Aspects of Lie theory

Pd.D. thesis by Steen Ryom-Hansen

Document created by the PCL2PDF evaluation
(C) Copyright 1996-2000 Visual Software
Visual Software http://www.visual.co.uk



http://www.visual.co.uk
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This thesis deals with different aspects of Lie theory. The main themes are the
modular representation theory of algebraic groups and the more recent theory of quan-
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3. Introduction

1.1. In chapter 4 we investigate themes dealing with the modular Lusztig conjec-

ture. Using translation techniques we show a consequence of that conjecture.

1.2. In chapter 5 the setting i1s that of a highest weight category. We give a

short proof of a theorem of Cline, Parshall and Scott.

1.3. In chapter 6 we investigate the piecewise linear function of Lusztig in

terms of the combinatorics of crystals.

1.4. In chapter 7 we show that the refined Demazure formula Littelmann can

be proved by purely combinatorial methods.

1.5. In chapter 8 we use the refined Demazure formula to show a quantum

version of the Kempf vanishing theorem.
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4. Some remarks on Ext groups.

§ 1. The setup.

1.1. Let us start out by defining the basic objects of modular representation
theory.
So we are considering a simply connected simple algebraic group G over an
algebraically closed field &k of characteristic p > 0. We fix a maximal torus T and a
Borel subgroup B of G containing T. The root system is denoted R and we let B
correspond to the negative roots R- of R. The character group of T is called X( T)
and the set of dominant characters X( T),

X(T), ={ ) eX(T)| <\a.>> 0forall a€RT}
We have R C X(T) and a partial order < on X( T') given by

A< piff p— N €Z )[R

12. For A € X(T) we let H’(\) denote the G module obtained from A by
induction from B to G. Then H’()\) # 0 iff A € X(T), and in that case it has a
simple socle L(\); all other compostion factors of H’(\) are on the form L(x) for p
< A In fact the L(A) for A € X(T), exhaust the set of finite dimensional simple G-

modules.

For V a G-module V we write ch V for its formal character € Z[X( T)]. The
subgroup in Z[X( T)] spanned by ch V for V a G-module is isomorphic to the Gro-
thendieck group of the category of G-modules and thus has a natural basis consisting
of chL(\) for A € X(T), By the above it also has the set of ch H’(\)s as a basis.
The equality

(1.2.1) ch H(A) = S [HO(A):L(p)]ch L(p)
p<A
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where [H?(A):L(p)] is the composition factor multiplicity of L(x) in H’(A) can

therefore be inverted formally. We write the inverted expression as
(122) NIV = (L), B )y ch B )
p<A
where (L(X),H’(1)) € Z. These numbers are given by the following formula
(123) (L H (1)) = Y (~ 1) dimExt( L(0). B )

( From Frobenius reciprocity and Kempf vanishing we have that
Bxtiy( L0\, B ) = Bxty( L(A), )

and by the standard resolution of p this vanishes for ¢ large and for g < A. Hence the
sum in (1.2.3) is finite. We also see that for ¢ > 0

(1.2.4) ExtS (LA, H(p)) #0=pu < \)
Actually we have for any G-module M that

(1.2.5) (M, H(p)) =" (—1) dimExt( M, B(p))

Let us outline a proof of this. Let V() denote the Weyl module with highest weigth

\; it is dual to H’(X) under the duality that fixes L(\); thus it has the same
character as H’(\) and its unique simple image is L( ). From [CPSvdK] one has

(1.2.6) dimExt{( VIA), H(11)) = 6y ,6i0

So at least for p = A (1.2.5) is true. Now both sides of (1.2.5) are additive in M, so
(1.2.5) would follow from (1.2.3). Let us thus show (1.2.3) by induction on p. If X is
minimal in X( T)y then V(X) = L(\) and we already know (1.2.3). Otherwise we con-

sider the exact sequence

0 — Q — V(A) — L(\) — 0
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All composition factors of @ have highest weight < A. Hence (1.2.5) holds for the first

two modules in the sequence and thus also for L(A).

1.3. For a € R and n € Z let H,,n denote the hyperplane in E = X( T)oR:
Hoyn ={veEE| <a,vtp>=mnp}

The connected components in E\U“’" a,n are called alcoves. The affine Weyl W,
group is the group generated by the reflections in all the Hyn. Let A7 be the funda-

mental dominant alcove, 1.e. the one given by
—peAT and At +pc X(T),0R

And let A- = wyA". We assume in the following that p > h ( the Coxeter number )
and may thus find a A € A~ n X(T). If A is an alcove we denote by A, the mirror
image of A in A. Then W) acts simply transitively on the set of A, For w € W) the

image of A under this action is denoted w.\.

The following i1s the main conjecture of the theory:
Conjecture 1.3. ( Lusztig [L1] ). Let y, w € W, such that y.\, w.A € X(T),

Suppose moreover that w.A belongs to the Jantzen region, i.e. that <ap w.A> <
p(p—h+2). Then we have

(1.3.1) (L(w ), H(y.0)) = (=)™ p, (1)

Here « is the highest short root of R and Pyw(q) is the Kazhdan- Lusztig polynomial
for the Coxeter group W,.

By (1.2.4) the assertion that

(1.3.2) Pyu(q) =3 ¢" " dimExty( L(w. ), HO(y.)))
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with w and y as before would imply (1.3.1). And in section 2 of [A] it is shown that
also the reverse implication holds; thus (1.3.2) could be used instead of (1.3.1) in the
formulation of the conjecture. ( Actually section 2 of [A] contains a whole series of

equivalent formulations of the conjecture ).

There has been much progress in recent years towards a solution to the

conjecture; see [KLi1, AJS]; however it is not yet completely settled.

Now from the inductive formula [KL2, 2.2.c] for the polynomials Py w(q) one
sees that their constant term is I for y < w. Hence believing in (1.3.2) we would

have
(1.3.3) dim Ext™ " (L(w.n), HO(y.0)) = 1

for y < w as in the conjecture. In this chapter we wish to demonstrate that (1.3.3)
holds independently of the Lusztig conjecture and for all w, y such that w A, y.\ €
X(T),

In [C] there is a proof of the corresponding statement for the category O of
Bernstein, Gelfand and Gelfand. However the argument there relies in a desicive way
on the Verma embedding theorem, 1.e. the fact that homomorphisms between Verma
modules are injective. This property in general fails for Weyl modules so the proof

does not carry over.

§ 2. Translation arguments.

21. Let A € A~ n X(T) be as in section 1. Take p € € A~ n X(T) and
suppose that { s€ Wy | s.u=p } = {1,5}. Let Tﬁ and Tﬁ be the Jantzen translation
functors. They are exact and adjoint to each other. Assuming y.A € X( T), we have

(2.1.1) ch TN H(y.\) = H(y.p)

(2.1.2) TNL(yA) = L(y.p) if sy >y
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(2.1.3) TNL(yA) =0 ifsy<y
If y < sy there 1s an exact sequence of G modules as follows
(2.1.4) 0— H(y\) — TaH(y.u) — H(sy.A) — 0

If w.u € X(T); has sw < w then by (2.1.2) and the adjointness of T4 and T we
get

Hom( L(sw.A), Ta L(w.pi)) = Homg( T L(sw. ), L(w.pu)) = Hom g L(w.p), L(y.pe)) = k

so L(sw.\) is contained in the socle of ThL(w.x) and a similar reasoning shows that
it is also contained in the head of ThL(w.u). ( Actually there is equality in both
cases ). For sw < w we can therefore define modules Q(w.\), R(w.\) and U(w.\)

by the following exact sequences

(2.1.5) 0 — L(sw. ) — ThL(w.p) — Q(w.\) — 0
(2.1.6) 0— R(w.\) — ThL(w.p) — L(sw.\) — 0
(2.1.7) 0— U(wA) — Q(w.)) — L(sw.A) — 0
(2.1.8) 0 — L(sw.A) — U(wA) — R(w.A) — 0

The module U(w.\) plays an important role in [A]; it is shown that conjecture
(1.3.1) holds if and only if U(w.)\) is semisimple.

2.2. The following result 1s well known

Lemma 2.1. For w, y € Wp such that w.\, y.A € X(T), we have for ¢ > {(w) —(y)
that
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ExtS(L(w ), H(y.))) =0
Proof. We proceed by induction on w. If w = w, then the lemma holds by (1.2.4).
We may then assume the vanishing of the lemma for w/ € W, such that I(w') <
(w). The application of Homg(—, H’(y.A)) to the short exact sequence of G
modules
0 — K— ViwA)— L(wA)— 0
leads to a long exact sequence of Ext groups. From (1.2.6) this gives for ¢ > 0 that

(2.1.1) ExtSU K, H(y ) ~ BExto(L(w\), H(y. 1))

Now the composition factors of K are all on the form L(w’.\) with I[(w') < I(w) and
will therefore by induction hypothesis satisfy

ExtS I L(w! ), H(y.))) =0

But then also (2.1.1) vanishes and we are done. O

2.3. The next two lemmas relate the Ext groups that we are interested in to an

Ext group involving U(w.)).

Lemma 2.3.1. Assume sy < y. Then the following holds

Ext O (wn), B y0)) ~ Bxt O D sw\), HO(sy.0)) if sy.) € X(T),

Ext O wn), By 0)) ~ Bxt N L sw ), HO(yN)) i sy ¢ X(T),

12

Proof. By lemma 2.6 of [A] we have that
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- 11 =
Extio( Q(w ), H(y.\)) ~ Exth( L sw. ), H(sy.\)) if sy.A € X(T),
Exto( Q(w ), H(y.\)) ~ ExtG U L(sw.\), H(y.\)) if sy.) & X(T)y

We 1insert this information in the long exact sequence that arises from the application
of Homg(—, H(y.\)) to (2.1.7). If sy.A € X( T), part of the resulting sequence is

— Bt (Lswn), By ))) — Ext' 0 (L(swor), BHO(sy.))) —
Ext Y (wn), By 0)) — Ext™ O L sw), HO(y0)) —
while for sy.\ & X(T), part of the resulting sequence is
— Bt (Lswn), By ))) — Ext WO LD s ), HO(y.0)) —

Ext Y (wn), By 0)) — Ext™ O L sw), HO(y0)) —

But by lemma 2.1 the first and the last terms in the two sequences are zero; the

lemma 1s proved. O
Lemma 2.3.2. Assume sy > y. Then the following holds
Ext O (wn), By 0)) ~ Bxt O Liswn), B (y)))
Proof. From the sequence (2.1.6) defining R(w.\) we get the long exact sequence
— Exti(L(sw. ), HO(y.\)) — Exti( ThL(w.p), H(y. X)) — Exti(R(w.\), H(y.1)) —
And (2.1.4) gives the sequence
— Exti(L(sw.A), HO(y.0)) — Exti(L(sw. ), ThH(y.0)) — Exti( L(sw. ), H(sy.))) —

We see that the first terms in these sequences are equal. And also the middle terms
are isomorphic: by the adjointness of Th and T% together with (2.1.1), (2.1.2) both
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are 1somorphic to
Extg( L(w.p), H(y.p1))
As the resulting diagrams commute we conclude that also the last terms are equal, 1.e.
ExtS(R(w.\), H(y.0)) ~ Exti( L(sw.\), H(sy.\))

We 1insert this information in the long exact sequence that arises from the application
of Homg(—, H’(y.\)) to (2.1.8). A part of the resulting sequence is

— Extlc(;w)_l(y)_l(L(sw.)\),HO(sy.)\)) — Extlc(;w)_l(y)_l(L(sw.)\),HO(y.)\)) —
Ext Y (wn), By 0)) — Ext™ O D(sw\), H(sy.0)) —

By lemma 2.1 the first and the last terms are zero, whence the middle terms are iso-

morphic: the lemma is proved. O

2.4. After these preparatory lemmas we can now prove our main result.
Theorem 2.4. For all y, w € Wj such that y < w and y.\, w.A € X(T), we have

dim Ext™ " (L(w.n), HO(y.0)) = 1

Proof. We proceed by induction on {(w). If w = w, then also y = w,. But

dim Homg( L(wy\), H(wy\) ) = 1
We then assume the result for w’ with I[(w’) < I[(w) and choose s with sw < w and
swA € X(T), Then the theorem holds for sw and we get from lemma 2.3.1 and

lemma 2.3.2 that

dim Ext™™ " ((w.)), HO(y.\)) = 1
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So the theorem would be a consequence of the isomorphism

(24.1)  Ext"Opiwn), B y0)) ~ Bxt O Dwn), B (y0)

We now claim that

(2.4.2) [U(w ), L(2MN)] #0, z# w = l(w) -z)>2

Believing this we would from lemma 2.1 have that

(2.4.3) Ext Ok L(20), B (y ) = 0 for k = 0, 1

Now it is easy to see, ( proof of prop. 2.8 (ii) of [A] ) that

(2.4.4) [U(wA), L(w )] =1

And then (2.4.1) would follow by filtering U(w.)) and considering the terms of index
(w) — ly) and (w) — {(y) — 1 in the long exact sequence given by the application

of Homg(—, H’(y.\)). So we aim at proving (2.4.2).

Assume on the contrary that {(w) — (z) = 1, i.e. that I(2) = I(sw). Choose a, ,/ €

Z such that
(2.4.5) chL(sw.A) =" ag, wrCh HO(w \)
!
Then a,, , = 0 unless w’ < sw and Gswsw = 1. We apply T,))oTi to (2.4.5) and get

by the exactness of translation and (2.1.1) — (2.1.4) the expression
ch ThL(w.p) = ayy o Ch H (5wl )) + ayy o ch HO(w! )
22 %I: , ! %I: , !

= chL(sw.\) +>° asw’w,chﬂo(sw’.)\)
!

Document created by the PCL2PDF evaluation
(C) Copyright 1996-2000 Visual Software
Visual Software http://www.visual.co.uk



http://www.visual.co.uk

- 14 -

It is known, see e.g. the proof of theorem 2.16 in [A] that sz < 2z for
[U(w.\),L(2z.)\)] # 0; especially z # sw for such z. By this and by the assumption
on I(z), we only need to consider the contributions from w’ = sw and w’ = sz in the

sum to count the composition factor multiplicity of L(z.A) in U(w.)\). We get
(24.6) [U(w.A),L(22)] = aswsw| H(w.N), L(20)] + tsws: [H(2.0), L(2.))]
— Gsw’sw[ﬂo(w.)\)jL(Z.)\)] —I_ asw’sz — [HO(’UJ.)\),L(Z.)\)] —I_ asw’sz

However we have from corollary 6.24 in Jantzens book [J] and the remark following it
that

(2.4.7) [H(w.\),L(2.))] = 1
Concerning a@sw,s: we have by (1.2.3)
Qsw, sz = Z(-l)’dlm EXtZC;( L(S’U).)\),HO(SZ.)\))

(w) — 1 and I(sz) = I(z) — 1 because sz < z so we have {(sw) -

However l( sw) =
I(sz) = (w) — {(z) = 1. And then we get by induction that

(248) arsw’sz - —1

By (2.4.6), (24.7) and (2.4.8) we conclude that [U(w.\),L(2z.))] = 0 which is the

desired contradiction. The theorem i1s proved. O
References.
[A] H. H. Andersen, An wnversion formula for the Kazhdan-Lusztig

polynomuals for affine Weyl groups. Advances in mathematics, vol. 60, No. 2, May
1986, 125 -153.

[AJS]. H. H. Andersen, J.C. Jantzen, W. Soergel. Representations of Quantum

Document created by the PCL2PDF evaluation
(C) Copyright 1996-2000 Visual Software
Visual Software http://www.visual.co.uk



http://www.visual.co.uk

- 15 -

Groups at a p-th root of unity and of Semisimple Groups in Characteristic p:

Independence of p. To appear.

[J] J. C. Jantzen, Representations of algebraic groups, Pure and appl.
Math. 131, Academic Press ( 1987 ).

[C] Carlin, Eztensions of Verma modules, Trans. Amer. Math. Soc, vol

294, 29 - 43, 1986

[KL1] Kazhdan, Lusztig, A ffine Lie algebras and quantum groups, Internat.
Math. Res. Notices 1991, no 2, 21-29 in Duke Math. J 62 1991.

[KL2] Kazhdan, Lusztig, Representations of Coxeter groups and Hecke
algebras, Invent. Math., vol 39, 165-184, 1979

[CPSvdK] E. Cline, B. Parshall, L.Scott and W. van der Kallen, Rational and
generic cohomology, Invent. Math. 39 ( 1981 ), 387-410.

Document created by the PCL2PDF evaluation
(C) Copyright 1996-2000 Visual Software
Visual Software http://www.visual.co.uk



http://www.visual.co.uk

- 16 -

5. Concrete Kazhdan-Lusztig theory.

§ 1. Highest weight categories.

1.1. In order to provide an axiomatic setting for many situations that arise natu-
rally in representation theory, Cline Parshall and Scott have introduced the concept of
a highest weight category. The basic ingredient of such a category is a weight poset A
parametrizing three distinguished classes of modules, namely the simple modules L( A),
the induced modules A(A) and the Weyl modules V(\). Let us mention some of the
most important rules that these objects should satisfy: A(A) should have simple socle
L()X) and all other composition factors on the form L(gx) with g < A while V()
should have simple head L(A) and all other composition factors on the form L(p)
with ¢ < A. There should be enough projectives in € so that we can speak about
Exté(—,—) and with respect to this our objects should satisfy, ( see (1.2.4) and
(1.2.6) of chapter 4 )

Exte(L(A),A(p)) #0=>p<i ifi>0

Bxtg (VAL A(n)) = 6,00, b
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where k 1s the ground field.

1.2. Let € be a highest weight category. Then the projective cover P(A) of
L(X) in € has a filtration with quotients consisting of Weyl modules V(p); the
number of times V() appears in such a filtration is denoted (P(\),V(g)). This
number 1s independent of the choice of filtration and satisfies the Brauer Humphreys

reciprocity law

(1.2.1) (P(A), V() = [V(p), L(A)]

Let now I' be an 1deal in A, that is a subset satisfying
p<Aand Ael = pel

Then the subcategory €[I'] of € whose objects are the objects in € that have only com-
position factors on the form L( ) for g € T' is again a highest weight category. If we
for a fixed A € A let I be the set of y € A such that g < X then I' is an 1deal and the
projective cover of L(A) in €[I'] will be V(A): this follows from (1.2.1). We say that
er]

arises from € by truncation.

1.3. Let us now more specifically consider a variation of the setup of Cline, Par-
shall and Scott in [CPS]. So A is assumed to be finite and equipped with an invo-
lutive duality functor D mapping V() to A(\) and fixing L(A). Furthermore there
should be a set of operators { s | s € § } acting on A and a length function 1:A —
L., satisfying [(Xs) = I(A) + 1 for As > A. We finitely assume that there exists a
functor fs : € — € having the usual properties of translation across the wall. This
means for instance that for 7s > 7 we have soc(0sL(7)) = cap(0sL(7)) = L(7); we
let Us(7) be the middle part of §s(7). In [CPS] the existence of s is formulated as

the existence of a so called Hecke operator.

1.4. We now define
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Pe 0= Y 4 fdimExtg” " (D (v), A(p))
1> 0
The main theorem of [CPS] can then be formulated in the following way.
Theorem 1.4. In the above setup the following conditions are equivalent:
i) Puwv(q) can be calculated by the Kazhdan-Lusztig algoritm.
ii) Us(7) is semisimple for all 7, s such that 7s > 7.
iii) L(7s) is a summand of Us(7) for all 7, s such that 7s > 7.
iv) Homg (Us(7),L(78)) # 0 for all 7, s such that 75 > 7.

v) Exte(L(7),L(7s)) # 0 for all 7 and s.

vi) Ext(L(v),A(p)) = 0 for all v, p such that I(v) —1(p) #i ( mod 2

vii) Exte(L(v),A(p)) = 0 for all v, g such that I(v) =1(p) ( mod 2 ).
viii ) The analogous statements with A () replaced by V().

Survey of proof. The duality functor gives viii). The equivalence of i) and ii) were
already proved in [A] ( see also [V] ) as well as iii) = vi). And the equivalence of
iii), iv) and v) were also mentioned in that paper. Finally, in [CPS] it was settled
that the even-odd vanishing of vii) implies the other conditions of the theorem, this

was achieved through a derived category argument. O

1.5. The purpose of chapter is to prove that the conditon vii) implies the other

conditions without using derived categories.
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1.6. T wish to express my gratitude to Cline, Parshall and Scott for stimulating
conversations and for pointing out the relevance of lemma 2.2 below. Thanks are also

due to Henning Haahr Andersen for stimulating discussions.

8 2. The reduction.

2.1. The next lemma could be compared with the calculation of
Extiy(L(v),L(p)) in [CPS] and [BGS]. However, we are here working under a

weaker assumption than in [loc.cit.] and also avoid the use of derived categories.
Lemma 2.1. Assume Extg(L(v),A(u)) = 0for I(v) = I(p) ( mod 2 ). Then
Bxth(L(A), A () = Exth(L(A),L(n)) for < )

Proof. We may assume that I(A) # [(x) mod 2, because otherwise both sides of the
lemma are 0; the left hand side by the assumption, and the right hand side by
corollary 2.10 of [A]. Now define @ by

0— Q — V(\) — L(A) — 0

Set I'={ v e A|v <A} Then I' is an ideal in A and we may replace € by €[T']. By
1.2 we then get that V(\) is projective. Any element of Extg(L(A),A(s)) can then

be described as a homomorphism

g Q@ — A(p)

We need to show that ime = L(p). Assume to the contrary that ime/L(pu) # 0.
Choose then T maximal among the v such that [ime/L(u), L(v)] # 0. Then there is
a morphism ¢ # 0

b ime/L(p) — A(7)
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because A (7) is injective in the truncated subcategory consisting of weights < 7 this
1S

dual to 1.2. Denote the composition 1o by . Then 1 is a morphism
v Q — A(7)

and thus represents a nonzero element of Extg(L(A),A(x)); hence I(7) # 1(A) mod

2. From the maximality of 7 we also get a morphism ¢ # 0

¢: V(r) — imp/L(p) CA(p)/L(p)

If I(p) = I(7) mod 2 then Exty(V(7),L(u)) = Exte(L(p),A(7)) and ¢ can be
extended to a morphism ¢ # 0:

o1 V(r) — Alu)
But then we must have 7 = p which is a contradiction. Thus we have that I(7) #

I(p) mod 2 and thereby I(p) = I(A) mod 2 and another contradiction. The lemma is
proved. O

2.2. The next lemma together with the previous one proves the promised

implication vii) = v).
Lemma 2.2. Assume Extg(L(A),A(p)) = Exte(L(X),L(p)) for p < A Then
Extg(L(7),L(7s)) # 0for all 7and s.

Proof. This follows from the translation principle [ 5;811.7.18 ]. O
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6. Crystal/canonical bases in type A9 and Ag.

§ 1. Introduction.

1.1. The aim of this chapter 1s to describe the combinatorial structure of the
crystal basis in terms of the piecewise linear map R of Lusztig. One might think of
this as a realization of the abtract concept of a crystal. We shall especially focus on
those aspects of the combinatorial structure that are used in the proof of the refined

Demagzure character formula.

We only work with types Ay and Ag; however we expect the description to

carry over to more general types.
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§ 2. The function R and the crystal operators &; and }[z

2.1. Let us first consider type Ag. In that case there are two reduced expres-
sions of w,, namely w, = 558,80 = 5,555, The piecewise linear map R: R’ — R’
defined by Lusztig in [L1] is then

R:(a,b,¢)— (b+c—min(a,c), min(a,c),e+b-min(a,c))

R is a bijection and R' = R. It has two regions of linearity, namely the subsets of R’

given by ¢ < ¢ and a > ¢.

2.2. The elements of the weight lattice will be written as 2-tuples with Z
entries according to their coordinates in the basis of fundamental weights; the
dominant weights thus have nonnegative coordinates. For d = (d; d,) a dominant
weight we have from section 6 of [L1] a description of the canonical basis of the Weyl

module V(d) = V((d; dy)) as follows: let Z ¢ N° be the set
Z:={(c ") " eN’ "eN' R(cT) ="}

Then by [L2] Z is in one to one correspondence with the crystal basis of Ug(sly) by
the map that takes a (¢',¢”") € Z to the element of B(oc) which is equivalent to the
PBW basis element
(b cs)
Flaiy”
Here the PBW basis is the one defined by Lusztig in [L1] and the equivalence relation -
is given by ¢ times the Z[q]-lattice generated by the PBW basis. ( Notice that

Lusztig works with U (sly), when changing matters to Ug(sly) the quantum

parameter ¢ becomes ¢! ).

! " . . ! ! ! ! " " " " -
For (¢',¢”) in Z write ¢ =(cypcpcy) and ¢ =(c¢y. ¢y, c5) and define Z,; c Z

as
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Zg={(c ¢"VeZ| ¢j<d; and ¢j < dy }

The set 7, is then in one to one correspondence with the crystal basis of V(d), this

goes via the map
Ty Ug(sly) » V(d); U — UV,

where v, is the highest weight vector in V(d).

2.3. The crystal operators }[Z have by [L2] on Z the form
fro(ce"y — (2, R(&")) where &' = ¢’ except for ¢y = ¢ + 1
foi(c ey = (R(&"),&") where ¢" = ¢" except for ¢] = ¢] + 1
And the operators é;, and é, are given by
e, (¢ ¢") — (& R(2")) where &' = ¢' except for &) = ¢} — 1
"

ey (¢’ c") — (R(&"),&") where ¢" = ¢" except for &) = ¢} — 1

where a tuple containing a negative number corresponds to the ideal basis element 0

that does not belong to the crystal. This gives the following e-functions
! ! ! ! ! ! !
er((epepes),R(cpepe5)) = ¢

GQ(R(célacgacg)a(célacgacg)) = cél

2.4. The reduced expression w, = $,$,$; induces the ordering of the positive
roots as a; < a; + ay < a, and the expression w, = s,5;5, induces the opposite

order. Then from the definition of PBW-elements we see that

th((c;,cé,cé),R(C;,cé,cé)) = —26; - C,IQ + Cé
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th(R(621765765)7(62176,19176;)) = _2621 - C,IQI + cé’l

And the formula ¢;(b) = wt;(b) + ¢;(b) implies that

@1((C;,Cé,Cé)jR(céycéjcé)) = —C; — Cé + Cé}
pa(R(ci ch,c5),(cf enef)) =—cf = ¢y + cf

2.5. Let us consider the antihomomorphism * of Ug(sly), in Lusztigs papers * is
denoted W. By theorem 2.1.1 of [K1] * leaves B(oc) invariant, so we would like to de-
scribe the induced map in the above language. We have that wgs,w, = s, and
wysywy = $;. By 2.11 of [L1] there is then the following relation between basis
elements in Ug(sly) of PBW-type:

(C,C,C) (C,C,C)
\I’(F(z,l,@,zg) )= F(Q?z,,'g) !

We thus conclude the following formula for * as a map on Z.

o ((epeney),(efes es)) —

1 1 1 ! ! !
((63762761)7(63762761))
We used the fact ** = Id in order to determine the first three coordinates in the

image of * It is now possible to describe the operators ff = *f* introduced by

Kashiwara [K1]:
(e e") — (R(&"),e") where &" = ¢" except for ¢§ = ¢§ + 1
1 3 3
(") = (e R(&")) where ¢’ = ¢ except for ¢ = ¢} + 1
2 3 3
There are similar formulas for the operators éf. From these formulas it is obvious

that }[1 }[5 = }[5 }[1 and }[Q }[j = }[j }[Q etc. Kashiwara has shown this result in general,
see corollary 2.2.2 of [K1].
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§ 3. The strict morphisms ¥; in type Ay.

3.1. We now consider the crystals B, and B, defined by Kashiwara in [K1]
example 1.2.6 of [K1]. We claim that the strict morphisms ¥, and ¥, from 2.2.1 in |

loc. cit.] can be described in the following way where we have written ¢ =

(cieacs), (ef o c5)

((ce")) = (R(cf e 0),( ¢ e5,0))@b,(=c5)

U, : B(x) - B(x) © B,
((6176”))'_> ((6276,197 0),R(c;,cé,0))®b2(—c§)

Let us check this. It is clear that U, is injective and maps us = ( 0, 0, 0 ) t0 U ®@
b;=(0,0,0) ®( 0). Hence by the uniqueness statement in 2.2.1 of [ loc. cit.] we
only have to show that W, is a morphism, i.e. that it commutes with }[Z and é; on the
elements that are not mapped to 0 and that it is strict. The action on B(oo)® B, is

the usual action on a tensor product. Let us check commutativity of ¥, and }[1. Set

b= ((cpeocq)R(cpeyez))
Then we have that
Uy (b) =by@b,(m) =
(min(cpeg),0, cotey ), R(.)) @ by( —c;— ¢y + min(eycy))
From this it follows that if ¢, < ¢y then W,(f;b) = f,by @ b,(m) and if ¢, > ¢4 then
‘1’1(}[15) = by ® by (m—1). However ¢(by) = ¢, + ¢3 — min(cycy) while

e/(by(m)) =—m = ¢;+ csg —min(cyez). Thus ¢, (by) > €,(b(m)) & c3 > ¢,

Comparing this with the definition of the action of }[1 on a tensorproduct, e.g. 1.3 in
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[K1], one sees that the assertion is true.

Finally strictness means that W, commutes with €; and }j on all crystal

elements; 1t can be checked in the same manner as the above.

§ 4. The strict morphisms ¥, in type Ag.

4.1. We now turn to type Ag. The simple roots are denoted a; ay and ay

where <o, a3> = 0. We consider the two reduced expressions of w, given by
(411) 'LU02313332313332
(412) 'LU02323133323133
In order to determine the function R: R® » R® we must find a sequence of braids and
commutations that carries (4.1.1) to (4.1.2); for each braid in this sequence we should
perform an Ay transformation on the relevant coordinates and for each commuation
we should commute the coordinates. A sequence of braids and commutations taking
(4.1.1) to (4.1.2) is given on page 3 of [C3]. It looks as follows:

313332313332 > 333132313332 > 333231323332 >
(413) 333231333233 > 333233313233 > 323332313233 >

323331323133 > 323133323133

As one sees 1t involves 4 braids and 3 commutations; thus the R function is quite a

lot more complicated in the Ag case than in A, case; for example 1t does not satisfy R

= R! and has 10 regions of linearity.

The crystal basis of Ug(sl,) is in one to one correspondence with the set

Z={(c c¢"VeNxNO| R(c¢") =¢"}
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Write ¢’ = (¢jcy.. . cs) and ¢" = (¢} ¢y . cg). Then the operators f; have the
following form on Z

fro(c ey — (& R(&")) where ¢’ = ¢ except for &y = ¢; + 1

foi(ce"y — (& R(&")) where &' = ¢’ except for ¢y = cj + 1
fo:(c'e"y = (RYE"), ") where ¢" = ¢" except for ¢ = ¢f + 1

and the &s act similarly. The e functions can then be easily described. Now (4.1.1)

corresponds to ordering the positive roots as a; < ag < a; + ay + ay < ay, + ag < o

+ a, < a, while (1.4.2) corresponds to the opposite order. Thus the definition of the

PBW basis and the formula ¢;(b) = wt,(b) + ¢,(b) give that

! " ! ! ! ! !
e e’ )=—c—cgtc,—cste
! " " " " " "
polc,c')=—cj —cy—cygtestoeg
" ! ! ! ! !
pa(c,c)=—cp—cy3—cy;+ecs+cg

4.2. We now claim that the U, are given by the formulas

U, (e ")y = (RYE"),e") @ b(—cg) where " = ¢" except for ¢ = 0
Uy o (¢ e") = (RYE"),e") @ b(—ck) where ¢" = ¢" except for &5 = 0
U, (¢ ey — (& R(&"))o b(—ck) where &' = ¢ except for ¢; = 0

Let us check that ¥, is a morphism, i.e. that it commutes with é; and }[Z for all 2. The
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case ¢ = 1 is the most difficult so let us concentrate on that. Write
¢ = (e .e5.0)

Then running through the sequence (4.1.3) backwards and doing a few calculations

one sees that R(&") has as its first coordinate

(4.2.1) ¢y =1ty + ¢, —min(ey.e;)

This is hence ¢, of (R(2"),¢")). By the definition of the PBW basis we find that
(4.2.2) wty(c' e")=cf —cy+ ey ¢
Summing (4.2.1) and (4.2.2) we then obtain

pr(BI("),2")) = e + & - min(ef.2])

We have that ¢,(b,(—¢;)) = cg. Thus the condition ¢, (R1(&"),&")) < e,(b(=cg))

1s equivalent to

(4.2.3) Gy <y N+ ey < EZ + ¢y

4.3. Following [C3] we define for ¢'= (¢ cp ... cg) € R the functions . agp,

ag and ap : R® » R through

ax(e') =y —cp agle) =ap(c) = c5 —cp acle') = ¢; —¢;

In [loc. cit.] these functions are called the vertex vectors. Furthermore we define the

function ¢ : R® » R® by

glepes. eg) = (chepescgepes)

Then in the papers of Carter there is constructed a function e : R® » R’ such that R
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= ¢ + ¢. The shape of this function depends of the region of linearity of R; this can in
turn be expressed through inequalities involving the vertex vectors. The pages 6 and 7
of [C3] contain tables that describe all of this in the A4 case ( note that the function
R is denoted fin Carter’s work ).

We now focus on the table on page 7 of [C3] describing e. The first row corre-

sponds to the region of linearity given by

apn >0, apy tag> 0, a02> 0, ag+ac>0
According to the table R there takes the form
(4.3.1) R(chey . cs) =(ch c;,cé,cé, c;—l-ozB—I-ozC cstastag)

When ¢ is increased by one a,(c¢') is also increased by one and hence the last
coordinate of R( ¢y ¢y .. cg) is increased by one. Hence in that region the action of
f, is on the second factor of the tensor product. But (4.3.1) satisfies (4.2.3), hence
e (R1(e"),e")) < e)(b(—cg)) and the action is as it should be.

In the same way one verifies for all other rows in the table that the action is

OK.

4.4. Of course one might hope for more conceptual proofs. Anyway from the
above results 1t seems reasonable to think of the R- function as encoding the data of a

crystal.

References.
[K1]. M. Kashiwara. Crystal basis and Littelmann’s refined character formula. RIMS
preprint, 1992.

[L1].  G. Lusztig. Canonical basis arising from quantized enveloping algebras.
J.Amer.Math.Soc.3 (1990), 447 - 498.

Document created by the PCL2PDF evaluation
(C) Copyright 1996-2000 Visual Software
Visual Software http://www.visual.co.uk



http://www.visual.co.uk

- 30 -
[L2].  G. Lusztig. Canonical basis arising from quantized enveloping algebras, II,
Common trends in mathematics and quantum field theories ( T. Eguchi et. al., eds. ),
Progr. Theor. Phys. Suppl., vol. 102, 1990, pp. 175-201.
[C1]. R.W. Carter. Sequences of reduced words in symmetric groups, preprint.

[C2].  R.W. Carter. The braid graph, preprint.

[C3]. R.W. Carter. The braid graph and Lusztig’s piecewise-linear function,
preprint.

7. Littelmann’s refined Demazure character formula revisited.
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81. The refined Demazure character formula.

1.1. Let the notation be that of Kashiwara [K1]. Especially for w = s, s,

in Z 1

s;, a reduced expression of w € W the subcrystals By(oo) C B(oo) and Bw()\)

'

B(\) are defined in the following recursive way

Uf By, w By(o0) = ueo

U f WD w By(A) = uy
1.2. Let D, be the additive operator on Z[ B(A)] given by

S fb ifwt(b) >0
0<k<wt (b)
Db = =N &b il wh(b) <0
1§k<-wti(b)
Then the refined Demazure character formula of Littelmann, see [L] is the following
equality in Z[B(\)]

(1.2) Y b=DyD; ,.D;u,
be Byw(X)

The purpose of this chapter is to review Kashiwara’s proof in [K1] of the formula and

to give a couple of short cuts.

1.3. The D;s commute with the usual Demazure operators on the group ring of
the weight lattice Z[ P] under the weight map w: Z[B(A)] - Z[ P]. Hence, taking w =
wy the longest element of the Weyl group, (1.2) generalizes the classical Demazure

expression of the Weyl character, see e.g. [A].

1.4. Let us have a closer look at Kashiwaras proof of (1.2). The idea is to

reduce to the verification of the following three properties of Buw( )
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i) ¢:Byl(0) C Byl(oo) U {0}V i€ [1.n]

?

iii) fib € By(oo) = ffb € By(oc) ¥ k

1.5. Let us outline how (1.2) follows from these properties. An ¢-string § is

defined to be a subset of B(oo) ( or of B(\) ) on the form
(1.5.1) S={f | k>0, where b € B(\) has ¢;b = 0}

We call b the highest weight vector of S. Then for any ¢-string § C B(oc) the

following statement about By,(oo) is true
(1.5.2) By(oo) N S is either S or {b} or the empty set

This is seen by combining ii) and iii).

1.6. Now for A € P let T, be the crystal on one element %, given by
wi(1)) = <A o> g(ty) = —00, @ilty) = -0
ety)=10, f(t)=10

Let A € P*. Then u, — ux®t, defines an embedding of crystals + : B(\) -
B(oo)® T, that commutes with the &, Let namely #,: B(oc) » B(\) be the map
from theorem 5 iv) of [K2]. Then ¢ is given by

v o 7y(b) — bot, when 7,(b)# 0

This is a well defined morphsm by ii) and iii) of the same theorem and commutes

with the &, by iv) of the theorem. Finally it is clearly injective.
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Now By(A) is the inverse image of By(oo)® Ty under 2. Furthermore the
inverse image under ¢ of an ¢-string for B(oo) must be an i-string for B(A). Thus
(1.5.2) implies

(1.6.1) By(A) n S is either S or {b} or the empty set

for § ¢ B(\) any i-string.

1.7. 1f ;b = 0 for b € B(\) then clearly D,b is an ¢-string having b as its high-
est weight vector. And an easy calculation shows that D;S = § for S any ¢-string.
Now theorem 2 of [K2] says that

~ e~ -1

(1.7.1) By = | fjmff.ml
kZ'Z(); JZEL m>0

Hence B(\) is the disjoint union of ¢-strings for any ¢ € I: ¢-strings are either disjoint

or coincide.

We now prove (1.2) by induction on (w). We thus assume the formula for

Sz'nw — Sin-lsin-g. ..

(1.7.2) Y ob=p,( Y b)
be Byw(\) bEBsZ. w(N)

n

Si and need to check the equality

As D, leaves any ¢-string S invariant it is enough to verify the following equality

(1.7.3) S ob=p( Y b)

be By(M)nS bEBsZ. wA) NS
n

where S is an arbitrary in-string. Now (1.5.2) severely restricts the shape of these

intersections; and even further restrictions are imposed by the condition

By(A)ns =} ﬁn(Bsi w(A)NS)
e n

which 1s a consequence of the definitions. All together we are left with only three

possibilities, namely
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(a) By(A)NS = By y(A)nS =&
(b) By(M)nS = By_y(A)nS =8
(¢) By(A)n§ =38 and By (A)NS = {b} where &b = 0

And in all three cases (1.5.5) can easily be checked.

1.8. We have thus reduced ourselves to the verification of 1), ii) and iii) of 1.4.
Kashiwara proves i) and ii) by realizing the By,(\)s as crystals of certain Ug(b)-sub-
modules of V(\) whereas the proof of the string property iii) relies on the

combinatorial properties of the operators ¢} and f# together with i) and ii).

Here we shall demonstrate that i) and ii) can be obtained in the same combina-
torial spirit that is employed for iii), that is without relying on an interpretation of
the By (A)s as crystals for any modules. This also gives a somewhat shorter proof of

the refined Demazure character formula.

§ 2. Properties of By o).

2.1. Recall the injective morphism W, : B(cc) » B(oc) @ B; defined in [K1]; B;
is the crystal defined in example 1.2.6 in [K1]. It satisfies among other the following

conditions

(2.1.1) Ut oo — Uso®D,

(2.1.2) Wi fib) = bo@ f;by where Wy(b) = by b,
(2.1.3) FU(h) = W (fib) and &0;(b) = W(¢&b)
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where B(oo)@B; has the usual crystal structure of a tensor product. Using these
properties one can obtain information about the commutation of }[Z and }[Z*, this 1s 1llu-

strated by the following lemma.

Lemma 2.1. For 4,5 € [1,n] and b € B(oo) we have

U 7k = Frm

k,n k,n

Proof. If ¢ # j then by corollary 2.2.2 of [K1] }[Z and }[]* commute and there is nothing

to prove. So we assume ¢ = 5. Write
U(b) = boo fi'b,

and let ¢ := ¢(b,) and € := m. Now W, is an embedding so to show the equality of
the lemma it is enough to see that both sides have the same image under ¥, So we
replace b by b0®ﬂ" b,
while f,

?

and keep 1in mind that the action of }[]* 1s on the right factor

acts as on a tensor product.

Let now W,(b) = by@ f™b, be represented as a point in the crystal graph asso-
ciated to B(oco)®@B;. The crystal graph is a representation of the action of }[Z on
B(co)® B;, so there is an arrow between two points in the graph if }[Z carries the

corresponding crystal elements to each other.

If » < m the action of f; is on the second factor and there is a horizontal

arrow leaving b, @ f™b; and if ¢ > m there is a vertical arrow leaving b,@ f™b,.

One typically gets a picture as the following

Bz'
bl

* * K K K K K KK
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* K K K K K KKk

I N S N L S S

The subset of B(\)

U filboo fi'b;)

k

1s represented by the points in the graph that can be hit by a sequence of arrows

starting in b, @ fb,.

On the other hand the action of }[jis always on the second factor of the tensor

product, so }[Z* always takes a point in the graph to its right neighbour. Using this

information one can now calculate the two sides of the lemma; in both cases on gets

the infinite rectangle whose upper left corner is W,(b) = b,@ f™b, and whose lower

left corner is the point below b0®ﬂnb

i

lemma 1s proved.

2.2. We can use the above to show the following result.

Theorem 2.2. By(e) = [ }[*kl CF

21 . in

kg

Proof. By definition }[:k Uoso = }f Uoo for all k and all 7. So we get that

Uf..ff'?”oo

in which the arrows change direction. The

O

Using lemma 2.1 we can move f to the front position. And then we proceed with

ffg’g etc. The theorem is proved.

2.3. And then we can deduce the property i) of Byy(oc):

Corollary 3. Bjj(oc) = By,-1(o0).
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Proof. Let b € By(o0), ie. b = }fg }”ZIUOO for some k. kn. The definition of f}
then gives that

* ~Fen kg ~¥ky
b =f nfzn_nl le Uoo

in

But from theorem 2.2 we see that b* € B,,./(00) and the corollary is proved. O

2.4. We shall now consider the property ii). To that end we prove the following

lemma.

Lemma 2.4. For all 4, j € [1,n] and for all b € B(oc) we have that
Ay b ¢ U feb u U ¥y uloy
k k k

Proof. Again only the case ¢ = 7 is nontrivial; otherwise é; and }[]* commute. We apply
the morphism W, to both sides of the lemma and can then check the inclusion in the

crystal graph:

Bz'

b

LI S SN SN SN SN SN SN TN
I

L SN SN N SN SN SN SN N
!

The graph is infinte in downwards and to the right. We understand that e,(b) = 0 if
there 1s no arrow ending at the point corresponding to b. And again }[Z* acts by
shifting a b to the right while f; follows the arrows ( and hence ¢, follows the arrows

in negative direction ).

Let us start out by verifying that there are no points missing in the picture
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above.
So we must check that if the arrow leaving b is vertical and there is no arrow ending

at b then neither should there be any arrow ending at b’s right neighbour.
Let thus b be as indicated and write W,(b) = by@ f™b,. Then o(by) > e( f™b;)

= m because the arrow leaving b is vertical. Now &,(b) = 0 implies that &,(b,) = 0
because W, commutes with &, and no element of B, is mapped to 0 under é, We get
from these things that o(b,) > e( f771b,) and as wanted

i

e (W (b)) = ;b fi7h,) = e;bg0 f b)) = 0

We now split the verification of the lemma in 3 cases. Firstly we consider the
case of a b like above, i.e. with &,(b) = 0 and with a vertical arrow leaving it. Then
from the above considerations the left hand side of the lemma consists of those points
in the row of b from which a horizontal arrow is leaving. But this is contained in the

right hand side of the lemma ( even with the first union omitted ).

Then we consider the case where a horizontal arrow is leaving b. In that case
the left hand side consists of the points that can be obtained from by following the
arrows starting in b together with b itself and its immediate predeceesor ( if any ).
And this is contained in the right hand side ( only the & = 0 part of the first union is
needed ).

Finally we consider the case where there is both a vertical arrow entering and
leaving b. Then the left hand side of the lemma consists of all points that are posi-
tioned to the right of b ( including b itself ) together with the points in the row above
b that have an arrow leading into one of the first points. And the right hand side
consists of the first points together with their upper neighbours. Thus the inclusion

also holds in this case and the lemma is proved. O
2.5. We can now show the property ii) Byy(oo):

Theorem 2.5. For ¢ € [1,n] we have that & Bgy,(oc) C Byl(oo) U {0}

Proof. We argue by induction on [(w) and thus assume the theorem for {(w)—1. By
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theorem 2.2 By,(oc) satisfies the equality

By induction hypothesis &, Bys. (00) C Bys. (00) U {0}. Combining this with lemma
i i

2.4 we obtain the induction step. The theorem is proved. O
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§ 0. Introduction.

0.1. Let G be a reductive connected algebraic group and let B be a Borel sub-
group. One of the central themes of the representation theory of G is the study of the
induction functor H? from B-representations to G-representations. Many of the
features of HY in the characteristic zero case also hold in the modular case, e.g. the
properties that H’(A) # 0 if and only if A € P, and that the weights of H’( ) are
all less than or equal to A. On the other hand the Borel-Weil-Bott theorem fails in
general in the modular case, and hence the simplicity of H’(\) also breaks down in ge-
neral. Still, we consider the H%(\)’s to be fundamental objects of study, the reason
being that their characters, like in the characteristic zero case, are given by the Weyl

character formula. This fact in turn relies on the Kempf vanishing theorem, i1.e that

H{(\) = 0for i > 0 and A € P*

0.2. In 1979 Andersen and Haboush independently found a short proof of this

vanishing, see [A] and [H]. Their idea was to show the following isomorphism
Hi((p'=1)p+p7A) = StroH{(N)!"

where Str 1s a Steinberg module and the superscript denotes the r-order Frobenius

twist. Because of ampleness properties the left hand side is 0 for r sufficiently big;

hence Hi()\)(r) must be zero, and thus also H( )).

0.3. In [APW 1,2] and [AW] an induction functor H? for quantum groups is
constructed and studied in great detaill. Many of the results in these papers rely on
specialization to the modular case. In the mixed case however, i.e. the case where the
ground field is of positive characteristic prime to [, these methods fail to give a
generalization of the Kempf vanishing theorem when [<h, the Coxeter number. And
as higher ordered Frobenius twists do not exist for quantum groups, also the classical
method sketched above fails.
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0.4. Our approach to the quantum Kempf vanishing theorem is based on some
properties of the crystal basis proved by Kashiwara in order to obtain the refined
Demazure character formula in [K2]. In section 1 and 2 we discuss these results and
in section 3 and 4 we show how they can be applied to deduce the Kempf vanishing

for the quantum H? in all cases.

0.5. It 1s a pleasure to thank H. H. Andersen for providing crucial input to this
work. Thanks are also due to G. Lusztig and to M. Kashiwara for hosting my stays at
MIT in the fall 1992 and at RIMS in the spring 1993.

§ 1. Notation and some fundamental results.

1.0. Let g be a complex finite dimensional Lie-algebra. In [K1] g is allowed to
be
a general Kac-Moody algebra, but otherwise we shall more or less follow the
terminology of that paper. In particular, {O‘i}ie] 1s the set of simple roots of g,

{hi}ie] is the set of simple coroots, P is the weight lattice, Ugq(g) is the quantized

(
(

Uq(g) with v, as a highest weight vector.

Q( q)-algebra generated by e, f where 1€l and ¢" where b € P*, A is the subring of
Q( ¢) consisting of rational functions regular at ¢ = 0, V() is the Weyl module for
[}

1.1. Assume that g has rank one. Then the weight lattice P is equal to Z. For
A >
—1 the dimension of V(A) is A41: a basis is { fik)v)\ | 0 <k < A3} The action of
Uq(g) on this is given by the following formulas

(1.1.1) ff(k)vA = Ek+1]f(k+1)w
(1.1.2) ef(k) vy = [A-k+1]f(k'1) v,
(1.13) 1Yoy = @,
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where by convention f('l) vy = f()‘H) vy = 0.

1.2. By Ugy(sl,)-theory any v € V() can be written uniquely in the form

oy

where up € V(A) is a weight vector and satisfies e,un = 0. Then the operators é; and

f, on V(\) are defined in the following way

D

_ Z fZ’(n-I)’UJnf }[iv — Z ][Z'(n+1)u"
The A-lattice L(A) ¢ V(A) is then defined as

iy }ikvk|z’jef,k20>

B(A)::r({f} va|z€Ik>0}CL /qL

where 7 is the canonical map = L(\) - L()\)/qL()\). One of the main results of
[K1] is then that (L(X), B()\)) forms a lower crystal basis of V(\); this means
among other things that &; and f; induce operators on B(A)U{0}, see theorem 2 of
[K1].

1.3. The functions ¢;, ¢, and w,;: B(A) » Z are defined in the following way:
¢(b) := max{n|e;b#0}, o(b) :=max{n| f;b#0}, wib) := <weight(b),h,>
We have the following relations between them

(1.3.1) wi(b) = ¢i(b) = (D)
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(1.32) ci(f;b) = ¢(b) + 1, Pl fib) = ¢i(b) - 1

and (L(A), B(X)) is a normal crystal with respect to ¢;, ¢, and w,.

1.4. The Z[gq, ¢-1] - subalgebra of Uy(g) generated by fi("), eg") and ¢", {4} for
heP” is denoted Uf(g) and the UZ(g)-submodule V() of V(A) is by definition
U%(g) v, Furthermore — is the Q-automorphism of Ug(g) given by the formulas

e =¢  L=F gh = gh, g = ¢t
Then Kashiwara has shown, ( G;2) in section 7.2. of [K1], that
(1.4.1) Vo(AMNL(A)NL(\) & VZ()\)HL()\)/VZ()\)HQL()\)

where 7 is the canonical map. The inverse of 7 is denoted G,.

1.5. It is known that the crystal B(\) is contained in and gives a Z-basis of
VZ()\)HL()\)/VZ()\)HQL()\). From (1.4.1) we now get the following results by
applying lemma 7.1.2. of [K1]:

(1.5.1) Vy(MNL(ANL(A) ~ @ ZGy(b)
be B(A)
(1.5.2) V() ~ be%(k)l[q, 1] Gy(b)
(1.5.3) V(A) = 9 Qq) G(D)
€ B\
(1.5.4) L(\) ~ & AG(b), L(N)~ @ AG(b)
be B(A) be B(A)

Due to these properties { G,(b)|b€B(\)} is said to be a global basis.

1.6. For I' a Z[q, g-1]-algebra the quantum group U?(g)@@m q_1]F 1s denoted
Up(g). We use the notation Up(b) and Up(b-) for the corresponding Borel subalge-
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bras. Let C be the category of Ug(g)-modules M satisfying

M=oM
?)\

Vm € M and ¢ € I: ei(")m = fi(")m =0 forn > 0etc

The categories ¢ S, Cr C%, Cs are defined likewise. For M a UZ(g)-module we
define F( M) as the largest submodule of M which belongs to C.

If M € welet P(M) denote the set of weights of M.

1.7. Let N € ¢*. Consider the Z[g, g-1] - module HomUZ(b)( Ut(g), N ):=
{ feHom,, ,(Ui(g). N) | flub) = §'(b)fu) Vue Ui(g), Vbe Ug(b)}

where § is the antipode map of U&(b). It has the structure of a UZ(g)-module
through (uf)(m):= fS(u)m). Then the APW induction H( N) is defined as

HY(N) := F(Hom

20 VE8). )

( Contrary to what APW do ( and what is the tradition for algebraic groups ) we are
here inducing from positive Borel groups, this is the reason for the difference between
our definition and the one in [APW]). The map Ev: H'(N) » N; f — fi1) is a
Ug(b) - linear map; 1t induces the Frobenius reciprocity isomorphism:

Hom E.HO(N)) VNe ¢Z Eec
q

; (b)(E,N) = Hom z

U, (9)(

This is the universal property of H( N). There is also a tensor product theorem for

HO.

For any Z]gq, ¢-1]-algebra I' we have likewise an induction functor Hg: C% - Cp.

§ 2. W-filtrations and crystal bases.
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2.1. In this section we shall improve on some of the results of [K2]. In that
paper all theorems deal with the rings Q(¢) and Q[g, ¢-1]; however we need the
results to hold also for Z[q, ¢-1].

2.2. Throughout the rest of this section we fix an ¢€7 and consider the corres-
ponding st,-component g; of g. Let W!(\) be the sum of all Ug(g,)-submodules of
V(\) of dimension greater than or equal to I. Furthermore W B(\)) and I'( B(\))
are defined as the following subsets of B(\):

WI(B(X)) = {beB(N)]¢(b) + () =1}
I(B(X)) = {beB(A)| i(b) + o b)=1}

where ¢,(b) and ¢;(b) are the functions mentioned in 1.3. Then (3.1.1) of [K2] says
that

(2.2.1) Wi(A) = o Qq)Gy(b)
be WH(B()

We can improve this to the following lemma:

Lemma 2.2 WY(A)nV,(\) = & L[q,q¢1])G,(b)

be W(B())
Proof. The inclusion O follows from (2.2.1) together with (1.5.2). For the other
inclusion assume w€ WY(A)NV4(A). Then using (2.2.1) and (1.5.2) once more w can

be written as
w = X RKG(b) = X g,G\(D), h€Qa), g € Z[q. q1]
be WH(B()) be B())

But the G,(b)’s are independent so we can conclude that f; = ¢, The lemma is
proved. O
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2.3. For b € I'(B()\)) we have the following formulas, (3.1.2) of [K2]:

(2.3.1) ]ék)GA(b)z[ei(bk)MJGA(ﬁb) mod WH())
(2.3.2) egk)GA(b)E[Ei(blgMJG)\(éikb) mod WH())

Lemma 2.3. The above formulas also hold mod W'*{(A)n V,(A).

k
Ff@?ik} Wew have that G,(b) € Vgz(A) Vb € B(X) and hence fg)G)\(b) —
ko JG,(fib) € V4(A). This proves the lemma. O

2.4. Let us now consider a U%(b;)-module N ¢ V(A) and a U%(b,)-submodule
Ny. Assume furthermore the existence of a By ¢ B(A) such that

(2.4.1) Ny =~ bEG%NZ[q, 1] Gy(b)
(2.4.2) N & Qq)G(b)
EBN

According to the lemma 3.1.2. of [K2] By must then satisfy that
(2.4.3) e,By C Byu{o0}
We now make the following definitions:

NZ = zﬂ:Jén)Np N = zﬂ:]é")N, By = Lnjfén)BN
Then Kashiwara has shown, theorem 3.1.1 of [K2], that

(2.4.4) N = & Q(q)Gy\(b)
beBN
We wish to improve this to a statement about N.

Lemma 24. N, = @ Z[q, ¢1]G,(b)
beBN
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Proof. The intersection of the right hand side of (24.4) with V,(\) =
@& Z[q.q1] G,(b) equals the right hand side of the lemma. Hence we must prove

%ﬁgﬁ(k)
(2.4.5) NnVy()) =N,

The inclusion O is clear. For the other inclusion choose an n € NnV,(A). Then we

can write n in the following two ways

(*) n= Y e, VG () = Y dyGy()

where ¢, , € Q(¢q) and dy € Z[qg, ¢"1].

We wish to modify the first sum so that the occurring b’s all satisty é,b = 0.
Assume that b occurs in the sum and that é;b # 0. Choose [ minimal such that b €
W B(\)). By (2.2.1) we then have Gy(b) € W(X) and thus G,(b) € W(A\)nN c
W{(A)NN = W(N); so it follows from si,-theory that

(2.4.6) G\(b) = cfie; Gy(b)  mod WTUN)
where ¢ € Q(¢). On the other hand (2.2.1) and (2.3.2) give that

be WH(B(N)

with ¢;, ¢, € Q(¢q). As ¢;G,(b) € N, it can also be written as a Q( ¢)-combination
of the G,(b)’s with b € By; hence we get from the independence of the G,(b)’s that
e;b along with the b’s in the sum belong to By. ( This is actually the proof of (2.4.3)
). Thus, writing (2.4.7) in the form

e;Gy(b) = ¢;G(eb)  mod WTN)

we deduce that
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cfie; G\(b) = ce f;Gy(&b)  mod WH(N)

Combining this with (2.4.6) we obtain

(2.4.8) Cy(b) = ce fGy(8b) mod WH(N)

Using this formula and descending induction on [ we can write n as promised

n = Z ck,bfz'(k)G)\(b)
beBy, é,b = 0

Using sl,-theory once more and an induction like the previous one we can furthermore
ensure that the occuring fi(k)G)\(b) satisfy & < w,(b). Now from (2.3.1) and (2.4.4)

we have that
16\ (b) = G(ffb) mod WH(R)
Thus the set of vectors in N
{ Jék)GA(b) | k< wlb), beBy eb=0}
is a Q(¢)-basis of N and the base change matrix from {G,(b)| b€By} is triangular

with ones on the diagonal with respect to a proper indexing of the basis. But then in

(*) we must have that ¢, , € Z[g, ¢1] and thus n € N . This proves the lemma. O

2.5, For w € W the U%(b)-submodule VE(A) of Vy(\) is defined in the

following recursive way
VEA) ==y,  VE(N) =Uk(gs) Va(A) sw < w
It is shown in lemma 3.3.1 of [K2] that V4( ) also has the following description

VE(N) = UE(b) vy,
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where v,, € V4(\) is defined in the following recursive way:

I

,UI)\::V)\7 ,UU))\:: s ,USU))\ Sw < w

where m:= <aq; swA>. By the quantum Verma relations this is independent of the
choice of reduced expression of w and hence also V&(\) is independent of the reduced

expression of w.

Applying now the above lemma to N; = VZ%()) we obtain the existence of a
Buw(A) c B()) such that

(2.5.1) Vi) = & Z[g.¢1]Gy(b)

be By())
Then By(\) has the following properties
(2.5.2) e;Bu(X) C Bu(N) U{0}
(2.5.3) Bu(A) = | Jf¥Bsu( )

k
The first property is a consequence of (2.4.3) and the second one follows from lemma
2.4.
Let S be an i-string, i.e a subset of B(\) on the form
S={Fb k>0 beB)),eb=0}

where b is called the highest weight vector. Then By(A) has the following property

(2.5.4) Buw(X) n S is either S or {b} or the empty set.

This is rather deep; it is the content of theorem 3.3.2 of [K2].

2.6. We shall investigate the consequences of these properties for the V%)()\):

Lemma 2.6. There is a UZ(b,)-filtration of V&(\)
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0=W{(X)n VEN) c W) n VEN) c...c WIA)n VE(N) = VE(N)

such that the quotients are direct sums of Weyl UZ(g;)-modules restricted to UZ(b,)

and of rank one UZ(b,)-modules having dominant weights
Proof. We can construct a UZ(b,)-filtration of V5( ) in the following way
0=W(XN)nVEXN) c WA n VE(N) c...c WIA) n VE(N) = V()

where [ is chosen big enough for the first equality to hold. By lemma 2.2, (2.5.1) and

the definition of I, the quotients are

WEA) 0 Via(A) W) n VR ) = 8 Z[g.¢ 1] Gy(D)
be F(By(V)
If S is an ¢-string then ¢,(b) +¢;(b) is constant on §; this follows from (1.3.2). But
then I*(S) is either S or the empty set and we conclude that I*(Bw(\)) inherits the
string property (2.5.4). If the intersection is §, the formula (2.3.2) together with lem-
ma 2.3 and the description of the Weyl UZ(g,)-modules for UZ%(g;) in 1.1 show that
{G,(b), b € S} gives rise to an Uf(g;) Weyl module restricted to UZ(b;). If the
intersection is a highest weight vector {b} then it has the weight [ > 0: ¢(b) = 0
whence @, (b) = p;(b) + ¢(b) =1 and then (1.3.1) gives w;(b) = ¢;(b) — ¢(b) = 1.

The lemma 1s proved. O

Remark 2.6. For N a UZ(b,)-module the filtration of it by the NnW!(\) is denoted
the W-iltration of N.

2.7. Let k be field of characteristic p > 0 which is made into a Z]gq, ¢-1]-algebra
by sending ¢ to an I'th root of unity. (Later on we shall appeal to results from [AW],
hence we should really impose the restrictions on [ that occur in that paper. However,
in [AP] it is shown that the Frobenius map of [L] can be employed to get rid of these
restrictions ). Then, as the filtration quotients in lemma 2.6 are free Z[g¢,q]-modules
we get by tensoring a filtration of Vh(A) == Vi(A)@
ties as the one of V&( ).

z[q,q-l]k having the same proper-
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$3. Josephs induction functor.

3.1. In this section we shall compare the induction functor D of Joseph, see [J],
with the APW induction H? Let k& be as in 2.7. Then D is defined in the following

way

Definition 3.1. Let N be a finite dimensional U.(b)-module and let U, > U.(b) be a
parabolic ( in the sense of APW ) quantum group. Then DN is

where the tensor product has structure as a Uj-module through left multiplication and
D is the functor from U,-modules to finite dimensional U;-modules that takes an M

to the largest finite dimensional quotient of M by a Uj-submodule.

Remark 3.2. Recall that if M is an integrable Uj-module then the ( relevant ) Weyl
group acts on the weights of M, see [AW] proposition 1.7. Hence, arguing as in
[APW ], 1.14, we find that there is a unique submodule of Uq@Uk(b)N such that the

quotient is of maximal dimension, i.e. D is well defined.
The universel property of D is given by the following Frobenius reciprocity
HomUk(b)(N,E) = HomUk(DN,E)

where E, N are finite dimensional U, U.(b)-modules. The isomorphism is induced by

the natural Ug(b)-map oo N » DN. Furthermore D satisfies a tensor product theorem.

3.2. For M a Upmodule we set M™ .= Hom,(M,k). Then M™ has two
structures of a U,-module, namely M* and M' defined by

M (uf)(m) = fS(u)m)
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M (uf)(m) = f5(u)m)

where S is the antipodal map of the Hopt algebra U,. When M is of finite dimension

we have the isomorphisms Mt~ MY ~ M

3.2. Using this we can deduce the following lemma
Lemma 3.2. Let N be a finite dimensional U,(b)-module. Then
(DN)* ~ HJ(N*)

Proof. let & € HomUk((DN)*,Hg(N*)) be the map corresponding to
o€ HomUk(g)(N, DN) under the isomorphisms

Hom, (;)( N, DN) = Homy, ) ((DN)*, N*) =~ HomUk((pN)*,Hg(N*))
The second i1somorphism was Frobenius reciprocity  for Hg. Let ¥ €

HomUk(Hg(N*),(DN)*) be the map corresponding to Ev € HomUk(b)(Hg(N*),N*)

under the isomorphisms
HomUk(Hg(N*),(DN)*) ~ HomUk(pN,Hg(N*)t) ~
HomUk(b)(N,Hg(N*)t) ~ HomUk(b)(Hg(N*),N*)
Here the second isomorphism was Frobenius reciprocity for D; it can be applied since
HY( N*) according to [AW] is finite dimensional. We can describe @ and @ in the follo-
wing way

O f—[u—(n— fulon)))]

U fr[uo(n) — flu)(n) ]
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Using these descriptions one checks that @ o W = Id and ¥ o & = Id. O

3.3. The functor D is coinvariant and right exact so we would like to introduce
its derived functors. However, as the category of finite dimensional Uj,-modules does
not have enough projectives one cannot proceed as normal when defining these. To
overcome this obstacle, Joseph proposes to use objects of the form F@ A, where F is a
finite dimensional and A is dominant, as substitutes for projectives [J]. We shall show

that this definition also makes sense in our context.

Lemma 3.3. Let M be a finite dimensional U,(b)-module. Then there exists a A€ P*
and a finite dimensional U;-module E such that M is a quotient of E®A.

Proof. In [AW] the following ampleness property of HY is shown
(3.3.1) Hi(A\) =0 fori>0and A < 0

( We are here inducing from positive Borel groups, hence dominant is replaced by anti-

dominant ). As M is finite dimensional, we can use the above to find a A such that

P(M@®-X) c P~ and such that
(3.3.2) Hi(p) =0 Y pu€eP(Mo-X)
We now proceed by induction on the cardinality of P(M@—-)). Choose v maximal in

P(M@-X); then v ¢ M@-\ as Ug(b)-modules. From this we obtain a commutative

diagram as follows
0 — H)v)— HYMa-)) — H((Ma-M\)/v)—> 0
| Ev | Ev | Ev

0 — v —_— Mo -\ — (M@—)\)/l/ —_— 0
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The rows are both exact, the first one by (3.3.2), the second by construction. The
first vertical map 1s surjective by definition and the third 1s surjective by induction

hypothesis. But then also the second vertical map must be surjective and we are dondl]

3.4. We can now 1n the usual way construct resolutions of all finite dimensional
U,-modules N; these will be on the form (E@\) —» N and in general infinite. We can
furthermore assume that in (E@\) — N all —\ satisfy Hi(A\) = 0 for ¢ > 0, this is
possible by (3.3.1).

Lemma 3.4. Let (E®\) — N be a resolution like the above. Then the cohomology D’
of the complex D(E®)) —» 0 is independent of the choice of resolution. Furthermore

there is an isomorphism of U,-modules

Di(N)* ~ Hi(N*)

Proof. Dualizing the resolution (E®)\) - N we get the resolution N* »» (E*@-)\).

[t 1s acyclic for Hg because the tensor identity gives that
Hi(E*®)\) ~ E¥oHL(\) ~ 0

But then H{(N*) is the ith cohomology of 0 »» HY(E*®\)’, which by lemma 3.2 is
the ith cohomology of 0 »—( D(E@)\))*'. The lemma is proved. O

84. The vanishing theorem.

4.1. Assume that we are in the rank one case, i.e. g = sl,. We then have the

following well known results

Lemma 4.1. i) Let A>—1. Then DA = 0 for g9>0, while DX has dimension A+1, a
basis being {f{k)®v)\| 0<k<M\}. The action of Uy(g) is as in 1.1.

ii) Let A be as before and let @ be the U.(b )-module D)\/)\. Then DQ = 0 and D’ Q
= 0 for 7>0.
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Proof. i) follows from the corresponding proposition 4.2 in [APW] and the preceding

lemma. As for ii) consider the long exact sequence of U;(g )-modules
— DDA — DIQ—> PAx L DA — DQ — 0

which arises from the application of D to the sequence defining @. The definition of de-
rived functors in the last section gives that DDA = 0 for g > 0; thus the 3> 1 case of
ii) follows by combining with i). Now, ¢ must be a nonzero scalar times the identity
map on DA because it 1s the map corresponding to ¢ # 0 under Frobenius reciprocity

and

Hence D'Q as well as PQ must be zero. The lemma is proved. O

4.2. We still consider the rank one case. For a copy of sl, in U, corresponding to the

simple reflection s we denote the corresponding Joseph induction Ds.

Theorem 4.2. i). Let VE(\) be as in 2.6. Then DLVE(A) = 0 for j > 0.
ii). Let sw<w. Then DsVEy(\) = Vh(A).

Proof. ad i). Let ¢ € I be the index corresponding to s and consider the W-filtration
of Vﬁ,()\) from lemma 2.5 with respect to this 2. The quotients @ of this all satisfy
DﬁQ = 0 for 3> 0: if @ 1s a dominant line this is because of lemma 4.1 and if @ 1s the
restriction of an sf,-module it follows from the definition of 7’ in §3. Using induction
on the filtration length we conclude that DIVE(\) = 0 for j > 0.

ad ii). Let the U.(b; )-module R be defined such that the following is exact

(4.2.1) 0 — Vf?w()\)—> Vﬁ;()\)—v R — 0

We know from 2.5 that V() has a k-basis on the form {G(b)|b€Buw(\)}; hence R
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has a basis on the form { G(b)|b€Buw( )\ Bsw(A)}. In the W-iltration of R, the quo-
tient  between  the Ith and the (I+1)th term hence has basis
{G(b)[bel'(Bu( M)\ I'(Bsu(A))}.

We saw in the proof of lemma 2.6 that the I'( By(\)) satisfy string properties
like (2.5.4). If S is an é-string and SNI'(Bsw(\)) # @, then by (2.5.4) we have Sc
I'(Buw())). Now Vh(A) is a Uy(g;)-module, so I'( Bu(\)) is the disjoint union of -
strings; and if § cI'(Bw())) is such a string then from (2.5.4) we get SNI( Bsw(\))
# @. Putting these things together we see that I'( Bu(A)) \ I'( Bsw()\)) is the union
of i-strings with the highest weight vector omitted; this must furthermore be of sl
weight [. From the formula (2.3.2) we then see that the span of the global basis
elements of I'( Bw(\)) \ I'( Bsw(\)) form a U,(b; )-module of type D)\/)\. And then
an induction on the filtration length, the induction start being provided by ii) of lem-
ma 4.1, proves that DIR = DsR = 0.

Now, Vi(A) is a Uy(g;)-module so we have DsVh(A) = Vi(\); combining this
with DIR = DsR = 0 we may finish the proof of ii) by applying D to (4.2.1). O

4.3. In theorem 4.2 the induction Ds was induction from a rank one Borel sub-
group. However, Vh(A) has a module structure for the full Borel group U.(b).
Denote by Uj(g;) the minimal parabolic quantum group generated by this and the
fin)’s and by D} the induction from U,(b) to Uj(g;). As k-vectorspaces and U,(g;)-
modules D4 VE(A) and DsVi(A) are isomorphic, namely both equal to the largest f-

finite quotient of
Uils, Viuw( A
k(92)®yk(bz.) (A)
We have the following lemma.
Lemma 4.3. There is an isomorphism of U}( g,)-modules
DLVE(N) ~ VE())

Proof. There 1s a commutative diagram
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VEs(X) VEs(X)

| 12
DiVE(N) S V(M)

where i is the inclusion map, & is the canonical map - these are Uj(g,)-linear - and ¢
is the U.(g,)-linear map obtained from theorem 4.2 ii) together with the remarks in
4.3. Any element of DiV%(\) can be written as a linear combination of elements on
the form uo(v) where w € U, (g;). v € Vhy(A). We must show that ¢ commutes with

e; for j#u ; it suffices to do that for uo(v). On the one hand we have

plejlua(v))) = pluejo(v)) = gluo(e;v)) = wp(ole;jv)) = uile;jv) = ejui(v)

where we used the commutativity of the diagram and of e; and f. On the other hand
e soluo(v)) = eupl(o( ) = e;ui(v)
We see that two sides are equal. O

4.4. We omit from now on the primes on the D, inductions will be from the full

Borel subalgebra. For w, = 8i Sy Sip @ reduced expression of the longest element of

W we define Dy, as DiIDiQ,,, D; , ( a priori this may depend on the chosen expression
). The Weyl module Vi(\) is by definition Vz(A)@k. We now obtain the following
theorem

Theorem 4.4. For A\ € P* there are isomorphisms of U,(b)-modules

Proof. As V() has finite dimension there is by definition of D a surjection ¢: DA —
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Vi(A). Now, successive applications of theorem 4.2 and lemma 4.3 give the
isomorphism Dy, A =~ DA ~ Vi(A). And applying Frobenius reciprocity succesively,
the canonical map o: A » DX induces a Uy(b )-linear map t: Duw, A ~ Vi(A) » DA But
any U.(b)-linear map V.(A) - DX must also be U.(g)-linear as one sees from
Frobenius reciprocity: Vi(A) and DA are both U,(g)-modules. Thus the composition
wotp is a Ui(g)-linear endomorphism of V;(\) and one checks that it is nonzero on
the A'th weight space. But V() is a highest weight module; hence wot must be a
nonzero scalar times the identity. This shows that DA ~ Vi (A)&M for M some
U,( g )-module. Now, DA is indecomposable being a highest weight module too, and we

get a contradiction unless M = 0. The theorem 1is proved. O

4.5. We can now prove our main theorem.

Theorem 4.5. ( Kempf vanishing ). Let A\ € P". Then Hi(\) = 0 for i > 0.

Proof. By lemma 3.4 the theorem is equivalent to D'(—-\) = 0. Let (Eov) —-\ —
0

be a resolution of —\ as in 3.4. Then the complex (Ds,(E®v)) — Ds,( —A) — 0 is
exact by lemma 4.1 1). It is also acyclic for Ds , because by the the tensor identity

and theorem 4.2 we have

Din_l (Ds(Eov)) ~ E®D§n_1 (Dsp(v)) ~ E®D§n_1 (Vlgn(l/)) ~ 0

Thus the application of Ds  to (Ds,(E@v)) — Ds,( —A) — 0 gives a complex that
evaluates Dy (Ds,(—A)). But we know from theorem 4.2 that these cohomology
groups are zero so the complex Ds (Ds,(E@v)) — Ds Ds,(—A) — 0 is exact.
Furthermore the argument from before shows that it is acyclic for Ds ,. Continuing
we eventually reach the sequence (Duy(E@v)) — Du,(—A) — 0 which thus is
exact. By theorem 4.4 it is isomorphic to (D(E®v)) — D(-\) — 0 and we are
done. O

4.6. We have a couple of corollaries to theorem 4.5.
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46.1. ( Demazure vanishing ). For X € P we have

Dby (Ds D ,...Ds (X)) 0.

Proof. This is contained in the proof of theorem 4.5.

Corollary 4.6.2. The modular Kempf and Demazure vanishing theorems.

Proof. The results follow from theorem 4.5 and corollary 4.5.1 by specializing ¢ to 1:

there are base change theorems controling this.

Corollary 4.6.3. Demazures character formula in terms of the H'.

Proof. The classical proof carries over, see [Al].
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