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Prefae

In August 1997 I started working on the Biriterion Shortest Path (BSP) problem. This

was meant as an introdution to the �eld of multiriteria network problems. The BSP

problem is one of the simple problems in the �eld, yet it is still NP omplete. I wrote

down omments on the related papers in the form of a short survey paper \A Classi�ation

of Biriteria Shortest Path (BSP) algorithms" (Paper A). Together with my supervisor

Kim Allan Andersen, we have found a preproessing rule for the label orreting solution

approah presented in \A label orreting approah for solving biriterion shortest path

problems" (Paper B).

In the late spring of 1998 I started to investigate the Biriterion Semi-obnoxious Planar

Loation (BSPL) problem. This was inspired by the plans of building a new international

airport near the ity of Aarhus, Denmark. Together with Kim Allan Andersen, we have

set up a biriterion model for this problem, and adapted an approximate solution method

alled Big-Square-Small-Square (BSSS). In the spring of 1999 I started to apply the same

method in the network model of the same loation problem (BSNL), and we have presented

both models in \The Biriterion Semi-obnoxious Loation (BSL) Problem Solved by an

�-Approximation" (Paper C).

In the late spring of 1999 I visited professor Horst Hamaher at the University of Kaisers-

lautern, Germany, for four months. During this period I have worked together with Prof.

Hamaher on a general exat solution method for the multiriteria loation problem on

a network with both pull and push objetive funtions. The results are presented in

\Multiriteria Semi-obnoxious Network Loation (MSNL) Problems with Sum and Center

Objetives" (Paper D).

In the early spring of 2000 professor Kaj Holmberg, Link�oping Institute of Tehnology,

Sweden, visited our department. Together with Kim Allan Andersen we started a re-

searh projet on an extension of the MSNL problem, where the edge-lengths are made

riteria dependent. The resulting problem is a mix of the BSP and the MSNL problems.

The results are presented in \Biriteria Network Loation (BNL) problems with riteria

dependent lengths and minisum objetives" (Paper E).

During the spring of 2000 I started an appliation oriented projet together with Morten

Riis, a PhD student at our department, and J�rn Lodahl, Sonofon. During several meet-

ings at Sonofon, we formulated a two-stage stohasti programming model, to desribe a

apaity expansion problem. The results are presented in \Network planning in teleom-

muniations: A stohasti programming approah" (Paper F).

In the late fall 2000, Kim Allan Andersen and I invited Matthias Ehrgott, University
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of Aukland, New Zealand, to visit our department. During his stay Matthias and I

formulated an algorithm for the Max-ordering (MO) problem in a ombinatorial ontext.

The results are presented in \Solving Biobjetive Combinatorial Max-Ordering Problems

by Ranking Methods and a Two-Phases Approah" (Paper G).
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Introdution 1

1 Introdution

Multiriteria analysis on networks is the main theme of this thesis, but I have also looked at

two di�erent problems. A planar loation problem and a single objetive network problem

arising in mobile teleommuniations.

Multiriteria analysis is foused on mathematial optimization problems with more than

one objetive. There is a general theory for the overall problem lass, but the results

are of ourse very general. I try to develop this theory further for problems in whih

some strutural knowledge an be used to ahieve a better solution proedure. Most of

the problems are network problems, and as suh they an be formulated as integer pro-

gramming problems with more than one objetive. Sine most integer linear programming

problems are NP-omplete, these problems are at least as hard. It should be mentioned

that problems that are polynomially solvable with one objetive, may be NP-omplete

with two objetives. This is the ase for the Shortest Path (SP) problem.

I will shortly desribe the relevant problems, followed by an introdution to the basi

onepts of multiriteria analysis. The �rst problem is the Biriteria Shortest Path (BSP)

problem desribed in more detail in Setion 2. This obvious generalization of the tradi-

tional shortest path problem, in whih one has to �nd the shortest (heapest) path from

a soure node s to a terminal node t. In the BSP problem we simply have two objetives,

namely time and ost. This model reveals the trade-o� between the two objetives.

The seond problem is the Max-ordering (MO) problem, examined in a ombinatorial

ontext. Here the objetive is to minimize the maximum objetive value. This problem

arises as a subproblem in general multiriteria solution approahes suh as the interative

weighted Thebyhe� method. The problem is desribed in detail in Setion 3.

The third problem is the single faility loation problem where di�erent variants are de-

sribed in Setions 4, 5 and 6. The problem is to loate one new faility in a senario with

a number of existing failities. The new faility will of ourse interat with the existing

failities, and this interation is assumed to depend on the distane between the new and

the existing failities. The way this interation takes plae is represented by the objetive

funtion(s). In the single objetive ase, this problem has been well studied, and the two

most ommon objetives are the median (minimizing the sum of weighted distanes) and

the enter (minimizing the maximum weighted distane). These two objetives represent

a pull e�et, meaning that the new faility is favored, onsequently the distane should

be minimized. If we onsider an undesirable (obnoxious) faility the objetive reets

that the distane between the existing failities and the new faility should be maximized.



2 Introdution

This is often referred to as a push e�et. The two most obvious objetives for this prob-

lem is the anti-median (maximizing the sum of weighted distanes) and the anti-enter

(maximizing the minimum weighted distane). These problems with di�erent objetives

have been examined both in the plane and on networks. In the plane there are di�erent

possibilities to measure the distane, the most popular being the l

p

-norm. When a faility

is both favored and obnoxious it is referred to as semi-obnoxious.

The �nal problem is somewhat di�erent from the above-mentioned problems. The problem

of expanding the apaity of a mobile ommuniations network, modeled by a two stage

stohasti program, was inspired by a problem instane at Sonofon. The model is desribed

in Setion 7.

1.1 Terminology of multiriteria analysis

I will now introdue some onepts in multiriteria analysis. For a textbook introdution

see Steuer [68℄ or Ehrgott [24℄. Consider the following general multiriteria problem:

min f

1

(x)

min f

2

(x)

.

.

.

.

.

.

min f

k

(x)

s.t.

x 2 S

(1)

S 2 IR

n

is the set of feasible solutions, and f(x) = (f

1

(x); : : : ; f

k

(x)). Solving the mul-

tiriteria problem means �nding the optimal solution. But what is an optimal solution,

when we have k objetive funtions instead of one? The answer is eÆient solutions.

A solution is alled eÆient (Pareto optimal) if we annot improve one objetive value

without worsening another. The mathematial de�nition of eÆieny is as follows.

De�nition 1 A point x 2 S is eÆient i� there does not exist a point �x 2 S suh that

f(�x) � f(x) with at least one strit inequality. Otherwise x is ineÆient.

Please note that eÆient points are the same as Pareto optimal points. A less restritive

de�nition of eÆient points, alled weakly eÆient points is de�ned as follows.

De�nition 2 A point x 2 S is weakly eÆient i� there does not exist a point �x 2 S

suh that f(�x) < f(x), i.e. f

i

(�x) < f

i

(x) 8i = 1; : : : ; k.

EÆient points are de�ned in deision spae. There is a natural ounterpart in riterion

spae, where the riterion spae Z is de�ned as Z = fz 2 R

k

j9x 2 S; z = f(x)g. Thus the

riterion vetors orrespond to the image of a mapping of all the feasible solutions to (1).
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De�nition 3 z(x) 2 Z is a nondominated riterion vetor i� x is an eÆient solution.

Otherwise z(x) is a dominated riterion vetor.

In the above De�nition 3 we have used that z(x) = f(x). The set of eÆient solutions

are denoted X

Par

, and the set of nondominated riterion vetors are denoted Z

Par

, and is

given by Z

Par

= z(X

Par

).

Sine the deision maker's utility funtion is usually unknown (also to herself), a solution

to (1) is to �nd all eÆient solutions (or all nondominated vetors).

The riterion vetors an be partitioned into two kinds, supported and unsupported. The

supported an then be further divided into supported extreme and supported non-extreme.

Following the terminology of Steuer [68℄ we de�ne Z

�

:

Z

�

= Conv(Z

Par

� fz 2 R

k

jz � 0g) = Conv(Z

Par

)� fz 2 R

k

jz � 0g

where � signi�es set addition and Conv means onvex hull. From this set we an hara-

terize the di�erent riterion vetors.

De�nition 4 z 2 Z

Par

is a supported nondominated riterion vetor if z is on the

boundary of Z

�

. Otherwise z is an unsupported nondominated riterion vetor.

It is important to note that unsupported nondominated riterion vetors are dominated

by a onvex ombination of other nondominated riterion vetors.

De�nition 5 z 2 Z

Par

is a supported extreme nondominated riterion vetor if z is

an extreme point of Z

�

.

Among the supported nondominated riterion vetors the extreme vetors are the most

important, beause they an be found as extreme point solutions when minimizing a onvex

ombination of the k objetive funtions. This is mainly interesting when the objetive

funtions are linear, whih is often the ase. We de�ne the objetive funtion W (x; �) as

follows:

W (x; �) =

k

X

i=1

�

i

f

i

(x); � 2 � (2)

where � = f� 2 R

k

j�

i

> 0;

P

k

i=1

�

i

= 1g. The funtion W (x; �) is a onvex ombination,

or weighted sum, of the k objetive funtions. If S is a onvex set and f

i

are onvex

funtions, then optimizing (2) with di�erent � vetors will give the supported (extreme)

nondominated vetors (Geo�rion [34℄). Therefore, it is often referred to as the weighting
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method or the Parametri method. Beause unsupported nondominated riterion vetors

are dominated by a onvex ombination of supported nondominated riterion vetors,

unsupported nondominated vetors annot be found by the weighting method. This is

illustrated in Figure 1. The solution(s) x in deision spae orresponding to a supported

(extreme) riterion vetor an be referred to as a supported (extreme) solution.

It is often onvenient to initially solve the problem with respet to the k objetives in-

dependently in order to �nd the respetively minimal values. Atually, it is often better

to solve a slightly perturbed version of the k problems in order to avoid weakly eÆient

points. Assume � is a very small stritly positive onstant. Then solve

min

x2S

f

i

(x) + �

X

j 6=i

f

j

(x) 8i = 1; : : : ; k (3)

and denote the orresponding optimal solutions x

1

; : : : ; x

k

. Let f

i�

= f

i

(x

i

) 8i. The

pay-o� table in Table 1 then lists how the individually optimal solutions are loated in

relation to eah other. The diagonal elements form the ideal point f

�

= (f

1�

; : : : ; f

k�

).

x

1

x

2

� � � x

k

f

1

f

1�

f

1

(x

2

) � � � f

1

(x

k

)

f

2

f

2

(x

1

) f

2�

� � � f

2

(x

k

)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

f

k

f

k

(x

1

) f

k

(x

2

) � � � f

k�

Table 1: Pay-o� table.
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2 The Biriterion Shortest Path (BSP) problem

The BSP problem is one of the simplest problems in multiriteria integer analysis, but

nevertheless also one of great importane in many appliations. One of them being trans-

portation problems with more than one objetive. Furthermore, the BSP problem often

ours as a subproblem in other problems like sheduling problems. It also ours as a

subproblem in models for transportation of hazardous materials, see Erkut et al. [29℄.

2.1 The model

Let us formulate the problem mathematially. We are given a strongly onneted direted

network or a digraph G = (N ; E) where N = f1; : : : ; ng is the set of nodes and E =

f(i; j); (k; l); : : : ; (p; q)g is a �nite set of direted edges (ars) joining nodes in N . Parallel

edges are allowed. Eah edge (i; j) 2 E arries two attributes denoted by (

ij

; t

ij

). Often

these oeÆients are assumed to be positive, but it is enough to require that no negative

yles exist. For simpliity assume that 

ij

is the ost using edge (i; j) and t

ij

is the travel

time from node i to node j (using the edge (i; j)). The objetive is to �nd the set of

eÆient paths from a partiular node, the soure node s 2 N , to another partiular node,

the terminal node t 2 N . Traditionally, the BSP problem is formulated as follows:

min (x) =

P

(i;j)2E



ij

x

ij

min t(x) =

P

(i;j)2E

t

ij

x

ij

s.t.

P

fjj(i;j)2Eg

x

ij

�

P

fjj(j;i)2Eg

x

ji

=

8

<

:

1 if i = s

0 if i 6= s; t

�1 if i = t

x

ij

2 f0; 1g; 8 (i; j) 2 E

(4)

The onstraints in (4) yield a direted path from soure node s to terminal node t and the

two objetives are to �nd the minimum ost s� t path and the minimum travel time s� t

path, respetively. The problem is known to be NP-omplete by transformation from a

0-1 knapsak problem, Garey and Johnson [33℄.

It is well-known that the onstraint set in (4) de�nes an integral polytope (the onstraint-

matrix is totally unimodular). Therefore, if the linear relaxation of (4) is solved using the

weighting method, the set of supported (extreme) eÆient paths is found. Unfortunately

there may be a lot of unsupported eÆient paths suh as D indiated in Figure 1.

Being interested in the set of eÆient paths, it is not a satisfatory ompromise just �nding

the set of supported eÆient paths.
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Criterion 1

Criterion 2

�

�

�

�

�

D

Figure 1: D is an unsupported, nondominated riterion vetor.

2.2 Solution approahes

To our knowledge there are four survey papers inluding the BSP problem, Zionts [77℄,

Rasmussen [63℄, Ulungu and Teghem [73℄ and Paper A [65℄. The �rst two referenes

survey the general multiriteria integer programming problem for whih the BSP is a

speial ase, and both papers are relatively old. The third referene surveys many of the

papers also inluded in Paper A. The main ontribution of Paper A is a lassi�ation of

the existing solution methods, and a ranking of the methods based on the algorithmi

struture. Ehrgott and Gandibleux [25℄ have reently written a bibliography paper on

Multiobjetive Combinatorial Problems (MOCO) ontaining more than 350 referenes,

inluding also the BSP problem.

There are generally two main approahes, a path/tree approah and a node labeling

approah, see Figure 2. Eah of the two main approahes are again divided into two.

The path/tree approah splits into the K'th shortest path approah and the Two-Phases

method. The node labeling approah splits into a Label Setting and a Label Correting

approah.

In a path approah we examine di�erent path vetors, and try to �nd the eÆient ones.

Similarly, we investigate the m dimensional inidene vetors that haraterize the dif-

ferent spanning trees in a tree approah. Sine there are usually many edges ompared

to the number of nodes and there may be exponentially many spanning trees, a labeling

approah that ompares values in the two-dimensional riterion spae at eah node may be

advantageous. In a Label Setting approah one label is made permanent in eah iteration
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BSP

Path/Tree Node Labeling

K'th shortest path

Two-Phases

Label Setting

Label Correting

Figure 2: Classi�ation of BSP algorithms.

and in a Label Correting approah all labels are hangeable until the stop riterion is

ful�lled.

K'th shortest path Climao and Martins [16℄

Two-Phases Coutinho-Rodrigues, Climao and Current [19℄

Mote, Murthy and Olson [55℄

Label Setting Hansen [40℄, Martins [50℄ algorithm 1, Tung and Chew [72℄

Label Correting Brumbaugh-Smith and Shier [10℄, Corley and Moon [18℄,

Daellenbah and DeKluever [20℄, Skriver and Andersen [66℄

Table 2: Classi�ation of referenes.

In Table 2 we list the referenes that fall in the four ategories. The number of referenes

applying a labeling approah indiates that this is the most suessful approah. The

seond phase in Coutinho-Rodrigues, Climao and Current [19℄ is atually an K'th shortest

path approah, and the �rst phase solves the LP relaxation of (4). The seond phase of

Mote, Murthy and Olson [55℄ is a Label Correting approah, and their �rst phase solves

an LP relaxation of a spanning tree problem losely related to (4). In Paper A the four

di�erent approahes are disussed in more detail.

Next we illustrate the omplexity of the BSP problem by a small example. We use the

example to explain why the node-labeling approah is better than the path/tree handling

proedure. For larity remember that eÆient paths are in the (high dimensional) deision

spae, and the nondominated values are in the (two-dimensional) riterion spae. The

example is similar to one found in Hansen [40℄, and is presented in more detail in Paper

B [66℄.
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1 2 3 4

(1; 32)

(32; 1)

(2; 16)

(16; 2)

(4; 8)

(8; 4)

Figure 3: Example with exponentially many nondominated values.

Here we hoose the edge oeÆients, so that the sum of the smaller oeÆients is less than

that of the next. This is ahieved by the following numbers, 2

i

; i = 0; 1; 2; : : : ; jEj � 1.

In this example that is 1; 2; 4; 8; 16; 32, whih we then pair from eah end of the list as

shown in Figure 3. These power of two oeÆients are often used in MOCO problems to

illustrate that the problem is intratable, whih means that the number of (di�erent)

eÆient solutions may grow exponentially.

The 8 paths in the network in Figure 3 are all eÆient having the following 8 nondomi-

nated values: (7; 56), (11; 52), (21; 42), (25; 38), (38; 25), (42; 21), (52; 11) and (56; 7). By

hoosing the edge oeÆients this way we get 2

jN�1j

nondominated values.

From this speial ase of the BSP problem we make two observations. The number of

eÆient paths may grow exponentially in the number of nodes, namely 2

jN�1j

, and the

number of eÆient paths is always greater than or equal to the number of nondominated

values, beause we may have paths with the same objetive funtion values. The last

observation an also be made from De�nition 3, beause Z

Par

= z(X

Par

). If all edge-

weights are (1; 1), there is only one nondominated value, namely (3; 3), but all 8 paths are

eÆient.

2.3 The Brumbaugh-Smith and Shier algorithm

The algorithm below is taken diretly from Brumbaugh-Smith et al. [10℄. It is inluded

to make the presentation self-ontained, beause the preproessing rules in Setion 2.4 are

designed for this partiular algorithm.

Let D(i) = f(

1

(i); t

1

(i)); � � � ; (

p

(i); t

p

(i))g be the label-set at node i ontaining p labels.

At eah step these labels are nondominated by any other label in the set. The labels are

sorted by inreasing ost values. The set Labeled is a set of nodes that needs to be exam-

ined. The FIFO priniple is used to selet nodes from the set Labeled as reommended in

Brumbaugh-Smith et al. [10℄. By out(i) we refer to the nodes j for whih (i; j) 2 E . The

merge operator of the sets A and B is de�ned as

Merge(A;B) = (A [B) n fz 2 A [B j 9 x 2 A [B : x � zg
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This means that after the sets are joined all dominated labels are deleted.

Algorithm 2.3:

1. Initialize:

D(s) = f(0; 0)g;

Labeled=fsg;

2. while Labeled 6= �

hoose i from Labeled;

Labeled=Labeled-fig;

for j 2 out(i)

D

M

(j) =Merge(D(j);D(i) + (

ij

; t

ij

));

If D(j) 6= D

M

(j) then

D(j) = D

M

(j);

If j is not in Labeled then (avoids double labeling)

Labeled = Labeled + fjg;

In this algorithm the merge operation uses the main part of the omputational e�ort. Our

intention was to disard \expensive" edges before the merge operation is arried out in

order to redue omputation time. The merge operation implemented is the \modi�ed

merge" operation found in Brumbaugh-Smith et al. [10℄. This operation is in linear time

as a funtion of the sizes of the two sets to be merged.

2.4 The improvements

We originally had two suggestions for improvements, referred to as Condition I and II,

that were both based on the idea of omitting \expensive" edges before the Merge in the

algorithm. At eah iteration in the routine, we are looking at an edge (i; j) from some

node i to another node j, see Figure 4.

2.4.1 Condition I

The Condition I is a fast predomination hek, whih rules out \expensive" edges by

onsidering the present set of labels. Consider again two partiular nodes, i and j, and
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j

i

Figure 4: Evaluating the (i; j)-edge.

the sets of labels D(i) and D(j) at these two nodes. Assume that the two label-sets are

non-empty, and that

D(i) = f(

1

(i); t

1

(i)); � � � ; (

k

(i); t

k

(i))g and D(j) = f(

1

(j); t

1

(j)); � � � ; (

q

(j); t

q

(j))g

with



1

(i) < 

2

(i) < � � � < 

k

(i) and t

1

(i) > t

2

(i) > � � � > t

k

(i)



1

(j) < 

2

(j) < � � � < 

q

(j) and t

1

(j) > t

2

(j) > � � � > t

q

(j)

We are now looking at the edge from node i to node j. Consider the two distint but

similar situations:

� Assume that 

1

(i) + 

ij

� 

q

(j). In this ase we have:



1

(j) < 

2

(j) < � � � < 

q

(j) � 

1

(i) + 

ij

< � � � < 

k

(i) + 

ij

t

1

(j) > t

2

(j) > � � � > t

q

(j) ? t

1

(i) + t

ij

> � � � > t

k

(i) + t

ij

So, if t

k

(i) + t

ij

� t

q

(j), then the set D(i) + (

ij

; t

ij

) is dominated by the set D(j).

In fat, the set D(i) + (

ij

; t

ij

) is dominated by the last label q of D(j). As a merge

of the two sets will return the set D(j) unhanged, we an disard the edge between

i and j, and proeed to the next edge.

� Assume that t

k

(i) + t

ij

� t

1

(j). In this ase we have:



1

(i) + 

ij

< � � � < 

k

(i) + 

ij

? 

1

(j) < 

2

(j) < � � � < 

q

(j)

t

1

(i) + t

ij

> � � � > t

k

(i) + t

ij

� t

1

(j) > t

2

(j) > � � � > t

q

(j)

So, if 

1

(i) + 

ij

� 

1

(j), then the set D(i) + (

ij

; t

ij

) is dominated by the set D(j),

beause it is dominated by the �rst label of D(j).
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This simple ondition whih twie ompares two numbers that have already been alulated

an save a lot of pu-time. How muh time that is saved depends on the network struture.

Setion 2.5 summarizes this disussion from Paper B. Paper B also inludes a disussion

of how to generate random networks.

2.4.2 Condition II

The Condition II is inspired by an artile by Tung and Chew [72℄. The idea is to initialize

node information from the terminal node in order to �nd the heapest and fastest paths

from an intermediate node j to the terminal node t, for all n�1 intermediate nodes. This

initialization �nds some upper bounds on the two objetives at the nodes, namely (

�

;

^

t)(j)

for the heapest path and (̂; t

�

)(j) for the fastest path. 

�

(j) is the ost of the heapest

(j; t)-path and

^

t(j) is the orresponding upper bound on the time. Notie that the upper

bounds on the (s; t)-path beomes (̂;

^

t)(s). The idea is illustrated in Figure 5.

j

i

s

t

Figure 5: Illustrating the idea of Condition II.

If the present heapest label at node i, plus the ost of the (i; j)-edge, plus the least ost

for the remainder of the (j; t)-path, exeeds the upper bounds on the ost, the edge (i; j)

an be left out of further onsideration. Similarly with respet to time. Mathematially

we get the following two onditions to disard an edge:



1

(i) + 

ij

+ 

�

(j) > ̂(s) or t

k

(i) + t

ij

+ t

�

(j) >

^

t(s) (5)

Unfortunately the initialization of the node information turned out to be too time-onsu-

ming, and the bounds were to loose beause they are upper bounds on all s� t paths and

not subpaths as in Condition I. The initialization is done by running Dijkstra's shortest

path algorithm twie, with the edge orientation in the opposite diretion. If Dijkstra's

algorithm is too slow, this indiates that the Label Correting algorithm is indeed fast.

The bounds being too loose means that there were almost never any edges disarded by

(5).

2.5 Computational results

We have tested the improved algorithm (alg2) together with the Brumbaugh-Smith algo-

rithm (brum) of Setion 2.3. All algorithms are implemented in C++, and an be found
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on the homepage http://home.imf.au.dk/ajs/. We have used an HP 9000 series omputer

with a single proessor. For eah size of network we have used 10 random networks,

generated with NETMAKER (see Paper B).

The objetive is to evaluate the e�etiveness of Condition I on networks with di�erent

harateristis (density). The density of a network is the relationship between the number

of nodes and the number of edges. If parallel edges are not allowed, the number of edges

in a onneted network is between n� 1 (tree) and n(n� 1)=2 (omplete).

# nodes brum Merges alg2 Condition I's % Merges in alg2 % pu-time

200 9.01 761.30 4.12 208.40 46.49 45.76

400 40.38 1615.20 20.96 407.20 50.09 51.91

600 92.96 2502.00 51.40 578.15 52.95 55.29

800 187.05 3385.00 111.82 757.65 54.01 59.78

1000 280.61 4668.20 162.52 970.90 57.80 57.92

Table 3: Cpu-times, number of Merges and number of Condition I's for brum and alg2

when the number of outgoing edges are between 1 and 3 at eah node.

The �rst omparison is made on a sparse network, where the average number of edges is

only two times the amount of nodes. The results are shown in Table 3, and the overall

onlusion is that alg2 is onsiderably faster than brum.

There is one implementation detail that is important to mention. The brum algorithm is

implemented diretly as it is desribed in Brumbaugh-Smith et al. [10℄. In alg2 a node with

an empty label-set automatially gets the label-set plus the edge-weights from the �rst

predeessor node. When the algorithms are ompared, the number of nodes (minus one)

is added to the number of Condition I's, beause this is the number of Merge operations

saved. So in Table 3 with 400 nodes, the \% Merges in alg2" is alulated as

�

1�

407:20 + 399

1615:20

�

� 100 = 50:09

It an also be seen that, as the number of nodes inreases, the fration of Condition

I's dereases. This is due to the fat that the probability of Condition I being ful�lled

dereases as the label-sets inrease. The label-sets inrease in size as we move towards the

terminal node, and in the larger networks, the average number of nondominated values

is higher and therefore the label-sets are bigger. As expeted alg2 performs very well on

sparse networks, beause of the small label-sets.

Next we look at less sparse networks with an average number of 3 outgoing edges per

node. The results are shown in Table 4, and as expeted the fration of Condition I's has
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# nodes brum Merges alg2 Condition I's % Merges in alg2 % pu-time

200 18.34 1399.65 12.16 303.25 64.12 66.29

300 45.37 2221.4 31.76 428.45 67.25 70.00

400 80.43 3080.7 58.14 487.35 71.23 72.28

500 129.77 4006.65 96.91 652.10 71.27 74.68

800 336.65 6801.80 245.77 933.95 74.52 73.00

Table 4: Cpu-times, number of Merges and number of Condition I's for brum and alg2

when the number of outgoing edges are between 2 and 4 at eah node.

dropped. Beause the pu-time saved is fairly proportional to the number of Condition I's,

alg2 only performs about 25-35 % better than the brum algorithm for networks with this

density (and this size).

# nodes brum Merges alg2 Condition I's % Merges in alg2 % pu-time

100 12.59 2796.1 11.05 251 87.48 87.76

200 79.55 6055.40 73.50 284.4 92.02 92.40

300 195.48 9680.60 183.55 346.45 93.33 93.90

400 349.04 13733.30 329.83 430.25 93.96 94.50

500 589.84 17943.05 558.87 463.40 94.64 94.75

Table 5: Cpu-times, number of Merges and number of Condition I's for brum and alg2

when the number of outgoing edges are between 7 and 15 at eah node.

For the dense networks of Table 5 with an average of 11 outgoing edges per node, the

fration of Condition I's is muh smaller. The pu-times are again proportionately faster

as well. This table illustrates that even in dense networks there are still pu-time saved

by imposing the ondition. We therefore onlude that the ost in pu-time of heking

the ondition is negligible.

2.6 Conlusions on the BSP problem

It seems that the Label Correting approah is the best for the BSP problem. Even

though the problem is NP-omplete the solution methods are usually quite fast. As

noted, a separate �rst phase to �nd the supported solutions using the weighting method

does not seem worthwhile. However, even though the Label Correting method is fast,

there is still spae to speed up the algorithm, i.e. Condition I.

Another positive feature about the Label Correting method, is that it easily generalizes

to more than two objetives. All that needs to be modi�ed is the Merge operation.

Unfortunately Condition I does not generalize to more than two objetives.
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3 Biriteria ombinatorial Max-Ordering (MO) problems

Max-ordering (MO) problems are multiriteria optimization problems in whih the goal is

to minimize the worst of several objetive funtions. They an be formulated as follows.

min

x2S

max

i=1;:::;Q

f

i

(x); (6)

where f

i

(x) denotes the objetive funtions of the problem. The problem is denoted max-

ordering instead of min-max in order not to onfuse terminology with single objetive

problems, i.e. min

x2S

max

e2x

w

e

whih �nds solutions where the largest weight is minimal,

e.g. the path where the largest edge-weight is minimal. Max-ordering problems arise in

various appliations, see Rana and Vikson [62℄ or Warburton [76℄, and as subproblems

in interative methods for the solution of multiriteria optimization problems suh as

the GUESS method (Buhanan [11℄), STEM (Benayoun et al. [5℄), and the interative

weighted Thebyhe� method (Steuer and Choo [69℄).

In this paper we onsider max-ordering problems in a ombinatorial ontext, i.e. we assume

that S is a �nite set, e.g. the set of paths between two nodes of a network or the set of

spanning trees of a graph.

There is a number of previous researh papers on this topi (Ehrgott [23℄, Hamaher and

Ruhe [37℄, Murthy and Her [56℄, Ehrgott et al. [26℄) and see Ehrgott and Gandibleux [25℄

for more. Various authors observed that, even in the biriteria ase, max-ordering problems

are usually NP-omplete. The methods proposed for their solution inlude branh and

bound (Rana and Vikson [62℄), labeling algorithms (for shortest path problems) (Murthy

and Her [56℄) and ranking methods (Ehrgott [23℄, Hamaher and Ruhe [37℄) - that is

the appliation of algorithms to �nd K best solutions of (single objetive) ombinatorial

problems.

We also propose methods involving ranking algorithms atually overoming the main prob-

lem of the method proposed in Hamaher and Ruhe [37℄, at least for the ase of two

objetives, see Remark 1. We ombine the ranking method with the two-phases method

originally developed for the determination of all eÆient solutions of biriteria ombina-

torial optimization problems, Ulungu and Teghem [74℄.

In Setions 3.1 and 3.2 we study the biobjetive ase, Q = 2, and in Setion 3.4 we present

a heuristi for Phase 1 in the multiobjetive ase, Q > 2.

3.1 Theoretial motivation

We shall use the notation g(x) = maxff

1

(x); f

2

(x)g for the max-ordering objetive value of

a feasible solution x 2 S. Next we present three basi results. The �rst one is well-known,
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see e.g. Hamaher and Ruhe [37℄.

Lemma 1 There is at least one optimal solution of the max-ordering problem min

x2S

g(x)

whih is eÆient.

The next Lemma is spei�ally stated for two objetives. It formalizes the argument that

the maximum of two funtions is minimal, if the objetive values are as equal as possible.

Its proof is immediate from the de�nition of the max-ordering problem.

Lemma 2 Let X

Par

= fx

1

; : : : ; x

p

g be the set of eÆient solutions of a biriteria ombi-

natorial optimization problem. Assume that f

1

(x

i

) � f

1

(x

i+1

) and f

2

(x

i

) � f

2

(x

i+1

) for

1 = 1; : : : ; p� 1 and de�ne K := minfi : f

2

(x

i

) < f

1

(x

i

)g. Then the following hold.

1. If K = 1, x

1

solves the max-ordering problem.

2. If K =1, x

p

solves the max-ordering problem.

3. Otherwise x

K

or x

K�1

(or both) solve the max-ordering problem.

A speial ase ours if there is an eÆient solution with both objetives equal.

Lemma 3 If there is an eÆient solution x suh that f

1

(x) = f

2

(x), then x also mini-

mizes g(x).

These three lemmas state that we an restrit our searh for a solution for a minimizer of

g(x) to eÆient solutions, with their two objetives as equal as possible. In other words,

eÆient max-ordering solutions will be loated lose to the halving line f

1

= f

2

in riterion

spae.

3.2 Two-phases algorithm

First, we look for the two supported eÆient solutions for whih f

1

(x

i

) � f

2

(x

i

) and

f

1

(x

i+1

) > f

2

(x

i+1

) aording to the order of Lemma 2. To do so, we start with solutions

x

1

and x

2

minimizing objetives f

1

and f

2

, respetively. We then proeed to solutions

where the di�erene of objetive values is smaller. When this is no longer possible, we

will either have one supported eÆient solution with f

1

(x) = f

2

(x), or we end up with

two neighboring supported eÆient solutions, say x

1

and x

2

suh that f

1

(x

1

) < f

2

(x

1

)

and f

1

(x

2

) > f

2

(x

2

). Aording to Lemma 3, the �rst ase solves min

x2S

g(x), and any

other eÆient solution must have one objetive value smaller and one bigger than g(x).

Of ourse, it may happen that one of the objetives dominates the other ompletely, i.e.
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min

x2S

f

1

(x) � max

x2X

Par

f

2

(x) (ases 1 or 2 in Lemma 2). In this ase the problem is

trivial, and we an easily detet it when omputing x

1

and x

2

for the �rst time.

Should we terminate Phase 1 with two solutions, we will have to investigate unsupported

solutions in the right-angled triangle de�ned by the hyperplane through the point f(x

ur

)

with normal � and (g(x

ur

); g(x

ur

)), where x

ur

is the urrent best solution, see Figure 7.

For this we use the ranking algorithm. In fat, f(x

1

) and f(x

2

) uniquely de�ne weights

�

1

; �

2

suh that both x

1

and x

2

are optimal solutions of

min

x2S

�

1

f

1

(x) + �

2

f

2

(x):

We an now apply a ranking algorithm to �nd seond, third, ... best solutions for this

problem, in order to �nd unsupported solutions in the identi�ed triangle. A similar proe-

dure was proposed for the identi�ation of all unsupported eÆient solutions in Coutinho-

Rodrigues et al. [19℄.

The algorithm will stop if we enounter a solution x with f

1

(x) = f

2

(x), as this must be

the optimal solution we are looking for, or �

1

f

1

(x) + �

2

f

2

(x) � g(x

ur

), sine no further

solution will be in the triangle and therefore no longer a andidate for a MO optimal

solution. In the latter ase, the urrently best solution is the optimal solution of the

max-ordering problem.

The idea of the �rst phase is illustrated in Figure 6. With solutions x

1

and x

2

we ompute

the normal to the line onneting f(x

1

) and f(x

2

). This normal serves as a weighting vetor

for ombining the two objetives, and its negative is the diretion in whih we searh for

a new supported eÆient solution whih is eventually found at x

3

with objetive values

f(x

3

).

Remark 1 The values �

1

; �

2

, identi�ed at the end of Phase 1, are the best hoie of �

in the method proposed by Hamaher and Ruhe [37℄ and will overome the problem that

for an unfortunate hoie of �, that method turns out to be a omplete enumeration of all

feasible solutions.

We illustrate the algorithm on an example. In Figure 7 we show the objetive values of 6

feasible points indexed in the order of their generation.

In Phase 1, x

1

and x

2

will be generated �rst. Weights �

1

and �

2

are omputed orre-

sponding to the normal to a line onneting f(x

1

) and f(x

2

) and x

ur

= x

2

. Solution of

the weighted sum problem results in x

3

. Sine f

1

(x

3

) < f

2

(x

3

), x

1

is replaed by x

3

. The

urrent best x

ur

is updated to x

3

. The seond weighted sum problem uses updated �'s

orresponding to the normal of the line onneting f(x

2

) and f(x

3

). Assume x

3

is returned
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f

2

f

1

n =

�

f

2

(x

1

)� f

2

(x

2

); f

1

(x

2

)� f

1

(x

1

)

�

f(x

1

)

f(x

2

)

f(x

3

)

Figure 6: Illustration of searh diretion in Phase 1

as an optimal solution. Thus no new supported eÆient solution is found, and we ontinue

with Phase 2 to investigate the earlier de�ned triangle. Note that the supported solution

x

4

is not generated in Phase 1.

We know that x

3

and x

2

are �rst and seond best solutions of the weighted sum problem,

therefore we are searhing for the third best solution by searhing in diretion �. This turns

out to be x

4

, whih is disarded as not being in the triangle

�

f

2

(x

4

) > f

2

(x

3

) = g(x

ur

)

�

.

So we set K = 4, identify x

5

as the next solution, and this passes all tests. In our example

x

5

replaes x

3

as the urrent best solution and K is set to 5. The next solution is x

6

,

the ombined objetive value of whih is larger than that of the third orner point of the

triangle. We will therefore �nd no further points in the triangle and stop with the optimal

solution x

�

= x

ur

= x

5

.

Remark 2 In Phase 2 the following situation may our: The solution of the weighted

sum problem is another supported eÆient solution whih is, as x

1

and x

2

, optimal for

the weighted sum problem. Its objetive funtion vetor lies on the line between f(x

1

) and
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f

2

f

1

f(x

1

)

f(x

2

)

f(x

3

)

f(x

4

)

f(x

5

)

f(x

6

)

Figure 7: Illustrative example

f(x

2

). In this ase, this point reates two new and smaller triangles. We an restrit

searh to the one whih is interseted by the halving line f

1

= f

2

.

3.3 K-best algorithms

As we propose the use of ranking algorithms, our method is obviously restrited to suh

ombinatorial optimization problems for whih eÆient methods for �nding K-best solu-

tions are available. We briey review some of these here.

The largest amount of researh on ranking solutions is available for the shortest path

problem. Algorithms developed by Azevedo et al. [3℄, Martins et al. [52℄ or Eppstein [27℄

are very eÆient. The best omplexity known is O(m+n logn+K) by Eppstein's method.

However, numerial experiments reported by Martins et al. [51℄ show their algorithm to

be very ompetitive. Its omplexity is O(m+Kn logn).

The seond problem for whih several methods are known, is the minimum spanning tree

problem. We mention papers by Gabow [32℄ and Katoh et al. [46℄. The best known
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omplexity is O(Km+min(n

2

;m log logn)).

In the seventies and eighties some general shemes for ranking solutions of ombina-

torial optimization problems have been developed by Lawler [48℄ and Hamaher and

Queyranne [39℄. The appliation of the latter led to algorithms for matroids (Hamaher

and Queyranne [39℄), with the speial ase of uniform matroids disussed in Ehrgott [23℄.

The omplexity of the latter is O(K(n+m)+minfn log n; nmg). Finally, an algorithm to

rank (integer) network ows was presented in Hamaher [35℄. Its omplexity is O(Knm

2

):

We note that only algorithms allowing the onstrution of solutions with the same objetive

funtion values are appliable in our method. This is evident from the fat that at the

beginning of Phase 2, we have x

1

and x

2

as optimal, i.e. �rst and seond best solutions of

the weighted sums problem.

3.4 Phase 1 heuristi for the multiobjetive ase

A natural question is the extension of the algorithm to more than two objetives. With

suh an endeavor we enounter two major diÆulties. The �rst one being that problems

with at least three objetives annot be redued to subproblems with two objetives only.

Thus, in the multiriteria ase all riteria have to be onsidered simultaneously.

Example 1 Consider a ombinatorial problem with three objetives and the following set

of nondominated vetors

8

<

:

0

�

7

5

3

1

A

;

0

�

6

4

8

1

A

;

0

�

9

4

2

1

A

;

0

�

6

8

2

1

A

9

=

;

The unique max-ordering solution is the �rst one, with g(x) = 7. However, looking at only

two of the objetives at a time, we obtain the following. For f

1

; f

2

only, the minimal value

of g(x) is attained at the seond solution, for f

2

; f

3

it is the third, and for f

1

; f

3

it is the

fourth. Thus none of the biriteria subproblems yield the true MO optimal solution.

The seond major diÆulty is in the generalization of Phase 1. This problem has been

observed by many researhers applying the method for the generation of all eÆient solu-

tions. In ontrast to the biriteria ase, there may exist supported nondominated points,

whih lie above (rather than below) a previously onstruted hyperplane. For a disussion

see Solanki et al. [67℄.

Therefore, we present a heuristi for Phase 1, when we have more than two objetives.

Sine it is not known how to determine appropriate �-weights for the weighted objetive
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funtion

W (x; �) =

Q

X

i=1

�

i

f

i

(x)

in order to �nd all the supported solutions, we have to settle for a heuristi proedure to

produe a good �. We are still guaranteed to �nd the MO optimal solution, sine the K

best proedure in Phase 2 an go through all solutions, independent of our hoie of �.

The idea of the algorithm is also to searh for an MO optimal solution. Remember that a

good urrent best solution x

ur

, limits the searh in Phase 2. During Phase 1 we modify

an initial � to searh in the diretion where the urrent best solution is found. This is

done by inreasing the �

j

-weight for the objetive where the urrent maximum is attained,

and derease the �

i

-weight for the objetives that are urrently small enough. This leads

to the following relation between the �'s in iteration p and p+ 1 if argmax

i

f

i

(x

p

) = j:

�

p+1

j

> �

p

j

and �

p+1

i

� �

p

i

8i 6= j

In the following two setions we disuss some possible initialization and stopping riteria

for the Phase 1 heuristi. Pseudo ode for the omplete Phase 1 is presented in Setion

3.4.3.

3.4.1 Initialization

First we solve the Q single objetive problems, to see if any single objetive dominates,

and onstrut the Q�Q pay-o� table. Let � > 0 be a very small positive onstant, whih

is used to avoid weakly eÆient solutions.

1. For i = 1 to Q do

min

x2S

f

i

(x) + �

P

j 6=i

f

j

(x), with optimum in x

i

The set of x

1

; : : : ; x

Q

solutions orresponding to the above Q optimal solutions is denoted

X

pay

. If 9 i 2 Q suh that

f

i

(x

i

) � f

j

(x

i

) 8j 6= i

then stop with x

�

= x

i

as optimal (trivial) solution, and g

�

= f

i

(x

�

). In the rest of this

setion assume this is not the ase, i.e. 8i 2 Q 9j 6= i suh that f

i

(x

i

) < f

j

(x

i

).

It may be useful to have a lower and an upper bound on g. Therefore we de�ne suh

bounds during the initialization.

g

LB

= max

i

f

i

(x

i

) and g

UB

= min

x2X

pay

max

i

f

i

(x) = min

x2X

pay

g(x)
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The lower bound is where we have the minimal largest value of the extreme solutions,

and the upper bound is where the initial largest value is as small as possible. The x

orresponding to g

UB

is the urrent best solution x

ur

. Notie that g

UB

is an upper bound

on all the individual objetives with respet to the MO problem. The bounds may be

used as a Phase 1 stopping riterion, see Setion 3.4.2.

Finally, we need to �nd an initial �. We an think of �

i

as the weight of the i'th objetive.

Our goal of Phase 1 is a �xed best �. We initialize bounds for �

i

8i as

�

iLB

= 0 and �

iUB

= 1 8i

These bounds on the �-weights will be modi�ed during the algorithm, see Setion 3.4.3.

Now we de�ne the starting �

1

. We have two suggestions:

� �

1

= (

1

Q

; : : : ;

1

Q

).

� Æ

i

=

�

f

i

8i, where

�

f

i

= max

x2X

pay

f

i

(x). Let Æ =

P

i

Æ

i

. Now we de�ne �

1

as �

1

=

(

Æ

1

Æ

; : : : ;

Æ

Q

Æ

). In this way the numerially large objetives get more attention initially.

To summarize the initialization, we present it in four steps:

1. Calulate pay-o� table.

2. Chek for trivial solution.

3. Find initial values for x

ur

, g

LB

and g

UB

.

4. Find initial �

1

.

3.4.2 Stopping riterion

Due to the diÆulties of determining the supported solutions in Phase 1, a stopping

riterion is not straightforward in the multiobjetive ase. We disuss some alternatives

in this setion, and it may be possible to have more than one stopping riterion in the

algorithm. Let us list some possibilities.

� If the same solution is repeated a ertain number of times, x

p

= x

p+1

= : : : = x

p+t

for some predetermined t.

� If the maximum deviation on the � bounds is suÆiently small, max

i

�

iUB

��

iLB

< �,

for some prede�ned tolerane level �.

� If the gap between the upper and lower bound is suÆiently small, g

UB

� g

LB

< Æ,

for some prede�ned tolerane level Æ.



22 Biriteria ombinatorial Max-Ordering (MO) problems

� Run Phase 1 for at most T iterations.

There may, of ourse, be other alternatives as well.

3.4.3 The algorithm

1. Initialization, see Setion 3.4.1.

2. Set p = 1 (iteration ounter).

3. Solve min

x2S

P

i

�

p

i

f

i

(x) and let x

p

be the optimal solution.

4. If g(x

p

) < g(x

ur

) then x

ur

= x

p

and g

UB

= g(x

p

).

5. Chek stopping riterion, see Setion 3.4.2.

6. Assume argmax

i

f

i

(x

p

) = j, i.e. the j'th objetive needs more attention.

7. �

jLB

= �

p

j

and �

iUB

= �

p

i

8i 6= j.

8. De�ne �

i

= �

iUB

� �

iLB

8i and � =

P

i 6=j

�

i

.

9. �

p+1

j

= �

jLB

+

1

2

�

j

and �

p+1

i

= �

iUB

�

1

2

�

j

�

i

�

8i 6= j.

10. p=p+1 go to 3

This onludes Phase 1. The steps 6 - 9 modify the �-bounds to derease the interval of

eah possible �

i

value.

In Phase 2 we use the K best proedure with the appropriate �

p

from the end of phase

one. The stopping riterion in phase two is the same as in the biobjetive ase, namely

P

i

�

p

i

f

i

(x

K

) � g(x

ur

).

3.5 Conlusions on MO problems

At �rst the max-ordering objetive may not seem interesting, but it appears as a subprob-

lem in several well-known MCDM methods. Therefore, this problem is worth studying

more arefully. We have found a proedure for the solution of the max-ordering problem

for ombinatorial problems. The e�etiveness of the proedure depends on the partiular

problem. Phase 1 works well if the single objetive ombinatorial problem is easy, suh as

the shortest path problem. Phase 2 works well if the K best proedure works well.

In the ase with more than two objetives, the Phase 1 proedure is without guarantees

of �nding the best supported eÆient solutions. However, the K best proedure will

(eventually) �nd the MO optimal solution, even with a poor hoie of �.
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4 Approximate solution of semi-obnoxious loation problems

In two of the traditional single faility loation problems, a new faility is loated (plaed)

so as to minimize transportation osts (minisum), or as to minimize the distane to the

farthest ustomer (minimax). In the minisum problem we sum all the distanes between

the new faility and the ustomers, multiplied by a weight depending on the individual

ustomer. In the minimax problem we minimize the largest weighted distane. A tradi-

tional example of the minisum model is the loation of a warehouse and an example of the

minimax model is loating a �re station. These models are presented in Love et al. [49℄

and Franis et al. [31℄, both inluding many referenes. The obnoxious loation problem

is a more reent lass of problems, where the two most ommon ones are the maxisum and

maximin models. When loating an obnoxious (undesirable) faility, the goal is to plae it

as far from the existing failities (demand points, ustomers) as possible. See Erkut and

Neuman [28℄ or Carrizosa and Plastria [14℄ for a review.

Instead of lassifying the problem as obnoxious or desirable, the models an be divided

into planar and network models by their struture, and not their objetives. This partition

makes it more easy to list existing literature. Some referenes on planar models are [30℄,

[37℄, [38℄, [59℄, [60℄, [61℄ and [64℄, and some referenes on network models are [6℄, [7℄, [15℄,

[21℄, [22℄, [36℄, [41℄, [42℄, [47℄, [54℄, [57℄ and [58℄.

There is little literature ombining the desirable and the obnoxious faility loation models,

even though many failities are both obnoxious and desirable. An airport is obviously

desirable for the travelers, but obnoxious for the nearby itizens. In this setion we model

the ombined problem as a Biriterion Semi-obnoxious Loation (BSL) problem. One

objetive funtion is obnoxious and one is desirable. We onsider both the planar ase

(Setion 4.1) and the network ase (Setion 4.2) of the problem. In the network ase

where the demand points are nodes in a network and we try to loate the new faility in

a node or on an edge, we have found no referenes to earlier work. However, new results

are presented in Setion 5 (and Paper D). In the planar ase, where the feasible loations

are in R

2

, we have found only three referenes, namely two papers by Brimberg and Juel,

[8℄ and [9℄, and one paper by Carrizosa et al. [13℄.

The theory of the planar and network models is quite di�erent, and the two models are

not often ompared, even though they often try to desribe the same real-life problem.

We briey ompare the two models in Setion 4.3.
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4.1 The planar ase : The BSPL problem

We formulate the Biriterion Semi-obnoxious Planar Loation (BSPL) problem in the

following way. There are n failities (demand points) loated at points a

1

; a

2

; : : : a

n

, and

the objetive is to loate a semi-obnoxious faility at x so as to minimize a weighted sum

of the distanes raised to a negative power, and to minimize the weighted sum of the

distanes between the existing failities and the new faility. The �rst riterion may be

thought of as a pollution e�et and the seond riterion as transportation osts.

min f(x) =

P

j

w

1

j

(k x� a

j

k

p

1

)

�b

; b > 0

min g(x) =

P

j

w

2

j

k x� a

j

k

p

2

s.t.

x 2 S

(7)

where k x� a

j

k

p

= (jx

1

� a

j1

j

p

+ jx

2

� a

j2

j

p

)

1=p

is the usual l

p

norm, p � 1.

We prefer this obnoxious funtion, beause it minimizes the overall obnoxiousness when

far from a demand-point, but reets the loal e�ets when lose to a demand-point.

Corresponding to this objetive we use the weights w

1

. The seond objetive is the stan-

dard formulation for loating an attrative faility by minimizing the weighted sum of

the distanes (alled minisum or median). Please note that we use weights w

2

with this

objetive, so that the two objetives may be weighted di�erently with respet to eah of

the n demand points. We assume that all weights are non-negative.

If we are modeling where to plae a new airport (example in Paper C), the �rst weight w

1

j

may depend on the population at demand point j (e.g. ity), and the seond weight w

2

j

may be the expeted number of passengers on a yearly basis from demand point j.

S is the set of feasible solutions. Beause of the obnoxious e�ets from the new semi-

obnoxious faility, we assume that it is forbidden to plae it too near an existing faility.

Therefore, we require, that k x � a

j

k

p

1

> �; j = 1; : : : ; n, where � is a small positive

number. Note that this assumption makes the two objetive funtions Lipshitzian in the

feasible set S.

Sine the obnoxious objetive funtion f(x), is a slightly ompliated funtion, we will

settle for an approximation of the eÆient set X

Par

. To obtain this approximation we will

apply the BSSS method �rst introdued by Hansen et al. [44℄.

4.1.1 The idea of the Big Square Small Square (BSSS) algorithm

Sine we apply the BSSS method to solve the BSPL problem (and also to the BSNL

problem), we will outline the idea of the method.
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Suppose that the feasible region S is ontained in a disjoint union of squares of equal

size. Eah of these squares are onsidered separately. Consider one of the squares, say Q

i

.

We divide Q

i

into four sub-squares Q

i1

; Q

i12

; Q

i3

and Q

i4

of equal size. For eah of these

sub-squares, say Q

i1

, lower bounds on the objetive funtion values (f(x); g(x)); x 2 Q

i1

,

are found. By omparing this lower bound with a sample set of objetive funtion values,

it may be determined that square Q

i1

ontains only ineÆient points. If this is the ase,

square Q

i1

is alled an ineÆient square and may be deleted from further onsideration.

The squares that annot be lassi�ed as ineÆient are put into the list and will later be

divided further into four new sub-squares. The proess ontinues until the side-lengths of

all the remaining squares (those that are not lassi�ed as ineÆient) in the list are below

a pre-spei�ed value �. The idea is illustrated in Figure 8 below. The output from the

algorithm is an ordered set of \eÆient" squares.

x

y

�

�

�

�

�

�

�

�

Figure 8: BSSS idea

A few omments on the proedure are appropriate. The sample list of objetive fun-
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tion values are used to dominate sub-squares with poor objetive funtion value bounds.

Therefore, the values should in a way represent the objetives' behavior over the feasi-

ble region. This is done by alulating objetive funtion values in the enters of all the

squares, and then deleting pairs of objetive funtion values being dominated by other

objetive funtion values. If the enter of a partiular square is not in S, we simply ommit

this alulation.

It is also essential that we use good lower bounds for the objetive funtion values over the

squares. If the bounds are poor, the onvergene of the algorithm may be slow, beause

we will end up with a large number of squares. Fortunately, good bounds exist. These

bounds are explained in detail in Setions 4.1.2 and 4.1.3.

Finally, we need to hek if a square is ontained in the feasible region, is overlapping the

region or is outside the region. For a disussion of this issue we refer to the paper by

Hansen et al. [43℄.

4.1.2 Calulating lower bounds

In order to alulate lower bounds on the two objetives, we use an approximation of the

weighted distanes. This distane approximation is illustrated in Figure 9 for the l

2

norm.

The lower bound for the distane is found in Hansen et al. [43℄, and the upper bound for

the distane is found in Hansen et al. [44℄.

The plane is divided into 9 regions, obtained by extending the four sides of Q

i

. The regions

are the square Q

i

, the four side regions, and the four orner regions. The square Q

i

will

be in the enter.

�

�

�

� �

a

1

= a

1

a

2

a

2

a

3

a

3

A: Lower bound

�

�

�

�

�

�

a

1

a

1

a

2

a

2

a

3

a

3

B: Upper bound

Figure 9: Lower and upper bounds on the distanes.
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Now let a

j

be a partiular loation. With this loation we assoiate a losest point a

j

2 Q

i

and a furthest point a

j

2 Q

i

, see Figure 9. We may then alulate a lower bound on the

values of f and g in Q

i

as follows:

f(Q

i

) =

P

j

w

1

j

(k a

j

� a

j

k

p

1

)

�b

Case B in Figure 9

g(Q

i

) =

P

j

w

2

j

k a

j

� a

j

k

p

2

Case A in Figure 9

Clearly, (f(Q

i

); g(Q

i

) � (min

x2Q

i

f(x);min

y2Q

i

g(y)). Therefore, we an use the bound

z(Q

i

) = (f(Q

i

); g(Q

i

)) for eÆieny heking in the algorithm. If at some point we have

found a sample value x 2 S, suh that (f(x); g(x)) < (f(Q

i

); g(Q

i

)), then learly all

points in Q

i

are dominated by x. It follows that square Q

i

ontains only ineÆient points.

Therefore it is not neessary to onsider Q

i

anymore. This bound approah an be used

for any p 2 [1;1℄. Please note that the bounds obviously onverge when the squares get

smaller.

4.1.3 Exat lower bound

Sine the minisum objetive is a nie onvex funtion, it is possible to alulate an exat

lower bound for the squares in most situations. The level sets of a onvex funtion are

onvex sets, and the gradient an therefore be used as follows.

For a square Q

i

with orners 

1

; 

2

; 

3

and 

4

, �nd the orner 

h

with the minimum funtion

value g(

h

). If the diretion of steepest desent \points away" from the square Q

i

, then

the lower bound g(Q

i

) is exatly g(

h

). By \pointing away" we mean that the diretion

of steepest desent has an angle of at least 90 degrees with the sides of Q

i

, see ase A in

Figure 10. If this angle is less than 90 degrees then the minimum value over Q

i

is not in



h

. Finally, if the diretion points into Q

i

, the minimum value is not in 

h

but inside Q

i

.

Case A



i

Figure 10: Exat lower bound, depending on diretional derivative

From the above an exat lower bound an easily be omputed, if the diretional derivative

points away from the square. We only need to ompute four funtion values and the
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diretional derivative in the minimum value orner. The ase A will our in most of the

evaluations, but not in all.

The diretional derivative g

0

(x

0

; y) of g at x

0

2 S in the diretion y is de�ned as follows:

g

0

(x

0

; y) = r g(x

0

) � y

where rg(x

0

) is the gradient of g evaluated in x

0

.

If we onsider the l

2

norm, the gradient looks as follows:

r g(x

0

) =

0

�

X

j

w

2

j

(x

01

� a

j1

)

k x

0

� a

j

k

;

X

j

w

2

j

(x

02

� a

j2

)

k x

0

� a

j

k

1

A

Similar expressions an be found for the l

p

norm, for p 2 [1;1℄. This reveals the well-

known problem; if x

0

is at a demand point, the gradient is unde�ned beause of the

numerator being zero. This is not a problem in our ase sine k x�a

j

k

p

1

> �; j = 1; : : : ; n.

Using the exat bound presented above when possible, or otherwise the bounds presented

in Setion 4.1.2, we an apply the BSSS method to solve the (planar) BSPL problem. In

the next setion we adapt the BSSS method also to solve the (network) BSNL problem.

4.2 The network ase : The BSNL problem

In this setion we adapt the BSSS method to the network ase. However, instead of

dividing big squares into smaller squares, we divide edges into sub-edges. This will be

explained in detail in Setion 4.2.1. Assume we have an undireted onneted network

G(V; E) with node set V = fv

1

; v

2

; : : : ; v

n

g where jVj = n nodes, and a �nite set of edges

(ars) E = f(v

i

; v

j

); (v

k

; v

l

); : : : ; (v

p

; v

q

)g with jEj = m. Edges may also be denoted by e.

All edges have a stritly positive length. Eah node v

j

arries two non-negative weights

(w

1

j

; w

2

j

), one for the obnoxious riterion and one for the desirable riterion.

The model is the same as (7), exept that the set of possible new loations is the entire

network. With our hoie of obnoxious objetive funtion, however, x annot be loated

in a node. Therefore, we again require, that d(x; v

j

) > �; j = 1; : : : ; n, where � is a small

positive number. The BSNL problem is then:

min f(x) =

P

j

w

1

j

(d(x; v

j

))

�b

; b > 0

min g(x) =

P

j

w

2

j

d(x; v

j

)

s.t.

x 2 G(V; E)

(8)

where d(x; v

j

) is the shortest distane from point x to node v

j

. The authors are well aware

that the obnoxious objetive funtion is not as appropriate on the network model, as in



Approximate solution of semi-obnoxious loation problems 29

the planar model, but we have deided to use it for omparison purposes, see Paper C.

The approximation algorithm is a very general and intuitive approah and an be used for

ompliated objetive funtions.

4.2.1 The Edge Dividing (ED) algorithm

The idea of the Edge Dividing (ED) algorithm is similar to the idea behind the BSSS

algorithm. First we divide eah edge into two subedges. Then bounds on the objetive

funtion values on eah subedge are alulated. Furthermore, a sample set of objetive

funtion values are alulated. If the bounds alulated for a subedge are dominated by

one (or more) of the sample set objetive funtion values, then the subedge is dominated

and may be deleted from further onsideration.

The bounds are derived in detail in Setions 4.2.2 and 4.2.3. The sample set of objetive

funtion values are alulated in the middle (enter) of the subedges. The nondominated

riterion values are kept in a list.

The output from the algorithm is an ordered set of \eÆient" subedges. This general

proedure, however, has a few disadvantages. The eÆient set (or part of it) may be an

edge-segment. This subedge will obviously remain eÆient, but the subedge will be divided

into smaller subedges again and again. This reveals that the list of eÆient subedges will

probably almost double in size, when we half the � value, for � suÆiently small. This an

in fat be used as an alternative stopping riterion.

4.2.2 Calulating lower bounds

We need both upper and lower bounds on the distane d(x; v

j

), where x an be any point

on the edge (or sub-edge) e

i

. We refer to the lower bound of this distane by d(e

i

; v

j

) and

to the upper bound by d(e

i

; v

j

). Assume e

i

2 (v

h

; v

k

), and x

h

is the endpoint of e

i

losest

to v

h

, and that x

k

is the endpoint of e

i

losest to v

k

.

The upper bound may be alulated as

d(e

i

; v

j

) = minfd(v

j

; v

h

) + d(v

h

; x

h

); d(v

j

; v

k

) + d(v

k

; x

k

)g+ d(x

h

; x

k

)

and the lower bound may be alulated as

d(e

i

; v

j

) = minfd(v

j

; v

h

) + d(v

h

; x

h

); d(v

j

; v

k

) + d(v

k

; x

k

)g:

These two bounds an easily be alulated as illustrated in Figure 11, whenever the dis-

tane matrix D, of shortest distanes between all pairs of nodes, is available. A proedure

to obtain D an be found in Thulasiraman and Swamy [71℄.
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v

j

v

h

v

k

x

h

x

k

e
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Figure 11: Calulating distane bounds.

Using these bounds, we an alulate the lower bounds on the objetive funtion values

as

f(e

i

) =

X

j

w

1

j

�

d(e

i

; v

j

)

�

�b

g(e

i

) =

X

j

w

2

j

d(e

i

; v

j

)

4.2.3 Exat bounds

In this setion we derive some exat bounds, spei�ally for our hoie of objetive fun-

tions. The distane funtion d(x; v

j

) is a onave funtion on an edge (subedge). Therefore

g(x) is a onave funtion on an edge, and the minimum is always in one of the (sub-edge)

endpoints. So we have an exat lower bound as follows.

g(e

i

) = minfg(x

h

); g(x

k

)g (9)

Now, lets onsider f(x). Sine d(x; v

j

) is both positive and onave, (d(x; v

j

))

�b

is onvex.

Therefore f(x) is onvex on an edge. If we are looking at the sub-edge from x

h

to x

k

as

illustrated in Figure 11, and the derivatives at the endpoints have the same sign, then an

exat lower bound is simply the smallest endpoint value. That is, if

sign

�

�

+

�x

(v

h

;v

k

)

f(x

h

)

�

= sign

�

�

+

�x

(v

h

;v

k

)

f(x

k

)

�

(10)

then

f(e

i

) = minff(x

h

); f(x

k

)g (11)

where

�

+

�x

(v

i

;v

j

)

f(x) denotes the derivative in the diretion from v

i

towards v

j

, and we want

to know if the funtion inreases or dereases at x. The \

+

" indiates right derivative,

so even in a break-point this derivative is well-de�ned. If (10) does not hold, the bound
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in Setion 4.2.2 has to be applied. For more general objetive funtions, the bounds in

Setion 4.2.2 may be needed more often.

4.3 Comparison of the BSPL and the BSNL problems

Even though the planar and the network models may seem very di�erent in struture, they

are designed to solve the same real-life problem. Often a ombination of the two models

would be preferable. In [4℄ and [70℄ planar and network models are ombined. Modeling

air pollution suh as noise makes most sense in the planar model, whereas the network

model is a good desription of a road network with distanes or travel times as oeÆients.

One possible ombination is to embed the network on top of the plane, so that eah point

on the network orresponds to a point in the plane, but not the other way round. This is

illustrated in Figure 12.

0 1 2 3 4 5
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1

2

3

a

1

= v

1

a

2

= v

2

a

3

= v

3

a

4

= v

4

a

5

= v

5

x

Figure 12: Combination of network and planar models.

The point x in Figure 12 is in the middle of edge (v

1

; v

3

), but it is also assoiated with a

point in the plane, namely (2:5; 1), whih an be used in an l

p

-norm alulation.

Whih model is the most appropriate is not always easy to determine. The available data

will probably deide the model.

4.4 Conlusions on approximation methods

In this setion we have desribed a powerful tool for approximating the set of eÆient

solutions on both planar and network models. The method an be applied when exat

solution methods are not at hand, as is often the ase when the objetive funtions are

nonlinear funtions.

It an be seen that the two solution algorithms (presented in detail in Paper C), are

not restrited to the biriteria ase. If the dominane hek routine is adapted to the
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multiriteria ase, the same method an be used. The method does in fat approximate

the eÆient set of the multiriteria semi-obnoxious loation problem.

In Paper C an example of both the planar and the network models are examined. The

example involves the loation of a new airport near the ity of Aarhus, Denmark. The

experimental results presented in the paper are quite satisfatory.
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5 Multiriteria Semi-obnoxious Network Loation (MSNL)

problems

There are a number of models that deal with the problem of loating (plaing) a new faility

on a network. Most of these models loate a desirable faility, suh as a supermarket or

a �re station, where the objetive is to keep the new faility lose to its users. The

two most ommon ones are the minisum and minimax (weighted median and weighted

enter). There are also some models desribing how to loate an obnoxious (undesirable)

faility, suh as a nulear power plant or a dump ite whih the users want to loate far

away. In obnoxious theory the two most ommon objetive funtions are the maxisum and

maximin (weighted anti-median and weighted anti-enter). Many failities an, however,

be thought of as semi-obnoxious. Suh failities ould be airports, train stations or other

noisy servie failities. It ould also be the above-mentioned dump ite that, with respet

to transportation osts, should be loated entrally, but, in the neighbors' opinion, should

be loated distantly. These loation problems ould with obvious advantages be formulated

as Multiriteria Semi-obnoxious Network Loation (MSNL) problems. In this way the

trade-o� between the di�erent objetives an be revealed, making a good basis for an

overall deision. Di�erent aspets of the problem an be desribed by di�erent objetives.

Suh objetives ould be transportation osts, travel time, air pollution or minimizing the

number of itizens within a ertain radius of the faility. Another situation arises when

we have more deision makers, eah having their own objetive funtion. Referenes to

related litterature are found at the beginning of Setion 4.

We have found no literature desribing the MSNL problem, but a general solution method

for the multiriteria median problem is presented in Hamaher et al. [36℄. This problem

involves only desirable sum objetive funtions, but we have generalized the method to

work for more general models.

5.1 Problem formulation and de�nitions

We are given a (strongly) onneted network G(V; E) with nodeset V = fv

1

; v

2

; : : : ; v

n

g

where jVj = n nodes, and edgeset E = f(v

i

; v

j

); (v

k

; v

l

); : : : ; (v

p

; v

q

)g with jEj = m edges.

If the underlying graph is direted, it is denoted G

D

, and the edge e = (v

i

; v

j

) has head v

j

and tail v

i

. If the underlying graph is undireted it is just denoted G, and e = (v

i

; v

j

) =

(v

j

; v

i

) 8e 2 E . We de�ne the set of objetives as Q = f1; 2; : : : ; Qg. Eah node v

i

arries

Q weights (w

1

i

; w

2

i

; : : : ; w

Q

i

)

t

, where w

q

i

> 0;8q 2 Q, so we may refer to the matrix of

weights by W

Q�n

. Eah edge e 2 E has length l(e) 2 IR

+

.

By d(v

h

; v

k

) we denote the distane between v

h

and v

k

whih is given by the length of a
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shortest path between v

h

and v

k

. A point x 2 G(V; E) an be loated both at a node or

on an edge.

We de�ne a point x on a direted edge e = (v

i

; v

j

) as a touple x = (e; t); t 2 [0; 1℄, with

d(v

k

; x) = d(v

k

; v

i

) + tl(e) and d(x; v

k

) = (1� t)l(e) + d(v

j

; v

k

)

for any v

k

2 V. A point x on an undireted edge e = (v

i

; v

j

) is de�ned as a touple

x = (e; t); t 2 [0; 1℄, with

d(x; v

k

) = minfd(v

k

; v

i

) + tl(e); d(v

k

; v

j

) + (1� t)l(e)g

for any v

k

2 V. Notie that d(v

i

; x) = tl(e) and d(x; v

j

) = (1� t)l(e) for x = (e; t). Sine

v

i

= (e; 0) and v

j

= (e; 1), all nodes in the network are also points in the network.

The set f(e; t)jt 2 (t

1

; t

2

); t

1

; t

2

2 [0; 1℄g, forming an open subedge on e, is denoted

(e; (t

1

; t

2

)) for any e 2 E . Of ourse this set is empty, unless t

2

> t

1

. Similarly, we de�ne

losed and half right/left open subedges.

We formulate the model with the maxisum and minisum objetives, whih are obviously

negatively orrelated. For the undireted problem the objetive funtions are de�ned by

f

q

(x) =

n

X

i=1

w

q

i

d(x; v

i

) q 2 Q (12)

and for the direted ase they are de�ned by

f

q

(x) =

n

X

i=1

w

q

i

(d(x; v

i

) + d(v

i

; x)) q 2 Q (13)

The problem is formulated as follows:

max f

q

(x) q 2 Q

1

min f

q

(x) q 2 Q

2

s.t.

x 2 G(V; E)

Q = Q

1

[ Q

2

, where Q

1

\ Q

2

= ;. Q

1

is the set of obnoxious objetive funtions, and

Q

2

is the set of desirable objetive funtions. At most one of the sets are allowed to be

empty. If Q

1

= ; we have the situation disussed in Hamaher, Labb�e and Nikel [36℄.

f(x) = (f

1

(x); f

2

(x); : : : ; f

Q

(x))

t

.

For simpliity in the sueeding argumentation, we multiply all objetive funtions in Q

1

by �1 in order to minimize instead of maximize. In the remaining part of the setion, we
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assume that w

q

i

< 0; i = 1; 2; : : : ; n and q 2 Q

1

, and w

q

i

> 0; i = 1; 2; : : : ; n and q 2 Q

2

.

This gives the following problem formulation:

min f

q

(x) q 2 Q

1

min f

q

(x) q 2 Q

2

s.t.

x 2 G(V; E)

(14)

In order to �nd the shortest distanes between x and all the nodes, we need the distane

matrix D of shortest distanes between all pairs of nodes. Note that D

ij

= d(v

i

; v

j

). This

matrix an be alulated in O(n

3

) running time using Floyd's algorithm or by applying

Dijkstra's algorithm to all n nodes. For details on these graph proedures, see Thulasira-

man and Swamy [71℄. For an undireted network the distane matrix D is symmetri.

We will now outline the onept of bottlenek-points as it is presented in Churh and

Gar�nkel [15℄. There are two types of bottlenek-points, edge-bottlenek-points and node-

bottlenek-points. Only edge-bottlenek-points are de�ned here, beause the nodes will be

examined anyway, whether they are bottlenek-points or not. The edge-bottlenek-points

are de�ned as follows, for eah edge (v

i

; v

j

) 2 E : Let x = (e; t) be on the edge (v

i

; v

j

). If

there exists a node v

k

6= v

i

; v

j

suh that

D

ki

+ tl(e) = D

kj

+ (1� t)l(e)

then x is an edge-bottlenek-point. It is easily seen, that edge (v

i

; v

j

) ontains an

edge-bottlenek-point with respet to node v

k

if and only if

jD

ki

�D

kj

j < l((v

i

; v

j

))

This sets the upper bound on the number of edge-bottlenek-points on an edge to n. If we

onsider the endnodes of the edges as bottlenek-points as well, we have O(n) bottlenek-

points per edge. This gives a total of O(mn) bottlenek-points on G(V; E).

We will denote the edge-bottlenek-point matrix of shortest distanes from all edge-

bottlenek-points to all nodes by B. So B

ij

is the shortest distane from edge-bottlenek-

point B

i

to node v

j

. This matrix is needed for easy alulation of the objetive-values

in the bottlenek-points. When we know the shortest distane matrix D, the bottlenek-

points an be alulated in O(n log n) time, see Hansen et al. [42℄.

The weighted-sum objetive with positive weights is a pieewise linear, onave funtion

on an edge, with break-points only in the edge-bottlenek-points, see Figure 13. If all

weights are negative the objetive funtion is a pieewise linear, onvex funtion with

break-points only in the edge-bottlenek-points.
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Figure 13: Illustration of the objetive funtions on an edge.

Note that the optimum for the maxisum need not be unique, it an be a subedge between

two (or more) bottlenek-points, or there may be points on di�erent edges with the optimal

value. The optimum for the minisum is attained at one or more nodes.

5.1.1 Example

Now we present a small example to illustrate the struture of the undireted problem, see

Figure 14. Let the weights be w

1

= (�1;�2;�1;�1;�2;�2) and w

2

= (2; 1; 2; 2; 2; 1).

Let the distane matrix D be given by

D =

2

6

6

6

6

6

6

4

0 1 1 4 3 2

1 0 2 3 4 1

1 2 0 3 2 3

4 3 3 0 5 2

3 4 2 5 0 3

2 1 3 2 3 0

3

7

7

7

7

7

7

5

for the undireted network of Figure 14. B an be alulated as

B =

2

6

6

6

6

6

6

6

6

6

6

4

2 3 3 6 1 4

3 2 4 1 6 3

2 3 1 2 3 4

3 4 2 1 4 3

2 3 1 4 1 4

3 2 4 1 4 1

4 3 3 4 1 2

3 2 4 3 2 1

3

7

7

7

7

7

7

7

7

7

7

5

:
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Figure 14: The undireted network of Example 5.1.1. The bold parts onstitute the set of

eÆient points.

To larify the solution to the undireted network in Figure 14 we present some objetive

funtion values in Table 6. A solution method spei�ally for the biriterion model is

desribed in Setion 5.3. The general multiriteria method is desribed in Setion 5.2.3.

Please note the values of p and B

4

. This proves that a subedge, not having endpoint at

a node or a bottlenek-point, an be eÆient. We will refer to this example in Setion

5.2 and 5.3. From Table 6 we note that bottlenek-point B

2

is optimal for the maxisum

riterion (f

1

) and node v

3

is optimal for the minisum riterion (f

2

).

Point x f(x) = (f

1

(x); f

2

(x))

v

1

(�17; 19)

v

2

(�16; 21)

v

3

(�18; 17)

v

4

(�27; 29)

v

5

(�24; 27)

v

6

(�15; 21)

B

1

(�27; 31)

B

2

(�30; 33)

B

3

(�25; 23)

B

4

(�28; 27)

B

5

(�23; 29)

B

6

(�20; 27)

B

7

(�25; 25)

B

8

(�23; 27)

p (�28; 30

1

3

)

Table 6: Criterion values for all nodes, all bottlenek-points and point p.
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5.2 General solution method for the Q riteria ase

First, we solve two simple ases of the problem, namely the node problem and the direted

ase of the absolute loation problem. Then we present the absolute loation problem on

an undireted network.

5.2.1 Loating the new faility in a node

In this ase the new faility an be plaed only at the nodes of the given network, and

we an determine the eÆient set X

Par

= X

Par

(V) by the following approah in O(Qn

2

)

time, given the distane matrix D.

In the solution proedure we make a pairwise omparison of all the n nodes. Initially we

lassify all nodes as eÆient. Then we ompare, say nodes v

i

and v

j

. If f(v

j

) dominates

f(v

i

), we delete v

i

from the set of eÆient nodes and ontinue the omparison. This

approah is presented in both Hamaher et al. [36℄ and Paper D.

5.2.2 Loating the new faility on a direted network

For this problem we have to investigate the objetive funtion (13) of the direted ase.

First we observe that the objetive funtions are onstant on the interior of the edges.

This result is proven in Paper D, and follows from the fat that eah term in the sum in

(13) is a shortest yle multiplied by a weight.

We subsequently use the triangular inequality to prove that the obnoxious objetive fun-

tions, q 2 Q

1

, have a higher value at the endnodes of e, and that the desirable objetive

funtions, q 2 Q

2

, have a lower value at the endnodes of e. Thus, f

q

is still onvex for

q 2 Q

1

and onave for q 2 Q

2

on an edge. To see this we analyze the objetive funtion

(13) one again. This result is also proven in Paper D. This struture of the objetive

funtions on the direted edges is illustrated in Figure 15. The values are taken from a

direted example presented in Paper D.

The solution proedure for the direted ase is very similar to the proedure for the \node"

ase in Setion 5.2.1. When we have observed that the objetive funtions are onstant

on the interior of all edges, we an simply make a pairwise omparison of all nodes and

edges. When we make this omparison on the n+m nodes and edges, eah taking O(Q)

time, we get a bound of O(Q(n+m)

2

) time.

5.2.3 Loating the new faility on an undireted network

The general solution method onsists of pairwise omparison of subedges. The objetive

funtions are all pieewise linear, and the idea is to partition the network into subedges,
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Figure 15: f((v

1

; v

2

)). Notie that f(v

1

) dominates f(v

2

).

where the objetive funtions are linear. The points where the pieewise linear funtions

hange in slope are in fat the bottlenek-points. We then make a pairwise omparison

of all these subedges, and delete the ineÆient parts. The result is the omplete set of

eÆient solutions X

Par

. For eah omparison of two subedges we will onstrut a linear

program, that an be solved in linear time by methods found in Megiddo [53℄, to detet

ineÆient points.

Let z

q

(t) = f

q

(x

t

); x

t

= (e; t); e = (v

i

; v

j

). These Q funtions are all pieewise linear,

with the same set of possible breakpoints orresponding to the bottlenek-points. Assume

there are P + 1 breakpoints, inluding the two nodes. We then have P subedges on e.

Let these breakpoints on (e; t) be denoted by t

j

; j = 0; 1; : : : ; P , (1 � P � n + 1), with

t

0

= v

i

, t

P

= v

j

and t

j�1

< t

j

8 j = 1; 2; : : : ; P . For t 2 [t

j�1

; t

j

℄, the z

q

(t)'s are linear

funtions of the form

z

q

(t) = m

q

j

t+ b

q

j

8 q = 1; 2; : : : ; Q:

Let us now ompare the subedge A on edge e

A

, (e

A

; [t

j�1

; t

j

℄), with subedge B on edge

e

B

, (e

B

; [s

p�1

; s

p

℄). A point (e

A

; t) 2 (e

A

; [t

j�1

; t

j

℄) is dominated by some point (e

B

; s) 2

(e

B

; [s

p�1

; s

p

℄) if and only if

m

q

p

s+ b

q

p

� m

q

j

t+ b

q

j

8 q = 1; 2; : : : ; Q

where at least one inequality is strit. This omparison is illustrated in Figure 16 for two

subedges from Example 5.1.1. Subedge (B

7

; B

8

) is ompared with subedge (v

5

; B

7

).

Let us de�ne the set T where the inequalities hold (for these partiular subedges) by

T = f(s; t)j m

q

j

t�m

q

p

s � b

q

p

� b

q

j

; 8 q 2 Qg \ ([s

p�1

; s

p

℄� [t

j�1

; t

j

℄)

If T = ;, (e

B

; [s

p�1

; s

p

℄) does not ontain a point dominating any point in (e

A

; [t

j�1

; t

j

℄).

Otherwise T 6= ; is taken as a feasible solution set of the two 2-variable linear programs:

LB = minf t j (s; t) 2 T g and UB = maxf t j (s; t) 2 T g
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Figure 16: Comparing subedge (B

7

; B

8

) with subedge (v

5

; B

7

).

Using methods desribed by Megiddo [53℄, LB and UB an be alulated in O(Q) time.

Next we determine if the points orresponding to LB and UB are only weakly dominated.

This means that none of the inequalities need to be strit as required by De�nition 1. The

details of this are found in Paper D. If both LB and UB are dominated, we delete the

dominated part of (e

A

; [t

j�1

; t

j

℄) as follows:

(e

A

; [t

j�1

; t

j

℄) = (e

A

; [t

j�1

; t

j

℄) n (e

A

; [LB;UB℄)

This subedge omparison is illustrated in Figure 17, where the subedge (B

7

; B

8

) = (e; [

1

3

;

2

3

℄)

from Example 5.1.1 is ompared with (v

5

; B

7

) = (e; [0;

1

3

℄). Both subedges are on the same

edge. Sine T is non-empty we solve the two programs and �nd LB =

1

3

and UB =

2

3

.

Both LB and UB are dominated, so the subedge (B

7

; B

8

) is ompletely deleted.

In order to omplete the omparison, we simply make an ordered subedge omparison.

First, we ompare (e

1

; [t

0

; t

1

℄) with all the other subedges, possibly deleting parts of

(e

1

; [t

0

; t

1

℄). Then we ompare the seond subedge (e

1

; [t

1

; t

2

℄) with all the remaining

subedges, inluding the subedge (e

1

; [t

0

; t

1

℄). This omparison ontinues until we have

ompared the last subedge (e

m

; [s

P�1

; s

P

℄) with all the remaining subedges.
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Figure 17: The linear programming onstraints for omparing (B

7

; B

8

) = (e; [

1

3

;

2

3

℄) with

(v

5

; B

7

) = (e; [0;

1

3

℄) on edge (v

5

; v

6

) in Example 5.1.1. T is indiated by the shaded area.

Notie that we an still use the entire subedge (e

A

; [t

j�1

; t

j

℄) to ompare with the other

subedges, even though a part of it is ineÆient. It is only for the set of eÆient points

X

Par

, that we have to remember what part of (e

A

; [t

j�1

; t

j

℄) whih is eÆient.

If we make the global pairwise omparison on the O(mn) bottlenek-point subedges, eah

taking O(Q) time, we get a omplexity bound of O(Qm

2

n

2

) time. This is also the bound

for the ase where Q = Q

2

found in Hamaher et al. [36℄.

5.3 Biriteria ase

In this setion we present an improved method for the 2-riteria ase. When we have only

two riteria, we may use the image of the network mapped into riterion spae Z to solve

the problem faster. This is done by alulating the lower envelope, see Hershberger [45℄.

The envelope an be alulated in O(p log p) time, where p is the number of line-segments

(subedges).

This proedure is best desribed by an example, so we present the undireted network of

Example 5.1.1 in riterion spae, see Figure 18.

Sine we want to �nd the set of eÆient solutions X

Par

, we are only interested in values

between the two extreme optimal solutions, namely f

1�

and f

2�

. In riterion spae we are

only interested in the region [f

1�

; f

1

(x

2

)℄ � [f

2�

; f

2

(x

1

)℄, where x

1

and x

2

are de�ned in

Setion 1.1. We have to make sure that the slope of the envelope is dereasing, when the

f

1

-values inrease, to ensure that there are no dominated points on the envelope. This an

easily be ensured by a few tehnial details desribed in Paper D. The lower envelope now

onstitutes Z

Par

. The set of eÆient solutions is then given by X

Par

= f

�1

(Z

Par

). The

eÆient set orresponding to the nondominated set of Figure 18 is indiated in Figure 14.

We have the same omplexity bound on the lower envelope alulation as in Hamaher et
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Figure 18: Mapping of the undireted network from Example 5.1.1 into riterion spae.

The bold parts onstitute the set of nondominated points.

al. [36℄, namely O(mn log(mn)). This bound an be rewritten by examining the log term

and using the fat that m is at worst n

2

for dense graphs. We therefore get the bound of

O(mn log n) time for the envelope alulation.

5.4 Computational results

In this setion we present omputational results from an implementation of the algorithm

outlined in Setion 5.2.3. We have not used the methods of Megiddo [53℄ in this im-

plementation to solve the small LP's. Instead, we have used CPLEX 6.6. The ode is

programmed in C++ and the tests are run on a 700 MHz Linux PC.

We have used random networks of varying size generated using NETMAKER, see Paper

B [66℄. In eah group we have used 10 random networks, and the mean is reported in the

following tables.

First, we examine some semi-obnoxious biriterion networks, having one push objetive

and one pull objetive. The results are presented in Table 7. It appears that the number

of subedges grows a little less than squared the number of nodes. The number of atual

omparisons made is presented in the table, and the perentage of atual omparisons to

the worst ase is also presented. It is important to note that this perentage dereases as

the networks inrease in size.

The number of eÆient subedges is also presented in Table 7, and this number seems to
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# Nodes 50 100 150 200 250

CPU-time 40.96 229.54 774.64 1505.42 3326.37

# Subedges 3033.6 9411.5 18525.2 28368.1 39540.2

# Subedge omparisons (in millions) 0.358 1.770 5.138 8.655 16.531

# EÆient subedges 96.2 155.3 175.7 222.5 264.5

% EÆient subedges 3 1.6 0.95 0.78 0.67

% Comparisons 4.00 2.02 1.50 1.08 1.05

# Comparisons per se 8733 7709 6633 5749 4970

Table 7: Semi-obnoxious biriterion results, 1 push - 1 pull objetive.

grow linearly with the number of nodes. This number is in fat higher than the number

of atual eÆient subedges, beause more subedges may ontain the same eÆient point,

when this point is a node. If a node is eÆient, all the subedges onneted to this node

ontain some eÆient points (perhaps only the node whih is the endpoint of the subedge).

The last row in Table 7 are the numbers of omparisons made per CPU-seond. Assuming

that CPLEX performs independently of the number of problems it has to solve, this

derease indiates that the large problems require a lot more storage of data, and aessing

this data takes an inreasing amount of time.

Next we examine the e�et of having more objetives. These results are all omputed on

networks with 50 nodes. We reuse the results of the biriterion (1-1) networks of Table 7,

examine two types of three objetive problems and one type of four objetive problems.

The three objetive networks are generated with both 1 obnoxious and 2 desirable obje-

tives (1-2), and 2 obnoxious and 1 desirable objetives (2-1). The four objetive networks

are all with 2 obnoxious and 2 desirable objetive funtions (2-2). The results are presented

in Table 8.

As expeted both the number of subedges ontaining eÆient points and the CPU-time

inrease rapidly when more negatively orrelated objetive funtions are added. With four

objetives more than 75 % of the subedges ontain eÆient points. It is seen that the CPU-

time for these instanes is almost proportional to the number of subedge omparisons, sine

the data size of the instanes is approximately the same (last line in Table 8).

Finally, we onlude that the omputational results are onstrutive in the sense that

rather large problems an be solved within a reasonable amount of time. Sine loation

problems are usually not of the type you have to resolve often, a longer CPU-time is

aeptable.

The most enouraging result being that for biriterion networks with objetive funtions

in almost opposite diretions, a very small proportion of the networks is eÆient. This
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# Objetives 1-1 1-2 2-1 2-2

CPU-time 40.96 123.05 105.49 870.57

# Subedges 3033.6 3293.1 3158.8 2853.6

# Subedge omparisons (in millions) 0.358 1.019 0.914 6.128

# EÆient subedges 96.2 359.1 357.9 2237.7

% EÆient subedges 3 11 11 78

% Comparisons 4.00 9.47 9.53 75.46

# Comparisons per se 8733 8349 8720 7077

Table 8: The e�et of having more objetives. All networks have 50 nodes.

indiates that this model is in fat an aid for the deision-maker, sine a large part of the

network an be omitted from further onsideration. On the eÆient parts of the network,

the trade-o� between the two objetives an then be revealed.

As a �nal omment, we note that with negatively orrelated objetives, at most three

objetive funtions should be onsidered. Otherwise, a very large proportion of the network

will be eÆient, and this method will not have helped the DM.

5.5 Conlusions on the subedge omparison approah

After having investigated the di�erent problems in turn, we an onlude that the methods

desribed in Setion 5.2.3 and 5.3 works for any pieewise linear objetive funtion. The

e�etiveness of the two algorithms depend on how easy the breakpoints an be found,

and on the number of resulting subedges. If E is the number of subedges, the biriterion

method from Setion 5.3 runs in O(E logE) time and the multiriteria method from

Setion 5.2.3 runs in O(QE

2

) time.

From the setion on omputational results we an onlude that the method is appliable

the problems of a fair size. We have also seen that for biobjetive problems with negatively

orrelated objetive funtions only a limited part of the network is eÆient. We therefore

onlude that this model is in fat a good tool for MSNL problems.
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6 Biriteria Network Loation (BNL) problems with rite-

ria dependent lengths and minisum objetives

We begin this setion by a motivating example. Assume we have to loate a money

reserve, onsidering the two objetives of minimizing the transportation osts and the risk

of having the transports robbed. The depot serves a number of lients varying in size,

and we are given a onneted network and interpret eah of the n nodes as the lients. A

relevant (node) weight for a lient with respet to transportation osts is the number of

monthly deliveries, and a weight for the risk objetive is the maximum value of a money-

transport. The edge-lengths with respet to transportation osts ould be the distane,

and for the risk objetive the edge-length ould be the probability of an assault. If we

assume that the ost of opening the new faility is independent of loation, this partiular

ost is unimportant.

A solution to this problem onsists of two deisions. The �rst (and probably the most

important) one is to deide where to loate the new faility (depot), and the seond one

onsists in determining how to route the ow from the new faility to the nodes. The

ow problem onsists of n � 1 Biriterion Shortest Path (BSP) problems (desribed in

Setion 2).

The solution method proposed is a variant of the two-phases approah due to Ulungu

and Teghem [74℄ and Vis�ee et al. [75℄. In Phase 1 all (or a representative subset of) the

supported extreme solutions are found by using the weighting method. In Phase 2 a searh

between the supported solutions is onduted to �nd unsupported eÆient solutions. The

proedure is explained in details in Setion 6.3.

6.1 Problem formulation

We are given a onneted direted network G(V; E) with node set V = fv

1

; v

2

; : : : ; v

n

g

where jVj = n nodes, and edge set E = f(v

i

; v

j

); (v

k

; v

l

); : : : ; (v

p

; v

q

)g with jEj = m edges.

The underlying graph is denoted by G, and edges may be referred to by e 2 E , by

(v

i

; v

j

) 2 E or simply by (i; j) 2 E , where node i is the tail and node j is the head. Eah

node v

i

arries two weights (w

1

i

; w

2

i

)

t

, where w

q

i

2 IR

+

; q = 1; 2, so we may refer to the

matrix of weights by W

2�n

. Eah edge e 2 E has length l(e) = (l

1

(e); l

2

(e)) 2 IR

2

+

. Let us

de�ne a matrix of edges E

m�(4)

with the following entries. E

i1

is the tail of edge e

i

, E

i2

is the head, E

i3

= l

1

(e

i

) is the length with respet to riteria one and E

i4

= l

2

(e

i

) is the

length with respet to riteria two.

Notie that an undireted network an be modeled as a direted network with the double
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amount of edges. De�ne binary deision variables as follows:

x

i

=

�

1 if the faility is loated in node i

0 else

y

ijk

=

�

1 if edge (i; j) is used in the path to node k

0 else

We examine the so-alled median objetives or weighted sum objetives:

f

q

(y) =

n

X

k=1

n

X

i=1

n

X

j=1

l

q

ij

w

q

k

y

ijk

q = 1; 2

Combining the oeÆients to 

q

ijk

= l

q

ij

w

q

k

, we get

f

q

(y) =

n

X

k=1

n

X

i=1

n

X

j=1



q

ijk

y

ijk

q = 1; 2 (15)

There are two types of onstraints. The �rst onstraint ensures that exatly one faility is

loated and the seond set of onstraints ensures the existene of paths from the faility

to the remaining nodes. This leads to the following problem:

min f

1

(y)

min f

2

(y)

s.t.

n

P

i=1

x

i

= 1

n

P

j=1

y

jik

�

n

P

j=1

y

ijk

= �x

i

i 6= k; 8 i; k

x

i

2 f0; 1g 8i

y

ijk

2 f0; 1g 8 i; j; k

(16)

Notie that we have omitted the following redundant onstraints

n

X

j=1

y

jik

�

n

X

j=1

y

ijk

= 1� x

i

8 i; where i = k:

The reason being that this part of the onstraint matrix onsists of n totally unimodular

sub-matries forming the n sets of paths. Notie that one path is non-existing, sine the

node in whih the new faility is loated, ships nothing through the network to itself.

In Paper E we prove by an example that the onstraint matrix of (16) is not totally

unimodular.
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Weighting the two objetive funtions in (16), using the weights � and 1 � �; � 2 (0; 1),

results in the weighted version of (16)

min �f

1

(y) + (1� �)f

2

(y)

s.t.

n

P

i=1

x

i

= 1

n

P

j=1

y

jik

�

n

P

j=1

y

ijk

= �x

i

i 6= k 8 i; k

x

i

2 f0; 1g 8i

y

ijk

2 f0; 1g 8 i; j; k

(17)

In Setion 6.3.1 we desribe how problem (17) an be solved in O(n

4

) running time using

Benders' deomposition for a �xed �. The appropriate � is found as desribed by the

NISE method, very similar to Phase 1 in Setion 3.2.

6.2 Example

We examine the network presented in Figure 19 with the following weights and undireted

edges. Eah olumn of W onsists of the two node-weights.

W =

�

200 300 500 100 400 500 400

7 4 2 6 6 2 8

�

The �rst two olumns of E are the tail and head nodes. The next two olumns are the

two edge-lengths.

E =

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

1 2 78 22

1 3 24 72

1 4 26 71

1 5 13 71

1 7 86 12

2 3 98 29

2 5 17 90

3 5 29 97

3 6 87 28

3 7 7 69

4 5 4 77

4 7 89 5

5 6 17 92

5 7 40 74

6 7 69 12

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

The resulting 11 nondominated riterion vetors are presented in Table 9. These rite-

rion vetors are visualized in Figure 20 and it is seen that there are 6 supported and 5
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1 2 3

4 5 6

7

Figure 19: Network for Example 6.2.

unsupported riterion vetors. Of the 5 unsupported solutions, only one, (89200; 1868),

is loally unsupported (de�ned in Setion 6.3). The other 4 unsupported solutions are

loally supported by the nodes indiated in Figure 20. The last nondominated solution,

(89200; 1868), is dominated by a onvex ombination of the following two loally supported

solutions:

9

11

(91200; 1684) +

2

11

(80200; 2587) = (89200; 1848:18)

There are a total of 2128 feasible riterion vetors, using only eÆient paths between

nodes. All these vetors are illustrated in Figure 21.

6.3 Two-phases approah

In this setion the solution proedure for solving the biriterion problem (16) is outlined.

Before stating the proedure it may be helpful to onsider a na��ve method. One possible

way of solving the problem ould be to solve problem (17) n times, namely one time for

eah possible loation of the new faility. Suppose that the loation of the new faility is

�xed at a spei� node, say node i (so x

i

= 1). Using the weighting method, the supported

eÆient solutions (paths) with respet to node i an be revealed. We all these eÆient

solutions loally eÆient (with respet to node i). Given � 2 (0; 1) and x the orresponding
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Node f

1

f

2

5 45500 3025

5 47100 2289

1 78200 2062

7 89200 1868

7 91200 1684

1 92600 1506

7 97200 1376

1 107500 1182

7 111600 1112

7 129300 856

7 203800 798

Table 9: Nondominated values for Example 6.2.

loally eÆient solution an be found in O(n

3

) running time, sine we are faed with n�1

shortest path problems.

Finding the loally unsupported eÆient solutions that are in fat globally eÆient, on-

stitutes a more diÆult problem. These annot be found using the weighting method.

This fat is known from studying the BSP problem alone (Paper B [66℄).

We thus have three types of eÆient solutions:

� supported eÆient solutions

� loally supported eÆient solutions

� (loally) unsupported eÆient solutions

The reason why loally supported eÆient solutions are interesting, is that they may

be unsupported eÆient solutions in the main problem (16), but possible to �nd by the

weighting method. These three kinds of solutions are illustrated in Figure 20.

The proedure that we propose instead of the na��ve method, is a variant of the two-

phases approah due to Ulungu and Teghem [74℄ and Vis�ee et al. [75℄, and may be stated

generially as:

� Phase 1: Find all (or a representative subset of) the supported solutions.

� Phase 2: Condut a searh between the supported solutions in order to �nd unsup-

ported nondominated solutions.
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f

2

f

1

Loally unsupported

5

5

1

7

7

1

7

1

7

7

7

7 (80200,2587)

Figure 20: Nondominated vetors for Example 6.2. Large dots illustrate the supported

solutions, and only one solution is loally unsupported. The numbers indiate the loation

node.

6.3.1 Benders' deomposition in Phase 1

As explained in Setion 6.1 all supported solutions to (16) (and the loally supported)

may be obtained by solving the weighted program (17) parametrially in � 2 (0; 1). We

will do that by employing NISE (Non-Inferior Set Estimation), a method presented in

Cohon [17℄. NISE guides the hoie of � 2 (0; 1). Details on how to ompute the �'s are

presented in Paper E.

Now we explain how Benders' deomposition an be used to �nd the supported solutions

given a weight � in Phase 1. Let � be �xed and de�ne



ijk

(�) = �w

1

k

l

1

ij

+ (1� �)w

2

k

l

2

ij

(� 0 sine l; w � 0):

When x is �xed, we an use the path onstraints being totally unimodular, and relax the

integrality onstraints on y. Fixing x means loating the faility at a partiular node. For
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Figure 21: Illustration of 2128 riterion vetors for Example 6.2.

a �xed x satisfying

P

i

x

i

= 1; x

i

2 f0; 1g, we get the following Benders' subproblem:

min

P

k;i;j



ijk

(�)y

ijk

s:t

P

j

y

jik

�

P

j

y

ijk

= �x

i

i 6= k 8i; k

0 � y

ijk

� 1 8i; j; k

(18)

This linear programming problem has the following dual program:

max

P

i;k

k 6=i

�

ik

(�x

i

) +

P

k;i;j

�

ijk

s:t

�

jk

� �

ik

+ �

ijk

� 

ijk

(�) i 6= k 8i; j; k

� � 0

(19)

The variables � are free variables orresponding to the path onstraints in (18) and the �

variables orrespond to the upper bound on y. These dual variables an be found when the

n�1 shortest path problems are solved in the Benders' subproblem, so we need not atually
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solve the dual problem (19). The dual leads to the following Benders' masterproblem:

min v

s:t

v � �

P

i;k

k 6=i

�

l

ik

x

i

+

P

k;i;j

�

l

ijk

8l

P

i

x

i

= 1

x

i

2 f0; 1g 8i

(20)

where l is an index for the added inequalities.

The �rst time we generate a redundant inequality (or suggests a node piked earlier), the

solution at hand is optimal (eÆient). This is true beause the subproblem (18) will return

an earlier found solution.

Notie that Benders' masterproblem (20) is easy to solve in this ase. It an be reformu-

lated as a minimax problem. Let us rewrite the �rst onstraint in (20), keeping in mind

that only one x

i

will be one.

v � �

X

i

X

k

k 6=i

�

l

ik

x

i

+

X

k;h;j

�

l

hjk

v �

X

i

0

B

B

�

�

X

k

k 6=i

�

l

ik

+

X

k;h;j

�

l

hjk

1

C

C

A

x

i

v �

X

i



l

i

x

i

where 

l

i

= �

X

k

k 6=i

�

l

ik

+

X

k;h;j

�

l

hjk

If we think of these 

l

i

oeÆients in a matrix, the optimal x

i

is to �nd the olumn i where

the largest 

l

i

element is as small as possible.

Notie, that we have to solve problems (18) and (20) at most n times. Sine Benders'

subproblem onsists of n� 1 shortest path problems, problem (18) an be solved in O(n

3

)

running time. Therefore the overall running time in Phase 1, given �, is O(n

4

).

6.3.2 Phase 2

Here we an �rst �nd the loally supported nondominated vetors by using the weighting

method for a �xed node(s).

To �nd loally unsupported eÆient points of (16), we use the Thebyhe� theory. Let

z = (z

1

; z

2

) denote a �xed referene point with z � z

�

=

�

f

1�

; f

2�

�

, where z

�

is the ideal
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point. Then the augmented non-weighted Thebyhe� program (21) may be stated as

min �+ �

�

f

1

(y) + f

2

(y)

�

s.t.

f

q

(y)� � � z

q

q = 1; 2

n

P

i=1

x

i

= 1

n

P

j=1

y

jik

�

n

P

j=1

y

ijk

= �x

i

i 6= k 8i; k

x

i

2 f0; 1g 8i

y

ijk

2 f0; 1g 8i; j; k

� 2 IR

+

(21)

where � is a small positive onstant ensuring that the solution is not just weakly eÆient.

A few omments are in order. Note that instead of solving the usual weighted Thebyhe�

program as found in Steuer and Choo [69℄, we propose to solve the augmented non-weighted

Thebyhe� program (21). It was shown by Alves and Climao [1℄ that all nondominated

solutions to (16) an be found using the non-weighted program for integer problems (IP),

and in Alves and Climao [2℄ this result was generalized to mixed integer problems (MIP).

Note that the augmented Thebyhe� program (21) has the same onstraints as our orig-

inal problem (16), as well as two additional onstraints. The two new onstraints are the

referene point onstraints, linking the referene point to the objetive funtion in (21).

These two new onstraints ompliate the problem, sine they destroy the nie struture

of the onstraint matrix. Using Lagrange relaxation of these onstraints does not solve

our problem. We simply end up with the weighting method. This is derived in Appendix

2 in Paper E. However, problem (21) is a one objetive MIP, whih an be solved by the

usual IP methods, suh as branh and bound.

Next we explain how to determine the appropriate referene point(s). Assume that we

want to searh for loally unsupported solutions between the two nondominated points E

1

and E

2

. First, we determine a maximum deviation fator

Æ = max

�

f

1

(x

2

)� f

1�

; f

2

(x

1

)� f

2�

	

where x

1

and x

2

are de�ned in Setion 1.1 as f

1

and f

2

optimal solutions. This deviation

fator is going to ensure that our referene point is below the ideal point z

�

. Next we �nd

referene points orresponding to our two nondominated solutions, E

1

and E

2

:

Z(E

i

) = (E

1

i

� Æ; E

2

i

� Æ) i = 1; 2
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The searh referene point z

new

an then be determined as the maximum of the referene

point oordinates, beause this point has a maximum distane of Æ to both Z(E

1

) and

Z(E

2

):

z

new

=

�

max

�

Z

1

(E

1

); Z

1

(E

2

)

	

;max

�

Z

2

(E

1

); Z

2

(E

2

)

	�

:

Using z

new

in (21) an result in two things. If a new solution is returned, this solution is

nondominated and de�nes two new searh areas. Otherwise one of the points E

1

or E

2

is

returned, and no nondominated (unsupported) solutions exist between the two points.

For our Example 6.2 we �nd Æ = maxf203800 � 45500; 3025 � 798g = 158300. Next we

searh for loally unsupported solutions between the two points E

1

= (78200; 2062) and

E

2

= (91200; 1684) (on either side of the single loally unsupported point in Figure 20).

This leads to the referene point z

new

= (�67100;�156238), where � = 158300 an �nd

both E

1

and E

2

. In this ase E

3

= (89200; 1868) is found with � = 158106.

6.4 Conlusions on the BNL problem

We have presented a new, interesting loation problem. The formulation inorporates both

the loation and the routing aspets in a multiobjetive setting. We have also presented

a solution method for the problem, and illustrate the problem struture and solution

proedure by an example. The presented method an easily be made interative, sine the

proedures in both phases are easily made interative.

Unfortunately, the solution method does not easily generalize to more than two objetives.

DiÆulties exists in both phase 1 and 2 as explained in Paper E.
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7 A stohasti programming model for apaity expansion

at Sonofon

In this setion we study a mobile ommuniations network. Sine the desription of the

problem in Paper F is very tehnial, we now make a less detailed presentation. This

setion is also quite di�erent from previous setions, beause the modeling phase of making

a good desription of a pratial problem took a lot of e�ort. First, we will desribe the

struture of a mobile ommuniations network.

The base transeiver stations (BTSs) are eah onneted to one base station ontroller

(BSC). Eah BSC serves a number of BTSs and is onneted to one mobile swithing

enter (MSC). Finally eah MSC serves a number of BSCs and the MSCs are onneted

internally. The network is illustrated in Figure 22.

MSC

MSC

MSC

BSC

BSC

BSC

BSC

BSC

BSC

BTS

BTS

Figure 22: Illustration of mobile teleommuniations network.

The visitor loation register (VLR) of an MSC, a database handling all information about

lients, has a limited apaity, thus restriting the number of ustomers that an be served

(through BTSs and BSCs) by an MSC. Thus the network provider not only has to expand

the link apaities but should onsider when and where to deploy new MSCs in order to

be able to serve the inreasing number of ustomers.

We will onsider the problem of deploying a number of new MSCs and alloating the BSCs

to new and existing MSCs, thus treating the number and loations of BTSs and BSCs

as exogenous. The deployment of MSCs must be done so as to minimize the inurred

osts while meeting ustomer demand and observing the apaity restritions. The ost

funtion will inlude four terms:
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1. The ost of new MSCs.

2. The ost of onneting BSCs to MSCs.

3. The ost of expanding the apaity of links onneting the MSCs.

4. A penalty ost for handovers that our among BSCs that are onneted to di�erent

MSCs.

The ost of a new MSC is a known (�xed) ost inluding the purhase prie, physial

installation in a building and a number of working hours for the installation. The ost

of onneting a BSC to an MSC is zero if the BSC is urrently onneted to this MSC,

otherwise the ost of moving the BSC to a new or existing MSC is estimated. The ost

of expanding link apaities is a linear funtion of the number of new bandwidth units

needed. Finally, a handover ost is introdued to keep BSC areas onneted.

It is a fat, that the time that passes from the moment at whih deployment of MSCs is

resolved on until the equipment is atually in plae and available for use is rather long

(about a year). This means that at the time the deision has to be made the network

provider does not have full knowledge about several important parameters suh as the

traÆ matrix, the ost of expanding the apaity of links and so on. For this reason the

network provider should put o� the de�nitive deision on alloation of BSCs to MSCs as

long as possible, allowing unertainty to be at least partially revealed. This is the inentive

for us to model the problem as a two-stage stohasti program, the �rst stage onsisting

of deployment of MSCs and the seond stage onsisting of alloation of BSCs to MSCs

and routing of traÆ in the resulting network.

7.1 A two-stage stohasti programming model

As previously disussed several parameters of the model are not known with ertainty at

the time the deision on deployment of MSCs has to be made. Thus we will think of

these parameters as depending on the outome of a random variable � de�ned on some

probability spae (�;F ; P ). We will make the following assumption:

Assumption 1 The random variable � has a disrete distribution with �nite support � =

f�

1

; : : : ; �

S

g and orresponding probabilities P (�

1

) = �

1

; : : : ; P (�

S

) = �

S

.

Assumption 1 allows us to speak of the parameters in terms of senarios, a senario being

a set of realized values of the parameters. q(�

s

) is the seond stage pries, h(�

s

) is the

seond stage right hand side and T (�

s

) is the seond stage e�et of the �rst stage deision.

For notational onveniene we will refer to suh a senario simply by (q

s

; h

s

; T

s

). In our
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ase the only �rst stage parameters is the prie vetor  of deploying new MSCs, sine it

is possible (but not likely) to open all the possible new MSCs. The �rst stage (binary)

variables are denoted x = (x

1

; : : : ; x

n

), and the seond stage variables are denoted y

s

.

Sine our seond stage problem is a MIP, y is split into y

1

and y

2

where y

s

1

is a binary

vetor (y

s

1

2 IB

m

1

) and y

s

2

is real vetor (y

s

2

2 IR

m

2

). This gives the following model for

minimizing the expeted ost:

min x+

S

P

s=1

�

s

Q

s

(x)

s.t.

x 2 IB

n

(22)

where the seond stage value funtion Q

s

(x) is given by

Q

s

(x) = min q

s

y

s

s.t.

W

s

y

s

= h

s

� T

s

x

y

s

1

2 IB

m

1

; y

s

2

2 IR

m

2

(23)

We have not spei�ed the details of the seond stage program, but we will explain what

kind of onstraints it inludes. The y

s

1

binary variables onnet BSCs to MSCs. One

onstraint set ensures that BSCs are only onneted to open MSCs, and this has to be

done in a way that the VLR apaities is not exeeded. The y

s

2

real variables inlude

both ow and exess ow variables. The ow variables represent the ow on a given edge,

and the exess ow variable is used to prie the installion of new link apaity. Finally,

a onstraint set is needed to measure the number of handovers. A handover is when two

BSCs are onneted to di�erent MSCs.

We have omitted a ommonly used set of onstraints, namely the survivability onstraints.

These onstraints ensures that alternative routes exists in ase of edge failures, or that

only a ertain perentage of the traÆ is lost. These onstraints ompliated our problem

in a way that the model did not solve in a reasonable amount of time, but it is still a very

important aspet of designing teleommuniation networks.

7.2 Senario deomposition

Even without the mentioned survivability onstraints, the problem was diÆult to solve.

In this setion we outline the proedure used, namely senario deomposition (also alled

dual deomposition).

Senario deomposition exploits the fat that the vast majority of variables and onstraints

in the stohasti program are senario dependent. In fat the only thing tying the senarios

together are the �rst stage deisions on deployment of MSCs. For notational onveniene
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we de�ne the index-set of �rst stage deisions V = f1; : : : ; ng. If we use variable splitting

on the �rst stage variables, de�ning a deployment of MSCs for eah senario x

1

; : : : ; x

S

,

problem (22) beomes separable into independent senario subproblems. The fat that

the deployment of MSCs annot be senario dependent may now be represented by a

non-antiipativity onstraint stating the problem as:

min

S

P

s=1

�

s

(x

s

+Q

s

(x

s

))

s.t.

x

1

= x

2

= : : : = x

S

x

s

2 IB

n

8s 2 f1; : : : ; Sg

(24)

Relaxing the non-antiipativity onstraint we obtain a problem whih is ompletely sepa-

rable into independent senario subproblems. These subproblems are solved to obtain an

optimal deployment of MSCs for eah senario. Next, non-antiipativity is reinfored by

branhing on omponents of these solutions whih di�er among senarios. To be spei�,

we introdue a branhing tree, initially onsisting of only the root node orresponding to

the original problem (22). In a given iteration we selet a problem from the branhing tree

and solve the orresponding senario subproblems obtaining senario solutions x

1

; : : : ; x

S

.

If MSC i is to be deployed in some senario solutions and not in others we add two prob-

lems to the branhing tree imposing for s = 1; : : : ; S the onstraints x

s

i

= 0 and x

s

i

= 1

respetively. Otherwise, if all senario solutions are equal, we have a feasible solution of

the original problem and may update the upper bound if appropriate. For a thourough de-

sription of suh a proedure, inluding a Lagrangian relaxation of the non-antiipativity

onstraints, we refer to Car�e and Shultz [12℄.

Clearly, if the senario subproblems are solved by means of some branh and bound pro-

edure, some e�ort should be taken to put information from previous iterations in the

above proedure to use. Thus, a node whih is fathomed in a given subproblem in some

iteration of the main proedure may be reonsidered in subsequent iterations sine more

variables are �xed as the main proedure progresses. In fat, for the problem instane on-

sidered in Setion 7.3 the number of �rst stage variables was so small (less than 20) that

an enumeration tree ould be reated a priori and used for all senarios, thus preluding

any reevalutions of nodes.

7.3 About the Sonofon problem

In this �nal setion we will loosely desribe our problem instane at Sonofon. Beause of

ompetitive onditions we annot be too spei� about the problem size and the input

data. The problem has between 5 and 10 existing MSCs, less than 20 potential loations
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for new MSCs and less than 50 BSCs. The network interonneting the MSCs is omplete.

The number of binary variables were redued by dividing the area of interest into three

regions and preluding from onsideration ertain alloations of BSCs to MSCs aross

regions. In the resulting formulation eah senario subproblem has 707 binary variables,

14598 ontinuous variables and 12045 onstraints.

The ost of a new MSC is orders of magnitude higher than any other ost. The ost of

onneting a BSC to an MSC was set to zero if the BSC is urrently onneted to this

partiular MSC, and otherwise the total ost of a movement was estimated. The ost of

expanding link apaities is given by the total ost of installing new equipment. Finally,

the handover osts were adjusted observing their e�et on solutions, so as to reate geo-

graphially onneted BSC areas. The urrent demand for bandwidth and VLR-apaity

was estimated from observations of traÆ and the number of ustomers respetively.

The di�erent ost terms are made senario dependent by introduing stohasti utua-

tions on the future pries. Likewise, future demand is alulated using the urrent ob-

served demand saled by di�erent growth fators. We have used the following proedure

to generate demand for VLR-apaity at BSC r under senario s:

L

s

r

= growth

s

� growth

s

r

� Current demand

where growth

s

is a parameter, sampled from a uniform distribution, whih is used to reet

the average growth in the number of ustomers while growth

s

r

is a parameter, sampled from

another uniform distribution, reeting regional utuations from this average growth.

We have onsidered a four year time horizon with respet to ustomer demand even though

the seond stage deision is made after just one year. The reason for the four-year time

horizon is to ensure a somewhat stable solution guaranteeing suÆient network apaity

for three additional years beyond the ompleted deployment of new MSCs. This means

that demand is in fat only partially revealed at the time the seond-stage deisions are

to be made, but sine the additional information obtained at this point will provide an

improved estimate of the true rate of growth in demand, the gain of postponing some

deisions to the seond stage is likely to be onsiderable.

The algorithm was implemented in C++ using proedures from the allable library from

CPLEX 6.6. Considering 100 senarios the solution times were about 3.5 hours CPU-time

on a 700 MHz Linux PC. The solution suggested the deployment of one new MSC.
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Abstrat

This is a survey paper with referenes to relevant papers in the �eld of the Biri-

terion Shortest Path (BSP) problem. It lassi�es the algorithms by their struture to

argue theoretially how they will perform, and at least one algorithm from eah lass

is disussed in more detail.

Keywords: MOLP, MCDM, MOIP, Biriterion, Shortest Path.

1 Introdution

The Biriterion Shortest Path (BSP) problem is one of the simplest problems in multi-

riterion linear integer analysis, but nevertheless also one of great importane in many

appliations. For example it is of interest to model transportation problems with more

than one objetive, e.g. ost and travel time. Also, the BSP problem often ours as

a subproblem in other problems, for example in sheduling problems. This paper is an

overview of the existing literature in the �eld. For previous survey papers see Zionts [19℄,

Rasmussen [15℄ and Ulungu and Teghem [18℄. The �rst two referenes survey the general

multiriteria integer programming problem for whih the BSP is a speial ase, and both

papers are now quite old. The last referene surveys many of the papers also disussed in

this paper. The main ontribution of this paper is a lassi�ation of the di�erent solution

methods, and a ranking of the proedures based on the algorithmi struture.

Let us desribe the problem. We have a strongly onneted direted network or a digraph

G = (N ;A) where N = f1; : : : ; ng is the set of nodes and A = f(i; j); (k; l); : : : ; (p; q)g is

a �nite set of direted edges (ars) joining nodes in N . Assume we have jAj = m edges.

Eah edge (i; j) 2 A arries two attributes denoted by (

ij

; t

ij

). For simpliity assume

that 

ij

is the ost using edge (i; j) and t

ij

is the travel time. The objetive is to �nd

67
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a \shortest" path from a partiular node, the soure node s 2 N , to another partiular

node, the terminal node t 2 N . Traditionally, the BSP problem is formulated as follows:

min (x) =

P

(i;j)2A



ij

x

ij

min t(x) =

P

(i;j)2A

t

ij

x

ij

s.t.

P

fjj(i;j)2Ag

x

ij

�

P

fjj(j;i)2Ag

x

ji

=

8

<

:

1 if i = s

0 if i 6= s; t

�1 if i = t

x

ij

2 f0; 1g; 8 (i; j) 2 A

(1)

The onstraints in (1) yield a direted path from soure node s to terminal node t and

the two objetives are to �nd the minimum ost s� t path and the minimum travel time

s� t path, respetively.

It is highly unlikely to �nd a direted path from node s to node t whih ahieves both

the minimum total ost and the minimum total travel time. We therefore have to settle

with something less, namely �nding the set of eÆient paths (see De�nition 1) from node

s to node t.

The problem is known to be NP-omplete by transformation from a 0-1 knapsak

problem, Garey and Johnson [8℄, and Hansen [10℄ give an example with exponentially

many distint eÆient paths (intratable). Next, we de�ne eÆient points (paths) and

nondominated riterion vetors. Let z(x) = ((x); t(x)).

De�nition 1 A point x that satis�es the onstraints of (1) is eÆient i� there does not

exist a point x that satis�es the onstraints (1) suh that z(x) � z(x) with at least one

strit inequality. Otherwise x is ineÆient.

Please note that eÆient points are the same as Pareto optimal points. EÆient points

are de�ned in deision spae. There is a natural ounterpart in riterion spae, where the

riterion spae Z is de�ned as Z = fz(x) 2 R

2

jx satis�es the onstraints in (1)g. So the

riterion vetors orrespond to the image of a linear mapping of all the feasible solutions

to (1).

De�nition 2 z(x) 2 Z is a nondominated riterion vetor i� x is an eÆient solution.

Otherwise z(x) is a dominated riterion vetor.

We de�ne the ombined objetive funtion W (x; �) as follows:

W (x; �) = �(x) + (1� �)t(x) 0 < � < 1 (2)

The funtion W (x; �) is a onvex ombination, or weighted sum, of the two objetive

funtions. Optimizing this funtion with di�erent �'s will give the so-alled supported
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nondominated solutions and is therefore often referred to as the weighting method.

Sine unsupported nondominated riterion vetors are dominated by a onvex ombination

of supported nondominated riterion vetors, unsupported nondominated vetors annot

be found by the weighting method. This is illustrated in Figure 1. The solution(s) x

in deision spae orresponding to a supported riterion vetor an be referred to as a

supported solution.

Criterion 1

Criterion 2

�

�

�

�

�

D

D1

D2

D3

D4

Figure 1: D is an unsupported, nondominated riterion vetor.

We know from basi Mathematial Programming (e.g. [1℄), that the solutions to the

linear relaxation of (1) with objetive funtion (2) are integer valued, beause the uni-

modularity property holds. The points D1;D2;D3 and D4 in Figure 1 illustrate solutions

to (2), with di�erent values of �. The shaded areas are nondominated regions de�ned by

those four points. The point D inside one of the shaded areas, is therefore nondominated

in (1), but it is dominated in (2). The onlusion is that we annot, in general, �nd all

the eÆient solutions as supported solutions. We have to searh in between the supported

paths as well.

The rest of the paper is organized as follows. In Setion 2 we desribe some of the

ontributions to solve the problem. Many of the algorithms are presented. We onlude

the paper in Setion 3.
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2 Desription of algorithms

Our objetive is to �nd the omplete set of eÆient solutions, or the omplete set of

nondominated riterion vetors. Only algorithms that ful�ll this goal are inluded.

There are generally two main approahes, a path/tree approah and a node labeling

approah, see Figure 2. Eah of the two main approahes are again divided in two.

The path/tree approah splits into the K'th shortest path approah and the Two Phases

method. The node labeling approah splits into a Label Setting and a Label Correting

approah.

BSP

Path/Tree Node Labeling

K'th shortest path

Two Phases

Label Setting

Label Correting

Figure 2: Classi�ation of BSP algorithms.

In a path approah we examine di�erent path vetors, and try to �nd the eÆient

ones. Similarly, we investigate the m dimensional inidene vetors that haraterize the

di�erent spanning trees in a tree approah. Sine there are usually many edges ompared

to the number of nodes and there may be exponentially many spanning trees, a labeling

approah that ompares values in the two-dimensional riterion spae at eah node may be

advantageous. In a Label Setting approah one label is made permanent in eah iteration

and in a Label Correting approah all labels are hangeable until the stop riterion is

ful�lled.

In Table 1 I list the referenes that fall in the four ategories. The number of referenes

applying a labeling approah indiates that this is the most suessful approah. In a joint

paper with K.A. Andersen, [16℄, we desribe in detail, why the node labeling approah is

to be preferred for the BSP problem.

To larify the similarities and di�erenes between the di�erent labeling algorithms,

I outline a generi labeling algorithm. Eah node has a set of labels assoiated with

it. Denote the label-set at node i by L(i). This set ontains labels of the form (; t)
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Table 1: Classi�ation of referenes.

K'th shortest path [4℄

Two Phases [14℄

Label Setting [10℄, [13℄ algorithm 1, [17℄

Label Correting [2℄, [5℄,

[6℄, [16℄

sorted by inreasing -values (and dereasing t-values). At node-level we assume that

dominated labels are deleted. Let L = [

n

i=1

L(i) be the set of all labels, again sorted by

inreasing  (but not neessarily dereasing t). Dominated labels are not deleted, beause

they belong to di�erent nodes. The merge operation on the sets A and B is de�ned as

Merge(A;B) = (A[B) n fz 2 A[B j 9x 2 A[B : x � zg. This means that after the sets

are joined all dominated labels are deleted. Note that the set A ould be just one label.

Generi labeling algorithm:

1. Initialization: Label node s, L(s) = f(0; 0)g

2. Selet a node i by some rule

3. Generation of new labels using node i

4. Stop or go to Step 2

The labeling algorithms di�er in node/label seletion rule, label generation and stop-

ping riterion, but they all have the struture of the generi algorithm. In the following

setions, the referenes are disussed in more detail, and when possible related to the

generi algorithm.

2.1 Climao and Martins [4℄

Some basi theory in the �eld is provided by Climao and Martins [4℄ along with an

algorithm. They use an upper bound on the ost riterion as a stopping riterion. If we

minimize the time riterion we get the fastest path. Choose among these fastest paths

the heapest one. This ost value is denoted ̂. Observe that ̂ is the best value of the

ost objetive, given the time objetive is at its global minimum. Objetive vetors with

 values higher than ̂ are therefore obviously dominated.
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2.1.1 Climao and Martins' algorithm

Climao and Martins' algorithm uses an ordered searh starting by minimizing the ost

riterion and searhing for the best value of the time riterion. Then the ost riterion is

gradually relaxed, eah time �nding the best path with respet to the time riterion. This

ontinues until the value of the ost riterion exeeds ̂.

Algorithm 2.1.1:

1. Initialize:

Compute ̂ as upper bound on 

Find p

1

as the heapest path

Set S = fp

1

g and K = 2

2. Compute the K'th heapest path p

K

3. If (p

K

) > ̂ stop, S is the set of eÆient paths

4. If t(p

K

) � t(p

K�1

) then set K = K + 1 and go to 2

5. If t(p

K

) < t(p

K�1

) then S = S [ fp

K

g, set K = K + 1 and go to Step 2

To keep the algorithm in a ompat form, we assume that (p

K+1

) > (p

K

) 8K 2

1; 2; 3; : : :. This is not a restritive assumption.

Due to the K'th shortest path routine inluded, it has little hope for being fast. The

K'th shortest path problem is intratable for general K, whih in this ase means that we

may have to enumerate all solutions. It is, however, polynomial for �xed K, but in our

ase K is unknown and expeted to be very large. In Climao and Martins [4℄ they refer to

Lawler [12℄ for the K'th shortest path algorithm. Alternative proedures are found in [3℄,

and more reently [7℄. Lawler's algorithm works by forbidding the K � 1 shortest paths

in order to �nd the K'th shortest.

2.2 Mote, Murthy and Olson [14℄

A paper by Mote, Murthy and Olson [14℄ uses a Two-Phases method. Instead of the

K'th shortest path approah of Setion 2.1, they use the unimodularity property of the

network onstraints in (1) to �nd the Pareto optimal supported paths (Phase I). In Phase

II the unsupported solutions are found by a Label Correting algorithm. They all their
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approah the Parametri Approah, beause of their use of the weighting method in Phase

I (� is a weighting parameter).

Two important results are used. The �rst is the use of Geo�rion's result, [9℄, to

determine the weights of the onvex ombination of the two objetives in order to move

from one supported solution to the next supported solution. Geo�rion's result ensures that

no supported solutions are in between. This movement between solutions with inreasing

ost and dereasing time is similar to the idea of Climao and Martins' algorithm. The

seond important result is that a supported path uses only supported sub-paths, and that

an unsupported s� t path uses a supported path from s to some node j, and then some

unsupported j � t path. This result is the basis of Phase II.

In Phase I the authors �nd the eÆient supported paths from s to all other nodes in

the network as minimal spanning tree solutions to the linear relaxation of the BP -problem

(3) explained below. Note that the spanning trees are rooted at s.

The BP problem is formulated as follows, with the same objetive funtions as in (1):

min (x)

min t(x)

s.t.

P

(i;j)2A

x

ij

�

P

(j;i)2A

x

ji

=

(

n� 1 if i = s

�1 if i 6= s

x

ij

2 f0; 1; 2; : : : ; n� 1g

(3)

Please note that the x

ij

is now integer values and not just 0 and 1. If, say x

ij

= 3 in a

solution, this means that edge (i; j) is used in three di�erent paths. One of these is for

sure the path from s to j. This is illustrated in Figure 3 for a network with 5 nodes.

1

2 3

4

5

x

12

= 3 x

13

= 1

x

24

= 1

x

25

= 1

Figure 3: Example of a spanning tree solution for the onstraints in (3).

Beause of this spanning tree phase, I have lassi�ed the algorithm as a tree algorithm.

This approah (Phase I) with spanning trees is similar to algorithm 2 presented in Martins

[13℄. Martins' algorithm 2 is not inluded in this paper, but algorithm 1 of the paper is

presented in Setion 2.3. Di�erent proedures to obtain the supported nondominated

solutions ould be used, e.g. repeated use of Dijkstra's shortest path algorithm.
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The priniple of the Phase II algorithm is to add arbitrary edges to the supported

s � j paths in order to reate alternative unsupported paths. The objetive values are

then evaluated, andidates for eÆient paths are labeled, and dominated solutions are

deleted. Phase II is very similar to Brumbaugh-Smith and Shier [2℄ presented in Setion

2.6, exept for the label generation being done by expanding on only one label at a time.

2.2.1 Mote, Murthy and Olson's algorithm

The set L(i) ontains the supported nondominated labels at node i, and the set T (i)

ontains the unsupported nondominated labels. We say a node is being sanned if it is

used to generate new labels.

Algorithm 2.2.1:

Phase I:

1. Initialize L(i) and T (i) as empty sets

2. Find all the supported nondominated labels L(i), by use of the weighting method

3. Let T (i) = L(i) 8i 2 N . Go to Phase II

Phase II:

1. If all labels in T (i) for all i 2 N are sanned, go to Step 3. Else selet an unsanned

label (; t)(i) 2 T (i)

2. (a) Compute label (; t)(j) = (; t)(i) + (

ij

; t

ij

) 8(i; j) 2 A

(b) For eah (; t)(j) found in (a), Merge (; t)(j) with T (j)

() Go to Step 1

3. Report all eÆient solutions from s to t found in L(t) and T (t)

One may think that this algorithm is fast for �nding supported eÆient paths, due

to unimodularity, but I have found that the Label Correting algorithm is muh more

e�etive, Skriver and Andersen [16℄. In fat Huarng, Pulat and Shih [11℄ (Setion 2.9)

have found the Label Correting algorithm by Brumbaugh-Smith and Shier [2℄ (Setion

2.6) to be signi�antly faster, even ompared with Phase I only.
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2.3 Martins [13℄

This paper presents a Label Setting algorithm. It is a multiriteria generalization of

Hansen's biriteria algorithm, [10℄, briey mentioned in Setion 2.4. The algorithm an

be seen as a generalization of Dijkstra's shortest path algorithm to multiple riterias. It

is assumed that all edge-oeÆients (

ij

; t

ij

) are non-negative.

In eah iteration in the algorithm we hoose the lexiographially smallest label in the

set L of all labels. This is where the assumption of non-negative weights is needed. When

�nding the lexiographially smallest vetor, we �rst look at the �rst oordinates. If only

one vetor has the smallest �rst oordinate, this is the lexiographially smallest vetor.

If more vetors have equal �rst oordinates, we look at the seond oordinates and so on.

2.3.1 Martins' algorithm

The algorithm makes a set of labels at eah node. The labels are all put in a set L, and

at eah iteration one label is removed as permanently labeled.

From all the permanent labels at the terminal node t, the DM an hoose the label

l with the ost/time ombination that he/she prefers. Then this partiular path an be

found by baktraking. Next I will explain Martins' algorithm by desribing the steps of

the generi algorithm.

Step 2: The seletion rule is to hoose the lexiographially smallest label from all

the labels and remove this label from L as permanently labeled. Assume this label is

(; t)(i) 2 L(i).

Step 3: When generating new labels, the label (; t)(i) above is used. We generate new

labels for all the nodes that an be reahed from node i. Assume edge (i; j) 2 A. We then

Merge the new label (; t)(i) + (

ij

; t

ij

) with L(j).

Step 4: We stop when L = ;.

It an be seen that one label is labeled permanently in eah iteration. By hoosing

the lexiographially smallest, we ensure that this is always a nondominated label. In this

perspetive it an be seen that the algorithm relies on the fat that a nondominated path

uses only nondominated sub-paths.

The omplexity of the algorithm is hidden in Step 3. Here we generate new labels,

and for eah new label also hek for domination. Both operations are time onsuming,

beause they have to be done a large number of times.

In the paper by Martins [13℄ a seond algorithm is presented. This algorithm is similar
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in struture to the �rst phase of the Two Phases method desribed in Setion 2.2, in

the way that it alternates between spanning trees by looking at the redued osts. This

algorithm is not presented here.

2.4 Hansen [10℄

Hansen was one of the �rst to propose an algorithm for the BSP problem (bak in 1980).

His algorithm is explained in detail in Setion 2.3, beause Martins' algorithm is a gener-

alization of Hansen's algorithm. The original paper by Hansen ontains 10 di�erent BSP

problems and solution proedures for these di�erent problems. It also ontains an example

that explains the omplexity of the problem. His algorithm has been used for omparison

with later algorithms both in Mote, Murthy and Olson [14℄ and Huarng, Pulat and Shih

[11℄.

2.5 Tung and Chew [17℄

The paper by Tung and Chew [17℄, suggests a forward labeling algorithm. The algorithm

starts in an optimisti manner by moving in the diretion of the minimum sum of the two

riteria, and then labels the possible next steps. When visited, the labels are updated, and

�nally labeled permanently. The algorithm has not been implemented for testing. The

struture of the algorithm is a Label Setting struture.

2.6 Brumbaugh-Smith and Shier [2℄

The authors of this paper present a Label Correting algorithm. They use some e�ort

on implementation issues, and �nd that the CPU-times depend heavily on the way the

di�erent label-sets are sanned (Step 2) and deleted (Step 3). The worst priniple LIFO

(Last In First Out) is more than a fator 10 slower than the fastest priniple, namely

FIFO (First In First Out).

The most enouraging result is the fat that the omputational e�ort grows linearly

with the number of edges in the networks and sub-linearly with the average number v of

labels (at the nodes). The total number of labels are therefore the number of elements in

L. The following statistial model is found to have good �t:

T = �m

�

v



(4)

where T is CPU-time, m is the number of edges, and v is the average number of labels per

node. � is just a onstant depending on the CPU-time units. The parameter � is found

to be just less than one, and  is found to be just less than one half. It is, however, hard

to believe that this result is true for large networks.
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The last result is on orrelation of the objetives, and states that the number of eÆient

paths inrease, when the objetives get more negatively orrelated. This is to be expeted.

The authors �nd the inrease in the number of eÆient paths as a funtion of orrelation

to be rapidly inreasing when the orrelation is from -0.6 to -1. It an be noted that the

number of eÆient paths is equal to the number of nodes (one eÆient path from the

soure to eah of the other nodes inluding itself), when the orrelation is 1.

2.6.1 Brumbaugh-Smith and Shier's algorithm

This algorithm is also outlined by desribing the di�erent steps of the generi algorithm.

Step 1: We form a list Labeled of nodes to be sanned, initially the node s. The

seletion rule is optional, but we investigate a label-set L(i) and not just a partiular label

(; t)(i) 2 L(i). In the paper the FIFO priniple is suggested. Assume we selet node

i 2 Labeled.

Step 2: When generating new labels, all labels in L(i) are used. We generate new

labels for all the nodes that an be reahed from node i. Assume edge (i; j) 2 A. We then

Merge the new labels L(i) + (

ij

; t

ij

) with L(j). If L(j) hanges, add node j to the list

Labeled.

Step 3: We stop when Labeled = ;.

The label-set L(t) ontains all the nondominated labels for the eÆient paths from s

to t. The time-onsuming part of the algorithm is the Merge operation (in Step 3), even

though this is in linear time in the size of the two sets. Also note that in this algorithmi

struture, a node an return to the set Labeled a large number of times. In this algorithm

we have a hoie of how to hoose the nodes from the set Labeled. Di�erent rules (poliies)

for doing this is disussed in detail in Brumbaugh-Smith and Shier [2℄.

2.7 Corley and Moon [5℄

I have hosen to present this Label Correting algorithm too, beause it has a di�erent

label generation proedure than Brumbaugh-Smith and Shier [2℄ desribed in Setion 2.6.

This algorithm is in fat a generalization of Ford and Bellmann's shortest path algorithm

(see [7℄, p. 88-89). The paper also presents a sub-algorithm for the Merge operation.

This algorithm an detet negative yles, and negative weights are therefore allowed.
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2.7.1 Corley and Moon's algorithm

Let L

k

(i) be the label-set at node i after k iterations. In eah iteration k we try to improve

L

k�1

(i) at eah node i by using an intermediate node j. The algorithm terminates when

this is no longer possible (or when a negative yle is deteted). The iteration ounter k

is the maximum number of edges used in a path from node 1 to node i after iteration k.

Step 2: Selet eah node in turn by the node number, 1; 2; : : : ; n. Assume we are

looking at node i.

Step 3: We generate new labels for node i by expanding the label-sets of all nodes j,

where edge (j; i) 2 A. Assume we are urrently expanding from node j. We then Merge

the new labels L(j) + (

ji

; t

ji

) with L(i). When generating new labels, all labels in L(j)

are used.

Step 4: We stop when k = n� 1 or L

k

(i) = L

k�1

(i) 8i 2 N .

When the algorithm stops, the label L(t) at the terminal node t ontains the nondom-

inated values from node 1 to node t. All eÆient paths will onsist of k or fewer edges, in

iteration k. If the algorithm terminates with k = n� 1 there exists a negative yle.

When we ompare the two Label Correting algorithms we see that they are very

similar. The main di�erene is that in Brumbaugh-Smith and Shier [2℄ we have a hoie

of seletion rule for the set Labeled, and only nodes with hanges in their label-sets are

re-examined. In Corley and Moon [5℄ we eah time add labels with one more edge than

in the iteration before.

If we ompare the Label Setting and the two Label Correting algorithms, the main

di�erene is that we only expand on one label, namely the one reently made permanent,

when we form new labels in the Label Setting algorithm. In the Label Correting algorithm

we expand on the set L(i) at a partiular node i.

2.8 Daellenbah and DeKluyver [6℄

This paper presents an algorithm similar to Brumbaugh-Smith and Shier's algorithm de-

sribed in Setion 2.6, but it is formulated in the ontext of dynami programming. The

di�erent steps of the algorithm are very generally de�ned, but it is essentially the same

struture. The di�erene being that no yles are allowed in this dynami programming

ontext. Edges are only allowed to point to nodes with higher numbers. This assumption

is not expliit in the paper, but it is essential for the algorithm.

Instead of using a set Labeled for the hanging labels as in Brumbaugh-Smith and
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Shier [2℄, they move from one node to the next. Therefore the assumption of no yles is

needed, and this is a very restritive assumption.

2.9 Huarng, Pulat and Shih [11℄

This paper is a omparison of some of the existing algorithms. Some of the algorithms

appear di�erently from the algorithms of the original papers. Their K'th shortest path

implementation of Climao and Martins [4℄ does not seem to �nd all eÆient paths, as it

is onstruted to do, and the Two Phases method of Mote, Murthy and Olson [14℄ has a

di�erent Phase I implementation.

Despite this ritiism, their omputational results suggest that the Label Correting

approah ([2℄ implemented) is the fastest approah. This is in fat the approah we have

improved in [16℄. They also �nd that the Label Setting approah is far better than both

the K'th shortest path approah and the Two Phases method.

2.10 Skriver and Andersen [16℄

By imposing some preproessing onditions to the Label Correting algorithm by Brumbaugh-

Smith and Shier [2℄ (Setion 2.6) in eah iteration, we have saved more than 50 % in

CPU-time on some of our random networks. How muh CPU-time is saved depends on

the network struture. Our algorithm is the fastest algorithm for the BSP problem at the

moment. This suggests that the Label Correting approah is the best known for the BSP.

The paper also ontains a disussion on the struture of random networks. The stru-

ture of the random networks has great impat on the omputational results, and we have

made a program that generates what we believe is realisti random networks for testing.

3 Conluding remarks

With the number of algorithms implemented, and the omputational results found, many

real life problems an now be modeled with more than one objetive. This may lead

to a more realisti representation of the problem. Most of the algorithms disussed an

be easily modi�ed to handle more than two objetives, making even more sophistiated

models appliable. This is in fat the ase for all the labeling algorithms.

We have seen that there are generally two types of algorithms, path/tree and labeling.

I argue that the path/tree approah has been the least suessful of the two. The labeling

algorithms, and the Label Correting approah in partiular, performs muh better. For

the Label Correting algorithm, the order in whih the labels are seleted and expanded,

an result in signi�ant di�erenes in the running times.
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Finally, one may think that �nding the supported nondominated solutions by ombin-

ing the weighting method and some shortest path algorithm an be done relatively fast.

This does not seem to be the ase! The repeated use of, e.g. Dijkstra's shortest path

algorithm, seems to be a slower approah, than applying the Label Correting approah,

�nding all nondominated solutions at one.
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Abstrat

This artile ontributes with a very fast algorithm for solving the biriterion short-

est path problem. By imposing some simple domination onditions, we redue the

number of iterations needed to �nd all the eÆient (Pareto optimal) paths in the net-

work. We have implemented the algorithm and tested it with the Label Correting

algorithm. We have also made a theoretial argument of the performane of all the

existing algorithms, in order to rank them by performane.

Inluded is a disussion on the struture of random generated networks, generated

with two di�erent methods, and of the harateristis of these networks.

Keywords: MCDM, MCIP, Biriterion, Shortest Path, Random networks.

1 Introdution

The biriterion shortest path problem (BSP) is one of the simplest problems in multirite-

rion integer analysis, but nevertheless also one of great importane in many appliations.

For example it is of interest to model transportation problems with more than one obje-

tive. Also, the BSP problem often ours as a subproblem in other problems, for example

in sheduling problems. It also ours as a subproblem in models for transportation of

hazardous materials, see Erkut et al. [4℄.

�
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Let us desribe the problem. We have a direted network or a digraph G = (N ;A) where

N = f1; : : : ; ng is the set of nodes and A = f(i; j); (k; l); : : : ; (p; q)g is a �nite set of

direted edges joining nodes in N . Parallel edges are allowed. Eah edge (i; j) 2 A arries

two attributes denoted by (

ij

; t

ij

). For simpliity assume that 

ij

is the ost using edge

(i; j) and t

ij

is the travel time from node i to node j (using the edge (i; j)). The objetive

is to �nd a \shortest" path from a partiular node, the soure node s 2 N , to another

partiular node, the terminal node t 2 N . Traditionally, the BSP problem is formulated

as follows:

min F

1

(x) =

P

(i;j)2A



ij

� x

ij

min F

2

(x) =

P

(i;j)2A

t

ij

� x

ij

s.t.

P

fjj(i;j)2Ag

x

ij

�

P

fjj(j;i)2Ag

x

ji

=

8

>

<

>

:

1 if i = s

0 if i 6= s; t

�1 if i = t

x

ij

2 f0; 1g; 8 (i; j) 2 A

(1)

The onstraints in (1) yield a direted path from soure node s to terminal node t if one

exists and the two objetives are to �nd the minimum ost s� t path and the minimum

travel time s � t path, respetively. As it is highly unlikely to �nd a direted path from

node s to node t whih ahieves both the minimum total ost and the minimum total

travel time, we have to settle with something less, namely �nding the set of eÆient paths

(see De�nition 1) from node s to node t. Several approahes for doing this has been

presented in the past, but we have only been able to �nd one attempt to ompare the

existing algorithms, see Huarng et al. [6℄, and they �nd the Label Correting algorithm

[2℄ to be the fastest.

The outline of the paper is as follows. In setion 2 we desribe the theory of the problem

in question and give a theoretially based argumentation for the ranking of the exist-

ing algorithms. In setion 3 we present the basi Label Correting algorithm found in

Brumbaugh-Smith et al. [2℄ along with our modi�ed versions. In setion 4 we disuss

the struture of randomly generated digraphs for the BSP problem, beause it turns out

to have inuene on the omputational results. In setion 5 we present our test results

together with a omparison of the most promising methods.

2 The theory of biriterion shortest path problems

Solving the BSP problem means �nding the set of eÆient paths from soure node s to

terminal node t. For basis in multiple riteria analysis see Steuer [8℄.
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In order to make sure, that solutions do exist, we assume that the network is strongly

onneted. The de�nition of eÆieny is as follows.

De�nition 1 A feasible solution x to (1) is eÆient i� there does not exist another

feasible solution �x to (1) suh that (F

1

(�x); F

2

(�x)) � (F

1

(x); F

2

(x)) and (F

1

(�x); F

2

(�x)) 6=

(F

1

(x); F

2

(x)). Otherwise x is ineÆient.

EÆieny is de�ned in the deision spae. There is a natural ounterpart in the riterion

spae. The riterion spae is denoted by Z and is given by Z = fz(x) 2 R

2

jz(x) =

(F

1

(x); F

2

(x)); x is feasible in (1)g.

De�nition 2 z(x) 2 Z is a non-dominated riterion vetor i� x is an eÆient solution

to (1). Otherwise z(x) is a dominated riterion vetor.

It is well-known that the onstraint set in (1) de�nes an integral polytope (the onstraint-

matrix is unimodular). Therefore, if the linear relaxation of (1) is solved, the set of extreme

(supported) eÆient paths is found. Unfortunately, there might be (and probably are)

unsupported eÆient paths as indiated in Figure 1.

Criterion 1

Criterion 2

�

�

�

�

�

D

Figure 1: D is a non-extreme, non-dominated riterion vetor.

Being interested in the set of eÆient paths, it is not a satisfatory ompromise just

�nding the set of supported eÆient paths. It should, however, be noted that in pratie
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the deision maker (DM) might be satis�ed with only the set of extreme eÆient paths.

In fat, the DM will probably prefer to see the set of non-dominated values (riterion

vetors).

Basily, there are two approahes to the problem, namely some sort of path/tree handling

proedure or some sort of node-labeling proedure. Climao and Martin [3℄ and Mote et

al. [7℄ fall in the path/tree handling ategory. Below we argue that this approah has

disadvantages for the BSP problem. Hansen [5℄, Brumbaugh-Smith et al. [2℄ and the

approah in this paper fall in the labeling ategory. Our ranking is found in Table 1.

Now we will use a small example to illustrate the omplexity of the BSP problem. By

evaluating two di�erent sets of oeÆients, we explain why the node-labeling approah is

better than the path/tree handling proedure. For larity remember that eÆient paths

are in the (high dimensional) deision spae, and the non-dominated values are in the (two

dimensional) riterion spae. The network in Figure 2 has parallel edges. If we split the

lower edges into two, where the edge-oeÆients sum to (2; 1), the example is similar to

one found in Hansen [5℄.

1 2 3 4

(1; 2)

(2; 1)

(1; 2)

(2; 1)

(1; 2)

(2; 1)

Figure 2: Illustration of omplexity in eÆient paths.

In Figure 2 there is a total of 8 paths. All paths are eÆient, having the 4 non-dominated

values (3; 6), (4; 5), (5; 4) and (6; 3). The upper path has the value (3; 6), then there

are three paths having the value (4; 5), three paths having the value (5; 4) and the lower

path has value (6; 3). We see that the eÆient paths distribute among the non-dominated

values, as in level 4 in Pasal's triangle, see Figure 3. Note that the network in Figure 2

has 4 nodes.

From this speial ase of the BSP problem we make two observations. The number of

eÆient paths grow exponentially in the number of nodes, namely 2

jN�1j

, and the number

of eÆient paths are always greater than or equal to the number of non-dominated values,

whih is jN j. In the above there are 8 eÆient paths, and 4 non-dominated values.

Next we show an example, where the number of non-dominated values grow exponentially
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1

1 1

1 2 1

1 3 3 1

Level 1

Level 2

Level 3

Level 4

Figure 3: Pasal's triangle.

in the number of nodes. That is, all the eÆient paths have distint non-dominated values.

We use this to onlude that the node-labeling algorithms have exponential omplexity.

Here we hoose the edge oeÆients, so that the sum of the smaller oeÆients is less than

the next. This is ahieved by the following numbers, 2

i

; i = 0; 1; 2; : : : ; jAj � 1. For the

example that is 1; 2; 4; 8; 16; 32, and then we pair them from eah end of the list as shown

in Figure 4.

1 2 3 4

(1; 32)

(32; 1)

(2; 16)

(16; 2)

(4; 8)

(8; 4)

Figure 4: Illustration of omplexity in EÆient values.

The 8 paths in the network in Figure 4 are all eÆient having the following 8 non-

dominated values: (7; 56), (11; 52), (21; 42), (25; 38), (38; 25), (42; 21), (52; 11) and (56; 7).

By hoosing the edge oeÆients this way we get 2

jN�1j

non-dominated values.

We argue that the node-labeling algorithms will outperform the path/tree algorithms

beause the number of non-dominated values is always smaller than (or equal to) the

number of eÆient paths. A stronger argument is that the node-labeling algorithm only

�nds the list of non-dominated values at the terminal node, and not the atual eÆient

paths. After the Deision Maker hooses some favourite non-dominated value(s), we only

have to baktrak for these partiular eÆient paths. As a �nal note we see that the

amount of memory needed to store the labelsets, is muh smaller than the memory needed

to store all the eÆient paths.

In the existing literature all algorithms, exept perhaps the Parametri Approah by Mote

et al. [7℄, have been proven slower than the Label Correting approah. Comparisons are

found in [2℄ and [6℄. These algorithms are the Label Setting approah by Hansen [5℄, and



88 BSP Label Correting

the K'th shortest path approah by Climao and Martin [3℄.

1 Skriver & Andersen node-labeling

2 Brumbaugh-Smith & Shier [2℄ node-labeling

3-4 Hansen [5℄ node-labeling

3-4 Mote, Murphy & Olson [7℄ path/tree handling proedure

5 Climao & Martin [3℄ path/tree handling proedure

Table 1: Existing BSP algorithms ranked by omputational performane.

We will argue that the Parametri Approah will also be slower, due to the struture

of the algorithm. The approah is to use the weighting method (see Steuer [8℄) to �nd

the eÆient extreme paths, and then use baktraking of spanning trees to searh for

non-extreme eÆient paths. The weighting method means solving LP problems, but for

the shortest path problem that is done by Dijkstra's shortest path algorithm (or a similar

algorithm). It turns out that Dijkstra's algorithm is atually a slower approah in pratie

than the Label Correting routine, see setion 5. On top of this omes the fat, that the

weighting method of the Parametri Approah by far is faster than the baktraking part

[7℄. When we are baktraking, we might have to evaluate all the edges in all the spanning

trees in the worst ase, resulting in an exponentially growing number of omparisons. This

strutural disadvantage is also the ase for Climao and Martins [3℄ algorithm.

The onlusion is that the Parametri Approah and the K'th shortest path algorithm

are slower than the Label Correting approah, and this was also found by Huarng et al.

[6℄. Due to the struture of the baktraking part of the Parametri Approah, we also

believe that it is slower than Hansen's Label Setting algorithm, espeially for networks

with negatively orrelated objetives, but this has not been tested.

Hansen's algorithm is a label setting sheme with an exponentially worst ase behaviour.

It uses four sets of labels instead of only two, as in the Label Correting approah, and

it makes more set omparisons. We therefore rank it below the Label Correting ap-

proah. The Label Correting approah uses the well-known fat that all eÆient paths

pass through eÆient subpaths.

3 Algorithm with preproessing routine

In this setion we desribe the label-orreting algorithm proposed by Brumbaugh-Smith

et al. [2℄. The desription is followed by a ouple of suggestions for improvements, whih

give rise to a re�nement of the Brumbaugh-Smith algorithm.
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The theory and idea behind this is explained in the following setions, but for simpliity

we start with some notation.

3.1 Notation

D(i) : Set of labels at node i. Eah label is a 2-tuple ontaining ost and time

s : soure node

t : terminal node

Labeled : Set of nodes to be heked

Len(i; j) : The edge-length from node i to node j (two attributes ost and time)

out(i) : Set of edges having their tail in node i

Merge(A;B) : A [Bn (dominated elements in A [B)



�

(i) : heapest path from node i to node t

t

�

(i) : fastest path from node i to node t



min

(i) : heapest path from node s to node i

t

min

(i) : fastest path from node s to node i

̂ : upper bound on ost, orresponding to t

min

(t)

^

t : upper bound on time, orresponding to 

min

(t)

3.2 The Brumbaugh-Smith Algorithm

The algorithm below is taken diretly from Brumbaugh-Smith et al. [2℄. The boxed part of

the algorithm is the time onsuming part we try to avoid when it is not needed. The FIFO

priniple is used to selet nodes from the set Labeled as reommended in Brumbaugh-Smith

et al. [2℄.

Initialize:

D(s) = f(0; 0)g;

Labeled=f s g ;

Routine:

while Labeled 6= �

hoose i from Labeled (FIFO priniple);

Labeled=Labeled-f i g ;

for j 2 out(i)
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D

M

(j) =Merge(D(j);D(i) + len(i; j));

If D

M

(j) 6= D(j) then

D(j) = D

M

(j);

If j not in Labeled then (avoids double labelling)

Labeled = Labeled + f j g ;

end If;

end If;

end for;

end while;

In this algorithm the Merge operation in the box uses the main part of the omputational

e�ort. Our intention is to disard \expensive" edges before these operations are arried out

in order to redue omputation time. The means being induing some simple domination

onditions on the edge-andidates in order to disard \expensive" edges as soon as possible.

The Merge operation returns the labels in an ordered set as desribed in setion 3.3.1. The

Merge operation implemented in this paper is the \modi�ed Merge" operation found in

Brumbaugh-Smith et al. [2℄. This operation is in linear time as a funtion of the sizes of

the two sets to be merged.

It should be noted that the algorithmi struture of the Brumbaugh-Smith algorithm is

somewhat similar to Dijkstra's shortest path method, exept the nodes an reenter in the

set Labeled. This suggests that the performane is similar. In the remainder of this paper

we refer to the Brumbaugh-Smith algorithm as brum.

3.3 The improvements

We have two suggestions for improvements that are both based on the idea of omitting

\expensive" edges before the box in the algorithm. At eah iteration in the routine, we

are looking at an edge (i; j) from some node i to another node j, see Figure 5.

j

i

Figure 5: Evaluating the (i; j)-edge.
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The �rst improvement is a fast predomination hek, whih rules out \expensive" edges by

onsidering the present set of labels. This ondition is implemented in two distint ways

as -desribed in setions 3.4 and 3.5. The �rst implementation uses initialization with

Dijkstra's shortest path method to set bounds on all labels, and the seond proedure sets

the bounds during the routine.

The seond improvement is inspired by an artile by Tung and Chew [9℄. The idea is to

initialize node information from the terminal node in order to �nd the heapest and fastest

paths from an intermediate node to the terminal node. This initialization also �nds some

upper bounds on the two objetives. If the present best label at node i, plus the ost/time

of the (i; j)-edge, plus the least ost/time for the remainder of the (j; t)-path exeeds the

upper bounds, the edge (i; j) an be left out of further onsideration.

We will argue that initializing using Dijkstra's shortest path method is too slow. This

is supported by the omputational results desribed in setion 5. The problem with

the initialization is that the bounds set on the labelsets are too loose. The bounds set

during the routine is better, and an therefore disard more \expensive" edges. The

omputational results shown in setion 5 support this.

3.3.1 Condition I

Consider again the two partiular nodes, i and j, and the set of labels D(i) and D(j) at

these two nodes. Assume that the two labelsets are non-empty, and that

D(i) = f(

1

(i); t

1

(i)); � � � ; (

k

(i); t

k

(i))g and D(j) = f(

1

(j); t

1

(j)); � � � ; (

q

(j); t

q

(j))g with



1

(i) < 

2

(i) < � � � < 

k

(i) and t

1

(i) > t

2

(i) > � � � > t

k

(i)



1

(j) < 

2

(j) < � � � < 

q

(j) and t

1

(j) > t

2

(j) > � � � > t

q

(j)

We are now looking at the edge from node i to node j. Consider the two distint but

similar situations:

� Assume that 

1

(i) + len(i; j)



� 

q

(j). In this ase we have:



1

(j) < 

2

(j) < � � � < 

q

(j) � 

1

(i) + len(i; j)



< � � � < 

k

(i) + len(i; j)



t

1

(j) > t

2

(j) > � � � > t

q

(j) ? t

1

(i) + len(i; j)

t

> � � � > t

k

(i) + len(i; j)

t

So if t

k

(i) + len(i; j)

t

� t

q

(j), then the set D(i) + len(i; j) is dominated by the

set D(j). In fat the set D(i) + len(i; j) is dominated by the last label q of D(j).

Therefore we an disard the edge between i and j, and proeed to the next edge,

beause a merge of the two sets will return the set D(j) unhanged.
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� Assume that t

k

(i) + len(i; j)

t

� t

1

(j). In this ase we have:



1

(i) + len(i; j)



< � � � < 

k

(i) + len(i; j)



? 

1

(j) < 

2

(j) < � � � < 

q

(j)

t

1

(i) + len(i; j)

t

> � � � > t

k

(i) + len(i; j)

t

� t

1

(j) > t

2

(j) > � � � > t

q

(j)

So if 

1

(i) + len(i; j)



� 

1

(j), then the set D(i) + len(i; j) is dominated by the set

D(j), beause it is dominated by the �rst label of D(j).

The above observations give rise to the following pseudo-ode:

If 

1

(i) + len(i; j)



< 

q

(j) then end if; (beause (i; j) is promising)

else (That means �)

If t

k

(i) + len(i; j)

t

< t

q

(j) then end if; (beause (i; j) is promising)

else remove j from out(i); (beause (i; j) is dominated)

If t

k

(i) + len(i; j)

t

< t

1

(j) then end if; (beause (i; j) is promising)

else (That means �)

If 

1

(i) + len(i; j)



< 

1

(j) then end if; (beause (i; j) is promising)

else remove j from out(i); (beause (i; j) is dominated)

The ase of alternative solution possibilities is disarded in the strit inequalities. The

atual paths, alternative solutions or not, an be found by a simple baktraking algorithm.

This way we only �nd the path(s) that have the \best" ost/time labels (viewed from the

terminal node t by the DM).

Another interesting ase is when we look at the opposite onditions of the above. This

implies that all labels at node j is dominated by the paths via node i, and therefore an

be replaed by a new set of labels with the simple alulation D(j) = D(i) + len(i; j).

This operation we will all overtaking. However, not surprisingly the number of times we

an \overtake" is small, beause relatively good bounds are set as we proeed through the

network. Therefore \overtaking" is used only when node j has not yet been labeled.

Notie that the sets of labels are expeted to be small in the beginning (1-3 labels), but

larger as we approah node t.

3.3.2 Condition II

To use the seond improvement it is neessary to use Dijkstra's shortest path method

starting at node t, and with all edges reversed, in the initialization. When used with both

ost and time, we �nd the heapest and fastest path from any node i to the terminal

node t. These values are denoted 

�

(i) and t

�

(i). The upper bounds on ost and time are
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denoted ̂ and

^

t, and are found when initializing with Dijkstra's shortest path method is

used to �nd the heapest and fastest paths.

This gives the following pseudo-ode:

If 

1

(i) + len(i; j)



+ 

�

(j) � ̂ then remove j from out(i)

If t

k

(i) + len(i; j)

t

+ t

�

(j) �

^

t then remove j from out(i)

In the next setions we disuss how to implement Condition I. In setion 5 we argue that

Condition II will be too slow due to the initialization with Dijkstra's shortest path method

as mentioned in the beginning of this setion.

3.4 Algorithm 1 - Initializing with Dijkstra's shortest path proedure

We implement the Brumbaugh-Smith algorithm together with ondition I. Condition I

desribed above is �rst implemented using Dijkstra's shortest path method to initialize

the algorithm, and to set bounds on the labelsets. We refer to this algorithm as alg1.

The pseudo-ode is as follows:

Initialize:

D(s) = f(0; 0)g;

Use Dijkstra's algorithm to minimize ost

Use Dijkstra's algorithm to minimize time

Labeled=f1, 2, ... , n g ; (all nodes need to be examined during the routine)

SLIM(D(i);8i 2 Labeled);

After having used Dijkstra's algorithm two times, all nodes have two labels, and these la-

bels are also the bounds orresponding to the two elements (̂(i); t

min

(i)) and (

min

(i);

^

t(i)).

There might be some dupliate labels, beause the labels set by Dijkstra's shortest path

method, minimizing ost and time, might be the same, espeially in the beginning of the

network. If the two labels are equal, one of them is deleted. We refer to this proedure as

SLIM in pseudo-ode.

Routine:

while Labeled 6= �

hoose i from Labeled (FIFO priniple);

Labeled=Labeled-f i g ;

for j 2 out(i)

Condition I

If 

1

(i) + len(i; j)



< 

q

(j) then end if; (beause (i; j) is promising)
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else (That means �)

If t

k

(i) + len(i; j)

t

< t

q

(j) then end if; (beause (i; j) is promising)

else remove j from out(i); (beause (i; j) is dominated)

If t

k

(i) + len(i; j)

t

< t

1

(j) then end if; (beause (i; j) is promising)

else (That means �)

If 

1

(i) + len(i; j)



< 

1

(j) then end if; (beause (i; j) is promising)

else remove j from out(i); (beause (i; j) is dominated)

Condition I ended

The box is only arried out if the (i; j)-edge looks promising

D

M

(j) =Merge(D(j);D(i) + len(i; j));

If D

M

(j) 6= D(j) then

D(j) = D

M

(j);

If j not in Labeled then (avoids double labelling)

Labeled = Labeled + f j g ;

end If;

end If;

end for;

end while;

The omputational performane of the algorithm an be seen in Table 4.

3.5 Algorithm 2 - A diret approah

This implementation of Condition I is without initialization, but with \overtaking" of

nonlabeled nodes. The algorithm is referred to as alg2. The pseudo-ode is as follows:

Initialize:

D(s) = f(0; 0)g;

Labeled=f s g ;

Routine:

while Labeled 6= �

hoose i from Labeled (FIFO priniple);

Labeled=Labeled-f i g ;

for j 2 out(i)

If j not in Labeled then D(j) = D(i) + len(i; j) (``overtaking'')

else

Condition I

If 

1

(i) + len(i; j)



< 

q

(j) then end if; (beause (i; j) is promising)

else (That means �)

If t

k

(i) + len(i; j)

t

< t

q

(j) then end if; (beause (i; j) is promising)
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else remove j from out(i); (beause (i; j) is dominated)

If t

k

(i) + len(i; j)

t

< t

1

(j) then end if; (beause (i; j) is promising)

else (That means �)

If 

1

(i) + len(i; j)



< 

1

(j) then end if; (beause (i; j) is promising)

else remove j from out(i); (beause (i; j) is dominated)

Condition I ended

The box is only arried out if there is no ``overtaking'' or if the (i; j)-edge

looks promising.

D

M

(j) =Merge(D(j);D(i) + len(i; j));

If D

M

(j) 6= D(j) then

D(j) = D

M

(j);

If j not in Labeled then (avoids double labelling)

Labeled = Labeled + f j g ;

end If;

end If;

end for;

end while;

4 Random networks

In this setion we ompare two di�erent approahes for generating random networks.

The reason being that the struture of the random networks has a large e�et on the

omputational results.

First we disuss how NETGEN

1

works and what problems this gives. Then we introdue

our own random network generator NETMAKER

2

and explain in detail how it works.

Finally, we ompare the two approahes omputationally to illustrate the di�erenes.

Our �rst approah was to use NETGEN to generate random networks (without the

ost/time oeÆients). On these networks we ran a small program to generate the ost

and time oeÆients. These oeÆients are generated in the same way as in NETMAKER

desribed below.

We generated ten random networks with NETGEN, eah having 100 nodes and 900 edges.

In average, there were only 7.5 non-dominated values (see Table 2), and four of the net-

works had only 2 or 3 non-dominated values.

At �rst it seemed a little strange that the average number of non-dominated values gen-

erated with NETGEN was so low. In an e�ort to explain this, we drew all the eÆient

1

shareware software found on the Internet and used in Huarng et al. [6℄

2

available in C++ on the webpage http://www.imf.au.dk/�ajs/
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paths in a NETGEN generated network. The struture shown in Figure 6 was found.

1 14 13 12 11 3 2 15

9

7

Figure 6: Struture of eÆient paths in NETGEN network with 15 nodes.

The network is being run through on a single eÆient subpath, and then somewhere there

is a few alternative subpaths between a few nodes, before the paths again use the same

subpath to the terminal node. The eÆient paths are not spread out through the network.

This network struture is due to the generation of a Hamiltonian yle in NETGEN that

is deterministi, and beause the generation of random edges are unontrolled. Before any

random edges are generated, a Hamiltonian yle is made as shown in Figure 7, to make

sure that the network is strongly onneted.

1

2 3

n� 2

n� 1

n

Figure 7: Hamiltonian yle in NETGEN.

Beause of this deterministi struture of the Hamiltonian yle, a single eÆient subpath

is used, in the beginning as well as in the end of the network.

We �nd this an unrealisti struture for real life problems. For this reason we developed

the NETMAKER program in order to generate alternative eÆient paths that run through

the whole network having a struture similar to that shown in Figure 8. This struture is

atually found in the NETMAKER networks.
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1

2

3

4

5

6

7

8

9

10

11

12

13

Figure 8: Struture of eÆient paths in NETMAKER networks.

Next we desribe how NETMAKER works. First a random Hamiltonian yle starting

at the soure node s is generated in order to seure that the network is strongly onneted.

Then we uniformly generate a random number of edges out of eah node. This random

number of edges belongs to a ertain interval, say 1 to 3 edges, to ontrol the total number

of edges. These edges are only allowed to reah a ertain number of nodes forward and

bakwards. This omits paths with very few edges, unless they are generated in the random

Hamiltonian yle. This edge interval is essential to get the struture of Figure 8, with

eÆient paths spread out through the network.

To illustrate this, we assume that we are allowed to generate between 1 and 3 edges out of

node 5, within a node-interval of 6 nodes. We want node 5 in the middle of the interval,

so the edges may reah 3 nodes in eah diretion. From node 5 these edges are allowed to

go into nodes 2, 3, 4, 6, 7 and 8. The 6 possible edges are shown in Figure 9.

2

3

4

5

6

7

8

Figure 9: The 6 possible random edges in whih 1, 2 or 3 must be piked.

The ost/time oeÆients are generated negatively orrelated so that one oeÆient is an

integer between 1 and 33, and the other is between 67 and 100. This oeÆient generating
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approah was found in Andersen, J�ornsten and Lind [1℄. We use negatively orrelated

objetives beause it is aepted to be most realisti and interesting, and beause it implies

more eÆient paths [2℄.

In Table 2 it is seen that the number of non-dominated values is muh higher in the

networks generated by NETMAKER. One ould think that this is only beause of the

random Hamiltonian yle in NETMAKER, but as illustrated in Table 3 the edge intervals

are important.

generator # nodes # edges non-dominated values

NETGEN 100 900 7.5

NETMAKER 100 ' 900 13

NETGEN 50 250 4.7

NETMAKER 50 ' 250 8.9

Table 2: Average number of non-dominated values in NETGEN and NETMAKER

To get an idea of the number of non-dominated values in networks generated with NET-

MAKER ompared with the number of non-dominated values in networks generated with

NETGEN we generated networks with 200 nodes. The results are shown in Table 3. Eah

olumn in table 3 presents the number of outgoing edges for eah node in the networks

generated. The 3-6 olumn, for example, indiates that from eah node between 3 and 6,

outgoing edges are generated, 6 being the max. The rows in the table give the interval

between whih these edges are allowed to go. The �rst row (2 � max) shows that the edges

generated are distributed uniformly in an interval of \2 � max" length around eah node

where \max" is the maximum number of edges generated. Consider the 3-6 olumn and

the (2 � max) row. From a partiular node, say 10, between 3 and 6 outgoing edges are

generated. These edges an go into nodes with numbers between 4 and 16 (the interval

length is 2 times the maximum number of edges generated, 2�6 = 12). As another example

onsider the 7-15 olumn and the (3 � max) row. From a partiular node, say 25, between

7 and 15 outgoing edges are generated. These edges an go into nodes with numbers

between 3 and 47 (the interval length is approximately 3 times the maximum number of

edges generated).

In Table 3 we have found that the average number of non-dominated values depend on

the degree of eah node and on the edge interval size. All ells in the tables are with a

sample size of 10 networks.
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200 nodes 1-3 2-4 3-6 5-10 7-15 10-20

2 � max 3.5 5.5 10.2 12.4 13.1 14.3

3 � max 3.9 4.8 9.6 12.7 13.8 13.9

4 � max 3.1 4.9 7.9 12.9 13.3 14.7

8 � max 3.5 5.5 8 10.8 12.2 15

no restrition 2.5 4.3 6.4 8 9.8 10

200 interval 3.4 5.1 7.4 9.9 9.2 13.1

NETGEN 2.7 4.8 6.7 7.9 8.2 10.3

Table 3: Average number of non-dominated values generated by NETMAKER

It is of no surprise that the average number of non-dominated values inreases with the

total number of edges. The total number of edges varies around its mean being the average

number of edges reated at eah node times the number of nodes. For example, 2-4 edges

implies an average of 3 edges per node, and with 200 nodes this results in approximately

600 edges in eah network of this kind. This is the �xed number of edges generated for

the NETGEN networks in the last row of Table 3 for the 2-4 edges ase. We see that

NETGEN generates the same number of non-dominated values that NETMAKER does

without interval restritions. This means that when you run NETMAKER with no interval

restrition, the probability of a short path is high, as explained with NETGEN.

The next observation is on the interval size. We laimed earlier that the number of non-

dominated values will be larger if paths using very few edges are omitted. This laim

holds, as the number of non-dominated values is larger when there is a restrition on the

interval size. Sine the interval length itself is not so important, we have used the 8 � max

interval length for all the networks in setion 5.

As mentioned earlier, the struture of the random networks shown in Figure 6 is an

unrealisti struture for testing shortest path algorithms, and it also favours one type

of algorithm, namely the Parametri Approah [7℄. The reason for this is that the Label

Correting algorithm (brum) has to evaluate all nodes at least one, and thereby evaluates

all edges. Therefore the omputational e�ort is very dependent on the size of the network,

even in networks with only one eÆient path. The Parametri Approah uses simple

objetive weighting in the �rst phase, and then baktraking of spanning trees as explained

in setion 2. But in ase of a large network with only one or two eÆient paths there is

little baktraking, and the algorithm will perform well. But if the network has many

eÆient paths and perhaps negative orrelation between the objetives, there is muh

more baktraking to be done, and this is what takes time in the Parametri algorithm [7℄.
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Mote et al. [7℄ have omputational results in their artile showing that with negatively

orrelated objetives, their algorithm has pu-times similar to those of Hansen's label

setting approah [5℄. This illustrates how muh pu-time is onsumed by the baktraking

part, if there are many eÆient paths.

5 Computational results

We have tested the two algorithms desribed in setions 3.4 (alg1) and 3.5 (alg2) together

with the Brumbaugh-Smith algorithm (brum) of setion 3.2. All algorithms are imple-

mented in C++, and an be found on the homepage http://www.imf.au.dk/�ajs. We

have used an HP 9000 series omputer with a single proessor. For eah size of network

we have used 10 random networks, so in Table 4 we have used a total of 50 networks.

In the previous setion, we argued that NETMAKER generates reasonably random net-

works for testing biriterion shortest path algorithms. In this setion we ompare the

Brumbaugh-Smith approah and the modi�ed versions of setion 3.4 (alg1) and setion

3.5 (alg2).

# nodes brum alg1 init alg1 routine alg1 total alg2

100 2.52 5.22 2.11 7.33 1.84

200 18.27 41.32 16.54 57.86 13.59

300 44.37 139.76 40.81 180.57 35.11

400 76.26 327.98 70.52 398.50 58.29

500 133.22 640.29 123.96 764.25 108.33

Table 4: Cpu-times for brum, alg1 and alg2 when the number of edges are between 2 and

4 at eah node.

In Table 4 we see that the initialization phase in alg1, where Dijkstra's shortest path

algorithm is run through twie, takes more than double the amount of pu-time used by

brum. Our implementation of Dijkstra's shortest path algorithm is seen to be a little

slower than the Label Correting routine. Remember that they are expeted to be fairly

similar.

The di�erene in pu-time between the alg1 routine part and alg2 ours beause all nodes

in the alg1 routine part has a label from initialization so there is no \overtaking".

The slow initialization times are the reason why Condition II in setion 3.3.2, suggested by

Tung et al. [9℄ is not being implemented. It requires that Dijkstra's shortest path method

is run through twie. The brum algorithm is always outperformed by the alg2.
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It an also be seen that running Dijkstra's shortest path method twie takes somewhat

the double pu-time as running brum. This supports our argument from setion 3.3, that

the Label Correting algorithm has the same omputational performane as Dijkstra's.

The rest of the omparisons are done with only the brum and alg2 algorithms. The

objetive is to evaluate the e�etiveness of Condition I on networks with di�erent hara-

teristis.

# nodes brum Merges alg2 Condition I's % Merges in alg2 % pu-time

200 9.01 761.30 4.12 208.40 46.49 45.76

400 40.38 1615.20 20.96 407.20 50.09 51.91

600 92.96 2502.00 51.40 578.15 52.95 55.29

800 187.05 3385.00 111.82 757.65 54.01 59.78

1000 280.61 4668.20 162.52 970.90 57.80 57.92

Table 5: Cpu-times, number of Merges and number of Condition I's for brum and alg2

when the number of edges are between 1 and 3 at eah node.

The �rst omparison is made on a thin network, where the average number of edges is

only two times the amount of nodes. The results are shown in Table 5, and the overall

onlusion is that alg2 is onsiderably faster than brum. On these thin networks, Condition

I is ative in about 25 % of the set omparisons. On top of this the \overtake" proedure

labels (#nodes�1) times, this being the number of times we look at a node with an empty

labelset. If we add the number of nodes to the number of Condition I's, we get half the

number of merges arried out in the brum algorithm. This explains why the pu-time is

half, and supports that the boxed part of the algorithms is the omputationally heavy

part.

It an also be seen, that as the number of nodes inreases, the fration of Condition I's

dereases. This is due to the fat that the probability of the Condition I being ful�lled

dereases as the labelsets inrease. The labelsets inrease in size as we move towards the

terminal node, and in the larger networks the average number of non-dominated values

is a little higher and therefore the labelsets are bigger. The Condition I is more often

ful�lled in the �rst half of the merges, while the labelsets are fairly small. As expeted

alg2 performs very well on thin networks, beause of the small size of the labelsets.

Next we look at less thin networks with an average number of 3 edges per node. The results

are shown in Table 6, and as expeted the fration of Condition I's has dropped. Beause

the pu-time saved is fairly proportional to the number of Condition I's and \overtakes",
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# nodes brum Merges alg2 Condition I's % Merges in alg2 % pu-time

200 18.34 1399.65 12.16 303.25 64.12 66.29

300 45.37 2221.4 31.76 428.45 67.25 70.00

400 80.43 3080.7 58.14 487.35 71.23 72.28

500 129.77 4006.65 96.91 652.10 71.27 74.68

800 336.65 6801.80 245.77 933.95 74.52 73.00

Table 6: Cpu-times, number of Merges and number of Condition I's for brum and alg2

when the number of edges are between 2 and 4 at eah node.

alg2 only performs about 25-35 % better than the brum algorithm for networks with this

density (and this size).

# nodes brum Merges alg2 Condition I's % Merges in alg2 % pu-time

100 12.59 2796.1 11.05 251 87.48 87.76

200 79.55 6055.40 73.50 284.4 92.02 92.40

300 195.48 9680.60 183.55 346.45 93.33 93.90

400 349.04 13733.30 329.83 430.25 93.96 94.50

500 589.84 17943.05 558.87 463.40 94.64 94.75

Table 7: Cpu-times, number of Merges and number of Condition I's for brum and alg2

when the number of edges are between 7 and 15 at eah node.

For the thik networks of Table 7 with an average of 11 edges per node, we see that the

fration of Condition I's and \overtakes" is down to 5-12 %. The pu-times are again

proportionately faster as well. This Table illustrates that even in thik networks there are

still pu-time saved by imposing the ondition. We therefore onlude that the ost in

pu-time of heking the ondition is lose to zero.

A little investigation revealed that for random networks, the number of merges is (almost)

a linear funtion of the number of edges. For small networks the number of merges is

double the amount of edges, and for larger networks the number of merges was found to

be three times the number of edges.

6 Conluding remarks

We have investigated both the struture of random networks for the BSP problem, and the

performane of the existing algorithms. Only the most promising algorithm so far, namely

the Label Correting algorithm has been implemented here. However, with referene to

other artiles, we argue that this approah is indeed the fastest. We have also imposed
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a ondition to be heked during the routine, that saves up to 50 % pu-time. Thus we

onlude that even large BSP problems an be solved to optimality in reasonable time.

Well-known methods for hoosing among the non-dominated solutions an then be applied.
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Abstrat

Loating an obnoxious (undesirable) faility is often modeled by the maximin

or maxisum problem. But the obnoxious faility is often plaed unrealistially far

away from the demand points (nodes), resulting in prohibitively high transportation

ost/time. One solution is to model the problem as a semi-obnoxious loation problem.

Here we model the problem as a biriterion problem, not in advane determining

the importane of the obnoxious objetive ompared to the ost/time objetive.

We onsider this model for both the planar and the network ase. The two problems

are solved by an approximation algorithm, and the models are briey ompared by

means of a real-life example.

Keywords: Multiple riteria analysis, Semi-obnoxious, Loation, Planar, Networks.

1 Introdution

In the two traditional single faility loation problems, a new faility is loated (plaed)

so as to minimize transportation osts (minisum), or as to minimize the distane to the

farthest ustomer (minimax). In the minisum problem we sum all the distanes between

the new faility and the ustomers, multiplied by a weight depending on the individual

ustomer. In the minimax problem we minimize the largest weighted distane. The

minisum model an be relevant when loating a warehouse and the minimax model an be

used to loate a �re station. These models are presented in Love et al. [12℄ and Franis et

al. [8℄, both inluding many referenes. The obnoxious loation problem is a more reent

lass of problems, where the two most ommon are the maxisum and maximin models.

When loating an obnoxious (undesirable) faility the goal is to plae it as far from the

�
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existing failities (demand points, ustomers) as possible. See Erkut and Neuman [7℄ or

Carrizosa and Plastria [5℄ for a review.

There is little literature ombining the desirable and the obnoxious faility loation

models. In this paper we model the ombined problem as a Biriterion Semi-obnoxious

Loation (BSL) problem. One objetive funtion is obnoxious and one is desirable. We

also onsider both the network ase and the planar ase of the problem. In biobjetive

optimization our goal is to �nd the set of eÆient solutions. These solutions are suh

that there does not exist another solution that has a better value in one objetive without

having a worse value in the other objetive. The onept of eÆient solutions is the same

as Pareto optimal solutions. In the network ase, where the demand points are nodes in a

network and we try to loate the new faility in a node or on an edge, we have found no

referenes, but ongoing researh is presented in Hamaher et al. [9℄. In the planar ase,

where the feasible loations are in IR

2

, we have found only three referenes, namely two

papers by Brimberg and Juel, [1℄ and [2℄, and a paper by Carrizosa et al. [4℄.

In the biriterion model, developed in the �rst paper by Brimberg and Juel [1℄, the

�rst objetive is the minisum objetive and the seond objetive (the obnoxious riterion)

is the minisum objetive, where the Eulidean distane is raised to a negative power. It is

proposed to solve the problem (�nding the eÆient solutions) in two steps. First a onvex

ombination with parameter � 2 [0; 1℄ of the two objetives (weighting method, Steuer

[14℄) is formed. The resulting objetive is neither onvex nor onave. By varying � a

trajetory of eÆient solutions may be determined. In the paper an algorithm based on

this is outlined. A numerial example is presented.

In the seond paper by Brimberg and Juel [2℄ a di�erent biriterion model is onsidered.

In this model the �rst objetive is again the minisum objetive, but the seond objetive

(obnoxious) is now the maximin objetive. They present two di�erent solution methods

for this model, but only one of them is guaranteed to �nd the omplete set of eÆient

solutions.

In the biriterion model developed in the third paper by Carrizosa et al. [4℄, the �rst

objetive (the obnoxious riterion) is modeled as the maxisum, and the seond obje-

tive is modeled as the minisum problem. A solution proedure based on the BSSS (Big

Square Small Square) approah is suggested. The proedure �nds an approximation of

the set of eÆient solutions but no omputational experiene is reported. It should also

be mentioned, that the approximation is in value spae, and not in deision spae.

The theory of the planar and network models is quite di�erent, and the two models

are not often ompared, even though they try to desribe the same real-life problem. We
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apply the two models on a real-life example in Setion 4.

Next we present the basi model for the (BSL) problem. We assume that there are n ex-

isting failities (demand points). In the planar ase they are denoted a

j

= (a

j1

; a

j2

); j =

1; : : : ; n. In the network ase they are denoted v

1

; v

2

; : : : ; v

n

. We want to plae a new

faility at loation x in order to minimize both the (transportation) osts and the obnox-

iousness. Let S denote the set of feasible solutions, f(x) the obnoxious objetive funtion

and g(x) the ost objetive funtion. The general model looks as follows:

min f(x)

min g(x)

s.t.

x 2 S

(1)

We assume f depends negatively on the distane funtion and g depends positively on the

distane funtion. This means, when we inrease the distane between the new faility

and an existing faility, this will have a dereasing e�et on f and an inreasing e�et on

g, e.g. less obnoxiousness but higher transportation osts.

De�nition 1 A feasible solution x to (1) is eÆient i� there does not exist another fea-

sible solution �x to (1) suh that f(�x) � f(x); g(�x) � g(x) and (f(�x); g(�x)) 6= (f(x); g(x)).

Otherwise x is ineÆient.

EÆieny is de�ned in the deision spae. There is a natural ounterpart in the

riterion spae. The feasible region in riterion spae is denoted by Z and is given by

Z = fz(x) 2 R

2

jz(x) = (f(x); g(x)); x is feasible in (1)g.

De�nition 2 z(x) 2 Z is a nondominated riterion vetor i� x is an eÆient solution

to (1). Otherwise z(x) is a dominated riterion vetor.

For a textbook introdution to multiriteria analysis see Steuer [14℄ or more reently

Ehrgott [6℄. We note that several eÆient solutions may orrespond to the same nondom-

inated riterion vetor.

As mentioned we onsider two ases of the problem. The planar ase, denoted the

BSPL problem, where the feasible solutions form a region in the plane, and the network

ase, denoted the BSNL problem, where the set of demand points are verties in a network.

The BSPL problem is solved using the BSSS method desribed by Hansen et al. [10℄,

and we use the idea of this method to solve the BSNL problem as well. The method is

desribed in Setion 2.1 for the planar ase and in Setion 3.1 for the network ase.
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The remaining part of the paper is organized as follows. In Setion 2 we desribe the

BSPL problem and the solution approximation algorithm, and in Setion 3 the BSNL

problem and its solution method is desribed. In Setion 4 an appliation of the two

models is presented. Setion 5 ontains the onlusions.

2 The planar ase : The BSPL problem

The BSPL problem is formulated in the following way. There are n failities (demand

points) loated at points a

1

; a

2

; : : : a

n

, and the objetive is to loate a semi-obnoxious

faility at x so as to minimize a weighted sum of the distanes raised to a negative power,

and to minimize the weighted sum of the distanes between the existing failities and the

new faility. The �rst riterion f(x) may be thought of as a pollution e�et and the seond

riterion g(x) as transportation osts. This model was �rst introdued in Brimberg and

Juel [1℄, where a disussion of the objetive funtions an also be found.

min f(x) =

n

P

j=1

w

1

j

(k x� a

j

k

p

1

)

�b

; b > 0

min g(x) =

n

P

j=1

w

2

j

k x� a

j

k

p

2

s.t.

x 2 S

(2)

where k x� a

j

k

p

= (jx

1

� a

j1

j

p

+ jx

2

� a

j2

j

p

)

1=p

be the usual l

p

norm, p � 1.

We prefer this obnoxious funtion, beause it minimizes the overall obnoxiousness

when far from a demand-point, but reets the loal e�ets when lose to a demand-

point. Corresponding to this objetive we use the non-negative weights w

1

. The seond

objetive is the standard formulation for loating an attrative faility by minimizing

the weighted sum of the distanes (alled minisum or median). Please note that we use

non-negative weights w

2

with this objetive, so that the two objetives may be weighted

di�erently with respet to eah of the n demand points. We may also use two di�erent

norms, p

1

6= p

2

.

If we are modeling where to plae a new airport (the example in Setion 4), the �rst

weight w

1

j

may depend on the population at demand point j (e.g. ity), and the seond

weight w

2

j

may be the expeted number of passengers on a yearly basis from demand

point j.

S is the set of feasible solutions. Beause of the obnoxious e�ets from the new semi-

obnoxious faility, we assume that it is forbidden to plae it too near an existing faility.

Therefore, we require, that k x � a

j

k

p

1

> �; j = 1; : : : ; n, where � is a small positive



BSL Approximate 109

number. Notie, that this assumption makes the two objetive funtions Lipshitzian in

the feasible set S.

An obvious question for this model would be, if all feasible points are eÆient? The

answer is that there does exist examples where all feasible points are eÆient, but that

will probably not be the ase in a realisti set-up.

2.1 The idea of the BSSS algorithm

In this paper the idea behind the BSSS method will be applied to the BSPL problem (and

also to the BSNL problem). Therefore we briey review the method below.

Suppose that the feasible region S is ontained in a disjoint union of squares of equal

size. We put these squares into a list named ES. Next eah of these squares are onsidered

separately. Consider one of the squares, say Q

i

. We divide Q

i

into four sub-squares

Q

i1

; Q

i12

; Q

i3

and Q

i4

of equal size. For eah of these sub-squares, say Q

i1

, lower bounds

on the objetive funtion values (f(x); g(x)); x 2 Q

i1

, are found. By omparing this lower

bound with a sample set of objetive funtion values (stored in a list alled EFV) it may be

determined that square Q

i1

ontains only ineÆient points (this is done by the Dominane

Chek Routine DCR(Q

i1

)). If this is the ase square Q

i1

is alled an ineÆient square

and may be deleted from further onsideration. The squares that annot be lassi�ed as

ineÆient are put into the ES list and will later be divided further into four new sub-

squares. The proess ontinues until the side-lengths of all the remaining squares (those

that are not lassi�ed as ineÆient) in ES are below some pre-spei�ed value �. This

proedure is justi�ed provided the two objetive funtions f(x) and g(x) are Lipshitzian

in the feasible set S (whih is the ase in the present paper).

A few omments on the proedure are appropriate. The sample list of objetive fun-

tion values kept in (the sorted) list EFV (EÆient Funtion Value) are used to dominate

sub-squares with poor objetive funtion value bounds. Therefore the values should in a

way represent the objetives' behavior over the feasible region. This is done by alulating

objetive funtion values in the enters of all the squares, if the enter is in the feasible

region S, and otherwise in some other feasible point, and then deleting pairs of objetive

funtion values being dominated by other objetive funtion values in the EFV list. It

is also essential that we use good lower bounds for the objetive funtion values over the

squares. If the bounds are poor, the onvergene of the algorithm may be slow, beause

we will end up with a large number of squares. These bounds are explained in detail in

Setions 2.2 and 2.3. Finally, we need to hek if a square is ontained in the feasible

region, is overlapping the region or is outside the region. For a disussion of this issue we
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refer to the paper by Hansen et al. [10℄.

The output from the algorithm is an ordered set of \eÆient" squares. By \eÆient"

we mean that we have not been able to dominate them for this partiular hoie of �.

This is why the proedure is only an approximation. The \eÆient" squares an be

assoiated with a ertain objetive funtion value, to illustrate the trade-o� between the

two objetives. This an be done by giving the squares a olor orresponding to the value

of the �rst objetive. This will illustrate how one objetive improves as the other gets

worse, and visualize the objetive funtion values being favored in the di�erent \eÆient"

regions. In the remaining part of this setion we assume to have an initial approximation

of the feasible region S by equal size squares.

2.2 Calulating lower bounds

In order to alulate lower bounds on the two objetives, we use an approximation of the

weighted distanes. This distane approximation is illustrated in Figure 1 for the l

2

norm.

The lower bound for the distane is found in Hansen et al. [10℄, and the upper bound for

the distane is an obvious extension of the same idea, found in Hansen et al. [11℄.

The plane is divided into 9 regions, obtained by extending the four sides of Q

i

. The

regions are the square Q

i

, the four side regions, and the four orner regions. The square

Q

i

will be in the enter.

�

�

�

� �

a

1

= a

1

a

2

a

2

a

3

a

3

A: Lower bound

�

�

�

�

�

�

a

1

a

1

a

2

a

2

a

3

a

3

B: Upper bound

Figure 1: Lower and upper bounds on the distanes.

Now let a

j

be a partiular loation. With this loation we assoiate a losest point

a

j

2 Q

i

and a furthest point a

j

2 Q

i

, see Figure 1. We may then alulate a lower bound
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on the values of f and g in Q

i

as follows:

f(Q

i

) =

P

j

w

1

j

(k a

j

� a

j

k

p

1

)

�b

Case B in Figure 1

g(Q

i

) =

P

j

w

2

j

k a

j

� a

j

k

p

2

Case A in Figure 1

Clearly, (f(Q

i

); g(Q

i

) � (min

x2Q

i

f(x);min

y2Q

i

g(y)). Therefore we an use the bound

z(Q

i

) = (f(Q

i

); g(Q

i

)) for eÆieny heking in the algorithm. If we at some point have

found a sample value x 2 S, suh that (f(x); g(x)) < (f(Q

i

); g(Q

i

)), then, learly all

points in Q

i

are dominated by x. It follows that square Q

i

ontains only ineÆient points.

Therefore it is not neessary to onsider Q

i

anymore. This bound approah an be used

for any p 2 [1;1℄. Please note that the bounds obviously onverge when the squares get

smaller.

2.3 Exat lower bound

Sine the minisum objetive is a nie onvex funtion, it is possible to alulate an exat

lower bound for the squares in most situations. The level sets of a onvex funtion are

onvex sets, and the gradient an therefore be used as follows.

For a square Q

i

with orners 

1

; 

2

; 

3

and 

4

, �nd the orner 

h

with the minimum

funtion value g(

h

). If the diretion of steepest desent \points away" from the square

Q

i

, then the lower bound g(Q

i

) is exatly g(

h

). By \pointing away" we mean that the

diretion of steepest desent has an angle of at least 90 degrees with the sides of Q

i

, see

ase A in Figure 2. If this angle is less than 90 degrees, the minimum value over Q

i

is

not in 

h

, but on the line segment between 

h

and the orner, the diretion points out, see

ase B in Figure 2. Finally, if the diretion points into Q

i

, the minimum value is not in



h

but inside Q

i

.

Case A Case B



i



i

Figure 2: Exat lower bound, depending on diretional derivative



112 BSL Approximate

From the above, an exat lower bound an easily be omputed, if the diretional

derivative points away from the square. We only need to ompute four funtion values

and the diretional derivative in the minimum value orner. Case A in Figure 3 will our

in most evaluations, but not in all.

The diretional derivative g

0

(x

0

; y) of g at x

0

2 S in the diretion y is de�ned as follows:

g

0

(x

0

; y) = r g(x

0

) � y

where rg(x

0

) is the gradient of g evaluated in x

0

.

If we onsider the l

2

norm, the gradient looks as follows:

r g(x

0

) =

0

�

X

j

w

2

j

(x

01

� a

j1

)

k x

0

� a

j

k

;

X

j

w

2

j

(x

02

� a

j2

)

k x

0

� a

j

k

1

A

This reveals the well-known problem; if x

0

is at a demand point, the gradient is unde�ned

beause of the denominator being zero. In this ase we also have to use the lower bound

of Setion 2.2.

Expressions for the gradient for general l

p

norms, an be derived for any p 2 [1;1℄.

Atually, the only assumption needed for the exat lower bound to be valid, is that the

level sets are onvex. The reason for deriving tighter bounds is to speed up onvergene

of the algorithm.

2.4 BSSS algorithm for the BSPL problem

Notation:

Q

i

Square number i

z(Q

i

) = (f(Q

i

); g(Q

i

)) Lower bounds for Q

i

.

ES List of EÆient Squares. Note that this is only a name for

squares that have not been proven ineÆient.

ECL EÆient Candidate List (of squares of equal size). It onsists

of the four sub squares of all the squares in ES.

EFV List of EÆient Funtion Values. Funtion values are alulated

at di�erent points in the feasible region, and the nondominated ones

(at this time in the routine) are in this list.

DCR(Q

i

) Dominane Chek Routine for Q

i

(with EFV). Is briey explained

in Setion 2.1.

The idea for the DCR routine was found in [3℄, and earlier used by the authors in [13℄.

Planar Algorithm:

1. Initialize

Find an equal size square approximation Q

1

; Q

2

; : : : ; Q

N

of S
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Put Q

i

in ES 8i = 1; 2; : : : ; N .

Let L be the length of a side of Q

1

De�ne the tolerane level �

2. Creating New Squares

For eah Q

i

2 ES do

Create 4 sub-squares Q

j

; j = 1; 2; 3; 4, put the Q

j

's in ECL and delete Q

i

from ES

Set L =

L

2

3. EÆieny Update

Update EFV by alulating some funtion values from the Q

j

's

For eah Q

j

2 ECL do

Calulate z(Q

j

) = (f(Q

j

); g(Q

j

)) using exat lower bounds when possible

Make DCR(Q

j

) with EFV

If Q

j

is eÆient ompared with EFV then add Q

j

to ES

4. Termination Test

If L < � Terminate with ES as the solution list

Else go to Step 2

3 The network ase : The BSNL problem

In this setion we adapt the BSSS method to the network ase. However, instead of

dividing big squares into smaller squares, we divide edges into sub-edges. This will be

explained in detail in Setion 3.1. Assume we have an undireted onneted network

G(V; E) with node set V = fv

1

; v

2

; : : : ; v

n

g where jVj = n nodes, and a �nite set of edges

(ars) E = f(v

i

; v

j

); (v

k

; v

l

); : : : ; (v

p

; v

q

)g with jEj = m. Edges may also be denoted by e.

All edges have a stritly positive length. Eah node v

j

arries two non-negative weights

(w

1

j

; w

2

j

), one for the obnoxious riterion and one for the desirable riterion.

The model is the same as (2), exept that the set of possible new loations is the entire

network. With our hoie of obnoxious objetive funtion, however, x annot be loated
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in a node. The BSNL problem is then:

min f(x) =

P

j

w

1

j

(d(x; v

j

))

�b

; b > 0

min g(x) =

P

j

w

2

j

d(x; v

j

)

s.t.

x 2 G(V; E)

(3)

where d(x; v

j

) is the shortest distane from point x to node v

j

. The authors are well aware

that the obnoxious objetive funtion is not as appropriate on the network model, as in

the planar model, but we have deided to use it for omparison purposes, see Setion 4.

The solution proedure is desribed shortly in Setion 3.1 and the algorithm is presented

in Setion 3.4. The approximation algorithm is a very general and intuitive approah and

an be used for ompliated objetive funtions.

3.1 The Edge Dividing algorithm

The idea of the Edge Dividing (ED) algorithm is similar to the idea behind the BSSS

algorithm. First we divide eah edge into two sub-edges. Then bounds on the objetive

funtion values on eah sub-edge are alulated. Furthermore, a sample set of objetive

funtion values are alulated. If the bounds alulated for a sub-edge are dominated by

one (or more) of the sample set objetive funtion values then the sub-edge is dominated

and may be deleted from further onsideration.

The bounds are derived in detail in Setions 3.2 and 3.3. The sample set of objetive

funtion values are alulated in the middle (enter) of the sub-edges. Nondominated

riterion values are kept in the EFV list. Please note that only an approximation of the

eÆient set is found.

The output from the algorithm is an ordered set of \eÆient" sub-edges. This general

proedure, however, has a few disadvantages. The eÆient set (or part of it) may be an

edge-segment. This sub-edge will obviously remain in the ES list, but the sub-edge will

be divided into sub-edges again and again. This reveals that the ES set will probably

almost double in size, when we half the � value. This an in fat be used as an alternative

stopping riterion.

3.2 Calulating lower bounds

We need both upper and lower bounds on the distane d(x; v

j

), where x an be any point

on the edge (or sub-edge) e

i

. We refer to the lower bound of this distane by d(e

i

; v

j

) and

to the upper bound by d(e

i

; v

j

). Assume e

i

2 (v

h

; v

k

), and x

h

is the endpoint of e

i

losest

to v

h

, and that x

k

is the endpoint of e

i

losest to v

k

.
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The upper-bound may be alulated as follows:

d(e

i

; v

j

) = minfd(v

j

; v

h

) + d(v

h

; x

h

); d(v

j

; v

k

) + d(v

k

; x

k

)g+ d(x

h

; x

k

)

and the lower-bound may be alulated as follows:

d(e

i

; v

j

) = minfd(v

j

; v

h

) + d(v

h

; x

h

); d(v

j

; v

k

) + d(v

k

; x

k

)g

These two bounds an be easily alulated as illustrated in Figure 3, whenever the

distane matrix D, of shortest distanes between all pairs of nodes, is available.

v

j

v

h

v

k

x

h

x

k

e

i

Figure 3: Calulating distane bounds.

Using these bounds we an alulate the lower bounds on the objetive funtion values

as

f(e

i

) =

X

j

w

1

j

�

d(e

i

; v

j

)

�

�b

g(e

i

) =

X

j

w

2

j

d(e

i

; v

j

)

3.3 Exat bounds

In this setion we derive some exat bounds, spei�ally for our hoie of objetive fun-

tions.

The distane funtion d(x; v

j

) is a onave funtions on an edge (subedge). Therefore,

g(x) is a onave funtion on an edge, and the minimum is always in one of the (sub-edge)

endpoints. So we have an exat lower bound as follows.

g(e

i

) = minfg(x

h

); g(x

k

)g (4)

Now lets onsider f(x). Sine d(x; v

j

) is both positive and onave, (d(x; v

j

))

�b

is onvex.

Therefore, f(x) is onvex on an edge. If we are looking at the sub-edge from x

h

to x

k

as
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illustrated in Figure 3, and the derivatives at the endpoints have the same sign, then an

exat lower bound is simply the smallest endpoint value. That is, if

sign

�

�

+

�x

(v

h

;v

k

)

f(x

h

)

�

= sign

�

�

+

�x

(v

h

;v

k

)

f(x

k

)

�

(5)

then

f(e

i

) = minff(x

h

); f(x

k

)g (6)

where

�

+

�x

(v

i

;v

j

)

f(x

k

) denotes the derivative in the diretion from v

i

towards v

j

, and we

want to know if the funtion inreases or dereases. The \

+

" indiates right derivative,

so even in a break-point this derivative is well-de�ned. If (5) does not hold, the bound in

Setion 3.2 has to be applied. For more general objetive funtions, the bounds in Setion

3.2 may be needed more often.

3.4 ED algorithm for the BSNL problem

Notation:

e

i

Sub-edge number i

z(e

i

) = (f(e

i

); g(e

i

)) Lower bounds for e

i

.

ES List of EÆient Sub-edge. Note that this is only a name for

sub-edges that have not been proven ineÆient.

ECL EÆient Candidate List (of sub-edges). It onsists

of the two sub-edges of all the sub-edges in ES.

EFV List of EÆient Funtion Values. Funtion values are alulated

at di�erent points on the network, and the nondominated ones

(at this time in the routine) are in this list.

DCR(e

i

) Dominane Chek Routine for e

i

(with EFV).

L Length of a longest edge in ES.

Network Algorithm:

1. Initialize

Find the shortest path matrix D.

Put all edges e

1

; e

2

; : : : ; e

m

in ECL.

Let L be the length of a longest edge in ECL.

De�ne the tolerane level �.

Calulate riterion values in all midpoints to make an initial EFV list.

2. EÆieny Update

For eah e

i

2 ECL do
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Calulate z(e

i

) = (f(e

i

); g(e

i

)) using (4) and the exat bound (6) if possible

Make DCR(e

i

) with EFV

If e

i

is EÆient ompared with EFV then add e

i

to ES

Update L (as a longest sub-edge in ES)

3. Termination Test

If L < � Terminate with ES as the solution list

4. Creating New Sub-edges

For eah e

i

2 ES do

Split e

i

into two sub-edges e

i1

and e

i2

of equal length.

Add e

i1

and e

i2

to ECL and delete e

i

from ES

Update EFV by alulating riterion values on the middle of all sub-edges e

j

in ECL

Go to Step 2

4 An airport example

To illustrate the usefulness of the two models we present an appliation. Currently, there

is a debate in Denmark as to the loation of a new international airport in the mainland

Jutland in order to replae an existing one. The existing airport is loated near a small

ity alled Tirstrup approximately 45 km to the North-East of

�

Arhus, the largest ity in

Jutland (with about 215.000 inhabitants). The existing airport is loated in an area where

not many people are living and where not many ompanies are based. Furthermore, the

infrastruture of this area is not too good. For example it takes about 1 hour to go from

�

Arhus to Tirstrup. Many ompanies (and people) think that this is too muh time to

spend on transportation to the airport.

It is believed that a new international airport loated not too far away from

�

Arhus

would be attrative to a lot of ompanies (and people). However, ustomers (ompa-

nies/people) living nearby

�

Arhus are more likely to use the new airport than ustomers

living far away from

�

Arhus. Therefore, we will onsider only a region of potential loa-

tions with x-oordinates between 60 and 140, and y-oordinates between 100 and 180, see

Figure 4. Furthermore, we have divided Jutland into three zones, namely a 100% zone,

a 50% zone, and a 20% zone, see Figure 4. The weighting zones should reet the fat

that ustomers far away from the hosen region will use the new airport less frequently
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than ustomers lose by or within this region. These three weighting zones will be used

when de�ning the transportation objetives later in this setion. We have hosen 42 ities

to represent the ustomers in Jutland, ranging in population from 2574 (Hanstholm) to

215587 (

�

Arhus) inhabitants as demand points. Distane is measured in kilometers, and

the �-value used is 0.15 km (150 meters) for both the planar ase and the network ase.

Origo is plaed on the German island of Sylt.

Next, let us desribe the parameters for the two objetive funtions. For the planar

model we have used the Eulidean distane and a b-value of two. For the network model,

the distane is always the shortest distane in the network. The b-value is two. The edge

lengths are road distanes olleted from an interity distane table. All input data is

available from the orresponding author.

For the obnoxious riterion we have used weights w

1

j

=\population in ity j". This

is a simple form of letting the larger ities ount more than the smaller ities. For the

transportation ost objetive we have used weights w

2

j

=\population in ity j multiplied

by the weight of the zone in whih the ity is loated". This means that ities nearby

�

Arhus ount muh more than ities far away from

�

Arhus, reeting the fat that ustomers

far away from

�

Arhus are likely to use the new airport less frequently than ustomers living

nearby

�

Arhus.

Whether the ity population is an appropriate measure of passengers is not an issue

here. The data for the example is presented in Table 1, and it is used for both the planar

and the network problem. The three dummy-nodes in Table 1 are introdued only to make

the road-network in Figure 7 more realisti, and are loated right to the west of

�

Arhus.

These nodes are introdued beause the main highway follows a half-irle around

�

Arhus.

First we present the results of the planar model. The norm to the negative power

funtion is illustrated in Figure 5, overing the region of [60; 140℄ � [100; 180℄. The peaks

indiate the ities, with funtion values going to in�nity. As an be seen from Figure 5 it

may be hard to �nd an exat lower bound for this funtion. The minisum global optimum

is attained in (110; 145) with a value of 3; 27 � 10

7

. The minisum funtion is not plotted

sine it is just a onvex funtion.

The eÆient region is illustrated on the map in Figure 6. For larity, we have drawn

two minisum level urves. The inner level urve is minisum values 10% above the global

minisum minimum (3; 6 � 10

7

), and the outer level urve is 20% above (3; 92 � 10

7

).

Figure 6 reveals three eÆient regions. The entral region just west-north-west of

�

Arhus ontaining the global minisum minimum, and with minisum-values within 10%

of the minimum. The entral region reets in whih diretion the obnoxious objetive
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Figure 4: Jutland divided into three weighting-zones. Coordinates are in kilometers.
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City (j) a

j1

a

j2

w

1

j

w

2

j

Esbjerg 7.17 69.31 73422 14684.4

T�nder 34.416 8.126 8161 1632.2

Ribe 28.202 52.102 8046 1609.2

Kolding 72.178 68.832 53012 26506

Vejle 76.002 93.21 47839 23919.5

Horsens 95.122 110.418 48410 48410

Skanderborg 99.902 130.494 12067 12067

�

Arhus 118.066 142.922 215587 215587

Randers 106.116 177.338 56123 56123

Viborg 67.876 175.904 31872 31872

Silkeborg 76.958 146.746 36762 36762

Ikast 52.102 141.01 14014 7007

Herning 40.63 141.966 29231 14615.5

Holstebro 18.642 166.344 30770 15385

Struer 17.208 181.206 11272 5636

Skive 44.454 188.332 20557 10278.5

Hadsten 108.028 162.042 6616 6616

Gren�a 158.696 172.08 14441 14441

Hobro 91.298 196.936 10704 5352

Aars 74.568 216.056 7066 3533

�

Alborg 98.468 240.434 119157 59578.5

Frederiia 88.43 78.392 29376 14688

Haderslev 74.09 42.064 21106 4221.2

Aabenr�a 69.31 20.076 16218 3243.6

Vejen 52.58 66.442 8507 1701.4

Br�nderslev 99.902 267.202 11365 2273

Hj�rring 103.248 289.668 24889 4977.8

Frederikshavn 135.274 288.234 24768 4953.6

Bjerringbro 83.547 169.246 7201 7201

Varde 10.994 83.172 12478 2495.6

Grindsted 38.718 97.034 9497 1899.4

Skjern 11.95 119.978 6949 1389.8

Ringk�bing -4.302 135.274 9166 1833.2

Brande 50.668 119.022 6214 3107

Lemvig 0 185.464 7302 1460.4

Nyk�bing 33.46 212.71 9319 1863.8

Thisted 25.334 231.352 12609 2521.8

Hanstholm 19.12 249.516 2574 514.8

Fjerritslev 58.316 244.736 3332 666.4

Hirtshals 100.858 301.14 6949 1389.8

Skagen 136.708 315.958 10674 2134.8

Ebeltoft 146.746 144.834 4396 4396

Dummi North 113 152 0 0

Dummi West 109 144 0 0

Dummi South 109 137 0 0

Table 1: Loations a

j

= (a

j1

; a

j2

) and weights (w

1

j

; w

2

j

) of 42 ities in Jutland.
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Hadsten

AarhusViborg

Bjerringbro
Silkeborg

Randers Skanderborg

Horsens

Figure 5: Surfae-plot of the obnoxious objetive-funtion.
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Figure 6: EÆient regions for airport loation
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Region f -value g-value (�10

7

)

A ℄1 ; 3772℄ [3.63 ; 3.80℄

B [3756 ; 2244℄ [3.86 ; 3.92℄

C [713 ; 570℄ [4.29 ; 4.45℄

D [568 ; 419℄ [4.49 ; 4.70℄

E [419 ; 316℄ [4.77 ; 4.93℄

F [316 ; 222℄ [5.18 ; 5.71℄

G [222 ; 193℄ [5.91 ; 6.34℄

Table 2: Objetive funtion values for the regions indiated in Figure 7.

dereases, namely north-west. This region has the highest obnoxious values, ranging from

3400 (at the minisum optimum) to 675 in the north-western part of the region. The south-

west region has minisum values from approximately 10% to 25% above the minimum. This

region has obnoxious values from 675 to 440. The last eÆient region is the north-east

region with minisum values more the 25% above the minimum. This region has the lowest

obnoxious values, below 440, simply beause there are no major ities in this part of the

ountry as an be seen in Figure 4. As a matter of fat the existing airport at Tirstrup

is nearby this region. Potential loations for a new airport should be found within these

eÆient regions.

Next we present the results of the network model. For this model only the resulting

network, with the eÆient sub-edges, is presented, see Figure 7. The minisum objetive

funtion has its global minimum in the node representing the ity of

�

Arhus. The obnoxious

objetive funtion has its global minimum outside the target region.

In Figure 7 the seven eÆient regions are indiated by the letters A, B, : : :, G, and the

orresponding objetive funtion value intervals are presented in Table 2. The region A

around

�

Arhus has the lowest transportation osts, but also quite high obnoxious values.

The most deserted subedge, region G, has the lowest obnoxious values, but almost two

times the lowest transportation ost. The trade-o� between the two objetives is well

represented by Table 2. Figure 7 reveals that a possible loation of the new airport ould

be in an area north-west of

�

Arhus.

5 Conluding remarks

In this paper we have set up two biriterion loation models for loating one obnoxious

faility, namely one for the planar ase and one for the network ase. EÆient (well-

working) solution algorithms based on the well-known BSSS algorithm has been proposed.
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A

B
C

D

E

F

G

Figure 7: Road-network of Jutland. Bold parts onstitute the eÆient set.



BSL Approximate 125

Both models are easily extended to multiple riteria. All that needs to be hanged is the

DCR operation.

Even though the planar and the network model may seem distint in struture, they

are designed to solve the same real-life problem. Often a ombination of the two models

would be preferable. For example, modeling air pollution suh as noise makes most sense

in the planar model, whereas the network model would be the orret desription of a

road network with distanes or travel times as oeÆients. One possible ombination is

to embed the network on top of the plane, so that eah point on the network orresponds

to a point in the plane, but not neessarily the other way around.

Another issue is the hoie of obnoxious riterion funtions. We have used the negative

power funtion also used in Brimberg and Juel [1℄. Of ourse, many other funtions may

be used, and for more ompliated funtions, the approximation approah desribed in

this paper may be the only appliable approah.

It may also be appropriate to have weights depending on distane. However, in most

exat models this will ause mathematial diÆulties. In the airport example presented

in Setion 4, the number of yearly passengers from a ity using the new airport, most

probably depends negatively on the distane.

It should also be onsidered what kind of pull objetive (ost funtion) is appropriate.

We have only onsidered the minisum. It should also be noted that for some objetives

an exat bound, or at least an improved bound, may be applied.

The output of the models reveal the trade-o� between the two negatively orrelated

riteria. We onlude that the two proposed models are good tools for obnoxious loation

deisions. Finally, we have illustrated the models on a real-life appliation.
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Abstrat

Loating a faility is often modeled as either the maxisum or the minisum prob-

lem, reeting whether the faility is undesirable (obnoxious) or desirable. But many

failities are both desirable and undesirable at the same time, e.g. an airport. This

an be modeled as a multiriteria network loation problem, where some of the sum-

objetives are maximized (push e�et) and some of the sum-objetives are minimized

(pull e�et).

We present a polynomial time algorithm for this model along with some basi

theoretial results, and generalize the results also to inorporate maximin and minimax

objetives. In fat, the method works for any pieewise linear objetive funtions.

Finally, we present some omputational results.

Keywords: MCDM, Multiriteria, Obnoxious, Semi-obnoxious, Faility Loation, Net-

works.

1 Introdution

There are a number of models that deal with the problem of loating (plaing) a new faility

on a network. Most of these models loate a desirable faility, suh as a supermarket or a

�

Corresponding author.
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�re station, where the objetive is to keep the new faility lose to its users (pull e�et).

There are also some models desribing how to loate an obnoxious (undesirable) faility

suh as a nulear power plant or a dump site whih the users want to loate far away (push

e�et). Many failities an, however, be thought of as semi-obnoxious. Suh failities

ould be airports, train stations or other noisy servie failities. It ould also be the

above-mentioned dump site that, with respet to transportation osts, should be loated

entrally, but, in the opinion of the itizens, should be loated distantly. These loation

problems ould with obvious advantages be formulated as multiriteria network loation

problems. In this way the trade-o� between the di�erent objetives an be revealed,

making a good basis for an overall deision. Di�erent aspets of the problem an be

desribed by di�erent objetives. Suh objetives ould be transportation osts, travel

time, air pollution or minimizing the number of itizens within a ertain radius of the

faility. Another situation arises when we have more deision makers, eah having their

own objetive funtion. When we solve a problem with more than one objetive, it is

highly unlikely that one solution is optimal for all objetives. Instead, the solution is the

set of eÆient or Pareto loations, i.e. solutions where we annot improve any objetive

without at least one other objetive being worsened.

Biriterion models for the planar ase of the problem is presented in Brimberg and Juel

[1℄, Carrizosa et al. [2℄ and Andersen and Skriver [10℄. In Andersen and Skriver [10℄

an approximation solution method for the biriterion network loation problem is also

presented. A general solution method for the multiriterion median-problem is presented

in Hamaher et al. [5℄.

As one noties, the terminology for loation problems is not unique. Therefore we intro-

due in the following a lassi�ation sheme for loation problems that should help get an

overview over the manifold area of loation problems.

We use a sheme whih is analogous to the one introdued suessfully in sheduling theory.

The presented sheme for loation problems was developed in Hamaher and Nikel [6℄

and Hamaher et al. [5℄.

We have the following �ve position lassi�ation

pos1=pos2=pos3=pos4=pos5 ;

where the meaning of eah position is explained in Table 1:

If we do not make any speial assumptions in a position, we indiate this by a �.

The rest of the paper is organized as follows. In Setion 2 we give some de�nitions and
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Position Meaning Usage (Examples)

1 number of new failities

2 type of problem

P planar loation problem

D disrete loation problem

G network loation problem

3 speial assumptions and

restritions

w

m

= 1 all weights are equal

R a forbidden region

4 type of distane funtion

l

1

Manhattan metri

d(V;V) node to node distane

d(V; G) node to point distane

5 type of objetive funtion

P

median problem

P

obnox

anti-median problem

max enter problem

max

obnox

anti-enter problem

Table 1: Classi�ation sheme for loation problems.

desribe the problem. The general solution proedure is desribed in Setion 3, and in

Setion 4 we present a di�erent approah that works only in the biriteria ase. In Setion

5 we disuss how the general solution proedure an also be used with enter objetives.

Computational results are presented in Setion 6, and we onlude the paper in Setion 7.

2 Problem formulation and de�nitions

We are given a (strongly) onneted network G(V; E) with nodeset V = fv

1

; v

2

; : : : ; v

n

g

where jVj = n nodes, and edgeset E = f(v

i

; v

j

); (v

k

; v

l

); : : : ; (v

p

; v

q

)g with jEj = m edges.

If the underlying graph is direted it is denoted G

D

, and the edge e = (v

i

; v

j

) has head v

j

and tail v

i

. If the underlying graph is undireted, it is just denoted G, and e = (v

i

; v

j

) =

(v

j

; v

i

) 8e 2 E . We de�ne the set of objetives as Q = f1; 2; : : : ; Qg. Eah node v

i

arries

Q weights (w

1

i

; w

2

i

; : : : ; w

Q

i

)

t

, where w

q

i

> 0;8q 2 Q, so we may refer to the matrix of

weights by W

Q�n

. Eah edge e 2 E has length l(e) 2 R

+

.

By d(v

h

; v

k

) we denote the distane between v

h

and v

k

, is given by the length of a shortest

path between v

h

and v

k

. A point x 2 G(V; E) an be loated both at a node or on an

edge. This is often referred to as absolute loation.

We de�ne a point x on a direted edge e = (v

i

; v

j

) as a tuple x = (e; t); t 2 [0; 1℄, with

d(v

k

; x) = d(v

k

; v

i

) + tl(e) and d(x; v

k

) = (1� t)l(e) + d(v

j

; v

k

)

for any v

k

2 V. A point x on an undireted edge e = (v

i

; v

j

) is de�ned as a touple
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x = (e; t); t 2 [0; 1℄, with

d(x; v

k

) = minfd(v

k

; v

i

) + tl(e); d(v

k

; v

j

) + (1� t)l(e)g

for any v

k

2 V. Notie that d(v

i

; x) = tl(e) and d(x; v

j

) = (1� t)l(e) for x = (e; t). Sine

v

i

= (e; 0) and v

j

= (e; 1), all nodes of the network are also points of the network.

The set f(e; t)jt 2 (t

1

; t

2

); t

1

; t

2

2 [0; 1℄g, forming an open subedge on e, is denoted

(e; (t

1

; t

2

)) for any e 2 E . Of ourse this set is empty, unless t

2

> t

1

. Similarly, we de�ne

losed and half right/left open subedges.

We formulate the model with the maxisum and minisum objetives, whih are obviously

negatively orrelated. These objetive funtions are often referred to as the weighted

anti-median andmedian of a network. In Setion 5 we disuss the maximin and minimax

objetives. For the undireted problem the objetive funtions are de�ned by

f

q

(x) =

n

X

i=1

w

q

i

d(x; v

i

) q 2 Q (1)

and for the direted ase they are de�ned by

f

q

(x) =

n

X

i=1

w

q

i

(d(x; v

i

) + d(v

i

; x)) q 2 Q (2)

In (2) observe that we for eah node v

i

make a round-trip from x to v

i

and bak to x. In

some appliations it may be more appropriate to look only at the distanes out of x or into

x. The general undireted problem 1/G/�/d(V; G)/(Q

1

-

P

obnox

; Q

2

-

P

)

Par

is formulated

as follows:

max f

q

(x) q 2 Q

1

min f

q

(x) q 2 Q

2

s.t.

x 2 G(V; E)

(3)

Q = Q

1

[ Q

2

, where Q

1

\ Q

2

= ;. Q

1

is the set of obnoxious objetive funtions, and

Q

2

is the set of desirable objetive funtions. At most one of the sets are allowed to be

empty. If Q

1

= ; we have the situation disussed in Hamaher, Labb�e and Nikel [5℄.

f(x) = (f

1

(x); f

2

(x); : : : ; f

Q

(x))

t

.

For simpliity in the sueeding argumentation we multiply all objetive funtions in Q

1

by �1 in order to minimize instead of maximize. Thus, in the remaining part of the paper

we assume that w

q

i

< 0;8i = 1; 2; : : : ; n and q 2 Q

1

, and w

q

i

> 0;8i = 1; 2; : : : ; n and

q 2 Q

2

. We now have a multiriteria minimization model:

min f

q

(x) q 2 Q

1

min f

q

(x) q 2 Q

2

s.t.

x 2 G(V; E)

(4)
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In order to �nd the shortest distanes between x and all the nodes, we need the distane

matrix D of shortest distanes between all pairs of nodes. Note that D

ij

= d(v

i

; v

j

). This

matrix an be alulated in O(n

3

) running time using Floyd's algorithm or by applying Di-

jkstra's algorithm to all n nodes. For details on these graph proedures, see Thulasiraman

and Swamy [13℄. For an undireted network the distane matrix D is symmetri.

This model is a ombination of two well-known models. The minisum and the maxisum

models. The solution proedures for these two models are similar, but we will explain the

most important details here. For the maxisum problem, some interesting theory is found

in Churh and Gar�nkel [3℄. They introdue the onept of bottlenek points, and refer

to nodes with degree one as dangling nodes (often alled pendant nodes). The minisum

problem has been well studied, and we refer to Daskin [4℄ for details.

We will now outline the onept of bottlenek-points as it is presented in Churh and

Gar�nkel [3℄. There are two types of bottlenek-points. The edge-bottlenek-points are

de�ned as follows, for eah edge (v

i

; v

j

) 2 E : Let x be on the edge (v

i

; v

j

). If there exists

a node v

k

6= v

i

; v

j

suh that

D

ki

+ d(x; v

i

) = D

kj

+ d(x; v

j

)

then x is an edge-bottlenek-point. It is easily seen, that edge (v

i

; v

j

) ontains an

edge-bottlenek-point with respet to node v

k

if and only if

jD

ki

�D

kj

j < l((v

i

; v

j

))

This sets the upper bound for the number of edge-bottlenek-points on an edge to n� 2.

Now we de�ne the node-bottlenek-points. Assume there exists distint nodes v

i

,v

h

and

v

k

. If there exists a node v

j

6= v

i

; v

h

; v

k

suh that

D

ik

+D

kj

= D

ih

+D

hj

then node v

j

is a node-bottlenek-point with respet to node v

i

(and v

i

to v

j

). Consid-

ering the whole edge (v

i

; v

j

) inluding the nodes, it ontains at most n bottlenek-points.

Sine there are m edges in G, the total number of bottlenek-points is bounded by mn.

It is important to note that the bottlenek-points are independent of the weights. They

only depend on the network struture inluding the edge-lengths. We will denote the

edge-bottlenek-point matrix of shortest distanes from all edge-bottlenek-points to

all nodes by B. So B

ij

is the shortest distane from edge-bottlenek-point B

i

to node v

j

.

This matrix is needed for easy alulation of the objetive-values in the bottlenek-points.
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When we know the shortest distane matrix D, the bottlenek-points an be alulated

in O(mn) running time, beause for eah edge we have to evaluate all nodes. This an be

improved to an algorithm that takes O(n log n) time, see Hansen et al. [7℄.

In Churh and Gar�nkel [3℄ it is shown that there exists a point x, that is either a

bottlenek-point or a dangling node that solves the maxisum problem. This is true be-

ause the weighted-sum objetive is a pieewise linear, onave funtion on the edges,

with break-points only in the edge-bottlenek-points. This orresponds to minimizing the

weighted sum where all weights are negative. The objetive funtion is then a pieewise

linear, onvex funtion with break-points only in the edge-bottlenek-points, see f

1

in

Figure 1. Note that the optimum need not be unique, it an be a subedge between two (or

more) bottlenek-points, or the optimum value may also be obtained on a di�erent edge.

It is well-known that the optimum for the minisum problem is found in a node (f

2

in

Figure 1). The standard way of solving this problem is to sum the rows of the distane

matrix D multiplied by the weights. The row with the smallest weighted sum orresponds

to the minisum optimum node. For further details see Daskin [4℄.

t10

f

2

= z

2

f

1

= z

1

t

0

t

1

t

2

t

3

Z

2

Z

1

Figure 1: Illustration of the objetive funtions on an edge.

We denote the set of optimal solutions to a single-objetive problem by X

q

. The or-

responding objetive values are denoted by Z

q

. Note that these sets of objetive-values

only ontain one value, namely the optimal value, but the notation generalizes to the

nondominated set Z

Par

de�ned below.

Solving the Q-riteria semi-obnoxious network loation problem means �nding the set of

eÆient points. For an introdution to multiple riteria analysis see Steuer [12℄.

The de�nition of eÆieny is as follows.
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De�nition 1 A solution x 2 G(V; E) to (4) is eÆient (Pareto optimal) i� there does

not exist another solution �x 2 G(V; E) to (4) suh that f

q

(�x) � f

q

(x) 8q 2 Q and

9q 2 Q s:t: f

q

(�x) < f

q

(x). Otherwise x is ineÆient.

The set of all eÆient/Pareto optimal solutions are denoted by X

Par

. EÆieny is de�ned

in the deision spae. There is a natural ounterpart in the riterion spae. The riterion

spae is denoted by Z and is given by Z = ff(x) 2 R

Q

jx 2 G(V; E)g.

De�nition 2 f(x) 2 Z is a nondominated riterion vetor i� x is an eÆient solution

to (4). Otherwise f(x) is a dominated riterion vetor.

The set of all nondominated riterion vetors are denoted by Z

Par

where Z

Par

= f(X

Par

).

We use the Pareto optimality notation for both deision and riterion spae.

Let S be a subset of G(V; E). We will de�ne the set of loally eÆient solutions, denoted

X

Par

(S), to be the solutions that are eÆient with respet to all other solutions in the

subset S. Similarly, Z

Par

(S) denotes the set of riterion vetors from f(S) that are loally

nondominated by any other riterion vetor in f(S).

2.1 Example

Now we present two small examples to illustrate the struture of the direted and the

undireted problem, see Figure 2 and 3. Let the distane matrix D

direted

be given by

D

direted

=

2

6

6

6

6

6

6

4

0 1 5 4 3 6

7 0 6 3 10 5

1 2 0 5 4 7

4 3 3 0 7 2

3 4 2 7 0 3

8 1 7 4 11 0

3

7

7

7

7

7

7

5

for the direted network of Figure 2. Let the weights be w

1

= (�1;�2;�1;�1;�2;�2)

and w

2

= (2; 1; 2; 2; 2; 1).

The solution proedure for the direted network in Figure 2 is explained in Setion 3.2,

and the riterion values are presented in Table 3.

Let the distane matrix D be given by

D =

2

6

6

6

6

6

6

4

0 1 1 4 3 2

1 0 2 3 4 1

1 2 0 3 2 3

4 3 3 0 5 2

3 4 2 5 0 3

2 1 3 2 3 0

3

7

7

7

7

7

7

5
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v

1

v

2

v

3

v

4

v

5

v

6

3

1

1

3

2 2

3

1

3

Figure 2: The direted network of Example 2.1. The bold parts onstitute the set of

eÆient points.

for the undireted network of Figure 3. B an be alulated as

B =

2

6

6

6

6

6

6

6

6

6

6

4

2 3 3 6 1 4

3 2 4 1 6 3

2 3 1 2 3 4

3 4 2 1 4 3

2 3 1 4 1 4

3 2 4 1 4 1

4 3 3 4 1 2

3 2 4 3 2 1

3

7

7

7

7

7

7

7

7

7

7

5

:

v

1

v

2

v

3

v

4

v

5

v

6

B

1

B

2

B

3

B

4

B

5

B

6

B

7

B

8

p

Figure 3: The undireted network of Example 2.1. The bold parts onstitute the set of

eÆient points.

To larify the solution to the undireted network in Figure 3 we present some funtion

values in Table 2. The solution method for this biriterion model is desribed in Setion

4. Please note the values of p and B

4

. This proves that a subedge, not having endpoint

at a node or a bottlenek-point, an be eÆient. We will refer to this example in Setion

3 and 4.
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Point x f(x) = (f

1

(x); f

2

(x))

v

1

(�17; 19)

v

2

(�16; 21)

v

3

(�18; 17)

v

4

(�27; 29)

v

5

(�24; 27)

v

6

(�15; 21)

B

1

(�27; 31)

B

2

(�30; 33)

B

3

(�25; 23)

B

4

(�28; 27)

B

5

(�23; 29)

B

6

(�20; 27)

B

7

(�25; 25)

B

8

(�23; 27)

p (�28; 30

1

3

)

Table 2: Criterion values for all nodes, all bottlenek-points and point p.

From Table 2 we note that bottlenek-point B

2

is optimal for the maxisum riterion (f

1

)

and node v

3

is optimal for the minisum riterion (f

2

).

3 General solution method for the Q riteria ase

First, we solve two simple ases of the problem, namely the node problem and the direted

ase of the absolute loation problem. Then we present the absolute loation problem on

an undireted network.

3.1 The easy ase: 1/G;G

D

/�/d(V;V)/(Q

1

-

P

obnox

; Q

2

-

P

)

Par

In this ase the new faility an be plaed only at the nodes of the given network, and

we an determine the eÆient set X

Par

= X

Par

(V) by the following approah in O(Qn

2

)

time, given the distane matrix D. This approah is presented in [5℄.

Algorithm 3.1:

1. X

Par

(V) = V;

2. for i = 1 to n do

for j = 1 to n do

if f(v

j

) dominates f(v

i

) then X

Par

(V) = X

Par

(V) n fv

i

g;



136 MSNL Subedge Comparison

3. Output X

Par

(V);

3.2 The easy ase: 1/G

D

/�/d(V; G)/(Q

1

-

P

obnox

; Q

2

-

P

)

Par

For this problem we have to investigate the objetive funtion (2) of the direted ase.

First, we observe that the objetive funtions are onstant on the interior of the edges.

This is true beause eah term in the sum in (2) onsists of a shortest yle multiplied by

a weight.

Theorem 1 The direted objetive funtion f

q

(x) de�ned in (2) is onstant on (e; (0; 1))

for all e 2 E and for all q 2 Q.

Proof :

Assume e = (v

i

; v

j

) 2 E . In the objetive funtion

f

q

(x) =

n

X

k=1

w

q

k

(d(x; v

k

) + d(v

k

; x)) q 2 Q

we observe that

d(x; v

k

) = d(x; v

j

) + d(v

j

; v

k

) 8k 2 V

d(v

k

; x) = d(v

k

; v

i

) + d(v

i

; x) 8k 2 V

on the interior of e, and that

d(x; v

j

) = (1� t)l(e) and d(v

i

; x) = tl(e)

for some t 2 (0; 1). After substituting the distane terms we get

f

q

(x) =

n

X

k=1

w

q

k

(d(v

j

; v

k

) + d(v

k

; v

i

) + l(e)) (5)

whih is independent of t, and thus of x, on the interior of e.

Next we use the triangular inequality to prove that the obnoxious objetive funtions,

q 2 Q

1

, have a higher value at the endnodes of e, and that the desirable objetive funtions,

q 2 Q

2

, have a lower value at the endnodes of e. To see this we analyze the objetive

funtion (2) one again.

Theorem 2 Let e = (v

i

; v

j

) 2 E be given. The obnoxious objetive funtion values f

q

(v

i

)

and f

q

(v

j

) are higher than f

q

(x), where x is an interior point on e for all q 2 Q

1

.
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Proof :

WLOG we prove that f

q

(x) � f

q

(v

i

) < 0. Remember that w

q

i

< 0;8i = 1; 2; : : : ; n and

q 2 Q

1

. Let us examine the two sums in

f

q

(x)� f

q

(v

i

) =

n

X

k=1

w

q

k

(d(x; v

k

)� d(v

i

; v

k

)) +

n

X

k=1

w

q

k

(d(v

k

; x)� d(v

k

; v

i

)) (6)

Starting at the seond sum of (6) we use that d(v

k

; x) = d(v

k

; v

i

) + d(v

i

; x) to get

n

X

k=1

w

q

k

(d(v

k

; x)� d(v

k

; v

i

)) =

n

X

k=1

w

q

k

d(v

i

; x) =

n

X

k=1

w

q

k

tl(e)

In the �rst sum of (6) we use the triangular inequality d(v

i

; v

k

) � d(v

i

; v

j

) + d(v

j

; v

k

) and

that d(x; v

k

) = d(x; v

j

) + d(v

j

; v

k

). Remembering w

q

i

< 0, we get

n

X

k=1

w

q

k

(d(x; v

k

)� d(v

i

; v

k

)) =

n

X

k=1

k 6=i

w

q

k

(d(x; v

k

)� d(v

i

; v

k

)) + w

q

i

(d(x; v

j

) + d(v

j

; v

i

))

�

n

X

k=1

k 6=i

w

q

k

(d(x; v

j

)� d(v

i

; v

j

)) + w

q

i

((1� t)l(e) + d(v

j

; v

i

))

=

n

X

k=1

k 6=i

�w

q

k

tl(e) + w

q

i

((1� t)l(e) + d(v

j

; v

i

))

=

n

X

k=1

�w

q

k

tl(e) + w

q

i

(l(e) + d(v

j

; v

i

)):

Hene,

f

q

(x)� f

q

(v

i

) � w

q

i

(l(e) + d(v

j

; v

i

)) < 0

beause w

q

i

< 0. The proof that f

q

(x) � f

q

(v

j

) < 0 is similar, apart from the triangular

inequality being used in the seond sum of (6).

Theorem 3 Let e = (v

i

; v

j

) 2 E be given. The desirable objetive funtion values f

q

(v

i

)

and f

q

(v

j

) are lower than f

q

(x), where x is an interior point on e for all q 2 Q

2

.

Proof :

Similar to the proof of Theorem 2, exept w

q

i

> 0;8i = 1; 2; : : : ; n and q 2 Q

2

.

Using Theorem 3, we observe that the funtion values on int(e) annot dominate the

funtion values at the nodes v

i

and v

j

, beause the desirable funtion values at the nodes

are lower. Similarly, the funtion values at the nodes annot dominate the funtion value

on the interior of e, beause the obnoxious funtion value is lower on int(e) by Theorem
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2. This observation annot, however, be used to onlude that nodes and edges annot

dominate eah other. The objetive funtion values on edge e

12

in the direted network

in Figure 2 are illustrated in Figure 4.

t

10v

1

v

2

62

78

98

-70

-62

-96

Figure 4: f((v

1

; v

2

)). Notie that f(v

1

) dominates f(v

2

).

In Algorithm 3.2 we have to ompare all nodes and edges, but we only need one vetor of

funtion values on eah edge, alulated easily by (5).

To present a ompat form of the algorithm, we de�ne the n+m points a

i

on G(V; E) as

the n nodes and the midpoints on the m edges:

a

i

= v

i

8 i = 1; 2; : : : ; n

a

n+i

= x

i

= (e

i

;

1

2

) 8 i = 1; 2; : : : ;m

Algorithm 3.2:

1. X

Par

= G(V; E);

2. for i = 1 to n+m do

for j = 1 to n+m do

if f(a

j

) dominates f(a

i

) then

if i � n then X

Par

= X

Par

n fv

i

g;

if i > n then X

Par

= X

Par

n (e

i�n

; (0; 1));

3. Output X

Par

;

When we make the pairwise omparison on the n+m points, eah taking O(Q) time, we

get a omplexity bound of O(Q(n+m)

2

) time.
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For the direted example in Figure 2, using (2) and (5), we get the riterion values of

Table 3. The optimal value for the obnoxious funtion is �126 attained on (v

5

; v

6

) and

the optimal desirable funtion value is 62 attained at v

1

and v

3

. After running Algorithm

3.2 we have determined the eÆient nodes and edges as indiated in the table and the

�gure.

Point x f(x) = (f

1

(x); f

2

(x))

v

1

(�70; 62) EÆient

v

2

(�62; 78)

v

3

(�70; 62) EÆient

v

4

(�68; 72)

v

5

(�82; 80) EÆient

v

6

(�74; 102)

(v

1

; v

2

) (�96; 98)

(v

1

; v

5

) (�94; 92) EÆient

(v

2

; v

4

) (�74; 84)

(v

3

; v

1

) (�76; 74) EÆient

(v

4

; v

3

) (�96; 98)

(v

4

; v

6

) (�98; 120)

(v

5

; v

3

) (�106; 98) EÆient

(v

5

; v

6

) (�126; 140) EÆient

(v

6

; v

2

) (�86; 108)

Table 3: Criterion values for all nodes and all edges.

3.3 Solving 1/G/�/d(V; G)/(Q

1

-

P

obnox

; Q

2

-

P

)

Par

The general solution method onsists of pairwise omparison of subedges. The objetive

funtions are all pieewise linear, and the idea is to partition the network into subedges,

where the objetive funtions are linear. The points where the pieewise linear funtions

hange in slope are in fat the bottlenek-points. We then make a pairwise omparison

of all these subedges and delete the ineÆient parts. The result is the omplete set of

eÆient solutions X

Par

.

It is important to note that part of a subedge may be eÆient, starting at a point that is

not a node or an edge-bottlenek-point (see Example 2.1 at point p).

For eah omparison of two subedges we will onstrut a linear program to detet ineÆient

points (segments), that an be solved in linear time by methods found in Megiddo [9℄.

Let z

q

(t) = f

q

(x

t

); x

t

= (e; t). These Q funtions are all pieewise linear with the same

set of possible breakpoints orresponding to the bottlenek-points. Assume there are P+1
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breakpoints inluding the two nodes. We then have P subedges. Let these breakpoints

on (e; t) be denoted by t

j

; j = 0; 1; : : : ; P , (1 � P � n � 1), with t

0

= v

i

, t

P

= v

j

and

t

j�1

< t

j

8 j = 1; 2; : : : ; P . For t 2 [t

j�1

; t

j

℄, the z

q

(t)'s are linear funtions of the form

z

q

(t) = m

q

j

t+ b

q

j

8 q = 1; 2; : : : ; Q with

m

q

1

� m

q

2

� : : : � m

q

P

; b

q

1

� b

q

2

� : : : � b

q

P

q 2 Q

1

m

q

1

� m

q

2

� : : : � m

q

P

; b

q

1

� b

q

2

� : : : � b

q

P

q 2 Q

2

This is illustrated in Figure 1. Let us now ompare the subedge A on edge e

A

, (e

A

; [t

j�1

; t

j

℄)

with subedge B on edge e

B

, (e

B

; [s

p�1

; s

p

℄). A point (e

A

; t) 2 (e

A

; [t

j�1

; t

j

℄) is dominated

by some point (e

B

; s) 2 (e

B

; [s

p�1

; s

p

℄) if and only if

m

q

p

s+ b

q

p

� m

q

j

t+ b

q

j

8 q = 1; 2; : : : ; Q

where at least one inequality is strit. This omparison is illustrated in Figure 5 for two

subedges from Example 2.1. Subedge (B

7

; B

8

) is ompared with subedge (v

5

; B

7

).

1

3

0

2

3

1

3

z

2

z

1

t

1

(B

7

) t

2

(B

8

) s

0

(v

5

) s

1

(B

7

)t s

29

�23 �23

29

27 27

�20

�24

Figure 5: Comparing subedge (B

7

; B

8

) with subedge (v

5

; B

7

).
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Let us de�ne the set T where the inequalities hold (for these partiular subedges) by

T = f(s; t)j m

q

j

t�m

q

p

s � b

q

p

� b

q

j

; 8 q 2 Qg \ ([s

p�1

; s

p

℄� [t

j�1

; t

j

℄)

If T = ;, (e

B

; [s

p�1

; s

p

℄) does not ontain a point dominating any point in (e

A

; [t

j�1

; t

j

℄).

Otherwise T 6= ; is taken as a feasible solution set of the two 2-variable linear programs:

LB = minf t j (s; t) 2 T g and UB = maxf t j (s; t) 2 T g

Using methods desribed by Megiddo [9℄, LB and UB an be alulated in O(Q) time.

We now hek if we have only weak dominane. This means that none of the inequali-

ties need to be strit as required by De�nition 1. Note that points with weak dominated

objetive funtion values may be eÆient. Let s

LB

and s

UB

be optimal values of s or-

responding to LB and UB. These s-values are not neessarily unique as illustrated in

Figure 6, where s

LB

an be any point in [0;

1

3

℄. In the ase where s

LB

(and/or s

UB

) is not

unique (s

LB

2 [s

a

; s

b

℄), we hoose s

LB

=

1

2

(s

a

+ s

b

) to avoid problems with weak domi-

nane in the subedge endnodes. To hek for weak dominane, we examine the subedge

endnodes. If m

q

p

s

LB

+ b

q

p

= m

q

j

LB + b

q

j

8 q 2 Q, then LB is only weakly dominated and

an therefore still be eÆient. Similarly, if m

q

p

s

UB

+ b

q

p

= m

q

j

UB + b

q

j

8 q 2 Q, then UB

is only weakly dominated. If both LB and UB are only weakly dominated, the entire

subedge (e

A

; [t

j�1

; t

j

℄) is only weakly dominated by (e

B

; [s

p�1

; s

p

℄). This means that all

the inequalities in T are in fat equalities. Otherwise the ineÆient part of the subedge

is deleted. If both LB and UB are dominated, then

(e

A

; [t

j�1

; t

j

℄) = (e

A

; [t

j�1

; t

j

℄) n (e

A

; [LB;UB℄)

and if, say LB is only weakly dominated, then

(e

A

; [t

j�1

; t

j

℄) = (e

A

; [t

j�1

; t

j

℄) n (e

A

; (LB;UB℄)

This omparison an also be done in linear time. The approah is simpli�ed if one or both

subedges onsists of a single point (e

A

; t

0

) (or (e

B

; s

00

)). If (e

A

; [t

j�1

; t

j

℄) = (e

A

; t

0

) = x,

then LB = UB = t

0

and

T

0

= fsj �m

q

p

s � b

q

p

� f

q

(x); 8 q 2 Qg \ [s

p�1

; s

p

℄

If (e

B

; [s

p�1

; s

p

℄) = (e

B

; s

00

) = y, then

T

00

= ftj m

q

j

t � f

q

(y)� b

q

j

; 8 q 2 Qg \ [t

j�1

; t

j

℄

and

LB = minf t j t 2 T

00

g and UB = maxf t j t 2 T

00

g
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t

s

1

1

2

3

2

3

1

3

1

3

T

Figure 6: The linear programming onstraints for omparing (B

7

; B

8

) = (e; [

1

3

;

2

3

℄) with

(v

5

; B

7

) = (e; [0;

1

3

℄) on edge (v

5

; v

6

) in Example 2.1. T is indiated by the shaded area.

This subedge omparison is illustrated in Figure 6, where the subedge (B

7

; B

8

) = (e; [

1

3

;

2

3

℄)

from Example 2.1 is ompared with (v

5

; B

7

) = (e; [0;

1

3

℄). Both subedges are on the same

edge. Sine T is non-empty, we solve the two programs and �nd LB =

1

3

and UB =

2

3

.

Both LB and UB are dominated, so the subedge (B

7

; B

8

) is ompletely deleted.

Sine we are removing a onneted piee of (e

A

; [t

j�1

; t

j

℄), three things an happen. First,

(e

A

; [t

j�1

; t

j

℄) an be ompletely deleted if t

j�1

= LB and t

j

= UB are both dominated.

Seond, a piee of (e

A

; [t

j�1

; t

j

℄) that inludes one of the endpoints t

j�1

or t

j

an be deleted,

in whih ase one onneted subedge remains, say (e

A

; [t

j�1

; LB)) or (e

A

; [t

j�1

; LB℄). The

third ase is when an interior part of (e

A

; [t

j�1

; t

j

℄) is deleted, so we end up with the two

subedges (e

A

; [t

j�1

; LB)) and (e

A

; (UB; t

j

℄), possibly inluding one of the points LB or

UB. The third ase is illustrated in Figure 7 where UB is not deleted, beause z(UB) =

z(t

2

).

In order to omplete the omparison, we simply make an ordered subedge omparison.

First, we ompare (e

1

; [t

0

; t

1

℄) with all the other subedges, possibly dividing (e

1

; [t

0

; t

1

℄)

into new subedges. Then we ompare the seond subedge (e

1

; [t

1

; t

2

℄) with all the remaining

subedges. If (e

1

; [t

0

; t

1

℄) is not ompletely dominated, we also ompare with this subedge.

This omparison ontinues until we have ompared the last subedge (e

m

; [s

P�1

; s

P

℄) with

all the remaining subedges.

Notie that we an still use the entire subedge (e

A

; [t

j�1

; t

j

℄) to ompare with the other

subedges, even though a part of it is ineÆient. It is only for the set of eÆient points

X

Par

, that we have to remember what part of (e

A

; [t

j�1

; t

j

℄) is eÆient. But if the whole

subedge (e

A

; [t

j�1

; t

j

℄) is ineÆient, we should delete it from further onsideration, also in

the omparison proess.

Assume that edge e

i

2 E is divided into P

i

bottlenek-point subedges.
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t1

z

2

z

1

t

0

t

1

t

2

t

3

Figure 7: There are 4 breakpoints (P = 3) and 4 eÆient subedges. Loally Pareto optimal

subedges are indiated in bold on the t axes. Note that (e; [t

2

; t

3

℄) dominates an interior

part of (e; [t

0

; t

1

℄).

Algorithm 3.3:

1. X

Par

= G(V; E);

2. for i = 1 to m do

for x = 1 to P

i

do

for j = 1 to m do

for y = 1 to P

j

do

ompare (e

i

; [t

x�1

; t

x

℄) with (e

j

; [t

y�1

; t

y

℄)

X

Par

unhanged if no points are dominated

X

Par

= X

Par

n (e

i

; [LB;UB℄) if LB and UB are dominated;

X

Par

= X

Par

n (e

i

; (LB;UB℄) if only UB is dominated;

X

Par

= X

Par

n (e

i

; [LB;UB)) if only LB is dominated;

3. Output X

Par

;

This general algorithm has been implemented, and omputational results are reported in

Setion 6. Eah of the m edges may onsist of up to n � 1 bottlenek-point subedges,

giving at most O(mn) subedges. If we make the global pairwise omparison on the

O(mn) bottlenek-point subedges, eah taking O(Q) time, we get a omplexity bound

of O(Qm

2

n

2

) time. This is also the bound for the ase where Q = Q

2

found in Hamaher

et al. [5℄.
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4 Biriteria ase

In the ase where we only have two riteria, we may use the image of the network mapped

into riterion spae Z to solve the problem faster. This is done by alulating the lower

envelope, see Hershberger [8℄. This an be done in O(p log p) time, where p is the

number of line-segments. There are three di�erent situations. Q

1

= ; denoted min-min

(1/G/�/d(V; G)/2-(

P

)

Par

), jQ

1

j = jQ

2

j = 1 denoted max-min (1/G/�/d(V; G)/(

P

obnox

;

P

)

Par

)

and Q

2

= ; denoted max-max (1/G/�/d(V; G)/2-(

P

obnox

)

Par

). All three ases are solved

by the same method.

4.1 Diret mapping of the network into riterion spae

This proedure is best desribed by an example, so we present the undireted network of

Example 2.1 in riterion spae.

-30 -18

17

33

B

2

p

B

4

B

3

v

3

Figure 8: Mapping of the undireted network from Example 2.1 into riterion spae. The

bold parts onstitute the set of nondominated points.

Sine we want to �nd the set of eÆient solutions X

Par

, we are only interested in values

between the two extreme optimal solutions, namely Z

1

and Z

2

. We therefore investigate

the region [f

1

Z

1

; f

1

Z

2

℄� [f

2

Z

2

; f

2

Z

1

℄, denoted S.

We have to make sure that the slope of the envelope is dereasing, when the f

1

-values

inrease, to ensure that there are no dominated points on the envelope. This an be done

by adding horizontal lines to all nodes and bottlenek-points in S, with the horizontal
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lines ending at f

1

Z

2

. This will at worst double the number of line-segments in the region S.

Alternatively we ould add the horizontal line to bottlenek-points that does not have a

subedge with negative slope leaving the point. In the example of Figure 8 none of the points

in S would need the horizontal line added. After the lower envelope is determined, we

delete the horizontal parts (if any), beause the points on a horizontal line are dominated

by the left endpoint. The result is Z

Par

. The set of eÆient solutions are then given by

X

Par

= f

�1

(Z

Par

). The eÆient set orresponding to the nondominated set of Figure 8

is indiated in Figure 3.

We have the same omplexity bound on the lower envelope alulation, as in Hamaher et

al. [5℄, namely O(mn log(mn)). This bound an be rewritten by examining the log term

and using the fat that m is at most n

2

for dense graphs. We therefore get the bound of

O(mn log n) time for the envelope alulation.

5 Center objetives - 1/G/�/d(V ; G)/(Q

3

-max

obnox

; Q

4

-max)

Par

We now investigate the maximin and minimax objetives. These riterion funtions are

often referred to as the weighted anti-enter and enter of a network. The problem is

formulated as follows:

max f

q

(x) = min

i

w

q

i

� d(x; v

i

) q 2 Q

3

min f

q

(x) = max

i

w

q

i

� d(x; v

i

) q 2 Q

4

s.t.

x 2 G(V; E)

(7)

Q

3

is the set of obnoxious objetive funtions, and Q

4

is the set of attration objetive

funtions. At most one of the sets are allowed to be empty.

For simpliity we again multiply all objetive funtions in Q

3

by �1 in order to minimize

in stead of maximize. This gives the following formulation:

min f

q

(x) = max

i

�w

q

i

� d(x; v

i

) q 2 Q

3

min f

q

(x) = max

i

w

q

i

� d(x; v

i

) q 2 Q

4

s.t.

x 2 G(V; E)

(8)

We notie that the objetive funtions are again pieewise linear, but the breakpoints are

now weight dependent, see Figure 9. If we �nd these breakpoints, we an apply the same

solution approah as in Setion 3.3 for the multiriteria ase, and the envelope method

of Setion 4 for the biriteria ase. When we only have enter objetive funtions, the
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new breakpoints are the only ones needed. If we ombine these objetives with the sum

objetives, we may get a lot more breakpoints, beause the bottlenek-point breakpoints

are also needed.

1

6

1

2

t

1

z

4

z

3

B

3

B

4

Figure 9: f((v

3

; v

4

)). There are two edge-bottlenek-points on this edge, and we �nd two

new breakpoints. f

3

and f

4

are indiated with a bold lines.

In the following we expand Example 2.1 to illustrate what the enter objetives look

like. In Figure 9 we illustrate the loally eÆient points on (v

3

; v

4

), where w

3

= w

1

and

w

4

= w

2

, as X

Par

((v

3

; v

4

)) = ((v

3

; v

4

); [

1

6

;

1

2

℄).

In this example both objetive funtions turn out to be onvex, but this is not the general

ase. The enter objetive is known to be neither onvex nor onave. But the anti-enter

(maximin) objetive is a onave funtion (so in problem (8) it is onvex). This is true,

beause it is the minimum of pieewise linear onave funtions. When we onvert the

problem to a minimax with negative weights, we get a pieewise linear onvex funtion.

This fat leaves little hope for �nding an improved approah for this general ase where we

ombine both sum and enter objetives. After having investigated the di�erent problems

in turn, we an onlude that the method desribed in Setion 3.3 works for any pieewise

linear objetive funtions.
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6 Computational results

In this setion we present omputational results from an implementation of Algorithm 3.3.

We have not used the methods of Megiddo [9℄ in this implementation to solve the small

LP's. Instead, we have used CPLEX 6.6. The ode is programmed in C++ and the tests

are run on a 700 MHz Linux PC.

We have used random networks of varying size generated using NETMAKER. A desrip-

tion of NETMAKER an be found in Skriver and Andersen [11℄. All the random networks

have a �xed number of nodes and a random number of edges with mean 4 times the num-

ber of nodes, i.e. a 50 node network has approximately 200 edges. Eah network ontains

a random Hamiltonian yle, and for eah node three random edges are generated. The

weights are generated negatively orrelated. If one weight is in the integer interval from

1 to 33, the other is in the integer interval of 67 to 100. The same holds for the negative

weights for the obnoxious objetive funtions (exept for the sign). In eah group we have

used 10 random networks, and the mean is reported in the following tables.

First, we examine some semi-obnoxious biriterion networks, having one push objetive

and one pull objetive. The results are presented in Table 4. It appears that the number

of subedges grows a little less than squared the number of nodes. The number of subedges

is important, beause in worst ase we have to make a pairwise omparison of all these

subedges, (# Subedges)

2

. The number of atual omparisons made is presented in the

table, and the perentage of atual omparisons to the worst ase is also presented. It is

important to note that this perentage dereases as the networks inrease in size.

# Nodes 50 100 150 200 250

CPU-time 40.96 229.54 774.64 1505.42 3326.37

# Subedges 3033.6 9411.5 18525.2 28368.1 39540.2

# Subedge omparisons (in millions) 0.358 1.770 5.138 8.655 16.531

# EÆient subedges 96.2 155.3 175.7 222.5 264.5

% EÆient subedges 3 1.6 0.95 0.78 0.67

% Comparisons 4.00 2.02 1.50 1.08 1.05

# Comparisons per se 8733 7709 6633 5749 4970

Table 4: Semi-obnoxious biriterion results, 1 push - 1 pull objetive.

The number of eÆient subedges is also presented in Table 4, and this number seems to

grow linearly with the number of nodes. This number is in fat higher than the number

of atual eÆient subedges, beause more subedges may ontain the same eÆient point,

when this point is a node. If a node is eÆient, all the subedges onneted to this node
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ontain some eÆient points (perhaps only the node whih is the endpoint of the subedge).

The last row in Table 4 are the numbers of omparisons made per CPU-seond. Assuming

that CPLEX performs independently of the number of problems it has to solve, this

derease indiates that the large problems require a lot more storage of data, and aessing

this data takes an inreasing amount of time.

Next we examine the e�et of having more objetives. These results are all omputed on

networks with 50 nodes. We reuse the results of the biriterion (1-1) networks of Table

4, examine two types of three objetive problems and one type of four objetive prob-

lems. The three objetive networks are generated with both 1 obnoxious and 2 desirable

objetives (1-2), and 2 obnoxious and 1 desirable objetives (2-1). The four objetive

networks are all with 2 obnoxious and 2 desirable objetive funtions (2-2). The results

are presented in Table 5.

As expeted both the number of subedges ontaining eÆient points and the CPU-time

inrease rapidly when more negatively orrelated objetive funtions are added. With four

objetives more than 75 % of the subedges ontain eÆient points. It is seen that the CPU-

time for these instanes is almost proportional to the number of subedge omparisons, sine

the data size of the instanes is approximately the same (last line in Table 5).

# Objetives 1-1 1-2 2-1 2-2

CPU-time 40.96 123.05 105.49 870.57

# Subedges 3033.6 3293.1 3158.8 2853.6

# Subedge omparisons (in millions) 0.358 1.019 0.914 6.128

# EÆient subedges 96.2 359.1 357.9 2237.7

% EÆient subedges 3 11 11 78

% Comparisons 4.00 9.47 9.53 75.46

# Comparisons per se 8733 8349 8720 7077

Table 5: The e�et of having more objetives. All networks have 50 nodes.

Finally, we onlude that the omputational results are onstrutive in the sene that

rather large problems an be solved within a reasonable amount of time. Sine loation

problems are usually not of the type you have to resolve often, a longer CPU-time is

aeptable.

The most enouraging result being that for biriterion networks with objetive funtions

in almost opposite diretions, a very small proportion of the networks is eÆient. This

indiates that this model is in fat an aid for the deision-maker, sine a large part of the

network an be omitted from further onsideration. On the eÆient parts of the network,

the trade-o� between the two objetives an then be revealed.
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As a �nal omment, we note that with negatively orrelated objetives, at most three

objetive funtions should be onsidered. Otherwise the results are inonlusive, sine a

large proportion of the network will be eÆient.

7 Conluding remarks

In this paper we have set up a multiriterion network loation model for loating a (semi)

obnoxious faility. We have proposed an eÆient solution algorithm based on ideas from

the multiriterion median network loation problem presented in Hamaher et al. [5℄.

In the biriterion ase we have found an improved method, but this method has not been

implemented. The general method presented in this paper works for all pieewise linear

objetive funtions, and has been implemented in C++ using CPLEX as a solver. The

omputational results show that networks of realisti size an be solved in a reasonable

amount of time. We thus onlude that this model is a good tool for general network

loation deisions.
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Abstrat

We present a new model, whih is a generalization of the biriterion median prob-

lem. We introdue two sum objetives and riteria dependent edge lengths. For this

NP omplete problem a solution method �nding all the eÆient solutions is presented.

The method is a two-phases approah, whih an easily be applied as an interative

method.

In Phase 1 the supported solutions are found, and in Phase 2 the unsupported

solutions are found. This method an be thought of as a general approah to BOCO

(Bi-objetive Combinatorial Optimization) problems.

Keywords: MCDM, biobjetive optimization, faility loation, networks, MOCO.

1 Introdution

We begin by a motivating example. Assume we have to loate a money reserve, onsider-

ing the two objetives of minimizing the transportation osts and the risk of having the

transports robbed. The depot serves a number of lients varying in size, and we are given

a onneted network and interpret eah of the n nodes as the lients. A relevant (node)

weight for a lient with respet to transportation osts is the number of monthly deliver-

ies, and a weight for the risk objetive is the maximum value of a money-transport. The

�
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edge-lengths with respet to transportation osts ould be the distane, and for the risk

objetive the edge-length ould be the probability of an assault. If we assume that the ost

of opening the new faility is independent of loation, this partiular ost is unimportant.

A solution to this problem onsists of two deisions. The �rst (and probably the most

important) one is to deide where to loate the new faility (depot), and the seond one

onsists in determining how to route the ow from the new faility to the nodes. The

ow problem onsists of n� 1 Biriterion Shortest Path (BSP) problems, whih is a NP

omplete problem.

If eah edge has only one length, we have the usual median problem. Now that we have

one length for eah riterion, the BSP problem beomes a subproblem. Therefore, this

re�nement has severe onsequenes on the omplexity of the problem.

Before presenting the ideas behind the proposed solution method, some onepts from

biriterion analysis are reviewed. For a textbook introdution see Steuer [7℄ or Ehrgott

[4℄. Suppose we want to simultaneously minimize two funtions f

1

(x) and f

2

(x) over some

feasible set S. In our ase S is a �nite set of solutions.

min f

1

(x)

min f

2

(x)

s.t.

x 2 S

(1)

It is generally aepted, that solving (1) means �nding the set of eÆient (or Pareto

optimal) solutions. A solution x 2 S is alled eÆient if one of the objetive funtion

values annot be improved without worsening the other. Let f(x) = (f

1

(x); f

2

(x))

t

,

where t denotes transpose. The mathematial de�nition of eÆieny is as follows.

De�nition 1 A point x 2 S is eÆient i� there does not exist a point �x 2 S suh that

f(�x) � f(x) with at least one strit inequality. Otherwise x is ineÆient.

EÆient points are de�ned in deision spae. There is a natural ounterpart in riterion

spae Z = fz 2 IR

2

j9x 2 S; z = f(x)g.

De�nition 2 z(x) 2 Z is a nondominated riterion vetor i� x is an eÆient solution.

Otherwise z(x) is a dominated riterion vetor.

In De�nition 2 we have used that z(x) = f(x). The set of eÆient (E) solutions is denoted

S

E

, and the set of nondominated (ND) riterion vetors is denoted Z

ND

, and is given by

Z

ND

= z(S

E

).
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The riterion vetors an be partitioned into two kinds, namely supported and unsup-

ported. De�ne the weighted objetive funtion W (x; �) as:

W (x; �) = �f

1

(x) + (1� �)f

2

(x); � 2 (0; 1): (2)

The funtion W (x; �) is a onvex ombination, or weighted sum, of the two objetive

funtions. Optimizing this funtion over the feasible set S parametrially in � 2 (0; 1)

will give all the supported nondominated solutions to (1). The method is therefore often

referred to as the weighting method.

It is important to note that eah unsupported nondominated riterion vetor is domi-

nated by a onvex ombination of some set of nondominated riterion vetors. Supported

nondominated (SND) riterion vetors are denoted Z

SND

and the orresponding set of

solutions are denoted S

SE

.

The solution method proposed is a variant of the two-phases approah due to Ulungu

and Teghem [9℄ and Vis�ee et al. [10℄. In Phase 1 all (or a representative subset of) the

supported extreme solutions are found by using the weighting method. In Phase 2 a searh

between the supported solutions is onduted to �nd unsupported eÆient solutions. The

proedure is explained in details in Setion 3.

The remaining parts of the paper is organized as follows. In Setion 2 the biriterion

problem is presented, and some properties of the problem is given. In Setion 3 the solution

proedure is outlined, and an example is presented. In Setion 4 the generalization to more

than two riteria is disussed, and �nally Setion 5 ontains the onlusions.

2 Problem formulation

We are given a onneted direted network G(V; E) with node set V = fv

1

; v

2

; : : : ; v

n

g

where jVj = n nodes, and edge set E = f(v

i

; v

j

); (v

k

; v

l

); : : : ; (v

p

; v

q

)g with jEj = m edges.

The underlying graph is denoted by G, and edges may be referred to by e 2 E , by

(v

i

; v

j

) 2 E or simply by (i; j) 2 E , where node i is the tail and node j is the head. Eah

node v

i

arries two weights (w

1

i

; w

2

i

)

t

, where w

q

i

2 IR

+

; q = 1; 2, so we may refer to the

matrix of weights by W

2�n

. Eah edge e 2 E has length l(e) = (l

1

(e); l

2

(e)) 2 IR

2

+

. Let us

de�ne a matrix of edges E

m�(4)

with the following entries. E

i1

is the tail of edge e

i

, E

i2

is the head, E

i3

= l

1

(e

i

) is the length with respet to riteria one and E

i4

= l

2

(e

i

) is the

length with respet to riteria two.

Notie that an undireted network an be modeled as a direted network with the double
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amount of edges. De�ne binary deision variables as follows:

x

i

=

�

1 if the faility is loated in node i

0 else

y

ijk

=

�

1 if edge (i; j) is used in the path to node k

0 else

We examine the so-alled median objetives or weighted sum objetives:

f

q

(y) =

n

X

k=1

n

X

i=1

n

X

j=1

l

q

ij

w

q

k

y

ijk

q = 1; 2

Combining the oeÆients to 

q

ijk

= l

q

ij

w

q

k

, we get

f

q

(y) =

n

X

k=1

n

X

i=1

n

X

j=1



q

ijk

y

ijk

q = 1; 2 (3)

There are two types of onstraints. The �rst onstraint ensures that exatly one faility is

loated and the seond set of onstraints ensures the existene of paths from the faility

to the remaining nodes. This leads to the following problem:

min f

1

(y)

min f

2

(y)

s.t.

n

P

i=1

x

i

= 1

n

P

j=1

y

jik

�

n

P

j=1

y

ijk

= �x

i

i 6= k; 8 i; k

x

i

2 f0; 1g 8i

y

ijk

2 f0; 1g 8 i; j; k

(4)

Notie that we have omitted the following redundant onstraints

n

X

j=1

y

jik

�

n

X

j=1

y

ijk

= 1� x

i

8 i; where i = k:

The reason being that this part of the onstraint matrix onsists of n totally unimodular

sub-matries forming the n sets of paths, see (5). Notie that one path is non-existing,

sine the node in whih the new faility is loated, ships nothing through the network.

To understand the struture of the onstraint matrix of (4), we write it out. We de�ne

the vetor y

ijk

(in bold) as the vetor of all ombinations of i and j, but with a �xed

k. This way y

ij1

ontains all edge variables for node 1 and so forth. The matrix M

k

is
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the totally unimodular sub-matrix forming paths from node x

i

to node k. These matries

have dimension (n � 1) � n

2

. I

�k

is an (n � 1) � n identity matrix with the k'th row

deleted.

2

6

6

6

6

6

6

6

6

4

1 � � � 1 0 � � � 0 � � � 0

I

�1

M

1

� � � 0 � � � 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

I

�k

0 � � � M

k

� � � 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

I

�n

0 � � � 0 � � � M

n

3

7

7

7

7

7

7

7

7

5

2

6

6

6

6

6

6

6

6

4

x

y

ij1

.

.

.

y

ijk

.

.

.

y

ijn

3

7

7

7

7

7

7

7

7

5

=

2

6

6

6

6

6

6

6

6

4

1

0

.

.

.

0

.

.

.

0

3

7

7

7

7

7

7

7

7

5

(5)

It turns out that this matrix is not totally unimodular.

Theorem 1 The onstraint matrix in (5) is not totally unimodular.

An example of a sub-matrix of (5) with determinant two is given in the appendix. Sine

the onstraint matrix is not totally unimodular, solving the LP relaxation of (4) is not

guaranteed to return integer solutions, as is often the ase in network problems.

Weighting the two objetive funtions in (4), using the weights � and 1 � �; � 2 (0; 1),

results in the weighted version of (4)

min �f

1

(y) + (1� �)f

2

(y)

s.t.

n

P

i=1

x

i

= 1

n

P

j=1

y

jik

�

n

P

j=1

y

ijk

= �x

i

i 6= k 8 i; k

x

i

2 f0; 1g 8i

y

ijk

2 f0; 1g 8 i; j; k

(6)

In Setion 3.4 we desribe how problem (6) an be solved in O(n

4

) running time using

Benders' deomposition for a �xed �.

3 Solution proedure

In this setion the solution proedure for solving the biriterion problem (4) is outlined.

Before stating the proedure it may be helpful to onsider a naive method. One possible

way of solving the problem ould be to solve problem (6) n times, namely one time for

eah possible loation of the new faility. Suppose that the loation of the new faility is

�xed at a spei� node, say node i (so x

i

= 1). Using the weighting method, the supported

eÆient solutions (paths) with respet to node i an be revealed. We all these eÆient
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solutions loally eÆient with respet to node i. Given � 2 (0; 1) and x the orresponding

loally eÆient solution an be found in O(n

3

) running time, sine we are faed with n�1

shortest path problems.

Finding the loally unsupported eÆient solutions that are in fat globally eÆient, on-

stitutes a more diÆult problem. These annot be found using the weighting method.

This fat is known from studying the BSP problem alone [5℄.

We thus have three types of eÆient solutions:

� supported eÆient solutions

� loally supported eÆient solutions

� (loally) unsupported eÆient solutions

The reason why loally supported eÆient solutions are interesting, is that they may be

unsupported eÆient solutions in the main problem (4). These three kinds of solutions

are illustrated in Example 3.1.

3.1 Example

We examine the network presented in Figure 1 with the following weights and edges. Eah

olumn of W onsists of the two node-weights.

W =

�

200 300 500 100 400 500 400

7 4 2 6 6 2 8

�

The �rst two olumns of E are the tail and head nodes. The next two olumns are the

two edge-lengths.

E =

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

1 2 78 22

1 3 24 72

1 4 26 71

1 5 13 71

1 7 86 12

2 3 98 29

2 5 17 90

3 5 29 97

3 6 87 28

3 7 7 69

4 5 4 77

4 7 89 5

5 6 17 92

5 7 40 74

6 7 69 12

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5
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1 2 3

4 5 6

7

Figure 1: Network for Example 3.1.

The resulting 11 nondominated riterion vetors are presented in Table 1. These rite-

rion vetors are visualized in Figure 2 and it is seen that there are 6 supported and 5

unsupported riterion vetors. Of the 5 unsupported solutions, only one, (89200; 1868), is

loally unsupported. The other four unsupported solutions are loally supported by the

nodes indiated in Figure 2. The last nondominated solution, (89200; 1868), is dominated

by a onvex ombination of the following two loally supported solutions:

9

11

(91200; 1684) +

2

11

(80200; 2587) = (89200; 1848:18)

There are a total of 2128 feasible riterion vetors, using only eÆient paths between

nodes. All these vetors are illustrated in Figure 3.

3.2 Two-phases approah

The proedure that we propose instead of the naive method, is a variant of the two-

phases approah due to Ulungu and Teghem [9℄ and Vis�ee et al. [10℄, and may be stated

generially as:

� Phase 1: Find all (or a representative subset of) the supported solutions.
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Node f

1

f

2

5 45500 3025

5 47100 2289

1 78200 2062

7 89200 1868

7 91200 1684

1 92600 1506

7 97200 1376

1 107500 1182

7 111600 1112

7 129300 856

7 203800 798

Table 1: Nondominated values for Example 3.1.

� Phase 2: Condut a searh between the supported solutions in order to �nd unsup-

ported nondominated solutions.

3.3 Phase 1

As explained in Setion 2 all supported solutions to (4) may be obtained by solving the

weighted program (6) parametrially in � 2 (0; 1). We will do that by employing NISE

(Non-Inferior Set Estimation), a method presented in Cohon [3℄. NISE guides the hoie

of � 2 (0; 1).

First, the weighted program (6) is solved using � = 1 and � = 0. This results in the

minimum values f

1�

and f

2�

of the two objetives f

1

and f

2

respetively. Say there

are alternative optima for the problem with � = 1, then we hoose a solution with the

lowest objetive funtion value of the seond objetive f

2

. This automatially gives upper

bounds,

�

f

2

and

�

f

1

, on the other objetive. The initial nondominated riterion vetors (in

Z

SND

) are E

1

= (f

1�

;

�

f

2

) and E

2

= (

�

f

1

; f

2�

).

Next we �nd the outward normal, �n = (�n

1

; �n

2

), to the line between the two initial points,

E

1

and E

2

. Using � =

�n

1

�n

1

+�n

2

in solving (6), may result in two ases. We either get a

new unique solution E

3

, or we get E

1

or E

2

again. In the �rst ase, the point E

3

is in

Z

SND

, and we ontinue by examining the two line-segments E

1

� E

3

and E

2

� E

3

. In

the latter ase we know that there does not exist a supported (extreme) riterion vetor

between E

1

and E

2

. The proedure proeeds until no new supported riterion vetors

are found, or until a desired number of solutions are found. The outward normal to the

line-segment between two points an easily be found as di�erenes between the objetive

funtion values.
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f

2

f

1

Loally unsupported

5

5

1

7

7

1

7

1

7

7

7

7 (80200,2587)

Figure 2: Nondominated vetors for Example 3.1. Large dots illustrate the supported

solutions, and only one solution is loally unsupported. The numbers indiate the loation

node.

3.4 Benders' deomposition in Phase 1

In this setion we present how Benders' deomposition an be used to �nd the supported

solutions given a weight � in Phase 1. Let � be �xed and de�ne



ijk

(�) = �w

1

k

l

1

ij

+ (1� �)w

2

k

l

2

ij

(� 0 sine l; w � 0):

When x is �xed, we an use the path onstraints being totally unimodular, and relax the

integrality onstraints on y. Fixing x means loating the faility at a partiular node. For

a �xed x satisfying

P

i

x

i

= 1; x

i

2 f0; 1g, we get the following Benders' subproblem:

min

P

k;i;j



ijk

(�)y

ijk

s:t

P

j

y

jik

�

P

j

y

ijk

= �x

i

i 6= k 8i; k

0 � y

ijk

� 1 8i; j; k

(7)
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Figure 3: Illustration of 2128 riterion vetors for Example 3.1.

This linear programming problem has the following dual program:

max

P

i;k

i 6=k

�

ik

(�x

i

) +

P

k;i;j

�

ijk

s:t

�

jk

� �

ik

+ �

ijk

� 

ijk

(�) i 6= k 8i; j; k

� � 0

(8)

The variables � are free variables orresponding to the path onstraints in (7) and the �

variables orrespond to the upper bound on y. These dual variables an be found when

the n� 1 shortest path problems are solved in the Benders' subproblem, so we need not

atually solve the dual problem (8). The dual leads to the following Benders' master
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problem:

min v

s:t

v � �

P

i;k

i 6=k

�

l

ik

x

i

+

P

k;i;j

�

l

ijk

8l

P

i

x

i

= 1

x

i

2 f0; 1g 8i

(9)

where l is an index for the added inequalities.

The �rst time we generate a redundant inequality (or suggests a node piked earlier), the

solution at hand is optimal (eÆient). This is true beause the subproblem (7) will return

an earlier found solution.

Notie that Benders' master problem (9) is easy to solve in this ase. It an be reformulated

as a minimax problem. Let us rewrite the �rst onstraint in (9), keeping in mind that

only one x

i

will be one.

v � �

X

i

X

k

i 6=k

�

l

ik

x

i

+

X

k;h;j

�

l

hjk

v �

X

i

0

B

B

�

�

X

k

i 6=k

�

l

ik

+

X

k;h;j

�

l

hjk

1

C

C

A

x

i

v �

X

i



l

i

x

i

where 

l

i

= �

P

k

i 6=k

�

l

ik

+

P

k;h;j

�

l

hjk

. If we think of these  oeÆients in a matrix, the optimal

x

i

is to �nd the olumn where the largest element 

l

i

is as small as possible.

Notie, that we have to solve problems (7) and (9) at most n � 1 times. Sine Benders'

subproblem onsists of n� 1 shortest path problems, problem (7) an be solved in O(n

3

)

running time. Therefore the overall running time in Phase 1, given �, is O(n

4

) running

time.

3.5 Phase 2

Here we an �rst �nd the loally supported nondominated vetors by using the weighting

method for a �xed node(s).

To �nd loally unsupported eÆient points of (4), we use the Thebyhe� theory. Let

z = (z

1

; z

2

) denote a �xed referene point with z � z

�

=

�

f

1�

; f

2�

�

, where z

�

is the ideal
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point. Then the augmented non-weighted Thebyhe� program (10) may be stated as

min �+ �

�

f

1

(y) + f

2

(y)

�

s.t.

f

q

(y)� � � z

q

q = 1; 2

n

P

i=1

x

i

= 1

n

P

j=1

y

jik

�

n

P

j=1

y

ijk

= �x

i

i 6= k 8i; k

x

i

2 f0; 1g 8i

y

ijk

2 f0; 1g 8i; j; k

� 2 IR

+

(10)

where � is a small positive onstant ensuring that the solution found is in fat eÆient.

A few omments are in order. Note that instead of solving the usual weighted Thebyhe�

program as found in Steuer and Choo [8℄, we propose to solve the augmented non-weighted

Thebyhe� program (10). It was shown by Alves and Climao [1℄ that all nondominated

solutions to (4) an be found using the non-weighted program for integer problems (IP),

and in Alves and Climao [2℄ this result was generalized to mixed integer problems (MIP).

Note that the augmented Thebyhe� program (10) has the same onstraints as our orig-

inal problem (4), as well as two additional onstraints. The two new onstraints are the

referene point onstraints, linking the referene point to the objetive funtion in (10).

These two new onstraints ompliate the problem, sine they destroy the nie struture

of the onstraint matrix. Using Lagrange relaxation of these onstraints does not solve our

problem, as desribed in Appendix 2. We simply end up with the weighting method. How-

ever, problem (10) is a one objetive MIP, whih an be solved by the usual IP methods,

suh as branh and bound.

Next we explain how to determine the appropriate referene point(s). Assume that we

want to searh for loally unsupported solutions between the two nondominated points E

1

and E

2

. First, we determine a maximum deviation fator

Æ = max

�

Æ

1

; Æ

2

	

where Æ

q

=

�

f

q

� f

q�

q = 1; 2. This deviation fator is going to ensure that our referene

point is below the ideal point z

�

. Next we �nd referene points orresponding to our two

nondominated solutions, E

1

and E

2

:

z(E

i

) = (E

1

i

� Æ; E

2

i

� Æ) i = 1; 2
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The searh referene point z

new

an then be determined as the maximum of the referene

point oordinates, beause this point has a maximum distane of Æ to both z(E

1

) and

z(E

2

):

z

new

=

�

max

�

z

1

(E

1

); z

1

(E

2

)

	

;max

�

z

2

(E

1

); z

2

(E

2

)

	�

:

Using z

new

in (10) an result in two things. If a new solution is returned, this solution is

nondominated and de�nes two new searh areas. Otherwise one of the points E

1

or E

2

is

returned, and no nondominated (unsupported) solutions exist between the two points.

For our Example 3.1 we �nd Æ = maxf203800 � 45500; 3025 � 798g = 158300. Next we

searh for loally unsupported solutions between the two points E

1

= (78200; 2062) and

E

2

= (91200; 1684) (on either side of the single loally unsupported point in Figure 2).

This leads to the referene point z

new

= (�67100;�156238), where � = 158300 an �nd

both E

1

and E

2

. In this ase E

3

= (89200; 1868) is found with � = 158106.

4 Generalization to multiple riteria

Most of the ingredients in our approah easily generalize to more than two riteria. How-

ever, the NISE proedure used in Phase 1 to �nd supported nondominated points in a

\spread-out" way, does not generalize. In two dimensions we �nd upper bounds on the

objetives by minimizing the other objetive alone. Forming the hyperplane between these

two upper bounds, and then moving this hyperplane, we are guaranteed not to miss any

supported nondominated solution. In three dimensions we may set upper bounds as the

highest value from minimizing the other two objetives. The problem is that we may

have supported nondominated solutions above this hyperplane. In Solanki et al. [6℄ these

diÆulties are explained.

Using another way to set the weights in Phase 1 in order to �nd the supported nondomi-

nated solutions, will leave us with a similar problem in Phase 2. Near the borders of the

eÆient frontier it may be diÆult to determine a referene point in order to searh for

unsupported solutions.

5 Conluding remarks

In this paper we present a new, interesting loation problem. This formulation inorporates

both the loation and the routing aspets in a multiobjetive setting. We also present

a solution method for the problem, and illustrate the problem struture and solution

proedure by an example. The presented method an easily be made interative, sine the

proedures in both phases are easily made interative.
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Appendix 1

Proof of Theorem 1:

Consider the omplete direted network with 4 nodes (n = 4). This inludes both direted

edges between all nodes given k: (i; j; k) and (j; i; k) 8i; j; k where i 6= j. From (5) hoose

the �rst 4 olumns orresponding to the x variables. Choose also the three olumns

orresponding to y

124

,y

132

and y

143

. Next we speify the seven rows. Choose the �rst row

orresponding to the sum of x

i

onstraint. From I

�4

hoose rows 1 and 2, from I

�2

hoose

rows 1 and 2 and from I

�3

hoose rows 1 and 3. This lead to the following 7 � 7 matrix

with determinant two:

�

�

�

�

�

�

�

�

�

�

�

�

�

�

1 1 1 1 0 0 0

1 0 0 0 �1 0 0

0 1 0 0 1 0 0

1 0 0 0 0 �1 0

0 0 1 0 0 1 0

1 0 0 0 0 0 �1

0 0 0 1 0 0 1

�

�

�

�

�

�

�

�

�

�

�

�

�

�

= 2

Appendix 2

Lagrange relaxation in the augmented Thebyhe� problem

As we will show, this approah does not help! We end up with the weighting method, if

we relax the referene point onstraints.

Let � be the Lagrange multiplier on the referene point onstraints of problem (10). We

are then left with the onstraints of our original problem (4), and the onstraint � � 0.

Let's assume that � is �xed at

�

�.

�

� an then be updated using for example a subgradient.

The new objetive funtion is given by

f(x; y) = �+ �

�

f

1

(y) + f

2

(y)

�

+ �

1

(f

1

(y)� �� z

1

) + �

2

(f

2

(y)� �� z

2

):

Rearranging terms, we get

f(x; y) = (1� �

1

� �

2

)�+ (�+ �

1

)f

1

(y) + (�+ �

2

)f

2

(y)� �

1

z

1

� �

2

z

2

(11)

Let's evaluate the optimal value of �. If 1 � �

1

� �

2

� 0, we hoose � = 0, and if

1 � �

1

� �

2

< 0, we hoose � = 1. Neither solution is good, beause � = 0 makes no

improvement when we update

�

� using the usual sub-gradient diretion

d = (f

1

(y)� �� z

1

; f

2

(y)� �� z

2

)

t
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Sine z is a referene point f(y) > z, and we will simply inrease

�

� until we get the

situation where � =1. We therefore onlude that �

1

+�

2

= 1, so � an be any positive

number. Sine � is almost zero, we reognize this to be the weighting method applied in

Phase 1.
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Abstrat

We onsider a network design problem arising in mobile ommuniations. The

problem onsists in deploying a number of new MSCs and alloating existing BSCs to

MSCs, so as to minimize the inurred osts while meeting ustomer demand and ob-

serving the apaity restritions. We formulate this problem as a two-stage stohasti

program with mixed-integer reourse. To solve the problem we apply a dual deom-

position proedure, solving senario subproblems by means of branh and ut. The

solution proedure has been tested on a real life problem instane provided by Sono-

fon, a Danish mobile ommuniation network provider, and we report some results of

our omputational experiments.

Keywords: Network planning; Teleommuniation; Stohasti Programming; Dual

Deomposition; Branh and Cut.

1 Introdution

Mobile teleommuniation network providers have been faing a rapid growth in demand

for several years and this trend seems likely to ontinue. This fores the network provider

�
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to onstantly expand the apaity of the network in order to provide an aeptable grade

of servie to ustomers. There is a vast amount of literature onerning the optimal

expansion of link apaities in a teleommuniations network. We refer to papers by

e.g. Balakrishnan, Magnanti and Wong [1℄, Bienstok and G�unl�uk [2℄, Chang and Gavish

[4℄ and Dahl and Stoer [5℄ for di�erent approahes to suh types of problems. The link

apaities do not onstitute the only potential bottlenek in a teleommuniations network,

however, sine apaity restritions may be imposed not only on traÆ but also on the

number of ustomers served by the network. In this paper we study a network design

problem in whih some apaity onstraints are imposed to restrit traÆ on links in the

network while others are imposed to restrit the number of ustomers served by nodes in

the network.

We study a mobile ommuniations network. The base transeiver stations (BTSs) are

eah onneted to one base station ontroller (BSC). Eah BSC serves a number of BTSs

and is onneted to one mobile swithing enter (MSC). Finally eah MSC serves a number

of BSCs and the MSCs are onneted internally. The network is illustrated in Figure 1.

MSC

MSC

MSC

BSC

BSC

BSC

BSC

BSC

BSC

BTS

BTS

Figure 1: Illustration of a mobile teleommuniations network.

The visitor loation register (VLR) of an MSC, a database handling all information about

lients, has a limited apaity, thus restriting the number of ustomers that an be served

(through BTSs and BSCs) by an MSC. Thus the network provider not only has to expand

the link apaities but should onsider when and where to deploy new MSCs in order to

be able to serve the inreasing number of ustomers.

We will onsider the problem of deploying a number of new MSCs and alloating the BSCs
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to new and existing MSCs, thus treating the number and loations of BTSs and BSCs as

exogenous. The deployment of MSCs must be arried out so as to minimize the inurred

osts while meeting ustomer demand and observing the apaity restritions. The ost

funtion will inlude four terms:

1. The ost of new MSCs.

2. The ost of onneting BSCs to MSCs.

3. The ost of expanding the apaity of links onneting the MSCs.

4. A penalty ost for handovers that our among BSCs that are onneted to di�erent

MSCs.

Tzifa et al. [17℄ study a similar problem in whih only the aess network is onsidered, thus

ignoring the third ost term mentioned above. Also, the problem of optimally assigning

BSCs to MSCs has been addressed by several authors suh as Saha, Mukherjee and Bhat-

taharya [15℄ and Merhant and Sengupta [8℄. Apart from minimizing the inurred osts of

onneting BSCs to MSCs and the handover ost, it is ustomary to enfore some degree

of load balaning among the MSCs. Tzifa et al. and Saha, Mukherjee and Bhattaharya

expliitly inlude a penalty ost on uneven loads in the objetive funtion, whereas Mer-

hant and Sengupta propose to handle the load balaning problem parametrially. We

do not expliitly onsider load balaning but the parametri approah of Merhant and

Sengupta may easily be adopted in our setting.

All of the above-mentioned authors follow a deterministi approah in the sense that the

ost parameters, the number of ustomers and the demand for bandwidth are all assumed

to be known at the point of deision. It is a fat, however, that the time that passes from

the moment at whih deployment of MSCs is resolved on, until the equipment is atually

in plae and available for use, is rather long (about a year). This means that at the time

the deision has to be made, the network provider does not have full knowledge of several

important parameters of the model. For this reason the network provider should put o�

the de�nitive deision on alloation of BSCs to MSCs for as long as possible, allowing

unertainty to be at least partially revealed. This is the inentive for us to model the

problem as a two-stage stohasti program. In this formulation unertain parameters are

replaed by random variables and deisions are organized in two stages. The �rst stage

onsists of deployment of MSCs whih must be resolved on before unertainty has been

revealed and hene must be based on the distribution of random parameters only. In

the seond stage outomes of all random parameters have been observed and an optimal
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alloation of BSCs to MSCs and a orresponding routing of traÆ in the resulting network

is determined.

The importane of inluding unertainty in the problem formulation when modeling a-

paity expansion problems is well reognized. Stohasti programming has been used as

a modeling tool for suh problems in teleommuniations by several authors. Sen, Dover-

spike and Cosares [16℄ study a apaity expansion problem in whih the expeted number

of unserved requests is minimized subjet to limitations on the total apaity expansion.

Riis and Andersen [11, 12℄ use stohasti programming to solve two di�erent apaity ex-

pansion problems in whih additional apaity, required to meet ustomer demand, should

be installed on edges of the network in modularities of �xed bath sizes. Finally, Demp-

ster, Medova and Thompson [6℄ use hane-onstrained programming to solve a apaity

expansion problem subjet to ertain grade of servie onstraints assuming that the arrival

proess of alls is known. The main emphasis in previous studies has been on the apaity

expansion of links, while less has been said about the network design problem onsidered

in this paper.

This paper is organized as follows. We start out by formalizing the problem formulation

and desribing the parameters involved in Setion 2. Extensions of the basi model to

hedge against potential node and edge failures by imposing survivability onstraints are

disussed in Setion 3. Next, in Setion 4 we briey outline the onept of dual deompo-

sition (or senario deomposition). Dual deomposition tehniques have been applied in

the ontext of stohasti programming by numerous authors inluding Car�e and Shultz

[3℄, Mulvey and Ruszzynski [9℄ and Rokafellar and Wets [14℄. The seminal idea is to use

variable splitting to make the problem separable into independent subproblems whih are

easily solved. In our ase, the subproblems are solved by means of branh and ut, using

valid inequalities derived in Setion 5 as utting planes. In Setion 6 our appliation is

desribed along with some of the pratial diÆulties onerning implementation of the

algorithm. Finally, we give some onluding remarks in Setion 7.

2 Problem Formulation

To give a formal formulation of the apaity expansion problem introdued in the previous

setion, we will onsider a �nite number of potential loations for new MSCs and hene

the basi setup will be desribed by three �nite sets of nodes representing the loations of

MSCs and BSCs:

� V

1

The set of loations of existing MSCs.
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� V

2

The set of potential loations for new MSCs.

�W The set of loations of BSCs.

Note that a given loation may very well be represented as a node in more than one of the

sets (even in all of them). In fat, the model allows for a single loation to be represented

as several nodes in one set, for example if we wish to deploy more than one MSC at a

loation.

The network interonneting the MSCs is modeled as an undireted graph G = (V;E).

The nodeset V = V

1

[V

2

represents the existing and potential loations of MSCs, and the

edge set E represents the existing and potential links fi; jg between nodes i; j 2 V . We

will onsider demand at BSC level. Even though we assume that traÆ is bidiretional, we

will �nd it onvenient to use direted ow for modeling purposes. Hene we shall assign an

arbitrary diretion to eah point-to-point demand and refer to its origin and destination.

Also, eah undireted edge fi; jg 2 E will orrespond to two (oneptual) direted edges

(i; j) and (j; i), eah of whih an arry ow. Still, to allow for the appropriate bidiretional

traÆ, edge apaities are dimensioned with respet to the total traÆ on the given edge,

disregarding the arbitrarily assigned diretions of ow.

Demand for bandwidth on the onnetions will be desribed by a set K of ommodities.

Two main approahes for de�ning suh ommodities have been used in the literature. One

possibility is to de�ne a ommodity for eah point-to-point demand resulting in a total

of O(jW j

2

) ommodities. In general we �nd it more onvenient, though, to redue the

number of variables by working with an aggregated formulation ontaining a total of only

O(jW j) ommodities. This is ahieved by letting eah ommodity k 2 K orrespond to

demand originating at a given BSC with respet to the arbitrary diretions assigned to

traÆ. If one wishes to impose survivability onstraints, however, it turns out that the

disaggregated formulation may be more onvenient. We will return to this issue in Setion

3.

As previously disussed, several parameters of the model are not known with ertainty

at the time the deision on deployment of MSCs has to be made. In partiular, the

only information about future demand available at the point of deision, omes from

past observations and some form of foreast model. This inherent unertainty will be

inorporated in the problem formulation by introduing some probability spae (
;F ; P )

and allowing the parameters in question to be dependent on the outome of a random

event ! 2 
. Here, the probability distribution P is meant to reet information about

unertain parameters oming from the above-mentioned foreasts. Thus the demand for
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bandwidth on edges and VLR-apaity at nodes will be desribed by the following sets of

parameters:

� D

kr

(!) The net demand for ommodity k at BSC r. (k 2 K; r 2W )

� L

r

(!) The load of BSC r on the VLR in the MSC to whih it is onneted. (r 2W )

We emphasize that D

kr

(!) is the net demand for ommodity k at BSC r and hene, in

partiular, that it is negative if and only if BSC r is the origin of ommodity k and that

P

r2W

D

kr

(!) = 0. The parameter D

kr

(!) is diretly related to the traÆ between the

origin of ommodity k and BSC r, whereas the load L

r

(!) should rather be thought of as

depending on the number of ustomers in the area served by BSC r.

Corresponding to the two types of demand, we have two types of existing apaity in

the network - apaity restriting ow on edges of the network and apaity restriting

the number of ustomers served by nodes in the network. These are summarized in the

following sets of parameters:

� C

ij

Flow-apaity on edge fi; jg. (fi; jg 2 E)

�M

i

VLR-apaity of the MSC loated at node i. (i 2 V )

The ost struture is desribed by the following sets of parameters some of whih are

treated as exogenous, while others are assumed to be unertain at the point in time at

whih the deision has to be made, thus depending on the random event !:

� 

i

The ost of deploying an MSC at node i. (i 2 V

2

)

� p

ij

(!) The ost of adding one unit of apaity on edge fi; jg. (fi; jg 2 E)

� q

ri

(!) The ost of onneting BSC r to node i. (r 2W; i 2 V )

� h

rt

(!) The penalty ost (for supporting handovers) inurred if BSC r and t are

onneted to di�erent MSCs. (r; t 2W )

Note that we assume the ost of expanding the apaity of a onnetion to be linear and

that we do not inlude a �xed ost for establishing the onnetion. The reason for this is

the fat that the ompany, in ooperation with whih this researh projet was engaged

upon, had already available a physial network with suÆient link apaities. In order to

utilize this apaity, however, it may be neessary to install additional equipment at the

end-points of the onnetion, and this ost is assumed to be linear with respet to the

apaity provided.



Sonofon 173

The main deisions to be taken are deployment of new MSCs and alloation of BSCs to

MSCs. These deisions are represented by the following two sets of binary variables:

� x

i

=

(

1 if an MSC is deployed in node i. (i 2 V

2

)

0 otherwise

� y

ri

(!)=

(

1 if BSC r is onneted to MSC i. (r 2W , i 2 V )

0 otherwise

As indiated by the dependeny of the variables y

ri

on the random event !, the alloation

of BSCs to MSCs is allowed to depend on the outome of the random parameters. That

is, the deision on alloation of BSCs to MSCs is postponed to the seond stage to take

full advantage of the additional information whih is available at this point.

Finally, the following sets of variables are used to desribe ow in the network, and the

apaity expansion of links needed to arry this ow. Sine ow does not our until

demand is realized, these variables all belong in the seond stage.

� f

ijk

(!) Flow of ommodity k on edge fi; jg in diretion from i to j. (k 2 K; fi; jg 2

E)

� f

jik

(!) Flow of ommodity k on edge fi; jg in diretion from j to i. (k 2 K; fi; jg 2

E)

� v

ij

(!) Aggregate ow on edge fi; jg in exess of urrent apaity C

ij

. (fi; jg 2 E)

To be apable of handling the model omputationally, we will assume that there is only a

�nite number of possible outomes of random parameters.

(A1) The probability distributionP is disrete and has �nite support, say 
 = f!

1

; : : : ; !

S

g

with orresponding probabilities P

�

f!

1

g

�

= �

1

; : : : ; P

�

f!

S

g

�

= �

S

.

A possible outome of random parameters (p(!

s

); q(!

s

); h(!

s

);D(!

s

); L(!

s

)) orrespond-

ing to some elementary event !

s

2 
 will be referred to as a senario. For notational

onveniene we will refer to suh a senario simply by (p

s

; q

s

; h

s

;D

s

; L

s

). Likewise, we will

use a supersript s on seond-stage variables to indiate that these deisions are allowed

to di�er for di�erent senarios.

We are now ready to formulate the problem of optimally deploying a number of new MSCs

and alloating BSCs to MSCs as a two-stage stohasti program. The �rst-stage objetive

is to minimize the sum of the ost of new MSCs and the expeted value of the ost inurred
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in the seond stage,

z = min

X

i2V

2



i

x

i

+

S

X

s=1

�

s

Q

s

(x) (1)

s.t. x 2 IB

jV

2

j

: (2)

Here, the seond-stage value funtion Q

s

(x) is given by

Q

s

(x) = min

X

fi;jg2E

p

s

ij

v

s

ij

+

X

r2W

X

i2V

q

s

ri

y

s

ri

+

X

r;t2W

r<t

h

s

rt

X

i2V

(y

s

ri

� y

s

ti

)

+

(3)

s.t.

X

r2W

L

s

r

y

s

ri

�M

i

8i 2 V

1

; (4)

X

r2W

L

s

r

y

s

ri

�M

i

x

i

8i 2 V

2

; (5)

X

i2V

y

s

ri

= 1 8r 2W; (6)

X

j:fi;jg2E

f

s

jik

�

X

j:fi;jg2E

f

s

ijk

=

X

r2W

D

s

kr

y

s

ri

8i 2 V; k 2 K; (7)

X

k2K

�

f

s

ijk

+ f

s

jik

�

� C

ij

+ v

s

ij

8fi; jg 2 E; (8)

y

s

2 IB

jW jjV j

; f

s

2 IR

2jEjjKj

+

; v

s

2 IR

jEj

+

: (9)

We have used the notation x

+

to denote maxf0; xg for x 2 IR, and hene the third term

of the seond-stage objetive (3) inludes the handover ost between BSCs r and t if and

only if these BSCs are alloated to di�erent MSCs. The onstraints (4) and (5) ensure

that the total load from the BSCs onneted to an MSC does not exeed the apaity of

the VLR. Moreover, the onstraint (5) ensures that a BSC an only be onneted to an

MSC if this is atually deployed (x

i

=1) while the onstraint (6) ensures that all BSCs are

onneted to exatly one MSC. The onstraint (7) is a ow onservation onstraint stating

that the net ow of ommodity k into MSC i should equal the aggregate net demand for

ommodity k from BSCs onneted to MSC i. Finally, the onstraint (8) states that the

aggregate ow on an edge fi; jg 2 E annot exeed the total apaity installed on the

edge.

We note that the nonlinear term in the seond-stage objetive may easily be replaed by

a linear one. Hene let H

s

rt

be a variable representing the handover ost inurred between

BSCs r and t under senario s. Then H

s

rt

may be de�ned using V linear onstraints,

H

s

rt

� h

s

rt

(y

s

ri

� y

s

ti

) 8i 2 V; (10)
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and the nonlinear term may be replaed by a simple summation of the variables H

s

rt

. Thus

if the onstraints (10) are added, the third objetive term may be replaed by

X

r;t2W

r<t

H

s

rt

:

3 Survivability

There is an entirely di�erent side to the issue of designing a teleommuniations network

under unertainty besides the one we have onsidered this far. Thus it is possible that not

only the parameters of the model, suh as demand and pries, are subjet to unertainty.

To be spei�, we will onsider a situation in whih nodes and/or edges are subjet to

potential failures. This fores us to impose di�erent kinds of survivability onstraints

to ensure that the network is not too vulnerable in ase of suh failures. The onept of

survivability has previously been onsidered in the ontext of teleommuniation networks

by numerous authors. (See e.g. Dahl and Stoer [5℄ and Rios, Marianov and Gutierrez

[13℄.) In general survivability may be ahieved either by diversi�ation or by reservation

depending on the assurane required and the ability to restruture the solution in ase of

failures. In this setion we disuss some possible formulations in the ontext of problem

(1)-(9).

By diversi�ation we mean routing demand using two or more edge- and/or node-disjoint

paths. Diversi�ation onstraints are easily imposed if we are working with the disaggre-

gate formulation in whih eah ommodity k 2 K orresponds to a unique point-to-point

demand. Hene we may let O(k) and D(k) denote the origin and destination of ommod-

ity k, and d

s

k

the demand for ommodity k under some senario s so that D

s

kr

equals d

s

k

for r = D(k), �d

s

k

for r = O(k) and zero otherwise. If �

k

is a parameter equal to the

maximum fration of demand for ommodity k that is allowed to ow through any given

node or edge of the network, we may impose the following diversi�ation onstraints:

f

s

ijk

+ f

s

jik

� �

k

d

s

k

8fi; jg 2 E; k 2 K (11)

X

j:fi;jg2E

f

s

ijk

� �

k

d

s

k

+ (1� �

k

)d

s

k

y

s

O(k);i

8i 2 V; k 2 K (12)

If paths are not required to be node disjoint the onstraints de�ned by (12) are ignored.

When working with the aggregate formulation on the other hand, we annot impose suh

exat diversi�ation onstraints. One possibility is to use the following onstraint, stating

that at most a fration of �

k

of the aggregate net ow of a ommodity into a given MSC
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an arrive through one onnetion.

f

s

jik

� �

k

X

r2W

D

s

kr

y

s

ri

+

X

h:fi;hg2E

f

s

ihk

8fi; jg 2 E; k 2 K

As mentioned, another way to ahieve survivability is by reservation. That is, to ensure

the possibility of rerouting a given fration of demand in the network resulting after a node

or edge failure. To inlude reservation in the problem formulation eah senario should

orrespond not only to an outome of the random parameters, but also to a spei� failure

state (possibly no failure). If all seond-stage deisions may be modi�ed in the light of

a failure suh an extension is easily inluded in the formulation, simply by modifying

the node and/or edge set for eah senario aording to the orresponding failure. It

is more realisti, however, to assume that only rerouting of traÆ is possible, whereas

a swift realloation of BSCs to MSCs or apaity expansion is not pratiable. Suh a

situation would orrespond to a three-stage stohasti program. In the �rst stage, as

before, the deployment of MSCs is deided upon. In the seond stage the outome of

random parameters is revealed and alloation of BSCs to MSCs and appropriate apaity

expansion is arried out. Finally, in the third stage a failure possibly ours and traÆ

is rerouted aordingly. Note that a node (MSC) failure in this situation would result in

the loss of some demand, sine BSCs alloated to the MSC in question would be ut o�

from the rest. We do not pursue this issue further in the present paper. It should be

noted, however, that in theory suh a three-stage problem ould be solved by the solution

proedure presented in the subsequent setions, but in pratie the omputational overhead

involved would render suh an approah intratable even for networks of moderate size.

4 Dual Deomposition

In this setion we briey outline the dual deomposition proedure whih we are going

to apply to problem (1)-(9). Dual deomposition, or senario deomposition, exploits

the fat that the vast majority of variables and onstraints in the stohasti program are

senario dependent. In fat the only thing tying the senarios together are the �rst-stage

deisions on deployment of MSCs. Hene, if we use variable splitting on the �rst-stage

variables, de�ning a deployment of MSCs for eah senario x

1

; : : : ; x

S

, problem (1)-(9)

beomes separable into independent senario subproblems. The fat that the deployment

of MSCs annot be senario dependent may now be represented by a non-antiipativity
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onstraint stating the problem as

z = min

S

X

s=1

�

s

�

X

i2V

2



i

x

s

i

+Q

s

(x

s

)

�

s.t. x

1

= : : : = x

S

;

x

s

2 IB

jV

2

j

8s 2 f1; : : : ; Sg:

(13)

Relaxing the non-antiipativity onstraint we obtain a problem whih is ompletely sepa-

rable into independent senario subproblems. These subproblems are solved to obtain an

optimal deployment of MSCs for eah senario. Next non-antiipativity is reinfored by

branhing on omponents of these solutions whih di�er among senarios. To be spei�,

we introdue a branhing tree initially onsisting of only the root node orresponding to

the original problem (13). In a given iteration we selet a problem from the branhing tree

and solve the orresponding senario subproblems obtaining senario solutions x

1

; : : : ; x

S

.

If MSC i is to be deployed in some senario solutions and not in others, we add two prob-

lems to the branhing tree imposing for s = 1; : : : ; S the onstraints x

s

i

= 0 and x

s

i

= 1

respetively. Otherwise, if all senario solutions are equal, we have a feasible solution of

the original problem and may update the upper bound if appropriate. For a thorough de-

sription of suh a proedure, inluding a Lagrangian relaxation of the non-antiipativity

onstraints, we refer to Car�e and Shultz [3℄.

Clearly, if the senario subproblems are solved by means of some branh and bound proe-

dure, some e�ort should be taken to put information from previous iterations in the above

proedure to use. Thus a node whih is fathomed in a given subproblem in some iteration

of the main proedure may be reonsidered in subsequent iterations sine more variables

are �xed as the main proedure progresses. In fat, for the problem instane onsidered

in Setion 6, the number of �rst-stage variables was so small (less than 20) that an enu-

meration tree ould be reated a priori and used for all senarios, thus preluding any

re-evalutions of nodes.

5 Valid Inequalities

In order to solve problem (1)-(9) using the dual deomposition proedure outlined in the

previous setion we need an eÆient proedure for solving the senario subproblems. To

this end we will apply the onept of branh and ut whih have proven to be a powerful

tool for the solution of (mixed-) integer programming problems. As in ordinary branh

and bound we start with the LP-relaxation of the mixed-integer programming problem

and build a partitioning of the solution spae in order to obtain an integral solution. The
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ruial idea in branh and ut is to ombine this approah with a ontinuous generation of

utting planes tightening the formulation and thus reduing the size of the branhing tree.

For a thorough disussion of the branh and ut approah we refer to Padberg and Rinaldi

[10℄ and G�unl�uk [7℄. As utting planes we will use valid inequalities derived through simple

polyhedral onsiderations.

First, we onsider an inequality based on the total VLR-apaity installed through de-

ployment of new MSCs. The inequality simply states that the total apaity of all VLRs

in the resulting network should exeed the total demand from all BSCs. Formally the

inequality is derived by summing the onstraints (4)-(5), rearranging and rounding.

X

i2V

2

x

s

i

�

�

1

M

�

X

r2W

L

s

r

�

X

i2V

1

M

i

�

�

8s 2 f1; : : : ; Sg:

Here we have de�ned M := max

i2V

2

M

i

. Sine the deployment of MSCs is not allowed to

be senario dependent this inequality may be strengthened further:

Proposition 1 The following inequality is valid for the feasible region of all senario

subproblems, s = 1; : : : ; S.

X

i2V

2

x

s

i

� max

�2f1;:::;Sg

�

1

M

�

X

r2W

L

�

r

�

X

i2V

1

M

i

�

�

:

This inequality may be viewed as a global onstraint in the sense that it is valid for all

senarios. As mentioned in the previous setion we used an enumeration tree to solve

subproblems for the instane onsidered in Setion 6. Hene the above inequality was

not atually inluded in the formulation but was merely used to redue the size of the

enumeration tree.

Next we onsider a loal onstraint whih is only guaranteed to be valid for the partiular

senario from whih it was derived. This inequality is based on the VLR-apaity of the

individual MSCs and is used to enfore the fat that eah BSC must be alloated to a

unique MSC. One again the underlying idea is simple. If the total demand from a group

of BSCs exeeds the VLR-apaity of an MSC, we annot alloate all of these BSCs to

the MSC in question. This is formalized in the following proposition.

Proposition 2 Let U be a subset of W suh that

P

r2U

L

s

r

> M

i

for some MSC i 2 V

and some senario s 2 f1; : : : ; Sg. Then the following inequality is valid for the feasible

region of the s

0

th senario subproblem.

X

r2U

y

s

ri

� jU j � 1:
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Naturally, this inequality will only be useful when the subset U of W is minimal in the

sense that

P

r2Unftg

L

s

r

� M

i

for all t 2 U , sine it is otherwise dominated by other

inequalities of the same type.

6 Numerial Results

In this setion we will desribe the pratial appliation of our model. We have imple-

mented our model on a real problem provided by Sonofon, a Danish mobile ommuniation

network provider. In this setion we briey desribe the problem instane, the struture of

osts and demand, and the pratial olletion and estimation of data. Due to ompetitive

onditions, however, we annot be too spei� about the problem size and the input data.

Finally, we report our omputational results.

The problem under onsideration has between 5 and 10 existing MSCs, less than 20 po-

tential loations for new MSCs and less than 50 BSCs. The network interonneting the

MSCs is omplete. The number of binary variables were redued by dividing the area of

interest into a number of regions and preluding from onsideration ertain alloations of

BSCs to MSCs aross regions. In the resulting formulation eah senario subproblem has

707 binary variables, 14598 ontinuous variables and 12045 onstraints.

The ost of a new MSC is orders of magnitude higher than any other ost parameter. The

ost of onneting a BSC to an MSC was set to zero if the BSC is urrently onneted

to this partiular MSC, and otherwise the total ost of a movement was estimated. Fur-

thermore, the ost of expanding link apaities is given by the total ost of installing new

equipment. The issue of determining an appropriate level for the arti�ial penalty ost for

handovers, however, is a more ompliated matter. Setting this level too low, may result

in solutions with a large number of handovers whih are not aeptable from a pratial

viewpoint. A high level, on the other hand, may result in on�gurations for whih the

gained pratiability obtained by reduing the number of handovers is not suÆient to

justify the inreased ost. As a side e�et omputation time is likely to be inreased in

this ase due to the large number of movements of BSCs required to redue the number

of handovers. In pratie we hose to adjust the handover osts, observing their e�et on

solutions, so as to reate geographially onneted BSC areas.

The urrent demand for bandwidth and VLR-apaity was estimated from observations of

traÆ and the number of ustomers respetively. Future demand was then alulated using

the estimates of urrent demand saled by di�erent senario dependent growth fators. We

have used the following proedure to generate demand for VLR-apaity at BSC r under
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senario s,

L

s

r

= �

s

� �

s

r

� L

r

:

Here L

r

is the urrent demand for VLR-apaity at BSC r, �

s

is a parameter reeting

the average growth in the number of ustomers, while �

s

r

is a parameter reeting regional

utuations from this average growth. To apture the orrelation between the demand for

VLR-apaity and the demand for bandwidth, the net demand for ommodity k at BSC r

under senario s was alulated using urrent demand D

kr

, the above-mentioned param-

eters reeting growth in the number of ustomers, and a third parameter �

s

reeting

growth in the demand for bandwidth per ustomer,

D

s

kr

= �

s

�

p

�

s

k

� �

s

r

� �

s

�D

kr

:

Note that we have used the geometri average of the regional utuations �

s

k

and �

s

r

.

Likewise the di�erent ost terms were made senario dependent by introduing stohasti

utuations on future pries. The growth fators were all sampled from uniform distri-

butions reeting the expetations of Sonofon for the time horizon under onsideration.

As pointed out in Setion 1, the seond-stage deision of alloation of BSCs to MSCs is

to be made after one year, and this was the time horizon used when estimating growth

fators for the ost terms. As for ustomer demand, however, we have used a four-year

time horizon when estimating the appropriate growth fators. This was done to ensure

a somewhat stable solution guaranteeing suÆient network apaity for three additional

years beyond the ompleted deployment of new MSCs. This means that demand is in fat

only partially revealed at the time the seond-stage deisions are to be made, but sine

the additional information obtained at this point will provide an improved estimate of the

true rate of growth in demand, the gain of postponing some deisions to the seond stage

is likely to be onsiderable.

The algorithm was implemented in C++ using proedures from the allable library from

CPLEX 6.6. Considering 100 senarios, the solution times were about 3.5 hours CPU-time

on a 700 MHz Linux PC. The solution suggested the deployment of one new MSC. Due

to the omplexity of the problem, the survivability onstraints of Setion 3 have not been

implemented in the appliation. The valid inequalities of Setion 5, however, have speeded

up the solution times onsiderably.

7 Conlusions

In this paper we have set up a model for the optimal deployment of new MSCs in a mobile

ommuniations network. The model takes into aount the ost of new MSCs, the ost
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of alloating BSCs to MSCs, and the ost of expanding apaities of links onneting

the MSCs. Furthermore, a penalty ost was introdued to limit the number of handovers,

induing onneted BSC areas. Sine the deployment of MSCs involves a planning horizon

of about a year, a number of important parameters of the model are not known with

ertainty at the point of deision. This lead us to a two-stage stohasti programming

formulation of the problem. Considering 100 possible senarios for the random parameters,

the resulting formulation of a real-life problem ontained more than a million variables

and onstraints and hene deompostion methods were alled for. We hose to solve the

problem using a dual deomposition proedure, solving senario subproblems by means

of branh and ut. The algorithm was implemented in C++ and the problem ould be

solved to optimality within a few hours of CPU time. We onlude that our model has

been suessfully implemented, and that it inorporates the most important details of the

problem. We also onlude that the stohasti programming model is an important tool

in the deision proess, giving insight of the dynamis of the expansion problem.
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Abstrat

In this paper we propose a new method to solve biobjetive ombinatorial optimization

problems of the max-ordering type. The method is based on the two-phases method

and ranking algorithms to eÆiently onstrut K best solutions for the underlying

(single objetive) ombinatorial problem. We show that the method overomes some

of the diÆulties of proedures proposed earlier. We illustrate this by an example and

disuss the diÆulties in extending it to more than two objetives.

Keywords: MCDM, biobjetive optimization, max-ordering problems, ranking meth-

ods, ombinatorial optimization.

1 Introdution

Max-ordering (MO) problems are multiriteria optimization problems in whih the goal is

to minimize the worst of several objetive funtions. They an be formulated as follows.

min

x2S

max

i=1;:::;Q

f

i

(x); (1)

where f

i

(x) denotes the objetive funtions of the problem. The problem is denoted max-

ordering instead of min-max in order not to onfuse terminology with single objetive

problems, i.e. min

x2S

max

e2x

w

e

, whih �nds solutions where the largest weight is minimal,

e.g. the path where the largest edge-weight is minimal. Max-ordering problems arise in

various appliations, see Rana and Vikson [23℄ or Warburton [29℄, and as subproblems

in interative methods for the solution of multiriteria optimization problems suh as the

�
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GUESS method (Buhanan [3℄), STEM (Benayoun et al. [2℄), and the interative weighted

Thebyhe� method (Steuer and Choo [25℄).

In this paper we onsider max-ordering problems in a ombinatorial ontext, i.e. we assume

that S is a �nite set, e.g. the set of paths between two nodes of a network, or the set of

spanning trees of a graph.

There is a number of previous researh papers on this topi (Ehrgott [5℄, Hamaher and

Ruhe [15℄, Murthy and Her [21℄, Ehrgott et al. [9℄). See also Ehrgott and Gandibleux

[8℄ for more referenes. Various authors observed that, even in the biriteria ase, max-

ordering problems are usually NP-omplete. The methods proposed for their solution

inlude branh and bound (Rana and Vikson [23℄), labeling algorithms (for shortest path

problems, Murthy and Her [21℄) and ranking methods (Ehrgott [5℄, Hamaher and Ruhe

[15℄), that is the appliation of algorithms to �nd K best solutions of (single objetive)

ombinatorial problems.

We also propose methods involving ranking algorithms atually overoming the main prob-

lem of the method proposed in Hamaher and Ruhe [15℄, at least for the ase of two obje-

tives, see the disussion after Algorithm 1. Our method also overomes a weakness of the

method proposed in Murthy and Her [21℄, see Setion 4. We ombine the ranking method

with the two-phases method originally developed for the determination of all Pareto opti-

mal solutions of biriteria ombinatorial optimization problems, Ulungu and Teghem [27℄,

and so far, suessfully applied to a number of suh problems. We mention Ehrgott [6℄,

Lee and Pulat [18℄ for network ow, Ulungu and Teghem [26℄ and Vis�ee et al. [28℄ for

knapsak, Ulungu and Teghem [27℄ for assignment, and Ramos et al. [22℄ for spanning

tree problems.

2 Basi Results

In this setion we introdue some notation for multiriteria (ombinatorial) optimization

and we prove some basi results whih will justify the orretness of our method.

Consider a multiriteria optimization problem

min

x2S

ff

1

(x); : : : ; f

Q

(x)g:

We use the notation f(x) = (f

1

(x); : : : ; f

Q

(x)) for the vetor of objetive funtions. A

feasible solution x

�

is alled Pareto optimal, if there is no x 2 S suh that f(x) � f(x

�

)

and f(x) 6= f(x

�

), where � is understood omponent-wise. The set of Pareto optimal

solutions of S is denoted Par(S). If x

�

is Pareto optimal, f(x

�

) is alled eÆient.
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In multiobjetive ombinatorial optimization, Pareto optimal solutions an be lassi�ed

into supported and unsupported Pareto optimal solutions. The former are those x

�

for

whih there exists a weighting vetor � = (�

1

; : : : ; �

Q

) suh that

f(x

�

) = min

x2S

Q

X

i=1

�

i

f

i

(x):

The existene of unsupported Pareto optimal solutions is a harateristi property of

multiobjetive ombinatorial optimization problems.

We shall also use the notation g(x) = max

i=1;:::;Q

f

i

(x) for the max-ordering objetive

value of a feasible solution x 2 S. With these de�nitions we are ready to prove some basi

results. The �rst one is wellknown, see e.g. Hamaher and Ruhe [15℄. We state the proof

for ompleteness.

Lemma 1 There is at least one optimal solution of the max-ordering problem min

x2S

g(x)

whih is Pareto optimal.

Proof : Suppose x

�

is an optimal solution of the max-ordering problem, but is not Pareto

optimal. Sine S is �nite, there must then exist a feasible solution x 2 S dominating

x

�

, i.e. suh that f

i

(x) � f

i

(x

�

) for i = 1; : : : ; Q with one strit inequality. Beause

g(x) � g(x

�

), it follows that x also solves the max-ordering problem optimally.

The next Lemma is spei�ally stated for two objetives. It formalizes the argument that

the maximum of two funtions is minimal, if the objetive values are as equal as possible.

Its proof is immediate from the de�nition of the max-ordering problem and Lemma 1.

Lemma 2 Let Par(S) = fx

1

; : : : ; x

p

g be the set of Pareto optimal solutions of a biriteria

ombinatorial optimization problem. Assume that f

1

(x

i

) � f

1

(x

i+1

) and f

2

(x

i

) � f

2

(x

i+1

)

for 1 = 1; : : : ; p� 1 and de�ne K := minfi : f

2

(x

i

) < f

1

(x

i

)g. Then the following hold.

1. If K = 1; x

1

solves the max-ordering problem.

2. If K =1; x

p

solves the max-ordering problem.

3. Otherwise x

K

or x

K�1

(or both) solve the max-ordering problem.

A speial ase ours if there is a Pareto optimal solution with both objetives equal.

Lemma 3 If there is a Pareto optimal solution suh that f

1

(x) = f

2

(x) then x also

minimizes g(x).



186 MO

These three lemmas state that we an restrit our searh for a solution for a minimizer of

g(x) to Pareto optimal solutions, with their two objetives as equal as possible. In other

words, Pareto optimal max-ordering solutions will be loated lose to the halving line

f

1

= f

2

in riterion spae. Lemma 2 suggests to rank Pareto optimal solutions aording

to inreasing values of f

1

(or f

2

). This strategy would, however, imply the generation of

supported and unsupported Pareto optimal solutions. And with the desired max-ordering

solutions expeted to be entrally loated in the Pareto set, we would expet to enumerate

half of all Pareto optimal solutions, involving exessive omputational e�ort. Taking the

diÆulty of generating unsupported solutions into aount (see Ehrgott [7℄), we propose

a di�erent approah.

Our algorithm makes use of the information of Lemmas 1 to 3 in a more intelligent way

and proeeds in two phases.

3 The Algorithm

First, we look for the two supported Pareto optimal solutions for whih f

1

(x

i

) � f

2

(x

i

) and

f

1

(x

j

) > f

2

(x

j

); j > i; aording to the order of Lemma 2. We shall all them x

1

and x

2

in the algorithm. To do so, we start with solutions x

1

and x

2

minimizing objetives f

1

and

f

2

, respetively. We then proeed to solutions where the di�erene of objetive values is

smaller. When this is no longer possible, we will either have one supported Pareto optimal

solution with f

1

(x) = f

2

(x), or we end up with two neighboring supported Pareto optimal

solutions, say x

1

and x

2

suh that f

1

(x

1

) < f

2

(x

1

) and f

1

(x

2

) > f

2

(x

2

). Aording to

Lemma 3, the �rst ase solves min

x2S

g(x), and any other Pareto optimal solution must

have one objetive value smaller and one bigger than x. Of ourse, it may happen that one

of the objetives dominates the other ompletely, i.e. min

x2S

f

1

(x) � max

x2Par(S)

f

2

(x)

(ases 1 or 2 in Lemma 2). In this ase the problem is trivial, and we an easily detet it

when omputing x

1

and x

2

for the �rst time.

Should we terminate Phase 1 with two solutions, we will have to investigate unsupported

solutions in the right-angled triangle de�ned by the hyperplane through the point f(x

�

)

with normal � and (g(x

�

); g(x

�

)), where x

�

is the urrent best solution, see Figure 2. For

this we use the ranking algorithm. In fat, f(x

1

) and f(x

2

) uniquely de�ne weights �

1

; �

2

suh that both x

1

and x

2

are optimal solutions of

min

x2S

�

1

f

1

(x) + �

2

f

2

(x):

We an now apply a ranking algorithm to �nd seond, third, ... best solutions for this

problem, in order to �nd unsupported solutions in the identi�ed triangle. A similar pro-
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edure was proposed for the identi�ation of all unsupported Pareto optimal solutions in

Coutinho-Rodrigues et al. [4℄.

The algorithm will stop if we enounter a solution x with f

1

(x) = f

2

(x), as this must be

the optimal solution we are looking for, or �

1

f

1

(x)+�

2

f

2

(x) � g(x

�

); beause any further

solutions will no longer be in the triangle and therefore no longer a andidate for a MO

optimal solution. In the latter ase, the urrently best solution is the optimal solution of

the max-ordering problem.

Algorithm - Phase 1

1. Solve min

x2S

f

1

(x), let x

1

be the optimal solution and let f

1

1

:= f

1

(x

1

); f

1

2

= f

2

(x

1

).

2. If f

1

1

� f

1

2

STOP, x

�

= x

1

is an optimal solution.

3. Solve min

x2S

f

2

(x), let x

2

be the optimal solution and let f

2

1

:= f

1

(x

2

); f

2

2

= f

2

(x

2

).

4. If f

2

2

� f

2

1

STOP, x

�

= x

2

is an optimal solution.

5. If f(x

1

) = f(x

2

) STOP, x

�

= x

1

(or x

2

) is an optimal solution.

6. Let x

�

:= argminfg(x

1

); g(x

2

)g be the urrently best solution.

7. Let �

1

:= f

1

2

� f

2

2

; �

2

:= f

2

1

� f

1

1

.

8. Solve min

x2S

�

1

f

1

(x) + �

2

f

2

(x), let x

3

be the optimal solution and let f

3

1

:= f

1

(x

3

);

f

3

2

= f

2

(x

3

).

9. If f

3

1

= f

3

2

STOP, x

�

= x

3

is an optimal solution.

10. If x

3

= x

2

or x

3

= x

1

all Phase 2(�

1

; �

2

).

11. If f

3

1

< f

3

2

then x

1

= x

3

; f

1

1

= f

3

1

; f

1

2

= f

3

2

.

12. If f

3

1

> f

3

2

then x

2

= x

3

; f

2

1

= f

3

1

; f

2

2

= f

3

2

.

13. Go to 6.

The idea of the �rst phase is illustrated in Figure 1. With solutions x

1

and x

2

we ompute

the normal to the line onneting (f

1

1

; f

1

2

) and (f

2

1

; f

2

2

). This normal serves as a weighting

vetor for ombining the two objetives, and its negative is the diretion in whih we

searh for a new supported Pareto optimal solution whih is eventually found at x

3

with

objetive values (f

3

1

; f

3

2

).
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f

2

f

1

n = (f

1

2

� f

2

2

; f

2

1

� f

1

1

)

(f

1

1

; f

1

2

)

(f

2

1

; f

2

2

)

(f

3

1

; f

3

2

)

Figure 1: Illustration of Searh Diretion in Phase 1

We remark that the values �

1

; �

2

, identi�ed at the end of Phase 1, are the best hoie of �

in the method proposed by Hamaher and Ruhe [15℄ and will overome the problem that

for an unfortunate hoie of �, that method turns out to be omplete enumeration of all

feasible solutions.

Algorithm - Phase 2

1. K := 3.

2. Use a K-best algorithm to �nd the K-best solution of min

x2S

�

1

f

1

(x) + �

2

f

2

(x).

Denote this solution x

K

.

3. If �

1

f

1

(x

K

) + �

2

f

2

(x

K

) � g(x

�

) STOP, x

�

is an optimal solution.

4. If f

1

(x

K

) = f

2

(x

K

) STOP, x

�

= x

K

is an optimal solution.

5. If f

1

(x

K

) > f

2

1

then K := K + 1, go to 2.
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6. If f

2

(x

K

) > f

1

2

then K := K + 1, go to 2.

7. K := K + 1, If g(x

K

) < g(x

�

) then x

�

:= x

K

, go to 2.

We illustrate the algorithm on an example. In Figure 2 we show the objetive values of 6

feasible points indexed in the order of their generation.

f

2

f

1

f(x

1

)

f(x

2

)

f(x

3

)

f(x

4

)

f(x

5

)

f(x

6

)

Figure 2: Illustrative Example

In Phase 1, x

1

and x

2

will be generated �rst. Weights �

1

and �

2

are omputed orre-

sponding to the normal to a line onneting f(x

1

) and f(x

2

) and x

�

= x

2

. Solution of

the weighted sum problem in Step 8 results in x

3

. Sine f

1

(x

3

) < f

2

(x

3

); f

1

1

and f

2

1

are

replaed by the objetive values of x

3

. The urrent best x

�

is updated to x

3

. The seond

weighted sum problem uses updated �'s orresponding to the normal to the line onnet-

ing f(x

2

) and f(x

3

). Assume x

3

is returned as optimal solution. Thus no new supported

Pareto optimal solution is found, and we ontinue with Phase 2 to investigate the earlier

de�ned triangle. Note that the supported solution x

4

is not generated in Phase 1.

We know that x

3

and x

2

are �rst and seond best solutions of the weighted sum problem,
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therefore we are searhing for the third best by searhing in diretion �. This turns out to

be x

4

, whih is disarded as not being in the triangle (f

2

(x

4

) > f

2

(x

3

) = g(x

�

)). So we set

K = 4, identify x

5

as the next solution, whih passes all tests. In our example x

5

replaes

x

3

as the urrent best solution and K is set to 5. The next solution is x

6

, the ombined

objetive value of whih is larger than that of the third orner point of the triangle. We

will therefore �nd no further points in the triangle and stop with the optimal solution

x

�

= x

5

.

Remark 1 In Phase 2 the following situation might our: The solution of the weighted

sum problem is another supported Pareto optimal solution whih is, as x

1

and x

2

, optimal

for the weighted sum problem. Its objetive funtion vetor lies on the line between f(x

1

)

and f(x

2

). In this ase, this point reates two new and smaller triangles. We an restrit

searh to the one whih is interseted by the halving line f

1

= f

2

.

4 Lagrange Relaxation of Max-Ordering Problems

In this setion we desribe why Lagrange relaxation of max-ordering problems with linear

objetive funtions does not work. This approah has earlier been suggested as a pruning

method for a label orreting approah in Murthy and Her [21℄.

Consider the usual reformulation of (1)

min z

s.t. z � f

i

(x) 8 i = 1; : : : ; Q

x 2 S

z 2 IR:

(2)

A Lagrange relaxation of the �rst set of onstraints in (2) is an appealing thing to do,

as it simpli�es the onstraints to the original ones. This leads to the following problem,

where � is the vetor of Lagrange multipliers:

min z +

P

Q

i=1

�

i

(f

i

(x)� z)

s.t. x 2 S

� � 0:

Rearranging the objetive funtion leads to

min

x2S

 

1�

X

i

�

i

!

z +

Q

X

i=1

�

i

f

i

(x);

where

P

i

�

i

= 1 to avoid an unbounded problem (sine z 2 IR). We thus end up with the
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following simple problem

min

P

Q

i=1

�

i

f

i

(x)

s.t. x 2 S

� � 0

P

Q

i=1

�

i

= 1:

(3)

The multipliers are determined in the Lagrangian dual of (2), whih has the objetive

funtion

max

�

min

x2S

Q

X

i=1

�

i

f

i

(x); (4)

where the multipliers still have to ful�ll the onvexity onstraints. (4) is easily solved by

minimizing f

i

(x) for all i, and then setting �

i

= 1 for the largest f

i

(x).

We onlude that this approah will in fat return the worst possible Pareto optimal

solution to our original problem (1) in the biriteria ase. With more than two objetives,

worse solutions may exist.

5 K-best Algorithms

As we propose the use of ranking algorithms, our method is obviously restrited to suh

ombinatorial optimization problems for whih eÆient methods for �nding K-best solu-

tions are available. We briey review some of these here.

The largest amount of researh on ranking solutions is available for the shortest path

problem. Algorithms developed by Azevedo et al. [1℄, Martins et al. [19℄ or Eppstein [11℄

are very eÆient. The best omplexity known is O(m+n logn+K) by Eppstein's method.

However, numerial experiments reported by Martins et al. [20℄ show their algorithm to

be very ompetitive. Its omplexity is O(m+Kn logn).

The seond problem for whih several methods are known, is the minimum spanning tree

problem. We mention papers by Gabow [12℄ and Katoh et al. [16℄. The best known

omplexity is O(Km+min(n

2

;m log logn)).

In the seventies and eighties some general shemes for ranking solutions of ombina-

torial optimization problems have been developed by Lawler [17℄ and Hamaher and

Queyranne [14℄. The appliation of the latter led to algorithms for matroids (Hamaher

and Queyranne [14℄), with the speial ase of uniform matroids disussed in Ehrgott [5℄.

The omplexity of the latter is O(K(n+m)+minfn log n; nmg). Finally, an algorithm to

rank (integer) network ows was presented in Hamaher [13℄. Its omplexity is O(Knm

2

):

We note that only algorithms allowing the onstrution of solutions with the same objetive

funtion values are appliable in our method. This is evident from the fat that at the
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beginning of Phase 2, we have x

1

and x

2

as optimal, i.e. �rst and seond best solutions of

the weighted sums problem.

6 Disussion

The algorithm we propose solves the max-ordering problem for two riteria. It works

eÆiently, as it restrits searh (in general) to a small subset of feasible solutions, where

max-ordering solutions an be found. As it starts its searh from supported Pareto optimal

solutions whih are muh easier to generate than unsupported ones, it will in general

enumerate only few solutions. It thereby resolves the diÆulties of the ranking method

proposed by Hamaher and Ruhe [15℄ in whih the onstrution of an appropriate � was

an open question.

In addition, for large sale problems, when even the intelligent searh applied in our

algorithm might result in the enumeration of many feasible solutions (after all the problem

is NP-omplete), the algorithm an be stopped at any time with the urrent best as an

approximate solution. By omputing g(x

�

)�g

LB

, where g

LB

is a lower bound on g, we even

have a bound on the distane from the real optimal solution. g

LB

an easily be alulated

and updated in Phase 1 in a straightforward manner. Initially, g

LB

= maxff

1

1

; f

2

2

g with

updates ourring whenever x

1

or x

2

is updated.

A natural question is the extension of the algorithm to more than two objetives. With

suh an endeavor we enounter two major diÆulties. The �rst one is that problems with

at least three objetives annot be redued to subproblems with two objetives only. Thus,

in the multiriteria ase all riteria have to be onsidered simultaneously.

Example 1 Consider a ombinatorial problem with three objetives and the following set

of eÆient vetors (objetive vetors of Pareto optimal solutions)

8

<

:

0

�

7

5

3

1

A

;

0

�

6

4

8

1

A

;

0

�

9

4

2

1

A

;

0

�

6

8

2

1

A

9

=

;

The unique max-ordering solution is the �rst one, with g(x) = 7. However, looking at only

two of the objetives at a time, we obtain the following. For f

1

; f

2

only, the minimal value

of g(x) is attained at the seond solution, for f

2

; f

3

it is the third, and for f

1

; f

3

it is the

fourth. Thus none of the biriteria subproblems yields the true optimal solution.

The seond major diÆulty is in the generalization of Phase 1. This problem has been

observed by many researhers applying the method for the generation of all Pareto optimal
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solutions. In ontrast to the biriteria ase, there may exist supported eÆient points,

whih lie above (rather than below) a previously onstruted hyperplane. For a disussion

see Solanki et al. [24℄. This kind of problem is very similar to the problem enountered

in omputing Nadir points for problems with at least three objetives see Ehrgott and

Tenfelde [10℄ for a reent disussion. Further work is required to generalize our method

in order to develop at least a heuristi to �nd a good � in Phase 1 that will enable an

eÆient appliation of the ranking algorithms in Phase 2.
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Summary

This thesis is on spei� problems in the �eld of operations researh, an area within math-

ematial eonomis. I fous on network and loation problems ombined with the area of

multiriteria analysis. Multiriteria analysis is mathematial programming problems for-

mulated with several (often oniting) objetive funtions (goals). Therefore, the onept

of optimality is broadened to Pareto optimality, also known from miro eonomis. With

the onept of Pareto optimality a whole set of solutions an be \optimal", instead of just

a single point. Sine network and loation problems are often ombinatorial optimization

problems, the omplexity of the problems is an important issue. Many well-known ombi-

natorial optimization problems are easy to solve (require polynomial solution time), but

with more than one objetive funtion they often beome hard (require exponential solu-

tion time). In this thesis I develop methods for solving multiriteria network and loation

problems.

The thesis is built around seven papers, whih should be read separately. The �rst part

of the thesis is a seven hapter overview of my (and oauthors) work, and the seond part

ontains the seven omplete papers. Chapter 1 is a short introdution, Chapter 2 desribes

two losely related papers and the remaining �ve hapters over one paper eah.

Paper A is \A Classi�ation of Biriteria Shortest Path (BSP) Algorithms", whih de-

sribes the four main solution approahes for the BSP problem. By examining the algo-

rithmi strutures, we argue why the Label Correting method is believed to be the most

e�etive method for this problem.

Paper B is \A label orreting approah for solving biriterion shortest path problems",

in whih a preproessing rule is introdued to the Label Correting method to redue

the solution time. Computational experiments support the usefulness of the preproessing

rule. The last part of the paper ontains a disussion on how to generate random networks

for omputational experiments on the BSP problem.

Paper C is \The Biriterion Semi-obnoxious Loation (BSL) Problem Solved by an �-

Approximation". This paper introdues a biriterion model to desribe the problem of

loating a new airport. Two similar models are built for both the planar and the network

ase of the problem, and an approximation solution method is adapted. Computational

experiments were performed on the real-life example of where to loate a new airport

around the ity of Aarhus, Denmark.

Paper D is \Multiriteria Semi-obnoxious Network Loation (MSNL) Problems with Sum

and Center Objetives". We present how a known, but rather new solution method works
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by means of an illustrative example, and moreover disuss the generalization to a broader

lass of problems. The impat on the omplexity of the algorithm by generalizing the

problem is also presented. Finally a simple and very e�etive biriterion approah is

desribed and visualized.

Paper E is \Biriteria Network Loation (BNL) problems with riteria dependent lengths

and minisum objetives" in whih two well-known problems are ombined. The result is

a new problem, and possible appliations are indiated. A two-phases solution method is

adapted for the new problem, and the mathematial diÆulties at di�erent steps of the

solution approah are disussed. The method is presented on an example illustrating the

exat ompliations of the solution proess.

Paper F is \Network planning in teleommuniations: A stohasti programming ap-

proah" in whih a apaity expansion problem arising in teleommuniation is presented.

The work is based on a researh projet with Sonofon. A stohasti programming model

is built to desribe when to expand apaity in order to meet required goals of servie.

Computational experiments were performed on data provided by Sonofon.

Paper G is \Solving Biobjetive Combinatorial Max-Ordering Problems by Ranking Meth-

ods and a Two-Phases Approah", in whih a two-phases solution method is adapted for

the max-ordering problem. The max-ordering problem ours as a subproblem in many

well-known multiriteria solution methods. Therefore a good solution method for this

problem is important. Ranking methods are used in Phase 2. The method is illustrated

on an example.


