®". v 1(0) is a 1-dimensional submanifold of M (e, 8) and gives a
cobordism between the zero sets over the different ends of the manifold. The total
oriented count of the points in the boundary of this cobordism is zero. We thus get

> (,f J#s 00 =3 (,j Jeths =0,

as each of the components in the expression above for v=!(0) in the end determined

by v gives the same contribution.
As

e(L®L)®") = ca((L® L)*") = (c(L® L)")ay
= ((1+2c1(L))")2n = 2"er(L)",
we have g, 5 = 2"¢4,5.

We also give a geometric description of the B-maps induced by the homotopy
equivalence ¢ from 12.1:

0:G— S'x H'(Y,Z),
p(0) = (o(yo), [o" (vols1)]).

We begin by defining holonomy maps on the moduli spaces. Given a smooth closed
curve v : S* — Y, we can define maps

0, B— S,
(A, 9]) = Hol,(A),
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the holonomy along 7 of the unitary connection A. This is well defined because the
holonomy is invariant under the action of gauge transformations as S* is Abelian.
For the same reason it is independent of the point in the fiber over y, to which we
lift the curve. Furthermore, ¢, only depends on the homotopy class of v and it is
independent of the chosen base point y,. So we get for each element v of Hy(Y,Z)

a map @,.
The derivative of ., is

¢5 ' Diagpy(a) = — / a.

Y

It is a closed one-form on B* and thus gives an element of H'(B*, R).
We next observe that the decomposition

H'(Y,Z)= 7" & Tor,

implies K(H'(Y,Z),1) = T" x K(Tor,1). If (7)™, generates the free part of
HY(Y,Z) in this splitting, we claim that the map
By, : B* - T",
Bea(14,v]) = (Holy, ()1,

is exactly the B-map of the second coordinate of ¢. This will imply that

1

Boj([n]) = ¢3, (volsr) = ——

Yi

for i = 1,...,n and thus for all [y] in the free part of H;(Y,Z). We also claim
that By is the map - uniquely defined up to homotopy - which by pullback of the
canonical line bundle H | CP* gives the line bundle L over B*.

86



13 Chain complex and boundary operator.

This section contains the definition of the Seiberg-Witten-Floer complex and an
elementary truncation property of the complex and it’s homology.

First choose the lift of M, to Mu for which the indices of the lifted critical
points is in the interval [0; N — 1]. Recall from section 8 that ¢- denotes the action
of the generator o, of H for which

< (L) Ue(op), [Y] > = N.

Then, in a slightly ambigious notation, we have 7' (a) = {t*a}rez € M, for every
ae M,
For j € Z define the j’th chain group, C}, in the Seiberg-Witten-Floer complex:

Cj = @ Loy

aeMyi(a)=j (2)

i()<j
= 69 Z[[t]]{kzﬁ(i(a)fj)}a
a€EM,,

(=5 (2)

Remember that i(t*a) = i(a) — kN, so that the condition k& > %(i(a) — j) is
equivalent to i(tFa) < j.
Define numbers § and A by:

5, ta) = 5 — i(tha) = 3 (j — ife) + kN)
and
Altka, t18) = J(i(ta) —i(t'8) — 1) = S(i(a) — i(8) — 1+ (L~ K)N),
for o, 8 € M, J,k,l € Z. Notice that
§5( — 1,¢8) — 6(5,t'a) = A(tFa, t'B).
Define the boundary map of the Seiberg-Witten-Floer complex by:

8j : Cj — Cj_l,
4 .7 - 1,tlﬂ
0;(tha) = > ( (5 (. t5a) ))gtka,tlﬁtlﬁ.

li(a)—kN>i(8)—IN
i(B)=i-1 (2)

This map is extended additively to C;. This is well defined as there is only finitely
many « and k for which j > i(a) — kN > i(8) — [N for given ¢! € C;_;.

Theorem 13.1. 0; is a boundary map, that is: 8;_,0; = 0 for all j € Z.
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Proof: A calculation gives:

5(j — 1,4
Gj_lajtka = 8j_1( Z Z ( (g(_] tlk’cty)ﬂ)>€tka,tlﬂtlﬂ)

B l:i(a)—kN>
i(B)=7—1 (2) (B)-IN

- ¥ (5(1' — Ltlﬁ))g -
- -k tha,t
Li(a)—kN> 0(j; thar)

B :
i(B)=j—-1 (2) (B)-IN

5(.7 - 27tm7) m

2 2 (5(1—1,%) gt Y
Lo m:i(B)—IN>
M= (2 () mN

-y ¥ ¥ ¥

. / m:i(y)—mN<j—2 15 l:3(a)—kN
=g (@™ WB)=j-1 (2) i(ﬂ)—l(N)>z'(fy)me
6(j — Lt'B)\ [0() — 2,t™y)
mAl Y.
( 8 tta) )\ o(j —1,08) )"t resemt T

Thus 0;-,0;ta = 0 iff for all y € M, : i(y) = j (2) and all m : i(a) — kN >
i(y) — mN:

Z Z <5(] N 1, tlﬁ)) <5(j B 2’ tm,Y))&k tlﬂgtlﬁ t =0

. k . _ l a’ s mry — .
lii(a)—kN>i(8)—IN 6(j, t* ) 8(j —1,¢0)
P)=i-1 (2)  >i(y)-mN

We have that

8(j,tka)  J\6(j —1,#8) ) 8(j, th)!A(tha, #16)! A(tB, tmy)!

=g ) et )

Up to the common factor (5(g(;i’fz)7)), we see that the identity above is exactly the

identity derived in the previous section for the manifold M (¥, ™) of dimension
i(tha) —i(t™y) — 1 =2n + 1. O

Thus we have now defined the Seiberg-Witten-Floer chain complex. The corre-
sponding Seiberg-Witten-Floer homology is denoted

HfW(Y, Pspinc) := Ker(9;)/Im(8;_1)

for j € Z. In the rest of this section we will define a truncation of the chain complex
that will represent it as an inverse limit in a natural way. Also, we will define a
version of the chain complex over Q where the boundary operator commutes with
the multiplication by t.
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Set
Cr={>_ aqtfa € Cjlk < n}.
k

C? = 0 for -n big and the chain complex (C7);cz is thus finite in the negative
direction. Denote by

7rn:C’]-—>C;-Z

the projection onto this subgroup. We also set 9} := m,0; and claim that this is a
boundary operator on (C7)jez. This will follow from the formula

0Ty = T, 05,
as it then follows that:
8;-"_16? = 7rn8j_17rn8j = Wnaj_laj = 0.
Again we calculate:

Wnaj(zk: qktka/) = 7"'n(zk: qk Z Z (6%(; tlk,;)ﬁ)> 5tka’tlﬂtlﬁ)

Lii(a)— kN>
i(B)= J 1 (2 ip)-1

s Qk ( 5(]) tka) gtka,tlﬁt ﬂ.
k Li(a)—kN>
i(B)= J 1 (2)i(B)—IN,i<n

Working on the other side of the equation we get:

Wnajwn(z qktka) = wna(z qktka)
k

n>k
5 —1,¢
o X X (e ot
n>k —kN> ’

i(B)=j— 1 (2) Z(ﬂ) —IN

5(] - 1atlﬂ) [
U VD VI () B
n>k —kN>
i(8)= J 1 (24 ( ) lNl<n

These two sums are equal as the inequality i(a) — kN > () — [N implies | > k.
The projection 7, is a chain map:

Tn0j = Tp0jTn = 0 Tn.
Defining mp, 41 : C'J’.hLl — C7 as the natural projection, we again get a chain map:

n+1 __
7rn+1,n8j - 7rn+1,n7Tn+laj
= 7rn6j
= 7"-najﬂ-n—kl,n

. an
- aj 7Tn+1,n:
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where the third equality is shown by writing out the sums as above.
We see that the truncation of the Seiberg-Witten-Floer complex gives a tower of
chain complexes, (C}); ez, where the maps are 41, CJ’-hLl — CF.

Tn+2,n+1 Tn+1l,n 71,0
R = G O e S O/ Ol O

This tower satisfies the Mittag-Lefller condition as the images of the naturally defined
projections my, , : C7* — C7',m > n, are all surjective. As we also have C, = @C}j,
we get [32,th.3.5.8] for each ¢ € Z:

0 — Hm'Hy, (CF) — Hy" — lm Hy(CY) — 0.

A natural question to ask is now whether the T&nl—term vanishes, so that the Seiberg-
Witten-Floer homology can be expressed as the inverse limit of the homologies of
the truncated complexes. This would be the case if the homology groups them-
selves satisfy the Mittag-Leffler condition [32, prop.3.5.7]. In the case of countable
groups, such as this, it is know that the Mittag-Leffler condition is equivalent to
the vanishing of lim' H,,,(C?). Furthermore, if the lim'-term is not zero, it is an
uncountable group [22,th.2]. Thus the above exact sequence tells us that either
H?W is computabel as the inverse limit of the more tractable truncated homologies
or it is absolutely horrible.

I have not been able to verify the Mittag-Leffler condition - or to find a counter
example. But if we instead define the Seiberg-Witten-Floer homology over the ra-
tionals as below, we do get such a result.

Let Cjq := C; ®z Q and define the boundary operator

6J7Q : C,Q - Cj_lyQ

1
a]’(@(tka) = Z Z mﬁtka’tlﬁtlﬁ.

BEM,  Lii(a)—kN>i(8)—IN
iB)=i (2)

That this is in fact a boundary operator is shown in the same way as for 9;, but now
the binomial expressions are a little simpler. As above one can define the truncated
versions of the chain complex by C7q := C7 ®z Q and 9} := m,0;¢. The natural
projections 7, and 7, , are again chain maps and we get a tower of chain complexes
where each chain group is now a finite dimensional vector space over Q. Again,
the tower obviously satisfies the Mittag-Leffler condition and we get the same exact
sequence as above for the new homology groups H3":Q and H, (Clg)- But now the
tower of homology groups consists also of finite dimensional vector spaces over QQ
and thus the T&ll—term vanishes in this case [32,ex.3.5.2]. Thus:

HZWC ~ lim H,(Clq).
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The connection between HY and H5"-Q is given by the map

(pj : Cj — Cj,Q,
gk k
E tha) = E —t"a.
o - ate) - d(j, tha)! “

This is a chain map:

1
0, (t"a) = aj,@(mtka)
- Z Z S(i 1k vAl ko fl R

i(B)= (2) <i(a)—kN

: !
=i ; (5(35(]-, jéé)ﬂ))gtka,tlﬂtlﬁ)
i(B)= (2)
= ¢; 10;(t*a).
¢, has an obvious inverse and thus induces an isomorphism of chain complexes
(C: ®2Q,0, ®Q) = (Cr0:0x0)-
Kiinneth’s formula gives isomorphims for the homologies:
H"?~ H,(C.©,Q) ~ H" @ Q.

Similarly, there is maps ¢} for j,n € Z that induce the corresponding isomorphisms
in homology for the truncated chain complexes.

The Seiberg-Witten-Floer homology over Q has another special feature, namely
that the boundary operator commutes with multiplication with %:

1 m
"0 0(t"a) = Z Z m&m,ﬂﬂH B

8 Li(B)—IN<i(a)—kN
i @ T
- Z Z A(tk+m1a tpﬁ)'éftmmavtpﬂtpﬂ
8 L:i(8)—pN <i(a)—(k+m)N ’ )
i(B)=i (2)

= 00t " a),
where it is used that for p =1+ m:

Etbatlg = Etktmq o8,
A(tfa, ') = At ™a, 1713),
i(B) — IN < i(a) — kN < i(8) — pN < i(a) — (k+m)N.

This implies that H2":Q is independent of the chosen lift of M,, to Mu as long as
the lift is chosen so that all critical points have indices within one period of length
N. Also, (C, g, 0 q) is chain complex of modules over Q[¢t]. The Z-version does not
have this property.

This ends the construction of a Seiberg-Witten-Floer homology using higher
dimensional manifolds of flow curves.
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14 Appendix on Sobolev spaces and differential
operators.

Sobolev completions of the space of sections of a vector bundle and the maps diffe-
rential operators induce on these spaces appear throughout the thesis. This appendix
briefly lists the results used. For Sobolev spaces of functions on an open subset of
R™ my standard reference is [2]. Below p > 1,k > 0.

Assume that X is a compact manifold of dimension n and let £ be a vector bundle
over X of dimension m. The following three equivalent definitions of Sobolev spaces
of sections of £ have all been used more or less implicitly:

Definition 14.1.

1)[DK,App.AII;Pal.X.§4] Choose a finite covering (Uy, ¢a)acr of X by open co-
ordinate neighbourhoods over which & s trivial with trivializations v, and a partition
of unity (pa)act subordinate to this covering. Then define the L} -Sobolev norm of a
smooth section s : X — & by

Isllzg == D ¥alpas)llz,

a€cl

where on the right hand side || - ||L£ denotes the Sobolev norm on vector valued map
on an open subset of R™.

2)[DK,App.A;He.2.1] Choose a metric and a metric connection on £ and a
strictly positive, smooth measure on X. Then set

Isll = (3 [ 190>

1<i<k

S

3)[Pal.IX.§3] Choose a strictly positive, smooth measure on X, a metric on & and
let J*¢ denote the k-jet bundle of €. Then define

Islize = lljk(s)ll v,

where || - ||r» denotes the LP-norm on sections of J*¢ and jy, : Q°(€) — QO(J*€) is
the k-jet bundle map.
In all three cases define Qo(ﬁ)Lg to be the completion of Q°(€) in the respective

norms. Furthermore, define Q°(§)r» = (Q2°(&)2)*.
4) With the notation of 8), set

[sller := 17k (s)llco = supzex|ir(s(z))]
and denote the completion of Q°(€) in this norm by Q°(&)cr.

The above defintions 1)-3) do not give the same norm on the smooth sections of
&, but the different norms are all equivalent and thus give the completion of Q°(&)
a well defined structure of Banachable space.
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Theorem 14.2 (Embedding theorems).
1) [DK,App.A.5;He.3.5] If k > | and k=2 > 17, there is a continous embedding

Q€)1 — Q(E)ss.

2) (Sobolev embedding theorem) [DK,App.A.5;Pal.X.§.th.4]
If k — % > r, there is a continous embedding

Q&)1 = L(E)or.

3) (Rellich’s theorem) [DK,App.A.4+A.9;Pal.X.§.4.th.4]
In 1), if there is strict inequality k — % > — %, the embedding is compact. This is
always the case in 2).

Of course, Q°(¢)x maps into Q° ()12

Multiplication theorems for Sobolev spaces are used numerous times in the body
of the text. Mostly they are shown by hand using Leibniz’s rule and Holder’s in-
equality several times, but there is one important general result:

Lemma 14.3 (Ad.5.23). If kp > n, Q°(§) .2 is an algebra.
We also have the following:

Theorem 14.4 (Restriction theorem. Pal.X§4,th.7). Let Y be a smooth and
compact submanifold of X of dimension m and set t = %(n —m). Then for k > t,
there is a surjective continous map

QO(f)Li - QO(&\Y)Lﬁ :

t

Let D denote a differential operator of degree r acting on sections of ¢ and
having values in the space of sections of the vector bundle n over X. Then D gives
a bounded map

D: QO(S)Lg - Qo(n)Lg

-r

by e.g. [26, XL.th.6]. If the differential operator is assumed to be elliptic there is the
following nice results on the extension to the Sobolev spaces of sections:

Theorem 14.5 (DK,App.A.7+A.8+A.16;Pal.XI.th.5-7).

1) D is Fredholm, that is: D has a finite dimensional kernel and cokernel and the
image of D is closed.

2) For p =2: Im(D)'1> ~ Ker(D*).

3) (Regularity) If s € Qﬂ(g)Lg for some k and Ds € Qo(f)ylo, then

5€ QO(f)LfH-

4) (Fundamental elliptic inequality) For s € Q°() 2,

Isllzz,, < Cllsllze + 1 Dsllzz)

for some constant C.
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The index of the elliptic diffential operator D is the index of the Fredholm map
D. This is independent of the Sobolev norm used [26, XI.th.8].
If the sequence of symbols corresponding to the sequence of differential operators

o3& 36
is exact, the operator A = DD} + D3 D, is elliptic. If follows that

Ei = Ker(A) @ Im(A)
= (Ker(D7) N Ker(Ds)) & Im(D;) ® Im(D3).
We now turn to exponentially weighted Sobolev spaces of sections of vector
bundles over manifolds of type X x R, where X is as above. The standard reference

to this is [20] where a more general situation is considered. For the convinience of
the reader we summarize some of the results of that paper here.

Definition 14.6. The Banach space Q(E)Lis 15 defined using the approach from

14.1, 1) with coordinate charts of form U, x R, smooth sections of compact support
and the norm

Isllzz, = > Il exp(6t) D%s|| o(o(us)xm)
|| <k
on maps from ¢(U,) x R to R™.
Notice that if the exponential factor is moved to the right of D*, we get a norm
equivalent to the one above. This implies [20, p.421] that (&) L, is isomorphic as
a Banach space to Q(¢) re- This again gives that there is the following embedding

results:

Proposition 14.7 (He.2.74+2.84-3.14). If k > 1> 0,g>p > 1 and k—
there is a bounded embedding:

n>j]_n
p — q’

Oz, = U,

In [20,lemma 7.2] there is more embedding results. Notice though that there is
no versions of Rellich’s theorem for the unbounded domains.

Also, if one can establish multiplication maps for the Sobolev spaces with § = 0
they are valid for the weighted spaces also - and even maps into spaces with a
stronger weight:

||8152||L£,51+52

= llexp((d1 + 02)t)s152]|p < K|l exp(dit)si ||z || exp(d2t)sall 2
= Klsullzzr | llsollzzz

using the multiplication

1 x I 12,

Translation invariant operators give bounded maps between the weighted Sobolev
spaces as above (Also notice [20,6], though). The main theorem of [20] is the
following, with the notation adapted to the setup of this appendix:
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Theorem 14.8. If D s elliptic and translation invariant there is a discrete set
D(D) C R such that

D E)e, — Qnrp_

is Fredholm if and only if 6 € R — D(D).

A € C(D) < there exists a solution to Du = 0 on the form

u(y,t) = exp(iAt)p(y, 1),

where p is a polynomial in ¢ with smooth coefficients in Q°(¢). If D = % +P a
calculation shows that the top term of the polynomial p is an eigenvector for P
belonging to the eigenvalue —i\. If P is selfadjoint this implies that A € iR and
—1A = imA. By definition

D(D) = {imA|A € C(D)}.
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15 Appendix on the Dirac operator.

The purpose of this appendix is to give a proof of two properties of the Dirac operator
used in the proof of 5.3.

In section 1 we noted that the Dirac operators have the unique continuation
property from open subsets: If 84(1)) = 0 and v vanishes on an open subset of
Y, 1 is identically zero. In the litterature this theorem is stated in the case where
04 is a smooth differential operator, so in particular the connection A is assumed
to be smooth. This is not necessarily the case in our setup, actually we have only
assumed that A is of Sobolev-class L2, where k > 1, so the question is whether this
is enough to secure that 0,4 still has the unique continuation property from open
subsets. An investigation of the proof in [5] shows that it is sufficient that A is of
Sobolev class L%. Notice that in the above argument we could assume that A was a
L2 . -connection, m > 2. So the use of the unique continuation property from open
subsets in the above argument is okay.

We also used in the proof of 5.3 that the complement of the zero-set of a harmonic
spinor is connected.

Proposition 15.1. Let A be a connection of Sobolev class L, where k — %n > 0,
on a Clifford bundle over the compact manifold Y™. Assume that the corresponding
Dirac operator 04 has the unique continuation property. Then if 1 is a non-zero C*-
section of the bundle with 041 = 0, the complement of the zero set of v, Y —1~1(0),
18 connected.

Proof: Let U be a component of ¥ —~'(0). U is open in Y and ¢9p = 0, ¥ (y) # 0
for y € U. Assume now that U # Y — ¢~'(0). Then define ¢ by:

_ Yy ifyeU
oY) = {o ify e Ue.

We want to prove that d4¢ = 0. Then the unique continuation property will give
that ¢ = 0, contradicting that ¢ # 0.
¢ is continous and thus L? on Y. It will be enough to show that:

< (b, 6,477 >=0,

for all smooth sections 7. Now

< ¢,047 >=/ < ¢,04n >= / div(V'),
U U
where V is a section of 7Y ® C given by:
<VW>=<o¢,W-n>

pointwise on Y [23,p.48]. V is C' on U and continous on Y.
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Choose a smooth map p: R — [0;1] with p(¢) = 1, > 1 and p(t) =0,
t < £ and define p, : Y — R by p,(y) = p(n|é(y)[*). pn is C* on U and continous
on Y Also lim p,(t) = 1,Vy € U and suppy p, = suppyp, is compact. p, is used
n—0o0

to split div(V):
/Udiv(V) = /Udz'v(an) + /Udiv((l —pn)V).

The first term is zero: Approximate |¢|? by a smooth map f : ¥ — R so that
6> — flloo < s and f is zero out51de an open neighbourhood of suppyp, in U.

Pick a regular value dof fL0< < \/— Then f~([§;00)) is a smooth submanifold
of Y with suppyp,V C f~![6; 00) and p,V = 0 on the boundary f~'(d). This gives:

/ div(p,V) = / div(p,V) = / paV = 0.
U f1[6;00) f71(9)

As for the second term:

div((1 — pp)V) = xd * (1 — p)V)™ = *(dpp A %V) + (1 — p,)div(V)
=< dpna f/ > +(1 - pn)dl’l)(V) = dpn(v) + (1 - pn)d“}(v)
=< Vpn,V > +(1 = pp)div(V).

By Lebesgue’s theorem on dominated convergence:
/(1 — pn)div(V) — 0,n — 0.
U

As Vp, is zero outside of the set (|¢|?)~! (T 7) it is enough to consider the
integrand of [, < Vp,,V > on this set. We hav

| <Vpn, V> [ < [Vpo|[V] < CIVpnl|6In].
As Vp, = np'(n|¢*)V]¢|? and d|¢|> = 2 < V¢, ¢ > for a metric connection V on

the Clifford bundle, we get that | < Vp,,V > | is integrable over U and using
Lebesgue’s theorem on dominated convergence again gives

/ < Vpn,V >—=0,n— .
U
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16 Appendix on temporal gauge.

In this appendix we will prove the existence of temporal gauge, that is: For any
reasonable given connection A on pr*L over Y xR there exists a gauge transformation
o such that the gauge transformed connection A - ¢ is trivial in the R-direction. We
will examine two cases:

1) A€ A(YY xI)p2, k > 2, I an interval of finite length.

Use Aj = pr* Ay as base connection for some smooth connection Ay on £ and write
a=A— Aj. Then

A-0—Ay=a+20 "do.
Thus setting a; := a(%), A -0 is in temporal gauge iff

d
a;+ 20 —0 = 0.

dt

This differential equation for o is solved by the expression

o(01) = ) exp(— [ aily.5)ds)

where 0q : Y — S' is arbitrary of Sobolev class Lj_ ;. As the interval I was assumed
finite, o is of Sobolev class LZ on Y x I.

2) Ae A(Y x R)Lié,k > 2.
Define o as above. Let 0 < &' < 6. We will prove that o is in gLi e First define

1 oo
7olt) = ) expl—5 [ anly,5)ds).
0
This is well defined and an element of QL% . We now estimate:
o 1 [
|—(, 1) =1 =lexp(5 [ ay,s)ds)|
0o 2 J,
1 o
Sly [ als)ds
t
1 o
<5 [ latus)iis
t
Thus using Holder’s inequality:
9 el = —2(6-0")s > 2(6—0")s 2
[—(y,t) -1 < e ds [ e |ac(y, 5)|"ds
o 2/, ‘

:KJI/ =% ay(y, 5) [*ds.
¢
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This implies that:
* 11, O 00 ! > !
/ X —(y,t) — 1%dt < / eV Ky / e* 0 ay(y, 5)|*ds
0 o 0 t

:KJI/ 62(‘5‘5')5\%(@/,3)\2/ et dt ds
0 0

*© ! ]. ]
Ky [T au(y,5) P (70 = Vs
0

< Ky |la| 3.

The derivatives with respect to ¢ and the variables of Y are treated in a similar
manner. Thus working in temporal gauge costs a little bit in the exponential decay.
Also notice that the above gauge transformations are not in general of Sobolev class
one higher than the connections given. Thus they really don’t fit into the scheme
otherwise used in this thesis. This could be delt with by shifting all lower Sobolev
indices by one ...
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