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Abstract

We prove that the complex valued solutions of Jensen’s functional equAtioy) +
f(zy™) = 2f(x) on a groupG are functions on the quotient group/|G, [G,G]]

and give explicit solution formulas in a setting that includes many examples. We
show furthermore that the vector space of odd solutions modulo the subspace of the

homomorphisms ofs into C is isomorphic to the vector space of homomorphisms of
|G, G|/|G,|G,d]] into C.
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Introduction

1. Introduction

By Jensen’s functional equatioon the groupz we mean the functional equation

flay)+ f(zy™") =2f(2), 2,y €G, 1)

where f : G — C is an unknown function to be determined.

Any solution f of (1) may be written ag = f(e) + F' (e being the neutral element
of G), whereF' is an odd solution, i.e. a solution such thate) = 0 or equivalently
F(2~') = —F(x) for all z € G. We shall therefore restrict the discussion to odd
solutions of Jensen’s functional equation. We will denote the complex vector space of
odd solutions of (1) oG by S(G, C).

Hom(G, C), the set of homomorphisms 6f into (C, +), is a subspace & (G, C).

For abelian groups, and some non-abelian as w#ly, C) = Hom(G,C), but in
general the two spaces are different.

The most exhaustive study of Jensen’s functional equation on groups has been
accomplished by Ng [9], [10]. His two papers contain useful reduction formulas and
relations for functions irt (G, C) for any groupG. Our paper builds on these relations.

By help of them Ng solved (1) on free groups and applied the results to solve it on
GL,(R) foralln > 3, whereR is Z, R, a quadratically closed field or a finite field. He
observed that there for the free group on two generators are odd solutions of (1) that are
not homomorphisms ([9; Corollary 8]), and th&¢GL,,(R), C) = Hom(GL,(R),C).

Corovei [5] proved thatS(G,C) = Hom(G, C), if each commutator in& has
finite order.

Friis [6] found explicit formulas for the solutions of Jensen’s functional equation
on certain semidirect products of groups, like the Heisenberg group and:iheb)-
group. In particular he found that the Heisenberg group possesses odd solutions of (1)
that are not homomorphisms, while ther + b)-group does not.

The purpose of the present paper is to develop a coherent theory for Jensen’s
functional equation on groups that includes most of the results just mentioned. More
precisely, we will

(a) find explicit formulas for solutions of Jensen’s functional equation in a reasonably
general setting.

(b) parametrizeS(G, C) modulo Hom(G, C).

(c) give sufficient conditions of¥ to ensure thab (G, C) = Hom(G, C), for example
to ensure thatS(G, C) = {0}.

The present paper differs from the previous ones by its discovery of the central
roles played by the subgrodgr, [G, G]] and the commutator groulg-, G|.

We show that any solutioyi of Jensen’s functional equation (1) éhis a function
on the quotient groug:/[G, [G, G]] (Theorem 2.2), in the sense thit:) = f(xy) for
all z € G andy € [G,|G,G]]. Of course, this simplifies many computations. It also
means that the study of (1) reduces to the study of (1) on metabelian groups, because
the quotient groug7/[G, [G, G]] always is metabelian.
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Introduction

The commutator subgroupG,G] enters because the restriction mgp —
flica, [ € S(G,C), factorizes to an isomorphism of (G, C)/ Hom(G, C) onto
Hom (|G, G]/|G, |G, G]],C) (Theorem 3.2), covering (b) above.

Conversely: For a certain class of grougswe find for any homomorphism
¢ € Hom([G,G]/[G,[G,G]],C) an explicit formula for a solutionfy € S(G,C)
such thatfy = ¢ on [G,G] (Theorem 4.1). This covers (a) above. The class contains
for example the Heisenberg group and the free groups.

(c) is done in Section 6. A typical result is thatfG,C) = Hom(G,C) if
|G, [G,G]] = |G, G] (Proposition 6.3(b)). This takes care of for example (e + b)-
group andGL(n,R) for n > 2.

Finally we apply our theory to a number of different groups to demonstrate how
our formulas can be put into practice (Sections 5 and 7).

We finish this introduction by fixing notation that will be used throughout the paper.

Notation 1.1

G is a group,e € G its neutral element and (G) its center.

For z € G we let (x) denote the subgroup generatedhy

If A andB are subsets ofr we let[A, B] denote the subgroup @f generated by
the elementsga, b] := aba='b~!, wherea € A andb € B. The commutator subgroup
|G, G| of G and the subgrouf, |G, G]| are normal subgroups a¥.

The groupG is said to bemetabelian if [G,G] C Z(G), or equivalently if
|G, |G,G]] = {e}. The quotient groug7/[G, [G, G]] is metabelian for any groupr.
The Heisenberg group from Example 5.1 below is metabelian, but not abelian.

When we say that a complex-valued function @ris a homomorphismwe mean
that it is a homomorphism off into the additive grougC, +).

Let H be a subgroup of: and letr : G — G//H be the canonical projection. We
say that a functiory : G — C is a function onG//H if it can be written in the form
f = f omx for some functionf : G/H — C.

We let R« denote the multiplicative group of all non-zero real numbers, Bijd
the subgroup of all positive real numbers.

2. Formulas and relations

In this section we prove that solutions of Jensen’s functional equatio&' @me
functions onG/[G, |G, G]], and we write down some important formulas and relations
for commutators and for odd solutions of Jensen’s functional equation.

As mentioned in the introduction the normal subgrddgp [G, G]] will play an
important role. To compute module-, |G, G]] is of course the same as working in
the metabelian grou¥/[G, |G, G]]. Lemma 2.1 below is very useful for manipulations
of commutators modul¢&, |G, G]]. The lemma is rather obvious, but it helps to have
it stated.



Formulas and relations

Lemma 2.1

@) [z,y] = [y,:c]_l forall z,y € G.

(b) Commutators belong t&(G) modulo [G, |G, G]]: For all z,y,u € G we have
ulx,y] = [z,yJu modulo[G, |G, G]].

(c) The commutator produ¢t -] : GxG — G is bi-multiplicative in the following sense:

[, xy] = [u, 2][u,y] and [zy,u] = [z, u]ly,u], Va,y,ue G, (2)
modulo |G, [G, G]]. In particular
(2™, y"] = [z,y]"" mod|G, G, G]] forall z,y € G. (3)

(d) Cyclic permutations of elements in a commutator do not change it mgaule, G1|.
In other words,[z,y] = [y~!,2] = [+7,y7!] = [y,27!] for all 2,y € G modulo
G, (G, G

Proof: (a) and (b) are trivial. (c) The second identity of (2) is an immediate
consequence of the first one and (b), becduse] ™ = [w, ] for all v,w € G. So it
suffices to prove the first one. But this one follows from (b) and the derivation formula
[u, vy] = [u, 2]x[u, y]o~L. (d) follows from (a) and (c). O

The statement (a) of Theorem 2.2 below is a special case of (2.2) of [9], while
formula (4) is (2.3) of [9] withz = 2~1y~!. The formula (5) can be found as the
formula (2.9) of [10]. Indeed, the functioBR of [10] is the difference between the left
and right hand sides of (5). We give direct proofs of these relations. The property (2.5)
of solutions from [9; Theorem 2] is crucial for our proof of Theorem 2.2(d).

Theorem 2.2
Let f € S(G,C). Then

(@ f(a") =nf(x) forall x € Gandn € Z.
(b) For all x,y € G we have

fley) = £) + F) + 3£ (9] @

© f(lz,yz]) = f([z.9]) + f([z.2]) forall z,y,z € G.
(d) fis a function onG/|G, |G, G]] vanishing identically onG, [G, G]].

(e) The formula (4) generalizes: Forany,---,zy € GandN = 1,2,--- we have
al 1
flaray) =) fa+5f | I ), (5)
i=1 1<i<j<N

where the last term on the right shall be interpreted as 0 wNes 1.
() ¢ = fje.q) is a function on[G, G]/[G,[G, G]] such thaty € Hom([G,G],C).
Furthermore¢ vanishes identically ofG, [G, G]].



Formulas and relations

Proof: (a) Sincef is odd it suffices to prove (a) for > 0. It is trivially true
for n = 0 andn = 1, and forn = 2 we find that f(2?) = f(2?) + f(e) =
f(zz) + f(zz~') = 2f(z). We proceed by induction: Assuming the formula true
for n > 2 we compute

f( ”H) f(z"x) +f(:c x 1) — f(a:”:c_l) =2f(a") — f(:c”_l)
= 20 () - (0 — Df(@) = )

which is the induction step.

(b) Replacingr by ab andy by a~16=1 in (1) we getf([a, b]) +f(a62 ) = 2f(ab).
= 2f(a). Subtracting
f(ab

Replacingz by a andy by b?a in (1) we getf(ab’a) + f(b7%)
2 ) —2f( ), which

the second identity from the first we géta,b]) — f(b™2) =
reduces to (b) in view of (a).

(c) Using (4) on both sides of (c) we see that (c) is equivalen? toryz) =
2f(xy) + 2f(xz) + 2f(yz) — 2f(x) — 2f(y) — 2f(z). But this is the identity (2.5) of
[9]. This proves (c).

Here we interrupt the proof of Theorem 2.2, because we need the following Lemma
2.3. The lemma is formulated for a subgroup@f which need not be all ofs. The
reason for this is that we later (Theorem 3.2) shall extend solutions defined on certain
subgroups of~ to all of G, so we will need results about solutions on subgroups.

Lemma 2.3

Let fo € S(Go, C) whereGy is a subgroup of+ such thatGy O [G, [G, G]]. Assume
that fo([, [y, 2]]) = 0 for all z,y,2z € G. Then

(@) fo is a function onGy/[G, [G, G]].
(b) fo vanishes on all ofG, [G, G]].
(c) fo is a homomorphism affy N [G, G] into C.

Proof: We will deduce thatf, is identically O on the entire subgrol@, [G, G]|.

The assumption says that the following statement is truexfer 1:

Statement;fo([x, wy - - - w,]) = 0 for all z € G and allw; of the formw; = [y;, 2],
whereyy, -+, yn, 21, ++, 2n € G.

We prove the statement for all by induction. So we assume it true far,
and letw,+1 = [Yn+1, 2n+1], Where y,41,2,41 € G. Let us recall the identity
[x,y2] = [2,9][i(y)(x),i(y)(2)], wherei(x)(y) = ayx~! for all z,y,2 € G. Using
that and the formula (4) we find with the abbreviatioh:= w; - - - w,, that

fo(lz,wy -+ - wpwpga]) = fo([x,w/wn+1})
'] [i(w’)(x), i (w') (wn41)])
w])+f0([ ( )(x)7i(w/>(wn+1>}) (7)

2
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Formulas and relations

Here the first term on the right vanishes by the induction hypothesis and the third term
becausefy([z, [y, z]]) = 0 for all z,y,z € G by assumption. Thus

follz,wy -+ wpwnga]) = fo([i(w')(2),i(w') (wns1)])
= fo([i(ﬂ)/) (Z‘>’i<w/)([yn+1azn+1]>}> (8)
= fo([i(w') (@), ([i(w") (1), i(w') (z041)])])

which also vanishes by the assumption of the Lemma. This finishes the proof of the
induction step and hence proves the statement.

Due to the fact thatfy is odd we may conclude:
fo([x,w]ﬂ) —0 forz e G, we[G,G]. 9)

To get thatfy = 0 on [G, [G, G]] it is left to prove thatf, vanishes on products of
the form [z, wl]il[xg, wg]jEl e[y, wn]ﬂ, wherezy,---,r, € G andwy,---,w, €
|G, G]. We prove this by induction om. The statement (9) is the case of= 1.
Assume that the statement is true forfactors, and considely(a|x,w]), where
a has the forma = [xl,wl]il[xg,wg]ﬂ-~-[xn,wn]ﬂ with 21,---,2, € G and
wy, - -, wy € [G,G], and wherer € G andw € [G, G]. Using the formula (4) we find
that fo(a[z, w]) = fo(a) + fo([z, w]) + fo(la, [z, w]])/2. The first termfy(a) = 0 due to
the induction hypothesis. The second tefgi[x, w]) = 0 according to (9). The third
term fo([a, [z, w]])/2 = 0 by the assumption of the Lemma. Henfga[z, w]) = 0. In

a similar way we prove thaf <a[m,w]_1) = 0. Indeed,

fo <a[x,w]_1) = fo(a) + fo<[x,w]_1) + %fo([a, [x,w]_l})

1 (10)
=0— fo([z,w]) + §f0([a’ [w,z]]) =0—0+0=0.

We have thus proved thgh = 0 on the group|G, [G, G]].
If 29 € Gy andz € [G, |G, G]] then we get from the formula (4) that

fo(xoz) = fo(xo) + fo(2) + %f()([%‘m z]) = fo(zo) + 04+ 0= fo(xo),  (11)

that shows thaff, is a function onG,/[G, |G, G]].

The remaining statement (c) is easy to prove by help of the formula (4), so we skip
its proof. O

Continuation of the proof of Theorem 2.2: (d) The property (c) says thgt([x, -]) :
G — C is a homomorphism for each € G. Hence it vanishes on commutators, i.e.
f(x, [y, 2]]) = 0 for all y,z € G. We infer from Lemma 2.3 thaf is a function on
G/|G, |G, d]], vanishing on all of|G, |G, G]].

() Consequentlyp = fjq, is a function on[G,G/[G, |G, G]], vanishing on
|G, |G, d]]. Since¢ is an odd solution of Jensen’s functional equation on an abelian
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group, viz. on the groupG, G|/|G, [G, G]], it is @ homomorphism on that group. So
¢ € Hom(|G,G]/|G,|G,G]],C) € Hom([G,G],C).

(e) It is left to prove the formula (5), which we do by induction 6n It is clear
for N = 1, so assume it true for av > 1. Then by (4) and the induction hypothesis
we find that

flxr- - aneny1) = floran) + flonen) + %Cb([m S TN, TN41))

al 1 1 (12)
- Z flai) + §¢( H [ﬂciaxj]) + flan41) + §¢([$1 C TN, TN)-

i=1 1<i<j<N
Using Lemma 2.1(c) on the last term on the right we find that

N+1

flay-ayeng) =Y flw)
=1

(13)
+%¢< 11 [évzs%'])“L%gb( 11 [$i>$N+1])’

1<i<j<N 1<i<N

which finishes the induction, becaugsas a homomorphism. U

It will be convenient to record the following fact, because it will be used a couple
of times during proofs:

Lemma 2.4

If each element ofi has finite order, therb (G, C) = {0}.

Proof: Any f € S(G,C) satisfiesf(z") = nf(x) for all x € G and alln € Z
(Theorem 2.2(a)). Sincé(z™) is bounded for any: € G, hence so isif(x). But then
f(z)=0. O

We see from Theorem 2.2 that the study of Jensen’s functional equation on groups
(at least in principle) reduces to the study of Jensen’s functional equation on metabelian
groups, because the quotient groGp|G, [G, G]] always is metabelian. To take an
example, ifG is the free group on 2 generators, th@p[G, |G, G]| is isomorphic to the
metabelian groupls(Z) (The Heisenberg group with integer entries) from Example 5.1.

Many computations are easy for a functignon G/[G, |G, G]|, because commu-
tators occurring in arguments gf may be moved freely around and formulas more
generally be manipulated according to Lemma 2.1 without any change of the value of
f. We have for example that(u[z, y|v) = f(uv[z,y]) and f([z,yz]) = f([z, y][x, z])
for all z,y,z,u,v € G.

Theorem 2.2 explains some of the properties of solutions of Jensen’s functional
equation. Here are two examples: Lemma 2.1(d) implies that the value of a solution
on a commutator does not change under cyclic permutations of the elements; this result

6
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was derived by Corovei during his proof of Theorem 6 of [5]. Also the identity (2.12)
of [9] is an easy consequence of Lemma 2.1, once it is notedfthaty]) = 2A(z, y)
and thatf is a homomorphism ofZ, G| because) € Hom(|G, G], C).

3. The parametrization of the solutions

Itis clear thatS(G, C) is a complex vector space, and that HomC) is a subspace.
In this section Theorem 3.2 shows th&tG, C)/ Hom(G, C) may be parametrized by
those homomorphisms o€, G| into C that vanish on all ofG, [G, G]].

A decisive step in the proof is to show that there exists a solution of Jensen’s func-
tional equation on the entire grodp with certain prescribed values on the commutator
subgroup/G, G]. We shall find such a solution by successively extending it ffaéh=]
to larger and larger subgroups@f The extension steps will employ Lemma 3.1 below.

In the lemma it is assumed that the subgraéupis normal. This will automatically
be satisfied in our applications of the lemma, because thgre |G, G].

Lemma 3.1

Let Gy be a normal subgroup af containing[G, [G, G]]. Let H; be a subgroup of
G which is abelian moduldG, [G, G]], and letG; denote the subgroup @f generated
by H; and Gy.

Let fo € S(Go, C) be such thatfy, = 0 on [G, [G, G]]. Letp; € Hom(H;,C) be
such thaty; = fo on Hy N Gy.

Then there exists exactly orfe € S(G, C) such thatf; = fo on Gy and f1 = ¢

on H;. It is given by
1
fi(z1zo) = ¢1(z1) + folwo) + §f0([$1,$0]) for 1 € Hy, xo € Gy. (14)

Proof: Any element inG; can be written in the form:;z¢ for somez; € H; and
xg € Gy, becausérq is normal, so it makes sense to say thats given by (14) on=;.

If f1 is a solution such thaf; = fy on Gy and f; = ¢; on Hy, then we get from
(4) for z; € H, andzg € Gy that

fi(z1zo) = f1(x1) + fi(xo) + %fl([l”l,ﬂ?()]) = ¢1(x1) + fo(wo) + %fO([CCMCO]), (15)

which shows the uniqueness of the solutifin

We will next verify that the functionf,, given by (14), is well-defined ofi/;. So
assuming thatxg = y1yo Wherexy,y; € Hy andxg, yo € Gg we shall deduce that

A= 61(m) = b1(y) + folwo) = foluo) + 3 fo(ker, z0]) = 3 follyn vo)) = 0. (16)
Sincey; ' = yory ' € HiNGy, andg; and f, agree onff; NGy, we get using (4) that
o1(w1) — d1(y1) + fo(xo) — folyo) = é1(yy 'a1) + fo(zo) — folyo)
= fo(yozgt) + fo(zo) — folyo) (17)
= fo(yo) — fo(wo) + %fo([yo,x(fl}) + fo(xo) — fo(vo) = %fo([yo,fvgl])y




The parametrization of the solutions
s02A = fo([yo,25']) + fo([z1,w0]) — fo([y1, yo]). Using Lemma 2.3(c) we see that
2A = f0<[y0,x0 11, o] [y1, yo] ), so to show thatA = 0 it suffices to prove

that [yo, 25 ] [21, w0 [y1,%0) " € [G, [G, G]]. Computing moduldG, [G, G]] we find by
Lemma 2.1 that

[0, 75 ] [1, o] [y1, 0] " = [0, w0l [1, 20 [y, 1]
= [“/'07191_1331930} [21, zo] [yflxwo,yﬂ (18)
= [0, y7 '] [w0, 71][w0, o] [¥1, xo] [y, 1] 21, w1][xo, v1] = [21,91] = e,

where the last equality sign is justified becaudggeis abelian moduldG, [G, G|]. Thus
f1, given by (14), is a well-defined function af;.

Obviously fi = fo on Gy and f; = ¢; on H;. ltis left to show thatf; € S(G1, C),
so we letxry,y; € Hy andxg,yg € Go and compute

L= fi(x1z0y190) + f1 <$1$0(y1y0)_1)

= fi(zinzo (25", wo) + fr(ziyr Moy worg ' w1])

(19)

= ¢1(z1y1) + folzo[agt yy wo) + %fo([myl,xo [25 y7 wo])

1
+ o1 (v1yr ) + folzoys Hyorg ' i) + §fo([5€1y1—1, zoyy  [yorg t v1]])-

Since the commutatork; ', y; '] and [yox; ', y1] belong toZ(G) modulo (G, [G, G]]
they disappear from the two terms with the factor 1/2 in front, so we get that

1
L= ¢1(x1) + o1(1) + fo(voyo) + fo([xgt yit]) + gfo([flyla ToYo))
1
+ ¢1(z1) — d1(y1) + folzoys ') + fo([yoxg ™t w1]) + gfo([xlyfl,fvoyo_l})
= 2¢1(21) + 2 fo(z0)
+ lfo [z, yflf[myl, zoyo) Yoy !, y1]2 [z1y7 Y 2oy ]
2 (20)
= 2fi(z120) — fo([z1, w0])
1 1 —172 —1 2 -1 -1
+ §f0<[$0 ] Ty, moyol [yorg i) [riyr s oy })
= 2f1(l‘11‘0)
1 —2r -1 —172 1, 12 ~1 ~1
+ 2f0<[$1, zo] “agtyr ] ey, woyol [yoxg o] [myy s oyg D,
so it suffices to show that the argument fagfin the last term, i.e.
1, 20) [25!, yflf[myl, zoyo) [yorg ' 91}2 [197 " 20y '] (21)

is e modulo[G, [G, G]]. And that is elementary in view of Lemma 2.1, O

We have in Theorem 2.2 seen that functions{id7, C) restrict to homomorphisms
of the quotient subgroufi#, G|/|G, [G, G]] into C. This is the basis of Theorem 3.2.
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The parametrization of the solutions

Theorem 3.2

The restriction mapf — f|¢,¢ of S(G, C) into Hom([G, G]/[G,[G,G]],C) is a
linear, surjective map, and its kernel is Ho& C).

Proof: The linearity is obvious, and the statement about the kernel follows from
Lemma 6.2 below, which is proved independently of the present theorem.

In proving the surjectivity we may assume tlGitis metabelian. Given a homo-
morphism¢ : [G, G] — C we shall producefy € S(G, C) such thatfy = ¢ on [G, G].

Consider the seP of all pairs {f, H} where H is a subgroup ofz containing
|G, G|, and wheref € S(H,C) is such thatf = ¢ on [G, G]|. We introduce a partial
ordering inP by writing { f1, H1} > {f2, H2} if and only if H; O H> and f; = f» on
H,. Obviously each totally ordered subset@thas a majorant ifP (the subgroup is the
union of the subgroups occurring in the subset), so by Zorn’s lemma there is a maximal
element{ fo, Go} in P. Itis left to show thatz, = G. This we do by contradiction, so
we assume the existence of an elemert G \ Go.

Taking H; := (a) in Lemma 3.1 we see that it to derive a contradiction to the
maximality of { fo, Go}, suffices to find apy € Hom({a), C) such thaty; = f, on
<a> N G.

(@) If a? ¢ Gy for eachp € {1,2,---} then we takep; = 0.
(b) If «? € G for somep € {2,3,---} then letp be the smallest such positive integer.
There are two possibilities:

a. (a) is a finite group. Herefy((a) N Gy) = {0} by Lemma 2.4, so we may
take 1 = 0.
b. (a) is an infinite group. Here we may defing by ¢;(a) := fo(a?)/p. O

It is known (see for example Friis [6]) that even in the simple case of the
Heisenberg group there are odd solutions of Jensen’s functional equation that are not
homomorphisms (see Example 5.1 below). Ng [9; Corollary 8] earlier observed the
same for the free group on two generators. Theorem 3.2 tells us that this phenomenon
is a common trait of Jensen’s functional equation on non-abelian groups: For any
homomorphismp € Hom([G, G]/[G, |G, G]], C) there exist odd solutions of Jensen’s
functional equation orG such thatf = ¢ on [G, G|, and the solutionsf are only
homomorphisms whew = 0.

A natural question is for which groups the parameter space degenerafé$,to
so that S(G,C) = Hom(G, C). Proposition 3.3 characterizes these groups in a
theoretical way, while Section 6 contains sufficient conditionsonmplying that
S(G,C) = Hom(G,C).

Proposition 3.3

The following three statements are equivalent
(@) S(G,C) = Hom(G,C).
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(b) Hom([G, G]/|G,[G,G]], C) = {0}.
(c) [G,G]/[G, |G, G]] is a torsion group, i.e. an abelian group in which each element
has finite order.

Proof. (@=(b): Assume thatS(G,C) = Hom(G,C). Any ¢ ¢
Hom(|G,G]/|G,[G,G]],C) extends according to Theorem 3.2 to a solution
fs € S(G,C). By assumptionf; € Hom(G,C), so ¢ is the restriction of a
homomorphism ofG. But then it vanishes on commutators and hence on the
commutator subgroup&, G|.

(b)=(c): If [G,G]/|G,|G,G]] is not a torsion group, then there exists anc
|G, G]/]G, |G, G]] such that(x) is an infinite cyclic group. We may define a homo-
morphism¢ : (x) — C by ¢(2™) = n, n € Z. Now ¢ extends to a homomorphism
¢ : |G, G]/|G, G, G]] — C, becauseC is divisible (see Theorem A.7 of [8]).

(c)=(a): If [G,G]/|G,|G,G]] is a torsion  group, then
Hom(|G,G]/|G,|G,G]l,C) = {0} by Lemma 24. Iff € S(G,C), then
f € Hom([G,G]/[G,[G,G]],C) by Theorem 2.2, sof| = 0. And then
f € Hom(G, C) by the formula (4). O

4. Explicit solution formulas

Theorem 3.2 says that any homomorphigm: [G,G] — C that vanishes on
|G, |G, G]] extends to a solution of Jensen’s functional equation on &H,dfut Theorem
3.2 does not construct an extension. The extensions are only determined modulo the
homomorphisms ofs into C, so unless there is some information@nt is not possible
to single out which extension to choose for a given

Nevertheless, we proceed by constructing extensions, but of course with extra
information onG, namely on the structure a. We even give explicit formulas for
the extensions.

Theorem 4.1

Let {H,|a € A} be a family of abelian subgroups 6f, such that the mapping
{atoea = Ilaea ralG,G] is a bijection of[] . 4 H, onto G/[G, G]. Then for any
¢ € Hom([G,G]/[G,[G,G]],C) there exists exactly one functigip € S(G, C) such
that f; = ¢ on [G,G] and f; = 0 on each of the subgroupH.,, a € A, of G. If

xr =x29---xNC, Wherex; € H,, for someq; € Afori=1,2,---,N,andc € [G, G|,
then
1
fo(z122 - aNe) = 5@5 H (25, 25] | + o(c). (22)
1<i<j<N

Modulo Hom(G, C) all functions inS(G, C) are obtained in this way for varying.

Proof: The uniqueness of; and the formula (22) are obvious from the formula
(5). According to Theorem 3.2 there exists A& S(G, C) such thatf = ¢ on [G, G].
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We definel : G — C by

I(hiha -+ -hyc) == f(h1) + f(h2) + -+ f(hn) (23)

for h; € Hy,, @ = 1,2,---,N, and ¢ € [G,G]. Here o; # «; for i # j. If
x = hihy---hyc anda’ = hih,--- 1y, whereh;, bl € H,, fori =1,2,--- N,
andc,d € [G,G], thenazy = (hi 1)) (hahly) - - - (hyk)y)c” for somec” € [G, G]. Noting
that f(x;z}) = f(z;) + f(a)) for eachi = 1,2,---, N, becausefl,, is abelian so that
S(H,,,C) = Hom(H,,,C), we find that

l(zy) = l((hlhll)(th’Q) . (hNh/]\]>CH)

= f(hahh)) + f(hohh) + -+ f(hnhy)

= f(h) + f(hy) + f(ha) + f(Ry) + -+ f(hn) + f(Ry) (24)

= f(h) + f(ha) + -+ f(hn) + f(RhY) + f(RY) + -+ f(hy)

=l(x) + U(y),
sol € Hom(G,C). Sincel = f on eachH,, a € A, we see thatf, := f —lis a
solution with the desired properties. U
Corollary 4.2

Let the assumptions be as in Theorem 4.1. To@aryHom([G, G]/[G, [G, G}, C)
and any familyp, € Hom(H,, C), o« € A, of homomorphisms, there exists exactly one
f € S(G,C) such thatf = ¢ on[G, G| and f = ¢, on H,, for eacha € A.

All functions inS(G, C) are obtained in this way for varying and ¢, a € A.

The case of only two factors in Corollary 4.2 is particularly interesting for our
examples, so we single it out:

Theorem 4.3

Let H; and H> be abelian subgroups @f, and assume that each element G in
exactly one way may be written in the form= z,25c wherec € [G,G] and z; € H;
fori = 1,2, modulo[G, |G, G]]. Lety € Hom([G, G], C) be such that([x, [y, z]]) =0
for all z,y,z € G. Letp;, € Hom(H;,C) fori = 1,2.

Then there is exactly one functigiy € S(G, C) such thatf, = ¢ on [G, G] and
fs = ¢; on H; for ¢ = 1,2. It is given by the formula

fo(rrwac) = dr(a1) + da(r2) + %gb([xl, 2]) + ¢(c), (25)
cel|G,G], v; € Hifori=1,2.

All functions inS(G, C) are obtained in this way for varying, ¢; and ¢.

5. Examples

In this section we discuss some groups to which we can apply Theorem 4.3.

11
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Example 5.1
he (2n + )—dlmensmnal Heisenberg group, = 1,2,---, is the matrix group
{ z,y,z) € R*" |z e R",y € R",z € R}, where we use the abbreviation
(x, y,2) = ((x1, 22, -, xpn), (Y1, Y2, Yn), 2) for the (n + 2) x (n + 2) matrix
1 @y a9 - Xy 2 )
01 0 - 0
(@yy=4 - 0w (26)
0 0 -« v 1
o 0 --- --- 0 1

Ve

The 3—dimensional Heisenberg group, corresponding=+ol, is usually just called
the Heisenberg group.

The composition rule of7 is (z,y,z)(u,v,w) = (x +u,y + v,z +w+ - v) for
(2,9,2), (u,v,w) € G, wherex - v = (x1,-++,2,) - (v1,+++,0) = >.iq a0, The
neutral element of7 is the identity matrix/ = (0,0, 0).

We find by elementary computations tha{G,G] = Z(G) =
{(0,0,2) e G|ze R} ~ R and [G,[G,G]] = {I}, so G is metabelian. The
pair H; := {(x,0,0) e G|z € R"}, Hy = {(0,y,0) € G|y € R"} satisfies the
conditions of Theorem 4.3, as the formula, 0,0)(0,y,0)(0,0,2) = (z,y,z +x-y)
x,y € R", 2z € R, shows.

Let ¢ : [G,G] ¥~ R — C be a homomorphism. The functiofy from Theorem
4.3 is here

f¢(x,y,z) = fqb((x’ 070)(0aya 0)(0? 0,2 —x- y))
= 20(((,0,0), (0,5, 0))) + 6(= — ) @7)

= 5000, )+ 6lz — - y) = 36(25 — ),

The same arguments as above work for the Heisenberg group with integer entries, i.e.
for the subgroufHa,+1(Z) = {(x,y,2) € G|x,y, 2 € Z} of the (2n + 1)-dimensional
Heisenberg group.

Jensen’s functional equation on the Heisenberg group was solved in [6; Section 4],
but by other methods than ours.

Example 5.2 This example was thoroughly discussed in [9] by other methods than
ours.

Let G = (a,b) be the free group on the two generatarand b. We claim that
given «, 3,7 € C there exists exactly one functiohe S(G, C) such thatf(a) = «a,

12
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f(b) = ¢ and f([a,b]) = 7. The solutionf can be given by the explicit formula

f(amlbnl . amlbn[)

l {

= <Zmi)a+ <Z nl)ﬁ+ Z min; — Z min; v/2 (28)
=1 =1 i<j<l j<i<l

formy,ny,--- myn €4, 1=0,1,---.

Proof of these claims: Let us note thaltG, G| modulo|G, [G, G]] is the infinite cyclic
group generated by the commutafart|, and thatG modulo [G, [G, G]] decomposes
into G = (a)(b){[a, b]).

The uniqueness and the existence of a solufias immediate from Theorem 4.3
with H, = <a> and Hy = <b>

We shall only sketch how to derive (28). It suffices to verify that

i<j<l j<i<l

f¢(am1bn1 .. .amlbm) — ( Z mm] _ Z mm]) ,.}//2’ (29)

which can be done by induction dnFor/ = 1 it is the formula (25). O

6. Conditions ensuring all odd solutions are homomorphisms

We will in this section find sufficient conditions of a general nature on a gr@up
to ensure thatS(G,C) = Hom(G, C).

It is a well known fact thatS(G, C) = Hom(G, C) on any abelian groug:. A
slight improvement (Lemma 6.1) of this fact was proved by édic£hung and Ng as
Lemma 1 of [1]:

Lemma 6.1

The general solutiorf : G — C of Jensen’s functional equation (1) satisfying also
flzy) = f(yx) for all z,y € G, is given byf(z) = ¢(z) + «a, © € G, wherea € C
is an arbitrary constant ang an arbitrary homomorphism af into the additive group
(C,+) of C, i.e. ¢p(zy) = o(x) + o(y), z,y € G.

Lemma 6.2

The following 4 statements (i) — (iv) are equivalent for a functioa S(G, C):

(i) f € Hom(G,C).

(i) f(zy) = f(yx) for all z,y € G.
(iii) f([z,y]) =0 forall x,y € G, i.e. f vanishes on each commutator.
(iv) f vanishes on the commutator subgrodp G|.

13
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Proof: Clearly (i) = (iv) = (iii). The identity (4) shows that (iii}= (ii). Finally
Lemma 6.1 shows that (ig (i). O

Corovei [4] proved thatS(G,C) = Hom(G, C) on any Ps—groupG, i.e. a group
in which all elements in the commutator subgroup have order 1 or 2 (also called a
3—rewritable group). In Theorem 6 of [5] he relaxed the assumptions: It suffices that
each element of the commutator group has finite order. This is point (c) of Proposition
6.3 below.

Proposition 6.3

(a) If the quotient groupg=/[G, |G, G]] is abelian, thenS(G, C) = Hom(G, C).
(b) If [G,[G,G]] = [G,G], thenS(G,C) = Hom(G, C).
(c) If each commutator has finite order théfiG, C) = Hom(G, C).
Proof: (a) is a consequence of Theorem 2.2(d) and the fact $haf, C) =
Hom(H, C) for any abelian groupf.
(b) follows from (a), because the quotient grotp|G, GG] always is abelian.

(€): Any f € S(G,C) satisfiesf(z") = nf(x) for all z € G and alln € Z
(Theorem 2.2(a)). Sinc¢(x") is bounded for any € [G, G], hence so isf(x). But
then f(z) = 0, so f vanishes on each commutator. We then refer to Lemma 6.21

Lemma 6.4

Let Gy be a normal subgroup of a groug such thatG /Gy is finite.

(@) If S(Gy,C) = Hom(Gy, C), thenS(G, C) = Hom(G, C).
(b) If S(Gy,C) = {0}, thenS(G, C) = {0}.

Proof: (a) Letf € S(G,C). Let x,y € G be arbitrary and letn andn denote the
orders ofxGy andyGq in G/Gy. Soxz™ € Gy andy™ € Gy. Now f = 0 on [Gg, G|
becauseS(Gy, C) = Hom(Gyp, C) (Lemma 6.2), so thaf([z™,y"]) = 0. We get by
Lemma 2.1 and Theorem 2.2(a) that f([2™,y"]) = f([z,y]™") = mnf([z,y]), SO
f([xz,y]) = 0. We infer from Lemma 6.2 thaf ¢ Hom(G, C).

(b) is proved in a similar way. O

Proposition 6.5

(a) If H is a real or complex semisimple Lie group with at most finitely many connected
components, the§(H,C) = {0}.

(b) Let G = N x, H be a semidirect product of an abelian group (the normal
part) and a semisimple Lie groufl, where H has at most finitely many connected
components. Thef(G,C) = Hom(G,C).
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Proof: (a) The connected componel. of the identitye € H is a connected
semisimple Lie group, and s&l. = [H., H.] (see Corollary 3.18.10 of [11]). In
particularH, = [H., [H., H.]], so we get from Theorem 2.2 tha{ H., C) = {0}. (a)
now follows from Lemma 6.4(b), becaugé. is normal (Theorem 7.1 of [8]).

(b) Let us consider the subgroupg, := N x, H., Using thatH. = [H., H.]
we see thalGy, Gy, Go||] 2 [He, [He, H.]] = H. so that the restriction taV of the
natural projection map : Gy — Go/[Go, [Go, Gol] is surjective. SinceV is abelian
by assumption, so i&q/[Go, [Go, Go]]. We may thus refer to Proposition 6.3(a) to see
thatS(Gyp, C) = Hom(Gg, C). But Go = N x4 H. is a normal subgroup af of finite
index, soS(G, C) = Hom(G, C) by Lemma 6.4(a). O

7. Examples

In this section we collect some examples, mainly from geometry, in which the
results of Section 6 are used.

Examples 7.1

Many examples of semisimple Lie groups are listed in Ch. X, 82 of [7]. We mention
the special linear groupSL(n,R) andSL(n,C) for n > 2, and the orthogonal groups
O(n) andSO(n) forn > 3. SL(n,R), SL(n,C) andSO(n) are connected, whil®(n)
has two connected components. The Lorentz go(p 1) has 4 connected components.

The group of unit quaternions, which occurs as an example in some works on
functional equations, e.g. in [1], is isomorphic to the connected semisimple Lie group
SU(2) (see section 1.9 of [3]).

If G is any one of these groups, théiG, C) = {0} according to Proposition 6.5.

Example 7.2 This example was also treated in [10; Theorem 4], but by other
methods than ours.

Consider the general linear groupr = GL(n,R) for n > 2. Since
[SL(n,R),SL(n,R)] = SL(n,R) (Example 7.1) and since any commutator has
determinant 1 and hence belongs $d.(n,R), we see thatG,G| = SL(n,R),
so that [G,[G,G]] = |[G,G]. According to Proposition 6.3(b) we then have
S(G,C) = Hom(G, C). We may write anyA = {a;;} € GL(n,R) in the form

detA 0 --- 0Y (aw(det A7 apa(det A)™H or apu(det A)7F
o0 a1 22 fian (30)
0 O .- 1 Gnl ano Ann

where the last factor has determinant 1 and hence belongis(te, R). From Example
7.1 we know that anyf € S(G,C) = Hom(G, C) takes the value O on the last factor
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of (30), so
detA 0 0
fay=r| 40T Y = edena) (31)

for some homomorphism : R, — C. An example of such a homomorphism is
o(t) = loglt|, t € Rx.
The same discussion applies ®&.(n,C) for n > 2.

Remark 7.3

Example 7.2 can be generalized for> 3. For any ringR with unit the subgroup
E,.(R) of GL(n, R) generated by the elementary matrices satisfis ), £.(R)] =
E.(R) (see [2]). IfR is a field, or just a commutative Euclidean ring, thEp(R) =
SL(n,R), and in that case we find like in Example 7.2 th&¢GL(n,R),C) =
Hom(GL(n, R),C), and that anyf € S(GL(n, R),C) has the formf(A) = ¢(det A)
for some homomorphism of the group of units ofR? into C.

The remaining examples of this Section discuss groGpshat are semidirect
products of two groupsV and H, where NV is the normal part and{ acts onN. A
typical example is the group of rigid motions B, where the rotation groufl = O(3)
acts on Euclidean spadé = R?. With Example 7.1 in mind the solutions of Jensen’s
functional equation on such groups can be computed by the formulas in [6; Section
4]. However, our methods are different from those of [6; Section 4], that only deals
with semidirect products, and we want to illustrate how our results of Section 6 can
be applied.

Let G = N x5 H be a semidirect product withV as the normal component. We
let - n denote the action byt € H onn € N. For anyf € Hom(G,C), we have
fiy € Hom(V, C) and a small computation reveals that

fin(h-n) = fix(n) forh € H, n € N. (32)

Example 7.4

Let G = N x, H be a semidirect product of an abelian gradipand a semisimple
Lie group H with at most finitely many connected components. H8&f€&/, C) =
Hom (G, C) according to Proposition 6.5(b).

Let f € S(G,C) = Hom(G, C). Since f vanishes ord (Proposition 6.5(a)), we
get from the decompositiotm, h) = (n,e)(0, ) that f(n,h) = f(n,e) = ¢(n), where
¢ € Hom(N,C). Taking (32) into account we find that Hoi@, C) consists of the
functions of the formf(n,h) = f(n,e) = ¢(n), wherep € Hom(N, C) satisfies that
¢(h-n) = ¢(n) for all h € H andn € N.

16



If the action of H on G is trivial, so that the semidirect product is a direct product,
then Hom G, C) consists of the functiong : G — C of the form f(n,h) = ¢(n),
where ¢ ranges over HortV, C).

But if there exists arh € H such thath - n = —n for all n € N, then¢ = 0 and
hence alsof = 0. Examples of this are the grougs = R" x, O(n) of rigid motions
of R", n > 3, and the inhomogeneous Lorentz gratip= R* x, SO(3,1). For these
groups S(G,C) = {0}.

Example 7.5

The (ax + b)—group, i.e. the group of affine motions of the real line

G = {(m):(% [1’>|ae]o,oo[,beR}, (33)

is the semidirect produaff = R x; RT. We find by elementary computations that
G,G] = [G,]G,G]] = {(1,z)|x € R}, s0 S(G,C) = Hom(G,C) by Proposition
6.3(b). Using the decompositiofd,a) = (b,1)(0,a) we find by help of (32) that
f = 0 on the first factor. So the odd solutions of Jensen’s functional equatiad on
are the functions of the fornf(b,a) = ¢(a), (b,a) € G, where¢ : Rf — Cis a
homomorphism.

This example was discussed in [6] by other methods than ours.
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